Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
pandas / plotting / _misc.py
Size: Mime:
# being a bit too dynamic
# pylint: disable=E1101
from __future__ import division

import numpy as np

from pandas.util._decorators import deprecate_kwarg
from pandas.core.dtypes.missing import notna
from pandas.compat import range, lrange, lmap, zip
from pandas.io.formats.printing import pprint_thing


from pandas.plotting._style import _get_standard_colors
from pandas.plotting._tools import _subplots, _set_ticks_props


def scatter_matrix(frame, alpha=0.5, figsize=None, ax=None, grid=False,
                   diagonal='hist', marker='.', density_kwds=None,
                   hist_kwds=None, range_padding=0.05, **kwds):
    """
    Draw a matrix of scatter plots.

    Parameters
    ----------
    frame : DataFrame
    alpha : float, optional
        amount of transparency applied
    figsize : (float,float), optional
        a tuple (width, height) in inches
    ax : Matplotlib axis object, optional
    grid : bool, optional
        setting this to True will show the grid
    diagonal : {'hist', 'kde'}
        pick between 'kde' and 'hist' for
        either Kernel Density Estimation or Histogram
        plot in the diagonal
    marker : str, optional
        Matplotlib marker type, default '.'
    hist_kwds : other plotting keyword arguments
        To be passed to hist function
    density_kwds : other plotting keyword arguments
        To be passed to kernel density estimate plot
    range_padding : float, optional
        relative extension of axis range in x and y
        with respect to (x_max - x_min) or (y_max - y_min),
        default 0.05
    kwds : other plotting keyword arguments
        To be passed to scatter function

    Examples
    --------
    >>> df = DataFrame(np.random.randn(1000, 4), columns=['A','B','C','D'])
    >>> scatter_matrix(df, alpha=0.2)
    """

    df = frame._get_numeric_data()
    n = df.columns.size
    naxes = n * n
    fig, axes = _subplots(naxes=naxes, figsize=figsize, ax=ax,
                          squeeze=False)

    # no gaps between subplots
    fig.subplots_adjust(wspace=0, hspace=0)

    mask = notna(df)

    marker = _get_marker_compat(marker)

    hist_kwds = hist_kwds or {}
    density_kwds = density_kwds or {}

    # GH 14855
    kwds.setdefault('edgecolors', 'none')

    boundaries_list = []
    for a in df.columns:
        values = df[a].values[mask[a].values]
        rmin_, rmax_ = np.min(values), np.max(values)
        rdelta_ext = (rmax_ - rmin_) * range_padding / 2.
        boundaries_list.append((rmin_ - rdelta_ext, rmax_ + rdelta_ext))

    for i, a in zip(lrange(n), df.columns):
        for j, b in zip(lrange(n), df.columns):
            ax = axes[i, j]

            if i == j:
                values = df[a].values[mask[a].values]

                # Deal with the diagonal by drawing a histogram there.
                if diagonal == 'hist':
                    ax.hist(values, **hist_kwds)

                elif diagonal in ('kde', 'density'):
                    from scipy.stats import gaussian_kde
                    y = values
                    gkde = gaussian_kde(y)
                    ind = np.linspace(y.min(), y.max(), 1000)
                    ax.plot(ind, gkde.evaluate(ind), **density_kwds)

                ax.set_xlim(boundaries_list[i])

            else:
                common = (mask[a] & mask[b]).values

                ax.scatter(df[b][common], df[a][common],
                           marker=marker, alpha=alpha, **kwds)

                ax.set_xlim(boundaries_list[j])
                ax.set_ylim(boundaries_list[i])

            ax.set_xlabel(b)
            ax.set_ylabel(a)

            if j != 0:
                ax.yaxis.set_visible(False)
            if i != n - 1:
                ax.xaxis.set_visible(False)

    if len(df.columns) > 1:
        lim1 = boundaries_list[0]
        locs = axes[0][1].yaxis.get_majorticklocs()
        locs = locs[(lim1[0] <= locs) & (locs <= lim1[1])]
        adj = (locs - lim1[0]) / (lim1[1] - lim1[0])

        lim0 = axes[0][0].get_ylim()
        adj = adj * (lim0[1] - lim0[0]) + lim0[0]
        axes[0][0].yaxis.set_ticks(adj)

        if np.all(locs == locs.astype(int)):
            # if all ticks are int
            locs = locs.astype(int)
        axes[0][0].yaxis.set_ticklabels(locs)

    _set_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)

    return axes


def _get_marker_compat(marker):
    import matplotlib.lines as mlines
    import matplotlib as mpl
    if mpl.__version__ < '1.1.0' and marker == '.':
        return 'o'
    if marker not in mlines.lineMarkers:
        return 'o'
    return marker


def radviz(frame, class_column, ax=None, color=None, colormap=None, **kwds):
    """
    Plot a multidimensional dataset in 2D.

    Each Series in the DataFrame is represented as a evenly distributed
    slice on a circle. Each data point is rendered in the circle according to
    the value on each Series. Highly correlated `Series` in the `DataFrame`
    are placed closer on the unit circle.

    RadViz allow to project a N-dimensional data set into a 2D space where the
    influence of each dimension can be interpreted as a balance between the
    influence of all dimensions.

    More info available at the `original article
    <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.889>`_
    describing RadViz.

    Parameters
    ----------
    frame : `DataFrame`
        Pandas object holding the data.
    class_column : str
        Column name containing the name of the data point category.
    ax : :class:`matplotlib.axes.Axes`, optional
        A plot instance to which to add the information.
    color : list[str] or tuple[str], optional
        Assign a color to each category. Example: ['blue', 'green'].
    colormap : str or :class:`matplotlib.colors.Colormap`, default None
        Colormap to select colors from. If string, load colormap with that
        name from matplotlib.
    kwds : optional
        Options to pass to matplotlib scatter plotting method.

    Returns
    -------
    axes : :class:`matplotlib.axes.Axes`

    See Also
    --------
    pandas.plotting.andrews_curves : Plot clustering visualization

    Examples
    --------
    .. plot::
        :context: close-figs

        >>> df = pd.DataFrame({
        ...         'SepalLength': [6.5, 7.7, 5.1, 5.8, 7.6, 5.0, 5.4, 4.6,
        ...                         6.7, 4.6],
        ...         'SepalWidth': [3.0, 3.8, 3.8, 2.7, 3.0, 2.3, 3.0, 3.2,
        ...                        3.3, 3.6],
        ...         'PetalLength': [5.5, 6.7, 1.9, 5.1, 6.6, 3.3, 4.5, 1.4,
        ...                         5.7, 1.0],
        ...         'PetalWidth': [1.8, 2.2, 0.4, 1.9, 2.1, 1.0, 1.5, 0.2,
        ...                        2.1, 0.2],
        ...         'Category': ['virginica', 'virginica', 'setosa',
        ...                      'virginica', 'virginica', 'versicolor',
        ...                      'versicolor', 'setosa', 'virginica',
        ...                      'setosa']
        ...     })
        >>> rad_viz = pd.plotting.radviz(df, 'Category')
    """
    import matplotlib.pyplot as plt
    import matplotlib.patches as patches

    def normalize(series):
        a = min(series)
        b = max(series)
        return (series - a) / (b - a)

    n = len(frame)
    classes = frame[class_column].drop_duplicates()
    class_col = frame[class_column]
    df = frame.drop(class_column, axis=1).apply(normalize)

    if ax is None:
        ax = plt.gca(xlim=[-1, 1], ylim=[-1, 1])

    to_plot = {}
    colors = _get_standard_colors(num_colors=len(classes), colormap=colormap,
                                  color_type='random', color=color)

    for kls in classes:
        to_plot[kls] = [[], []]

    m = len(frame.columns) - 1
    s = np.array([(np.cos(t), np.sin(t))
                  for t in [2.0 * np.pi * (i / float(m))
                            for i in range(m)]])

    for i in range(n):
        row = df.iloc[i].values
        row_ = np.repeat(np.expand_dims(row, axis=1), 2, axis=1)
        y = (s * row_).sum(axis=0) / row.sum()
        kls = class_col.iat[i]
        to_plot[kls][0].append(y[0])
        to_plot[kls][1].append(y[1])

    for i, kls in enumerate(classes):
        ax.scatter(to_plot[kls][0], to_plot[kls][1], color=colors[i],
                   label=pprint_thing(kls), **kwds)
    ax.legend()

    ax.add_patch(patches.Circle((0.0, 0.0), radius=1.0, facecolor='none'))

    for xy, name in zip(s, df.columns):

        ax.add_patch(patches.Circle(xy, radius=0.025, facecolor='gray'))

        if xy[0] < 0.0 and xy[1] < 0.0:
            ax.text(xy[0] - 0.025, xy[1] - 0.025, name,
                    ha='right', va='top', size='small')
        elif xy[0] < 0.0 and xy[1] >= 0.0:
            ax.text(xy[0] - 0.025, xy[1] + 0.025, name,
                    ha='right', va='bottom', size='small')
        elif xy[0] >= 0.0 and xy[1] < 0.0:
            ax.text(xy[0] + 0.025, xy[1] - 0.025, name,
                    ha='left', va='top', size='small')
        elif xy[0] >= 0.0 and xy[1] >= 0.0:
            ax.text(xy[0] + 0.025, xy[1] + 0.025, name,
                    ha='left', va='bottom', size='small')

    ax.axis('equal')
    return ax


@deprecate_kwarg(old_arg_name='data', new_arg_name='frame')
def andrews_curves(frame, class_column, ax=None, samples=200, color=None,
                   colormap=None, **kwds):
    """
    Generates a matplotlib plot of Andrews curves, for visualising clusters of
    multivariate data.

    Andrews curves have the functional form:

    f(t) = x_1/sqrt(2) + x_2 sin(t) + x_3 cos(t) +
           x_4 sin(2t) + x_5 cos(2t) + ...

    Where x coefficients correspond to the values of each dimension and t is
    linearly spaced between -pi and +pi. Each row of frame then corresponds to
    a single curve.

    Parameters
    ----------
    frame : DataFrame
        Data to be plotted, preferably normalized to (0.0, 1.0)
    class_column : Name of the column containing class names
    ax : matplotlib axes object, default None
    samples : Number of points to plot in each curve
    color: list or tuple, optional
        Colors to use for the different classes
    colormap : str or matplotlib colormap object, default None
        Colormap to select colors from. If string, load colormap with that name
        from matplotlib.
    kwds: keywords
        Options to pass to matplotlib plotting method

    Returns
    -------
    ax: Matplotlib axis object

    """
    from math import sqrt, pi
    import matplotlib.pyplot as plt

    def function(amplitudes):
        def f(t):
            x1 = amplitudes[0]
            result = x1 / sqrt(2.0)

            # Take the rest of the coefficients and resize them
            # appropriately. Take a copy of amplitudes as otherwise numpy
            # deletes the element from amplitudes itself.
            coeffs = np.delete(np.copy(amplitudes), 0)
            coeffs.resize(int((coeffs.size + 1) / 2), 2)

            # Generate the harmonics and arguments for the sin and cos
            # functions.
            harmonics = np.arange(0, coeffs.shape[0]) + 1
            trig_args = np.outer(harmonics, t)

            result += np.sum(coeffs[:, 0, np.newaxis] * np.sin(trig_args) +
                             coeffs[:, 1, np.newaxis] * np.cos(trig_args),
                             axis=0)
            return result
        return f

    n = len(frame)
    class_col = frame[class_column]
    classes = frame[class_column].drop_duplicates()
    df = frame.drop(class_column, axis=1)
    t = np.linspace(-pi, pi, samples)
    used_legends = set([])

    color_values = _get_standard_colors(num_colors=len(classes),
                                        colormap=colormap, color_type='random',
                                        color=color)
    colors = dict(zip(classes, color_values))
    if ax is None:
        ax = plt.gca(xlim=(-pi, pi))
    for i in range(n):
        row = df.iloc[i].values
        f = function(row)
        y = f(t)
        kls = class_col.iat[i]
        label = pprint_thing(kls)
        if label not in used_legends:
            used_legends.add(label)
            ax.plot(t, y, color=colors[kls], label=label, **kwds)
        else:
            ax.plot(t, y, color=colors[kls], **kwds)

    ax.legend(loc='upper right')
    ax.grid()
    return ax


def bootstrap_plot(series, fig=None, size=50, samples=500, **kwds):
    """
    Bootstrap plot on mean, median and mid-range statistics.

    The bootstrap plot is used to estimate the uncertainty of a statistic
    by relaying on random sampling with replacement [1]_. This function will
    generate bootstrapping plots for mean, median and mid-range statistics
    for the given number of samples of the given size.

    .. [1] "Bootstrapping (statistics)" in \
    https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29

    Parameters
    ----------
    series : pandas.Series
        Pandas Series from where to get the samplings for the bootstrapping.
    fig : matplotlib.figure.Figure, default None
        If given, it will use the `fig` reference for plotting instead of
        creating a new one with default parameters.
    size : int, default 50
        Number of data points to consider during each sampling. It must be
        greater or equal than the length of the `series`.
    samples : int, default 500
        Number of times the bootstrap procedure is performed.
    **kwds :
        Options to pass to matplotlib plotting method.

    Returns
    -------
    fig : matplotlib.figure.Figure
        Matplotlib figure

    See Also
    --------
    pandas.DataFrame.plot : Basic plotting for DataFrame objects.
    pandas.Series.plot : Basic plotting for Series objects.

    Examples
    --------

    .. plot::
            :context: close-figs

            >>> import numpy as np
            >>> s = pd.Series(np.random.uniform(size=100))
            >>> fig = pd.plotting.bootstrap_plot(s)
    """
    import random
    import matplotlib.pyplot as plt

    # random.sample(ndarray, int) fails on python 3.3, sigh
    data = list(series.values)
    samplings = [random.sample(data, size) for _ in range(samples)]

    means = np.array([np.mean(sampling) for sampling in samplings])
    medians = np.array([np.median(sampling) for sampling in samplings])
    midranges = np.array([(min(sampling) + max(sampling)) * 0.5
                          for sampling in samplings])
    if fig is None:
        fig = plt.figure()
    x = lrange(samples)
    axes = []
    ax1 = fig.add_subplot(2, 3, 1)
    ax1.set_xlabel("Sample")
    axes.append(ax1)
    ax1.plot(x, means, **kwds)
    ax2 = fig.add_subplot(2, 3, 2)
    ax2.set_xlabel("Sample")
    axes.append(ax2)
    ax2.plot(x, medians, **kwds)
    ax3 = fig.add_subplot(2, 3, 3)
    ax3.set_xlabel("Sample")
    axes.append(ax3)
    ax3.plot(x, midranges, **kwds)
    ax4 = fig.add_subplot(2, 3, 4)
    ax4.set_xlabel("Mean")
    axes.append(ax4)
    ax4.hist(means, **kwds)
    ax5 = fig.add_subplot(2, 3, 5)
    ax5.set_xlabel("Median")
    axes.append(ax5)
    ax5.hist(medians, **kwds)
    ax6 = fig.add_subplot(2, 3, 6)
    ax6.set_xlabel("Midrange")
    axes.append(ax6)
    ax6.hist(midranges, **kwds)
    for axis in axes:
        plt.setp(axis.get_xticklabels(), fontsize=8)
        plt.setp(axis.get_yticklabels(), fontsize=8)
    return fig


@deprecate_kwarg(old_arg_name='colors', new_arg_name='color')
@deprecate_kwarg(old_arg_name='data', new_arg_name='frame', stacklevel=3)
def parallel_coordinates(frame, class_column, cols=None, ax=None, color=None,
                         use_columns=False, xticks=None, colormap=None,
                         axvlines=True, axvlines_kwds=None, sort_labels=False,
                         **kwds):
    """Parallel coordinates plotting.

    Parameters
    ----------
    frame: DataFrame
    class_column: str
        Column name containing class names
    cols: list, optional
        A list of column names to use
    ax: matplotlib.axis, optional
        matplotlib axis object
    color: list or tuple, optional
        Colors to use for the different classes
    use_columns: bool, optional
        If true, columns will be used as xticks
    xticks: list or tuple, optional
        A list of values to use for xticks
    colormap: str or matplotlib colormap, default None
        Colormap to use for line colors.
    axvlines: bool, optional
        If true, vertical lines will be added at each xtick
    axvlines_kwds: keywords, optional
        Options to be passed to axvline method for vertical lines
    sort_labels: bool, False
        Sort class_column labels, useful when assigning colors

        .. versionadded:: 0.20.0

    kwds: keywords
        Options to pass to matplotlib plotting method

    Returns
    -------
    ax: matplotlib axis object

    Examples
    --------
    >>> from pandas import read_csv
    >>> from pandas.tools.plotting import parallel_coordinates
    >>> from matplotlib import pyplot as plt
    >>> df = read_csv('https://raw.github.com/pandas-dev/pandas/master'
                      '/pandas/tests/data/iris.csv')
    >>> parallel_coordinates(df, 'Name', color=('#556270',
                             '#4ECDC4', '#C7F464'))
    >>> plt.show()
    """
    if axvlines_kwds is None:
        axvlines_kwds = {'linewidth': 1, 'color': 'black'}
    import matplotlib.pyplot as plt

    n = len(frame)
    classes = frame[class_column].drop_duplicates()
    class_col = frame[class_column]

    if cols is None:
        df = frame.drop(class_column, axis=1)
    else:
        df = frame[cols]

    used_legends = set([])

    ncols = len(df.columns)

    # determine values to use for xticks
    if use_columns is True:
        if not np.all(np.isreal(list(df.columns))):
            raise ValueError('Columns must be numeric to be used as xticks')
        x = df.columns
    elif xticks is not None:
        if not np.all(np.isreal(xticks)):
            raise ValueError('xticks specified must be numeric')
        elif len(xticks) != ncols:
            raise ValueError('Length of xticks must match number of columns')
        x = xticks
    else:
        x = lrange(ncols)

    if ax is None:
        ax = plt.gca()

    color_values = _get_standard_colors(num_colors=len(classes),
                                        colormap=colormap, color_type='random',
                                        color=color)

    if sort_labels:
        classes = sorted(classes)
        color_values = sorted(color_values)
    colors = dict(zip(classes, color_values))

    for i in range(n):
        y = df.iloc[i].values
        kls = class_col.iat[i]
        label = pprint_thing(kls)
        if label not in used_legends:
            used_legends.add(label)
            ax.plot(x, y, color=colors[kls], label=label, **kwds)
        else:
            ax.plot(x, y, color=colors[kls], **kwds)

    if axvlines:
        for i in x:
            ax.axvline(i, **axvlines_kwds)

    ax.set_xticks(x)
    ax.set_xticklabels(df.columns)
    ax.set_xlim(x[0], x[-1])
    ax.legend(loc='upper right')
    ax.grid()
    return ax


def lag_plot(series, lag=1, ax=None, **kwds):
    """Lag plot for time series.

    Parameters
    ----------
    series: Time series
    lag: lag of the scatter plot, default 1
    ax: Matplotlib axis object, optional
    kwds: Matplotlib scatter method keyword arguments, optional

    Returns
    -------
    ax: Matplotlib axis object
    """
    import matplotlib.pyplot as plt

    # workaround because `c='b'` is hardcoded in matplotlibs scatter method
    kwds.setdefault('c', plt.rcParams['patch.facecolor'])

    data = series.values
    y1 = data[:-lag]
    y2 = data[lag:]
    if ax is None:
        ax = plt.gca()
    ax.set_xlabel("y(t)")
    ax.set_ylabel("y(t + {lag})".format(lag=lag))
    ax.scatter(y1, y2, **kwds)
    return ax


def autocorrelation_plot(series, ax=None, **kwds):
    """Autocorrelation plot for time series.

    Parameters:
    -----------
    series: Time series
    ax: Matplotlib axis object, optional
    kwds : keywords
        Options to pass to matplotlib plotting method

    Returns:
    -----------
    ax: Matplotlib axis object
    """
    import matplotlib.pyplot as plt
    n = len(series)
    data = np.asarray(series)
    if ax is None:
        ax = plt.gca(xlim=(1, n), ylim=(-1.0, 1.0))
    mean = np.mean(data)
    c0 = np.sum((data - mean) ** 2) / float(n)

    def r(h):
        return ((data[:n - h] - mean) *
                (data[h:] - mean)).sum() / float(n) / c0
    x = np.arange(n) + 1
    y = lmap(r, x)
    z95 = 1.959963984540054
    z99 = 2.5758293035489004
    ax.axhline(y=z99 / np.sqrt(n), linestyle='--', color='grey')
    ax.axhline(y=z95 / np.sqrt(n), color='grey')
    ax.axhline(y=0.0, color='black')
    ax.axhline(y=-z95 / np.sqrt(n), color='grey')
    ax.axhline(y=-z99 / np.sqrt(n), linestyle='--', color='grey')
    ax.set_xlabel("Lag")
    ax.set_ylabel("Autocorrelation")
    ax.plot(x, y, **kwds)
    if 'label' in kwds:
        ax.legend()
    ax.grid()
    return ax