Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
pandas / tests / frame / test_api.py
Size: Mime:
# -*- coding: utf-8 -*-

from __future__ import print_function

import pytest

# pylint: disable-msg=W0612,E1101
from copy import deepcopy
import pydoc

from pandas.compat import range, lrange, long
from pandas import compat

from numpy.random import randn
import numpy as np

from pandas import (DataFrame, Series, date_range, timedelta_range,
                    Categorical, SparseDataFrame)
import pandas as pd

from pandas.util.testing import (assert_almost_equal,
                                 assert_series_equal,
                                 assert_frame_equal)

import pandas.util.testing as tm

from pandas.tests.frame.common import TestData


class SharedWithSparse(object):
    """
    A collection of tests DataFrame and SparseDataFrame can share.

    In generic tests on this class, use ``self._assert_frame_equal()`` and
    ``self._assert_series_equal()`` which are implemented in sub-classes
    and dispatch correctly.
    """
    def _assert_frame_equal(self, left, right):
        """Dispatch to frame class dependent assertion"""
        raise NotImplementedError

    def _assert_series_equal(self, left, right):
        """Dispatch to series class dependent assertion"""
        raise NotImplementedError

    def test_copy_index_name_checking(self):
        # don't want to be able to modify the index stored elsewhere after
        # making a copy
        for attr in ('index', 'columns'):
            ind = getattr(self.frame, attr)
            ind.name = None
            cp = self.frame.copy()
            getattr(cp, attr).name = 'foo'
            assert getattr(self.frame, attr).name is None

    def test_getitem_pop_assign_name(self):
        s = self.frame['A']
        assert s.name == 'A'

        s = self.frame.pop('A')
        assert s.name == 'A'

        s = self.frame.loc[:, 'B']
        assert s.name == 'B'

        s2 = s.loc[:]
        assert s2.name == 'B'

    def test_get_value(self):
        for idx in self.frame.index:
            for col in self.frame.columns:
                with tm.assert_produces_warning(FutureWarning,
                                                check_stacklevel=False):
                    result = self.frame.get_value(idx, col)
                expected = self.frame[col][idx]
                tm.assert_almost_equal(result, expected)

    def test_add_prefix_suffix(self):
        with_prefix = self.frame.add_prefix('foo#')
        expected = pd.Index(['foo#%s' % c for c in self.frame.columns])
        tm.assert_index_equal(with_prefix.columns, expected)

        with_suffix = self.frame.add_suffix('#foo')
        expected = pd.Index(['%s#foo' % c for c in self.frame.columns])
        tm.assert_index_equal(with_suffix.columns, expected)

        with_pct_prefix = self.frame.add_prefix('%')
        expected = pd.Index(['%{}'.format(c) for c in self.frame.columns])
        tm.assert_index_equal(with_pct_prefix.columns, expected)

        with_pct_suffix = self.frame.add_suffix('%')
        expected = pd.Index(['{}%'.format(c) for c in self.frame.columns])
        tm.assert_index_equal(with_pct_suffix.columns, expected)

    def test_get_axis(self):
        f = self.frame
        assert f._get_axis_number(0) == 0
        assert f._get_axis_number(1) == 1
        assert f._get_axis_number('index') == 0
        assert f._get_axis_number('rows') == 0
        assert f._get_axis_number('columns') == 1

        assert f._get_axis_name(0) == 'index'
        assert f._get_axis_name(1) == 'columns'
        assert f._get_axis_name('index') == 'index'
        assert f._get_axis_name('rows') == 'index'
        assert f._get_axis_name('columns') == 'columns'

        assert f._get_axis(0) is f.index
        assert f._get_axis(1) is f.columns

        tm.assert_raises_regex(
            ValueError, 'No axis named', f._get_axis_number, 2)
        tm.assert_raises_regex(
            ValueError, 'No axis.*foo', f._get_axis_name, 'foo')
        tm.assert_raises_regex(
            ValueError, 'No axis.*None', f._get_axis_name, None)
        tm.assert_raises_regex(ValueError, 'No axis named',
                               f._get_axis_number, None)

    def test_keys(self):
        getkeys = self.frame.keys
        assert getkeys() is self.frame.columns

    def test_column_contains_typeerror(self):
        try:
            self.frame.columns in self.frame
        except TypeError:
            pass

    def test_tab_completion(self):
        # DataFrame whose columns are identifiers shall have them in __dir__.
        df = pd.DataFrame([list('abcd'), list('efgh')], columns=list('ABCD'))
        for key in list('ABCD'):
            assert key in dir(df)
        assert isinstance(df.__getitem__('A'), pd.Series)

        # DataFrame whose first-level columns are identifiers shall have
        # them in __dir__.
        df = pd.DataFrame(
            [list('abcd'), list('efgh')],
            columns=pd.MultiIndex.from_tuples(list(zip('ABCD', 'EFGH'))))
        for key in list('ABCD'):
            assert key in dir(df)
        for key in list('EFGH'):
            assert key not in dir(df)
        assert isinstance(df.__getitem__('A'), pd.DataFrame)

    def test_not_hashable(self):
        df = self.klass([1])
        pytest.raises(TypeError, hash, df)
        pytest.raises(TypeError, hash, self.empty)

    def test_new_empty_index(self):
        df1 = self.klass(randn(0, 3))
        df2 = self.klass(randn(0, 3))
        df1.index.name = 'foo'
        assert df2.index.name is None

    def test_array_interface(self):
        with np.errstate(all='ignore'):
            result = np.sqrt(self.frame)
        assert isinstance(result, type(self.frame))
        assert result.index is self.frame.index
        assert result.columns is self.frame.columns

        self._assert_frame_equal(result, self.frame.apply(np.sqrt))

    def test_get_agg_axis(self):
        cols = self.frame._get_agg_axis(0)
        assert cols is self.frame.columns

        idx = self.frame._get_agg_axis(1)
        assert idx is self.frame.index

        pytest.raises(ValueError, self.frame._get_agg_axis, 2)

    def test_nonzero(self):
        assert self.empty.empty

        assert not self.frame.empty
        assert not self.mixed_frame.empty

        # corner case
        df = DataFrame({'A': [1., 2., 3.],
                        'B': ['a', 'b', 'c']},
                       index=np.arange(3))
        del df['A']
        assert not df.empty

    def test_iteritems(self):
        df = self.klass([[1, 2, 3], [4, 5, 6]], columns=['a', 'a', 'b'])
        for k, v in compat.iteritems(df):
            assert isinstance(v, self.klass._constructor_sliced)

    def test_items(self):
        # issue #17213, #13918
        cols = ['a', 'b', 'c']
        df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=cols)
        for c, (k, v) in zip(cols, df.items()):
            assert c == k
            assert isinstance(v, Series)
            assert (df[k] == v).all()

    def test_iter(self):
        assert tm.equalContents(list(self.frame), self.frame.columns)

    def test_iterrows(self):
        for k, v in self.frame.iterrows():
            exp = self.frame.loc[k]
            self._assert_series_equal(v, exp)

        for k, v in self.mixed_frame.iterrows():
            exp = self.mixed_frame.loc[k]
            self._assert_series_equal(v, exp)

    def test_iterrows_iso8601(self):
        # GH19671
        if self.klass == SparseDataFrame:
            pytest.xfail(reason='SparseBlock datetime type not implemented.')

        s = self.klass(
            {'non_iso8601': ['M1701', 'M1802', 'M1903', 'M2004'],
             'iso8601': date_range('2000-01-01', periods=4, freq='M')})
        for k, v in s.iterrows():
            exp = s.loc[k]
            self._assert_series_equal(v, exp)

    def test_itertuples(self):
        for i, tup in enumerate(self.frame.itertuples()):
            s = self.klass._constructor_sliced(tup[1:])
            s.name = tup[0]
            expected = self.frame.iloc[i, :].reset_index(drop=True)
            self._assert_series_equal(s, expected)

        df = self.klass({'floats': np.random.randn(5),
                         'ints': lrange(5)}, columns=['floats', 'ints'])

        for tup in df.itertuples(index=False):
            assert isinstance(tup[1], (int, long))

        df = self.klass(data={"a": [1, 2, 3], "b": [4, 5, 6]})
        dfaa = df[['a', 'a']]

        assert (list(dfaa.itertuples()) ==
                [(0, 1, 1), (1, 2, 2), (2, 3, 3)])

        # repr with be int/long on 32-bit/windows
        if not (compat.is_platform_windows() or compat.is_platform_32bit()):
            assert (repr(list(df.itertuples(name=None))) ==
                    '[(0, 1, 4), (1, 2, 5), (2, 3, 6)]')

        tup = next(df.itertuples(name='TestName'))
        assert tup._fields == ('Index', 'a', 'b')
        assert (tup.Index, tup.a, tup.b) == tup
        assert type(tup).__name__ == 'TestName'

        df.columns = ['def', 'return']
        tup2 = next(df.itertuples(name='TestName'))
        assert tup2 == (0, 1, 4)
        assert tup2._fields == ('Index', '_1', '_2')

        df3 = DataFrame({'f' + str(i): [i] for i in range(1024)})
        # will raise SyntaxError if trying to create namedtuple
        tup3 = next(df3.itertuples())
        assert not hasattr(tup3, '_fields')
        assert isinstance(tup3, tuple)

    def test_sequence_like_with_categorical(self):

        # GH 7839
        # make sure can iterate
        df = DataFrame({"id": [1, 2, 3, 4, 5, 6],
                        "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']})
        df['grade'] = Categorical(df['raw_grade'])

        # basic sequencing testing
        result = list(df.grade.values)
        expected = np.array(df.grade.values).tolist()
        tm.assert_almost_equal(result, expected)

        # iteration
        for t in df.itertuples(index=False):
            str(t)

        for row, s in df.iterrows():
            str(s)

        for c, col in df.iteritems():
            str(s)

    def test_len(self):
        assert len(self.frame) == len(self.frame.index)

    def test_values(self):
        frame = self.frame
        arr = frame.values

        frame_cols = frame.columns
        for i, row in enumerate(arr):
            for j, value in enumerate(row):
                col = frame_cols[j]
                if np.isnan(value):
                    assert np.isnan(frame[col][i])
                else:
                    assert value == frame[col][i]

        # mixed type
        arr = self.mixed_frame[['foo', 'A']].values
        assert arr[0, 0] == 'bar'

        df = self.klass({'real': [1, 2, 3], 'complex': [1j, 2j, 3j]})
        arr = df.values
        assert arr[0, 0] == 1j

        # single block corner case
        arr = self.frame[['A', 'B']].values
        expected = self.frame.reindex(columns=['A', 'B']).values
        assert_almost_equal(arr, expected)

    def test_transpose(self):
        frame = self.frame
        dft = frame.T
        for idx, series in compat.iteritems(dft):
            for col, value in compat.iteritems(series):
                if np.isnan(value):
                    assert np.isnan(frame[col][idx])
                else:
                    assert value == frame[col][idx]

        # mixed type
        index, data = tm.getMixedTypeDict()
        mixed = self.klass(data, index=index)

        mixed_T = mixed.T
        for col, s in compat.iteritems(mixed_T):
            assert s.dtype == np.object_

    def test_swapaxes(self):
        df = self.klass(np.random.randn(10, 5))
        self._assert_frame_equal(df.T, df.swapaxes(0, 1))
        self._assert_frame_equal(df.T, df.swapaxes(1, 0))
        self._assert_frame_equal(df, df.swapaxes(0, 0))
        pytest.raises(ValueError, df.swapaxes, 2, 5)

    def test_axis_aliases(self):
        f = self.frame

        # reg name
        expected = f.sum(axis=0)
        result = f.sum(axis='index')
        assert_series_equal(result, expected)

        expected = f.sum(axis=1)
        result = f.sum(axis='columns')
        assert_series_equal(result, expected)

    def test_class_axis(self):
        # https://github.com/pandas-dev/pandas/issues/18147
        # no exception and no empty docstring
        assert pydoc.getdoc(DataFrame.index)
        assert pydoc.getdoc(DataFrame.columns)

    def test_more_values(self):
        values = self.mixed_frame.values
        assert values.shape[1] == len(self.mixed_frame.columns)

    def test_repr_with_mi_nat(self):
        df = self.klass({'X': [1, 2]},
                        index=[[pd.NaT, pd.Timestamp('20130101')], ['a', 'b']])
        res = repr(df)
        exp = '              X\nNaT        a  1\n2013-01-01 b  2'
        assert res == exp

    def test_iteritems_names(self):
        for k, v in compat.iteritems(self.mixed_frame):
            assert v.name == k

    def test_series_put_names(self):
        series = self.mixed_frame._series
        for k, v in compat.iteritems(series):
            assert v.name == k

    def test_empty_nonzero(self):
        df = self.klass([1, 2, 3])
        assert not df.empty
        df = self.klass(index=[1], columns=[1])
        assert not df.empty
        df = self.klass(index=['a', 'b'], columns=['c', 'd']).dropna()
        assert df.empty
        assert df.T.empty
        empty_frames = [self.klass(),
                        self.klass(index=[1]),
                        self.klass(columns=[1]),
                        self.klass({1: []})]
        for df in empty_frames:
            assert df.empty
            assert df.T.empty

    def test_with_datetimelikes(self):

        df = self.klass({'A': date_range('20130101', periods=10),
                         'B': timedelta_range('1 day', periods=10)})
        t = df.T

        result = t.get_dtype_counts()
        expected = Series({'object': 10})
        tm.assert_series_equal(result, expected)


class TestDataFrameMisc(SharedWithSparse, TestData):

    klass = DataFrame
    # SharedWithSparse tests use generic, klass-agnostic assertion
    _assert_frame_equal = staticmethod(assert_frame_equal)
    _assert_series_equal = staticmethod(assert_series_equal)

    def test_values(self):
        self.frame.values[:, 0] = 5.
        assert (self.frame.values[:, 0] == 5).all()

    def test_as_matrix_deprecated(self):
        # GH18458
        with tm.assert_produces_warning(FutureWarning):
            result = self.frame.as_matrix(columns=self.frame.columns.tolist())
        expected = self.frame.values
        tm.assert_numpy_array_equal(result, expected)

    def test_deepcopy(self):
        cp = deepcopy(self.frame)
        series = cp['A']
        series[:] = 10
        for idx, value in compat.iteritems(series):
            assert self.frame['A'][idx] != value

    def test_transpose_get_view(self):
        dft = self.frame.T
        dft.values[:, 5:10] = 5

        assert (self.frame.values[5:10] == 5).all()

    def test_inplace_return_self(self):
        # re #1893

        data = DataFrame({'a': ['foo', 'bar', 'baz', 'qux'],
                          'b': [0, 0, 1, 1],
                          'c': [1, 2, 3, 4]})

        def _check_f(base, f):
            result = f(base)
            assert result is None

        # -----DataFrame-----

        # set_index
        f = lambda x: x.set_index('a', inplace=True)
        _check_f(data.copy(), f)

        # reset_index
        f = lambda x: x.reset_index(inplace=True)
        _check_f(data.set_index('a'), f)

        # drop_duplicates
        f = lambda x: x.drop_duplicates(inplace=True)
        _check_f(data.copy(), f)

        # sort
        f = lambda x: x.sort_values('b', inplace=True)
        _check_f(data.copy(), f)

        # sort_index
        f = lambda x: x.sort_index(inplace=True)
        _check_f(data.copy(), f)

        # fillna
        f = lambda x: x.fillna(0, inplace=True)
        _check_f(data.copy(), f)

        # replace
        f = lambda x: x.replace(1, 0, inplace=True)
        _check_f(data.copy(), f)

        # rename
        f = lambda x: x.rename({1: 'foo'}, inplace=True)
        _check_f(data.copy(), f)

        # -----Series-----
        d = data.copy()['c']

        # reset_index
        f = lambda x: x.reset_index(inplace=True, drop=True)
        _check_f(data.set_index('a')['c'], f)

        # fillna
        f = lambda x: x.fillna(0, inplace=True)
        _check_f(d.copy(), f)

        # replace
        f = lambda x: x.replace(1, 0, inplace=True)
        _check_f(d.copy(), f)

        # rename
        f = lambda x: x.rename({1: 'foo'}, inplace=True)
        _check_f(d.copy(), f)

    def test_tab_complete_warning(self, ip):
        # https://github.com/pandas-dev/pandas/issues/16409
        pytest.importorskip('IPython', minversion="6.0.0")
        from IPython.core.completer import provisionalcompleter

        code = "import pandas as pd; df = pd.DataFrame()"
        ip.run_code(code)
        with tm.assert_produces_warning(None):
            with provisionalcompleter('ignore'):
                list(ip.Completer.completions('df.', 1))