Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
pandas / tests / series / test_timeseries.py
Size: Mime:
# coding=utf-8
# pylint: disable-msg=E1101,W0612

import pytest

import numpy as np
from datetime import datetime, timedelta, time

import pandas as pd
import pandas.util.testing as tm
import pandas.util._test_decorators as td
from pandas._libs.tslib import iNaT
from pandas.compat import lrange, StringIO, product
from pandas.errors import NullFrequencyError

from pandas.core.indexes.timedeltas import TimedeltaIndex
from pandas.core.indexes.datetimes import DatetimeIndex
from pandas.tseries.offsets import BDay, BMonthEnd
from pandas import (Index, Series, date_range, NaT, concat, DataFrame,
                    Timestamp, to_datetime, offsets,
                    timedelta_range)
from pandas.util.testing import (assert_series_equal, assert_almost_equal,
                                 assert_frame_equal)

from pandas.tests.series.common import TestData


def _simple_ts(start, end, freq='D'):
    rng = date_range(start, end, freq=freq)
    return Series(np.random.randn(len(rng)), index=rng)


def assert_range_equal(left, right):
    assert (left.equals(right))
    assert (left.freq == right.freq)
    assert (left.tz == right.tz)


class TestTimeSeries(TestData):

    def test_shift(self):
        shifted = self.ts.shift(1)
        unshifted = shifted.shift(-1)

        tm.assert_index_equal(shifted.index, self.ts.index)
        tm.assert_index_equal(unshifted.index, self.ts.index)
        tm.assert_numpy_array_equal(unshifted.dropna().values,
                                    self.ts.values[:-1])

        offset = BDay()
        shifted = self.ts.shift(1, freq=offset)
        unshifted = shifted.shift(-1, freq=offset)

        assert_series_equal(unshifted, self.ts)

        unshifted = self.ts.shift(0, freq=offset)
        assert_series_equal(unshifted, self.ts)

        shifted = self.ts.shift(1, freq='B')
        unshifted = shifted.shift(-1, freq='B')

        assert_series_equal(unshifted, self.ts)

        # corner case
        unshifted = self.ts.shift(0)
        assert_series_equal(unshifted, self.ts)

        # Shifting with PeriodIndex
        ps = tm.makePeriodSeries()
        shifted = ps.shift(1)
        unshifted = shifted.shift(-1)
        tm.assert_index_equal(shifted.index, ps.index)
        tm.assert_index_equal(unshifted.index, ps.index)
        tm.assert_numpy_array_equal(unshifted.dropna().values, ps.values[:-1])

        shifted2 = ps.shift(1, 'B')
        shifted3 = ps.shift(1, BDay())
        assert_series_equal(shifted2, shifted3)
        assert_series_equal(ps, shifted2.shift(-1, 'B'))

        pytest.raises(ValueError, ps.shift, freq='D')

        # legacy support
        shifted4 = ps.shift(1, freq='B')
        assert_series_equal(shifted2, shifted4)

        shifted5 = ps.shift(1, freq=BDay())
        assert_series_equal(shifted5, shifted4)

        # 32-bit taking
        # GH 8129
        index = date_range('2000-01-01', periods=5)
        for dtype in ['int32', 'int64']:
            s1 = Series(np.arange(5, dtype=dtype), index=index)
            p = s1.iloc[1]
            result = s1.shift(periods=p)
            expected = Series([np.nan, 0, 1, 2, 3], index=index)
            assert_series_equal(result, expected)

        # xref 8260
        # with tz
        s = Series(date_range('2000-01-01 09:00:00', periods=5,
                              tz='US/Eastern'), name='foo')
        result = s - s.shift()

        exp = Series(TimedeltaIndex(['NaT'] + ['1 days'] * 4), name='foo')
        assert_series_equal(result, exp)

        # incompat tz
        s2 = Series(date_range('2000-01-01 09:00:00', periods=5,
                               tz='CET'), name='foo')
        pytest.raises(TypeError, lambda: s - s2)

    def test_shift2(self):
        ts = Series(np.random.randn(5),
                    index=date_range('1/1/2000', periods=5, freq='H'))

        result = ts.shift(1, freq='5T')
        exp_index = ts.index.shift(1, freq='5T')
        tm.assert_index_equal(result.index, exp_index)

        # GH #1063, multiple of same base
        result = ts.shift(1, freq='4H')
        exp_index = ts.index + offsets.Hour(4)
        tm.assert_index_equal(result.index, exp_index)

        idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-04'])
        pytest.raises(NullFrequencyError, idx.shift, 1)

    def test_shift_dst(self):
        # GH 13926
        dates = date_range('2016-11-06', freq='H', periods=10, tz='US/Eastern')
        s = Series(dates)

        res = s.shift(0)
        tm.assert_series_equal(res, s)
        assert res.dtype == 'datetime64[ns, US/Eastern]'

        res = s.shift(1)
        exp_vals = [NaT] + dates.astype(object).values.tolist()[:9]
        exp = Series(exp_vals)
        tm.assert_series_equal(res, exp)
        assert res.dtype == 'datetime64[ns, US/Eastern]'

        res = s.shift(-2)
        exp_vals = dates.astype(object).values.tolist()[2:] + [NaT, NaT]
        exp = Series(exp_vals)
        tm.assert_series_equal(res, exp)
        assert res.dtype == 'datetime64[ns, US/Eastern]'

        for ex in [10, -10, 20, -20]:
            res = s.shift(ex)
            exp = Series([NaT] * 10, dtype='datetime64[ns, US/Eastern]')
            tm.assert_series_equal(res, exp)
            assert res.dtype == 'datetime64[ns, US/Eastern]'

    def test_tshift(self):
        # PeriodIndex
        ps = tm.makePeriodSeries()
        shifted = ps.tshift(1)
        unshifted = shifted.tshift(-1)

        assert_series_equal(unshifted, ps)

        shifted2 = ps.tshift(freq='B')
        assert_series_equal(shifted, shifted2)

        shifted3 = ps.tshift(freq=BDay())
        assert_series_equal(shifted, shifted3)

        pytest.raises(ValueError, ps.tshift, freq='M')

        # DatetimeIndex
        shifted = self.ts.tshift(1)
        unshifted = shifted.tshift(-1)

        assert_series_equal(self.ts, unshifted)

        shifted2 = self.ts.tshift(freq=self.ts.index.freq)
        assert_series_equal(shifted, shifted2)

        inferred_ts = Series(self.ts.values, Index(np.asarray(self.ts.index)),
                             name='ts')
        shifted = inferred_ts.tshift(1)
        unshifted = shifted.tshift(-1)
        assert_series_equal(shifted, self.ts.tshift(1))
        assert_series_equal(unshifted, inferred_ts)

        no_freq = self.ts[[0, 5, 7]]
        pytest.raises(ValueError, no_freq.tshift)

    def test_truncate(self):
        offset = BDay()

        ts = self.ts[::3]

        start, end = self.ts.index[3], self.ts.index[6]
        start_missing, end_missing = self.ts.index[2], self.ts.index[7]

        # neither specified
        truncated = ts.truncate()
        assert_series_equal(truncated, ts)

        # both specified
        expected = ts[1:3]

        truncated = ts.truncate(start, end)
        assert_series_equal(truncated, expected)

        truncated = ts.truncate(start_missing, end_missing)
        assert_series_equal(truncated, expected)

        # start specified
        expected = ts[1:]

        truncated = ts.truncate(before=start)
        assert_series_equal(truncated, expected)

        truncated = ts.truncate(before=start_missing)
        assert_series_equal(truncated, expected)

        # end specified
        expected = ts[:3]

        truncated = ts.truncate(after=end)
        assert_series_equal(truncated, expected)

        truncated = ts.truncate(after=end_missing)
        assert_series_equal(truncated, expected)

        # corner case, empty series returned
        truncated = ts.truncate(after=self.ts.index[0] - offset)
        assert (len(truncated) == 0)

        truncated = ts.truncate(before=self.ts.index[-1] + offset)
        assert (len(truncated) == 0)

        pytest.raises(ValueError, ts.truncate,
                      before=self.ts.index[-1] + offset,
                      after=self.ts.index[0] - offset)

    def test_truncate_nonsortedindex(self):
        # GH 17935

        s = pd.Series(['a', 'b', 'c', 'd', 'e'],
                      index=[5, 3, 2, 9, 0])
        with tm.assert_raises_regex(ValueError,
                                    'truncate requires a sorted index'):
            s.truncate(before=3, after=9)

        rng = pd.date_range('2011-01-01', '2012-01-01', freq='W')
        ts = pd.Series(np.random.randn(len(rng)), index=rng)
        with tm.assert_raises_regex(ValueError,
                                    'truncate requires a sorted index'):
            ts.sort_values(ascending=False).truncate(before='2011-11',
                                                     after='2011-12')

    def test_asfreq(self):
        ts = Series([0., 1., 2.], index=[datetime(2009, 10, 30), datetime(
            2009, 11, 30), datetime(2009, 12, 31)])

        daily_ts = ts.asfreq('B')
        monthly_ts = daily_ts.asfreq('BM')
        tm.assert_series_equal(monthly_ts, ts)

        daily_ts = ts.asfreq('B', method='pad')
        monthly_ts = daily_ts.asfreq('BM')
        tm.assert_series_equal(monthly_ts, ts)

        daily_ts = ts.asfreq(BDay())
        monthly_ts = daily_ts.asfreq(BMonthEnd())
        tm.assert_series_equal(monthly_ts, ts)

        result = ts[:0].asfreq('M')
        assert len(result) == 0
        assert result is not ts

        daily_ts = ts.asfreq('D', fill_value=-1)
        result = daily_ts.value_counts().sort_index()
        expected = Series([60, 1, 1, 1],
                          index=[-1.0, 2.0, 1.0, 0.0]).sort_index()
        tm.assert_series_equal(result, expected)

    def test_asfreq_datetimeindex_empty_series(self):
        # GH 14320
        expected = Series(index=pd.DatetimeIndex(
            ["2016-09-29 11:00"])).asfreq('H')
        result = Series(index=pd.DatetimeIndex(["2016-09-29 11:00"]),
                        data=[3]).asfreq('H')
        tm.assert_index_equal(expected.index, result.index)

    def test_diff(self):
        # Just run the function
        self.ts.diff()

        # int dtype
        a = 10000000000000000
        b = a + 1
        s = Series([a, b])

        rs = s.diff()
        assert rs[1] == 1

        # neg n
        rs = self.ts.diff(-1)
        xp = self.ts - self.ts.shift(-1)
        assert_series_equal(rs, xp)

        # 0
        rs = self.ts.diff(0)
        xp = self.ts - self.ts
        assert_series_equal(rs, xp)

        # datetime diff (GH3100)
        s = Series(date_range('20130102', periods=5))
        rs = s - s.shift(1)
        xp = s.diff()
        assert_series_equal(rs, xp)

        # timedelta diff
        nrs = rs - rs.shift(1)
        nxp = xp.diff()
        assert_series_equal(nrs, nxp)

        # with tz
        s = Series(
            date_range('2000-01-01 09:00:00', periods=5,
                       tz='US/Eastern'), name='foo')
        result = s.diff()
        assert_series_equal(result, Series(
            TimedeltaIndex(['NaT'] + ['1 days'] * 4), name='foo'))

    def test_pct_change(self):
        rs = self.ts.pct_change(fill_method=None)
        assert_series_equal(rs, self.ts / self.ts.shift(1) - 1)

        rs = self.ts.pct_change(2)
        filled = self.ts.fillna(method='pad')
        assert_series_equal(rs, filled / filled.shift(2) - 1)

        rs = self.ts.pct_change(fill_method='bfill', limit=1)
        filled = self.ts.fillna(method='bfill', limit=1)
        assert_series_equal(rs, filled / filled.shift(1) - 1)

        rs = self.ts.pct_change(freq='5D')
        filled = self.ts.fillna(method='pad')
        assert_series_equal(rs,
                            (filled / filled.shift(freq='5D') - 1)
                            .reindex_like(filled))

    def test_pct_change_shift_over_nas(self):
        s = Series([1., 1.5, np.nan, 2.5, 3.])

        chg = s.pct_change()
        expected = Series([np.nan, 0.5, 0., 2.5 / 1.5 - 1, .2])
        assert_series_equal(chg, expected)

    @pytest.mark.parametrize("freq, periods, fill_method, limit",
                             [('5B', 5, None, None),
                              ('3B', 3, None, None),
                              ('3B', 3, 'bfill', None),
                              ('7B', 7, 'pad', 1),
                              ('7B', 7, 'bfill', 3),
                              ('14B', 14, None, None)])
    def test_pct_change_periods_freq(self, freq, periods, fill_method, limit):
        # GH 7292
        rs_freq = self.ts.pct_change(freq=freq,
                                     fill_method=fill_method,
                                     limit=limit)
        rs_periods = self.ts.pct_change(periods,
                                        fill_method=fill_method,
                                        limit=limit)
        assert_series_equal(rs_freq, rs_periods)

        empty_ts = Series(index=self.ts.index)
        rs_freq = empty_ts.pct_change(freq=freq,
                                      fill_method=fill_method,
                                      limit=limit)
        rs_periods = empty_ts.pct_change(periods,
                                         fill_method=fill_method,
                                         limit=limit)
        assert_series_equal(rs_freq, rs_periods)

    def test_autocorr(self):
        # Just run the function
        corr1 = self.ts.autocorr()

        # Now run it with the lag parameter
        corr2 = self.ts.autocorr(lag=1)

        # corr() with lag needs Series of at least length 2
        if len(self.ts) <= 2:
            assert np.isnan(corr1)
            assert np.isnan(corr2)
        else:
            assert corr1 == corr2

        # Choose a random lag between 1 and length of Series - 2
        # and compare the result with the Series corr() function
        n = 1 + np.random.randint(max(1, len(self.ts) - 2))
        corr1 = self.ts.corr(self.ts.shift(n))
        corr2 = self.ts.autocorr(lag=n)

        # corr() with lag needs Series of at least length 2
        if len(self.ts) <= 2:
            assert np.isnan(corr1)
            assert np.isnan(corr2)
        else:
            assert corr1 == corr2

    def test_first_last_valid(self):
        ts = self.ts.copy()
        ts[:5] = np.NaN

        index = ts.first_valid_index()
        assert index == ts.index[5]

        ts[-5:] = np.NaN
        index = ts.last_valid_index()
        assert index == ts.index[-6]

        ts[:] = np.nan
        assert ts.last_valid_index() is None
        assert ts.first_valid_index() is None

        ser = Series([], index=[])
        assert ser.last_valid_index() is None
        assert ser.first_valid_index() is None

        # GH12800
        empty = Series()
        assert empty.last_valid_index() is None
        assert empty.first_valid_index() is None

        # GH20499: its preserves freq with holes
        ts.index = date_range("20110101", periods=len(ts), freq="B")
        ts.iloc[1] = 1
        ts.iloc[-2] = 1
        assert ts.first_valid_index() == ts.index[1]
        assert ts.last_valid_index() == ts.index[-2]
        assert ts.first_valid_index().freq == ts.index.freq
        assert ts.last_valid_index().freq == ts.index.freq

    def test_mpl_compat_hack(self):
        result = self.ts[:, np.newaxis]
        expected = self.ts.values[:, np.newaxis]
        assert_almost_equal(result, expected)

    def test_timeseries_coercion(self):
        idx = tm.makeDateIndex(10000)
        ser = Series(np.random.randn(len(idx)), idx.astype(object))
        assert ser.index.is_all_dates
        assert isinstance(ser.index, DatetimeIndex)

    def test_empty_series_ops(self):
        # see issue #13844
        a = Series(dtype='M8[ns]')
        b = Series(dtype='m8[ns]')
        assert_series_equal(a, a + b)
        assert_series_equal(a, a - b)
        assert_series_equal(a, b + a)
        pytest.raises(TypeError, lambda x, y: x - y, b, a)

    def test_contiguous_boolean_preserve_freq(self):
        rng = date_range('1/1/2000', '3/1/2000', freq='B')

        mask = np.zeros(len(rng), dtype=bool)
        mask[10:20] = True

        masked = rng[mask]
        expected = rng[10:20]
        assert expected.freq is not None
        assert_range_equal(masked, expected)

        mask[22] = True
        masked = rng[mask]
        assert masked.freq is None

    def test_to_datetime_unit(self):

        epoch = 1370745748
        s = Series([epoch + t for t in range(20)])
        result = to_datetime(s, unit='s')
        expected = Series([Timestamp('2013-06-09 02:42:28') + timedelta(
            seconds=t) for t in range(20)])
        assert_series_equal(result, expected)

        s = Series([epoch + t for t in range(20)]).astype(float)
        result = to_datetime(s, unit='s')
        expected = Series([Timestamp('2013-06-09 02:42:28') + timedelta(
            seconds=t) for t in range(20)])
        assert_series_equal(result, expected)

        s = Series([epoch + t for t in range(20)] + [iNaT])
        result = to_datetime(s, unit='s')
        expected = Series([Timestamp('2013-06-09 02:42:28') + timedelta(
            seconds=t) for t in range(20)] + [NaT])
        assert_series_equal(result, expected)

        s = Series([epoch + t for t in range(20)] + [iNaT]).astype(float)
        result = to_datetime(s, unit='s')
        expected = Series([Timestamp('2013-06-09 02:42:28') + timedelta(
            seconds=t) for t in range(20)] + [NaT])
        assert_series_equal(result, expected)

        # GH13834
        s = Series([epoch + t for t in np.arange(0, 2, .25)] +
                   [iNaT]).astype(float)
        result = to_datetime(s, unit='s')
        expected = Series([Timestamp('2013-06-09 02:42:28') + timedelta(
            seconds=t) for t in np.arange(0, 2, .25)] + [NaT])
        assert_series_equal(result, expected)

        s = concat([Series([epoch + t for t in range(20)]
                           ).astype(float), Series([np.nan])],
                   ignore_index=True)
        result = to_datetime(s, unit='s')
        expected = Series([Timestamp('2013-06-09 02:42:28') + timedelta(
            seconds=t) for t in range(20)] + [NaT])
        assert_series_equal(result, expected)

        result = to_datetime([1, 2, 'NaT', pd.NaT, np.nan], unit='D')
        expected = DatetimeIndex([Timestamp('1970-01-02'),
                                  Timestamp('1970-01-03')] + ['NaT'] * 3)
        tm.assert_index_equal(result, expected)

        with pytest.raises(ValueError):
            to_datetime([1, 2, 'foo'], unit='D')
        with pytest.raises(ValueError):
            to_datetime([1, 2, 111111111], unit='D')

        # coerce we can process
        expected = DatetimeIndex([Timestamp('1970-01-02'),
                                  Timestamp('1970-01-03')] + ['NaT'] * 1)
        result = to_datetime([1, 2, 'foo'], unit='D', errors='coerce')
        tm.assert_index_equal(result, expected)

        result = to_datetime([1, 2, 111111111], unit='D', errors='coerce')
        tm.assert_index_equal(result, expected)

    def test_series_ctor_datetime64(self):
        rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s')
        dates = np.asarray(rng)

        series = Series(dates)
        assert np.issubdtype(series.dtype, np.dtype('M8[ns]'))

    def test_series_repr_nat(self):
        series = Series([0, 1000, 2000, iNaT], dtype='M8[ns]')

        result = repr(series)
        expected = ('0   1970-01-01 00:00:00.000000\n'
                    '1   1970-01-01 00:00:00.000001\n'
                    '2   1970-01-01 00:00:00.000002\n'
                    '3                          NaT\n'
                    'dtype: datetime64[ns]')
        assert result == expected

    def test_asfreq_keep_index_name(self):
        # GH #9854
        index_name = 'bar'
        index = pd.date_range('20130101', periods=20, name=index_name)
        df = pd.DataFrame([x for x in range(20)], columns=['foo'], index=index)

        assert index_name == df.index.name
        assert index_name == df.asfreq('10D').index.name

    def test_promote_datetime_date(self):
        rng = date_range('1/1/2000', periods=20)
        ts = Series(np.random.randn(20), index=rng)

        ts_slice = ts[5:]
        ts2 = ts_slice.copy()
        ts2.index = [x.date() for x in ts2.index]

        result = ts + ts2
        result2 = ts2 + ts
        expected = ts + ts[5:]
        assert_series_equal(result, expected)
        assert_series_equal(result2, expected)

        # test asfreq
        result = ts2.asfreq('4H', method='ffill')
        expected = ts[5:].asfreq('4H', method='ffill')
        assert_series_equal(result, expected)

        result = rng.get_indexer(ts2.index)
        expected = rng.get_indexer(ts_slice.index)
        tm.assert_numpy_array_equal(result, expected)

    def test_asfreq_normalize(self):
        rng = date_range('1/1/2000 09:30', periods=20)
        norm = date_range('1/1/2000', periods=20)
        vals = np.random.randn(20)
        ts = Series(vals, index=rng)

        result = ts.asfreq('D', normalize=True)
        norm = date_range('1/1/2000', periods=20)
        expected = Series(vals, index=norm)

        assert_series_equal(result, expected)

        vals = np.random.randn(20, 3)
        ts = DataFrame(vals, index=rng)

        result = ts.asfreq('D', normalize=True)
        expected = DataFrame(vals, index=norm)

        assert_frame_equal(result, expected)

    def test_first_subset(self):
        ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h')
        result = ts.first('10d')
        assert len(result) == 20

        ts = _simple_ts('1/1/2000', '1/1/2010')
        result = ts.first('10d')
        assert len(result) == 10

        result = ts.first('3M')
        expected = ts[:'3/31/2000']
        assert_series_equal(result, expected)

        result = ts.first('21D')
        expected = ts[:21]
        assert_series_equal(result, expected)

        result = ts[:0].first('3M')
        assert_series_equal(result, ts[:0])

    def test_first_raises(self):
        # GH20725
        ser = pd.Series('a b c'.split())
        with pytest.raises(TypeError):  # index is not a DatetimeIndex
            ser.first('1D')

    def test_last_subset(self):
        ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h')
        result = ts.last('10d')
        assert len(result) == 20

        ts = _simple_ts('1/1/2000', '1/1/2010')
        result = ts.last('10d')
        assert len(result) == 10

        result = ts.last('21D')
        expected = ts['12/12/2009':]
        assert_series_equal(result, expected)

        result = ts.last('21D')
        expected = ts[-21:]
        assert_series_equal(result, expected)

        result = ts[:0].last('3M')
        assert_series_equal(result, ts[:0])

    def test_last_raises(self):
        # GH20725
        ser = pd.Series('a b c'.split())
        with pytest.raises(TypeError):  # index is not a DatetimeIndex
            ser.last('1D')

    def test_format_pre_1900_dates(self):
        rng = date_range('1/1/1850', '1/1/1950', freq='A-DEC')
        rng.format()
        ts = Series(1, index=rng)
        repr(ts)

    def test_at_time(self):
        rng = date_range('1/1/2000', '1/5/2000', freq='5min')
        ts = Series(np.random.randn(len(rng)), index=rng)
        rs = ts.at_time(rng[1])
        assert (rs.index.hour == rng[1].hour).all()
        assert (rs.index.minute == rng[1].minute).all()
        assert (rs.index.second == rng[1].second).all()

        result = ts.at_time('9:30')
        expected = ts.at_time(time(9, 30))
        assert_series_equal(result, expected)

        df = DataFrame(np.random.randn(len(rng), 3), index=rng)

        result = ts[time(9, 30)]
        result_df = df.loc[time(9, 30)]
        expected = ts[(rng.hour == 9) & (rng.minute == 30)]
        exp_df = df[(rng.hour == 9) & (rng.minute == 30)]

        # expected.index = date_range('1/1/2000', '1/4/2000')

        assert_series_equal(result, expected)
        tm.assert_frame_equal(result_df, exp_df)

        chunk = df.loc['1/4/2000':]
        result = chunk.loc[time(9, 30)]
        expected = result_df[-1:]
        tm.assert_frame_equal(result, expected)

        # midnight, everything
        rng = date_range('1/1/2000', '1/31/2000')
        ts = Series(np.random.randn(len(rng)), index=rng)

        result = ts.at_time(time(0, 0))
        assert_series_equal(result, ts)

        # time doesn't exist
        rng = date_range('1/1/2012', freq='23Min', periods=384)
        ts = Series(np.random.randn(len(rng)), rng)
        rs = ts.at_time('16:00')
        assert len(rs) == 0

    def test_at_time_raises(self):
        # GH20725
        ser = pd.Series('a b c'.split())
        with pytest.raises(TypeError):  # index is not a DatetimeIndex
            ser.at_time('00:00')

    def test_between(self):
        series = Series(date_range('1/1/2000', periods=10))
        left, right = series[[2, 7]]

        result = series.between(left, right)
        expected = (series >= left) & (series <= right)
        assert_series_equal(result, expected)

    def test_between_time(self):
        rng = date_range('1/1/2000', '1/5/2000', freq='5min')
        ts = Series(np.random.randn(len(rng)), index=rng)
        stime = time(0, 0)
        etime = time(1, 0)

        close_open = product([True, False], [True, False])
        for inc_start, inc_end in close_open:
            filtered = ts.between_time(stime, etime, inc_start, inc_end)
            exp_len = 13 * 4 + 1
            if not inc_start:
                exp_len -= 5
            if not inc_end:
                exp_len -= 4

            assert len(filtered) == exp_len
            for rs in filtered.index:
                t = rs.time()
                if inc_start:
                    assert t >= stime
                else:
                    assert t > stime

                if inc_end:
                    assert t <= etime
                else:
                    assert t < etime

        result = ts.between_time('00:00', '01:00')
        expected = ts.between_time(stime, etime)
        assert_series_equal(result, expected)

        # across midnight
        rng = date_range('1/1/2000', '1/5/2000', freq='5min')
        ts = Series(np.random.randn(len(rng)), index=rng)
        stime = time(22, 0)
        etime = time(9, 0)

        close_open = product([True, False], [True, False])
        for inc_start, inc_end in close_open:
            filtered = ts.between_time(stime, etime, inc_start, inc_end)
            exp_len = (12 * 11 + 1) * 4 + 1
            if not inc_start:
                exp_len -= 4
            if not inc_end:
                exp_len -= 4

            assert len(filtered) == exp_len
            for rs in filtered.index:
                t = rs.time()
                if inc_start:
                    assert (t >= stime) or (t <= etime)
                else:
                    assert (t > stime) or (t <= etime)

                if inc_end:
                    assert (t <= etime) or (t >= stime)
                else:
                    assert (t < etime) or (t >= stime)

    def test_between_time_raises(self):
        # GH20725
        ser = pd.Series('a b c'.split())
        with pytest.raises(TypeError):  # index is not a DatetimeIndex
            ser.between_time(start_time='00:00', end_time='12:00')

    def test_between_time_types(self):
        # GH11818
        rng = date_range('1/1/2000', '1/5/2000', freq='5min')
        pytest.raises(ValueError, rng.indexer_between_time,
                      datetime(2010, 1, 2, 1), datetime(2010, 1, 2, 5))

        frame = DataFrame({'A': 0}, index=rng)
        pytest.raises(ValueError, frame.between_time,
                      datetime(2010, 1, 2, 1), datetime(2010, 1, 2, 5))

        series = Series(0, index=rng)
        pytest.raises(ValueError, series.between_time,
                      datetime(2010, 1, 2, 1), datetime(2010, 1, 2, 5))

    @td.skip_if_has_locale
    def test_between_time_formats(self):
        # GH11818
        rng = date_range('1/1/2000', '1/5/2000', freq='5min')
        ts = DataFrame(np.random.randn(len(rng), 2), index=rng)

        strings = [("2:00", "2:30"), ("0200", "0230"), ("2:00am", "2:30am"),
                   ("0200am", "0230am"), ("2:00:00", "2:30:00"),
                   ("020000", "023000"), ("2:00:00am", "2:30:00am"),
                   ("020000am", "023000am")]
        expected_length = 28

        for time_string in strings:
            assert len(ts.between_time(*time_string)) == expected_length

    def test_to_period(self):
        from pandas.core.indexes.period import period_range

        ts = _simple_ts('1/1/2000', '1/1/2001')

        pts = ts.to_period()
        exp = ts.copy()
        exp.index = period_range('1/1/2000', '1/1/2001')
        assert_series_equal(pts, exp)

        pts = ts.to_period('M')
        exp.index = exp.index.asfreq('M')
        tm.assert_index_equal(pts.index, exp.index.asfreq('M'))
        assert_series_equal(pts, exp)

        # GH 7606 without freq
        idx = DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03',
                             '2011-01-04'])
        exp_idx = pd.PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03',
                                  '2011-01-04'], freq='D')

        s = Series(np.random.randn(4), index=idx)
        expected = s.copy()
        expected.index = exp_idx
        assert_series_equal(s.to_period(), expected)

        df = DataFrame(np.random.randn(4, 4), index=idx, columns=idx)
        expected = df.copy()
        expected.index = exp_idx
        assert_frame_equal(df.to_period(), expected)

        expected = df.copy()
        expected.columns = exp_idx
        assert_frame_equal(df.to_period(axis=1), expected)

    def test_groupby_count_dateparseerror(self):
        dr = date_range(start='1/1/2012', freq='5min', periods=10)

        # BAD Example, datetimes first
        s = Series(np.arange(10), index=[dr, lrange(10)])
        grouped = s.groupby(lambda x: x[1] % 2 == 0)
        result = grouped.count()

        s = Series(np.arange(10), index=[lrange(10), dr])
        grouped = s.groupby(lambda x: x[0] % 2 == 0)
        expected = grouped.count()

        assert_series_equal(result, expected)

    def test_to_csv_numpy_16_bug(self):
        frame = DataFrame({'a': date_range('1/1/2000', periods=10)})

        buf = StringIO()
        frame.to_csv(buf)

        result = buf.getvalue()
        assert '2000-01-01' in result

    def test_series_map_box_timedelta(self):
        # GH 11349
        s = Series(timedelta_range('1 day 1 s', periods=5, freq='h'))

        def f(x):
            return x.total_seconds()

        s.map(f)
        s.apply(f)
        DataFrame(s).applymap(f)

    def test_asfreq_resample_set_correct_freq(self):
        # GH5613
        # we test if .asfreq() and .resample() set the correct value for .freq
        df = pd.DataFrame({'date': ["2012-01-01", "2012-01-02", "2012-01-03"],
                           'col': [1, 2, 3]})
        df = df.set_index(pd.to_datetime(df.date))

        # testing the settings before calling .asfreq() and .resample()
        assert df.index.freq is None
        assert df.index.inferred_freq == 'D'

        # does .asfreq() set .freq correctly?
        assert df.asfreq('D').index.freq == 'D'

        # does .resample() set .freq correctly?
        assert df.resample('D').asfreq().index.freq == 'D'

    def test_pickle(self):

        # GH4606
        p = tm.round_trip_pickle(NaT)
        assert p is NaT

        idx = pd.to_datetime(['2013-01-01', NaT, '2014-01-06'])
        idx_p = tm.round_trip_pickle(idx)
        assert idx_p[0] == idx[0]
        assert idx_p[1] is NaT
        assert idx_p[2] == idx[2]

        # GH11002
        # don't infer freq
        idx = date_range('1750-1-1', '2050-1-1', freq='7D')
        idx_p = tm.round_trip_pickle(idx)
        tm.assert_index_equal(idx, idx_p)

    def test_setops_preserve_freq(self):
        for tz in [None, 'Asia/Tokyo', 'US/Eastern']:
            rng = date_range('1/1/2000', '1/1/2002', name='idx', tz=tz)

            result = rng[:50].union(rng[50:100])
            assert result.name == rng.name
            assert result.freq == rng.freq
            assert result.tz == rng.tz

            result = rng[:50].union(rng[30:100])
            assert result.name == rng.name
            assert result.freq == rng.freq
            assert result.tz == rng.tz

            result = rng[:50].union(rng[60:100])
            assert result.name == rng.name
            assert result.freq is None
            assert result.tz == rng.tz

            result = rng[:50].intersection(rng[25:75])
            assert result.name == rng.name
            assert result.freqstr == 'D'
            assert result.tz == rng.tz

            nofreq = DatetimeIndex(list(rng[25:75]), name='other')
            result = rng[:50].union(nofreq)
            assert result.name is None
            assert result.freq == rng.freq
            assert result.tz == rng.tz

            result = rng[:50].intersection(nofreq)
            assert result.name is None
            assert result.freq == rng.freq
            assert result.tz == rng.tz

    def test_min_max(self):
        rng = date_range('1/1/2000', '12/31/2000')
        rng2 = rng.take(np.random.permutation(len(rng)))

        the_min = rng2.min()
        the_max = rng2.max()
        assert isinstance(the_min, Timestamp)
        assert isinstance(the_max, Timestamp)
        assert the_min == rng[0]
        assert the_max == rng[-1]

        assert rng.min() == rng[0]
        assert rng.max() == rng[-1]

    def test_min_max_series(self):
        rng = date_range('1/1/2000', periods=10, freq='4h')
        lvls = ['A', 'A', 'A', 'B', 'B', 'B', 'C', 'C', 'C', 'C']
        df = DataFrame({'TS': rng, 'V': np.random.randn(len(rng)), 'L': lvls})

        result = df.TS.max()
        exp = Timestamp(df.TS.iat[-1])
        assert isinstance(result, Timestamp)
        assert result == exp

        result = df.TS.min()
        exp = Timestamp(df.TS.iat[0])
        assert isinstance(result, Timestamp)
        assert result == exp

    def test_from_M8_structured(self):
        dates = [(datetime(2012, 9, 9, 0, 0), datetime(2012, 9, 8, 15, 10))]
        arr = np.array(dates,
                       dtype=[('Date', 'M8[us]'), ('Forecasting', 'M8[us]')])
        df = DataFrame(arr)

        assert df['Date'][0] == dates[0][0]
        assert df['Forecasting'][0] == dates[0][1]

        s = Series(arr['Date'])
        assert isinstance(s[0], Timestamp)
        assert s[0] == dates[0][0]

        with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
            s = Series.from_array(arr['Date'], Index([0]))
            assert s[0] == dates[0][0]

    def test_get_level_values_box(self):
        from pandas import MultiIndex

        dates = date_range('1/1/2000', periods=4)
        levels = [dates, [0, 1]]
        labels = [[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]]

        index = MultiIndex(levels=levels, labels=labels)

        assert isinstance(index.get_level_values(0)[0], Timestamp)