Repository URL to install this package:
Version:
0.24.2 ▾
|
# coding: utf-8
""" Test cases for misc plot functions """
import numpy as np
from numpy import random
from numpy.random import randn
import pytest
from pandas.compat import lmap
import pandas.util._test_decorators as td
from pandas import DataFrame
from pandas.tests.plotting.common import TestPlotBase, _check_plot_works
import pandas.util.testing as tm
import pandas.plotting as plotting
@td.skip_if_mpl
def test_import_error_message():
# GH-19810
df = DataFrame({"A": [1, 2]})
with pytest.raises(ImportError, match='matplotlib is required'):
df.plot()
@td.skip_if_no_mpl
class TestSeriesPlots(TestPlotBase):
def setup_method(self, method):
TestPlotBase.setup_method(self, method)
import matplotlib as mpl
mpl.rcdefaults()
self.ts = tm.makeTimeSeries()
self.ts.name = 'ts'
@pytest.mark.slow
def test_autocorrelation_plot(self):
from pandas.plotting import autocorrelation_plot
_check_plot_works(autocorrelation_plot, series=self.ts)
_check_plot_works(autocorrelation_plot, series=self.ts.values)
ax = autocorrelation_plot(self.ts, label='Test')
self._check_legend_labels(ax, labels=['Test'])
@pytest.mark.slow
def test_lag_plot(self):
from pandas.plotting import lag_plot
_check_plot_works(lag_plot, series=self.ts)
_check_plot_works(lag_plot, series=self.ts, lag=5)
@pytest.mark.slow
def test_bootstrap_plot(self):
from pandas.plotting import bootstrap_plot
_check_plot_works(bootstrap_plot, series=self.ts, size=10)
@td.skip_if_no_mpl
class TestDataFramePlots(TestPlotBase):
# This XPASSES when tested with mpl == 3.0.1
@td.xfail_if_mpl_2_2
@td.skip_if_no_scipy
def test_scatter_matrix_axis(self):
scatter_matrix = plotting.scatter_matrix
with tm.RNGContext(42):
df = DataFrame(randn(100, 3))
# we are plotting multiples on a sub-plot
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(scatter_matrix, filterwarnings='always',
frame=df, range_padding=.1)
axes0_labels = axes[0][0].yaxis.get_majorticklabels()
# GH 5662
expected = ['-2', '0', '2']
self._check_text_labels(axes0_labels, expected)
self._check_ticks_props(
axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)
df[0] = ((df[0] - 2) / 3)
# we are plotting multiples on a sub-plot
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(scatter_matrix, filterwarnings='always',
frame=df, range_padding=.1)
axes0_labels = axes[0][0].yaxis.get_majorticklabels()
expected = ['-1.0', '-0.5', '0.0']
self._check_text_labels(axes0_labels, expected)
self._check_ticks_props(
axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)
@pytest.mark.slow
def test_andrews_curves(self, iris):
from pandas.plotting import andrews_curves
from matplotlib import cm
df = iris
_check_plot_works(andrews_curves, frame=df, class_column='Name')
rgba = ('#556270', '#4ECDC4', '#C7F464')
ax = _check_plot_works(andrews_curves, frame=df,
class_column='Name', color=rgba)
self._check_colors(
ax.get_lines()[:10], linecolors=rgba, mapping=df['Name'][:10])
cnames = ['dodgerblue', 'aquamarine', 'seagreen']
ax = _check_plot_works(andrews_curves, frame=df,
class_column='Name', color=cnames)
self._check_colors(
ax.get_lines()[:10], linecolors=cnames, mapping=df['Name'][:10])
ax = _check_plot_works(andrews_curves, frame=df,
class_column='Name', colormap=cm.jet)
cmaps = lmap(cm.jet, np.linspace(0, 1, df['Name'].nunique()))
self._check_colors(
ax.get_lines()[:10], linecolors=cmaps, mapping=df['Name'][:10])
length = 10
df = DataFrame({"A": random.rand(length),
"B": random.rand(length),
"C": random.rand(length),
"Name": ["A"] * length})
_check_plot_works(andrews_curves, frame=df, class_column='Name')
rgba = ('#556270', '#4ECDC4', '#C7F464')
ax = _check_plot_works(andrews_curves, frame=df,
class_column='Name', color=rgba)
self._check_colors(
ax.get_lines()[:10], linecolors=rgba, mapping=df['Name'][:10])
cnames = ['dodgerblue', 'aquamarine', 'seagreen']
ax = _check_plot_works(andrews_curves, frame=df,
class_column='Name', color=cnames)
self._check_colors(
ax.get_lines()[:10], linecolors=cnames, mapping=df['Name'][:10])
ax = _check_plot_works(andrews_curves, frame=df,
class_column='Name', colormap=cm.jet)
cmaps = lmap(cm.jet, np.linspace(0, 1, df['Name'].nunique()))
self._check_colors(
ax.get_lines()[:10], linecolors=cmaps, mapping=df['Name'][:10])
colors = ['b', 'g', 'r']
df = DataFrame({"A": [1, 2, 3],
"B": [1, 2, 3],
"C": [1, 2, 3],
"Name": colors})
ax = andrews_curves(df, 'Name', color=colors)
handles, labels = ax.get_legend_handles_labels()
self._check_colors(handles, linecolors=colors)
with tm.assert_produces_warning(FutureWarning):
andrews_curves(data=df, class_column='Name')
@pytest.mark.slow
def test_parallel_coordinates(self, iris):
from pandas.plotting import parallel_coordinates
from matplotlib import cm
df = iris
ax = _check_plot_works(parallel_coordinates,
frame=df, class_column='Name')
nlines = len(ax.get_lines())
nxticks = len(ax.xaxis.get_ticklabels())
rgba = ('#556270', '#4ECDC4', '#C7F464')
ax = _check_plot_works(parallel_coordinates,
frame=df, class_column='Name', color=rgba)
self._check_colors(
ax.get_lines()[:10], linecolors=rgba, mapping=df['Name'][:10])
cnames = ['dodgerblue', 'aquamarine', 'seagreen']
ax = _check_plot_works(parallel_coordinates,
frame=df, class_column='Name', color=cnames)
self._check_colors(
ax.get_lines()[:10], linecolors=cnames, mapping=df['Name'][:10])
ax = _check_plot_works(parallel_coordinates,
frame=df, class_column='Name', colormap=cm.jet)
cmaps = lmap(cm.jet, np.linspace(0, 1, df['Name'].nunique()))
self._check_colors(
ax.get_lines()[:10], linecolors=cmaps, mapping=df['Name'][:10])
ax = _check_plot_works(parallel_coordinates,
frame=df, class_column='Name', axvlines=False)
assert len(ax.get_lines()) == (nlines - nxticks)
colors = ['b', 'g', 'r']
df = DataFrame({"A": [1, 2, 3],
"B": [1, 2, 3],
"C": [1, 2, 3],
"Name": colors})
ax = parallel_coordinates(df, 'Name', color=colors)
handles, labels = ax.get_legend_handles_labels()
self._check_colors(handles, linecolors=colors)
with tm.assert_produces_warning(FutureWarning):
parallel_coordinates(data=df, class_column='Name')
with tm.assert_produces_warning(FutureWarning):
parallel_coordinates(df, 'Name', colors=colors)
# not sure if this is indicative of a problem
@pytest.mark.filterwarnings("ignore:Attempting to set:UserWarning")
def test_parallel_coordinates_with_sorted_labels(self):
""" For #15908 """
from pandas.plotting import parallel_coordinates
df = DataFrame({"feat": [i for i in range(30)],
"class": [2 for _ in range(10)] +
[3 for _ in range(10)] +
[1 for _ in range(10)]})
ax = parallel_coordinates(df, 'class', sort_labels=True)
polylines, labels = ax.get_legend_handles_labels()
color_label_tuples = \
zip([polyline.get_color() for polyline in polylines], labels)
ordered_color_label_tuples = sorted(color_label_tuples,
key=lambda x: x[1])
prev_next_tupels = zip([i for i in ordered_color_label_tuples[0:-1]],
[i for i in ordered_color_label_tuples[1:]])
for prev, nxt in prev_next_tupels:
# labels and colors are ordered strictly increasing
assert prev[1] < nxt[1] and prev[0] < nxt[0]
@pytest.mark.slow
def test_radviz(self, iris):
from pandas.plotting import radviz
from matplotlib import cm
df = iris
_check_plot_works(radviz, frame=df, class_column='Name')
rgba = ('#556270', '#4ECDC4', '#C7F464')
ax = _check_plot_works(
radviz, frame=df, class_column='Name', color=rgba)
# skip Circle drawn as ticks
patches = [p for p in ax.patches[:20] if p.get_label() != '']
self._check_colors(
patches[:10], facecolors=rgba, mapping=df['Name'][:10])
cnames = ['dodgerblue', 'aquamarine', 'seagreen']
_check_plot_works(radviz, frame=df, class_column='Name', color=cnames)
patches = [p for p in ax.patches[:20] if p.get_label() != '']
self._check_colors(patches, facecolors=cnames, mapping=df['Name'][:10])
_check_plot_works(radviz, frame=df,
class_column='Name', colormap=cm.jet)
cmaps = lmap(cm.jet, np.linspace(0, 1, df['Name'].nunique()))
patches = [p for p in ax.patches[:20] if p.get_label() != '']
self._check_colors(patches, facecolors=cmaps, mapping=df['Name'][:10])
colors = [[0., 0., 1., 1.],
[0., 0.5, 1., 1.],
[1., 0., 0., 1.]]
df = DataFrame({"A": [1, 2, 3],
"B": [2, 1, 3],
"C": [3, 2, 1],
"Name": ['b', 'g', 'r']})
ax = radviz(df, 'Name', color=colors)
handles, labels = ax.get_legend_handles_labels()
self._check_colors(handles, facecolors=colors)
@pytest.mark.slow
def test_subplot_titles(self, iris):
df = iris.drop('Name', axis=1).head()
# Use the column names as the subplot titles
title = list(df.columns)
# Case len(title) == len(df)
plot = df.plot(subplots=True, title=title)
assert [p.get_title() for p in plot] == title
# Case len(title) > len(df)
pytest.raises(ValueError, df.plot, subplots=True,
title=title + ["kittens > puppies"])
# Case len(title) < len(df)
pytest.raises(ValueError, df.plot, subplots=True, title=title[:2])
# Case subplots=False and title is of type list
pytest.raises(ValueError, df.plot, subplots=False, title=title)
# Case df with 3 numeric columns but layout of (2,2)
plot = df.drop('SepalWidth', axis=1).plot(subplots=True, layout=(2, 2),
title=title[:-1])
title_list = [ax.get_title() for sublist in plot for ax in sublist]
assert title_list == title[:3] + ['']
def test_get_standard_colors_random_seed(self):
# GH17525
df = DataFrame(np.zeros((10, 10)))
# Make sure that the random seed isn't reset by _get_standard_colors
plotting.parallel_coordinates(df, 0)
rand1 = random.random()
plotting.parallel_coordinates(df, 0)
rand2 = random.random()
assert rand1 != rand2
# Make sure it produces the same colors every time it's called
from pandas.plotting._style import _get_standard_colors
color1 = _get_standard_colors(1, color_type='random')
color2 = _get_standard_colors(1, color_type='random')
assert color1 == color2
def test_get_standard_colors_default_num_colors(self):
from pandas.plotting._style import _get_standard_colors
# Make sure the default color_types returns the specified amount
color1 = _get_standard_colors(1, color_type='default')
color2 = _get_standard_colors(9, color_type='default')
color3 = _get_standard_colors(20, color_type='default')
assert len(color1) == 1
assert len(color2) == 9
assert len(color3) == 20
def test_plot_single_color(self):
# Example from #20585. All 3 bars should have the same color
df = DataFrame({'account-start': ['2017-02-03', '2017-03-03',
'2017-01-01'],
'client': ['Alice Anders', 'Bob Baker',
'Charlie Chaplin'],
'balance': [-1432.32, 10.43, 30000.00],
'db-id': [1234, 2424, 251],
'proxy-id': [525, 1525, 2542],
'rank': [52, 525, 32],
})
ax = df.client.value_counts().plot.bar()
colors = lmap(lambda rect: rect.get_facecolor(),
ax.get_children()[0:3])
assert all(color == colors[0] for color in colors)
def test_get_standard_colors_no_appending(self):
# GH20726
# Make sure not to add more colors so that matplotlib can cycle
# correctly.
from matplotlib import cm
color_before = cm.gnuplot(range(5))
color_after = plotting._style._get_standard_colors(
1, color=color_before)
assert len(color_after) == len(color_before)
df = DataFrame(np.random.randn(48, 4), columns=list("ABCD"))
color_list = cm.gnuplot(np.linspace(0, 1, 16))
p = df.A.plot.bar(figsize=(16, 7), color=color_list)
assert (p.patches[1].get_facecolor()
== p.patches[17].get_facecolor())