Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
pandas / tests / indexing / test_datetime.py
Size: Mime:
import numpy as np
import pandas as pd
from pandas import date_range, Index, DataFrame, Series, Timestamp
from pandas.util import testing as tm


class TestDatetimeIndex(object):

    def test_setitem_with_datetime_tz(self):
        # 16889
        # support .loc with alignment and tz-aware DatetimeIndex
        mask = np.array([True, False, True, False])

        idx = date_range('20010101', periods=4, tz='UTC')
        df = DataFrame({'a': np.arange(4)}, index=idx).astype('float64')

        result = df.copy()
        result.loc[mask, :] = df.loc[mask, :]
        tm.assert_frame_equal(result, df)

        result = df.copy()
        result.loc[mask] = df.loc[mask]
        tm.assert_frame_equal(result, df)

        idx = date_range('20010101', periods=4)
        df = DataFrame({'a': np.arange(4)}, index=idx).astype('float64')

        result = df.copy()
        result.loc[mask, :] = df.loc[mask, :]
        tm.assert_frame_equal(result, df)

        result = df.copy()
        result.loc[mask] = df.loc[mask]
        tm.assert_frame_equal(result, df)

    def test_indexing_with_datetime_tz(self):

        # 8260
        # support datetime64 with tz

        idx = Index(date_range('20130101', periods=3, tz='US/Eastern'),
                    name='foo')
        dr = date_range('20130110', periods=3)
        df = DataFrame({'A': idx, 'B': dr})
        df['C'] = idx
        df.iloc[1, 1] = pd.NaT
        df.iloc[1, 2] = pd.NaT

        # indexing
        result = df.iloc[1]
        expected = Series([Timestamp('2013-01-02 00:00:00-0500',
                                     tz='US/Eastern'), np.nan, np.nan],
                          index=list('ABC'), dtype='object', name=1)
        tm.assert_series_equal(result, expected)
        result = df.loc[1]
        expected = Series([Timestamp('2013-01-02 00:00:00-0500',
                                     tz='US/Eastern'), np.nan, np.nan],
                          index=list('ABC'), dtype='object', name=1)
        tm.assert_series_equal(result, expected)

        # indexing - fast_xs
        df = DataFrame({'a': date_range('2014-01-01', periods=10, tz='UTC')})
        result = df.iloc[5]
        expected = Timestamp('2014-01-06 00:00:00+0000', tz='UTC', freq='D')
        assert result == expected

        result = df.loc[5]
        assert result == expected

        # indexing - boolean
        result = df[df.a > df.a[3]]
        expected = df.iloc[4:]
        tm.assert_frame_equal(result, expected)

        # indexing - setting an element
        df = DataFrame(data=pd.to_datetime(
            ['2015-03-30 20:12:32', '2015-03-12 00:11:11']), columns=['time'])
        df['new_col'] = ['new', 'old']
        df.time = df.set_index('time').index.tz_localize('UTC')
        v = df[df.new_col == 'new'].set_index('time').index.tz_convert(
            'US/Pacific')

        # trying to set a single element on a part of a different timezone
        # this converts to object
        df2 = df.copy()
        df2.loc[df2.new_col == 'new', 'time'] = v

        expected = Series([v[0], df.loc[1, 'time']], name='time')
        tm.assert_series_equal(df2.time, expected)

        v = df.loc[df.new_col == 'new', 'time'] + pd.Timedelta('1s')
        df.loc[df.new_col == 'new', 'time'] = v
        tm.assert_series_equal(df.loc[df.new_col == 'new', 'time'], v)

    def test_consistency_with_tz_aware_scalar(self):
        # xef gh-12938
        # various ways of indexing the same tz-aware scalar
        df = Series([Timestamp('2016-03-30 14:35:25',
                               tz='Europe/Brussels')]).to_frame()

        df = pd.concat([df, df]).reset_index(drop=True)
        expected = Timestamp('2016-03-30 14:35:25+0200',
                             tz='Europe/Brussels')

        result = df[0][0]
        assert result == expected

        result = df.iloc[0, 0]
        assert result == expected

        result = df.loc[0, 0]
        assert result == expected

        result = df.iat[0, 0]
        assert result == expected

        result = df.at[0, 0]
        assert result == expected

        result = df[0].loc[0]
        assert result == expected

        result = df[0].at[0]
        assert result == expected

    def test_indexing_with_datetimeindex_tz(self):

        # GH 12050
        # indexing on a series with a datetimeindex with tz
        index = date_range('2015-01-01', periods=2, tz='utc')

        ser = Series(range(2), index=index, dtype='int64')

        # list-like indexing

        for sel in (index, list(index)):
            # getitem
            tm.assert_series_equal(ser[sel], ser)

            # setitem
            result = ser.copy()
            result[sel] = 1
            expected = Series(1, index=index)
            tm.assert_series_equal(result, expected)

            # .loc getitem
            tm.assert_series_equal(ser.loc[sel], ser)

            # .loc setitem
            result = ser.copy()
            result.loc[sel] = 1
            expected = Series(1, index=index)
            tm.assert_series_equal(result, expected)

        # single element indexing

        # getitem
        assert ser[index[1]] == 1

        # setitem
        result = ser.copy()
        result[index[1]] = 5
        expected = Series([0, 5], index=index)
        tm.assert_series_equal(result, expected)

        # .loc getitem
        assert ser.loc[index[1]] == 1

        # .loc setitem
        result = ser.copy()
        result.loc[index[1]] = 5
        expected = Series([0, 5], index=index)
        tm.assert_series_equal(result, expected)

    def test_partial_setting_with_datetimelike_dtype(self):

        # GH9478
        # a datetimeindex alignment issue with partial setting
        df = DataFrame(np.arange(6.).reshape(3, 2), columns=list('AB'),
                       index=date_range('1/1/2000', periods=3, freq='1H'))
        expected = df.copy()
        expected['C'] = [expected.index[0]] + [pd.NaT, pd.NaT]

        mask = df.A < 1
        df.loc[mask, 'C'] = df.loc[mask].index
        tm.assert_frame_equal(df, expected)

    def test_loc_setitem_datetime(self):

        # GH 9516
        dt1 = Timestamp('20130101 09:00:00')
        dt2 = Timestamp('20130101 10:00:00')

        for conv in [lambda x: x, lambda x: x.to_datetime64(),
                     lambda x: x.to_pydatetime(), lambda x: np.datetime64(x)]:

            df = DataFrame()
            df.loc[conv(dt1), 'one'] = 100
            df.loc[conv(dt2), 'one'] = 200

            expected = DataFrame({'one': [100.0, 200.0]}, index=[dt1, dt2])
            tm.assert_frame_equal(df, expected)

    def test_series_partial_set_datetime(self):
        # GH 11497

        idx = date_range('2011-01-01', '2011-01-02', freq='D', name='idx')
        ser = Series([0.1, 0.2], index=idx, name='s')

        result = ser.loc[[Timestamp('2011-01-01'), Timestamp('2011-01-02')]]
        exp = Series([0.1, 0.2], index=idx, name='s')
        tm.assert_series_equal(result, exp, check_index_type=True)

        keys = [Timestamp('2011-01-02'), Timestamp('2011-01-02'),
                Timestamp('2011-01-01')]
        exp = Series([0.2, 0.2, 0.1], index=pd.DatetimeIndex(keys, name='idx'),
                     name='s')
        tm.assert_series_equal(ser.loc[keys], exp, check_index_type=True)

        keys = [Timestamp('2011-01-03'), Timestamp('2011-01-02'),
                Timestamp('2011-01-03')]
        exp = Series([np.nan, 0.2, np.nan],
                     index=pd.DatetimeIndex(keys, name='idx'), name='s')
        with tm.assert_produces_warning(FutureWarning,
                                        check_stacklevel=False):
            tm.assert_series_equal(ser.loc[keys], exp, check_index_type=True)

    def test_series_partial_set_period(self):
        # GH 11497

        idx = pd.period_range('2011-01-01', '2011-01-02', freq='D', name='idx')
        ser = Series([0.1, 0.2], index=idx, name='s')

        result = ser.loc[[pd.Period('2011-01-01', freq='D'),
                          pd.Period('2011-01-02', freq='D')]]
        exp = Series([0.1, 0.2], index=idx, name='s')
        tm.assert_series_equal(result, exp, check_index_type=True)

        keys = [pd.Period('2011-01-02', freq='D'),
                pd.Period('2011-01-02', freq='D'),
                pd.Period('2011-01-01', freq='D')]
        exp = Series([0.2, 0.2, 0.1], index=pd.PeriodIndex(keys, name='idx'),
                     name='s')
        tm.assert_series_equal(ser.loc[keys], exp, check_index_type=True)

        keys = [pd.Period('2011-01-03', freq='D'),
                pd.Period('2011-01-02', freq='D'),
                pd.Period('2011-01-03', freq='D')]
        exp = Series([np.nan, 0.2, np.nan],
                     index=pd.PeriodIndex(keys, name='idx'), name='s')
        with tm.assert_produces_warning(FutureWarning,
                                        check_stacklevel=False):
            result = ser.loc[keys]
        tm.assert_series_equal(result, exp)