Repository URL to install this package:
Version:
0.24.2 ▾
|
# -*- coding: utf-8 -*-
"""
Tests date parsing functionality for all of the
parsers defined in parsers.py
"""
from datetime import date, datetime
import numpy as np
import pytest
import pytz
from pandas._libs.tslib import Timestamp
from pandas._libs.tslibs import parsing
from pandas.compat import StringIO, lrange, parse_date
from pandas.compat.numpy import np_array_datetime64_compat
import pandas as pd
from pandas import DataFrame, DatetimeIndex, Index, MultiIndex
from pandas.core.indexes.datetimes import date_range
import pandas.util.testing as tm
import pandas.io.date_converters as conv
import pandas.io.parsers as parsers
def test_separator_date_conflict(all_parsers):
# Regression test for gh-4678
#
# Make sure thousands separator and
# date parsing do not conflict.
parser = all_parsers
data = "06-02-2013;13:00;1-000.215"
expected = DataFrame([[datetime(2013, 6, 2, 13, 0, 0), 1000.215]],
columns=["Date", 2])
df = parser.read_csv(StringIO(data), sep=";", thousands="-",
parse_dates={"Date": [0, 1]}, header=None)
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize("keep_date_col", [True, False])
def test_multiple_date_col_custom(all_parsers, keep_date_col):
data = """\
KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000
KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000
KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000
KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000
KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000
KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000
"""
parser = all_parsers
def date_parser(*date_cols):
"""
Test date parser.
Parameters
----------
date_cols : args
The list of data columns to parse.
Returns
-------
parsed : Series
"""
return parsing.try_parse_dates(parsers._concat_date_cols(date_cols))
result = parser.read_csv(StringIO(data), header=None,
date_parser=date_parser, prefix="X",
parse_dates={"actual": [1, 2],
"nominal": [1, 3]},
keep_date_col=keep_date_col)
expected = DataFrame([
[datetime(1999, 1, 27, 19, 0), datetime(1999, 1, 27, 18, 56),
"KORD", "19990127", " 19:00:00", " 18:56:00",
0.81, 2.81, 7.2, 0.0, 280.0],
[datetime(1999, 1, 27, 20, 0), datetime(1999, 1, 27, 19, 56),
"KORD", "19990127", " 20:00:00", " 19:56:00",
0.01, 2.21, 7.2, 0.0, 260.0],
[datetime(1999, 1, 27, 21, 0), datetime(1999, 1, 27, 20, 56),
"KORD", "19990127", " 21:00:00", " 20:56:00",
-0.59, 2.21, 5.7, 0.0, 280.0],
[datetime(1999, 1, 27, 21, 0), datetime(1999, 1, 27, 21, 18),
"KORD", "19990127", " 21:00:00", " 21:18:00",
-0.99, 2.01, 3.6, 0.0, 270.0],
[datetime(1999, 1, 27, 22, 0), datetime(1999, 1, 27, 21, 56),
"KORD", "19990127", " 22:00:00", " 21:56:00",
-0.59, 1.71, 5.1, 0.0, 290.0],
[datetime(1999, 1, 27, 23, 0), datetime(1999, 1, 27, 22, 56),
"KORD", "19990127", " 23:00:00", " 22:56:00",
-0.59, 1.71, 4.6, 0.0, 280.0],
], columns=["actual", "nominal", "X0", "X1", "X2",
"X3", "X4", "X5", "X6", "X7", "X8"])
if not keep_date_col:
expected = expected.drop(["X1", "X2", "X3"], axis=1)
elif parser.engine == "python":
expected["X1"] = expected["X1"].astype(np.int64)
# Python can sometimes be flaky about how
# the aggregated columns are entered, so
# this standardizes the order.
result = result[expected.columns]
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("keep_date_col", [True, False])
def test_multiple_date_col(all_parsers, keep_date_col):
data = """\
KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000
KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000
KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000
KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000
KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000
KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000
"""
parser = all_parsers
result = parser.read_csv(StringIO(data), header=None,
prefix="X", parse_dates=[[1, 2], [1, 3]],
keep_date_col=keep_date_col)
expected = DataFrame([
[datetime(1999, 1, 27, 19, 0), datetime(1999, 1, 27, 18, 56),
"KORD", "19990127", " 19:00:00", " 18:56:00",
0.81, 2.81, 7.2, 0.0, 280.0],
[datetime(1999, 1, 27, 20, 0), datetime(1999, 1, 27, 19, 56),
"KORD", "19990127", " 20:00:00", " 19:56:00",
0.01, 2.21, 7.2, 0.0, 260.0],
[datetime(1999, 1, 27, 21, 0), datetime(1999, 1, 27, 20, 56),
"KORD", "19990127", " 21:00:00", " 20:56:00",
-0.59, 2.21, 5.7, 0.0, 280.0],
[datetime(1999, 1, 27, 21, 0), datetime(1999, 1, 27, 21, 18),
"KORD", "19990127", " 21:00:00", " 21:18:00",
-0.99, 2.01, 3.6, 0.0, 270.0],
[datetime(1999, 1, 27, 22, 0), datetime(1999, 1, 27, 21, 56),
"KORD", "19990127", " 22:00:00", " 21:56:00",
-0.59, 1.71, 5.1, 0.0, 290.0],
[datetime(1999, 1, 27, 23, 0), datetime(1999, 1, 27, 22, 56),
"KORD", "19990127", " 23:00:00", " 22:56:00",
-0.59, 1.71, 4.6, 0.0, 280.0],
], columns=["X1_X2", "X1_X3", "X0", "X1", "X2",
"X3", "X4", "X5", "X6", "X7", "X8"])
if not keep_date_col:
expected = expected.drop(["X1", "X2", "X3"], axis=1)
elif parser.engine == "python":
expected["X1"] = expected["X1"].astype(np.int64)
tm.assert_frame_equal(result, expected)
def test_date_col_as_index_col(all_parsers):
data = """\
KORD,19990127 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000
KORD,19990127 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000
KORD,19990127 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000
KORD,19990127 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000
KORD,19990127 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000
"""
parser = all_parsers
result = parser.read_csv(StringIO(data), header=None, prefix="X",
parse_dates=[1], index_col=1)
index = Index([datetime(1999, 1, 27, 19, 0), datetime(1999, 1, 27, 20, 0),
datetime(1999, 1, 27, 21, 0), datetime(1999, 1, 27, 21, 0),
datetime(1999, 1, 27, 22, 0)], name="X1")
expected = DataFrame([
["KORD", " 18:56:00", 0.81, 2.81, 7.2, 0.0, 280.0],
["KORD", " 19:56:00", 0.01, 2.21, 7.2, 0.0, 260.0],
["KORD", " 20:56:00", -0.59, 2.21, 5.7, 0.0, 280.0],
["KORD", " 21:18:00", -0.99, 2.01, 3.6, 0.0, 270.0],
["KORD", " 21:56:00", -0.59, 1.71, 5.1, 0.0, 290.0],
], columns=["X0", "X2", "X3", "X4", "X5", "X6", "X7"], index=index)
tm.assert_frame_equal(result, expected)
def test_multiple_date_cols_int_cast(all_parsers):
data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n"
"KORD,19990127, 20:00:00, 19:56:00, 0.0100\n"
"KORD,19990127, 21:00:00, 20:56:00, -0.5900\n"
"KORD,19990127, 21:00:00, 21:18:00, -0.9900\n"
"KORD,19990127, 22:00:00, 21:56:00, -0.5900\n"
"KORD,19990127, 23:00:00, 22:56:00, -0.5900")
parse_dates = {"actual": [1, 2], "nominal": [1, 3]}
parser = all_parsers
result = parser.read_csv(StringIO(data), header=None,
date_parser=conv.parse_date_time,
parse_dates=parse_dates, prefix="X")
expected = DataFrame([
[datetime(1999, 1, 27, 19, 0), datetime(1999, 1, 27, 18, 56),
"KORD", 0.81],
[datetime(1999, 1, 27, 20, 0), datetime(1999, 1, 27, 19, 56),
"KORD", 0.01],
[datetime(1999, 1, 27, 21, 0), datetime(1999, 1, 27, 20, 56),
"KORD", -0.59],
[datetime(1999, 1, 27, 21, 0), datetime(1999, 1, 27, 21, 18),
"KORD", -0.99],
[datetime(1999, 1, 27, 22, 0), datetime(1999, 1, 27, 21, 56),
"KORD", -0.59],
[datetime(1999, 1, 27, 23, 0), datetime(1999, 1, 27, 22, 56),
"KORD", -0.59],
], columns=["actual", "nominal", "X0", "X4"])
# Python can sometimes be flaky about how
# the aggregated columns are entered, so
# this standardizes the order.
result = result[expected.columns]
tm.assert_frame_equal(result, expected)
def test_multiple_date_col_timestamp_parse(all_parsers):
parser = all_parsers
data = """05/31/2012,15:30:00.029,1306.25,1,E,0,,1306.25
05/31/2012,15:30:00.029,1306.25,8,E,0,,1306.25"""
result = parser.read_csv(StringIO(data), parse_dates=[[0, 1]],
header=None, date_parser=Timestamp)
expected = DataFrame([
[Timestamp("05/31/2012, 15:30:00.029"),
1306.25, 1, "E", 0, np.nan, 1306.25],
[Timestamp("05/31/2012, 15:30:00.029"),
1306.25, 8, "E", 0, np.nan, 1306.25]
], columns=["0_1", 2, 3, 4, 5, 6, 7])
tm.assert_frame_equal(result, expected)
def test_multiple_date_cols_with_header(all_parsers):
parser = all_parsers
data = """\
ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir
KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000
KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000
KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000
KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000
KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000
KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000"""
result = parser.read_csv(StringIO(data), parse_dates={"nominal": [1, 2]})
expected = DataFrame([
[datetime(1999, 1, 27, 19, 0), "KORD", " 18:56:00",
0.81, 2.81, 7.2, 0.0, 280.0],
[datetime(1999, 1, 27, 20, 0), "KORD", " 19:56:00",
0.01, 2.21, 7.2, 0.0, 260.0],
[datetime(1999, 1, 27, 21, 0), "KORD", " 20:56:00",
-0.59, 2.21, 5.7, 0.0, 280.0],
[datetime(1999, 1, 27, 21, 0), "KORD", " 21:18:00",
-0.99, 2.01, 3.6, 0.0, 270.0],
[datetime(1999, 1, 27, 22, 0), "KORD", " 21:56:00",
-0.59, 1.71, 5.1, 0.0, 290.0],
[datetime(1999, 1, 27, 23, 0), "KORD", " 22:56:00",
-0.59, 1.71, 4.6, 0.0, 280.0],
], columns=["nominal", "ID", "ActualTime", "TDew",
"TAir", "Windspeed", "Precip", "WindDir"])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("data,parse_dates,msg", [
("""\
date_NominalTime,date,NominalTime
KORD1,19990127, 19:00:00
KORD2,19990127, 20:00:00""", [[1, 2]], ("New date column already "
"in dict date_NominalTime")),
("""\
ID,date,nominalTime
KORD,19990127, 19:00:00
KORD,19990127, 20:00:00""", dict(ID=[1, 2]), "Date column ID already in dict")
])
def test_multiple_date_col_name_collision(all_parsers, data, parse_dates, msg):
parser = all_parsers
with pytest.raises(ValueError, match=msg):
parser.read_csv(StringIO(data), parse_dates=parse_dates)
def test_date_parser_int_bug(all_parsers):
# see gh-3071
parser = all_parsers
data = ("posix_timestamp,elapsed,sys,user,queries,query_time,rows,"
"accountid,userid,contactid,level,silo,method\n"
"1343103150,0.062353,0,4,6,0.01690,3,"
"12345,1,-1,3,invoice_InvoiceResource,search\n")
result = parser.read_csv(
StringIO(data), index_col=0, parse_dates=[0],
date_parser=lambda x: datetime.utcfromtimestamp(int(x)))
expected = DataFrame([[0.062353, 0, 4, 6, 0.01690, 3, 12345, 1, -1,
3, "invoice_InvoiceResource", "search"]],
columns=["elapsed", "sys", "user", "queries",
"query_time", "rows", "accountid",
"userid", "contactid", "level",
"silo", "method"],
index=Index([Timestamp("2012-07-24 04:12:30")],
name="posix_timestamp"))
tm.assert_frame_equal(result, expected)
def test_nat_parse(all_parsers):
# see gh-3062
parser = all_parsers
df = DataFrame(dict({"A": np.asarray(lrange(10), dtype="float64"),
"B": pd.Timestamp("20010101")}))
df.iloc[3:6, :] = np.nan
with tm.ensure_clean("__nat_parse_.csv") as path:
df.to_csv(path)
result = parser.read_csv(path, index_col=0, parse_dates=["B"])
tm.assert_frame_equal(result, df)
def test_csv_custom_parser(all_parsers):
data = """A,B,C
20090101,a,1,2
20090102,b,3,4
20090103,c,4,5
"""
parser = all_parsers
result = parser.read_csv(
StringIO(data),
date_parser=lambda x: datetime.strptime(x, "%Y%m%d"))
expected = parser.read_csv(StringIO(data), parse_dates=True)
tm.assert_frame_equal(result, expected)
def test_parse_dates_implicit_first_col(all_parsers):
data = """A,B,C
20090101,a,1,2
20090102,b,3,4
20090103,c,4,5
"""
parser = all_parsers
result = parser.read_csv(StringIO(data), parse_dates=True)
expected = parser.read_csv(StringIO(data), index_col=0,
parse_dates=True)
tm.assert_frame_equal(result, expected)
def test_parse_dates_string(all_parsers):
data = """date,A,B,C
20090101,a,1,2
20090102,b,3,4
20090103,c,4,5
"""
parser = all_parsers
result = parser.read_csv(StringIO(data), index_col="date",
parse_dates=["date"])
index = date_range("1/1/2009", periods=3)
index.name = "date"
expected = DataFrame({"A": ["a", "b", "c"], "B": [1, 3, 4],
"C": [2, 4, 5]}, index=index)
tm.assert_frame_equal(result, expected)
# Bug in https://github.com/dateutil/dateutil/issues/217
# has been addressed, but we just don't pass in the `yearfirst`
@pytest.mark.xfail(reason="yearfirst is not surfaced in read_*")
@pytest.mark.parametrize("parse_dates", [
[["date", "time"]],
[[0, 1]]
])
def test_yy_format_with_year_first(all_parsers, parse_dates):
data = """date,time,B,C
090131,0010,1,2
090228,1020,3,4
090331,0830,5,6
"""
parser = all_parsers
result = parser.read_csv(StringIO(data), index_col=0,
parse_dates=parse_dates)
index = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0),
datetime(2009, 2, 28, 10, 20, 0),
datetime(2009, 3, 31, 8, 30, 0)],
dtype=object, name="date_time")
expected = DataFrame({"B": [1, 3, 5], "C": [2, 4, 6]}, index=index)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("parse_dates", [[0, 2], ["a", "c"]])
def test_parse_dates_column_list(all_parsers, parse_dates):
data = "a,b,c\n01/01/2010,1,15/02/2010"
parser = all_parsers
expected = DataFrame({"a": [datetime(2010, 1, 1)], "b": [1],
"c": [datetime(2010, 2, 15)]})
expected = expected.set_index(["a", "b"])
result = parser.read_csv(StringIO(data), index_col=[0, 1],
parse_dates=parse_dates, dayfirst=True)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("index_col", [[0, 1], [1, 0]])
def test_multi_index_parse_dates(all_parsers, index_col):
data = """index1,index2,A,B,C
20090101,one,a,1,2
20090101,two,b,3,4
20090101,three,c,4,5
20090102,one,a,1,2
20090102,two,b,3,4
20090102,three,c,4,5
20090103,one,a,1,2
20090103,two,b,3,4
20090103,three,c,4,5
"""
parser = all_parsers
index = MultiIndex.from_product([
(datetime(2009, 1, 1), datetime(2009, 1, 2),
datetime(2009, 1, 3)), ("one", "two", "three")],
names=["index1", "index2"])
# Out of order.
if index_col == [1, 0]:
index = index.swaplevel(0, 1)
expected = DataFrame([["a", 1, 2], ["b", 3, 4], ["c", 4, 5],
["a", 1, 2], ["b", 3, 4], ["c", 4, 5],
["a", 1, 2], ["b", 3, 4], ["c", 4, 5]],
columns=["A", "B", "C"], index=index)
result = parser.read_csv(StringIO(data), index_col=index_col,
parse_dates=True)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("kwargs", [
dict(dayfirst=True), dict(day_first=True)
])
def test_parse_dates_custom_euro_format(all_parsers, kwargs):
parser = all_parsers
data = """foo,bar,baz
31/01/2010,1,2
01/02/2010,1,NA
02/02/2010,1,2
"""
if "dayfirst" in kwargs:
df = parser.read_csv(StringIO(data), names=["time", "Q", "NTU"],
date_parser=lambda d: parse_date(d, **kwargs),
header=0, index_col=0, parse_dates=True,
na_values=["NA"])
exp_index = Index([datetime(2010, 1, 31), datetime(2010, 2, 1),
datetime(2010, 2, 2)], name="time")
expected = DataFrame({"Q": [1, 1, 1], "NTU": [2, np.nan, 2]},
index=exp_index, columns=["Q", "NTU"])
tm.assert_frame_equal(df, expected)
else:
msg = "got an unexpected keyword argument 'day_first'"
with pytest.raises(TypeError, match=msg):
parser.read_csv(StringIO(data), names=["time", "Q", "NTU"],
date_parser=lambda d: parse_date(d, **kwargs),
skiprows=[0], index_col=0, parse_dates=True,
na_values=["NA"])
def test_parse_tz_aware(all_parsers):
# See gh-1693
parser = all_parsers
data = "Date,x\n2012-06-13T01:39:00Z,0.5"
result = parser.read_csv(StringIO(data), index_col=0,
parse_dates=True)
expected = DataFrame({"x": [0.5]}, index=Index([Timestamp(
"2012-06-13 01:39:00+00:00")], name="Date"))
tm.assert_frame_equal(result, expected)
assert result.index.tz is pytz.utc
@pytest.mark.parametrize("parse_dates,index_col", [
({"nominal": [1, 2]}, "nominal"),
({"nominal": [1, 2]}, 0),
([[1, 2]], 0),
])
def test_multiple_date_cols_index(all_parsers, parse_dates, index_col):
parser = all_parsers
data = """
ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir
KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000
KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000
KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000
KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000
KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000
KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000
"""
expected = DataFrame([
[datetime(1999, 1, 27, 19, 0), "KORD1", " 18:56:00",
0.81, 2.81, 7.2, 0.0, 280.0],
[datetime(1999, 1, 27, 20, 0), "KORD2", " 19:56:00",
0.01, 2.21, 7.2, 0.0, 260.0],
[datetime(1999, 1, 27, 21, 0), "KORD3", " 20:56:00",
-0.59, 2.21, 5.7, 0.0, 280.0],
[datetime(1999, 1, 27, 21, 0), "KORD4", " 21:18:00",
-0.99, 2.01, 3.6, 0.0, 270.0],
[datetime(1999, 1, 27, 22, 0), "KORD5", " 21:56:00",
-0.59, 1.71, 5.1, 0.0, 290.0],
[datetime(1999, 1, 27, 23, 0), "KORD6", " 22:56:00",
-0.59, 1.71, 4.6, 0.0, 280.0],
], columns=["nominal", "ID", "ActualTime", "TDew",
"TAir", "Windspeed", "Precip", "WindDir"])
expected = expected.set_index("nominal")
if not isinstance(parse_dates, dict):
expected.index.name = "date_NominalTime"
result = parser.read_csv(StringIO(data), parse_dates=parse_dates,
index_col=index_col)
tm.assert_frame_equal(result, expected)
def test_multiple_date_cols_chunked(all_parsers):
parser = all_parsers
data = """\
ID,date,nominalTime,actualTime,A,B,C,D,E
KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000
KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000
KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000
KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000
KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000
KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000
"""
expected = DataFrame([
[datetime(1999, 1, 27, 19, 0), "KORD", " 18:56:00",
0.81, 2.81, 7.2, 0.0, 280.0],
[datetime(1999, 1, 27, 20, 0), "KORD", " 19:56:00",
0.01, 2.21, 7.2, 0.0, 260.0],
[datetime(1999, 1, 27, 21, 0), "KORD", " 20:56:00",
-0.59, 2.21, 5.7, 0.0, 280.0],
[datetime(1999, 1, 27, 21, 0), "KORD", " 21:18:00",
-0.99, 2.01, 3.6, 0.0, 270.0],
[datetime(1999, 1, 27, 22, 0), "KORD", " 21:56:00",
-0.59, 1.71, 5.1, 0.0, 290.0],
[datetime(1999, 1, 27, 23, 0), "KORD", " 22:56:00",
-0.59, 1.71, 4.6, 0.0, 280.0],
], columns=["nominal", "ID", "actualTime", "A", "B", "C", "D", "E"])
expected = expected.set_index("nominal")
reader = parser.read_csv(StringIO(data), parse_dates={"nominal": [1, 2]},
index_col="nominal", chunksize=2)
chunks = list(reader)
tm.assert_frame_equal(chunks[0], expected[:2])
tm.assert_frame_equal(chunks[1], expected[2:4])
tm.assert_frame_equal(chunks[2], expected[4:])
def test_multiple_date_col_named_index_compat(all_parsers):
parser = all_parsers
data = """\
ID,date,nominalTime,actualTime,A,B,C,D,E
KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000
KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000
KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000
KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000
KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000
KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000
"""
with_indices = parser.read_csv(StringIO(data),
parse_dates={"nominal": [1, 2]},
index_col="nominal")
with_names = parser.read_csv(StringIO(data), index_col="nominal",
parse_dates={"nominal": [
"date", "nominalTime"]})
tm.assert_frame_equal(with_indices, with_names)
def test_multiple_date_col_multiple_index_compat(all_parsers):
parser = all_parsers
data = """\
ID,date,nominalTime,actualTime,A,B,C,D,E
KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000
KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000
KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000
KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000
KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000
KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000
"""
result = parser.read_csv(StringIO(data), index_col=["nominal", "ID"],
parse_dates={"nominal": [1, 2]})
expected = parser.read_csv(StringIO(data),
parse_dates={"nominal": [1, 2]})
expected = expected.set_index(["nominal", "ID"])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("kwargs", [dict(), dict(index_col="C")])
def test_read_with_parse_dates_scalar_non_bool(all_parsers, kwargs):
# see gh-5636
parser = all_parsers
msg = ("Only booleans, lists, and dictionaries "
"are accepted for the 'parse_dates' parameter")
data = """A,B,C
1,2,2003-11-1"""
with pytest.raises(TypeError, match=msg):
parser.read_csv(StringIO(data), parse_dates="C", **kwargs)
@pytest.mark.parametrize("parse_dates", [
(1,), np.array([4, 5]), {1, 3, 3}
])
def test_read_with_parse_dates_invalid_type(all_parsers, parse_dates):
parser = all_parsers
msg = ("Only booleans, lists, and dictionaries "
"are accepted for the 'parse_dates' parameter")
data = """A,B,C
1,2,2003-11-1"""
with pytest.raises(TypeError, match=msg):
parser.read_csv(StringIO(data), parse_dates=(1,))
def test_parse_dates_empty_string(all_parsers):
# see gh-2263
parser = all_parsers
data = "Date,test\n2012-01-01,1\n,2"
result = parser.read_csv(StringIO(data), parse_dates=["Date"],
na_filter=False)
expected = DataFrame([[datetime(2012, 1, 1), 1], [pd.NaT, 2]],
columns=["Date", "test"])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("data,kwargs,expected", [
("a\n04.15.2016", dict(parse_dates=["a"]),
DataFrame([datetime(2016, 4, 15)], columns=["a"])),
("a\n04.15.2016", dict(parse_dates=True, index_col=0),
DataFrame(index=DatetimeIndex(["2016-04-15"], name="a"))),
("a,b\n04.15.2016,09.16.2013", dict(parse_dates=["a", "b"]),
DataFrame([[datetime(2016, 4, 15), datetime(2013, 9, 16)]],
columns=["a", "b"])),
("a,b\n04.15.2016,09.16.2013", dict(parse_dates=True, index_col=[0, 1]),
DataFrame(index=MultiIndex.from_tuples(
[(datetime(2016, 4, 15), datetime(2013, 9, 16))], names=["a", "b"]))),
])
def test_parse_dates_no_convert_thousands(all_parsers, data, kwargs, expected):
# see gh-14066
parser = all_parsers
result = parser.read_csv(StringIO(data), thousands=".", **kwargs)
tm.assert_frame_equal(result, expected)
def test_parse_date_time_multi_level_column_name(all_parsers):
data = """\
D,T,A,B
date, time,a,b
2001-01-05, 09:00:00, 0.0, 10.
2001-01-06, 00:00:00, 1.0, 11.
"""
parser = all_parsers
result = parser.read_csv(StringIO(data), header=[0, 1],
parse_dates={"date_time": [0, 1]},
date_parser=conv.parse_date_time)
expected_data = [[datetime(2001, 1, 5, 9, 0, 0), 0., 10.],
[datetime(2001, 1, 6, 0, 0, 0), 1., 11.]]
expected = DataFrame(expected_data,
columns=["date_time", ("A", "a"), ("B", "b")])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("data,kwargs,expected", [
("""\
date,time,a,b
2001-01-05, 10:00:00, 0.0, 10.
2001-01-05, 00:00:00, 1., 11.
""", dict(header=0, parse_dates={"date_time": [0, 1]}),
DataFrame([[datetime(2001, 1, 5, 10, 0, 0), 0.0, 10],
[datetime(2001, 1, 5, 0, 0, 0), 1.0, 11.0]],
columns=["date_time", "a", "b"])),
(("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n"
"KORD,19990127, 20:00:00, 19:56:00, 0.0100\n"
"KORD,19990127, 21:00:00, 20:56:00, -0.5900\n"
"KORD,19990127, 21:00:00, 21:18:00, -0.9900\n"
"KORD,19990127, 22:00:00, 21:56:00, -0.5900\n"
"KORD,19990127, 23:00:00, 22:56:00, -0.5900"),
dict(header=None, parse_dates={"actual": [1, 2], "nominal": [1, 3]}),
DataFrame([
[datetime(1999, 1, 27, 19, 0), datetime(1999, 1, 27, 18, 56),
"KORD", 0.81],
[datetime(1999, 1, 27, 20, 0), datetime(1999, 1, 27, 19, 56),
"KORD", 0.01],
[datetime(1999, 1, 27, 21, 0), datetime(1999, 1, 27, 20, 56),
"KORD", -0.59],
[datetime(1999, 1, 27, 21, 0), datetime(1999, 1, 27, 21, 18),
"KORD", -0.99],
[datetime(1999, 1, 27, 22, 0), datetime(1999, 1, 27, 21, 56),
"KORD", -0.59],
[datetime(1999, 1, 27, 23, 0), datetime(1999, 1, 27, 22, 56),
"KORD", -0.59]], columns=["actual", "nominal", 0, 4])),
])
def test_parse_date_time(all_parsers, data, kwargs, expected):
parser = all_parsers
result = parser.read_csv(StringIO(data), date_parser=conv.parse_date_time,
**kwargs)
# Python can sometimes be flaky about how
# the aggregated columns are entered, so
# this standardizes the order.
result = result[expected.columns]
tm.assert_frame_equal(result, expected)
def test_parse_date_fields(all_parsers):
parser = all_parsers
data = ("year,month,day,a\n2001,01,10,10.\n"
"2001,02,1,11.")
result = parser.read_csv(StringIO(data), header=0,
parse_dates={"ymd": [0, 1, 2]},
date_parser=conv.parse_date_fields)
expected = DataFrame([[datetime(2001, 1, 10), 10.],
[datetime(2001, 2, 1), 11.]], columns=["ymd", "a"])
tm.assert_frame_equal(result, expected)
def test_parse_date_all_fields(all_parsers):
parser = all_parsers
data = """\
year,month,day,hour,minute,second,a,b
2001,01,05,10,00,0,0.0,10.
2001,01,5,10,0,00,1.,11.
"""
result = parser.read_csv(StringIO(data), header=0,
date_parser=conv.parse_all_fields,
parse_dates={"ymdHMS": [0, 1, 2, 3, 4, 5]})
expected = DataFrame([[datetime(2001, 1, 5, 10, 0, 0), 0.0, 10.0],
[datetime(2001, 1, 5, 10, 0, 0), 1.0, 11.0]],
columns=["ymdHMS", "a", "b"])
tm.assert_frame_equal(result, expected)
def test_datetime_fractional_seconds(all_parsers):
parser = all_parsers
data = """\
year,month,day,hour,minute,second,a,b
2001,01,05,10,00,0.123456,0.0,10.
2001,01,5,10,0,0.500000,1.,11.
"""
result = parser.read_csv(StringIO(data), header=0,
date_parser=conv.parse_all_fields,
parse_dates={"ymdHMS": [0, 1, 2, 3, 4, 5]})
expected = DataFrame([[datetime(2001, 1, 5, 10, 0, 0,
microsecond=123456), 0.0, 10.0],
[datetime(2001, 1, 5, 10, 0, 0,
microsecond=500000), 1.0, 11.0]],
columns=["ymdHMS", "a", "b"])
tm.assert_frame_equal(result, expected)
def test_generic(all_parsers):
parser = all_parsers
data = "year,month,day,a\n2001,01,10,10.\n2001,02,1,11."
result = parser.read_csv(StringIO(data), header=0,
parse_dates={"ym": [0, 1]},
date_parser=lambda y, m: date(year=int(y),
month=int(m),
day=1))
expected = DataFrame([[date(2001, 1, 1), 10, 10.],
[date(2001, 2, 1), 1, 11.]],
columns=["ym", "day", "a"])
tm.assert_frame_equal(result, expected)
def test_date_parser_resolution_if_not_ns(all_parsers):
# see gh-10245
parser = all_parsers
data = """\
date,time,prn,rxstatus
2013-11-03,19:00:00,126,00E80000
2013-11-03,19:00:00,23,00E80000
2013-11-03,19:00:00,13,00E80000
"""
def date_parser(dt, time):
return np_array_datetime64_compat(dt + "T" + time + "Z",
dtype="datetime64[s]")
result = parser.read_csv(StringIO(data), date_parser=date_parser,
parse_dates={"datetime": ["date", "time"]},
index_col=["datetime", "prn"])
datetimes = np_array_datetime64_compat(["2013-11-03T19:00:00Z"] * 3,
dtype="datetime64[s]")
expected = DataFrame(data={"rxstatus": ["00E80000"] * 3},
index=MultiIndex.from_tuples(
[(datetimes[0], 126), (datetimes[1], 23),
(datetimes[2], 13)], names=["datetime", "prn"]))
tm.assert_frame_equal(result, expected)
def test_parse_date_column_with_empty_string(all_parsers):
# see gh-6428
parser = all_parsers
data = "case,opdate\n7,10/18/2006\n7,10/18/2008\n621, "
result = parser.read_csv(StringIO(data), parse_dates=["opdate"])
expected_data = [[7, "10/18/2006"],
[7, "10/18/2008"],
[621, " "]]
expected = DataFrame(expected_data, columns=["case", "opdate"])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("data,expected", [
("a\n135217135789158401\n1352171357E+5",
DataFrame({"a": [135217135789158401,
135217135700000]}, dtype="float64")),
("a\n99999999999\n123456789012345\n1234E+0",
DataFrame({"a": [99999999999,
123456789012345,
1234]}, dtype="float64"))
])
@pytest.mark.parametrize("parse_dates", [True, False])
def test_parse_date_float(all_parsers, data, expected, parse_dates):
# see gh-2697
#
# Date parsing should fail, so we leave the data untouched
# (i.e. float precision should remain unchanged).
parser = all_parsers
result = parser.read_csv(StringIO(data), parse_dates=parse_dates)
tm.assert_frame_equal(result, expected)
def test_parse_timezone(all_parsers):
# see gh-22256
parser = all_parsers
data = """dt,val
2018-01-04 09:01:00+09:00,23350
2018-01-04 09:02:00+09:00,23400
2018-01-04 09:03:00+09:00,23400
2018-01-04 09:04:00+09:00,23400
2018-01-04 09:05:00+09:00,23400"""
result = parser.read_csv(StringIO(data), parse_dates=["dt"])
dti = pd.date_range(start="2018-01-04 09:01:00",
end="2018-01-04 09:05:00", freq="1min",
tz=pytz.FixedOffset(540))
expected_data = {"dt": dti, "val": [23350, 23400, 23400, 23400, 23400]}
expected = DataFrame(expected_data)
tm.assert_frame_equal(result, expected)