Repository URL to install this package:
Version:
0.24.2 ▾
|
# -*- coding: utf-8 -*-
from __future__ import print_function
import numpy as np
import pytest
from pandas.compat import lrange, string_types
from pandas import DataFrame, Series
import pandas.util.testing as tm
@pytest.mark.parametrize('subset', ['a', ['a'], ['a', 'B']])
def test_duplicated_with_misspelled_column_name(subset):
# GH 19730
df = DataFrame({'A': [0, 0, 1],
'B': [0, 0, 1],
'C': [0, 0, 1]})
with pytest.raises(KeyError):
df.duplicated(subset)
with pytest.raises(KeyError):
df.drop_duplicates(subset)
@pytest.mark.slow
def test_duplicated_do_not_fail_on_wide_dataframes():
# gh-21524
# Given the wide dataframe with a lot of columns
# with different (important!) values
data = {'col_{0:02d}'.format(i): np.random.randint(0, 1000, 30000)
for i in range(100)}
df = DataFrame(data).T
result = df.duplicated()
# Then duplicates produce the bool Series as a result and don't fail during
# calculation. Actual values doesn't matter here, though usually it's all
# False in this case
assert isinstance(result, Series)
assert result.dtype == np.bool
@pytest.mark.parametrize('keep, expected', [
('first', Series([False, False, True, False, True])),
('last', Series([True, True, False, False, False])),
(False, Series([True, True, True, False, True]))
])
def test_duplicated_keep(keep, expected):
df = DataFrame({'A': [0, 1, 1, 2, 0], 'B': ['a', 'b', 'b', 'c', 'a']})
result = df.duplicated(keep=keep)
tm.assert_series_equal(result, expected)
@pytest.mark.xfail(reason="GH#21720; nan/None falsely considered equal")
@pytest.mark.parametrize('keep, expected', [
('first', Series([False, False, True, False, True])),
('last', Series([True, True, False, False, False])),
(False, Series([True, True, True, False, True]))
])
def test_duplicated_nan_none(keep, expected):
df = DataFrame({'C': [np.nan, 3, 3, None, np.nan]}, dtype=object)
result = df.duplicated(keep=keep)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize('keep', ['first', 'last', False])
@pytest.mark.parametrize('subset', [None, ['A', 'B'], 'A'])
def test_duplicated_subset(subset, keep):
df = DataFrame({'A': [0, 1, 1, 2, 0],
'B': ['a', 'b', 'b', 'c', 'a'],
'C': [np.nan, 3, 3, None, np.nan]})
if subset is None:
subset = list(df.columns)
elif isinstance(subset, string_types):
# need to have a DataFrame, not a Series
# -> select columns with singleton list, not string
subset = [subset]
expected = df[subset].duplicated(keep=keep)
result = df.duplicated(keep=keep, subset=subset)
tm.assert_series_equal(result, expected)
def test_drop_duplicates():
df = DataFrame({'AAA': ['foo', 'bar', 'foo', 'bar',
'foo', 'bar', 'bar', 'foo'],
'B': ['one', 'one', 'two', 'two',
'two', 'two', 'one', 'two'],
'C': [1, 1, 2, 2, 2, 2, 1, 2],
'D': lrange(8)})
# single column
result = df.drop_duplicates('AAA')
expected = df[:2]
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates('AAA', keep='last')
expected = df.loc[[6, 7]]
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates('AAA', keep=False)
expected = df.loc[[]]
tm.assert_frame_equal(result, expected)
assert len(result) == 0
# multi column
expected = df.loc[[0, 1, 2, 3]]
result = df.drop_duplicates(np.array(['AAA', 'B']))
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates(['AAA', 'B'])
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates(('AAA', 'B'), keep='last')
expected = df.loc[[0, 5, 6, 7]]
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates(('AAA', 'B'), keep=False)
expected = df.loc[[0]]
tm.assert_frame_equal(result, expected)
# consider everything
df2 = df.loc[:, ['AAA', 'B', 'C']]
result = df2.drop_duplicates()
# in this case only
expected = df2.drop_duplicates(['AAA', 'B'])
tm.assert_frame_equal(result, expected)
result = df2.drop_duplicates(keep='last')
expected = df2.drop_duplicates(['AAA', 'B'], keep='last')
tm.assert_frame_equal(result, expected)
result = df2.drop_duplicates(keep=False)
expected = df2.drop_duplicates(['AAA', 'B'], keep=False)
tm.assert_frame_equal(result, expected)
# integers
result = df.drop_duplicates('C')
expected = df.iloc[[0, 2]]
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates('C', keep='last')
expected = df.iloc[[-2, -1]]
tm.assert_frame_equal(result, expected)
df['E'] = df['C'].astype('int8')
result = df.drop_duplicates('E')
expected = df.iloc[[0, 2]]
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates('E', keep='last')
expected = df.iloc[[-2, -1]]
tm.assert_frame_equal(result, expected)
# GH 11376
df = DataFrame({'x': [7, 6, 3, 3, 4, 8, 0],
'y': [0, 6, 5, 5, 9, 1, 2]})
expected = df.loc[df.index != 3]
tm.assert_frame_equal(df.drop_duplicates(), expected)
df = DataFrame([[1, 0], [0, 2]])
tm.assert_frame_equal(df.drop_duplicates(), df)
df = DataFrame([[-2, 0], [0, -4]])
tm.assert_frame_equal(df.drop_duplicates(), df)
x = np.iinfo(np.int64).max / 3 * 2
df = DataFrame([[-x, x], [0, x + 4]])
tm.assert_frame_equal(df.drop_duplicates(), df)
df = DataFrame([[-x, x], [x, x + 4]])
tm.assert_frame_equal(df.drop_duplicates(), df)
# GH 11864
df = DataFrame([i] * 9 for i in range(16))
df = df.append([[1] + [0] * 8], ignore_index=True)
for keep in ['first', 'last', False]:
assert df.duplicated(keep=keep).sum() == 0
def test_duplicated_on_empty_frame():
# GH 25184
df = DataFrame(columns=['a', 'b'])
dupes = df.duplicated('a')
result = df[dupes]
expected = df.copy()
tm.assert_frame_equal(result, expected)
def test_drop_duplicates_with_duplicate_column_names():
# GH17836
df = DataFrame([
[1, 2, 5],
[3, 4, 6],
[3, 4, 7]
], columns=['a', 'a', 'b'])
result0 = df.drop_duplicates()
tm.assert_frame_equal(result0, df)
result1 = df.drop_duplicates('a')
expected1 = df[:2]
tm.assert_frame_equal(result1, expected1)
def test_drop_duplicates_for_take_all():
df = DataFrame({'AAA': ['foo', 'bar', 'baz', 'bar',
'foo', 'bar', 'qux', 'foo'],
'B': ['one', 'one', 'two', 'two',
'two', 'two', 'one', 'two'],
'C': [1, 1, 2, 2, 2, 2, 1, 2],
'D': lrange(8)})
# single column
result = df.drop_duplicates('AAA')
expected = df.iloc[[0, 1, 2, 6]]
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates('AAA', keep='last')
expected = df.iloc[[2, 5, 6, 7]]
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates('AAA', keep=False)
expected = df.iloc[[2, 6]]
tm.assert_frame_equal(result, expected)
# multiple columns
result = df.drop_duplicates(['AAA', 'B'])
expected = df.iloc[[0, 1, 2, 3, 4, 6]]
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates(['AAA', 'B'], keep='last')
expected = df.iloc[[0, 1, 2, 5, 6, 7]]
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates(['AAA', 'B'], keep=False)
expected = df.iloc[[0, 1, 2, 6]]
tm.assert_frame_equal(result, expected)
def test_drop_duplicates_tuple():
df = DataFrame({('AA', 'AB'): ['foo', 'bar', 'foo', 'bar',
'foo', 'bar', 'bar', 'foo'],
'B': ['one', 'one', 'two', 'two',
'two', 'two', 'one', 'two'],
'C': [1, 1, 2, 2, 2, 2, 1, 2],
'D': lrange(8)})
# single column
result = df.drop_duplicates(('AA', 'AB'))
expected = df[:2]
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates(('AA', 'AB'), keep='last')
expected = df.loc[[6, 7]]
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates(('AA', 'AB'), keep=False)
expected = df.loc[[]] # empty df
assert len(result) == 0
tm.assert_frame_equal(result, expected)
# multi column
expected = df.loc[[0, 1, 2, 3]]
result = df.drop_duplicates((('AA', 'AB'), 'B'))
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize('df', [
DataFrame(),
DataFrame(columns=[]),
DataFrame(columns=['A', 'B', 'C']),
DataFrame(index=[]),
DataFrame(index=['A', 'B', 'C'])
])
def test_drop_duplicates_empty(df):
# GH 20516
result = df.drop_duplicates()
tm.assert_frame_equal(result, df)
result = df.copy()
result.drop_duplicates(inplace=True)
tm.assert_frame_equal(result, df)
def test_drop_duplicates_NA():
# none
df = DataFrame({'A': [None, None, 'foo', 'bar',
'foo', 'bar', 'bar', 'foo'],
'B': ['one', 'one', 'two', 'two',
'two', 'two', 'one', 'two'],
'C': [1.0, np.nan, np.nan, np.nan, 1., 1., 1, 1.],
'D': lrange(8)})
# single column
result = df.drop_duplicates('A')
expected = df.loc[[0, 2, 3]]
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates('A', keep='last')
expected = df.loc[[1, 6, 7]]
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates('A', keep=False)
expected = df.loc[[]] # empty df
tm.assert_frame_equal(result, expected)
assert len(result) == 0
# multi column
result = df.drop_duplicates(['A', 'B'])
expected = df.loc[[0, 2, 3, 6]]
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates(['A', 'B'], keep='last')
expected = df.loc[[1, 5, 6, 7]]
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates(['A', 'B'], keep=False)
expected = df.loc[[6]]
tm.assert_frame_equal(result, expected)
# nan
df = DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
'foo', 'bar', 'bar', 'foo'],
'B': ['one', 'one', 'two', 'two',
'two', 'two', 'one', 'two'],
'C': [1.0, np.nan, np.nan, np.nan, 1., 1., 1, 1.],
'D': lrange(8)})
# single column
result = df.drop_duplicates('C')
expected = df[:2]
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates('C', keep='last')
expected = df.loc[[3, 7]]
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates('C', keep=False)
expected = df.loc[[]] # empty df
tm.assert_frame_equal(result, expected)
assert len(result) == 0
# multi column
result = df.drop_duplicates(['C', 'B'])
expected = df.loc[[0, 1, 2, 4]]
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates(['C', 'B'], keep='last')
expected = df.loc[[1, 3, 6, 7]]
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates(['C', 'B'], keep=False)
expected = df.loc[[1]]
tm.assert_frame_equal(result, expected)
def test_drop_duplicates_NA_for_take_all():
# none
df = DataFrame({'A': [None, None, 'foo', 'bar',
'foo', 'baz', 'bar', 'qux'],
'C': [1.0, np.nan, np.nan, np.nan, 1., 2., 3, 1.]})
# single column
result = df.drop_duplicates('A')
expected = df.iloc[[0, 2, 3, 5, 7]]
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates('A', keep='last')
expected = df.iloc[[1, 4, 5, 6, 7]]
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates('A', keep=False)
expected = df.iloc[[5, 7]]
tm.assert_frame_equal(result, expected)
# nan
# single column
result = df.drop_duplicates('C')
expected = df.iloc[[0, 1, 5, 6]]
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates('C', keep='last')
expected = df.iloc[[3, 5, 6, 7]]
tm.assert_frame_equal(result, expected)
result = df.drop_duplicates('C', keep=False)
expected = df.iloc[[5, 6]]
tm.assert_frame_equal(result, expected)
def test_drop_duplicates_inplace():
orig = DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
'foo', 'bar', 'bar', 'foo'],
'B': ['one', 'one', 'two', 'two',
'two', 'two', 'one', 'two'],
'C': [1, 1, 2, 2, 2, 2, 1, 2],
'D': lrange(8)})
# single column
df = orig.copy()
df.drop_duplicates('A', inplace=True)
expected = orig[:2]
result = df
tm.assert_frame_equal(result, expected)
df = orig.copy()
df.drop_duplicates('A', keep='last', inplace=True)
expected = orig.loc[[6, 7]]
result = df
tm.assert_frame_equal(result, expected)
df = orig.copy()
df.drop_duplicates('A', keep=False, inplace=True)
expected = orig.loc[[]]
result = df
tm.assert_frame_equal(result, expected)
assert len(df) == 0
# multi column
df = orig.copy()
df.drop_duplicates(['A', 'B'], inplace=True)
expected = orig.loc[[0, 1, 2, 3]]
result = df
tm.assert_frame_equal(result, expected)
df = orig.copy()
df.drop_duplicates(['A', 'B'], keep='last', inplace=True)
expected = orig.loc[[0, 5, 6, 7]]
result = df
tm.assert_frame_equal(result, expected)
df = orig.copy()
df.drop_duplicates(['A', 'B'], keep=False, inplace=True)
expected = orig.loc[[0]]
result = df
tm.assert_frame_equal(result, expected)
# consider everything
orig2 = orig.loc[:, ['A', 'B', 'C']].copy()
df2 = orig2.copy()
df2.drop_duplicates(inplace=True)
# in this case only
expected = orig2.drop_duplicates(['A', 'B'])
result = df2
tm.assert_frame_equal(result, expected)
df2 = orig2.copy()
df2.drop_duplicates(keep='last', inplace=True)
expected = orig2.drop_duplicates(['A', 'B'], keep='last')
result = df2
tm.assert_frame_equal(result, expected)
df2 = orig2.copy()
df2.drop_duplicates(keep=False, inplace=True)
expected = orig2.drop_duplicates(['A', 'B'], keep=False)
result = df2
tm.assert_frame_equal(result, expected)