Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
pandas / tests / frame / test_constructors.py
Size: Mime:
# -*- coding: utf-8 -*-

from __future__ import print_function

from datetime import datetime, timedelta
import functools
import itertools

import numpy as np
import numpy.ma as ma
import pytest

from pandas.compat import (
    PY2, PY3, PY36, OrderedDict, is_platform_little_endian, lmap, long, lrange,
    lzip, range, zip)

from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike
from pandas.core.dtypes.common import is_integer_dtype

import pandas as pd
from pandas import (
    Categorical, DataFrame, Index, MultiIndex, Series, Timedelta, Timestamp,
    _np_version_under1p13, compat, date_range, isna)
from pandas.tests.frame.common import TestData
import pandas.util.testing as tm

MIXED_FLOAT_DTYPES = ['float16', 'float32', 'float64']
MIXED_INT_DTYPES = ['uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16',
                    'int32', 'int64']


class TestDataFrameConstructors(TestData):

    def test_constructor(self):
        df = DataFrame()
        assert len(df.index) == 0

        df = DataFrame(data={})
        assert len(df.index) == 0

    def test_constructor_mixed(self):
        index, data = tm.getMixedTypeDict()

        # TODO(wesm), incomplete test?
        indexed_frame = DataFrame(data, index=index)  # noqa
        unindexed_frame = DataFrame(data)  # noqa

        assert self.mixed_frame['foo'].dtype == np.object_

    def test_constructor_cast_failure(self):
        foo = DataFrame({'a': ['a', 'b', 'c']}, dtype=np.float64)
        assert foo['a'].dtype == object

        # GH 3010, constructing with odd arrays
        df = DataFrame(np.ones((4, 2)))

        # this is ok
        df['foo'] = np.ones((4, 2)).tolist()

        # this is not ok
        pytest.raises(ValueError, df.__setitem__, tuple(['test']),
                      np.ones((4, 2)))

        # this is ok
        df['foo2'] = np.ones((4, 2)).tolist()

    def test_constructor_dtype_copy(self):
        orig_df = DataFrame({
            'col1': [1.],
            'col2': [2.],
            'col3': [3.]})

        new_df = pd.DataFrame(orig_df, dtype=float, copy=True)

        new_df['col1'] = 200.
        assert orig_df['col1'][0] == 1.

    def test_constructor_dtype_nocast_view(self):
        df = DataFrame([[1, 2]])
        should_be_view = DataFrame(df, dtype=df[0].dtype)
        should_be_view[0][0] = 99
        assert df.values[0, 0] == 99

        should_be_view = DataFrame(df.values, dtype=df[0].dtype)
        should_be_view[0][0] = 97
        assert df.values[0, 0] == 97

    def test_constructor_dtype_list_data(self):
        df = DataFrame([[1, '2'],
                        [None, 'a']], dtype=object)
        assert df.loc[1, 0] is None
        assert df.loc[0, 1] == '2'

    def test_constructor_list_frames(self):
        # see gh-3243
        result = DataFrame([DataFrame([])])
        assert result.shape == (1, 0)

        result = DataFrame([DataFrame(dict(A=lrange(5)))])
        assert isinstance(result.iloc[0, 0], DataFrame)

    def test_constructor_mixed_dtypes(self):

        def _make_mixed_dtypes_df(typ, ad=None):

            if typ == 'int':
                dtypes = MIXED_INT_DTYPES
                arrays = [np.array(np.random.rand(10), dtype=d)
                          for d in dtypes]
            elif typ == 'float':
                dtypes = MIXED_FLOAT_DTYPES
                arrays = [np.array(np.random.randint(
                    10, size=10), dtype=d) for d in dtypes]

            zipper = lzip(dtypes, arrays)
            for d, a in zipper:
                assert(a.dtype == d)
            if ad is None:
                ad = dict()
            ad.update({d: a for d, a in zipper})
            return DataFrame(ad)

        def _check_mixed_dtypes(df, dtypes=None):
            if dtypes is None:
                dtypes = MIXED_FLOAT_DTYPES + MIXED_INT_DTYPES
            for d in dtypes:
                if d in df:
                    assert(df.dtypes[d] == d)

        # mixed floating and integer coexinst in the same frame
        df = _make_mixed_dtypes_df('float')
        _check_mixed_dtypes(df)

        # add lots of types
        df = _make_mixed_dtypes_df('float', dict(A=1, B='foo', C='bar'))
        _check_mixed_dtypes(df)

        # GH 622
        df = _make_mixed_dtypes_df('int')
        _check_mixed_dtypes(df)

    def test_constructor_complex_dtypes(self):
        # GH10952
        a = np.random.rand(10).astype(np.complex64)
        b = np.random.rand(10).astype(np.complex128)

        df = DataFrame({'a': a, 'b': b})
        assert a.dtype == df.a.dtype
        assert b.dtype == df.b.dtype

    def test_constructor_dtype_str_na_values(self, string_dtype):
        # https://github.com/pandas-dev/pandas/issues/21083
        df = DataFrame({'A': ['x', None]}, dtype=string_dtype)
        result = df.isna()
        expected = DataFrame({"A": [False, True]})
        tm.assert_frame_equal(result, expected)
        assert df.iloc[1, 0] is None

        df = DataFrame({'A': ['x', np.nan]}, dtype=string_dtype)
        assert np.isnan(df.iloc[1, 0])

    def test_constructor_rec(self):
        rec = self.frame.to_records(index=False)
        if PY3:
            # unicode error under PY2
            rec.dtype.names = list(rec.dtype.names)[::-1]

        index = self.frame.index

        df = DataFrame(rec)
        tm.assert_index_equal(df.columns, pd.Index(rec.dtype.names))

        df2 = DataFrame(rec, index=index)
        tm.assert_index_equal(df2.columns, pd.Index(rec.dtype.names))
        tm.assert_index_equal(df2.index, index)

        rng = np.arange(len(rec))[::-1]
        df3 = DataFrame(rec, index=rng, columns=['C', 'B'])
        expected = DataFrame(rec, index=rng).reindex(columns=['C', 'B'])
        tm.assert_frame_equal(df3, expected)

    def test_constructor_bool(self):
        df = DataFrame({0: np.ones(10, dtype=bool),
                        1: np.zeros(10, dtype=bool)})
        assert df.values.dtype == np.bool_

    def test_constructor_overflow_int64(self):
        # see gh-14881
        values = np.array([2 ** 64 - i for i in range(1, 10)],
                          dtype=np.uint64)

        result = DataFrame({'a': values})
        assert result['a'].dtype == np.uint64

        # see gh-2355
        data_scores = [(6311132704823138710, 273), (2685045978526272070, 23),
                       (8921811264899370420, 45),
                       (long(17019687244989530680), 270),
                       (long(9930107427299601010), 273)]
        dtype = [('uid', 'u8'), ('score', 'u8')]
        data = np.zeros((len(data_scores),), dtype=dtype)
        data[:] = data_scores
        df_crawls = DataFrame(data)
        assert df_crawls['uid'].dtype == np.uint64

    @pytest.mark.parametrize("values", [np.array([2**64], dtype=object),
                                        np.array([2**65]), [2**64 + 1],
                                        np.array([-2**63 - 4], dtype=object),
                                        np.array([-2**64 - 1]), [-2**65 - 2]])
    def test_constructor_int_overflow(self, values):
        # see gh-18584
        value = values[0]
        result = DataFrame(values)

        assert result[0].dtype == object
        assert result[0][0] == value

    def test_constructor_ordereddict(self):
        import random
        nitems = 100
        nums = lrange(nitems)
        random.shuffle(nums)
        expected = ['A%d' % i for i in nums]
        df = DataFrame(OrderedDict(zip(expected, [[0]] * nitems)))
        assert expected == list(df.columns)

    def test_constructor_dict(self):
        frame = DataFrame({'col1': self.ts1,
                           'col2': self.ts2})

        # col2 is padded with NaN
        assert len(self.ts1) == 30
        assert len(self.ts2) == 25

        tm.assert_series_equal(self.ts1, frame['col1'], check_names=False)

        exp = pd.Series(np.concatenate([[np.nan] * 5, self.ts2.values]),
                        index=self.ts1.index, name='col2')
        tm.assert_series_equal(exp, frame['col2'])

        frame = DataFrame({'col1': self.ts1,
                           'col2': self.ts2},
                          columns=['col2', 'col3', 'col4'])

        assert len(frame) == len(self.ts2)
        assert 'col1' not in frame
        assert isna(frame['col3']).all()

        # Corner cases
        assert len(DataFrame({})) == 0

        # mix dict and array, wrong size - no spec for which error should raise
        # first
        with pytest.raises(ValueError):
            DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']})

        # Length-one dict micro-optimization
        frame = DataFrame({'A': {'1': 1, '2': 2}})
        tm.assert_index_equal(frame.index, pd.Index(['1', '2']))

        # empty dict plus index
        idx = Index([0, 1, 2])
        frame = DataFrame({}, index=idx)
        assert frame.index is idx

        # empty with index and columns
        idx = Index([0, 1, 2])
        frame = DataFrame({}, index=idx, columns=idx)
        assert frame.index is idx
        assert frame.columns is idx
        assert len(frame._series) == 3

        # with dict of empty list and Series
        frame = DataFrame({'A': [], 'B': []}, columns=['A', 'B'])
        tm.assert_index_equal(frame.index, Index([], dtype=np.int64))

        # GH 14381
        # Dict with None value
        frame_none = DataFrame(dict(a=None), index=[0])
        frame_none_list = DataFrame(dict(a=[None]), index=[0])
        with tm.assert_produces_warning(FutureWarning,
                                        check_stacklevel=False):
            assert frame_none.get_value(0, 'a') is None
        with tm.assert_produces_warning(FutureWarning,
                                        check_stacklevel=False):
            assert frame_none_list.get_value(0, 'a') is None
        tm.assert_frame_equal(frame_none, frame_none_list)

        # GH10856
        # dict with scalar values should raise error, even if columns passed
        msg = 'If using all scalar values, you must pass an index'
        with pytest.raises(ValueError, match=msg):
            DataFrame({'a': 0.7})

        with pytest.raises(ValueError, match=msg):
            DataFrame({'a': 0.7}, columns=['a'])

    @pytest.mark.parametrize("scalar", [2, np.nan, None, 'D'])
    def test_constructor_invalid_items_unused(self, scalar):
        # No error if invalid (scalar) value is in fact not used:
        result = DataFrame({'a': scalar}, columns=['b'])
        expected = DataFrame(columns=['b'])
        tm.assert_frame_equal(result, expected)

    @pytest.mark.parametrize("value", [2, np.nan, None, float('nan')])
    def test_constructor_dict_nan_key(self, value):
        # GH 18455
        cols = [1, value, 3]
        idx = ['a', value]
        values = [[0, 3], [1, 4], [2, 5]]
        data = {cols[c]: Series(values[c], index=idx) for c in range(3)}
        result = DataFrame(data).sort_values(1).sort_values('a', axis=1)
        expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3),
                             index=idx, columns=cols)
        tm.assert_frame_equal(result, expected)

        result = DataFrame(data, index=idx).sort_values('a', axis=1)
        tm.assert_frame_equal(result, expected)

        result = DataFrame(data, index=idx, columns=cols)
        tm.assert_frame_equal(result, expected)

    @pytest.mark.parametrize("value", [np.nan, None, float('nan')])
    def test_constructor_dict_nan_tuple_key(self, value):
        # GH 18455
        cols = Index([(11, 21), (value, 22), (13, value)])
        idx = Index([('a', value), (value, 2)])
        values = [[0, 3], [1, 4], [2, 5]]
        data = {cols[c]: Series(values[c], index=idx) for c in range(3)}
        result = (DataFrame(data)
                  .sort_values((11, 21))
                  .sort_values(('a', value), axis=1))
        expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3),
                             index=idx, columns=cols)
        tm.assert_frame_equal(result, expected)

        result = DataFrame(data, index=idx).sort_values(('a', value), axis=1)
        tm.assert_frame_equal(result, expected)

        result = DataFrame(data, index=idx, columns=cols)
        tm.assert_frame_equal(result, expected)

    @pytest.mark.skipif(not PY36, reason='Insertion order for Python>=3.6')
    def test_constructor_dict_order_insertion(self):
        # GH19018
        # initialization ordering: by insertion order if python>= 3.6
        d = {'b': self.ts2, 'a': self.ts1}
        frame = DataFrame(data=d)
        expected = DataFrame(data=d, columns=list('ba'))
        tm.assert_frame_equal(frame, expected)

    @pytest.mark.skipif(PY36, reason='order by value for Python<3.6')
    def test_constructor_dict_order_by_values(self):
        # GH19018
        # initialization ordering: by value if python<3.6
        d = {'b': self.ts2, 'a': self.ts1}
        frame = DataFrame(data=d)
        expected = DataFrame(data=d, columns=list('ab'))
        tm.assert_frame_equal(frame, expected)

    def test_constructor_multi_index(self):
        # GH 4078
        # construction error with mi and all-nan frame
        tuples = [(2, 3), (3, 3), (3, 3)]
        mi = MultiIndex.from_tuples(tuples)
        df = DataFrame(index=mi, columns=mi)
        assert pd.isna(df).values.ravel().all()

        tuples = [(3, 3), (2, 3), (3, 3)]
        mi = MultiIndex.from_tuples(tuples)
        df = DataFrame(index=mi, columns=mi)
        assert pd.isna(df).values.ravel().all()

    def test_constructor_error_msgs(self):
        msg = "Empty data passed with indices specified."
        # passing an empty array with columns specified.
        with pytest.raises(ValueError, match=msg):
            DataFrame(np.empty(0), columns=list('abc'))

        msg = "Mixing dicts with non-Series may lead to ambiguous ordering."
        # mix dict and array, wrong size
        with pytest.raises(ValueError, match=msg):
            DataFrame({'A': {'a': 'a', 'b': 'b'},
                       'B': ['a', 'b', 'c']})

        # wrong size ndarray, GH 3105
        msg = r"Shape of passed values is \(4, 3\), indices imply \(3, 3\)"
        with pytest.raises(ValueError, match=msg):
            DataFrame(np.arange(12).reshape((4, 3)),
                      columns=['foo', 'bar', 'baz'],
                      index=pd.date_range('2000-01-01', periods=3))

        arr = np.array([[4, 5, 6]])
        msg = r"Shape of passed values is \(1, 3\), indices imply \(1, 4\)"
        with pytest.raises(ValueError, match=msg):
            DataFrame(index=[0], columns=range(0, 4), data=arr)

        arr = np.array([4, 5, 6])
        msg = r"Shape of passed values is \(3, 1\), indices imply \(1, 4\)"
        with pytest.raises(ValueError, match=msg):
            DataFrame(index=[0], columns=range(0, 4), data=arr)

        # higher dim raise exception
        with pytest.raises(ValueError, match='Must pass 2-d input'):
            DataFrame(np.zeros((3, 3, 3)), columns=['A', 'B', 'C'], index=[1])

        # wrong size axis labels
        msg = ("Shape of passed values "
               r"is \(2, 3\), indices "
               r"imply \(1, 3\)")
        with pytest.raises(ValueError, match=msg):
            DataFrame(np.random.rand(2, 3), columns=['A', 'B', 'C'], index=[1])

        msg = ("Shape of passed values "
               r"is \(2, 3\), indices "
               r"imply \(2, 2\)")
        with pytest.raises(ValueError, match=msg):
            DataFrame(np.random.rand(2, 3), columns=['A', 'B'], index=[1, 2])

        msg = ("If using all scalar "
               "values, you must pass "
               "an index")
        with pytest.raises(ValueError, match=msg):
            DataFrame({'a': False, 'b': True})

    def test_constructor_with_embedded_frames(self):

        # embedded data frames
        df1 = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]})
        df2 = DataFrame([df1, df1 + 10])

        df2.dtypes
        str(df2)

        result = df2.loc[0, 0]
        tm.assert_frame_equal(result, df1)

        result = df2.loc[1, 0]
        tm.assert_frame_equal(result, df1 + 10)

    def test_constructor_subclass_dict(self):
        # Test for passing dict subclass to constructor
        data = {'col1': tm.TestSubDict((x, 10.0 * x) for x in range(10)),
                'col2': tm.TestSubDict((x, 20.0 * x) for x in range(10))}
        df = DataFrame(data)
        refdf = DataFrame({col: dict(compat.iteritems(val))
                           for col, val in compat.iteritems(data)})
        tm.assert_frame_equal(refdf, df)

        data = tm.TestSubDict(compat.iteritems(data))
        df = DataFrame(data)
        tm.assert_frame_equal(refdf, df)

        # try with defaultdict
        from collections import defaultdict
        data = {}
        self.frame['B'][:10] = np.nan
        for k, v in compat.iteritems(self.frame):
            dct = defaultdict(dict)
            dct.update(v.to_dict())
            data[k] = dct
        frame = DataFrame(data)
        tm.assert_frame_equal(self.frame.sort_index(), frame)

    def test_constructor_dict_block(self):
        expected = np.array([[4., 3., 2., 1.]])
        df = DataFrame({'d': [4.], 'c': [3.], 'b': [2.], 'a': [1.]},
                       columns=['d', 'c', 'b', 'a'])
        tm.assert_numpy_array_equal(df.values, expected)

    def test_constructor_dict_cast(self):
        # cast float tests
        test_data = {
            'A': {'1': 1, '2': 2},
            'B': {'1': '1', '2': '2', '3': '3'},
        }
        frame = DataFrame(test_data, dtype=float)
        assert len(frame) == 3
        assert frame['B'].dtype == np.float64
        assert frame['A'].dtype == np.float64

        frame = DataFrame(test_data)
        assert len(frame) == 3
        assert frame['B'].dtype == np.object_
        assert frame['A'].dtype == np.float64

        # can't cast to float
        test_data = {
            'A': dict(zip(range(20), tm.makeStringIndex(20))),
            'B': dict(zip(range(15), np.random.randn(15)))
        }
        frame = DataFrame(test_data, dtype=float)
        assert len(frame) == 20
        assert frame['A'].dtype == np.object_
        assert frame['B'].dtype == np.float64

    def test_constructor_dict_dont_upcast(self):
        d = {'Col1': {'Row1': 'A String', 'Row2': np.nan}}
        df = DataFrame(d)
        assert isinstance(df['Col1']['Row2'], float)

        dm = DataFrame([[1, 2], ['a', 'b']], index=[1, 2], columns=[1, 2])
        assert isinstance(dm[1][1], int)

    def test_constructor_dict_of_tuples(self):
        # GH #1491
        data = {'a': (1, 2, 3), 'b': (4, 5, 6)}

        result = DataFrame(data)
        expected = DataFrame({k: list(v) for k, v in compat.iteritems(data)})
        tm.assert_frame_equal(result, expected, check_dtype=False)

    def test_constructor_dict_multiindex(self):
        def check(result, expected):
            return tm.assert_frame_equal(result, expected, check_dtype=True,
                                         check_index_type=True,
                                         check_column_type=True,
                                         check_names=True)
        d = {('a', 'a'): {('i', 'i'): 0, ('i', 'j'): 1, ('j', 'i'): 2},
             ('b', 'a'): {('i', 'i'): 6, ('i', 'j'): 5, ('j', 'i'): 4},
             ('b', 'c'): {('i', 'i'): 7, ('i', 'j'): 8, ('j', 'i'): 9}}
        _d = sorted(d.items())
        df = DataFrame(d)
        expected = DataFrame(
            [x[1] for x in _d],
            index=MultiIndex.from_tuples([x[0] for x in _d])).T
        expected.index = MultiIndex.from_tuples(expected.index)
        check(df, expected)

        d['z'] = {'y': 123., ('i', 'i'): 111, ('i', 'j'): 111, ('j', 'i'): 111}
        _d.insert(0, ('z', d['z']))
        expected = DataFrame(
            [x[1] for x in _d],
            index=Index([x[0] for x in _d], tupleize_cols=False)).T
        expected.index = Index(expected.index, tupleize_cols=False)
        df = DataFrame(d)
        df = df.reindex(columns=expected.columns, index=expected.index)
        check(df, expected)

    def test_constructor_dict_datetime64_index(self):
        # GH 10160
        dates_as_str = ['1984-02-19', '1988-11-06', '1989-12-03', '1990-03-15']

        def create_data(constructor):
            return {i: {constructor(s): 2 * i}
                    for i, s in enumerate(dates_as_str)}

        data_datetime64 = create_data(np.datetime64)
        data_datetime = create_data(lambda x: datetime.strptime(x, '%Y-%m-%d'))
        data_Timestamp = create_data(Timestamp)

        expected = DataFrame([{0: 0, 1: None, 2: None, 3: None},
                              {0: None, 1: 2, 2: None, 3: None},
                              {0: None, 1: None, 2: 4, 3: None},
                              {0: None, 1: None, 2: None, 3: 6}],
                             index=[Timestamp(dt) for dt in dates_as_str])

        result_datetime64 = DataFrame(data_datetime64)
        result_datetime = DataFrame(data_datetime)
        result_Timestamp = DataFrame(data_Timestamp)
        tm.assert_frame_equal(result_datetime64, expected)
        tm.assert_frame_equal(result_datetime, expected)
        tm.assert_frame_equal(result_Timestamp, expected)

    def test_constructor_dict_timedelta64_index(self):
        # GH 10160
        td_as_int = [1, 2, 3, 4]

        def create_data(constructor):
            return {i: {constructor(s): 2 * i}
                    for i, s in enumerate(td_as_int)}

        data_timedelta64 = create_data(lambda x: np.timedelta64(x, 'D'))
        data_timedelta = create_data(lambda x: timedelta(days=x))
        data_Timedelta = create_data(lambda x: Timedelta(x, 'D'))

        expected = DataFrame([{0: 0, 1: None, 2: None, 3: None},
                              {0: None, 1: 2, 2: None, 3: None},
                              {0: None, 1: None, 2: 4, 3: None},
                              {0: None, 1: None, 2: None, 3: 6}],
                             index=[Timedelta(td, 'D') for td in td_as_int])

        result_timedelta64 = DataFrame(data_timedelta64)
        result_timedelta = DataFrame(data_timedelta)
        result_Timedelta = DataFrame(data_Timedelta)
        tm.assert_frame_equal(result_timedelta64, expected)
        tm.assert_frame_equal(result_timedelta, expected)
        tm.assert_frame_equal(result_Timedelta, expected)

    def test_constructor_period(self):
        # PeriodIndex
        a = pd.PeriodIndex(['2012-01', 'NaT', '2012-04'], freq='M')
        b = pd.PeriodIndex(['2012-02-01', '2012-03-01', 'NaT'], freq='D')
        df = pd.DataFrame({'a': a, 'b': b})
        assert df['a'].dtype == a.dtype
        assert df['b'].dtype == b.dtype

        # list of periods
        df = pd.DataFrame({'a': a.astype(object).tolist(),
                           'b': b.astype(object).tolist()})
        assert df['a'].dtype == a.dtype
        assert df['b'].dtype == b.dtype

    def test_nested_dict_frame_constructor(self):
        rng = pd.period_range('1/1/2000', periods=5)
        df = DataFrame(np.random.randn(10, 5), columns=rng)

        data = {}
        for col in df.columns:
            for row in df.index:
                with tm.assert_produces_warning(FutureWarning,
                                                check_stacklevel=False):
                    data.setdefault(col, {})[row] = df.get_value(row, col)

        result = DataFrame(data, columns=rng)
        tm.assert_frame_equal(result, df)

        data = {}
        for col in df.columns:
            for row in df.index:
                with tm.assert_produces_warning(FutureWarning,
                                                check_stacklevel=False):
                    data.setdefault(row, {})[col] = df.get_value(row, col)

        result = DataFrame(data, index=rng).T
        tm.assert_frame_equal(result, df)

    def _check_basic_constructor(self, empty):
        # mat: 2d matrix with shape (3, 2) to input. empty - makes sized
        # objects
        mat = empty((2, 3), dtype=float)
        # 2-D input
        frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2])

        assert len(frame.index) == 2
        assert len(frame.columns) == 3

        # 1-D input
        frame = DataFrame(empty((3,)), columns=['A'], index=[1, 2, 3])
        assert len(frame.index) == 3
        assert len(frame.columns) == 1

        # cast type
        frame = DataFrame(mat, columns=['A', 'B', 'C'],
                          index=[1, 2], dtype=np.int64)
        assert frame.values.dtype == np.int64

        # wrong size axis labels
        msg = r'Shape of passed values is \(2, 3\), indices imply \(1, 3\)'
        with pytest.raises(ValueError, match=msg):
            DataFrame(mat, columns=['A', 'B', 'C'], index=[1])
        msg = r'Shape of passed values is \(2, 3\), indices imply \(2, 2\)'
        with pytest.raises(ValueError, match=msg):
            DataFrame(mat, columns=['A', 'B'], index=[1, 2])

        # higher dim raise exception
        with pytest.raises(ValueError, match='Must pass 2-d input'):
            DataFrame(empty((3, 3, 3)), columns=['A', 'B', 'C'],
                      index=[1])

        # automatic labeling
        frame = DataFrame(mat)
        tm.assert_index_equal(frame.index, pd.Index(lrange(2)))
        tm.assert_index_equal(frame.columns, pd.Index(lrange(3)))

        frame = DataFrame(mat, index=[1, 2])
        tm.assert_index_equal(frame.columns, pd.Index(lrange(3)))

        frame = DataFrame(mat, columns=['A', 'B', 'C'])
        tm.assert_index_equal(frame.index, pd.Index(lrange(2)))

        # 0-length axis
        frame = DataFrame(empty((0, 3)))
        assert len(frame.index) == 0

        frame = DataFrame(empty((3, 0)))
        assert len(frame.columns) == 0

    def test_constructor_ndarray(self):
        self._check_basic_constructor(np.ones)

        frame = DataFrame(['foo', 'bar'], index=[0, 1], columns=['A'])
        assert len(frame) == 2

    @pytest.mark.skipif(PY2 and _np_version_under1p13,
                        reason="old numpy & py2")
    def test_constructor_maskedarray(self):
        self._check_basic_constructor(ma.masked_all)

        # Check non-masked values
        mat = ma.masked_all((2, 3), dtype=float)
        mat[0, 0] = 1.0
        mat[1, 2] = 2.0
        frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2])
        assert 1.0 == frame['A'][1]
        assert 2.0 == frame['C'][2]

        # what is this even checking??
        mat = ma.masked_all((2, 3), dtype=float)
        frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2])
        assert np.all(~np.asarray(frame == frame))

    @pytest.mark.skipif(PY2 and _np_version_under1p13,
                        reason="old numpy & py2")
    def test_constructor_maskedarray_nonfloat(self):
        # masked int promoted to float
        mat = ma.masked_all((2, 3), dtype=int)
        # 2-D input
        frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2])

        assert len(frame.index) == 2
        assert len(frame.columns) == 3
        assert np.all(~np.asarray(frame == frame))

        # cast type
        frame = DataFrame(mat, columns=['A', 'B', 'C'],
                          index=[1, 2], dtype=np.float64)
        assert frame.values.dtype == np.float64

        # Check non-masked values
        mat2 = ma.copy(mat)
        mat2[0, 0] = 1
        mat2[1, 2] = 2
        frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2])
        assert 1 == frame['A'][1]
        assert 2 == frame['C'][2]

        # masked np.datetime64 stays (use NaT as null)
        mat = ma.masked_all((2, 3), dtype='M8[ns]')
        # 2-D input
        frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2])

        assert len(frame.index) == 2
        assert len(frame.columns) == 3
        assert isna(frame).values.all()

        # cast type
        frame = DataFrame(mat, columns=['A', 'B', 'C'],
                          index=[1, 2], dtype=np.int64)
        assert frame.values.dtype == np.int64

        # Check non-masked values
        mat2 = ma.copy(mat)
        mat2[0, 0] = 1
        mat2[1, 2] = 2
        frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2])
        assert 1 == frame['A'].view('i8')[1]
        assert 2 == frame['C'].view('i8')[2]

        # masked bool promoted to object
        mat = ma.masked_all((2, 3), dtype=bool)
        # 2-D input
        frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2])

        assert len(frame.index) == 2
        assert len(frame.columns) == 3
        assert np.all(~np.asarray(frame == frame))

        # cast type
        frame = DataFrame(mat, columns=['A', 'B', 'C'],
                          index=[1, 2], dtype=object)
        assert frame.values.dtype == object

        # Check non-masked values
        mat2 = ma.copy(mat)
        mat2[0, 0] = True
        mat2[1, 2] = False
        frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2])
        assert frame['A'][1] is True
        assert frame['C'][2] is False

    @pytest.mark.skipif(PY2 and _np_version_under1p13,
                        reason="old numpy & py2")
    def test_constructor_maskedarray_hardened(self):
        # Check numpy masked arrays with hard masks -- from GH24574
        mat_hard = ma.masked_all((2, 2), dtype=float).harden_mask()
        result = pd.DataFrame(mat_hard, columns=['A', 'B'], index=[1, 2])
        expected = pd.DataFrame({
            'A': [np.nan, np.nan],
            'B': [np.nan, np.nan]},
            columns=['A', 'B'],
            index=[1, 2],
            dtype=float)
        tm.assert_frame_equal(result, expected)
        # Check case where mask is hard but no data are masked
        mat_hard = ma.ones((2, 2), dtype=float).harden_mask()
        result = pd.DataFrame(mat_hard, columns=['A', 'B'], index=[1, 2])
        expected = pd.DataFrame({
            'A': [1.0, 1.0],
            'B': [1.0, 1.0]},
            columns=['A', 'B'],
            index=[1, 2],
            dtype=float)
        tm.assert_frame_equal(result, expected)

    @pytest.mark.skipif(PY2 and _np_version_under1p13,
                        reason="old numpy & py2")
    def test_constructor_maskedrecarray_dtype(self):
        # Ensure constructor honors dtype
        data = np.ma.array(
            np.ma.zeros(5, dtype=[('date', '<f8'), ('price', '<f8')]),
            mask=[False] * 5)
        data = data.view(ma.mrecords.mrecarray)
        result = pd.DataFrame(data, dtype=int)
        expected = pd.DataFrame(np.zeros((5, 2), dtype=int),
                                columns=['date', 'price'])
        tm.assert_frame_equal(result, expected)

    @pytest.mark.skipif(PY2 and _np_version_under1p13,
                        reason="old numpy & py2")
    def test_constructor_mrecarray(self):
        # Ensure mrecarray produces frame identical to dict of masked arrays
        # from GH3479

        assert_fr_equal = functools.partial(tm.assert_frame_equal,
                                            check_index_type=True,
                                            check_column_type=True,
                                            check_frame_type=True)
        arrays = [
            ('float', np.array([1.5, 2.0])),
            ('int', np.array([1, 2])),
            ('str', np.array(['abc', 'def'])),
        ]
        for name, arr in arrays[:]:
            arrays.append(('masked1_' + name,
                           np.ma.masked_array(arr, mask=[False, True])))
        arrays.append(('masked_all', np.ma.masked_all((2,))))
        arrays.append(('masked_none',
                       np.ma.masked_array([1.0, 2.5], mask=False)))

        # call assert_frame_equal for all selections of 3 arrays
        for comb in itertools.combinations(arrays, 3):
            names, data = zip(*comb)
            mrecs = ma.mrecords.fromarrays(data, names=names)

            # fill the comb
            comb = {k: (v.filled() if hasattr(v, 'filled') else v)
                    for k, v in comb}

            expected = DataFrame(comb, columns=names)
            result = DataFrame(mrecs)
            assert_fr_equal(result, expected)

            # specify columns
            expected = DataFrame(comb, columns=names[::-1])
            result = DataFrame(mrecs, columns=names[::-1])
            assert_fr_equal(result, expected)

            # specify index
            expected = DataFrame(comb, columns=names, index=[1, 2])
            result = DataFrame(mrecs, index=[1, 2])
            assert_fr_equal(result, expected)

    def test_constructor_corner_shape(self):
        df = DataFrame(index=[])
        assert df.values.shape == (0, 0)

    @pytest.mark.parametrize("data, index, columns, dtype, expected", [
        (None, lrange(10), ['a', 'b'], object, np.object_),
        (None, None, ['a', 'b'], 'int64', np.dtype('int64')),
        (None, lrange(10), ['a', 'b'], int, np.dtype('float64')),
        ({}, None, ['foo', 'bar'], None, np.object_),
        ({'b': 1}, lrange(10), list('abc'), int, np.dtype('float64'))
    ])
    def test_constructor_dtype(self, data, index, columns, dtype, expected):
        df = DataFrame(data, index, columns, dtype)
        assert df.values.dtype == expected

    def test_constructor_scalar_inference(self):
        data = {'int': 1, 'bool': True,
                'float': 3., 'complex': 4j, 'object': 'foo'}
        df = DataFrame(data, index=np.arange(10))

        assert df['int'].dtype == np.int64
        assert df['bool'].dtype == np.bool_
        assert df['float'].dtype == np.float64
        assert df['complex'].dtype == np.complex128
        assert df['object'].dtype == np.object_

    def test_constructor_arrays_and_scalars(self):
        df = DataFrame({'a': np.random.randn(10), 'b': True})
        exp = DataFrame({'a': df['a'].values, 'b': [True] * 10})

        tm.assert_frame_equal(df, exp)
        with pytest.raises(ValueError, match='must pass an index'):
            DataFrame({'a': False, 'b': True})

    def test_constructor_DataFrame(self):
        df = DataFrame(self.frame)
        tm.assert_frame_equal(df, self.frame)

        df_casted = DataFrame(self.frame, dtype=np.int64)
        assert df_casted.values.dtype == np.int64

    def test_constructor_more(self):
        # used to be in test_matrix.py
        arr = np.random.randn(10)
        dm = DataFrame(arr, columns=['A'], index=np.arange(10))
        assert dm.values.ndim == 2

        arr = np.random.randn(0)
        dm = DataFrame(arr)
        assert dm.values.ndim == 2
        assert dm.values.ndim == 2

        # no data specified
        dm = DataFrame(columns=['A', 'B'], index=np.arange(10))
        assert dm.values.shape == (10, 2)

        dm = DataFrame(columns=['A', 'B'])
        assert dm.values.shape == (0, 2)

        dm = DataFrame(index=np.arange(10))
        assert dm.values.shape == (10, 0)

        # can't cast
        mat = np.array(['foo', 'bar'], dtype=object).reshape(2, 1)
        with pytest.raises(ValueError, match='cast'):
            DataFrame(mat, index=[0, 1], columns=[0], dtype=float)

        dm = DataFrame(DataFrame(self.frame._series))
        tm.assert_frame_equal(dm, self.frame)

        # int cast
        dm = DataFrame({'A': np.ones(10, dtype=int),
                        'B': np.ones(10, dtype=np.float64)},
                       index=np.arange(10))

        assert len(dm.columns) == 2
        assert dm.values.dtype == np.float64

    def test_constructor_empty_list(self):
        df = DataFrame([], index=[])
        expected = DataFrame(index=[])
        tm.assert_frame_equal(df, expected)

        # GH 9939
        df = DataFrame([], columns=['A', 'B'])
        expected = DataFrame({}, columns=['A', 'B'])
        tm.assert_frame_equal(df, expected)

        # Empty generator: list(empty_gen()) == []
        def empty_gen():
            return
            yield

        df = DataFrame(empty_gen(), columns=['A', 'B'])
        tm.assert_frame_equal(df, expected)

    def test_constructor_list_of_lists(self):
        # GH #484
        df = DataFrame(data=[[1, 'a'], [2, 'b']], columns=["num", "str"])
        assert is_integer_dtype(df['num'])
        assert df['str'].dtype == np.object_

        # GH 4851
        # list of 0-dim ndarrays
        expected = DataFrame({0: np.arange(10)})
        data = [np.array(x) for x in range(10)]
        result = DataFrame(data)
        tm.assert_frame_equal(result, expected)

    def test_constructor_sequence_like(self):
        # GH 3783
        # collections.Squence like

        class DummyContainer(compat.Sequence):

            def __init__(self, lst):
                self._lst = lst

            def __getitem__(self, n):
                return self._lst.__getitem__(n)

            def __len__(self, n):
                return self._lst.__len__()

        lst_containers = [DummyContainer([1, 'a']), DummyContainer([2, 'b'])]
        columns = ["num", "str"]
        result = DataFrame(lst_containers, columns=columns)
        expected = DataFrame([[1, 'a'], [2, 'b']], columns=columns)
        tm.assert_frame_equal(result, expected, check_dtype=False)

        # GH 4297
        # support Array
        import array
        result = DataFrame({'A': array.array('i', range(10))})
        expected = DataFrame({'A': list(range(10))})
        tm.assert_frame_equal(result, expected, check_dtype=False)

        expected = DataFrame([list(range(10)), list(range(10))])
        result = DataFrame([array.array('i', range(10)),
                            array.array('i', range(10))])
        tm.assert_frame_equal(result, expected, check_dtype=False)

    def test_constructor_iterable(self):
        # GH 21987
        class Iter():
            def __iter__(self):
                for i in range(10):
                    yield [1, 2, 3]

        expected = DataFrame([[1, 2, 3]] * 10)
        result = DataFrame(Iter())
        tm.assert_frame_equal(result, expected)

    def test_constructor_iterator(self):

        expected = DataFrame([list(range(10)), list(range(10))])
        result = DataFrame([range(10), range(10)])
        tm.assert_frame_equal(result, expected)

    def test_constructor_generator(self):
        # related #2305

        gen1 = (i for i in range(10))
        gen2 = (i for i in range(10))

        expected = DataFrame([list(range(10)), list(range(10))])
        result = DataFrame([gen1, gen2])
        tm.assert_frame_equal(result, expected)

        gen = ([i, 'a'] for i in range(10))
        result = DataFrame(gen)
        expected = DataFrame({0: range(10), 1: 'a'})
        tm.assert_frame_equal(result, expected, check_dtype=False)

    def test_constructor_list_of_dicts(self):
        data = [OrderedDict([['a', 1.5], ['b', 3], ['c', 4], ['d', 6]]),
                OrderedDict([['a', 1.5], ['b', 3], ['d', 6]]),
                OrderedDict([['a', 1.5], ['d', 6]]),
                OrderedDict(),
                OrderedDict([['a', 1.5], ['b', 3], ['c', 4]]),
                OrderedDict([['b', 3], ['c', 4], ['d', 6]])]

        result = DataFrame(data)
        expected = DataFrame.from_dict(dict(zip(range(len(data)), data)),
                                       orient='index')
        tm.assert_frame_equal(result, expected.reindex(result.index))

        result = DataFrame([{}])
        expected = DataFrame(index=[0])
        tm.assert_frame_equal(result, expected)

    def test_constructor_ordered_dict_preserve_order(self):
        # see gh-13304
        expected = DataFrame([[2, 1]], columns=['b', 'a'])

        data = OrderedDict()
        data['b'] = [2]
        data['a'] = [1]

        result = DataFrame(data)
        tm.assert_frame_equal(result, expected)

        data = OrderedDict()
        data['b'] = 2
        data['a'] = 1

        result = DataFrame([data])
        tm.assert_frame_equal(result, expected)

    def test_constructor_ordered_dict_conflicting_orders(self):
        # the first dict element sets the ordering for the DataFrame,
        # even if there are conflicting orders from subsequent ones
        row_one = OrderedDict()
        row_one['b'] = 2
        row_one['a'] = 1

        row_two = OrderedDict()
        row_two['a'] = 1
        row_two['b'] = 2

        row_three = {'b': 2, 'a': 1}

        expected = DataFrame([[2, 1], [2, 1]], columns=['b', 'a'])
        result = DataFrame([row_one, row_two])
        tm.assert_frame_equal(result, expected)

        expected = DataFrame([[2, 1], [2, 1], [2, 1]], columns=['b', 'a'])
        result = DataFrame([row_one, row_two, row_three])
        tm.assert_frame_equal(result, expected)

    def test_constructor_list_of_series(self):
        data = [OrderedDict([['a', 1.5], ['b', 3.0], ['c', 4.0]]),
                OrderedDict([['a', 1.5], ['b', 3.0], ['c', 6.0]])]
        sdict = OrderedDict(zip(['x', 'y'], data))
        idx = Index(['a', 'b', 'c'])

        # all named
        data2 = [Series([1.5, 3, 4], idx, dtype='O', name='x'),
                 Series([1.5, 3, 6], idx, name='y')]
        result = DataFrame(data2)
        expected = DataFrame.from_dict(sdict, orient='index')
        tm.assert_frame_equal(result, expected)

        # some unnamed
        data2 = [Series([1.5, 3, 4], idx, dtype='O', name='x'),
                 Series([1.5, 3, 6], idx)]
        result = DataFrame(data2)

        sdict = OrderedDict(zip(['x', 'Unnamed 0'], data))
        expected = DataFrame.from_dict(sdict, orient='index')
        tm.assert_frame_equal(result.sort_index(), expected)

        # none named
        data = [OrderedDict([['a', 1.5], ['b', 3], ['c', 4], ['d', 6]]),
                OrderedDict([['a', 1.5], ['b', 3], ['d', 6]]),
                OrderedDict([['a', 1.5], ['d', 6]]),
                OrderedDict(),
                OrderedDict([['a', 1.5], ['b', 3], ['c', 4]]),
                OrderedDict([['b', 3], ['c', 4], ['d', 6]])]
        data = [Series(d) for d in data]

        result = DataFrame(data)
        sdict = OrderedDict(zip(range(len(data)), data))
        expected = DataFrame.from_dict(sdict, orient='index')
        tm.assert_frame_equal(result, expected.reindex(result.index))

        result2 = DataFrame(data, index=np.arange(6))
        tm.assert_frame_equal(result, result2)

        result = DataFrame([Series({})])
        expected = DataFrame(index=[0])
        tm.assert_frame_equal(result, expected)

        data = [OrderedDict([['a', 1.5], ['b', 3.0], ['c', 4.0]]),
                OrderedDict([['a', 1.5], ['b', 3.0], ['c', 6.0]])]
        sdict = OrderedDict(zip(range(len(data)), data))

        idx = Index(['a', 'b', 'c'])
        data2 = [Series([1.5, 3, 4], idx, dtype='O'),
                 Series([1.5, 3, 6], idx)]
        result = DataFrame(data2)
        expected = DataFrame.from_dict(sdict, orient='index')
        tm.assert_frame_equal(result, expected)

    def test_constructor_list_of_series_aligned_index(self):
        series = [pd.Series(i, index=['b', 'a', 'c'], name=str(i))
                  for i in range(3)]
        result = pd.DataFrame(series)
        expected = pd.DataFrame({'b': [0, 1, 2],
                                 'a': [0, 1, 2],
                                 'c': [0, 1, 2]},
                                columns=['b', 'a', 'c'],
                                index=['0', '1', '2'])
        tm.assert_frame_equal(result, expected)

    def test_constructor_list_of_derived_dicts(self):
        class CustomDict(dict):
            pass
        d = {'a': 1.5, 'b': 3}

        data_custom = [CustomDict(d)]
        data = [d]

        result_custom = DataFrame(data_custom)
        result = DataFrame(data)
        tm.assert_frame_equal(result, result_custom)

    def test_constructor_ragged(self):
        data = {'A': np.random.randn(10),
                'B': np.random.randn(8)}
        with pytest.raises(ValueError, match='arrays must all be same length'):
            DataFrame(data)

    def test_constructor_scalar(self):
        idx = Index(lrange(3))
        df = DataFrame({"a": 0}, index=idx)
        expected = DataFrame({"a": [0, 0, 0]}, index=idx)
        tm.assert_frame_equal(df, expected, check_dtype=False)

    def test_constructor_Series_copy_bug(self):
        df = DataFrame(self.frame['A'], index=self.frame.index, columns=['A'])
        df.copy()

    def test_constructor_mixed_dict_and_Series(self):
        data = {}
        data['A'] = {'foo': 1, 'bar': 2, 'baz': 3}
        data['B'] = Series([4, 3, 2, 1], index=['bar', 'qux', 'baz', 'foo'])

        result = DataFrame(data)
        assert result.index.is_monotonic

        # ordering ambiguous, raise exception
        with pytest.raises(ValueError, match='ambiguous ordering'):
            DataFrame({'A': ['a', 'b'], 'B': {'a': 'a', 'b': 'b'}})

        # this is OK though
        result = DataFrame({'A': ['a', 'b'],
                            'B': Series(['a', 'b'], index=['a', 'b'])})
        expected = DataFrame({'A': ['a', 'b'], 'B': ['a', 'b']},
                             index=['a', 'b'])
        tm.assert_frame_equal(result, expected)

    def test_constructor_mixed_type_rows(self):
        # Issue 25075
        data = [[1, 2], (3, 4)]
        result = DataFrame(data)
        expected = DataFrame([[1, 2], [3, 4]])
        tm.assert_frame_equal(result, expected)

    def test_constructor_tuples(self):
        result = DataFrame({'A': [(1, 2), (3, 4)]})
        expected = DataFrame({'A': Series([(1, 2), (3, 4)])})
        tm.assert_frame_equal(result, expected)

    def test_constructor_namedtuples(self):
        # GH11181
        from collections import namedtuple
        named_tuple = namedtuple("Pandas", list('ab'))
        tuples = [named_tuple(1, 3), named_tuple(2, 4)]
        expected = DataFrame({'a': [1, 2], 'b': [3, 4]})
        result = DataFrame(tuples)
        tm.assert_frame_equal(result, expected)

        # with columns
        expected = DataFrame({'y': [1, 2], 'z': [3, 4]})
        result = DataFrame(tuples, columns=['y', 'z'])
        tm.assert_frame_equal(result, expected)

    def test_constructor_orient(self):
        data_dict = self.mixed_frame.T._series
        recons = DataFrame.from_dict(data_dict, orient='index')
        expected = self.mixed_frame.sort_index()
        tm.assert_frame_equal(recons, expected)

        # dict of sequence
        a = {'hi': [32, 3, 3],
             'there': [3, 5, 3]}
        rs = DataFrame.from_dict(a, orient='index')
        xp = DataFrame.from_dict(a).T.reindex(list(a.keys()))
        tm.assert_frame_equal(rs, xp)

    def test_from_dict_columns_parameter(self):
        # GH 18529
        # Test new columns parameter for from_dict that was added to make
        # from_items(..., orient='index', columns=[...]) easier to replicate
        result = DataFrame.from_dict(OrderedDict([('A', [1, 2]),
                                                  ('B', [4, 5])]),
                                     orient='index', columns=['one', 'two'])
        expected = DataFrame([[1, 2], [4, 5]], index=['A', 'B'],
                             columns=['one', 'two'])
        tm.assert_frame_equal(result, expected)

        msg = "cannot use columns parameter with orient='columns'"
        with pytest.raises(ValueError, match=msg):
            DataFrame.from_dict(dict([('A', [1, 2]), ('B', [4, 5])]),
                                orient='columns', columns=['one', 'two'])
        with pytest.raises(ValueError, match=msg):
            DataFrame.from_dict(dict([('A', [1, 2]), ('B', [4, 5])]),
                                columns=['one', 'two'])

    def test_constructor_Series_named(self):
        a = Series([1, 2, 3], index=['a', 'b', 'c'], name='x')
        df = DataFrame(a)
        assert df.columns[0] == 'x'
        tm.assert_index_equal(df.index, a.index)

        # ndarray like
        arr = np.random.randn(10)
        s = Series(arr, name='x')
        df = DataFrame(s)
        expected = DataFrame(dict(x=s))
        tm.assert_frame_equal(df, expected)

        s = Series(arr, index=range(3, 13))
        df = DataFrame(s)
        expected = DataFrame({0: s})
        tm.assert_frame_equal(df, expected)

        pytest.raises(ValueError, DataFrame, s, columns=[1, 2])

        # #2234
        a = Series([], name='x')
        df = DataFrame(a)
        assert df.columns[0] == 'x'

        # series with name and w/o
        s1 = Series(arr, name='x')
        df = DataFrame([s1, arr]).T
        expected = DataFrame({'x': s1, 'Unnamed 0': arr},
                             columns=['x', 'Unnamed 0'])
        tm.assert_frame_equal(df, expected)

        # this is a bit non-intuitive here; the series collapse down to arrays
        df = DataFrame([arr, s1]).T
        expected = DataFrame({1: s1, 0: arr}, columns=[0, 1])
        tm.assert_frame_equal(df, expected)

    def test_constructor_Series_named_and_columns(self):
        # GH 9232 validation

        s0 = Series(range(5), name=0)
        s1 = Series(range(5), name=1)

        # matching name and column gives standard frame
        tm.assert_frame_equal(pd.DataFrame(s0, columns=[0]),
                              s0.to_frame())
        tm.assert_frame_equal(pd.DataFrame(s1, columns=[1]),
                              s1.to_frame())

        # non-matching produces empty frame
        assert pd.DataFrame(s0, columns=[1]).empty
        assert pd.DataFrame(s1, columns=[0]).empty

    def test_constructor_Series_differently_indexed(self):
        # name
        s1 = Series([1, 2, 3], index=['a', 'b', 'c'], name='x')

        # no name
        s2 = Series([1, 2, 3], index=['a', 'b', 'c'])

        other_index = Index(['a', 'b'])

        df1 = DataFrame(s1, index=other_index)
        exp1 = DataFrame(s1.reindex(other_index))
        assert df1.columns[0] == 'x'
        tm.assert_frame_equal(df1, exp1)

        df2 = DataFrame(s2, index=other_index)
        exp2 = DataFrame(s2.reindex(other_index))
        assert df2.columns[0] == 0
        tm.assert_index_equal(df2.index, other_index)
        tm.assert_frame_equal(df2, exp2)

    def test_constructor_manager_resize(self):
        index = list(self.frame.index[:5])
        columns = list(self.frame.columns[:3])

        result = DataFrame(self.frame._data, index=index,
                           columns=columns)
        tm.assert_index_equal(result.index, Index(index))
        tm.assert_index_equal(result.columns, Index(columns))

    def test_constructor_from_items(self):
        items = [(c, self.frame[c]) for c in self.frame.columns]
        with tm.assert_produces_warning(FutureWarning,
                                        check_stacklevel=False):
            recons = DataFrame.from_items(items)
        tm.assert_frame_equal(recons, self.frame)

        # pass some columns
        with tm.assert_produces_warning(FutureWarning,
                                        check_stacklevel=False):
            recons = DataFrame.from_items(items, columns=['C', 'B', 'A'])
        tm.assert_frame_equal(recons, self.frame.loc[:, ['C', 'B', 'A']])

        # orient='index'

        row_items = [(idx, self.mixed_frame.xs(idx))
                     for idx in self.mixed_frame.index]
        with tm.assert_produces_warning(FutureWarning,
                                        check_stacklevel=False):
            recons = DataFrame.from_items(row_items,
                                          columns=self.mixed_frame.columns,
                                          orient='index')
        tm.assert_frame_equal(recons, self.mixed_frame)
        assert recons['A'].dtype == np.float64

        msg = "Must pass columns with orient='index'"
        with pytest.raises(TypeError, match=msg):
            with tm.assert_produces_warning(FutureWarning,
                                            check_stacklevel=False):
                DataFrame.from_items(row_items, orient='index')

        # orient='index', but thar be tuples
        arr = construct_1d_object_array_from_listlike(
            [('bar', 'baz')] * len(self.mixed_frame))
        self.mixed_frame['foo'] = arr
        row_items = [(idx, list(self.mixed_frame.xs(idx)))
                     for idx in self.mixed_frame.index]
        with tm.assert_produces_warning(FutureWarning,
                                        check_stacklevel=False):
            recons = DataFrame.from_items(row_items,
                                          columns=self.mixed_frame.columns,
                                          orient='index')
        tm.assert_frame_equal(recons, self.mixed_frame)
        assert isinstance(recons['foo'][0], tuple)

        with tm.assert_produces_warning(FutureWarning,
                                        check_stacklevel=False):
            rs = DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])],
                                      orient='index',
                                      columns=['one', 'two', 'three'])
        xp = DataFrame([[1, 2, 3], [4, 5, 6]], index=['A', 'B'],
                       columns=['one', 'two', 'three'])
        tm.assert_frame_equal(rs, xp)

    def test_constructor_from_items_scalars(self):
        # GH 17312
        msg = (r'The value in each \(key, value\) '
               'pair must be an array, Series, or dict')
        with pytest.raises(ValueError, match=msg):
            with tm.assert_produces_warning(FutureWarning,
                                            check_stacklevel=False):
                DataFrame.from_items([('A', 1), ('B', 4)])

        msg = (r'The value in each \(key, value\) '
               'pair must be an array, Series, or dict')
        with pytest.raises(ValueError, match=msg):
            with tm.assert_produces_warning(FutureWarning,
                                            check_stacklevel=False):
                DataFrame.from_items([('A', 1), ('B', 2)], columns=['col1'],
                                     orient='index')

    def test_from_items_deprecation(self):
        # GH 17320
        with tm.assert_produces_warning(FutureWarning,
                                        check_stacklevel=False):
            DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])])

        with tm.assert_produces_warning(FutureWarning,
                                        check_stacklevel=False):
            DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])],
                                 columns=['col1', 'col2', 'col3'],
                                 orient='index')

    def test_constructor_mix_series_nonseries(self):
        df = DataFrame({'A': self.frame['A'],
                        'B': list(self.frame['B'])}, columns=['A', 'B'])
        tm.assert_frame_equal(df, self.frame.loc[:, ['A', 'B']])

        msg = 'does not match index length'
        with pytest.raises(ValueError, match=msg):
            DataFrame({'A': self.frame['A'], 'B': list(self.frame['B'])[:-2]})

    def test_constructor_miscast_na_int_dtype(self):
        df = DataFrame([[np.nan, 1], [1, 0]], dtype=np.int64)
        expected = DataFrame([[np.nan, 1], [1, 0]])
        tm.assert_frame_equal(df, expected)

    def test_constructor_column_duplicates(self):
        # it works! #2079
        df = DataFrame([[8, 5]], columns=['a', 'a'])
        edf = DataFrame([[8, 5]])
        edf.columns = ['a', 'a']

        tm.assert_frame_equal(df, edf)

        idf = DataFrame.from_records([(8, 5)],
                                     columns=['a', 'a'])

        tm.assert_frame_equal(idf, edf)

        pytest.raises(ValueError, DataFrame.from_dict,
                      OrderedDict([('b', 8), ('a', 5), ('a', 6)]))

    def test_constructor_empty_with_string_dtype(self):
        # GH 9428
        expected = DataFrame(index=[0, 1], columns=[0, 1], dtype=object)

        df = DataFrame(index=[0, 1], columns=[0, 1], dtype=str)
        tm.assert_frame_equal(df, expected)
        df = DataFrame(index=[0, 1], columns=[0, 1], dtype=np.str_)
        tm.assert_frame_equal(df, expected)
        df = DataFrame(index=[0, 1], columns=[0, 1], dtype=np.unicode_)
        tm.assert_frame_equal(df, expected)
        df = DataFrame(index=[0, 1], columns=[0, 1], dtype='U5')
        tm.assert_frame_equal(df, expected)

    def test_constructor_single_value(self):
        # expecting single value upcasting here
        df = DataFrame(0., index=[1, 2, 3], columns=['a', 'b', 'c'])
        tm.assert_frame_equal(df,
                              DataFrame(np.zeros(df.shape).astype('float64'),
                                        df.index, df.columns))

        df = DataFrame(0, index=[1, 2, 3], columns=['a', 'b', 'c'])
        tm.assert_frame_equal(df, DataFrame(np.zeros(df.shape).astype('int64'),
                                            df.index, df.columns))

        df = DataFrame('a', index=[1, 2], columns=['a', 'c'])
        tm.assert_frame_equal(df, DataFrame(np.array([['a', 'a'], ['a', 'a']],
                                                     dtype=object),
                                            index=[1, 2], columns=['a', 'c']))

        pytest.raises(ValueError, DataFrame, 'a', [1, 2])
        pytest.raises(ValueError, DataFrame, 'a', columns=['a', 'c'])

        msg = 'incompatible data and dtype'
        with pytest.raises(TypeError, match=msg):
            DataFrame('a', [1, 2], ['a', 'c'], float)

    def test_constructor_with_datetimes(self):
        intname = np.dtype(np.int_).name
        floatname = np.dtype(np.float_).name
        datetime64name = np.dtype('M8[ns]').name
        objectname = np.dtype(np.object_).name

        # single item
        df = DataFrame({'A': 1, 'B': 'foo', 'C': 'bar',
                        'D': Timestamp("20010101"),
                        'E': datetime(2001, 1, 2, 0, 0)},
                       index=np.arange(10))
        result = df.get_dtype_counts()
        expected = Series({'int64': 1, datetime64name: 2, objectname: 2})
        result.sort_index()
        expected.sort_index()
        tm.assert_series_equal(result, expected)

        # check with ndarray construction ndim==0 (e.g. we are passing a ndim 0
        # ndarray with a dtype specified)
        df = DataFrame({'a': 1., 'b': 2, 'c': 'foo',
                        floatname: np.array(1., dtype=floatname),
                        intname: np.array(1, dtype=intname)},
                       index=np.arange(10))
        result = df.get_dtype_counts()
        expected = {objectname: 1}
        if intname == 'int64':
            expected['int64'] = 2
        else:
            expected['int64'] = 1
            expected[intname] = 1
        if floatname == 'float64':
            expected['float64'] = 2
        else:
            expected['float64'] = 1
            expected[floatname] = 1

        result = result.sort_index()
        expected = Series(expected).sort_index()
        tm.assert_series_equal(result, expected)

        # check with ndarray construction ndim>0
        df = DataFrame({'a': 1., 'b': 2, 'c': 'foo',
                        floatname: np.array([1.] * 10, dtype=floatname),
                        intname: np.array([1] * 10, dtype=intname)},
                       index=np.arange(10))
        result = df.get_dtype_counts()
        result = result.sort_index()
        tm.assert_series_equal(result, expected)

        # GH 2809
        ind = date_range(start="2000-01-01", freq="D", periods=10)
        datetimes = [ts.to_pydatetime() for ts in ind]
        datetime_s = Series(datetimes)
        assert datetime_s.dtype == 'M8[ns]'
        df = DataFrame({'datetime_s': datetime_s})
        result = df.get_dtype_counts()
        expected = Series({datetime64name: 1})
        result = result.sort_index()
        expected = expected.sort_index()
        tm.assert_series_equal(result, expected)

        # GH 2810
        ind = date_range(start="2000-01-01", freq="D", periods=10)
        datetimes = [ts.to_pydatetime() for ts in ind]
        dates = [ts.date() for ts in ind]
        df = DataFrame({'datetimes': datetimes, 'dates': dates})
        result = df.get_dtype_counts()
        expected = Series({datetime64name: 1, objectname: 1})
        result = result.sort_index()
        expected = expected.sort_index()
        tm.assert_series_equal(result, expected)

        # GH 7594
        # don't coerce tz-aware
        import pytz
        tz = pytz.timezone('US/Eastern')
        dt = tz.localize(datetime(2012, 1, 1))

        df = DataFrame({'End Date': dt}, index=[0])
        assert df.iat[0, 0] == dt
        tm.assert_series_equal(df.dtypes, Series(
            {'End Date': 'datetime64[ns, US/Eastern]'}))

        df = DataFrame([{'End Date': dt}])
        assert df.iat[0, 0] == dt
        tm.assert_series_equal(df.dtypes, Series(
            {'End Date': 'datetime64[ns, US/Eastern]'}))

        # tz-aware (UTC and other tz's)
        # GH 8411
        dr = date_range('20130101', periods=3)
        df = DataFrame({'value': dr})
        assert df.iat[0, 0].tz is None
        dr = date_range('20130101', periods=3, tz='UTC')
        df = DataFrame({'value': dr})
        assert str(df.iat[0, 0].tz) == 'UTC'
        dr = date_range('20130101', periods=3, tz='US/Eastern')
        df = DataFrame({'value': dr})
        assert str(df.iat[0, 0].tz) == 'US/Eastern'

        # GH 7822
        # preserver an index with a tz on dict construction
        i = date_range('1/1/2011', periods=5, freq='10s', tz='US/Eastern')

        expected = DataFrame(
            {'a': i.to_series(keep_tz=True).reset_index(drop=True)})
        df = DataFrame()
        df['a'] = i
        tm.assert_frame_equal(df, expected)

        df = DataFrame({'a': i})
        tm.assert_frame_equal(df, expected)

        # multiples
        i_no_tz = date_range('1/1/2011', periods=5, freq='10s')
        df = DataFrame({'a': i, 'b': i_no_tz})
        expected = DataFrame({'a': i.to_series(keep_tz=True)
                              .reset_index(drop=True), 'b': i_no_tz})
        tm.assert_frame_equal(df, expected)

    def test_constructor_datetimes_with_nulls(self):
        # gh-15869
        for arr in [np.array([None, None, None, None,
                              datetime.now(), None]),
                    np.array([None, None, datetime.now(), None])]:
            result = DataFrame(arr).get_dtype_counts()
            expected = Series({'datetime64[ns]': 1})
            tm.assert_series_equal(result, expected)

    def test_constructor_for_list_with_dtypes(self):
        # TODO(wesm): unused
        intname = np.dtype(np.int_).name  # noqa
        floatname = np.dtype(np.float_).name  # noqa
        datetime64name = np.dtype('M8[ns]').name
        objectname = np.dtype(np.object_).name

        # test list of lists/ndarrays
        df = DataFrame([np.arange(5) for x in range(5)])
        result = df.get_dtype_counts()
        expected = Series({'int64': 5})

        df = DataFrame([np.array(np.arange(5), dtype='int32')
                        for x in range(5)])
        result = df.get_dtype_counts()
        expected = Series({'int32': 5})

        # overflow issue? (we always expecte int64 upcasting here)
        df = DataFrame({'a': [2 ** 31, 2 ** 31 + 1]})
        result = df.get_dtype_counts()
        expected = Series({'int64': 1})
        tm.assert_series_equal(result, expected)

        # GH #2751 (construction with no index specified), make sure we cast to
        # platform values
        df = DataFrame([1, 2])
        result = df.get_dtype_counts()
        expected = Series({'int64': 1})
        tm.assert_series_equal(result, expected)

        df = DataFrame([1., 2.])
        result = df.get_dtype_counts()
        expected = Series({'float64': 1})
        tm.assert_series_equal(result, expected)

        df = DataFrame({'a': [1, 2]})
        result = df.get_dtype_counts()
        expected = Series({'int64': 1})
        tm.assert_series_equal(result, expected)

        df = DataFrame({'a': [1., 2.]})
        result = df.get_dtype_counts()
        expected = Series({'float64': 1})
        tm.assert_series_equal(result, expected)

        df = DataFrame({'a': 1}, index=lrange(3))
        result = df.get_dtype_counts()
        expected = Series({'int64': 1})
        tm.assert_series_equal(result, expected)

        df = DataFrame({'a': 1.}, index=lrange(3))
        result = df.get_dtype_counts()
        expected = Series({'float64': 1})
        tm.assert_series_equal(result, expected)

        # with object list
        df = DataFrame({'a': [1, 2, 4, 7], 'b': [1.2, 2.3, 5.1, 6.3],
                        'c': list('abcd'),
                        'd': [datetime(2000, 1, 1) for i in range(4)],
                        'e': [1., 2, 4., 7]})
        result = df.get_dtype_counts()
        expected = Series(
            {'int64': 1, 'float64': 2, datetime64name: 1, objectname: 1})
        result = result.sort_index()
        expected = expected.sort_index()
        tm.assert_series_equal(result, expected)

    def test_constructor_frame_copy(self):
        cop = DataFrame(self.frame, copy=True)
        cop['A'] = 5
        assert (cop['A'] == 5).all()
        assert not (self.frame['A'] == 5).all()

    def test_constructor_ndarray_copy(self):
        df = DataFrame(self.frame.values)

        self.frame.values[5] = 5
        assert (df.values[5] == 5).all()

        df = DataFrame(self.frame.values, copy=True)
        self.frame.values[6] = 6
        assert not (df.values[6] == 6).all()

    def test_constructor_series_copy(self):
        series = self.frame._series

        df = DataFrame({'A': series['A']})
        df['A'][:] = 5

        assert not (series['A'] == 5).all()

    def test_constructor_with_nas(self):
        # GH 5016
        # na's in indices

        def check(df):
            for i in range(len(df.columns)):
                df.iloc[:, i]

            indexer = np.arange(len(df.columns))[isna(df.columns)]

            # No NaN found -> error
            if len(indexer) == 0:
                def f():
                    df.loc[:, np.nan]
                pytest.raises(TypeError, f)
            # single nan should result in Series
            elif len(indexer) == 1:
                tm.assert_series_equal(df.iloc[:, indexer[0]],
                                       df.loc[:, np.nan])
            # multiple nans should result in DataFrame
            else:
                tm.assert_frame_equal(df.iloc[:, indexer],
                                      df.loc[:, np.nan])

        df = DataFrame([[1, 2, 3], [4, 5, 6]], index=[1, np.nan])
        check(df)

        df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=[1.1, 2.2, np.nan])
        check(df)

        df = DataFrame([[0, 1, 2, 3], [4, 5, 6, 7]],
                       columns=[np.nan, 1.1, 2.2, np.nan])
        check(df)

        df = DataFrame([[0.0, 1, 2, 3.0], [4, 5, 6, 7]],
                       columns=[np.nan, 1.1, 2.2, np.nan])
        check(df)

        # GH 21428 (non-unique columns)
        df = DataFrame([[0.0, 1, 2, 3.0], [4, 5, 6, 7]],
                       columns=[np.nan, 1, 2, 2])
        check(df)

    def test_constructor_lists_to_object_dtype(self):
        # from #1074
        d = DataFrame({'a': [np.nan, False]})
        assert d['a'].dtype == np.object_
        assert not d['a'][1]

    def test_constructor_categorical(self):

        # GH8626

        # dict creation
        df = DataFrame({'A': list('abc')}, dtype='category')
        expected = Series(list('abc'), dtype='category', name='A')
        tm.assert_series_equal(df['A'], expected)

        # to_frame
        s = Series(list('abc'), dtype='category')
        result = s.to_frame()
        expected = Series(list('abc'), dtype='category', name=0)
        tm.assert_series_equal(result[0], expected)
        result = s.to_frame(name='foo')
        expected = Series(list('abc'), dtype='category', name='foo')
        tm.assert_series_equal(result['foo'], expected)

        # list-like creation
        df = DataFrame(list('abc'), dtype='category')
        expected = Series(list('abc'), dtype='category', name=0)
        tm.assert_series_equal(df[0], expected)

        # ndim != 1
        df = DataFrame([Categorical(list('abc'))])
        expected = DataFrame({0: Series(list('abc'), dtype='category')})
        tm.assert_frame_equal(df, expected)

        df = DataFrame([Categorical(list('abc')), Categorical(list('abd'))])
        expected = DataFrame({0: Series(list('abc'), dtype='category'),
                              1: Series(list('abd'), dtype='category')},
                             columns=[0, 1])
        tm.assert_frame_equal(df, expected)

        # mixed
        df = DataFrame([Categorical(list('abc')), list('def')])
        expected = DataFrame({0: Series(list('abc'), dtype='category'),
                              1: list('def')}, columns=[0, 1])
        tm.assert_frame_equal(df, expected)

        # invalid (shape)
        pytest.raises(ValueError,
                      lambda: DataFrame([Categorical(list('abc')),
                                         Categorical(list('abdefg'))]))

        # ndim > 1
        pytest.raises(NotImplementedError,
                      lambda: Categorical(np.array([list('abcd')])))

    def test_constructor_categorical_series(self):

        items = [1, 2, 3, 1]
        exp = Series(items).astype('category')
        res = Series(items, dtype='category')
        tm.assert_series_equal(res, exp)

        items = ["a", "b", "c", "a"]
        exp = Series(items).astype('category')
        res = Series(items, dtype='category')
        tm.assert_series_equal(res, exp)

        # insert into frame with different index
        # GH 8076
        index = date_range('20000101', periods=3)
        expected = Series(Categorical(values=[np.nan, np.nan, np.nan],
                                      categories=['a', 'b', 'c']))
        expected.index = index

        expected = DataFrame({'x': expected})
        df = DataFrame(
            {'x': Series(['a', 'b', 'c'], dtype='category')}, index=index)
        tm.assert_frame_equal(df, expected)

    def test_from_records_to_records(self):
        # from numpy documentation
        arr = np.zeros((2,), dtype=('i4,f4,a10'))
        arr[:] = [(1, 2., 'Hello'), (2, 3., "World")]

        # TODO(wesm): unused
        frame = DataFrame.from_records(arr)  # noqa

        index = pd.Index(np.arange(len(arr))[::-1])
        indexed_frame = DataFrame.from_records(arr, index=index)
        tm.assert_index_equal(indexed_frame.index, index)

        # without names, it should go to last ditch
        arr2 = np.zeros((2, 3))
        tm.assert_frame_equal(DataFrame.from_records(arr2), DataFrame(arr2))

        # wrong length
        msg = r'Shape of passed values is \(2, 3\), indices imply \(1, 3\)'
        with pytest.raises(ValueError, match=msg):
            DataFrame.from_records(arr, index=index[:-1])

        indexed_frame = DataFrame.from_records(arr, index='f1')

        # what to do?
        records = indexed_frame.to_records()
        assert len(records.dtype.names) == 3

        records = indexed_frame.to_records(index=False)
        assert len(records.dtype.names) == 2
        assert 'index' not in records.dtype.names

    def test_from_records_nones(self):
        tuples = [(1, 2, None, 3),
                  (1, 2, None, 3),
                  (None, 2, 5, 3)]

        df = DataFrame.from_records(tuples, columns=['a', 'b', 'c', 'd'])
        assert np.isnan(df['c'][0])

    def test_from_records_iterator(self):
        arr = np.array([(1.0, 1.0, 2, 2), (3.0, 3.0, 4, 4), (5., 5., 6, 6),
                        (7., 7., 8, 8)],
                       dtype=[('x', np.float64), ('u', np.float32),
                              ('y', np.int64), ('z', np.int32)])
        df = DataFrame.from_records(iter(arr), nrows=2)
        xp = DataFrame({'x': np.array([1.0, 3.0], dtype=np.float64),
                        'u': np.array([1.0, 3.0], dtype=np.float32),
                        'y': np.array([2, 4], dtype=np.int64),
                        'z': np.array([2, 4], dtype=np.int32)})
        tm.assert_frame_equal(df.reindex_like(xp), xp)

        # no dtypes specified here, so just compare with the default
        arr = [(1.0, 2), (3.0, 4), (5., 6), (7., 8)]
        df = DataFrame.from_records(iter(arr), columns=['x', 'y'],
                                    nrows=2)
        tm.assert_frame_equal(df, xp.reindex(columns=['x', 'y']),
                              check_dtype=False)

    def test_from_records_tuples_generator(self):
        def tuple_generator(length):
            for i in range(length):
                letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
                yield (i, letters[i % len(letters)], i / length)

        columns_names = ['Integer', 'String', 'Float']
        columns = [[i[j] for i in tuple_generator(
            10)] for j in range(len(columns_names))]
        data = {'Integer': columns[0],
                'String': columns[1], 'Float': columns[2]}
        expected = DataFrame(data, columns=columns_names)

        generator = tuple_generator(10)
        result = DataFrame.from_records(generator, columns=columns_names)
        tm.assert_frame_equal(result, expected)

    def test_from_records_lists_generator(self):
        def list_generator(length):
            for i in range(length):
                letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
                yield [i, letters[i % len(letters)], i / length]

        columns_names = ['Integer', 'String', 'Float']
        columns = [[i[j] for i in list_generator(
            10)] for j in range(len(columns_names))]
        data = {'Integer': columns[0],
                'String': columns[1], 'Float': columns[2]}
        expected = DataFrame(data, columns=columns_names)

        generator = list_generator(10)
        result = DataFrame.from_records(generator, columns=columns_names)
        tm.assert_frame_equal(result, expected)

    def test_from_records_columns_not_modified(self):
        tuples = [(1, 2, 3),
                  (1, 2, 3),
                  (2, 5, 3)]

        columns = ['a', 'b', 'c']
        original_columns = list(columns)

        df = DataFrame.from_records(tuples, columns=columns, index='a')  # noqa

        assert columns == original_columns

    def test_from_records_decimal(self):
        from decimal import Decimal

        tuples = [(Decimal('1.5'),), (Decimal('2.5'),), (None,)]

        df = DataFrame.from_records(tuples, columns=['a'])
        assert df['a'].dtype == object

        df = DataFrame.from_records(tuples, columns=['a'], coerce_float=True)
        assert df['a'].dtype == np.float64
        assert np.isnan(df['a'].values[-1])

    def test_from_records_duplicates(self):
        result = DataFrame.from_records([(1, 2, 3), (4, 5, 6)],
                                        columns=['a', 'b', 'a'])

        expected = DataFrame([(1, 2, 3), (4, 5, 6)],
                             columns=['a', 'b', 'a'])

        tm.assert_frame_equal(result, expected)

    def test_from_records_set_index_name(self):
        def create_dict(order_id):
            return {'order_id': order_id, 'quantity': np.random.randint(1, 10),
                    'price': np.random.randint(1, 10)}
        documents = [create_dict(i) for i in range(10)]
        # demo missing data
        documents.append({'order_id': 10, 'quantity': 5})

        result = DataFrame.from_records(documents, index='order_id')
        assert result.index.name == 'order_id'

        # MultiIndex
        result = DataFrame.from_records(documents,
                                        index=['order_id', 'quantity'])
        assert result.index.names == ('order_id', 'quantity')

    def test_from_records_misc_brokenness(self):
        # #2179

        data = {1: ['foo'], 2: ['bar']}

        result = DataFrame.from_records(data, columns=['a', 'b'])
        exp = DataFrame(data, columns=['a', 'b'])
        tm.assert_frame_equal(result, exp)

        # overlap in index/index_names

        data = {'a': [1, 2, 3], 'b': [4, 5, 6]}

        result = DataFrame.from_records(data, index=['a', 'b', 'c'])
        exp = DataFrame(data, index=['a', 'b', 'c'])
        tm.assert_frame_equal(result, exp)

        # GH 2623
        rows = []
        rows.append([datetime(2010, 1, 1), 1])
        rows.append([datetime(2010, 1, 2), 'hi'])  # test col upconverts to obj
        df2_obj = DataFrame.from_records(rows, columns=['date', 'test'])
        results = df2_obj.get_dtype_counts()
        expected = Series({'datetime64[ns]': 1, 'object': 1})

        rows = []
        rows.append([datetime(2010, 1, 1), 1])
        rows.append([datetime(2010, 1, 2), 1])
        df2_obj = DataFrame.from_records(rows, columns=['date', 'test'])
        results = df2_obj.get_dtype_counts().sort_index()
        expected = Series({'datetime64[ns]': 1, 'int64': 1})
        tm.assert_series_equal(results, expected)

    def test_from_records_empty(self):
        # 3562
        result = DataFrame.from_records([], columns=['a', 'b', 'c'])
        expected = DataFrame(columns=['a', 'b', 'c'])
        tm.assert_frame_equal(result, expected)

        result = DataFrame.from_records([], columns=['a', 'b', 'b'])
        expected = DataFrame(columns=['a', 'b', 'b'])
        tm.assert_frame_equal(result, expected)

    def test_from_records_empty_with_nonempty_fields_gh3682(self):
        a = np.array([(1, 2)], dtype=[('id', np.int64), ('value', np.int64)])
        df = DataFrame.from_records(a, index='id')
        tm.assert_index_equal(df.index, Index([1], name='id'))
        assert df.index.name == 'id'
        tm.assert_index_equal(df.columns, Index(['value']))

        b = np.array([], dtype=[('id', np.int64), ('value', np.int64)])
        df = DataFrame.from_records(b, index='id')
        tm.assert_index_equal(df.index, Index([], name='id'))
        assert df.index.name == 'id'

    def test_from_records_with_datetimes(self):

        # this may fail on certain platforms because of a numpy issue
        # related GH6140
        if not is_platform_little_endian():
            pytest.skip("known failure of test on non-little endian")

        # construction with a null in a recarray
        # GH 6140
        expected = DataFrame({'EXPIRY': [datetime(2005, 3, 1, 0, 0), None]})

        arrdata = [np.array([datetime(2005, 3, 1, 0, 0), None])]
        dtypes = [('EXPIRY', '<M8[ns]')]

        try:
            recarray = np.core.records.fromarrays(arrdata, dtype=dtypes)
        except (ValueError):
            pytest.skip("known failure of numpy rec array creation")

        result = DataFrame.from_records(recarray)
        tm.assert_frame_equal(result, expected)

        # coercion should work too
        arrdata = [np.array([datetime(2005, 3, 1, 0, 0), None])]
        dtypes = [('EXPIRY', '<M8[m]')]
        recarray = np.core.records.fromarrays(arrdata, dtype=dtypes)
        result = DataFrame.from_records(recarray)
        tm.assert_frame_equal(result, expected)

    def test_from_records_sequencelike(self):
        df = DataFrame({'A': np.array(np.random.randn(6), dtype=np.float64),
                        'A1': np.array(np.random.randn(6), dtype=np.float64),
                        'B': np.array(np.arange(6), dtype=np.int64),
                        'C': ['foo'] * 6,
                        'D': np.array([True, False] * 3, dtype=bool),
                        'E': np.array(np.random.randn(6), dtype=np.float32),
                        'E1': np.array(np.random.randn(6), dtype=np.float32),
                        'F': np.array(np.arange(6), dtype=np.int32)})

        # this is actually tricky to create the recordlike arrays and
        # have the dtypes be intact
        blocks = df._to_dict_of_blocks()
        tuples = []
        columns = []
        dtypes = []
        for dtype, b in compat.iteritems(blocks):
            columns.extend(b.columns)
            dtypes.extend([(c, np.dtype(dtype).descr[0][1])
                           for c in b.columns])
        for i in range(len(df.index)):
            tup = []
            for _, b in compat.iteritems(blocks):
                tup.extend(b.iloc[i].values)
            tuples.append(tuple(tup))

        recarray = np.array(tuples, dtype=dtypes).view(np.recarray)
        recarray2 = df.to_records()
        lists = [list(x) for x in tuples]

        # tuples (lose the dtype info)
        result = (DataFrame.from_records(tuples, columns=columns)
                  .reindex(columns=df.columns))

        # created recarray and with to_records recarray (have dtype info)
        result2 = (DataFrame.from_records(recarray, columns=columns)
                   .reindex(columns=df.columns))
        result3 = (DataFrame.from_records(recarray2, columns=columns)
                   .reindex(columns=df.columns))

        # list of tupels (no dtype info)
        result4 = (DataFrame.from_records(lists, columns=columns)
                   .reindex(columns=df.columns))

        tm.assert_frame_equal(result, df, check_dtype=False)
        tm.assert_frame_equal(result2, df)
        tm.assert_frame_equal(result3, df)
        tm.assert_frame_equal(result4, df, check_dtype=False)

        # tuples is in the order of the columns
        result = DataFrame.from_records(tuples)
        tm.assert_index_equal(result.columns, pd.Index(lrange(8)))

        # test exclude parameter & we are casting the results here (as we don't
        # have dtype info to recover)
        columns_to_test = [columns.index('C'), columns.index('E1')]

        exclude = list(set(range(8)) - set(columns_to_test))
        result = DataFrame.from_records(tuples, exclude=exclude)
        result.columns = [columns[i] for i in sorted(columns_to_test)]
        tm.assert_series_equal(result['C'], df['C'])
        tm.assert_series_equal(result['E1'], df['E1'].astype('float64'))

        # empty case
        result = DataFrame.from_records([], columns=['foo', 'bar', 'baz'])
        assert len(result) == 0
        tm.assert_index_equal(result.columns,
                              pd.Index(['foo', 'bar', 'baz']))

        result = DataFrame.from_records([])
        assert len(result) == 0
        assert len(result.columns) == 0

    def test_from_records_dictlike(self):

        # test the dict methods
        df = DataFrame({'A': np.array(np.random.randn(6), dtype=np.float64),
                        'A1': np.array(np.random.randn(6), dtype=np.float64),
                        'B': np.array(np.arange(6), dtype=np.int64),
                        'C': ['foo'] * 6,
                        'D': np.array([True, False] * 3, dtype=bool),
                        'E': np.array(np.random.randn(6), dtype=np.float32),
                        'E1': np.array(np.random.randn(6), dtype=np.float32),
                        'F': np.array(np.arange(6), dtype=np.int32)})

        # columns is in a different order here than the actual items iterated
        # from the dict
        blocks = df._to_dict_of_blocks()
        columns = []
        for dtype, b in compat.iteritems(blocks):
            columns.extend(b.columns)

        asdict = {x: y for x, y in compat.iteritems(df)}
        asdict2 = {x: y.values for x, y in compat.iteritems(df)}

        # dict of series & dict of ndarrays (have dtype info)
        results = []
        results.append(DataFrame.from_records(
            asdict).reindex(columns=df.columns))
        results.append(DataFrame.from_records(asdict, columns=columns)
                       .reindex(columns=df.columns))
        results.append(DataFrame.from_records(asdict2, columns=columns)
                       .reindex(columns=df.columns))

        for r in results:
            tm.assert_frame_equal(r, df)

    def test_from_records_with_index_data(self):
        df = DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C'])

        data = np.random.randn(10)
        df1 = DataFrame.from_records(df, index=data)
        tm.assert_index_equal(df1.index, Index(data))

    def test_from_records_bad_index_column(self):
        df = DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C'])

        # should pass
        df1 = DataFrame.from_records(df, index=['C'])
        tm.assert_index_equal(df1.index, Index(df.C))

        df1 = DataFrame.from_records(df, index='C')
        tm.assert_index_equal(df1.index, Index(df.C))

        # should fail
        pytest.raises(ValueError, DataFrame.from_records, df, index=[2])
        pytest.raises(KeyError, DataFrame.from_records, df, index=2)

    def test_from_records_non_tuple(self):
        class Record(object):

            def __init__(self, *args):
                self.args = args

            def __getitem__(self, i):
                return self.args[i]

            def __iter__(self):
                return iter(self.args)

        recs = [Record(1, 2, 3), Record(4, 5, 6), Record(7, 8, 9)]
        tups = lmap(tuple, recs)

        result = DataFrame.from_records(recs)
        expected = DataFrame.from_records(tups)
        tm.assert_frame_equal(result, expected)

    def test_from_records_len0_with_columns(self):
        # #2633
        result = DataFrame.from_records([], index='foo',
                                        columns=['foo', 'bar'])
        expected = Index(['bar'])

        assert len(result) == 0
        assert result.index.name == 'foo'
        tm.assert_index_equal(result.columns, expected)

    def test_to_frame_with_falsey_names(self):
        # GH 16114
        result = Series(name=0).to_frame().dtypes
        expected = Series({0: np.float64})
        tm.assert_series_equal(result, expected)

        result = DataFrame(Series(name=0)).dtypes
        tm.assert_series_equal(result, expected)

    @pytest.mark.parametrize('dtype', [None, 'uint8', 'category'])
    def test_constructor_range_dtype(self, dtype):
        # GH 16804
        expected = DataFrame({'A': [0, 1, 2, 3, 4]}, dtype=dtype or 'int64')
        result = DataFrame({'A': range(5)}, dtype=dtype)
        tm.assert_frame_equal(result, expected)

    def test_frame_from_list_subclass(self):
        # GH21226
        class List(list):
            pass

        expected = DataFrame([[1, 2, 3], [4, 5, 6]])
        result = DataFrame(List([List([1, 2, 3]), List([4, 5, 6])]))
        tm.assert_frame_equal(result, expected)


class TestDataFrameConstructorWithDatetimeTZ(TestData):

    def test_from_dict(self):

        # 8260
        # support datetime64 with tz

        idx = Index(date_range('20130101', periods=3, tz='US/Eastern'),
                    name='foo')
        dr = date_range('20130110', periods=3)

        # construction
        df = DataFrame({'A': idx, 'B': dr})
        assert df['A'].dtype, 'M8[ns, US/Eastern'
        assert df['A'].name == 'A'
        tm.assert_series_equal(df['A'], Series(idx, name='A'))
        tm.assert_series_equal(df['B'], Series(dr, name='B'))

    def test_from_index(self):

        # from index
        idx2 = date_range('20130101', periods=3, tz='US/Eastern', name='foo')
        df2 = DataFrame(idx2)
        tm.assert_series_equal(df2['foo'], Series(idx2, name='foo'))
        df2 = DataFrame(Series(idx2))
        tm.assert_series_equal(df2['foo'], Series(idx2, name='foo'))

        idx2 = date_range('20130101', periods=3, tz='US/Eastern')
        df2 = DataFrame(idx2)
        tm.assert_series_equal(df2[0], Series(idx2, name=0))
        df2 = DataFrame(Series(idx2))
        tm.assert_series_equal(df2[0], Series(idx2, name=0))

    def test_frame_dict_constructor_datetime64_1680(self):
        dr = date_range('1/1/2012', periods=10)
        s = Series(dr, index=dr)

        # it works!
        DataFrame({'a': 'foo', 'b': s}, index=dr)
        DataFrame({'a': 'foo', 'b': s.values}, index=dr)

    def test_frame_datetime64_mixed_index_ctor_1681(self):
        dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI')
        ts = Series(dr)

        # it works!
        d = DataFrame({'A': 'foo', 'B': ts}, index=dr)
        assert d['B'].isna().all()

    def test_frame_timeseries_to_records(self):
        index = date_range('1/1/2000', periods=10)
        df = DataFrame(np.random.randn(10, 3), index=index,
                       columns=['a', 'b', 'c'])

        result = df.to_records()
        result['index'].dtype == 'M8[ns]'

        result = df.to_records(index=False)

    def test_frame_timeseries_column(self):
        # GH19157
        dr = date_range(start='20130101T10:00:00', periods=3, freq='T',
                        tz='US/Eastern')
        result = DataFrame(dr, columns=['timestamps'])
        expected = DataFrame({'timestamps': [
            Timestamp('20130101T10:00:00', tz='US/Eastern'),
            Timestamp('20130101T10:01:00', tz='US/Eastern'),
            Timestamp('20130101T10:02:00', tz='US/Eastern')]})
        tm.assert_frame_equal(result, expected)

    def test_nested_dict_construction(self):
        # GH22227
        columns = ['Nevada', 'Ohio']
        pop = {'Nevada': {2001: 2.4, 2002: 2.9},
               'Ohio': {2000: 1.5, 2001: 1.7, 2002: 3.6}}
        result = pd.DataFrame(pop, index=[2001, 2002, 2003], columns=columns)
        expected = pd.DataFrame(
            [(2.4, 1.7), (2.9, 3.6), (np.nan, np.nan)],
            columns=columns,
            index=pd.Index([2001, 2002, 2003])
        )
        tm.assert_frame_equal(result, expected)