Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
pandas / tests / sparse / frame / conftest.py
Size: Mime:
import numpy as np
import pytest

from pandas import DataFrame, SparseArray, SparseDataFrame, bdate_range

data = {'A': [np.nan, np.nan, np.nan, 0, 1, 2, 3, 4, 5, 6],
        'B': [0, 1, 2, np.nan, np.nan, np.nan, 3, 4, 5, 6],
        'C': np.arange(10, dtype=np.float64),
        'D': [0, 1, 2, 3, 4, 5, np.nan, np.nan, np.nan, np.nan]}
dates = bdate_range('1/1/2011', periods=10)


# fixture names must be compatible with the tests in
# tests/frame/test_api.SharedWithSparse

@pytest.fixture
def float_frame_dense():
    """
    Fixture for dense DataFrame of floats with DatetimeIndex

    Columns are ['A', 'B', 'C', 'D']; some entries are missing
    """
    return DataFrame(data, index=dates)


@pytest.fixture
def float_frame():
    """
    Fixture for sparse DataFrame of floats with DatetimeIndex

    Columns are ['A', 'B', 'C', 'D']; some entries are missing
    """
    # default_kind='block' is the default
    return SparseDataFrame(data, index=dates, default_kind='block')


@pytest.fixture
def float_frame_int_kind():
    """
    Fixture for sparse DataFrame of floats with DatetimeIndex

    Columns are ['A', 'B', 'C', 'D'] and default_kind='integer'.
    Some entries are missing.
    """
    return SparseDataFrame(data, index=dates, default_kind='integer')


@pytest.fixture
def float_string_frame():
    """
    Fixture for sparse DataFrame of floats and strings with DatetimeIndex

    Columns are ['A', 'B', 'C', 'D', 'foo']; some entries are missing
    """
    sdf = SparseDataFrame(data, index=dates)
    sdf['foo'] = SparseArray(['bar'] * len(dates))
    return sdf


@pytest.fixture
def float_frame_fill0_dense():
    """
    Fixture for dense DataFrame of floats with DatetimeIndex

    Columns are ['A', 'B', 'C', 'D']; missing entries have been filled with 0
    """
    values = SparseDataFrame(data).values
    values[np.isnan(values)] = 0
    return DataFrame(values, columns=['A', 'B', 'C', 'D'], index=dates)


@pytest.fixture
def float_frame_fill0():
    """
    Fixture for sparse DataFrame of floats with DatetimeIndex

    Columns are ['A', 'B', 'C', 'D']; missing entries have been filled with 0
    """
    values = SparseDataFrame(data).values
    values[np.isnan(values)] = 0
    return SparseDataFrame(values, columns=['A', 'B', 'C', 'D'],
                           default_fill_value=0, index=dates)


@pytest.fixture
def float_frame_fill2_dense():
    """
    Fixture for dense DataFrame of floats with DatetimeIndex

    Columns are ['A', 'B', 'C', 'D']; missing entries have been filled with 2
    """
    values = SparseDataFrame(data).values
    values[np.isnan(values)] = 2
    return DataFrame(values, columns=['A', 'B', 'C', 'D'], index=dates)


@pytest.fixture
def float_frame_fill2():
    """
    Fixture for sparse DataFrame of floats with DatetimeIndex

    Columns are ['A', 'B', 'C', 'D']; missing entries have been filled with 2
    """
    values = SparseDataFrame(data).values
    values[np.isnan(values)] = 2
    return SparseDataFrame(values, columns=['A', 'B', 'C', 'D'],
                           default_fill_value=2, index=dates)


@pytest.fixture
def empty_frame():
    """
    Fixture for empty SparseDataFrame
    """
    return SparseDataFrame()