Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
pandas / tests / categorical / test_analytics.py
Size: Mime:
# -*- coding: utf-8 -*-

import pytest
import sys

import numpy as np

import pandas.util.testing as tm
from pandas import Categorical, Index, Series

from pandas.compat import PYPY


class TestCategoricalAnalytics(object):

    def test_min_max(self):

        # unordered cats have no min/max
        cat = Categorical(["a", "b", "c", "d"], ordered=False)
        pytest.raises(TypeError, lambda: cat.min())
        pytest.raises(TypeError, lambda: cat.max())

        cat = Categorical(["a", "b", "c", "d"], ordered=True)
        _min = cat.min()
        _max = cat.max()
        assert _min == "a"
        assert _max == "d"

        cat = Categorical(["a", "b", "c", "d"],
                          categories=['d', 'c', 'b', 'a'], ordered=True)
        _min = cat.min()
        _max = cat.max()
        assert _min == "d"
        assert _max == "a"

        cat = Categorical([np.nan, "b", "c", np.nan],
                          categories=['d', 'c', 'b', 'a'], ordered=True)
        _min = cat.min()
        _max = cat.max()
        assert np.isnan(_min)
        assert _max == "b"

        _min = cat.min(numeric_only=True)
        assert _min == "c"
        _max = cat.max(numeric_only=True)
        assert _max == "b"

        cat = Categorical([np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1],
                          ordered=True)
        _min = cat.min()
        _max = cat.max()
        assert np.isnan(_min)
        assert _max == 1

        _min = cat.min(numeric_only=True)
        assert _min == 2
        _max = cat.max(numeric_only=True)
        assert _max == 1

    @pytest.mark.parametrize("values,categories,exp_mode", [
        ([1, 1, 2, 4, 5, 5, 5], [5, 4, 3, 2, 1], [5]),
        ([1, 1, 1, 4, 5, 5, 5], [5, 4, 3, 2, 1], [5, 1]),
        ([1, 2, 3, 4, 5], [5, 4, 3, 2, 1], [5, 4, 3, 2, 1]),
        ([np.nan, np.nan, np.nan, 4, 5], [5, 4, 3, 2, 1], [5, 4]),
        ([np.nan, np.nan, np.nan, 4, 5, 4], [5, 4, 3, 2, 1], [4]),
        ([np.nan, np.nan, 4, 5, 4], [5, 4, 3, 2, 1], [4])])
    def test_mode(self, values, categories, exp_mode):
        s = Categorical(values, categories=categories, ordered=True)
        res = s.mode()
        exp = Categorical(exp_mode, categories=categories, ordered=True)
        tm.assert_categorical_equal(res, exp)

    def test_searchsorted(self):
        # https://github.com/pandas-dev/pandas/issues/8420
        # https://github.com/pandas-dev/pandas/issues/14522

        c1 = Categorical(['cheese', 'milk', 'apple', 'bread', 'bread'],
                         categories=['cheese', 'milk', 'apple', 'bread'],
                         ordered=True)
        s1 = Series(c1)
        c2 = Categorical(['cheese', 'milk', 'apple', 'bread', 'bread'],
                         categories=['cheese', 'milk', 'apple', 'bread'],
                         ordered=False)
        s2 = Series(c2)

        # Searching for single item argument, side='left' (default)
        res_cat = c1.searchsorted('apple')
        res_ser = s1.searchsorted('apple')
        exp = np.array([2], dtype=np.intp)
        tm.assert_numpy_array_equal(res_cat, exp)
        tm.assert_numpy_array_equal(res_ser, exp)

        # Searching for single item array, side='left' (default)
        res_cat = c1.searchsorted(['bread'])
        res_ser = s1.searchsorted(['bread'])
        exp = np.array([3], dtype=np.intp)
        tm.assert_numpy_array_equal(res_cat, exp)
        tm.assert_numpy_array_equal(res_ser, exp)

        # Searching for several items array, side='right'
        res_cat = c1.searchsorted(['apple', 'bread'], side='right')
        res_ser = s1.searchsorted(['apple', 'bread'], side='right')
        exp = np.array([3, 5], dtype=np.intp)
        tm.assert_numpy_array_equal(res_cat, exp)
        tm.assert_numpy_array_equal(res_ser, exp)

        # Searching for a single value that is not from the Categorical
        pytest.raises(ValueError, lambda: c1.searchsorted('cucumber'))
        pytest.raises(ValueError, lambda: s1.searchsorted('cucumber'))

        # Searching for multiple values one of each is not from the Categorical
        pytest.raises(ValueError,
                      lambda: c1.searchsorted(['bread', 'cucumber']))
        pytest.raises(ValueError,
                      lambda: s1.searchsorted(['bread', 'cucumber']))

        # searchsorted call for unordered Categorical
        pytest.raises(ValueError, lambda: c2.searchsorted('apple'))
        pytest.raises(ValueError, lambda: s2.searchsorted('apple'))

        with tm.assert_produces_warning(FutureWarning):
            res = c1.searchsorted(v=['bread'])
            exp = np.array([3], dtype=np.intp)
            tm.assert_numpy_array_equal(res, exp)

    def test_unique(self):
        # categories are reordered based on value when ordered=False
        cat = Categorical(["a", "b"])
        exp = Index(["a", "b"])
        res = cat.unique()
        tm.assert_index_equal(res.categories, exp)
        tm.assert_categorical_equal(res, cat)

        cat = Categorical(["a", "b", "a", "a"], categories=["a", "b", "c"])
        res = cat.unique()
        tm.assert_index_equal(res.categories, exp)
        tm.assert_categorical_equal(res, Categorical(exp))

        cat = Categorical(["c", "a", "b", "a", "a"],
                          categories=["a", "b", "c"])
        exp = Index(["c", "a", "b"])
        res = cat.unique()
        tm.assert_index_equal(res.categories, exp)
        exp_cat = Categorical(exp, categories=['c', 'a', 'b'])
        tm.assert_categorical_equal(res, exp_cat)

        # nan must be removed
        cat = Categorical(["b", np.nan, "b", np.nan, "a"],
                          categories=["a", "b", "c"])
        res = cat.unique()
        exp = Index(["b", "a"])
        tm.assert_index_equal(res.categories, exp)
        exp_cat = Categorical(["b", np.nan, "a"], categories=["b", "a"])
        tm.assert_categorical_equal(res, exp_cat)

    def test_unique_ordered(self):
        # keep categories order when ordered=True
        cat = Categorical(['b', 'a', 'b'], categories=['a', 'b'], ordered=True)
        res = cat.unique()
        exp_cat = Categorical(['b', 'a'], categories=['a', 'b'], ordered=True)
        tm.assert_categorical_equal(res, exp_cat)

        cat = Categorical(['c', 'b', 'a', 'a'], categories=['a', 'b', 'c'],
                          ordered=True)
        res = cat.unique()
        exp_cat = Categorical(['c', 'b', 'a'], categories=['a', 'b', 'c'],
                              ordered=True)
        tm.assert_categorical_equal(res, exp_cat)

        cat = Categorical(['b', 'a', 'a'], categories=['a', 'b', 'c'],
                          ordered=True)
        res = cat.unique()
        exp_cat = Categorical(['b', 'a'], categories=['a', 'b'], ordered=True)
        tm.assert_categorical_equal(res, exp_cat)

        cat = Categorical(['b', 'b', np.nan, 'a'], categories=['a', 'b', 'c'],
                          ordered=True)
        res = cat.unique()
        exp_cat = Categorical(['b', np.nan, 'a'], categories=['a', 'b'],
                              ordered=True)
        tm.assert_categorical_equal(res, exp_cat)

    def test_unique_index_series(self):
        c = Categorical([3, 1, 2, 2, 1], categories=[3, 2, 1])
        # Categorical.unique sorts categories by appearance order
        # if ordered=False
        exp = Categorical([3, 1, 2], categories=[3, 1, 2])
        tm.assert_categorical_equal(c.unique(), exp)

        tm.assert_index_equal(Index(c).unique(), Index(exp))
        tm.assert_categorical_equal(Series(c).unique(), exp)

        c = Categorical([1, 1, 2, 2], categories=[3, 2, 1])
        exp = Categorical([1, 2], categories=[1, 2])
        tm.assert_categorical_equal(c.unique(), exp)
        tm.assert_index_equal(Index(c).unique(), Index(exp))
        tm.assert_categorical_equal(Series(c).unique(), exp)

        c = Categorical([3, 1, 2, 2, 1], categories=[3, 2, 1], ordered=True)
        # Categorical.unique keeps categories order if ordered=True
        exp = Categorical([3, 1, 2], categories=[3, 2, 1], ordered=True)
        tm.assert_categorical_equal(c.unique(), exp)

        tm.assert_index_equal(Index(c).unique(), Index(exp))
        tm.assert_categorical_equal(Series(c).unique(), exp)

    def test_shift(self):
        # GH 9416
        cat = Categorical(['a', 'b', 'c', 'd', 'a'])

        # shift forward
        sp1 = cat.shift(1)
        xp1 = Categorical([np.nan, 'a', 'b', 'c', 'd'])
        tm.assert_categorical_equal(sp1, xp1)
        tm.assert_categorical_equal(cat[:-1], sp1[1:])

        # shift back
        sn2 = cat.shift(-2)
        xp2 = Categorical(['c', 'd', 'a', np.nan, np.nan],
                          categories=['a', 'b', 'c', 'd'])
        tm.assert_categorical_equal(sn2, xp2)
        tm.assert_categorical_equal(cat[2:], sn2[:-2])

        # shift by zero
        tm.assert_categorical_equal(cat, cat.shift(0))

    def test_nbytes(self):
        cat = Categorical([1, 2, 3])
        exp = 3 + 3 * 8  # 3 int8s for values + 3 int64s for categories
        assert cat.nbytes == exp

    def test_memory_usage(self):
        cat = Categorical([1, 2, 3])

        # .categories is an index, so we include the hashtable
        assert 0 < cat.nbytes <= cat.memory_usage()
        assert 0 < cat.nbytes <= cat.memory_usage(deep=True)

        cat = Categorical(['foo', 'foo', 'bar'])
        assert cat.memory_usage(deep=True) > cat.nbytes

        if not PYPY:
            # sys.getsizeof will call the .memory_usage with
            # deep=True, and add on some GC overhead
            diff = cat.memory_usage(deep=True) - sys.getsizeof(cat)
            assert abs(diff) < 100

    def test_map(self):
        c = Categorical(list('ABABC'), categories=list('CBA'), ordered=True)
        result = c.map(lambda x: x.lower())
        exp = Categorical(list('ababc'), categories=list('cba'), ordered=True)
        tm.assert_categorical_equal(result, exp)

        c = Categorical(list('ABABC'), categories=list('ABC'), ordered=False)
        result = c.map(lambda x: x.lower())
        exp = Categorical(list('ababc'), categories=list('abc'), ordered=False)
        tm.assert_categorical_equal(result, exp)

        result = c.map(lambda x: 1)
        # GH 12766: Return an index not an array
        tm.assert_index_equal(result, Index(np.array([1] * 5, dtype=np.int64)))

    def test_validate_inplace(self):
        cat = Categorical(['A', 'B', 'B', 'C', 'A'])
        invalid_values = [1, "True", [1, 2, 3], 5.0]

        for value in invalid_values:
            with pytest.raises(ValueError):
                cat.set_ordered(value=True, inplace=value)

            with pytest.raises(ValueError):
                cat.as_ordered(inplace=value)

            with pytest.raises(ValueError):
                cat.as_unordered(inplace=value)

            with pytest.raises(ValueError):
                cat.set_categories(['X', 'Y', 'Z'], rename=True, inplace=value)

            with pytest.raises(ValueError):
                cat.rename_categories(['X', 'Y', 'Z'], inplace=value)

            with pytest.raises(ValueError):
                cat.reorder_categories(
                    ['X', 'Y', 'Z'], ordered=True, inplace=value)

            with pytest.raises(ValueError):
                cat.add_categories(
                    new_categories=['D', 'E', 'F'], inplace=value)

            with pytest.raises(ValueError):
                cat.remove_categories(removals=['D', 'E', 'F'], inplace=value)

            with pytest.raises(ValueError):
                cat.remove_unused_categories(inplace=value)

            with pytest.raises(ValueError):
                cat.sort_values(inplace=value)

    def test_repeat(self):
        # GH10183
        cat = Categorical(["a", "b"], categories=["a", "b"])
        exp = Categorical(["a", "a", "b", "b"], categories=["a", "b"])
        res = cat.repeat(2)
        tm.assert_categorical_equal(res, exp)

    def test_numpy_repeat(self):
        cat = Categorical(["a", "b"], categories=["a", "b"])
        exp = Categorical(["a", "a", "b", "b"], categories=["a", "b"])
        tm.assert_categorical_equal(np.repeat(cat, 2), exp)

        msg = "the 'axis' parameter is not supported"
        tm.assert_raises_regex(ValueError, msg, np.repeat, cat, 2, axis=1)

    def test_isna(self):
        exp = np.array([False, False, True])
        c = Categorical(["a", "b", np.nan])
        res = c.isna()

        tm.assert_numpy_array_equal(res, exp)