Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
pandas / core / ops.py
Size: Mime:
"""
Arithmetic operations for PandasObjects

This is not a public API.
"""
# necessary to enforce truediv in Python 2.X
from __future__ import division
import datetime
import operator
import textwrap
import warnings

import numpy as np
import pandas as pd

from pandas._libs import algos as libalgos, ops as libops

from pandas import compat
from pandas.util._decorators import Appender

from pandas.compat import bind_method
import pandas.core.missing as missing
import pandas.core.common as com

from pandas.errors import NullFrequencyError
from pandas.core.dtypes.missing import notna, isna
from pandas.core.dtypes.common import (
    needs_i8_conversion,
    is_datetimelike_v_numeric,
    is_integer_dtype, is_categorical_dtype,
    is_object_dtype, is_timedelta64_dtype,
    is_datetime64_dtype, is_datetime64tz_dtype,
    is_bool_dtype,
    is_list_like,
    is_scalar,
    _ensure_object)
from pandas.core.dtypes.cast import (
    maybe_upcast_putmask, find_common_type,
    construct_1d_object_array_from_listlike)
from pandas.core.dtypes.generic import (
    ABCSeries,
    ABCDataFrame, ABCPanel,
    ABCIndex,
    ABCSparseSeries, ABCSparseArray)


# -----------------------------------------------------------------------------
# Ops Wrapping Utilities

def get_op_result_name(left, right):
    """
    Find the appropriate name to pin to an operation result.  This result
    should always be either an Index or a Series.

    Parameters
    ----------
    left : {Series, Index}
    right : object

    Returns
    -------
    name : object
        Usually a string
    """
    # `left` is always a pd.Series when called from within ops
    if isinstance(right, (ABCSeries, pd.Index)):
        name = _maybe_match_name(left, right)
    else:
        name = left.name
    return name


def _maybe_match_name(a, b):
    """
    Try to find a name to attach to the result of an operation between
    a and b.  If only one of these has a `name` attribute, return that
    name.  Otherwise return a consensus name if they match of None if
    they have different names.

    Parameters
    ----------
    a : object
    b : object

    Returns
    -------
    name : str or None

    See also
    --------
    pandas.core.common._consensus_name_attr
    """
    a_has = hasattr(a, 'name')
    b_has = hasattr(b, 'name')
    if a_has and b_has:
        if a.name == b.name:
            return a.name
        else:
            # TODO: what if they both have np.nan for their names?
            return None
    elif a_has:
        return a.name
    elif b_has:
        return b.name
    return None


# -----------------------------------------------------------------------------
# Reversed Operations not available in the stdlib operator module.
# Defining these instead of using lambdas allows us to reference them by name.

def radd(left, right):
    return right + left


def rsub(left, right):
    return right - left


def rmul(left, right):
    return right * left


def rdiv(left, right):
    return right / left


def rtruediv(left, right):
    return right / left


def rfloordiv(left, right):
    return right // left


def rmod(left, right):
    return right % left


def rdivmod(left, right):
    return divmod(right, left)


def rpow(left, right):
    return right ** left


def rand_(left, right):
    return operator.and_(right, left)


def ror_(left, right):
    return operator.or_(right, left)


def rxor(left, right):
    return operator.xor(right, left)


# -----------------------------------------------------------------------------

def make_invalid_op(name):
    """
    Return a binary method that always raises a TypeError.

    Parameters
    ----------
    name : str

    Returns
    -------
    invalid_op : function
    """
    def invalid_op(self, other=None):
        raise TypeError("cannot perform {name} with this index type: "
                        "{typ}".format(name=name, typ=type(self).__name__))

    invalid_op.__name__ = name
    return invalid_op


def _gen_eval_kwargs(name):
    """
    Find the keyword arguments to pass to numexpr for the given operation.

    Parameters
    ----------
    name : str

    Returns
    -------
    eval_kwargs : dict

    Examples
    --------
    >>> _gen_eval_kwargs("__add__")
    {}

    >>> _gen_eval_kwargs("rtruediv")
    {"reversed": True, "truediv": True}
    """
    kwargs = {}

    # Series and Panel appear to only pass __add__, __radd__, ...
    # but DataFrame gets both these dunder names _and_ non-dunder names
    # add, radd, ...
    name = name.replace('__', '')

    if name.startswith('r'):
        if name not in ['radd', 'rand', 'ror', 'rxor']:
            # Exclude commutative operations
            kwargs['reversed'] = True

    if name in ['truediv', 'rtruediv']:
        kwargs['truediv'] = True

    if name in ['ne']:
        kwargs['masker'] = True

    return kwargs


def _gen_fill_zeros(name):
    """
    Find the appropriate fill value to use when filling in undefined values
    in the results of the given operation caused by operating on
    (generally dividing by) zero.

    Parameters
    ----------
    name : str

    Returns
    -------
    fill_value : {None, np.nan, np.inf}
    """
    name = name.strip('__')
    if 'div' in name:
        # truediv, floordiv, div, and reversed variants
        fill_value = np.inf
    elif 'mod' in name:
        # mod, rmod
        fill_value = np.nan
    else:
        fill_value = None
    return fill_value


def _get_frame_op_default_axis(name):
    """
    Only DataFrame cares about default_axis, specifically:
    special methods have default_axis=None and flex methods
    have default_axis='columns'.

    Parameters
    ----------
    name : str

    Returns
    -------
    default_axis: str or None
    """
    if name.replace('__r', '__') in ['__and__', '__or__', '__xor__']:
        # bool methods
        return 'columns'
    elif name.startswith('__'):
        # __add__, __mul__, ...
        return None
    else:
        # add, mul, ...
        return 'columns'


def _get_opstr(op, cls):
    """
    Find the operation string, if any, to pass to numexpr for this
    operation.

    Parameters
    ----------
    op : binary operator
    cls : class

    Returns
    -------
    op_str : string or None
    """
    # numexpr is available for non-sparse classes
    subtyp = getattr(cls, '_subtyp', '')
    use_numexpr = 'sparse' not in subtyp

    if not use_numexpr:
        # if we're not using numexpr, then don't pass a str_rep
        return None

    return {operator.add: '+',
            radd: '+',
            operator.mul: '*',
            rmul: '*',
            operator.sub: '-',
            rsub: '-',
            operator.truediv: '/',
            rtruediv: '/',
            operator.floordiv: '//',
            rfloordiv: '//',
            operator.mod: None,  # TODO: Why None for mod but '%' for rmod?
            rmod: '%',
            operator.pow: '**',
            rpow: '**',
            operator.eq: '==',
            operator.ne: '!=',
            operator.le: '<=',
            operator.lt: '<',
            operator.ge: '>=',
            operator.gt: '>',
            operator.and_: '&',
            rand_: '&',
            operator.or_: '|',
            ror_: '|',
            operator.xor: '^',
            rxor: '^',
            divmod: None,
            rdivmod: None}[op]


def _get_op_name(op, special):
    """
    Find the name to attach to this method according to conventions
    for special and non-special methods.

    Parameters
    ----------
    op : binary operator
    special : bool

    Returns
    -------
    op_name : str
    """
    opname = op.__name__.strip('_')
    if special:
        opname = '__{opname}__'.format(opname=opname)
    return opname


# -----------------------------------------------------------------------------
# Docstring Generation and Templates

_add_example_FRAME = """
>>> a = pd.DataFrame([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'],
...                  columns=['one'])
>>> a
   one
a  1.0
b  1.0
c  1.0
d  NaN
>>> b = pd.DataFrame(dict(one=[1, np.nan, 1, np.nan],
...                       two=[np.nan, 2, np.nan, 2]),
...                  index=['a', 'b', 'd', 'e'])
>>> b
   one  two
a  1.0  NaN
b  NaN  2.0
d  1.0  NaN
e  NaN  2.0
>>> a.add(b, fill_value=0)
   one  two
a  2.0  NaN
b  1.0  2.0
c  1.0  NaN
d  1.0  NaN
e  NaN  2.0
"""

_sub_example_FRAME = """
>>> a = pd.DataFrame([2, 1, 1, np.nan], index=['a', 'b', 'c', 'd'],
...                  columns=['one'])
>>> a
   one
a  2.0
b  1.0
c  1.0
d  NaN
>>> b = pd.DataFrame(dict(one=[1, np.nan, 1, np.nan],
...                       two=[3, 2, np.nan, 2]),
...                  index=['a', 'b', 'd', 'e'])
>>> b
   one  two
a  1.0  3.0
b  NaN  2.0
d  1.0  NaN
e  NaN  2.0
>>> a.sub(b, fill_value=0)
   one  two
a  1.0  -3.0
b  1.0  -2.0
c  1.0  NaN
d  -1.0  NaN
e  NaN  -2.0
"""

_op_descriptions = {
    # Arithmetic Operators
    'add': {'op': '+',
            'desc': 'Addition',
            'reverse': 'radd',
            'df_examples': _add_example_FRAME},
    'sub': {'op': '-',
            'desc': 'Subtraction',
            'reverse': 'rsub',
            'df_examples': _sub_example_FRAME},
    'mul': {'op': '*',
            'desc': 'Multiplication',
            'reverse': 'rmul',
            'df_examples': None},
    'mod': {'op': '%',
            'desc': 'Modulo',
            'reverse': 'rmod',
            'df_examples': None},
    'pow': {'op': '**',
            'desc': 'Exponential power',
            'reverse': 'rpow',
            'df_examples': None},
    'truediv': {'op': '/',
                'desc': 'Floating division',
                'reverse': 'rtruediv',
                'df_examples': None},
    'floordiv': {'op': '//',
                 'desc': 'Integer division',
                 'reverse': 'rfloordiv',
                 'df_examples': None},
    'divmod': {'op': 'divmod',
               'desc': 'Integer division and modulo',
               'reverse': None,
               'df_examples': None},

    # Comparison Operators
    'eq': {'op': '==',
           'desc': 'Equal to',
           'reverse': None,
           'df_examples': None},
    'ne': {'op': '!=',
           'desc': 'Not equal to',
           'reverse': None,
           'df_examples': None},
    'lt': {'op': '<',
           'desc': 'Less than',
           'reverse': None,
           'df_examples': None},
    'le': {'op': '<=',
           'desc': 'Less than or equal to',
           'reverse': None,
           'df_examples': None},
    'gt': {'op': '>',
           'desc': 'Greater than',
           'reverse': None,
           'df_examples': None},
    'ge': {'op': '>=',
           'desc': 'Greater than or equal to',
           'reverse': None,
           'df_examples': None}}

_op_names = list(_op_descriptions.keys())
for key in _op_names:
    _op_descriptions[key]['reversed'] = False
    reverse_op = _op_descriptions[key]['reverse']
    if reverse_op is not None:
        _op_descriptions[reverse_op] = _op_descriptions[key].copy()
        _op_descriptions[reverse_op]['reversed'] = True
        _op_descriptions[reverse_op]['reverse'] = key

_flex_doc_SERIES = """
{desc} of series and other, element-wise (binary operator `{op_name}`).

Equivalent to ``{equiv}``, but with support to substitute a fill_value for
missing data in one of the inputs.

Parameters
----------
other : Series or scalar value
fill_value : None or float value, default None (NaN)
    Fill existing missing (NaN) values, and any new element needed for
    successful Series alignment, with this value before computation.
    If data in both corresponding Series locations is missing
    the result will be missing
level : int or name
    Broadcast across a level, matching Index values on the
    passed MultiIndex level

Returns
-------
result : Series

Examples
--------
>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
>>> a
a    1.0
b    1.0
c    1.0
d    NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])
>>> b
a    1.0
b    NaN
d    1.0
e    NaN
dtype: float64
>>> a.add(b, fill_value=0)
a    2.0
b    1.0
c    1.0
d    1.0
e    NaN
dtype: float64

See also
--------
Series.{reverse}
"""

_arith_doc_FRAME = """
Binary operator %s with support to substitute a fill_value for missing data in
one of the inputs

Parameters
----------
other : Series, DataFrame, or constant
axis : {0, 1, 'index', 'columns'}
    For Series input, axis to match Series index on
fill_value : None or float value, default None
    Fill existing missing (NaN) values, and any new element needed for
    successful DataFrame alignment, with this value before computation.
    If data in both corresponding DataFrame locations is missing
    the result will be missing
level : int or name
    Broadcast across a level, matching Index values on the
    passed MultiIndex level

Notes
-----
Mismatched indices will be unioned together

Returns
-------
result : DataFrame
"""

_flex_doc_FRAME = """
{desc} of dataframe and other, element-wise (binary operator `{op_name}`).

Equivalent to ``{equiv}``, but with support to substitute a fill_value for
missing data in one of the inputs.

Parameters
----------
other : Series, DataFrame, or constant
axis : {{0, 1, 'index', 'columns'}}
    For Series input, axis to match Series index on
level : int or name
    Broadcast across a level, matching Index values on the
    passed MultiIndex level
fill_value : None or float value, default None
    Fill existing missing (NaN) values, and any new element needed for
    successful DataFrame alignment, with this value before computation.
    If data in both corresponding DataFrame locations is missing
    the result will be missing

Notes
-----
Mismatched indices will be unioned together

Returns
-------
result : DataFrame

Examples
--------
{df_examples}

See also
--------
DataFrame.{reverse}
"""

_flex_doc_PANEL = """
{desc} of series and other, element-wise (binary operator `{op_name}`).
Equivalent to ``{equiv}``.

Parameters
----------
other : DataFrame or Panel
axis : {{items, major_axis, minor_axis}}
    Axis to broadcast over

Returns
-------
Panel

See also
--------
Panel.{reverse}
"""


_agg_doc_PANEL = """
Wrapper method for {op_name}

Parameters
----------
other : DataFrame or Panel
axis : {{items, major_axis, minor_axis}}
    Axis to broadcast over

Returns
-------
Panel
"""


def _make_flex_doc(op_name, typ):
    """
    Make the appropriate substitutions for the given operation and class-typ
    into either _flex_doc_SERIES or _flex_doc_FRAME to return the docstring
    to attach to a generated method.

    Parameters
    ----------
    op_name : str {'__add__', '__sub__', ... '__eq__', '__ne__', ...}
    typ : str {series, 'dataframe']}

    Returns
    -------
    doc : str
    """
    op_name = op_name.replace('__', '')
    op_desc = _op_descriptions[op_name]

    if op_desc['reversed']:
        equiv = 'other ' + op_desc['op'] + ' ' + typ
    else:
        equiv = typ + ' ' + op_desc['op'] + ' other'

    if typ == 'series':
        base_doc = _flex_doc_SERIES
        doc = base_doc.format(desc=op_desc['desc'], op_name=op_name,
                              equiv=equiv, reverse=op_desc['reverse'])
    elif typ == 'dataframe':
        base_doc = _flex_doc_FRAME
        doc = base_doc.format(desc=op_desc['desc'], op_name=op_name,
                              equiv=equiv, reverse=op_desc['reverse'],
                              df_examples=op_desc['df_examples'])
    elif typ == 'panel':
        base_doc = _flex_doc_PANEL
        doc = base_doc.format(desc=op_desc['desc'], op_name=op_name,
                              equiv=equiv, reverse=op_desc['reverse'])
    else:
        raise AssertionError('Invalid typ argument.')
    return doc


# -----------------------------------------------------------------------------
# Masking NA values and fallbacks for operations numpy does not support

def fill_binop(left, right, fill_value):
    """
    If a non-None fill_value is given, replace null entries in left and right
    with this value, but only in positions where _one_ of left/right is null,
    not both.

    Parameters
    ----------
    left : array-like
    right : array-like
    fill_value : object

    Returns
    -------
    left : array-like
    right : array-like

    Notes
    -----
    Makes copies if fill_value is not None
    """
    # TODO: can we make a no-copy implementation?
    if fill_value is not None:
        left_mask = isna(left)
        right_mask = isna(right)
        left = left.copy()
        right = right.copy()

        # one but not both
        mask = left_mask ^ right_mask
        left[left_mask & mask] = fill_value
        right[right_mask & mask] = fill_value
    return left, right


def mask_cmp_op(x, y, op, allowed_types):
    """
    Apply the function `op` to only non-null points in x and y.

    Parameters
    ----------
    x : array-like
    y : array-like
    op : binary operation
    allowed_types : class or tuple of classes

    Returns
    -------
    result : ndarray[bool]
    """
    # TODO: Can we make the allowed_types arg unnecessary?
    xrav = x.ravel()
    result = np.empty(x.size, dtype=bool)
    if isinstance(y, allowed_types):
        yrav = y.ravel()
        mask = notna(xrav) & notna(yrav)
        result[mask] = op(np.array(list(xrav[mask])),
                          np.array(list(yrav[mask])))
    else:
        mask = notna(xrav)
        result[mask] = op(np.array(list(xrav[mask])), y)

    if op == operator.ne:  # pragma: no cover
        np.putmask(result, ~mask, True)
    else:
        np.putmask(result, ~mask, False)
    result = result.reshape(x.shape)
    return result


# -----------------------------------------------------------------------------
# Functions that add arithmetic methods to objects, given arithmetic factory
# methods

def _get_method_wrappers(cls):
    """
    Find the appropriate operation-wrappers to use when defining flex/special
    arithmetic, boolean, and comparison operations with the given class.

    Parameters
    ----------
    cls : class

    Returns
    -------
    arith_flex : function or None
    comp_flex : function or None
    arith_special : function
    comp_special : function
    bool_special : function

    Notes
    -----
    None is only returned for SparseArray
    """
    if issubclass(cls, ABCSparseSeries):
        # Be sure to catch this before ABCSeries and ABCSparseArray,
        # as they will both come see SparseSeries as a subclass
        arith_flex = _flex_method_SERIES
        comp_flex = _flex_method_SERIES
        arith_special = _arith_method_SPARSE_SERIES
        comp_special = _arith_method_SPARSE_SERIES
        bool_special = _bool_method_SERIES
        # TODO: I don't think the functions defined by bool_method are tested
    elif issubclass(cls, ABCSeries):
        # Just Series; SparseSeries is caught above
        arith_flex = _flex_method_SERIES
        comp_flex = _flex_method_SERIES
        arith_special = _arith_method_SERIES
        comp_special = _comp_method_SERIES
        bool_special = _bool_method_SERIES
    elif issubclass(cls, ABCSparseArray):
        arith_flex = None
        comp_flex = None
        arith_special = _arith_method_SPARSE_ARRAY
        comp_special = _arith_method_SPARSE_ARRAY
        bool_special = _arith_method_SPARSE_ARRAY
    elif issubclass(cls, ABCPanel):
        arith_flex = _flex_method_PANEL
        comp_flex = _comp_method_PANEL
        arith_special = _arith_method_PANEL
        comp_special = _comp_method_PANEL
        bool_special = _arith_method_PANEL
    elif issubclass(cls, ABCDataFrame):
        # Same for DataFrame and SparseDataFrame
        arith_flex = _arith_method_FRAME
        comp_flex = _flex_comp_method_FRAME
        arith_special = _arith_method_FRAME
        comp_special = _comp_method_FRAME
        bool_special = _arith_method_FRAME
    return arith_flex, comp_flex, arith_special, comp_special, bool_special


def _create_methods(cls, arith_method, comp_method, bool_method,
                    special=False):
    # creates actual methods based upon arithmetic, comp and bool method
    # constructors.

    have_divmod = issubclass(cls, ABCSeries)
    # divmod is available for Series and SparseSeries

    # yapf: disable
    new_methods = dict(
        add=arith_method(cls, operator.add, special),
        radd=arith_method(cls, radd, special),
        sub=arith_method(cls, operator.sub, special),
        mul=arith_method(cls, operator.mul, special),
        truediv=arith_method(cls, operator.truediv, special),
        floordiv=arith_method(cls, operator.floordiv, special),
        # Causes a floating point exception in the tests when numexpr enabled,
        # so for now no speedup
        mod=arith_method(cls, operator.mod, special),
        pow=arith_method(cls, operator.pow, special),
        # not entirely sure why this is necessary, but previously was included
        # so it's here to maintain compatibility
        rmul=arith_method(cls, rmul, special),
        rsub=arith_method(cls, rsub, special),
        rtruediv=arith_method(cls, rtruediv, special),
        rfloordiv=arith_method(cls, rfloordiv, special),
        rpow=arith_method(cls, rpow, special),
        rmod=arith_method(cls, rmod, special))
    # yapf: enable
    new_methods['div'] = new_methods['truediv']
    new_methods['rdiv'] = new_methods['rtruediv']
    if have_divmod:
        # divmod doesn't have an op that is supported by numexpr
        new_methods['divmod'] = arith_method(cls, divmod, special)

    new_methods.update(dict(
        eq=comp_method(cls, operator.eq, special),
        ne=comp_method(cls, operator.ne, special),
        lt=comp_method(cls, operator.lt, special),
        gt=comp_method(cls, operator.gt, special),
        le=comp_method(cls, operator.le, special),
        ge=comp_method(cls, operator.ge, special)))

    if bool_method:
        new_methods.update(
            dict(and_=bool_method(cls, operator.and_, special),
                 or_=bool_method(cls, operator.or_, special),
                 # For some reason ``^`` wasn't used in original.
                 xor=bool_method(cls, operator.xor, special),
                 rand_=bool_method(cls, rand_, special),
                 ror_=bool_method(cls, ror_, special),
                 rxor=bool_method(cls, rxor, special)))

    if special:
        dunderize = lambda x: '__{name}__'.format(name=x.strip('_'))
    else:
        dunderize = lambda x: x
    new_methods = {dunderize(k): v for k, v in new_methods.items()}
    return new_methods


def add_methods(cls, new_methods):
    for name, method in new_methods.items():
        # For most methods, if we find that the class already has a method
        # of the same name, it is OK to over-write it.  The exception is
        # inplace methods (__iadd__, __isub__, ...) for SparseArray, which
        # retain the np.ndarray versions.
        force = not (issubclass(cls, ABCSparseArray) and
                     name.startswith('__i'))
        if force or name not in cls.__dict__:
            bind_method(cls, name, method)


# ----------------------------------------------------------------------
# Arithmetic
def add_special_arithmetic_methods(cls):
    """
    Adds the full suite of special arithmetic methods (``__add__``,
    ``__sub__``, etc.) to the class.

    Parameters
    ----------
    cls : class
        special methods will be defined and pinned to this class
    """
    _, _, arith_method, comp_method, bool_method = _get_method_wrappers(cls)
    new_methods = _create_methods(cls, arith_method, comp_method, bool_method,
                                  special=True)
    # inplace operators (I feel like these should get passed an `inplace=True`
    # or just be removed

    def _wrap_inplace_method(method):
        """
        return an inplace wrapper for this method
        """

        def f(self, other):
            result = method(self, other)

            # this makes sure that we are aligned like the input
            # we are updating inplace so we want to ignore is_copy
            self._update_inplace(result.reindex_like(self, copy=False)._data,
                                 verify_is_copy=False)

            return self

        return f

    new_methods.update(
        dict(__iadd__=_wrap_inplace_method(new_methods["__add__"]),
             __isub__=_wrap_inplace_method(new_methods["__sub__"]),
             __imul__=_wrap_inplace_method(new_methods["__mul__"]),
             __itruediv__=_wrap_inplace_method(new_methods["__truediv__"]),
             __ifloordiv__=_wrap_inplace_method(new_methods["__floordiv__"]),
             __imod__=_wrap_inplace_method(new_methods["__mod__"]),
             __ipow__=_wrap_inplace_method(new_methods["__pow__"])))
    if not compat.PY3:
        new_methods["__idiv__"] = _wrap_inplace_method(new_methods["__div__"])

    new_methods.update(
        dict(__iand__=_wrap_inplace_method(new_methods["__and__"]),
             __ior__=_wrap_inplace_method(new_methods["__or__"]),
             __ixor__=_wrap_inplace_method(new_methods["__xor__"])))

    add_methods(cls, new_methods=new_methods)


def add_flex_arithmetic_methods(cls):
    """
    Adds the full suite of flex arithmetic methods (``pow``, ``mul``, ``add``)
    to the class.

    Parameters
    ----------
    cls : class
        flex methods will be defined and pinned to this class
    """
    flex_arith_method, flex_comp_method, _, _, _ = _get_method_wrappers(cls)
    new_methods = _create_methods(cls, flex_arith_method,
                                  flex_comp_method, bool_method=None,
                                  special=False)
    new_methods.update(dict(multiply=new_methods['mul'],
                            subtract=new_methods['sub'],
                            divide=new_methods['div']))
    # opt out of bool flex methods for now
    assert not any(kname in new_methods for kname in ('ror_', 'rxor', 'rand_'))

    add_methods(cls, new_methods=new_methods)


# -----------------------------------------------------------------------------
# Series

def _align_method_SERIES(left, right, align_asobject=False):
    """ align lhs and rhs Series """

    # ToDo: Different from _align_method_FRAME, list, tuple and ndarray
    # are not coerced here
    # because Series has inconsistencies described in #13637

    if isinstance(right, ABCSeries):
        # avoid repeated alignment
        if not left.index.equals(right.index):

            if align_asobject:
                # to keep original value's dtype for bool ops
                left = left.astype(object)
                right = right.astype(object)

            left, right = left.align(right, copy=False)

    return left, right


def _construct_result(left, result, index, name, dtype):
    """
    If the raw op result has a non-None name (e.g. it is an Index object) and
    the name argument is None, then passing name to the constructor will
    not be enough; we still need to override the name attribute.
    """
    out = left._constructor(result, index=index, dtype=dtype)

    out.name = name
    return out


def _construct_divmod_result(left, result, index, name, dtype):
    """divmod returns a tuple of like indexed series instead of a single series.
    """
    constructor = left._constructor
    return (
        constructor(result[0], index=index, name=name, dtype=dtype),
        constructor(result[1], index=index, name=name, dtype=dtype),
    )


def _arith_method_SERIES(cls, op, special):
    """
    Wrapper function for Series arithmetic operations, to avoid
    code duplication.
    """
    str_rep = _get_opstr(op, cls)
    op_name = _get_op_name(op, special)
    eval_kwargs = _gen_eval_kwargs(op_name)
    fill_zeros = _gen_fill_zeros(op_name)
    construct_result = (_construct_divmod_result
                        if op is divmod else _construct_result)

    def na_op(x, y):
        import pandas.core.computation.expressions as expressions

        try:
            result = expressions.evaluate(op, str_rep, x, y, **eval_kwargs)
        except TypeError:
            if isinstance(y, (np.ndarray, ABCSeries, pd.Index)):
                dtype = find_common_type([x.dtype, y.dtype])
                result = np.empty(x.size, dtype=dtype)
                mask = notna(x) & notna(y)
                result[mask] = op(x[mask], com._values_from_object(y[mask]))
            else:
                assert isinstance(x, np.ndarray)
                result = np.empty(len(x), dtype=x.dtype)
                mask = notna(x)
                result[mask] = op(x[mask], y)

            result, changed = maybe_upcast_putmask(result, ~mask, np.nan)

        result = missing.fill_zeros(result, x, y, op_name, fill_zeros)
        return result

    def safe_na_op(lvalues, rvalues):
        try:
            with np.errstate(all='ignore'):
                return na_op(lvalues, rvalues)
        except Exception:
            if is_object_dtype(lvalues):
                return libalgos.arrmap_object(lvalues,
                                              lambda x: op(x, rvalues))
            raise

    def wrapper(left, right):

        if isinstance(right, ABCDataFrame):
            return NotImplemented

        left, right = _align_method_SERIES(left, right)
        res_name = get_op_result_name(left, right)

        if is_datetime64_dtype(left) or is_datetime64tz_dtype(left):
            result = dispatch_to_index_op(op, left, right, pd.DatetimeIndex)
            return construct_result(left, result,
                                    index=left.index, name=res_name,
                                    dtype=result.dtype)

        elif is_timedelta64_dtype(left):
            result = dispatch_to_index_op(op, left, right, pd.TimedeltaIndex)
            return construct_result(left, result,
                                    index=left.index, name=res_name,
                                    dtype=result.dtype)

        elif is_categorical_dtype(left):
            raise TypeError("{typ} cannot perform the operation "
                            "{op}".format(typ=type(left).__name__, op=str_rep))

        lvalues = left.values
        rvalues = right
        if isinstance(rvalues, ABCSeries):
            rvalues = rvalues.values

        result = safe_na_op(lvalues, rvalues)
        return construct_result(left, result,
                                index=left.index, name=res_name, dtype=None)

    return wrapper


def dispatch_to_index_op(op, left, right, index_class):
    """
    Wrap Series left in the given index_class to delegate the operation op
    to the index implementation.  DatetimeIndex and TimedeltaIndex perform
    type checking, timezone handling, overflow checks, etc.

    Parameters
    ----------
    op : binary operator (operator.add, operator.sub, ...)
    left : Series
    right : object
    index_class : DatetimeIndex or TimedeltaIndex

    Returns
    -------
    result : object, usually DatetimeIndex, TimedeltaIndex, or Series
    """
    left_idx = index_class(left)

    # avoid accidentally allowing integer add/sub.  For datetime64[tz] dtypes,
    # left_idx may inherit a freq from a cached DatetimeIndex.
    # See discussion in GH#19147.
    if getattr(left_idx, 'freq', None) is not None:
        left_idx = left_idx._shallow_copy(freq=None)
    try:
        result = op(left_idx, right)
    except NullFrequencyError:
        # DatetimeIndex and TimedeltaIndex with freq == None raise ValueError
        # on add/sub of integers (or int-like).  We re-raise as a TypeError.
        raise TypeError('incompatible type for a datetime/timedelta '
                        'operation [{name}]'.format(name=op.__name__))
    return result


def _comp_method_OBJECT_ARRAY(op, x, y):
    if isinstance(y, list):
        y = construct_1d_object_array_from_listlike(y)
    if isinstance(y, (np.ndarray, ABCSeries, ABCIndex)):
        if not is_object_dtype(y.dtype):
            y = y.astype(np.object_)

        if isinstance(y, (ABCSeries, ABCIndex)):
            y = y.values

        result = libops.vec_compare(x, y, op)
    else:
        result = libops.scalar_compare(x, y, op)
    return result


def _comp_method_SERIES(cls, op, special):
    """
    Wrapper function for Series arithmetic operations, to avoid
    code duplication.
    """
    op_name = _get_op_name(op, special)
    masker = _gen_eval_kwargs(op_name).get('masker', False)

    def na_op(x, y):

        # dispatch to the categorical if we have a categorical
        # in either operand
        if is_categorical_dtype(y) and not is_scalar(y):
            # The `not is_scalar(y)` check excludes the string "category"
            return op(y, x)

        elif is_object_dtype(x.dtype):
            result = _comp_method_OBJECT_ARRAY(op, x, y)

        elif is_datetimelike_v_numeric(x, y):
            raise TypeError("invalid type comparison")

        else:

            # we want to compare like types
            # we only want to convert to integer like if
            # we are not NotImplemented, otherwise
            # we would allow datetime64 (but viewed as i8) against
            # integer comparisons

            # we have a datetime/timedelta and may need to convert
            assert not needs_i8_conversion(x)
            mask = None
            if not is_scalar(y) and needs_i8_conversion(y):
                mask = isna(x) | isna(y)
                y = y.view('i8')
                x = x.view('i8')

            method = getattr(x, op_name, None)
            if method is not None:
                with np.errstate(all='ignore'):
                    result = method(y)
                if result is NotImplemented:
                    raise TypeError("invalid type comparison")
            else:
                result = op(x, y)

            if mask is not None and mask.any():
                result[mask] = masker

        return result

    def wrapper(self, other, axis=None):
        # Validate the axis parameter
        if axis is not None:
            self._get_axis_number(axis)

        res_name = get_op_result_name(self, other)

        if isinstance(other, ABCDataFrame):  # pragma: no cover
            # Defer to DataFrame implementation; fail early
            return NotImplemented

        elif isinstance(other, ABCSeries) and not self._indexed_same(other):
            raise ValueError("Can only compare identically-labeled "
                             "Series objects")

        elif is_categorical_dtype(self):
            # Dispatch to Categorical implementation; pd.CategoricalIndex
            # behavior is non-canonical GH#19513
            res_values = dispatch_to_index_op(op, self, other, pd.Categorical)
            return self._constructor(res_values, index=self.index,
                                     name=res_name)

        if is_datetime64_dtype(self) or is_datetime64tz_dtype(self):
            # Dispatch to DatetimeIndex to ensure identical
            # Series/Index behavior
            if (isinstance(other, datetime.date) and
                    not isinstance(other, datetime.datetime)):
                # https://github.com/pandas-dev/pandas/issues/21152
                # Compatibility for difference between Series comparison w/
                # datetime and date
                msg = (
                    "Comparing Series of datetimes with 'datetime.date'.  "
                    "Currently, the 'datetime.date' is coerced to a "
                    "datetime. In the future pandas will not coerce, "
                    "and {future}. "
                    "To retain the current behavior, "
                    "convert the 'datetime.date' to a datetime with "
                    "'pd.Timestamp'."
                )

                if op in {operator.lt, operator.le, operator.gt, operator.ge}:
                    future = "a TypeError will be raised"
                else:
                    future = (
                        "'the values will not compare equal to the "
                        "'datetime.date'"
                    )
                msg = '\n'.join(textwrap.wrap(msg.format(future=future)))
                warnings.warn(msg, FutureWarning, stacklevel=2)
                other = pd.Timestamp(other)

            res_values = dispatch_to_index_op(op, self, other,
                                              pd.DatetimeIndex)

            return self._constructor(res_values, index=self.index,
                                     name=res_name)

        elif is_timedelta64_dtype(self):
            res_values = dispatch_to_index_op(op, self, other,
                                              pd.TimedeltaIndex)
            return self._constructor(res_values, index=self.index,
                                     name=res_name)

        elif isinstance(other, ABCSeries):
            # By this point we have checked that self._indexed_same(other)
            res_values = na_op(self.values, other.values)
            # rename is needed in case res_name is None and res_values.name
            # is not.
            return self._constructor(res_values, index=self.index,
                                     name=res_name).rename(res_name)

        elif isinstance(other, (np.ndarray, pd.Index)):
            # do not check length of zerodim array
            # as it will broadcast
            if other.ndim != 0 and len(self) != len(other):
                raise ValueError('Lengths must match to compare')

            res_values = na_op(self.values, np.asarray(other))
            result = self._constructor(res_values, index=self.index)
            # rename is needed in case res_name is None and self.name
            # is not.
            return result.__finalize__(self).rename(res_name)

        elif isinstance(other, pd.Categorical):
            # ordering of checks matters; by this point we know
            # that not is_categorical_dtype(self)
            res_values = op(self.values, other)
            return self._constructor(res_values, index=self.index,
                                     name=res_name)

        elif is_scalar(other) and isna(other):
            # numpy does not like comparisons vs None
            if op is operator.ne:
                res_values = np.ones(len(self), dtype=bool)
            else:
                res_values = np.zeros(len(self), dtype=bool)
            return self._constructor(res_values, index=self.index,
                                     name=res_name, dtype='bool')

        else:
            values = self.get_values()
            if isinstance(other, list):
                other = np.asarray(other)

            with np.errstate(all='ignore'):
                res = na_op(values, other)
            if is_scalar(res):
                raise TypeError('Could not compare {typ} type with Series'
                                .format(typ=type(other)))

            # always return a full value series here
            res_values = com._values_from_object(res)
            return self._constructor(res_values, index=self.index,
                                     name=res_name, dtype='bool')

    return wrapper


def _bool_method_SERIES(cls, op, special):
    """
    Wrapper function for Series arithmetic operations, to avoid
    code duplication.
    """

    def na_op(x, y):
        try:
            result = op(x, y)
        except TypeError:
            if isinstance(y, list):
                y = construct_1d_object_array_from_listlike(y)

            if isinstance(y, (np.ndarray, ABCSeries)):
                if (is_bool_dtype(x.dtype) and is_bool_dtype(y.dtype)):
                    result = op(x, y)  # when would this be hit?
                else:
                    x = _ensure_object(x)
                    y = _ensure_object(y)
                    result = libops.vec_binop(x, y, op)
            else:
                # let null fall thru
                if not isna(y):
                    y = bool(y)
                try:
                    result = libops.scalar_binop(x, y, op)
                except:
                    raise TypeError("cannot compare a dtyped [{dtype}] array "
                                    "with a scalar of type [{typ}]"
                                    .format(dtype=x.dtype,
                                            typ=type(y).__name__))

        return result

    fill_int = lambda x: x.fillna(0)
    fill_bool = lambda x: x.fillna(False).astype(bool)

    def wrapper(self, other):
        is_self_int_dtype = is_integer_dtype(self.dtype)

        self, other = _align_method_SERIES(self, other, align_asobject=True)

        if isinstance(other, ABCDataFrame):
            # Defer to DataFrame implementation; fail early
            return NotImplemented

        elif isinstance(other, ABCSeries):
            name = get_op_result_name(self, other)
            is_other_int_dtype = is_integer_dtype(other.dtype)
            other = fill_int(other) if is_other_int_dtype else fill_bool(other)

            filler = (fill_int if is_self_int_dtype and is_other_int_dtype
                      else fill_bool)

            res_values = na_op(self.values, other.values)
            unfilled = self._constructor(res_values,
                                         index=self.index, name=name)
            return filler(unfilled)

        else:
            # scalars, list, tuple, np.array
            filler = (fill_int if is_self_int_dtype and
                      is_integer_dtype(np.asarray(other)) else fill_bool)

            res_values = na_op(self.values, other)
            unfilled = self._constructor(res_values, index=self.index)
            return filler(unfilled).__finalize__(self)

    return wrapper


def _flex_method_SERIES(cls, op, special):
    name = _get_op_name(op, special)
    doc = _make_flex_doc(name, 'series')

    @Appender(doc)
    def flex_wrapper(self, other, level=None, fill_value=None, axis=0):
        # validate axis
        if axis is not None:
            self._get_axis_number(axis)
        if isinstance(other, ABCSeries):
            return self._binop(other, op, level=level, fill_value=fill_value)
        elif isinstance(other, (np.ndarray, list, tuple)):
            if len(other) != len(self):
                raise ValueError('Lengths must be equal')
            other = self._constructor(other, self.index)
            return self._binop(other, op, level=level, fill_value=fill_value)
        else:
            if fill_value is not None:
                self = self.fillna(fill_value)

            return self._constructor(op(self, other),
                                     self.index).__finalize__(self)

    flex_wrapper.__name__ = name
    return flex_wrapper


# -----------------------------------------------------------------------------
# DataFrame

def _combine_series_frame(self, other, func, fill_value=None, axis=None,
                          level=None, try_cast=True):
    """
    Apply binary operator `func` to self, other using alignment and fill
    conventions determined by the fill_value, axis, level, and try_cast kwargs.

    Parameters
    ----------
    self : DataFrame
    other : Series
    func : binary operator
    fill_value : object, default None
    axis : {0, 1, 'columns', 'index', None}, default None
    level : int or None, default None
    try_cast : bool, default True

    Returns
    -------
    result : DataFrame
    """
    if fill_value is not None:
        raise NotImplementedError("fill_value {fill} not supported."
                                  .format(fill=fill_value))

    if axis is not None:
        axis = self._get_axis_number(axis)
        if axis == 0:
            return self._combine_match_index(other, func, level=level)
        else:
            return self._combine_match_columns(other, func, level=level,
                                               try_cast=try_cast)
    else:
        if not len(other):
            return self * np.nan

        if not len(self):
            # Ambiguous case, use _series so works with DataFrame
            return self._constructor(data=self._series, index=self.index,
                                     columns=self.columns)

        # default axis is columns
        return self._combine_match_columns(other, func, level=level,
                                           try_cast=try_cast)


def _align_method_FRAME(left, right, axis):
    """ convert rhs to meet lhs dims if input is list, tuple or np.ndarray """

    def to_series(right):
        msg = ('Unable to coerce to Series, length must be {req_len}: '
               'given {given_len}')
        if axis is not None and left._get_axis_name(axis) == 'index':
            if len(left.index) != len(right):
                raise ValueError(msg.format(req_len=len(left.index),
                                            given_len=len(right)))
            right = left._constructor_sliced(right, index=left.index)
        else:
            if len(left.columns) != len(right):
                raise ValueError(msg.format(req_len=len(left.columns),
                                            given_len=len(right)))
            right = left._constructor_sliced(right, index=left.columns)
        return right

    if isinstance(right, np.ndarray):

        if right.ndim == 1:
            right = to_series(right)

        elif right.ndim == 2:
            if left.shape != right.shape:
                raise ValueError("Unable to coerce to DataFrame, shape "
                                 "must be {req_shape}: given {given_shape}"
                                 .format(req_shape=left.shape,
                                         given_shape=right.shape))

            right = left._constructor(right, index=left.index,
                                      columns=left.columns)
        elif right.ndim > 2:
            raise ValueError('Unable to coerce to Series/DataFrame, dim '
                             'must be <= 2: {dim}'.format(dim=right.shape))

    elif (is_list_like(right) and
          not isinstance(right, (ABCSeries, ABCDataFrame))):
        # GH17901
        right = to_series(right)

    return right


def _arith_method_FRAME(cls, op, special):
    str_rep = _get_opstr(op, cls)
    op_name = _get_op_name(op, special)
    eval_kwargs = _gen_eval_kwargs(op_name)
    fill_zeros = _gen_fill_zeros(op_name)
    default_axis = _get_frame_op_default_axis(op_name)

    def na_op(x, y):
        import pandas.core.computation.expressions as expressions

        try:
            result = expressions.evaluate(op, str_rep, x, y, **eval_kwargs)
        except TypeError:
            xrav = x.ravel()
            if isinstance(y, (np.ndarray, ABCSeries)):
                dtype = find_common_type([x.dtype, y.dtype])
                result = np.empty(x.size, dtype=dtype)
                yrav = y.ravel()
                mask = notna(xrav) & notna(yrav)
                xrav = xrav[mask]

                if yrav.shape != mask.shape:
                    # FIXME: GH#5284, GH#5035, GH#19448
                    # Without specifically raising here we get mismatched
                    # errors in Py3 (TypeError) vs Py2 (ValueError)
                    raise ValueError('Cannot broadcast operands together.')

                yrav = yrav[mask]
                if xrav.size:
                    with np.errstate(all='ignore'):
                        result[mask] = op(xrav, yrav)

            elif isinstance(x, np.ndarray):
                # mask is only meaningful for x
                result = np.empty(x.size, dtype=x.dtype)
                mask = notna(xrav)
                xrav = xrav[mask]
                if xrav.size:
                    with np.errstate(all='ignore'):
                        result[mask] = op(xrav, y)
            else:
                raise TypeError("cannot perform operation {op} between "
                                "objects of type {x} and {y}"
                                .format(op=op_name, x=type(x), y=type(y)))

            result, changed = maybe_upcast_putmask(result, ~mask, np.nan)
            result = result.reshape(x.shape)

        result = missing.fill_zeros(result, x, y, op_name, fill_zeros)

        return result

    if op_name in _op_descriptions:
        # i.e. include "add" but not "__add__"
        doc = _make_flex_doc(op_name, 'dataframe')
    else:
        doc = _arith_doc_FRAME % op_name

    @Appender(doc)
    def f(self, other, axis=default_axis, level=None, fill_value=None):

        other = _align_method_FRAME(self, other, axis)

        if isinstance(other, ABCDataFrame):  # Another DataFrame
            return self._combine_frame(other, na_op, fill_value, level)
        elif isinstance(other, ABCSeries):
            return _combine_series_frame(self, other, na_op,
                                         fill_value=fill_value, axis=axis,
                                         level=level, try_cast=True)
        else:
            if fill_value is not None:
                self = self.fillna(fill_value)

            return self._combine_const(other, na_op, try_cast=True)

    f.__name__ = op_name

    return f


def _flex_comp_method_FRAME(cls, op, special):
    str_rep = _get_opstr(op, cls)
    op_name = _get_op_name(op, special)
    default_axis = _get_frame_op_default_axis(op_name)

    def na_op(x, y):
        try:
            with np.errstate(invalid='ignore'):
                result = op(x, y)
        except TypeError:
            result = mask_cmp_op(x, y, op, (np.ndarray, ABCSeries))
        return result

    @Appender('Wrapper for flexible comparison methods {name}'
              .format(name=op_name))
    def f(self, other, axis=default_axis, level=None):

        other = _align_method_FRAME(self, other, axis)

        if isinstance(other, ABCDataFrame):
            # Another DataFrame
            if not self._indexed_same(other):
                self, other = self.align(other, 'outer',
                                         level=level, copy=False)
            return self._compare_frame(other, na_op, str_rep)

        elif isinstance(other, ABCSeries):
            return _combine_series_frame(self, other, na_op,
                                         fill_value=None, axis=axis,
                                         level=level, try_cast=False)
        else:
            return self._combine_const(other, na_op, try_cast=False)

    f.__name__ = op_name

    return f


def _comp_method_FRAME(cls, func, special):
    str_rep = _get_opstr(func, cls)
    op_name = _get_op_name(func, special)

    @Appender('Wrapper for comparison method {name}'.format(name=op_name))
    def f(self, other):
        if isinstance(other, ABCDataFrame):
            # Another DataFrame
            if not self._indexed_same(other):
                raise ValueError('Can only compare identically-labeled '
                                 'DataFrame objects')
            return self._compare_frame(other, func, str_rep)

        elif isinstance(other, ABCSeries):
            return _combine_series_frame(self, other, func,
                                         fill_value=None, axis=None,
                                         level=None, try_cast=False)
        else:

            # straight boolean comparisons we want to allow all columns
            # (regardless of dtype to pass thru) See #4537 for discussion.
            res = self._combine_const(other, func,
                                      errors='ignore',
                                      try_cast=False)
            return res.fillna(True).astype(bool)

    f.__name__ = op_name

    return f


# -----------------------------------------------------------------------------
# Panel

def _arith_method_PANEL(cls, op, special):
    # work only for scalars
    op_name = _get_op_name(op, special)

    def f(self, other):
        if not is_scalar(other):
            raise ValueError('Simple arithmetic with {name} can only be '
                             'done with scalar values'
                             .format(name=self._constructor.__name__))

        return self._combine(other, op)

    f.__name__ = op_name
    return f


def _comp_method_PANEL(cls, op, special):
    str_rep = _get_opstr(op, cls)
    op_name = _get_op_name(op, special)

    def na_op(x, y):
        import pandas.core.computation.expressions as expressions

        try:
            result = expressions.evaluate(op, str_rep, x, y)
        except TypeError:
            result = mask_cmp_op(x, y, op, np.ndarray)
        return result

    @Appender('Wrapper for comparison method {name}'.format(name=op_name))
    def f(self, other, axis=None):
        # Validate the axis parameter
        if axis is not None:
            axis = self._get_axis_number(axis)

        if isinstance(other, self._constructor):
            return self._compare_constructor(other, na_op, try_cast=False)
        elif isinstance(other, (self._constructor_sliced, ABCDataFrame,
                                ABCSeries)):
            raise Exception("input needs alignment for this object [{object}]"
                            .format(object=self._constructor))
        else:
            return self._combine_const(other, na_op, try_cast=False)

    f.__name__ = op_name

    return f


def _flex_method_PANEL(cls, op, special):
    str_rep = _get_opstr(op, cls)
    op_name = _get_op_name(op, special)
    eval_kwargs = _gen_eval_kwargs(op_name)
    fill_zeros = _gen_fill_zeros(op_name)

    def na_op(x, y):
        import pandas.core.computation.expressions as expressions

        try:
            result = expressions.evaluate(op, str_rep, x, y,
                                          errors='raise',
                                          **eval_kwargs)
        except TypeError:
            result = op(x, y)

        # handles discrepancy between numpy and numexpr on division/mod
        # by 0 though, given that these are generally (always?)
        # non-scalars, I'm not sure whether it's worth it at the moment
        result = missing.fill_zeros(result, x, y, op_name, fill_zeros)
        return result

    if op_name in _op_descriptions:
        doc = _make_flex_doc(op_name, 'panel')
    else:
        # doc strings substitors
        doc = _agg_doc_PANEL.format(op_name=op_name)

    @Appender(doc)
    def f(self, other, axis=0):
        return self._combine(other, na_op, axis=axis)

    f.__name__ = op_name
    return f


# -----------------------------------------------------------------------------
# Sparse

def _cast_sparse_series_op(left, right, opname):
    """
    For SparseSeries operation, coerce to float64 if the result is expected
    to have NaN or inf values

    Parameters
    ----------
    left : SparseArray
    right : SparseArray
    opname : str

    Returns
    -------
    left : SparseArray
    right : SparseArray
    """
    opname = opname.strip('_')

    if is_integer_dtype(left) and is_integer_dtype(right):
        # series coerces to float64 if result should have NaN/inf
        if opname in ('floordiv', 'mod') and (right.values == 0).any():
            left = left.astype(np.float64)
            right = right.astype(np.float64)
        elif opname in ('rfloordiv', 'rmod') and (left.values == 0).any():
            left = left.astype(np.float64)
            right = right.astype(np.float64)

    return left, right


def _arith_method_SPARSE_SERIES(cls, op, special):
    """
    Wrapper function for Series arithmetic operations, to avoid
    code duplication.
    """
    op_name = _get_op_name(op, special)

    def wrapper(self, other):
        if isinstance(other, ABCDataFrame):
            return NotImplemented
        elif isinstance(other, ABCSeries):
            if not isinstance(other, ABCSparseSeries):
                other = other.to_sparse(fill_value=self.fill_value)
            return _sparse_series_op(self, other, op, op_name)
        elif is_scalar(other):
            with np.errstate(all='ignore'):
                new_values = op(self.values, other)
            return self._constructor(new_values,
                                     index=self.index,
                                     name=self.name)
        else:  # pragma: no cover
            raise TypeError('operation with {other} not supported'
                            .format(other=type(other)))

    wrapper.__name__ = op_name
    return wrapper


def _sparse_series_op(left, right, op, name):
    left, right = left.align(right, join='outer', copy=False)
    new_index = left.index
    new_name = get_op_result_name(left, right)

    from pandas.core.sparse.array import _sparse_array_op
    lvalues, rvalues = _cast_sparse_series_op(left.values, right.values, name)
    result = _sparse_array_op(lvalues, rvalues, op, name)
    return left._constructor(result, index=new_index, name=new_name)


def _arith_method_SPARSE_ARRAY(cls, op, special):
    """
    Wrapper function for Series arithmetic operations, to avoid
    code duplication.
    """
    op_name = _get_op_name(op, special)

    def wrapper(self, other):
        from pandas.core.sparse.array import (
            SparseArray, _sparse_array_op, _wrap_result, _get_fill)
        if isinstance(other, np.ndarray):
            if len(self) != len(other):
                raise AssertionError("length mismatch: {self} vs. {other}"
                                     .format(self=len(self), other=len(other)))
            if not isinstance(other, SparseArray):
                dtype = getattr(other, 'dtype', None)
                other = SparseArray(other, fill_value=self.fill_value,
                                    dtype=dtype)
            return _sparse_array_op(self, other, op, op_name)
        elif is_scalar(other):
            with np.errstate(all='ignore'):
                fill = op(_get_fill(self), np.asarray(other))
                result = op(self.sp_values, other)

            return _wrap_result(op_name, result, self.sp_index, fill)
        else:  # pragma: no cover
            raise TypeError('operation with {other} not supported'
                            .format(other=type(other)))

    wrapper.__name__ = op_name
    return wrapper