Repository URL to install this package:
Version:
0.24.2 ▾
|
# coding=utf-8
# pylint: disable-msg=E1101,W0612
from datetime import datetime, timedelta
from distutils.version import LooseVersion
import numpy as np
from numpy import nan
import pytest
import pytz
from pandas._libs.tslib import iNaT
from pandas.compat import range
from pandas.errors import PerformanceWarning
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
Categorical, DataFrame, Index, IntervalIndex, MultiIndex, NaT, Series,
Timestamp, date_range, isna)
from pandas.core.series import remove_na
import pandas.util.testing as tm
from pandas.util.testing import assert_frame_equal, assert_series_equal
try:
import scipy
_is_scipy_ge_0190 = (LooseVersion(scipy.__version__) >=
LooseVersion('0.19.0'))
except ImportError:
_is_scipy_ge_0190 = False
def _skip_if_no_pchip():
try:
from scipy.interpolate import pchip_interpolate # noqa
except ImportError:
import pytest
pytest.skip('scipy.interpolate.pchip missing')
def _skip_if_no_akima():
try:
from scipy.interpolate import Akima1DInterpolator # noqa
except ImportError:
import pytest
pytest.skip('scipy.interpolate.Akima1DInterpolator missing')
def _simple_ts(start, end, freq='D'):
rng = date_range(start, end, freq=freq)
return Series(np.random.randn(len(rng)), index=rng)
class TestSeriesMissingData():
def test_remove_na_deprecation(self):
# see gh-16971
with tm.assert_produces_warning(FutureWarning):
remove_na(Series([]))
def test_timedelta_fillna(self):
# GH 3371
s = Series([Timestamp('20130101'), Timestamp('20130101'),
Timestamp('20130102'), Timestamp('20130103 9:01:01')])
td = s.diff()
# reg fillna
with tm.assert_produces_warning(FutureWarning):
result = td.fillna(0)
expected = Series([timedelta(0), timedelta(0), timedelta(1),
timedelta(days=1, seconds=9 * 3600 + 60 + 1)])
assert_series_equal(result, expected)
# interpreted as seconds, deprecated
with tm.assert_produces_warning(FutureWarning):
result = td.fillna(1)
expected = Series([timedelta(seconds=1),
timedelta(0), timedelta(1),
timedelta(days=1, seconds=9 * 3600 + 60 + 1)])
assert_series_equal(result, expected)
result = td.fillna(timedelta(days=1, seconds=1))
expected = Series([timedelta(days=1, seconds=1), timedelta(0),
timedelta(1),
timedelta(days=1, seconds=9 * 3600 + 60 + 1)])
assert_series_equal(result, expected)
result = td.fillna(np.timedelta64(int(1e9)))
expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1),
timedelta(days=1, seconds=9 * 3600 + 60 + 1)])
assert_series_equal(result, expected)
result = td.fillna(NaT)
expected = Series([NaT, timedelta(0), timedelta(1),
timedelta(days=1, seconds=9 * 3600 + 60 + 1)],
dtype='m8[ns]')
assert_series_equal(result, expected)
# ffill
td[2] = np.nan
result = td.ffill()
with tm.assert_produces_warning(FutureWarning):
expected = td.fillna(0)
expected[0] = np.nan
assert_series_equal(result, expected)
# bfill
td[2] = np.nan
result = td.bfill()
with tm.assert_produces_warning(FutureWarning):
expected = td.fillna(0)
expected[2] = timedelta(days=1, seconds=9 * 3600 + 60 + 1)
assert_series_equal(result, expected)
def test_datetime64_fillna(self):
s = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp(
'20130102'), Timestamp('20130103 9:01:01')])
s[2] = np.nan
# reg fillna
result = s.fillna(Timestamp('20130104'))
expected = Series([Timestamp('20130101'), Timestamp(
'20130101'), Timestamp('20130104'), Timestamp('20130103 9:01:01')])
assert_series_equal(result, expected)
result = s.fillna(NaT)
expected = s
assert_series_equal(result, expected)
# ffill
result = s.ffill()
expected = Series([Timestamp('20130101'), Timestamp(
'20130101'), Timestamp('20130101'), Timestamp('20130103 9:01:01')])
assert_series_equal(result, expected)
# bfill
result = s.bfill()
expected = Series([Timestamp('20130101'), Timestamp('20130101'),
Timestamp('20130103 9:01:01'), Timestamp(
'20130103 9:01:01')])
assert_series_equal(result, expected)
# GH 6587
# make sure that we are treating as integer when filling
# this also tests inference of a datetime-like with NaT's
s = Series([pd.NaT, pd.NaT, '2013-08-05 15:30:00.000001'])
expected = Series(
['2013-08-05 15:30:00.000001', '2013-08-05 15:30:00.000001',
'2013-08-05 15:30:00.000001'], dtype='M8[ns]')
result = s.fillna(method='backfill')
assert_series_equal(result, expected)
def test_datetime64_tz_fillna(self):
for tz in ['US/Eastern', 'Asia/Tokyo']:
# DatetimeBlock
s = Series([Timestamp('2011-01-01 10:00'), pd.NaT,
Timestamp('2011-01-03 10:00'), pd.NaT])
null_loc = pd.Series([False, True, False, True])
result = s.fillna(pd.Timestamp('2011-01-02 10:00'))
expected = Series([Timestamp('2011-01-01 10:00'),
Timestamp('2011-01-02 10:00'),
Timestamp('2011-01-03 10:00'),
Timestamp('2011-01-02 10:00')])
tm.assert_series_equal(expected, result)
# check s is not changed
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna(pd.Timestamp('2011-01-02 10:00', tz=tz))
expected = Series([Timestamp('2011-01-01 10:00'),
Timestamp('2011-01-02 10:00', tz=tz),
Timestamp('2011-01-03 10:00'),
Timestamp('2011-01-02 10:00', tz=tz)])
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna('AAA')
expected = Series([Timestamp('2011-01-01 10:00'), 'AAA',
Timestamp('2011-01-03 10:00'), 'AAA'],
dtype=object)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna({1: pd.Timestamp('2011-01-02 10:00', tz=tz),
3: pd.Timestamp('2011-01-04 10:00')})
expected = Series([Timestamp('2011-01-01 10:00'),
Timestamp('2011-01-02 10:00', tz=tz),
Timestamp('2011-01-03 10:00'),
Timestamp('2011-01-04 10:00')])
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna({1: pd.Timestamp('2011-01-02 10:00'),
3: pd.Timestamp('2011-01-04 10:00')})
expected = Series([Timestamp('2011-01-01 10:00'),
Timestamp('2011-01-02 10:00'),
Timestamp('2011-01-03 10:00'),
Timestamp('2011-01-04 10:00')])
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
# DatetimeBlockTZ
idx = pd.DatetimeIndex(['2011-01-01 10:00', pd.NaT,
'2011-01-03 10:00', pd.NaT], tz=tz)
s = pd.Series(idx)
assert s.dtype == 'datetime64[ns, {0}]'.format(tz)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna(pd.Timestamp('2011-01-02 10:00'))
expected = Series([Timestamp('2011-01-01 10:00', tz=tz),
Timestamp('2011-01-02 10:00'),
Timestamp('2011-01-03 10:00', tz=tz),
Timestamp('2011-01-02 10:00')])
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna(pd.Timestamp('2011-01-02 10:00', tz=tz))
idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-02 10:00',
'2011-01-03 10:00', '2011-01-02 10:00'],
tz=tz)
expected = Series(idx)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna(pd.Timestamp('2011-01-02 10:00',
tz=tz).to_pydatetime())
idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-02 10:00',
'2011-01-03 10:00', '2011-01-02 10:00'],
tz=tz)
expected = Series(idx)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna('AAA')
expected = Series([Timestamp('2011-01-01 10:00', tz=tz), 'AAA',
Timestamp('2011-01-03 10:00', tz=tz), 'AAA'],
dtype=object)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna({1: pd.Timestamp('2011-01-02 10:00', tz=tz),
3: pd.Timestamp('2011-01-04 10:00')})
expected = Series([Timestamp('2011-01-01 10:00', tz=tz),
Timestamp('2011-01-02 10:00', tz=tz),
Timestamp('2011-01-03 10:00', tz=tz),
Timestamp('2011-01-04 10:00')])
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna({1: pd.Timestamp('2011-01-02 10:00', tz=tz),
3: pd.Timestamp('2011-01-04 10:00', tz=tz)})
expected = Series([Timestamp('2011-01-01 10:00', tz=tz),
Timestamp('2011-01-02 10:00', tz=tz),
Timestamp('2011-01-03 10:00', tz=tz),
Timestamp('2011-01-04 10:00', tz=tz)])
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
# filling with a naive/other zone, coerce to object
result = s.fillna(Timestamp('20130101'))
expected = Series([Timestamp('2011-01-01 10:00', tz=tz),
Timestamp('2013-01-01'),
Timestamp('2011-01-03 10:00', tz=tz),
Timestamp('2013-01-01')])
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna(Timestamp('20130101', tz='US/Pacific'))
expected = Series([Timestamp('2011-01-01 10:00', tz=tz),
Timestamp('2013-01-01', tz='US/Pacific'),
Timestamp('2011-01-03 10:00', tz=tz),
Timestamp('2013-01-01', tz='US/Pacific')])
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
# with timezone
# GH 15855
df = pd.Series([pd.Timestamp('2012-11-11 00:00:00+01:00'), pd.NaT])
exp = pd.Series([pd.Timestamp('2012-11-11 00:00:00+01:00'),
pd.Timestamp('2012-11-11 00:00:00+01:00')])
assert_series_equal(df.fillna(method='pad'), exp)
df = pd.Series([pd.NaT, pd.Timestamp('2012-11-11 00:00:00+01:00')])
exp = pd.Series([pd.Timestamp('2012-11-11 00:00:00+01:00'),
pd.Timestamp('2012-11-11 00:00:00+01:00')])
assert_series_equal(df.fillna(method='bfill'), exp)
def test_fillna_consistency(self):
# GH 16402
# fillna with a tz aware to a tz-naive, should result in object
s = Series([Timestamp('20130101'), pd.NaT])
result = s.fillna(Timestamp('20130101', tz='US/Eastern'))
expected = Series([Timestamp('20130101'),
Timestamp('2013-01-01', tz='US/Eastern')],
dtype='object')
assert_series_equal(result, expected)
# where (we ignore the errors=)
result = s.where([True, False],
Timestamp('20130101', tz='US/Eastern'),
errors='ignore')
assert_series_equal(result, expected)
result = s.where([True, False],
Timestamp('20130101', tz='US/Eastern'),
errors='ignore')
assert_series_equal(result, expected)
# with a non-datetime
result = s.fillna('foo')
expected = Series([Timestamp('20130101'),
'foo'])
assert_series_equal(result, expected)
# assignment
s2 = s.copy()
s2[1] = 'foo'
assert_series_equal(s2, expected)
def test_datetime64tz_fillna_round_issue(self):
# GH 14872
data = pd.Series([pd.NaT, pd.NaT,
datetime(2016, 12, 12, 22, 24, 6, 100001,
tzinfo=pytz.utc)])
filled = data.fillna(method='bfill')
expected = pd.Series([datetime(2016, 12, 12, 22, 24, 6,
100001, tzinfo=pytz.utc),
datetime(2016, 12, 12, 22, 24, 6,
100001, tzinfo=pytz.utc),
datetime(2016, 12, 12, 22, 24, 6,
100001, tzinfo=pytz.utc)])
assert_series_equal(filled, expected)
def test_fillna_downcast(self):
# GH 15277
# infer int64 from float64
s = pd.Series([1., np.nan])
result = s.fillna(0, downcast='infer')
expected = pd.Series([1, 0])
assert_series_equal(result, expected)
# infer int64 from float64 when fillna value is a dict
s = pd.Series([1., np.nan])
result = s.fillna({1: 0}, downcast='infer')
expected = pd.Series([1, 0])
assert_series_equal(result, expected)
def test_fillna_int(self):
s = Series(np.random.randint(-100, 100, 50))
s.fillna(method='ffill', inplace=True)
assert_series_equal(s.fillna(method='ffill', inplace=False), s)
def test_fillna_raise(self):
s = Series(np.random.randint(-100, 100, 50))
msg = ('"value" parameter must be a scalar or dict, but you passed a'
' "list"')
with pytest.raises(TypeError, match=msg):
s.fillna([1, 2])
msg = ('"value" parameter must be a scalar or dict, but you passed a'
' "tuple"')
with pytest.raises(TypeError, match=msg):
s.fillna((1, 2))
# related GH 9217, make sure limit is an int and greater than 0
s = Series([1, 2, 3, None])
msg = (r"Cannot specify both 'value' and 'method'\.|"
r"Limit must be greater than 0|"
"Limit must be an integer")
for limit in [-1, 0, 1., 2.]:
for method in ['backfill', 'bfill', 'pad', 'ffill', None]:
with pytest.raises(ValueError, match=msg):
s.fillna(1, limit=limit, method=method)
def test_categorical_nan_equality(self):
cat = Series(Categorical(["a", "b", "c", np.nan]))
exp = Series([True, True, True, False])
res = (cat == cat)
tm.assert_series_equal(res, exp)
def test_categorical_nan_handling(self):
# NaNs are represented as -1 in labels
s = Series(Categorical(["a", "b", np.nan, "a"]))
tm.assert_index_equal(s.cat.categories, Index(["a", "b"]))
tm.assert_numpy_array_equal(s.values.codes,
np.array([0, 1, -1, 0], dtype=np.int8))
@pytest.mark.parametrize('fill_value, expected_output', [
('a', ['a', 'a', 'b', 'a', 'a']),
({1: 'a', 3: 'b', 4: 'b'}, ['a', 'a', 'b', 'b', 'b']),
({1: 'a'}, ['a', 'a', 'b', np.nan, np.nan]),
({1: 'a', 3: 'b'}, ['a', 'a', 'b', 'b', np.nan]),
(Series('a'), ['a', np.nan, 'b', np.nan, np.nan]),
(Series('a', index=[1]), ['a', 'a', 'b', np.nan, np.nan]),
(Series({1: 'a', 3: 'b'}), ['a', 'a', 'b', 'b', np.nan]),
(Series(['a', 'b'], index=[3, 4]), ['a', np.nan, 'b', 'a', 'b'])
])
def test_fillna_categorical(self, fill_value, expected_output):
# GH 17033
# Test fillna for a Categorical series
data = ['a', np.nan, 'b', np.nan, np.nan]
s = Series(Categorical(data, categories=['a', 'b']))
exp = Series(Categorical(expected_output, categories=['a', 'b']))
tm.assert_series_equal(s.fillna(fill_value), exp)
def test_fillna_categorical_raise(self):
data = ['a', np.nan, 'b', np.nan, np.nan]
s = Series(Categorical(data, categories=['a', 'b']))
with pytest.raises(ValueError,
match="fill value must be in categories"):
s.fillna('d')
with pytest.raises(ValueError,
match="fill value must be in categories"):
s.fillna(Series('d'))
with pytest.raises(ValueError,
match="fill value must be in categories"):
s.fillna({1: 'd', 3: 'a'})
msg = ('"value" parameter must be a scalar or '
'dict, but you passed a "list"')
with pytest.raises(TypeError, match=msg):
s.fillna(['a', 'b'])
msg = ('"value" parameter must be a scalar or '
'dict, but you passed a "tuple"')
with pytest.raises(TypeError, match=msg):
s.fillna(('a', 'b'))
msg = ('"value" parameter must be a scalar, dict '
'or Series, but you passed a "DataFrame"')
with pytest.raises(TypeError, match=msg):
s.fillna(DataFrame({1: ['a'], 3: ['b']}))
def test_fillna_nat(self):
series = Series([0, 1, 2, iNaT], dtype='M8[ns]')
filled = series.fillna(method='pad')
filled2 = series.fillna(value=series.values[2])
expected = series.copy()
expected.values[3] = expected.values[2]
assert_series_equal(filled, expected)
assert_series_equal(filled2, expected)
df = DataFrame({'A': series})
filled = df.fillna(method='pad')
filled2 = df.fillna(value=series.values[2])
expected = DataFrame({'A': expected})
assert_frame_equal(filled, expected)
assert_frame_equal(filled2, expected)
series = Series([iNaT, 0, 1, 2], dtype='M8[ns]')
filled = series.fillna(method='bfill')
filled2 = series.fillna(value=series[1])
expected = series.copy()
expected[0] = expected[1]
assert_series_equal(filled, expected)
assert_series_equal(filled2, expected)
df = DataFrame({'A': series})
filled = df.fillna(method='bfill')
filled2 = df.fillna(value=series[1])
expected = DataFrame({'A': expected})
assert_frame_equal(filled, expected)
assert_frame_equal(filled2, expected)
def test_isna_for_inf(self):
s = Series(['a', np.inf, np.nan, 1.0])
with pd.option_context('mode.use_inf_as_na', True):
r = s.isna()
dr = s.dropna()
e = Series([False, True, True, False])
de = Series(['a', 1.0], index=[0, 3])
tm.assert_series_equal(r, e)
tm.assert_series_equal(dr, de)
def test_isnull_for_inf_deprecated(self):
# gh-17115
s = Series(['a', np.inf, np.nan, 1.0])
with pd.option_context('mode.use_inf_as_null', True):
r = s.isna()
dr = s.dropna()
e = Series([False, True, True, False])
de = Series(['a', 1.0], index=[0, 3])
tm.assert_series_equal(r, e)
tm.assert_series_equal(dr, de)
def test_fillna(self, datetime_series):
ts = Series([0., 1., 2., 3., 4.], index=tm.makeDateIndex(5))
tm.assert_series_equal(ts, ts.fillna(method='ffill'))
ts[2] = np.NaN
exp = Series([0., 1., 1., 3., 4.], index=ts.index)
tm.assert_series_equal(ts.fillna(method='ffill'), exp)
exp = Series([0., 1., 3., 3., 4.], index=ts.index)
tm.assert_series_equal(ts.fillna(method='backfill'), exp)
exp = Series([0., 1., 5., 3., 4.], index=ts.index)
tm.assert_series_equal(ts.fillna(value=5), exp)
msg = "Must specify a fill 'value' or 'method'"
with pytest.raises(ValueError, match=msg):
ts.fillna()
msg = "Cannot specify both 'value' and 'method'"
with pytest.raises(ValueError, match=msg):
datetime_series.fillna(value=0, method='ffill')
# GH 5703
s1 = Series([np.nan])
s2 = Series([1])
result = s1.fillna(s2)
expected = Series([1.])
assert_series_equal(result, expected)
result = s1.fillna({})
assert_series_equal(result, s1)
result = s1.fillna(Series(()))
assert_series_equal(result, s1)
result = s2.fillna(s1)
assert_series_equal(result, s2)
result = s1.fillna({0: 1})
assert_series_equal(result, expected)
result = s1.fillna({1: 1})
assert_series_equal(result, Series([np.nan]))
result = s1.fillna({0: 1, 1: 1})
assert_series_equal(result, expected)
result = s1.fillna(Series({0: 1, 1: 1}))
assert_series_equal(result, expected)
result = s1.fillna(Series({0: 1, 1: 1}, index=[4, 5]))
assert_series_equal(result, s1)
s1 = Series([0, 1, 2], list('abc'))
s2 = Series([0, np.nan, 2], list('bac'))
result = s2.fillna(s1)
expected = Series([0, 0, 2.], list('bac'))
assert_series_equal(result, expected)
# limit
s = Series(np.nan, index=[0, 1, 2])
result = s.fillna(999, limit=1)
expected = Series([999, np.nan, np.nan], index=[0, 1, 2])
assert_series_equal(result, expected)
result = s.fillna(999, limit=2)
expected = Series([999, 999, np.nan], index=[0, 1, 2])
assert_series_equal(result, expected)
# GH 9043
# make sure a string representation of int/float values can be filled
# correctly without raising errors or being converted
vals = ['0', '1.5', '-0.3']
for val in vals:
s = Series([0, 1, np.nan, np.nan, 4], dtype='float64')
result = s.fillna(val)
expected = Series([0, 1, val, val, 4], dtype='object')
assert_series_equal(result, expected)
def test_fillna_bug(self):
x = Series([nan, 1., nan, 3., nan], ['z', 'a', 'b', 'c', 'd'])
filled = x.fillna(method='ffill')
expected = Series([nan, 1., 1., 3., 3.], x.index)
assert_series_equal(filled, expected)
filled = x.fillna(method='bfill')
expected = Series([1., 1., 3., 3., nan], x.index)
assert_series_equal(filled, expected)
def test_fillna_inplace(self):
x = Series([nan, 1., nan, 3., nan], ['z', 'a', 'b', 'c', 'd'])
y = x.copy()
y.fillna(value=0, inplace=True)
expected = x.fillna(value=0)
assert_series_equal(y, expected)
def test_fillna_invalid_method(self, datetime_series):
try:
datetime_series.fillna(method='ffil')
except ValueError as inst:
assert 'ffil' in str(inst)
def test_ffill(self):
ts = Series([0., 1., 2., 3., 4.], index=tm.makeDateIndex(5))
ts[2] = np.NaN
assert_series_equal(ts.ffill(), ts.fillna(method='ffill'))
def test_ffill_mixed_dtypes_without_missing_data(self):
# GH14956
series = pd.Series([datetime(2015, 1, 1, tzinfo=pytz.utc), 1])
result = series.ffill()
assert_series_equal(series, result)
def test_bfill(self):
ts = Series([0., 1., 2., 3., 4.], index=tm.makeDateIndex(5))
ts[2] = np.NaN
assert_series_equal(ts.bfill(), ts.fillna(method='bfill'))
def test_timedelta64_nan(self):
td = Series([timedelta(days=i) for i in range(10)])
# nan ops on timedeltas
td1 = td.copy()
td1[0] = np.nan
assert isna(td1[0])
assert td1[0].value == iNaT
td1[0] = td[0]
assert not isna(td1[0])
td1[1] = iNaT
assert isna(td1[1])
assert td1[1].value == iNaT
td1[1] = td[1]
assert not isna(td1[1])
td1[2] = NaT
assert isna(td1[2])
assert td1[2].value == iNaT
td1[2] = td[2]
assert not isna(td1[2])
# boolean setting
# this doesn't work, not sure numpy even supports it
# result = td[(td>np.timedelta64(timedelta(days=3))) &
# td<np.timedelta64(timedelta(days=7)))] = np.nan
# assert isna(result).sum() == 7
# NumPy limitiation =(
# def test_logical_range_select(self):
# np.random.seed(12345)
# selector = -0.5 <= datetime_series <= 0.5
# expected = (datetime_series >= -0.5) & (datetime_series <= 0.5)
# assert_series_equal(selector, expected)
def test_dropna_empty(self):
s = Series([])
assert len(s.dropna()) == 0
s.dropna(inplace=True)
assert len(s) == 0
# invalid axis
msg = r"No axis named 1 for object type <(class|type) 'type'>"
with pytest.raises(ValueError, match=msg):
s.dropna(axis=1)
def test_datetime64_tz_dropna(self):
# DatetimeBlock
s = Series([Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp(
'2011-01-03 10:00'), pd.NaT])
result = s.dropna()
expected = Series([Timestamp('2011-01-01 10:00'),
Timestamp('2011-01-03 10:00')], index=[0, 2])
tm.assert_series_equal(result, expected)
# DatetimeBlockTZ
idx = pd.DatetimeIndex(['2011-01-01 10:00', pd.NaT,
'2011-01-03 10:00', pd.NaT],
tz='Asia/Tokyo')
s = pd.Series(idx)
assert s.dtype == 'datetime64[ns, Asia/Tokyo]'
result = s.dropna()
expected = Series([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'),
Timestamp('2011-01-03 10:00', tz='Asia/Tokyo')],
index=[0, 2])
assert result.dtype == 'datetime64[ns, Asia/Tokyo]'
tm.assert_series_equal(result, expected)
def test_dropna_no_nan(self):
for s in [Series([1, 2, 3], name='x'), Series(
[False, True, False], name='x')]:
result = s.dropna()
tm.assert_series_equal(result, s)
assert result is not s
s2 = s.copy()
s2.dropna(inplace=True)
tm.assert_series_equal(s2, s)
def test_dropna_intervals(self):
s = Series([np.nan, 1, 2, 3], IntervalIndex.from_arrays(
[np.nan, 0, 1, 2],
[np.nan, 1, 2, 3]))
result = s.dropna()
expected = s.iloc[1:]
assert_series_equal(result, expected)
def test_valid(self, datetime_series):
ts = datetime_series.copy()
ts[::2] = np.NaN
result = ts.dropna()
assert len(result) == ts.count()
tm.assert_series_equal(result, ts[1::2])
tm.assert_series_equal(result, ts[pd.notna(ts)])
def test_isna(self):
ser = Series([0, 5.4, 3, nan, -0.001])
expected = Series([False, False, False, True, False])
tm.assert_series_equal(ser.isna(), expected)
ser = Series(["hi", "", nan])
expected = Series([False, False, True])
tm.assert_series_equal(ser.isna(), expected)
def test_notna(self):
ser = Series([0, 5.4, 3, nan, -0.001])
expected = Series([True, True, True, False, True])
tm.assert_series_equal(ser.notna(), expected)
ser = Series(["hi", "", nan])
expected = Series([True, True, False])
tm.assert_series_equal(ser.notna(), expected)
def test_pad_nan(self):
x = Series([np.nan, 1., np.nan, 3., np.nan], ['z', 'a', 'b', 'c', 'd'],
dtype=float)
x.fillna(method='pad', inplace=True)
expected = Series([np.nan, 1.0, 1.0, 3.0, 3.0],
['z', 'a', 'b', 'c', 'd'], dtype=float)
assert_series_equal(x[1:], expected[1:])
assert np.isnan(x[0]), np.isnan(expected[0])
def test_pad_require_monotonicity(self):
rng = date_range('1/1/2000', '3/1/2000', freq='B')
# neither monotonic increasing or decreasing
rng2 = rng[[1, 0, 2]]
msg = "index must be monotonic increasing or decreasing"
with pytest.raises(ValueError, match=msg):
rng2.get_indexer(rng, method='pad')
def test_dropna_preserve_name(self, datetime_series):
datetime_series[:5] = np.nan
result = datetime_series.dropna()
assert result.name == datetime_series.name
name = datetime_series.name
ts = datetime_series.copy()
ts.dropna(inplace=True)
assert ts.name == name
def test_fill_value_when_combine_const(self):
# GH12723
s = Series([0, 1, np.nan, 3, 4, 5])
exp = s.fillna(0).add(2)
res = s.add(2, fill_value=0)
assert_series_equal(res, exp)
def test_series_fillna_limit(self):
index = np.arange(10)
s = Series(np.random.randn(10), index=index)
result = s[:2].reindex(index)
result = result.fillna(method='pad', limit=5)
expected = s[:2].reindex(index).fillna(method='pad')
expected[-3:] = np.nan
assert_series_equal(result, expected)
result = s[-2:].reindex(index)
result = result.fillna(method='bfill', limit=5)
expected = s[-2:].reindex(index).fillna(method='backfill')
expected[:3] = np.nan
assert_series_equal(result, expected)
def test_sparse_series_fillna_limit(self):
index = np.arange(10)
s = Series(np.random.randn(10), index=index)
ss = s[:2].reindex(index).to_sparse()
# TODO: what is this test doing? why are result an expected
# the same call to fillna?
with tm.assert_produces_warning(PerformanceWarning):
# TODO: release-note fillna performance warning
result = ss.fillna(method='pad', limit=5)
expected = ss.fillna(method='pad', limit=5)
expected = expected.to_dense()
expected[-3:] = np.nan
expected = expected.to_sparse()
assert_series_equal(result, expected)
ss = s[-2:].reindex(index).to_sparse()
with tm.assert_produces_warning(PerformanceWarning):
result = ss.fillna(method='backfill', limit=5)
expected = ss.fillna(method='backfill')
expected = expected.to_dense()
expected[:3] = np.nan
expected = expected.to_sparse()
assert_series_equal(result, expected)
def test_sparse_series_pad_backfill_limit(self):
index = np.arange(10)
s = Series(np.random.randn(10), index=index)
s = s.to_sparse()
result = s[:2].reindex(index, method='pad', limit=5)
with tm.assert_produces_warning(PerformanceWarning):
expected = s[:2].reindex(index).fillna(method='pad')
expected = expected.to_dense()
expected[-3:] = np.nan
expected = expected.to_sparse()
assert_series_equal(result, expected)
result = s[-2:].reindex(index, method='backfill', limit=5)
with tm.assert_produces_warning(PerformanceWarning):
expected = s[-2:].reindex(index).fillna(method='backfill')
expected = expected.to_dense()
expected[:3] = np.nan
expected = expected.to_sparse()
assert_series_equal(result, expected)
def test_series_pad_backfill_limit(self):
index = np.arange(10)
s = Series(np.random.randn(10), index=index)
result = s[:2].reindex(index, method='pad', limit=5)
expected = s[:2].reindex(index).fillna(method='pad')
expected[-3:] = np.nan
assert_series_equal(result, expected)
result = s[-2:].reindex(index, method='backfill', limit=5)
expected = s[-2:].reindex(index).fillna(method='backfill')
expected[:3] = np.nan
assert_series_equal(result, expected)
class TestSeriesInterpolateData():
def test_interpolate(self, datetime_series, string_series):
ts = Series(np.arange(len(datetime_series), dtype=float),
datetime_series.index)
ts_copy = ts.copy()
ts_copy[5:10] = np.NaN
linear_interp = ts_copy.interpolate(method='linear')
tm.assert_series_equal(linear_interp, ts)
ord_ts = Series([d.toordinal() for d in datetime_series.index],
index=datetime_series.index).astype(float)
ord_ts_copy = ord_ts.copy()
ord_ts_copy[5:10] = np.NaN
time_interp = ord_ts_copy.interpolate(method='time')
tm.assert_series_equal(time_interp, ord_ts)
# try time interpolation on a non-TimeSeries
# Only raises ValueError if there are NaNs.
non_ts = string_series.copy()
non_ts[0] = np.NaN
msg = ("time-weighted interpolation only works on Series or DataFrames"
" with a DatetimeIndex")
with pytest.raises(ValueError, match=msg):
non_ts.interpolate(method='time')
@td.skip_if_no_scipy
def test_interpolate_pchip(self):
_skip_if_no_pchip()
ser = Series(np.sort(np.random.uniform(size=100)))
# interpolate at new_index
new_index = ser.index.union(Index([49.25, 49.5, 49.75, 50.25, 50.5,
50.75]))
interp_s = ser.reindex(new_index).interpolate(method='pchip')
# does not blow up, GH5977
interp_s[49:51]
@td.skip_if_no_scipy
def test_interpolate_akima(self):
_skip_if_no_akima()
ser = Series([10, 11, 12, 13])
expected = Series([11.00, 11.25, 11.50, 11.75,
12.00, 12.25, 12.50, 12.75, 13.00],
index=Index([1.0, 1.25, 1.5, 1.75,
2.0, 2.25, 2.5, 2.75, 3.0]))
# interpolate at new_index
new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75]))
interp_s = ser.reindex(new_index).interpolate(method='akima')
assert_series_equal(interp_s[1:3], expected)
@td.skip_if_no_scipy
def test_interpolate_piecewise_polynomial(self):
ser = Series([10, 11, 12, 13])
expected = Series([11.00, 11.25, 11.50, 11.75,
12.00, 12.25, 12.50, 12.75, 13.00],
index=Index([1.0, 1.25, 1.5, 1.75,
2.0, 2.25, 2.5, 2.75, 3.0]))
# interpolate at new_index
new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75]))
interp_s = ser.reindex(new_index).interpolate(
method='piecewise_polynomial')
assert_series_equal(interp_s[1:3], expected)
@td.skip_if_no_scipy
def test_interpolate_from_derivatives(self):
ser = Series([10, 11, 12, 13])
expected = Series([11.00, 11.25, 11.50, 11.75,
12.00, 12.25, 12.50, 12.75, 13.00],
index=Index([1.0, 1.25, 1.5, 1.75,
2.0, 2.25, 2.5, 2.75, 3.0]))
# interpolate at new_index
new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75]))
interp_s = ser.reindex(new_index).interpolate(
method='from_derivatives')
assert_series_equal(interp_s[1:3], expected)
@pytest.mark.parametrize("kwargs", [
{},
pytest.param({'method': 'polynomial', 'order': 1},
marks=td.skip_if_no_scipy)
])
def test_interpolate_corners(self, kwargs):
s = Series([np.nan, np.nan])
assert_series_equal(s.interpolate(**kwargs), s)
s = Series([]).interpolate()
assert_series_equal(s.interpolate(**kwargs), s)
def test_interpolate_index_values(self):
s = Series(np.nan, index=np.sort(np.random.rand(30)))
s[::3] = np.random.randn(10)
vals = s.index.values.astype(float)
result = s.interpolate(method='index')
expected = s.copy()
bad = isna(expected.values)
good = ~bad
expected = Series(np.interp(vals[bad], vals[good],
s.values[good]),
index=s.index[bad])
assert_series_equal(result[bad], expected)
# 'values' is synonymous with 'index' for the method kwarg
other_result = s.interpolate(method='values')
assert_series_equal(other_result, result)
assert_series_equal(other_result[bad], expected)
def test_interpolate_non_ts(self):
s = Series([1, 3, np.nan, np.nan, np.nan, 11])
msg = ("time-weighted interpolation only works on Series or DataFrames"
" with a DatetimeIndex")
with pytest.raises(ValueError, match=msg):
s.interpolate(method='time')
@pytest.mark.parametrize("kwargs", [
{},
pytest.param({'method': 'polynomial', 'order': 1},
marks=td.skip_if_no_scipy)
])
def test_nan_interpolate(self, kwargs):
s = Series([0, 1, np.nan, 3])
result = s.interpolate(**kwargs)
expected = Series([0., 1., 2., 3.])
assert_series_equal(result, expected)
def test_nan_irregular_index(self):
s = Series([1, 2, np.nan, 4], index=[1, 3, 5, 9])
result = s.interpolate()
expected = Series([1., 2., 3., 4.], index=[1, 3, 5, 9])
assert_series_equal(result, expected)
def test_nan_str_index(self):
s = Series([0, 1, 2, np.nan], index=list('abcd'))
result = s.interpolate()
expected = Series([0., 1., 2., 2.], index=list('abcd'))
assert_series_equal(result, expected)
@td.skip_if_no_scipy
def test_interp_quad(self):
sq = Series([1, 4, np.nan, 16], index=[1, 2, 3, 4])
result = sq.interpolate(method='quadratic')
expected = Series([1., 4., 9., 16.], index=[1, 2, 3, 4])
assert_series_equal(result, expected)
@td.skip_if_no_scipy
def test_interp_scipy_basic(self):
s = Series([1, 3, np.nan, 12, np.nan, 25])
# slinear
expected = Series([1., 3., 7.5, 12., 18.5, 25.])
result = s.interpolate(method='slinear')
assert_series_equal(result, expected)
result = s.interpolate(method='slinear', downcast='infer')
assert_series_equal(result, expected)
# nearest
expected = Series([1, 3, 3, 12, 12, 25])
result = s.interpolate(method='nearest')
assert_series_equal(result, expected.astype('float'))
result = s.interpolate(method='nearest', downcast='infer')
assert_series_equal(result, expected)
# zero
expected = Series([1, 3, 3, 12, 12, 25])
result = s.interpolate(method='zero')
assert_series_equal(result, expected.astype('float'))
result = s.interpolate(method='zero', downcast='infer')
assert_series_equal(result, expected)
# quadratic
# GH #15662.
# new cubic and quadratic interpolation algorithms from scipy 0.19.0.
# previously `splmake` was used. See scipy/scipy#6710
if _is_scipy_ge_0190:
expected = Series([1, 3., 6.823529, 12., 18.058824, 25.])
else:
expected = Series([1, 3., 6.769231, 12., 18.230769, 25.])
result = s.interpolate(method='quadratic')
assert_series_equal(result, expected)
result = s.interpolate(method='quadratic', downcast='infer')
assert_series_equal(result, expected)
# cubic
expected = Series([1., 3., 6.8, 12., 18.2, 25.])
result = s.interpolate(method='cubic')
assert_series_equal(result, expected)
def test_interp_limit(self):
s = Series([1, 3, np.nan, np.nan, np.nan, 11])
expected = Series([1., 3., 5., 7., np.nan, 11.])
result = s.interpolate(method='linear', limit=2)
assert_series_equal(result, expected)
# GH 9217, make sure limit is an int and greater than 0
methods = ['linear', 'time', 'index', 'values', 'nearest', 'zero',
'slinear', 'quadratic', 'cubic', 'barycentric', 'krogh',
'polynomial', 'spline', 'piecewise_polynomial', None,
'from_derivatives', 'pchip', 'akima']
s = pd.Series([1, 2, np.nan, np.nan, 5])
msg = (r"Limit must be greater than 0|"
"time-weighted interpolation only works on Series or"
r" DataFrames with a DatetimeIndex|"
r"invalid method '(polynomial|spline|None)' to interpolate|"
"Limit must be an integer")
for limit in [-1, 0, 1., 2.]:
for method in methods:
with pytest.raises(ValueError, match=msg):
s.interpolate(limit=limit, method=method)
def test_interp_limit_forward(self):
s = Series([1, 3, np.nan, np.nan, np.nan, 11])
# Provide 'forward' (the default) explicitly here.
expected = Series([1., 3., 5., 7., np.nan, 11.])
result = s.interpolate(method='linear', limit=2,
limit_direction='forward')
assert_series_equal(result, expected)
result = s.interpolate(method='linear', limit=2,
limit_direction='FORWARD')
assert_series_equal(result, expected)
def test_interp_unlimited(self):
# these test are for issue #16282 default Limit=None is unlimited
s = Series([np.nan, 1., 3., np.nan, np.nan, np.nan, 11., np.nan])
expected = Series([1., 1., 3., 5., 7., 9., 11., 11.])
result = s.interpolate(method='linear',
limit_direction='both')
assert_series_equal(result, expected)
expected = Series([np.nan, 1., 3., 5., 7., 9., 11., 11.])
result = s.interpolate(method='linear',
limit_direction='forward')
assert_series_equal(result, expected)
expected = Series([1., 1., 3., 5., 7., 9., 11., np.nan])
result = s.interpolate(method='linear',
limit_direction='backward')
assert_series_equal(result, expected)
def test_interp_limit_bad_direction(self):
s = Series([1, 3, np.nan, np.nan, np.nan, 11])
msg = (r"Invalid limit_direction: expecting one of \['forward',"
r" 'backward', 'both'\], got 'abc'")
with pytest.raises(ValueError, match=msg):
s.interpolate(method='linear', limit=2, limit_direction='abc')
# raises an error even if no limit is specified.
with pytest.raises(ValueError, match=msg):
s.interpolate(method='linear', limit_direction='abc')
# limit_area introduced GH #16284
def test_interp_limit_area(self):
# These tests are for issue #9218 -- fill NaNs in both directions.
s = Series([nan, nan, 3, nan, nan, nan, 7, nan, nan])
expected = Series([nan, nan, 3., 4., 5., 6., 7., nan, nan])
result = s.interpolate(method='linear', limit_area='inside')
assert_series_equal(result, expected)
expected = Series([nan, nan, 3., 4., nan, nan, 7., nan, nan])
result = s.interpolate(method='linear', limit_area='inside',
limit=1)
expected = Series([nan, nan, 3., 4., nan, 6., 7., nan, nan])
result = s.interpolate(method='linear', limit_area='inside',
limit_direction='both', limit=1)
assert_series_equal(result, expected)
expected = Series([nan, nan, 3., nan, nan, nan, 7., 7., 7.])
result = s.interpolate(method='linear', limit_area='outside')
assert_series_equal(result, expected)
expected = Series([nan, nan, 3., nan, nan, nan, 7., 7., nan])
result = s.interpolate(method='linear', limit_area='outside',
limit=1)
expected = Series([nan, 3., 3., nan, nan, nan, 7., 7., nan])
result = s.interpolate(method='linear', limit_area='outside',
limit_direction='both', limit=1)
assert_series_equal(result, expected)
expected = Series([3., 3., 3., nan, nan, nan, 7., nan, nan])
result = s.interpolate(method='linear', limit_area='outside',
direction='backward')
# raises an error even if limit type is wrong.
msg = (r"Invalid limit_area: expecting one of \['inside', 'outside'\],"
" got abc")
with pytest.raises(ValueError, match=msg):
s.interpolate(method='linear', limit_area='abc')
def test_interp_limit_direction(self):
# These tests are for issue #9218 -- fill NaNs in both directions.
s = Series([1, 3, np.nan, np.nan, np.nan, 11])
expected = Series([1., 3., np.nan, 7., 9., 11.])
result = s.interpolate(method='linear', limit=2,
limit_direction='backward')
assert_series_equal(result, expected)
expected = Series([1., 3., 5., np.nan, 9., 11.])
result = s.interpolate(method='linear', limit=1,
limit_direction='both')
assert_series_equal(result, expected)
# Check that this works on a longer series of nans.
s = Series([1, 3, np.nan, np.nan, np.nan, 7, 9, np.nan, np.nan, 12,
np.nan])
expected = Series([1., 3., 4., 5., 6., 7., 9., 10., 11., 12., 12.])
result = s.interpolate(method='linear', limit=2,
limit_direction='both')
assert_series_equal(result, expected)
expected = Series([1., 3., 4., np.nan, 6., 7., 9., 10., 11., 12., 12.])
result = s.interpolate(method='linear', limit=1,
limit_direction='both')
assert_series_equal(result, expected)
def test_interp_limit_to_ends(self):
# These test are for issue #10420 -- flow back to beginning.
s = Series([np.nan, np.nan, 5, 7, 9, np.nan])
expected = Series([5., 5., 5., 7., 9., np.nan])
result = s.interpolate(method='linear', limit=2,
limit_direction='backward')
assert_series_equal(result, expected)
expected = Series([5., 5., 5., 7., 9., 9.])
result = s.interpolate(method='linear', limit=2,
limit_direction='both')
assert_series_equal(result, expected)
def test_interp_limit_before_ends(self):
# These test are for issue #11115 -- limit ends properly.
s = Series([np.nan, np.nan, 5, 7, np.nan, np.nan])
expected = Series([np.nan, np.nan, 5., 7., 7., np.nan])
result = s.interpolate(method='linear', limit=1,
limit_direction='forward')
assert_series_equal(result, expected)
expected = Series([np.nan, 5., 5., 7., np.nan, np.nan])
result = s.interpolate(method='linear', limit=1,
limit_direction='backward')
assert_series_equal(result, expected)
expected = Series([np.nan, 5., 5., 7., 7., np.nan])
result = s.interpolate(method='linear', limit=1,
limit_direction='both')
assert_series_equal(result, expected)
@td.skip_if_no_scipy
def test_interp_all_good(self):
s = Series([1, 2, 3])
result = s.interpolate(method='polynomial', order=1)
assert_series_equal(result, s)
# non-scipy
result = s.interpolate()
assert_series_equal(result, s)
@pytest.mark.parametrize("check_scipy", [
False,
pytest.param(True, marks=td.skip_if_no_scipy)
])
def test_interp_multiIndex(self, check_scipy):
idx = MultiIndex.from_tuples([(0, 'a'), (1, 'b'), (2, 'c')])
s = Series([1, 2, np.nan], index=idx)
expected = s.copy()
expected.loc[2] = 2
result = s.interpolate()
assert_series_equal(result, expected)
msg = "Only `method=linear` interpolation is supported on MultiIndexes"
if check_scipy:
with pytest.raises(ValueError, match=msg):
s.interpolate(method='polynomial', order=1)
@td.skip_if_no_scipy
def test_interp_nonmono_raise(self):
s = Series([1, np.nan, 3], index=[0, 2, 1])
msg = "krogh interpolation requires that the index be monotonic"
with pytest.raises(ValueError, match=msg):
s.interpolate(method='krogh')
@td.skip_if_no_scipy
def test_interp_datetime64(self):
df = Series([1, np.nan, 3], index=date_range('1/1/2000', periods=3))
result = df.interpolate(method='nearest')
expected = Series([1., 1., 3.],
index=date_range('1/1/2000', periods=3))
assert_series_equal(result, expected)
def test_interp_limit_no_nans(self):
# GH 7173
s = pd.Series([1., 2., 3.])
result = s.interpolate(limit=1)
expected = s
assert_series_equal(result, expected)
@td.skip_if_no_scipy
@pytest.mark.parametrize("method", ['polynomial', 'spline'])
def test_no_order(self, method):
s = Series([0, 1, np.nan, 3])
msg = "invalid method '{}' to interpolate".format(method)
with pytest.raises(ValueError, match=msg):
s.interpolate(method=method)
@td.skip_if_no_scipy
def test_spline(self):
s = Series([1, 2, np.nan, 4, 5, np.nan, 7])
result = s.interpolate(method='spline', order=1)
expected = Series([1., 2., 3., 4., 5., 6., 7.])
assert_series_equal(result, expected)
@td.skip_if_no('scipy', min_version='0.15')
def test_spline_extrapolate(self):
s = Series([1, 2, 3, 4, np.nan, 6, np.nan])
result3 = s.interpolate(method='spline', order=1, ext=3)
expected3 = Series([1., 2., 3., 4., 5., 6., 6.])
assert_series_equal(result3, expected3)
result1 = s.interpolate(method='spline', order=1, ext=0)
expected1 = Series([1., 2., 3., 4., 5., 6., 7.])
assert_series_equal(result1, expected1)
@td.skip_if_no_scipy
def test_spline_smooth(self):
s = Series([1, 2, np.nan, 4, 5.1, np.nan, 7])
assert (s.interpolate(method='spline', order=3, s=0)[5] !=
s.interpolate(method='spline', order=3)[5])
@td.skip_if_no_scipy
def test_spline_interpolation(self):
s = Series(np.arange(10) ** 2)
s[np.random.randint(0, 9, 3)] = np.nan
result1 = s.interpolate(method='spline', order=1)
expected1 = s.interpolate(method='spline', order=1)
assert_series_equal(result1, expected1)
@td.skip_if_no_scipy
def test_spline_error(self):
# see gh-10633
s = pd.Series(np.arange(10) ** 2)
s[np.random.randint(0, 9, 3)] = np.nan
msg = "invalid method 'spline' to interpolate"
with pytest.raises(ValueError, match=msg):
s.interpolate(method='spline')
msg = "order needs to be specified and greater than 0"
with pytest.raises(ValueError, match=msg):
s.interpolate(method='spline', order=0)
def test_interp_timedelta64(self):
# GH 6424
df = Series([1, np.nan, 3],
index=pd.to_timedelta([1, 2, 3]))
result = df.interpolate(method='time')
expected = Series([1., 2., 3.],
index=pd.to_timedelta([1, 2, 3]))
assert_series_equal(result, expected)
# test for non uniform spacing
df = Series([1, np.nan, 3],
index=pd.to_timedelta([1, 2, 4]))
result = df.interpolate(method='time')
expected = Series([1., 1.666667, 3.],
index=pd.to_timedelta([1, 2, 4]))
assert_series_equal(result, expected)
def test_series_interpolate_method_values(self):
# #1646
ts = _simple_ts('1/1/2000', '1/20/2000')
ts[::2] = np.nan
result = ts.interpolate(method='values')
exp = ts.interpolate()
assert_series_equal(result, exp)
def test_series_interpolate_intraday(self):
# #1698
index = pd.date_range('1/1/2012', periods=4, freq='12D')
ts = pd.Series([0, 12, 24, 36], index)
new_index = index.append(index + pd.DateOffset(days=1)).sort_values()
exp = ts.reindex(new_index).interpolate(method='time')
index = pd.date_range('1/1/2012', periods=4, freq='12H')
ts = pd.Series([0, 12, 24, 36], index)
new_index = index.append(index + pd.DateOffset(hours=1)).sort_values()
result = ts.reindex(new_index).interpolate(method='time')
tm.assert_numpy_array_equal(result.values, exp.values)
def test_nonzero_warning(self):
# GH 24048
ser = pd.Series([1, 0, 3, 4])
with tm.assert_produces_warning(FutureWarning):
ser.nonzero()