Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
pandas / core / indexes / category.py
Size: Mime:
import operator

import numpy as np
from pandas._libs import index as libindex

from pandas import compat
from pandas.compat.numpy import function as nv
from pandas.core.dtypes.generic import ABCCategorical, ABCSeries
from pandas.core.dtypes.dtypes import CategoricalDtype
from pandas.core.dtypes.common import (
    is_categorical_dtype,
    _ensure_platform_int,
    is_list_like,
    is_interval_dtype,
    is_scalar)
from pandas.core.dtypes.missing import array_equivalent, isna
from pandas.core.algorithms import take_1d


from pandas.util._decorators import Appender, cache_readonly
from pandas.core.config import get_option
from pandas.core.indexes.base import Index, _index_shared_docs
from pandas.core import accessor
import pandas.core.common as com
import pandas.core.missing as missing
import pandas.core.indexes.base as ibase

_index_doc_kwargs = dict(ibase._index_doc_kwargs)
_index_doc_kwargs.update(dict(target_klass='CategoricalIndex'))


class CategoricalIndex(Index, accessor.PandasDelegate):
    """

    Immutable Index implementing an ordered, sliceable set. CategoricalIndex
    represents a sparsely populated Index with an underlying Categorical.

    Parameters
    ----------
    data : array-like or Categorical, (1-dimensional)
    categories : optional, array-like
        categories for the CategoricalIndex
    ordered : boolean,
        designating if the categories are ordered
    copy : bool
        Make a copy of input ndarray
    name : object
        Name to be stored in the index

    Attributes
    ----------
    codes
    categories
    ordered

    Methods
    -------
    rename_categories
    reorder_categories
    add_categories
    remove_categories
    remove_unused_categories
    set_categories
    as_ordered
    as_unordered
    map

    See Also
    --------
    Categorical, Index
    """

    _typ = 'categoricalindex'
    _engine_type = libindex.Int64Engine
    _attributes = ['name']

    def __new__(cls, data=None, categories=None, ordered=None, dtype=None,
                copy=False, name=None, fastpath=False):

        if fastpath:
            return cls._simple_new(data, name=name, dtype=dtype)

        if name is None and hasattr(data, 'name'):
            name = data.name

        if isinstance(data, ABCCategorical):
            data = cls._create_categorical(cls, data, categories, ordered,
                                           dtype)
        elif isinstance(data, CategoricalIndex):
            data = data._data
            data = cls._create_categorical(cls, data, categories, ordered,
                                           dtype)
        else:

            # don't allow scalars
            # if data is None, then categories must be provided
            if is_scalar(data):
                if data is not None or categories is None:
                    cls._scalar_data_error(data)
                data = []
            data = cls._create_categorical(cls, data, categories, ordered,
                                           dtype)

        if copy:
            data = data.copy()

        return cls._simple_new(data, name=name)

    def _create_from_codes(self, codes, categories=None, ordered=None,
                           name=None):
        """
        *this is an internal non-public method*

        create the correct categorical from codes

        Parameters
        ----------
        codes : new codes
        categories : optional categories, defaults to existing
        ordered : optional ordered attribute, defaults to existing
        name : optional name attribute, defaults to existing

        Returns
        -------
        CategoricalIndex
        """

        from pandas.core.arrays import Categorical
        if categories is None:
            categories = self.categories
        if ordered is None:
            ordered = self.ordered
        if name is None:
            name = self.name
        cat = Categorical.from_codes(codes, categories=categories,
                                     ordered=self.ordered)
        return CategoricalIndex(cat, name=name)

    @staticmethod
    def _create_categorical(self, data, categories=None, ordered=None,
                            dtype=None):
        """
        *this is an internal non-public method*

        create the correct categorical from data and the properties

        Parameters
        ----------
        data : data for new Categorical
        categories : optional categories, defaults to existing
        ordered : optional ordered attribute, defaults to existing
        dtype : CategoricalDtype, defaults to existing

        Returns
        -------
        Categorical
        """
        if (isinstance(data, (ABCSeries, type(self))) and
                is_categorical_dtype(data)):
            data = data.values

        if not isinstance(data, ABCCategorical):
            if ordered is None and dtype is None:
                ordered = False
            from pandas.core.arrays import Categorical
            data = Categorical(data, categories=categories, ordered=ordered,
                               dtype=dtype)
        else:
            if categories is not None:
                data = data.set_categories(categories, ordered=ordered)
            elif ordered is not None and ordered != data.ordered:
                data = data.set_ordered(ordered)
            if isinstance(dtype, CategoricalDtype):
                # we want to silently ignore dtype='category'
                data = data._set_dtype(dtype)
        return data

    @classmethod
    def _simple_new(cls, values, name=None, categories=None, ordered=None,
                    dtype=None, **kwargs):
        result = object.__new__(cls)

        values = cls._create_categorical(cls, values, categories, ordered,
                                         dtype=dtype)
        result._data = values
        result.name = name
        for k, v in compat.iteritems(kwargs):
            setattr(result, k, v)

        result._reset_identity()
        return result

    @Appender(_index_shared_docs['_shallow_copy'])
    def _shallow_copy(self, values=None, categories=None, ordered=None,
                      dtype=None, **kwargs):
        # categories and ordered can't be part of attributes,
        # as these are properties
        # we want to reuse self.dtype if possible, i.e. neither are
        # overridden.
        if dtype is not None and (categories is not None or
                                  ordered is not None):
            raise TypeError("Cannot specify both `dtype` and `categories` "
                            "or `ordered`")

        if categories is None and ordered is None:
            dtype = self.dtype if dtype is None else dtype
            return super(CategoricalIndex, self)._shallow_copy(
                values=values, dtype=dtype, **kwargs)
        if categories is None:
            categories = self.categories
        if ordered is None:
            ordered = self.ordered

        return super(CategoricalIndex, self)._shallow_copy(
            values=values, categories=categories,
            ordered=ordered, **kwargs)

    def _is_dtype_compat(self, other):
        """
        *this is an internal non-public method*

        provide a comparison between the dtype of self and other (coercing if
        needed)

        Raises
        ------
        TypeError if the dtypes are not compatible
        """
        if is_categorical_dtype(other):
            if isinstance(other, CategoricalIndex):
                other = other._values
            if not other.is_dtype_equal(self):
                raise TypeError("categories must match existing categories "
                                "when appending")
        else:
            values = other
            if not is_list_like(values):
                values = [values]
            other = CategoricalIndex(self._create_categorical(
                self, other, categories=self.categories, ordered=self.ordered))
            if not other.isin(values).all():
                raise TypeError("cannot append a non-category item to a "
                                "CategoricalIndex")

        return other

    def equals(self, other):
        """
        Determines if two CategorialIndex objects contain the same elements.
        """
        if self.is_(other):
            return True

        if not isinstance(other, Index):
            return False

        try:
            other = self._is_dtype_compat(other)
            return array_equivalent(self._data, other)
        except (TypeError, ValueError):
            pass

        return False

    @property
    def _formatter_func(self):
        return self.categories._formatter_func

    def _format_attrs(self):
        """
        Return a list of tuples of the (attr,formatted_value)
        """
        max_categories = (10 if get_option("display.max_categories") == 0 else
                          get_option("display.max_categories"))
        attrs = [
            ('categories',
             ibase.default_pprint(self.categories,
                                  max_seq_items=max_categories)),
            ('ordered', self.ordered)]
        if self.name is not None:
            attrs.append(('name', ibase.default_pprint(self.name)))
        attrs.append(('dtype', "'%s'" % self.dtype.name))
        max_seq_items = get_option('display.max_seq_items') or len(self)
        if len(self) > max_seq_items:
            attrs.append(('length', len(self)))
        return attrs

    @property
    def inferred_type(self):
        return 'categorical'

    @property
    def values(self):
        """ return the underlying data, which is a Categorical """
        return self._data

    @property
    def itemsize(self):
        # Size of the items in categories, not codes.
        return self.values.itemsize

    def get_values(self):
        """ return the underlying data as an ndarray """
        return self._data.get_values()

    def tolist(self):
        return self._data.tolist()

    @property
    def codes(self):
        return self._data.codes

    @property
    def categories(self):
        return self._data.categories

    @property
    def ordered(self):
        return self._data.ordered

    def _reverse_indexer(self):
        return self._data._reverse_indexer()

    @Appender(_index_shared_docs['__contains__'] % _index_doc_kwargs)
    def __contains__(self, key):
        hash(key)

        if self.categories._defer_to_indexing:
            return key in self.categories

        return key in self.values

    @Appender(_index_shared_docs['contains'] % _index_doc_kwargs)
    def contains(self, key):
        hash(key)

        if self.categories._defer_to_indexing:
            return self.categories.contains(key)

        return key in self.values

    def __array__(self, dtype=None):
        """ the array interface, return my values """
        return np.array(self._data, dtype=dtype)

    @Appender(_index_shared_docs['astype'])
    def astype(self, dtype, copy=True):
        if is_interval_dtype(dtype):
            from pandas import IntervalIndex
            return IntervalIndex(np.array(self))
        elif is_categorical_dtype(dtype):
            # GH 18630
            dtype = self.dtype.update_dtype(dtype)
            if dtype == self.dtype:
                return self.copy() if copy else self

        return super(CategoricalIndex, self).astype(dtype=dtype, copy=copy)

    @cache_readonly
    def _isnan(self):
        """ return if each value is nan"""
        return self._data.codes == -1

    @Appender(ibase._index_shared_docs['fillna'])
    def fillna(self, value, downcast=None):
        self._assert_can_do_op(value)
        return CategoricalIndex(self._data.fillna(value), name=self.name)

    def argsort(self, *args, **kwargs):
        return self.values.argsort(*args, **kwargs)

    @cache_readonly
    def _engine(self):

        # we are going to look things up with the codes themselves
        return self._engine_type(lambda: self.codes.astype('i8'), len(self))

    # introspection
    @cache_readonly
    def is_unique(self):
        return self._engine.is_unique

    @property
    def is_monotonic_increasing(self):
        return self._engine.is_monotonic_increasing

    @property
    def is_monotonic_decreasing(self):
        return self._engine.is_monotonic_decreasing

    @Appender(_index_shared_docs['index_unique'] % _index_doc_kwargs)
    def unique(self, level=None):
        if level is not None:
            self._validate_index_level(level)
        result = self.values.unique()
        # CategoricalIndex._shallow_copy keeps original categories
        # and ordered if not otherwise specified
        return self._shallow_copy(result, categories=result.categories,
                                  ordered=result.ordered)

    @Appender(Index.duplicated.__doc__)
    def duplicated(self, keep='first'):
        from pandas._libs.hashtable import duplicated_int64
        codes = self.codes.astype('i8')
        return duplicated_int64(codes, keep)

    def _to_safe_for_reshape(self):
        """ convert to object if we are a categorical """
        return self.astype('object')

    def get_loc(self, key, method=None):
        """
        Get integer location, slice or boolean mask for requested label.

        Parameters
        ----------
        key : label
        method : {None}
            * default: exact matches only.

        Returns
        -------
        loc : int if unique index, slice if monotonic index, else mask

        Examples
        ---------
        >>> unique_index = pd.CategoricalIndex(list('abc'))
        >>> unique_index.get_loc('b')
        1

        >>> monotonic_index = pd.CategoricalIndex(list('abbc'))
        >>> monotonic_index.get_loc('b')
        slice(1, 3, None)

        >>> non_monotonic_index = p.dCategoricalIndex(list('abcb'))
        >>> non_monotonic_index.get_loc('b')
        array([False,  True, False,  True], dtype=bool)
        """
        codes = self.categories.get_loc(key)
        if (codes == -1):
            raise KeyError(key)
        return self._engine.get_loc(codes)

    def get_value(self, series, key):
        """
        Fast lookup of value from 1-dimensional ndarray. Only use this if you
        know what you're doing
        """
        try:
            k = com._values_from_object(key)
            k = self._convert_scalar_indexer(k, kind='getitem')
            indexer = self.get_loc(k)
            return series.iloc[indexer]
        except (KeyError, TypeError):
            pass

        # we might be a positional inexer
        return super(CategoricalIndex, self).get_value(series, key)

    def _can_reindex(self, indexer):
        """ always allow reindexing """
        pass

    @Appender(_index_shared_docs['where'])
    def where(self, cond, other=None):
        if other is None:
            other = self._na_value
        values = np.where(cond, self.values, other)

        from pandas.core.arrays import Categorical
        cat = Categorical(values,
                          categories=self.categories,
                          ordered=self.ordered)
        return self._shallow_copy(cat, **self._get_attributes_dict())

    def reindex(self, target, method=None, level=None, limit=None,
                tolerance=None):
        """
        Create index with target's values (move/add/delete values as necessary)

        Returns
        -------
        new_index : pd.Index
            Resulting index
        indexer : np.ndarray or None
            Indices of output values in original index

        """

        if method is not None:
            raise NotImplementedError("argument method is not implemented for "
                                      "CategoricalIndex.reindex")
        if level is not None:
            raise NotImplementedError("argument level is not implemented for "
                                      "CategoricalIndex.reindex")
        if limit is not None:
            raise NotImplementedError("argument limit is not implemented for "
                                      "CategoricalIndex.reindex")

        target = ibase._ensure_index(target)

        if not is_categorical_dtype(target) and not target.is_unique:
            raise ValueError("cannot reindex with a non-unique indexer")

        indexer, missing = self.get_indexer_non_unique(np.array(target))

        if len(self.codes):
            new_target = self.take(indexer)
        else:
            new_target = target

        # filling in missing if needed
        if len(missing):
            cats = self.categories.get_indexer(target)

            if (cats == -1).any():
                # coerce to a regular index here!
                result = Index(np.array(self), name=self.name)
                new_target, indexer, _ = result._reindex_non_unique(
                    np.array(target))
            else:

                codes = new_target.codes.copy()
                codes[indexer == -1] = cats[missing]
                new_target = self._create_from_codes(codes)

        # we always want to return an Index type here
        # to be consistent with .reindex for other index types (e.g. they don't
        # coerce based on the actual values, only on the dtype)
        # unless we had an initial Categorical to begin with
        # in which case we are going to conform to the passed Categorical
        new_target = np.asarray(new_target)
        if is_categorical_dtype(target):
            new_target = target._shallow_copy(new_target, name=self.name)
        else:
            new_target = Index(new_target, name=self.name)

        return new_target, indexer

    def _reindex_non_unique(self, target):
        """ reindex from a non-unique; which CategoricalIndex's are almost
        always
        """
        new_target, indexer = self.reindex(target)
        new_indexer = None

        check = indexer == -1
        if check.any():
            new_indexer = np.arange(len(self.take(indexer)))
            new_indexer[check] = -1

        cats = self.categories.get_indexer(target)
        if not (cats == -1).any():
            # .reindex returns normal Index. Revert to CategoricalIndex if
            # all targets are included in my categories
            new_target = self._shallow_copy(new_target)

        return new_target, indexer, new_indexer

    @Appender(_index_shared_docs['get_indexer'] % _index_doc_kwargs)
    def get_indexer(self, target, method=None, limit=None, tolerance=None):
        from pandas.core.arrays.categorical import _recode_for_categories

        method = missing.clean_reindex_fill_method(method)
        target = ibase._ensure_index(target)

        if self.is_unique and self.equals(target):
            return np.arange(len(self), dtype='intp')

        if method == 'pad' or method == 'backfill':
            raise NotImplementedError("method='pad' and method='backfill' not "
                                      "implemented yet for CategoricalIndex")
        elif method == 'nearest':
            raise NotImplementedError("method='nearest' not implemented yet "
                                      'for CategoricalIndex')

        if (isinstance(target, CategoricalIndex) and
                self.values.is_dtype_equal(target)):
            if self.values.equals(target.values):
                # we have the same codes
                codes = target.codes
            else:
                codes = _recode_for_categories(target.codes,
                                               target.categories,
                                               self.values.categories)
        else:
            if isinstance(target, CategoricalIndex):
                code_indexer = self.categories.get_indexer(target.categories)
                codes = take_1d(code_indexer, target.codes, fill_value=-1)
            else:
                codes = self.categories.get_indexer(target)

        indexer, _ = self._engine.get_indexer_non_unique(codes)
        return _ensure_platform_int(indexer)

    @Appender(_index_shared_docs['get_indexer_non_unique'] % _index_doc_kwargs)
    def get_indexer_non_unique(self, target):
        target = ibase._ensure_index(target)

        if isinstance(target, CategoricalIndex):
            # Indexing on codes is more efficient if categories are the same:
            if target.categories is self.categories:
                target = target.codes
                indexer, missing = self._engine.get_indexer_non_unique(target)
                return _ensure_platform_int(indexer), missing
            target = target.values

        codes = self.categories.get_indexer(target)
        indexer, missing = self._engine.get_indexer_non_unique(codes)
        return _ensure_platform_int(indexer), missing

    @Appender(_index_shared_docs['_convert_scalar_indexer'])
    def _convert_scalar_indexer(self, key, kind=None):
        if self.categories._defer_to_indexing:
            return self.categories._convert_scalar_indexer(key, kind=kind)

        return super(CategoricalIndex, self)._convert_scalar_indexer(
            key, kind=kind)

    @Appender(_index_shared_docs['_convert_list_indexer'])
    def _convert_list_indexer(self, keyarr, kind=None):
        # Return our indexer or raise if all of the values are not included in
        # the categories

        if self.categories._defer_to_indexing:
            indexer = self.categories._convert_list_indexer(keyarr, kind=kind)
            return Index(self.codes).get_indexer_for(indexer)

        indexer = self.categories.get_indexer(np.asarray(keyarr))
        if (indexer == -1).any():
            raise KeyError(
                "a list-indexer must only "
                "include values that are "
                "in the categories")

        return self.get_indexer(keyarr)

    @Appender(_index_shared_docs['_convert_arr_indexer'])
    def _convert_arr_indexer(self, keyarr):
        keyarr = com._asarray_tuplesafe(keyarr)

        if self.categories._defer_to_indexing:
            return keyarr

        return self._shallow_copy(keyarr)

    @Appender(_index_shared_docs['_convert_index_indexer'])
    def _convert_index_indexer(self, keyarr):
        return self._shallow_copy(keyarr)

    @Appender(_index_shared_docs['take'] % _index_doc_kwargs)
    def take(self, indices, axis=0, allow_fill=True,
             fill_value=None, **kwargs):
        nv.validate_take(tuple(), kwargs)
        indices = _ensure_platform_int(indices)
        taken = self._assert_take_fillable(self.codes, indices,
                                           allow_fill=allow_fill,
                                           fill_value=fill_value,
                                           na_value=-1)
        return self._create_from_codes(taken)

    def is_dtype_equal(self, other):
        return self._data.is_dtype_equal(other)

    take_nd = take

    def map(self, mapper):
        """
        Map values using input correspondence (a dict, Series, or function).

        Maps the values (their categories, not the codes) of the index to new
        categories. If the mapping correspondence is one-to-one the result is a
        :class:`~pandas.CategoricalIndex` which has the same order property as
        the original, otherwise an :class:`~pandas.Index` is returned.

        If a `dict` or :class:`~pandas.Series` is used any unmapped category is
        mapped to `NaN`. Note that if this happens an :class:`~pandas.Index`
        will be returned.

        Parameters
        ----------
        mapper : function, dict, or Series
            Mapping correspondence.

        Returns
        -------
        pandas.CategoricalIndex or pandas.Index
            Mapped index.

        See Also
        --------
        Index.map : Apply a mapping correspondence on an
            :class:`~pandas.Index`.
        Series.map : Apply a mapping correspondence on a
            :class:`~pandas.Series`.
        Series.apply : Apply more complex functions on a
            :class:`~pandas.Series`.

        Examples
        --------
        >>> idx = pd.CategoricalIndex(['a', 'b', 'c'])
        >>> idx
        CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'],
                         ordered=False, dtype='category')
        >>> idx.map(lambda x: x.upper())
        CategoricalIndex(['A', 'B', 'C'], categories=['A', 'B', 'C'],
                         ordered=False, dtype='category')
        >>> idx.map({'a': 'first', 'b': 'second', 'c': 'third'})
        CategoricalIndex(['first', 'second', 'third'], categories=['first',
                         'second', 'third'], ordered=False, dtype='category')

        If the mapping is one-to-one the ordering of the categories is
        preserved:

        >>> idx = pd.CategoricalIndex(['a', 'b', 'c'], ordered=True)
        >>> idx
        CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'],
                         ordered=True, dtype='category')
        >>> idx.map({'a': 3, 'b': 2, 'c': 1})
        CategoricalIndex([3, 2, 1], categories=[3, 2, 1], ordered=True,
                         dtype='category')

        If the mapping is not one-to-one an :class:`~pandas.Index` is returned:

        >>> idx.map({'a': 'first', 'b': 'second', 'c': 'first'})
        Index(['first', 'second', 'first'], dtype='object')

        If a `dict` is used, all unmapped categories are mapped to `NaN` and
        the result is an :class:`~pandas.Index`:

        >>> idx.map({'a': 'first', 'b': 'second'})
        Index(['first', 'second', nan], dtype='object')
        """
        return self._shallow_copy_with_infer(self.values.map(mapper))

    def delete(self, loc):
        """
        Make new Index with passed location(-s) deleted

        Returns
        -------
        new_index : Index
        """
        return self._create_from_codes(np.delete(self.codes, loc))

    def insert(self, loc, item):
        """
        Make new Index inserting new item at location. Follows
        Python list.append semantics for negative values

        Parameters
        ----------
        loc : int
        item : object

        Returns
        -------
        new_index : Index

        Raises
        ------
        ValueError if the item is not in the categories

        """
        code = self.categories.get_indexer([item])
        if (code == -1) and not (is_scalar(item) and isna(item)):
            raise TypeError("cannot insert an item into a CategoricalIndex "
                            "that is not already an existing category")

        codes = self.codes
        codes = np.concatenate((codes[:loc], code, codes[loc:]))
        return self._create_from_codes(codes)

    def _concat(self, to_concat, name):
        # if calling index is category, don't check dtype of others
        return CategoricalIndex._concat_same_dtype(self, to_concat, name)

    def _concat_same_dtype(self, to_concat, name):
        """
        Concatenate to_concat which has the same class
        ValueError if other is not in the categories
        """
        to_concat = [self._is_dtype_compat(c) for c in to_concat]
        codes = np.concatenate([c.codes for c in to_concat])
        result = self._create_from_codes(codes, name=name)
        # if name is None, _create_from_codes sets self.name
        result.name = name
        return result

    def _codes_for_groupby(self, sort, observed):
        """ Return a Categorical adjusted for groupby """
        return self.values._codes_for_groupby(sort, observed)

    @classmethod
    def _add_comparison_methods(cls):
        """ add in comparison methods """

        def _make_compare(op):
            opname = '__{op}__'.format(op=op.__name__)

            def _evaluate_compare(self, other):

                # if we have a Categorical type, then must have the same
                # categories
                if isinstance(other, CategoricalIndex):
                    other = other._values
                elif isinstance(other, Index):
                    other = self._create_categorical(
                        self, other._values, categories=self.categories,
                        ordered=self.ordered)

                if isinstance(other, (ABCCategorical, np.ndarray,
                                      ABCSeries)):
                    if len(self.values) != len(other):
                        raise ValueError("Lengths must match to compare")

                if isinstance(other, ABCCategorical):
                    if not self.values.is_dtype_equal(other):
                        raise TypeError("categorical index comparisons must "
                                        "have the same categories and ordered "
                                        "attributes")

                result = op(self.values, other)
                if isinstance(result, ABCSeries):
                    # Dispatch to pd.Categorical returned NotImplemented
                    # and we got a Series back; down-cast to ndarray
                    result = result.values
                return result

            return compat.set_function_name(_evaluate_compare, opname, cls)

        cls.__eq__ = _make_compare(operator.eq)
        cls.__ne__ = _make_compare(operator.ne)
        cls.__lt__ = _make_compare(operator.lt)
        cls.__gt__ = _make_compare(operator.gt)
        cls.__le__ = _make_compare(operator.le)
        cls.__ge__ = _make_compare(operator.ge)

    def _delegate_method(self, name, *args, **kwargs):
        """ method delegation to the ._values """
        method = getattr(self._values, name)
        if 'inplace' in kwargs:
            raise ValueError("cannot use inplace with CategoricalIndex")
        res = method(*args, **kwargs)
        if is_scalar(res):
            return res
        return CategoricalIndex(res, name=self.name)

    @classmethod
    def _add_accessors(cls):
        """ add in Categorical accessor methods """

        from pandas.core.arrays import Categorical
        CategoricalIndex._add_delegate_accessors(
            delegate=Categorical, accessors=["rename_categories",
                                             "reorder_categories",
                                             "add_categories",
                                             "remove_categories",
                                             "remove_unused_categories",
                                             "set_categories",
                                             "as_ordered", "as_unordered",
                                             "min", "max"],
            typ='method', overwrite=True)


CategoricalIndex._add_numeric_methods_add_sub_disabled()
CategoricalIndex._add_numeric_methods_disabled()
CategoricalIndex._add_logical_methods_disabled()
CategoricalIndex._add_comparison_methods()
CategoricalIndex._add_accessors()