Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
numpy / random / _generator.pypy36-pp73-x86_64-linux-gnu.so
Size: Mime:
ELF>°Ç@àJ@8@ÌÒÌÒ ¸Û¸Û(¸Û(P> P ÐÛÐÛ(ÐÛ(ààÈÈÈ$$Påtdh€h€h€ääQåtdRåtd¸Û¸Û(¸Û(HHGNUzCXàiu÷Lªûz\¦ïáÒX]CÂ	p"	€	#¤†@€012a@„AT%
†Ñ$ê¥@Å¿Š†»ÂÄÇÉÊÌÍÏÒÓÔÕÖ×ÚÛÝÞßáâåæçéêëíîïòóö÷úýþ
RÐm•ñHÊJݼã(²y	ºa«†…­a³ף{éŠ6ž}¡‘tk¥÷m@•t‰O”j‚ÏtÌ#ÍH)M ,,qғšÓ75kΑÒï(çB€9
êÓïýSÆÃß	Øf™Q{Þ`¹ñÿ¡·Øܪ¼<­X§Íڟ“"Œ´Ð³Å;
	Í讋áh”“p3`%‘ؔ΢¡“o…s‰ڃ1<g#UL±—ù`cR³Ìøˆ/7ÖÇ‚`GÆëŽWŸsžÞCEÕìºSNDäPeßcÞ|‰’vlá«ï9¯p3Ùù؈¥å9j»ã’|.á«ï¿M¡ùCYd’e$±ê+ñ*²\Ñ=§Æ÷kúD\~ýµSâ8±çØqXe䞓{·K€¦“=«ï5Ý-Æ	h}©á 0p	‹†"	
''8†r€
ϰxÓ“IÈ
íQ֏
íXK§	³]Àoín”V
ÄÓ]»+Þè¯?ž‘클Œ€XÏ"
LË>	L	—	Mrô
ôÊ»‚Ý
	–
Ÿª@
¼Þ	¹
B#`¡eš Ö¤Oü#yŠ£~
ÅÏ_	
)¶oÍ'^4®	%Jat³dòÛÛ<â
€	ú	n
¶¶
5örƒ	§ÝÿIÞ‘•õ
ÙÎé8 8NËï½âj
ߤ
«6ÔÅR".Õ_àÃq|À	 PÑSЁ`Ô½@Ã9Ü Óg'ð×&`@ÿGÑPÀI¸Â2ìPì`
È9Ö°û[$ Í¨àâ£
fúàÓ» ù20ï¡€Ï(¥@+N°å/÷@ÆÊ*
Pȁ@ ÕÅ	¼Jóy	€“ò°Ï@çðPàÍ  ø|´À9~ ÐÇ@Ðëþ¯Í
å¥OÐìNBàïZ“ Ø»
:ÀÍ…`õ´ðþqhõG)àæW:€ÃQ͐҂êÓNX
 î
à`Äœ:+Ô^„ÐÏ,öÀÁ9@
àʹ@ñ¶“0è§j°Ñ/làêðÆ9MX,++ò‰‰±Ò>ÀPÒ?£àÑ'=0Ñ” ÀÐbâ`6[°ìpÎyÔðëWA+dðÍ	bп%__gmon_start___init_fini_ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_PyPy_NoneStructPyPyBaseObject_Type_PyPy_DeallocPyPyExc_ValueErrorPyPyErr_FormatPyPyTuple_PackPyPyObject_CallPyPyObject_GetAttrPyPyErr_ClearPyPyObject_RichCompareBoolPyPySlice_New_PyPy_EllipsisObjectPyPyTuple_NewPyPyCode_NewPyPyErr_FetchPyPyThread_free_lockPyPyErr_RestorePyPyBuffer_ReleasePyPyLong_FromSsize_tPyPyErr_SetStringmemcpyPyPyErr_NormalizeExceptionPyPyErr_OccurredPyPyException_SetTracebackPyPyErr_SetExcInfoPyPyObject_Freefreerandom_intervalrandom_bounded_uint64PyPyCapsule_NewPyPyDict_SetItemPyPyObject_HasAttrPyPyDict_DelItemPyPyType_ModifiedPyPyExc_RuntimeErrorPyPyObject_GetAttrStringPyPyExc_TypeErrorPyPyOS_snprintfPyPyErr_WarnExPyPyDict_GetItemStringPyPyModule_GetNamePyPyExc_ImportErrorPyPyCapsule_IsValidPyPyCapsule_GetNamePyPyCapsule_GetPointerPyPyModule_GetDictPyPyDict_NewPyPyImport_ImportModuleLevelObjectPyPyList_NewPyPyExc_NameErrorPyPyGILState_EnsurePyPyGILState_ReleasePyPyObject_GetItemPyPyExc_StopIterationPyPyErr_ExceptionMatchesPyPyExc_AttributeErrorPyPyThreadState_GetPyPyFrame_NewPyPyTraceBack_HerePyPyObject_Not_PyPy_FalseStruct_PyPy_TrueStructPyPyUnicode_FromStringPyPyUnicode_FromFormatPyPyObject_SetAttrPyPyMem_ReallocPyPyMem_MallocPyPyUnicode_FormatPyPyNumber_InPlaceMultiplyPyPyNumber_MultiplyPyPyLong_FromLongPyPyList_AppendPyPyList_AsTuplePyPyBytes_FromStringPyPyTuple_TypePyPyNumber_AddPyPyBytes_TypePyPyBytes_AS_STRINGPyPyBytes_SizePyPySequence_TuplePyPyList_SET_ITEMPyPyNumber_InPlaceAddPyPyObject_GenericGetAttrPyPyExc_DeprecationWarningPyPyErr_WarnFormatPyPyDict_NextPyPyUnicode_CheckPyPyUnicode_Comparerandom_betaPyPyDict_SizePyPyDict_GetItemrandom_exponentialrandom_normalrandom_gammarandom_frandom_noncentral_frandom_chisquarerandom_noncentral_chisquarerandom_standard_cauchyrandom_standard_trandom_vonmisesrandom_paretorandom_weibullrandom_powerrandom_laplacerandom_gumbelrandom_logisticrandom_lognormalrandom_rayleighrandom_waldrandom_negative_binomialrandom_poissonrandom_zipfrandom_geometricrandom_logseriesPyPyExc_BaseExceptionPyPyObject_IsSubclassPyPyErr_SetObjectPyPyExc_BufferErrorvsnprintfPyPy_FatalErrorPyPyType_IsSubtypePyPyErr_GetExcInfoPyPyObject_SetItemPyPyExc_NotImplementedErrorPyPyLong_TypePyPyLong_AsSsize_tPyPyNumber_IndexPyPyLong_AsLongPyPyUnicode_CheckExactPyPyNumber_LongstrlenPyPyUnicode_DecodeASCIIPyPyUnicode_FromUnicodePyPyBytes_FromStringAndSizePyPySequence_CheckPyPySequence_GetItemPyPyErr_GivenExceptionMatchesPyPyExc_OverflowErrorPyPyLong_AsUnsignedLongPyPyErr_PrintExPyPyErr_WriteUnraisablePyPyList_TypePyPyList_GET_SIZEPyPySequence_ITEMPyPyExc_ZeroDivisionErrorPyPyObject_GetIterPyPyExc_SystemErrorPyPyMem_FreePyPyErr_NoMemorymallocPyPySlice_TypePyPyIndex_CheckPyPyObject_SizePyPyList_SetSlicePyPyNumber_Remainderrandom_uniformPyPyFloat_AsDoublePyPyFloat_FromDoublePyPyObject_IsTruePyPySequence_SizePyPyObject_RichComparerandom_standard_exponential_fillrandom_standard_exponential_fill_frandom_standard_exponential_inv_fillrandom_standard_exponential_inv_fill_fPyPyThread_allocate_lockPyPyObject_GetBufferrandom_standard_uniform_fillrandom_standard_uniform_fill_frandom_standard_normal_fillrandom_standard_normal_fill_frandom_standard_gammarandom_standard_gamma_frandom_triangularPyPyObject_IsInstancePyPyFloat_TypePyPyFloat_AS_DOUBLErandom_hypergeometricPyPyEval_SaveThreadrandom_binomialPyPyEval_RestoreThreadPyPyObject_Mallocrandom_multinomialPyPyBool_TypePyPyNumber_OrPyPyLong_FromSize_tPyPyNumber_FloorDividerandom_multivariate_hypergeometric_countrandom_multivariate_hypergeometric_marginalsPyPySequence_SetItemPyPy_OptimizeFlagPyPyExc_AssertionErrorPyPyErr_SetNonePyPyExc_UnboundLocalErrorPyPySequence_ListPyPyNumber_MatrixMultiplyPyPyNumber_NegativePyPyNumber_AbsolutePyPyNumber_InPlaceTrueDividePyPyNumber_SubtractPyPyLong_FromUnsignedLongPyPyObject_DelItemPyInit__generatorPyPy_GetVersionPyPyUnicode_FromStringAndSizePyPyModule_Create2PyPyImport_AddModulePyPyObject_SetAttrStringPyPyUnicode_InternFromStringPyPyUnicode_DecodePyPyObject_HashPyPyLong_FromString__pyx_module_is_main_numpy__random___generatorPyPyImport_GetModuleDictPyPyDict_SetItemStringPyPyType_ReadyPyPyImport_ImportModulePyPyCapsule_TypePyPyExc_ExceptionPyPyCFunction_NewExrandom_standard_uniform_frandom_standard_uniformrandom_standard_exponentialexplograndom_standard_exponential_fexpflogfrandom_standard_normalrandom_standard_normal_fpowsqrtpowfsqrtfrandom_positive_int64random_positive_int32random_positive_intrandom_uintrandom_loggamrandom_gamma_ffloorrandom_binomial_btperandom_binomial_inversion__isnanacosfmodrandom_geometric_searchrandom_geometric_inversionceilrandom_buffered_bounded_uint32random_buffered_bounded_uint16random_buffered_bounded_uint8random_buffered_bounded_boolrandom_bounded_uint64_fillrandom_bounded_uint32_fillrandom_bounded_uint16_fillrandom_bounded_uint8_fillrandom_bounded_bool_filllogfactoriallibm.so.6libpthread.so.0libc.so.6_edata__bss_start_endGLIBC_2.2.5 ui	R0ui	R¸Û(ÀÛ(PÈÛ(ÈÛ(?*`+ȿ*8%+п*0!+à¿*@'+è¿*˜&+ð¿*`+À*È+À*`+ À*`+(À*8%+0À*˜"+8À*0!+`À*ð"+hÀ*8$+pÀ*`+xÀ*8%+€À*%+ À*@'+¨À*`+°À* +¸À*(!+ÀÀ* &+ÈÀ*ˆ+àÀ*ð"+èÀ*8$+ðÀ*`+Á*`+Á*8%+Á*0!+ Á*0#+(Á*È+0Á*`+@Á*˜+HÁ*`+PÁ*8%+XÁ*0!+€Á*˜+ˆÁ*È+Á*`+ Á*h%+¨Á*x%+°Á*`+ÀÁ*h%+ÈÁ*x%+ÐÁ*Ø!+ØÁ*`+ðÁ*ˆ%+øÁ*`+ Â*ˆ%+(Â*Ø!+0Â*`+@Â*`+PÂ*ˆ%+XÂ*`+€Â*p"+ˆÂ*€#+Â*`+ Â*@'+¨Â*`+ÀÂ*@'+ÈÂ*`+àÂ*@'+èÂ*`+Ã*0#+Ã*È+Ã*`+ Ã*0#+(Ã*È+0Ã*`+@Ã*0#+HÃ*È+PÃ*`+`Ã*À"+hÃ*p+pÃ*`+€Ã*È+ˆÃ*`+ Ã*À"+¨Ã*È+°Ã*`+ÀÃ*X#+ÈÃ*€"+ÐÃ*è+ØÃ*`+Ä*H"+Ä*(!+Ä*`+ Ä*H"+(Ä*(!+0Ä*`+@Ä*p#+HÄ*`+`Ä*@'+hÄ*`+€Ä*(!+ˆÄ*`+ Ä*ø!+¨Ä*("+°Ä* !+¸Ä*`+ÐÄ*(!+ØÄ*`+Å*À"+Å*°%+Å*`+Å*0&+ Å*x+(Å*˜"+@Å*H"+HÅ*¨ +PÅ*`+`Å*ð%+hÅ* !+pÅ*`+xÅ*˜"+Å*ð&+˜Å*`+°Å*Ø+¸Å* &+ÐÅ*Ø+ØÅ* &+ðÅ*x&+Æ*˜+Æ*#+Æ*˜$+Æ*€"+ Æ*ø&+0Æ*0"+@Æ*@!+HÆ*¸$+PÆ*0%+`Æ*°+€Æ*p +ˆÆ* +Æ*x + Æ**+¨Æ*ÈÆ**+ÐÆ*,ðÆ**+øÆ*@'Ç**+ Ç*'@Ç*ø)+HÇ*À&hÇ*ð)+pÇ*€&Ç*è)+˜Ç* ø¸Ç*à)+ÀÇ* &àÇ*Ø)+èÇ*ÈþÈ*Ð)+È*à%0È*È)+8È* %XÈ*À)+`È*`%€È*¸)+ˆÈ*€¨È*°)+°È*ýÐÈ*¨)+ØÈ*àôøÈ* )+É*ø É*˜)+(É*`ôHÉ*)+PÉ* ÷pÉ*ˆ)+xÉ*@ô˜É*€)+ É* ùÀÉ*x)+ÈÉ*€÷èÉ*p)+ðÉ* ôÊ*h)+Ê* ö8Ê*`)+@Ê* %`Ê*X)+hÊ*àõˆÊ*P)+Ê*Àõ°Ê*H)+¸Ê*ÀôØÊ*@)+àÊ*ôË*8)+Ë*àó(Ë*0)+0Ë*€¬PË*()+XË*à$xË* )+€Ë* $ Ë*)+¨Ë*`$ÈË*)+ÐË* $ðË*)+øË*à#Ì*)+ Ì*`÷@Ì*ø(+HÌ*€öhÌ*ð(+pÌ*@¬Ì*è(+˜Ì* õ¸Ì*à(+ÀÌ*@÷àÌ*Ø(+èÌ* ÷Í*Ð(+Í* ô0Í*È(+8Í*€õXÍ*À(+`Í* #€Í*¸(+ˆÍ*`#¨Í*°(+°Í* #ÐÍ*¨(+ØÍ*à"øÍ* (+Î*@ó Î*˜(+(Î*óHÎ*(+PÎ*`öpÎ*ˆ(+xÎ*€ô˜Î*€(+ Î*à÷ÀÎ*x(+ÈÎ*`õèÎ*p(+ðÎ*À÷Ï*h(+Ï*pü8Ï*`(+@Ï* "`Ï*X(+hÏ* ýˆÏ*P(+Ï*`"°Ï*H(+¸Ï*"ØÏ*@(+àÏ*À!Ð*8(+Ð*€!(Ð*0(+0Ð*÷PÐ*((+XÐ*`üxÐ* (+€Ð* ø Ð*(+¨Ð*ÀøÈÐ*(+ÐÐ*@!ðÐ*(+øÐ*€ùÑ*(+ Ñ*k@Ñ*ø'+HÑ*!hÑ*ð'+pÑ*ÐûÑ*è'+˜Ñ*¸Ñ*à'+ÀÑ*PüàÑ*Ø'+èÑ*` Ò*Ð'+Ò*@ö0Ò*È'+8Ò* üXÒ*À'+`Ò*Xû€Ò*¸'+ˆÒ*i¨Ò*°'+°Ò*€ýÐÒ*¨'+ØÒ*  øÒ* '+Ó*à Ó*˜'+(Ó*àòHÓ*'+PÓ* pÓ*ˆ'+xÓ*@˜Ó*€'+ Ó*ÀÓ*x'+ÈÓ*ýèÓ*p'+ðÓ*0ûÔ*h'+Ô*¬8Ô*`'+@Ô*@`Ô*X'+hÔ*[ˆÔ*P'+Ô*Y°Ô*H'+¸Ô*XØÔ*@'+àÔ*gÕ*8'+Õ*g(Õ*0'+0Õ*@õPÕ*('+XÕ*xÕ* '+€Õ*°ó Õ*'+¨Õ*ÀÈÕ*'+ÐÕ*DðÕ*'+øÕ*@Ö*'+ Ö*¸þ@Ö*ø&+HÖ* ûhÖ*ð&+pÖ*Ö*è&+˜Ö*xÿ¸Ö*à&+ÀÖ*<àÖ*Ø&+èÖ*3×*Ð&+×*
0×*È&+8×*pÿX×*À&+`×*@ú€×*¸&+ˆ×*,¨×*°&+°×*`ÿÐ×*¨&+Ø×*öø×* &+Ø*ñ Ø*˜&+(Ø*eHØ*&+PØ*epØ*ˆ&+xØ*ì˜Ø*€&+ Ø*àÀØ*x&+ÈØ*ÀûèØ*p&+ðØ*ÀûÙ*h&+Ù*æ8Ù*`&+@Ù*€`Ù*X&+hÙ*`œˆÙ*P&+Ù*c°Ù*H&+¸Ù*cØÙ*@&+àÙ*XÿÚ*8&+Ú*Xÿ(Ú*0&+0Ú*@üPÚ*(&+XÚ*@xÚ* &+€Ú*@” Ú*&+¨Ú*ÈÚ*&+ÐÚ*¨þðÚ*&+øÚ*¨þÛ*&+ Û*@Û*ø%+HÛ*úhÛ*ð%+pÛ*%Û*è%+˜Û*à¸Û*à%+ÀÛ*àÛ*Ø%+èÛ*ùÜ*Ð%+Ü*€ø0Ü*È%+8Ü*áXÜ*À%+`Ü*ú€Ü*¸%+ˆÜ*°û¨Ü*°%+°Ü*8ÐÜ*¨%+ØÜ* øÜ* %+Ý*` Ý*˜%+(Ý*HÝ*%+PÝ*0üpÝ*ˆ%+xÝ*U˜Ý*€%+ Ý*UÀÝ*x%+ÈÝ*ôèÝ*p%+ðÝ*ôÞ*h%+Þ*î8Þ*`%+@Þ*î`Þ*X%+hÞ*؈Þ*P%+Þ* ç°Þ*H%+¸Þ*4ØÞ*@%+àÞ*ß*8%+ß*è(ß*0%+0ß*ûPß*(%+Xß*Ñxß* %+€ß*Ñ ß*%+¨ß*âÈß*%+Ðß*ýðß*%+øß*	à*%+ à*˜þ@à*ø$+Hà*Øhà*ð$+pà*pýà*è$+˜à*0¸à*à$+Àà*Ëàà*Ø$+èà*Åá*Ð$+á*È0á*È$+8á* zXá*À$+`á*¿€á*¸$+ˆá*¹¨á*°$+°á*PÿÐá*¨$+Øá*Hÿøá* $+â*ˆþ â*˜$+(â*Hâ*$+Pâ*@ÿpâ*ˆ$+xâ*@ÿ˜â*€$+ â*ÁÀâ*x$+Èâ*€oèâ*p$+ðâ*@ûã*h$+ã* û8ã*`$+@ã* i`ã*X$+hã*xþˆã*P$+ã* °ã*H$+¸ã*8ÿØã*@$+àã*àVä*8$+ä*¼(ä*0$+0ä*@DPä*($+Xä*Rxä* $+€ä*ûÿ ä*$+¨ä*(ÿÈä*$+Ðä*ðÿðä*$+øä*³å*$+ å*­@å*ø#+Hå*§hå*ð#+på*¡å*è#+˜å*·¸å*à#+Àå* ÿàå*Ø#+èå*hþæ*Ð#+æ*`70æ*È#+8æ*²Xæ*À#+`æ*Xþ€æ*¸#+ˆæ*›¨æ*°#+°æ*HþÐæ*¨#+Øæ*8þøæ* #+ç*ðü ç*˜#+(ç*­Hç*#+Pç*(þpç*ˆ#+xç* õ˜ç*€#+ ç*•Àç*x#+Èç*•èç*p#+ðç*,è*h#+è*,8è*`#+@è*àÚ`è*X#+hè*¨ˆè*P#+è*`ý°è*H#+¸è*àüØè*@#+àè*£é*8#+é*Ðü(é*0#+0é*(Pé*(#+Xé*(xé* #+€é*ž é*#+¨é*ÀüÈé*#+Ðé*à+ðé*#+øé*àê*#+ ê*à@ê*ø"+Hê*™hê*ð"+pê*$ê*è"+˜ê*¸ê*à"+Àê*Pýàê*Ø"+èê*àÿë*Ð"+ë* 0ë*È"+8ë*`úXë*À"+`ë*†€ë*¸"+ˆë*†¨ë*°"+°ë*àÐë*¨"+Øë* öøë* "+ì*ÿ ì*˜"+(ì*ÕÿHì*"+Pì* pì*ˆ"+xì*`˜ì*€"+ ì*Àì*x"+Èì*°üèì*p"+ðì*Oí*h"+í*O8í*`"+@í* `í*X"+hí*ïˆí*P"+í*`Û°í*H"+¸í*aØí*@"+àí*aî*8"+î*x(î*0"+0î*ÐÿPî*("+Xî*rxî* "+€î*r î*"+¨î*mÈî*"+Ðî*Ïðî*"+øî* ï*"+ ï*@ï*ø!+Hï*hï*ð!+pï*ï*è!+˜ï*àù¸ï*à!+Àï*ààï*Ø!+èï*hð*Ð!+ð*h0ð*È!+8ð*@ÄXð*À!+`ð*¸€ð*¸!+ˆð*@©¨ð*°!+°ð*`ùÐð*¨!+Øð*Løð* !+ñ*ÿ ñ*˜!+(ñ*ÿHñ*!+Pñ*öpñ*ˆ!+xñ*õ˜ñ*€!+ ñ*àöÀñ*x!+Èñ*Àùèñ*p!+ðñ*‰ò*h!+ò*àø8ò*`!+@ò*©`ò*X!+hò* ˆò*P!+ò* ü°ò*H!+¸ò*`øØò*@!+àò*ó*8!+ó*þ(ó*0!+0ó*Pó*(!+Xó*_xó* !+€ó*_ ó*!+¨ó*@øÈó*!+Ðó*cðó*!+øó*šô*!+ ô*‚@ô*ø +Hô*à”hô*ð +pô*Èÿô*è +˜ô*þ¸ô*à +Àô*Òàô*Ø +èô*ðúõ*Ð +õ*ˆ0õ*È +8õ*`Xõ*À +`õ*Àö€õ*¸ +ˆõ*ó¨õ*° +°õ*^Ðõ*¨ +Øõ*|øõ*  +ö*| ö*˜ +(ö*ÐúHö* +Pö*üpö*ˆ +xö*û˜ö*€ + ö*üÀö*x +Èö*@ýèö*p +ðö*þ÷*h +÷* ú8÷*` +@÷*€ü`÷*X +h÷*vˆ÷*P +÷*»ÿ°÷*H +¸÷*Ø÷*@ +à÷*pø*8 +ø*j(ø*0 +0ø* wPø*( +Xø*´ÿxø*  +€ø*ðý ø* +¨ø*pûÈø* +Ðø*0ýðø* +øø*ÿù* + ù*ÿ@ù*ø+Hù*ühù*ð+pù*àýù*è+˜ù*d¸ù*à+Àù*dàù*Ø+èù*ðþú*Ð+ú*Y0ú*È+8ú*^Xú*À+`ú*^€ú*¸+ˆú*ðû¨ú*°+°ú*TÐú*¨+Øú*Ðýøú* +û*°ú û*˜+(û*XHû*+Pû*Xpû*ˆ+xû*èþ˜û*€+ û*€sÀû*x+Èû*Oèû*p+ðû*Rü*h+ü*R8ü*`+@ü*J`ü*X+hü*Eˆü*P+ü*@°ü*H+¸ü*ÉØü*@+àü*€Ãý*8+ý* ·(ý*0+0ý* úPý*(+Xý*Àjxý* +€ý*à] ý*+¨ý*LÈý*+Ðý*Fðý*+øý*;þ*+ þ*6@þ*ø+Hþ*hþ*ð+pþ* ùþ*è+˜þ*`·¸þ*à+Àþ*@ùàþ*Ø+èþ*àþÿ*Ð+ÿ*àû0ÿ*È+8ÿ*­ÿXÿ*À+`ÿ*Àý€ÿ*¸+ˆÿ*¨ÿ*°+°ÿ*€úÐÿ*¨+Øÿ*øÿ* ++ +˜+(+°ýH++P+1p+ˆ+x+(˜+€+ +ØþÀ+x+È+ÿè+p+ð+€T+h++H8+`+@+¦ÿ`+X+h+Ÿÿˆ+P++˜ÿ°+H+¸+@Ø+@+à+pó+8++À(+0+0+ JP+(+X+‘ÿx+ +€+`J ++¨+ŠÿÈ++Ð+ƒÿð++ø+`>++ +­@+ø+H+"h+ð+p+"+è+˜+ ý¸+à+À+`1à+Ø+è+]+Ð++:0+È+8+ûX+À+`+€'ð+4+ +`+˜)x+PÞ +èÐ+ 5ø+È)+0.+pÝ0+@+@+à+€+°Žà+?è+@+DH+@Ë`+Vh+ðËÀ+*Ø+Ð#+è+€	++P	+0+ 5H+@	+`+À-h+p+€+ +à	+à+ð…@	+pÏP	+ÀX	+PZ`	+q€	+À˜	+à%à	+jè	+P%
+?
+0
+}8
+`>X
+l`
+ÐÈ€
+tˆ
+°;¨
+°
+@;Ð
+„Ø
+Ð:ø
++09 +ˆ(+@7€+”ˆ+  + ¨+PÀ+¬È+Hà+±è+àE+D+pÇ +V(+ È€+¾˜+ !À+° 
+à(
+à P
++
+0¿ 
++D+`ð +V(+à€+Û˜+ *Ð+@+Ø++ø+V++P++`+ + +°>+ Ì+ +@J +0Ü@+ X+p% +ù¨+ÐH++0J +D(+Æ@+VH+ÀÆ +(*¸+à!à+Ðì+ðQ8+P*@+0H+`!p+ +€+ +°+ÂÀ+Ð +(+€8+Ø0H+
P+@ÒX+p. +¨+ðPÀ+)È+ðOà+6è+@K+ô+ðŽ+€¸* +!
(+àd8+@³*@+ÞH+àhX+¬*`+Õh+ zx+€¦*€+¼ˆ+ࡘ+ ™* +ލ+ H¸+ ˜*À+t
È+ðºØ+ ‹*à+Íè+`]ø+*+û+ ™+y* +(+ l8+@j*@+H+P¯X+`^*`+(h+px+@S*€+1
ˆ+às˜+ F* +&
¨+àw¸+à9*À+>
È+€|Ø+À1*à+3
è+Àø+'*+H
++* +X
(+۠8+ *@+c
H+	X+ *`+l
h+
x+ ö)€+s
ˆ+‘˜+ é) +{
¨+@”¸+@Ü)À+
È+€—Ø+€Ï)à+‰
è+p›ø+@½)+
+`Ÿ+1) +™
(+P£8+ )@+£
H+@§X+ —)`+¬
h+€ªx+@)€+.ˆ+0ǘ+àƒ) +º
¨+P¸+Àu)À+±
È+€®Ø+`i)à+Ã
è+`²ø+€`)+Ë
+ µ+ V) +×(+и8+@P)@+ÒH+üX+ =)`+Ð
h+¼x+ 2)€+5
ˆ+ ^˜+) +Š¨+€T¸+À)À+ÅÈ+ÀÌØ+ þ(à+²è+pø+àò(+á+Ð+Àî( +9(+â8+ é(`+h+P£€+Cˆ+À˜+àå( +°Ý(ò¸Ý(ÀÝ(ÈÝ(ÐÝ(ØÝ(ÄàÝ(èÝ(ðÝ(ÉøÝ(ýÞ(Þ(ÇÞ(ÛÞ(( Þ(×(Þ(þ0Þ(÷8Þ(ø@Þ(ÜHÞ(4PÞ(8XÞ(>`Þ(óhÞ(?pÞ(AxÞ(ˀÞ(úˆÞ(ôÞ(K˜Þ( Þ(P¨Þ(ð°Þ(¸Þ(XÀÞ(]ÈÞ(`ÐÞ(æØÞ(iàÞ(kèÞ(àðÞ(ÒøÞ(Åß(zß(éß(ß(Æ ß(‰(ß(‹0ß(ü8ß(@ß(Hß(ÖPß(Xß(’`ß(ùhß(ápß(Ùxß(ñ€ß(žˆß(Ӑß(¢˜ß(È ß(ä¨ß(ΰß(©¸ß(­Àß(®Èß(±Ðß(	Øß(½àß(¾èß(¿ðß(ÿøß(Àà( à((à(0à(8à(@à(Hà(	Pà(
Xà(`à(Íhà(
pà(xà(€à(ˆà(à(˜à( à(ʨà(°à(¸à(Àà(Èà(Ðà(Øà(àà(èà(ðà( øà(!á("á(#á($á(% á(&(á(Û0á(ë8á('@á()Há(*Pá(+Xá(,`á(-há(.pá(/xá(€á(0ˆá(ܐá(1˜á(2 á(3¨á(5°á(6¸á(7Àá(9Èá(:Ðá(;Øá(<àá(çèá(=ðá(@øá(Bâ(êâ(Câ(Dâ(E â(F(â(G0â(H8â(ú@â(IHâ(JPâ(LXâ(M`â(Nhâ(Opâ(Qxâ(R€â(Sˆâ(Tâ(U˜â(V â(W¨â(Y°â(Z¸â([Àâ(\Èâ(^Ðâ(_Øâ(ßàâ(aèâ(bðâ(cøâ(dã(eã(æã(fã(g ã(h(ã(j0ã(l8ã(m@ã(nHã(oPã(ÒXã(p`ã(qhã(rpã(Åxã(s€ã(tˆã(uã(v˜ã(w ã(x¨ã(y°ã(
¸ã({Àã(|Èã(}Ðã(~Øã(àã(€èã(ðã(Ìøã(‚ä(ƒä(„ä(…ä(† ä(‡(ä(0ä(ˆ8ä(Š@ä(ŒHä(Pä(ÚXä(Ž`ä(‘hä(Öpä(xä(“€ä(Ոä(”ä(•˜ä(Ù ä(–¨ä(—°ä(˜¸ä(™Àä(õÈä(šÐä(›Øä(œàä(èä(Ÿðä( øä(¡å(èå(£å(¤å(¥ å(¦(å(§0å(¨8å(ª@å(«Hå(¬På(ÑXå(¯`å(hå(°på(²xå(³€å(´ˆå(µå(¶˜å(· å(¸¨å(¹°å(º¸å(»Àå(¼Èå(¿Ðå(ÁHƒìè³\HƒÄÃÿ5â#(ÿ%ä#(@ÿ%â#(héàÿÿÿÿ%Ú#(héÐÿÿÿÿ%Ò#(héÀÿÿÿÿ%Ê#(hé°ÿÿÿÿ%Â#(hé ÿÿÿÿ%º#(héÿÿÿÿ%²#(hé€ÿÿÿÿ%ª#(hépÿÿÿÿ%¢#(hé`ÿÿÿÿ%š#(h	éPÿÿÿÿ%’#(h
é@ÿÿÿÿ%Š#(hé0ÿÿÿÿ%‚#(hé ÿÿÿÿ%z#(h
éÿÿÿÿ%r#(héÿÿÿÿ%j#(héðþÿÿÿ%b#(héàþÿÿÿ%Z#(héÐþÿÿÿ%R#(héÀþÿÿÿ%J#(hé°þÿÿÿ%B#(hé þÿÿÿ%:#(héþÿÿÿ%2#(hé€þÿÿÿ%*#(hépþÿÿÿ%"#(hé`þÿÿÿ%#(héPþÿÿÿ%#(hé@þÿÿÿ%
#(hé0þÿÿÿ%#(hé þÿÿÿ%ú"(héþÿÿÿ%ò"(héþÿÿÿ%ê"(héðýÿÿÿ%â"(h éàýÿÿÿ%Ú"(h!éÐýÿÿÿ%Ò"(h"éÀýÿÿÿ%Ê"(h#é°ýÿÿÿ%Â"(h$é ýÿÿÿ%º"(h%éýÿÿÿ%²"(h&é€ýÿÿÿ%ª"(h'épýÿÿÿ%¢"(h(é`ýÿÿÿ%š"(h)éPýÿÿÿ%’"(h*é@ýÿÿÿ%Š"(h+é0ýÿÿÿ%‚"(h,é ýÿÿÿ%z"(h-éýÿÿÿ%r"(h.éýÿÿÿ%j"(h/éðüÿÿÿ%b"(h0éàüÿÿÿ%Z"(h1éÐüÿÿÿ%R"(h2éÀüÿÿÿ%J"(h3é°üÿÿÿ%B"(h4é üÿÿÿ%:"(h5éüÿÿÿ%2"(h6é€üÿÿÿ%*"(h7épüÿÿÿ%""(h8é`üÿÿÿ%"(h9éPüÿÿÿ%"(h:é@üÿÿÿ%
"(h;é0üÿÿÿ%"(h<é üÿÿÿ%ú!(h=éüÿÿÿ%ò!(h>éüÿÿÿ%ê!(h?éðûÿÿÿ%â!(h@éàûÿÿÿ%Ú!(hAéÐûÿÿÿ%Ò!(hBéÀûÿÿÿ%Ê!(hCé°ûÿÿÿ%Â!(hDé ûÿÿÿ%º!(hEéûÿÿÿ%²!(hFé€ûÿÿÿ%ª!(hGépûÿÿÿ%¢!(hHé`ûÿÿÿ%š!(hIéPûÿÿÿ%’!(hJé@ûÿÿÿ%Š!(hKé0ûÿÿÿ%‚!(hLé ûÿÿÿ%z!(hMéûÿÿÿ%r!(hNéûÿÿÿ%j!(hOéðúÿÿÿ%b!(hPéàúÿÿÿ%Z!(hQéÐúÿÿÿ%R!(hRéÀúÿÿÿ%J!(hSé°úÿÿÿ%B!(hTé úÿÿÿ%:!(hUéúÿÿÿ%2!(hVé€úÿÿÿ%*!(hWépúÿÿÿ%"!(hXé`úÿÿÿ%!(hYéPúÿÿÿ%!(hZé@úÿÿÿ%
!(h[é0úÿÿÿ%!(h\é úÿÿÿ%ú (h]éúÿÿÿ%ò (h^éúÿÿÿ%ê (h_éðùÿÿÿ%â (h`éàùÿÿÿ%Ú (haéÐùÿÿÿ%Ò (hbéÀùÿÿÿ%Ê (hcé°ùÿÿÿ% (hdé ùÿÿÿ%º (heéùÿÿÿ%² (hfé€ùÿÿÿ%ª (hgépùÿÿÿ%¢ (hhé`ùÿÿÿ%š (hiéPùÿÿÿ%’ (hjé@ùÿÿÿ%Š (hké0ùÿÿÿ%‚ (hlé ùÿÿÿ%z (hméùÿÿÿ%r (hnéùÿÿÿ%j (hoéðøÿÿÿ%b (hpéàøÿÿÿ%Z (hqéÐøÿÿÿ%R (hréÀøÿÿÿ%J (hsé°øÿÿÿ%B (hté øÿÿÿ%: (hu鐸ÿÿÿ%2 (hv逸ÿÿÿ%* (hwépøÿÿÿ%" (hxé`øÿÿÿ% (hyéPøÿÿÿ% (hzé@øÿÿÿ%
 (h{é0øÿÿÿ% (h|é øÿÿÿ%ú(h}éøÿÿÿ%ò(h~éøÿÿÿ%ê(héð÷ÿÿÿ%â(h€éà÷ÿÿÿ%Ú(héÐ÷ÿÿÿ%Ò(h‚éÀ÷ÿÿÿ%Ê(hƒé°÷ÿÿÿ%Â(h„é ÷ÿÿÿ%º(h…é÷ÿÿÿ%²(h†é€÷ÿÿÿ%ª(h‡ép÷ÿÿÿ%¢(hˆé`÷ÿÿÿ%š(h‰éP÷ÿÿÿ%’(hŠé@÷ÿÿÿ%Š(h‹é0÷ÿÿÿ%‚(hŒé ÷ÿÿÿ%z(hé÷ÿÿÿ%r(hŽé÷ÿÿÿ%j(héðöÿÿÿ%b(héàöÿÿÿ%Z(h‘éÐöÿÿÿ%R(h’éÀöÿÿÿ%J(h“é°öÿÿÿ%B(h”é öÿÿÿ%:(h•éöÿÿÿ%2(h–é€öÿÿÿ%*(h—épöÿÿÿ%"(h˜é`öÿÿÿ%(h™éPöÿÿÿ%(hšé@öÿÿÿ%
(h›é0öÿÿÿ%(hœé öÿÿÿ%ú(héöÿÿÿ%ò(hžéöÿÿÿ%ê(hŸéðõÿÿÿ%â(h éàõÿÿÿ%Ú(h¡éÐõÿÿÿ%Ò(h¢éÀõÿÿÿ%Ê(h£é°õÿÿÿ%Â(h¤é õÿÿÿ%º(h¥éõÿÿÿ%²(h¦é€õÿÿÿ%ª(h§épõÿÿÿ%¢(h¨é`õÿÿÿ%š(h©éPõÿÿÿ%’(hªé@õÿÿÿ%Š(h«é0õÿÿÿ%‚(h¬é õÿÿÿ%z(h­éõÿÿÿ%r(h®éõÿÿÿ%j(h¯éðôÿÿÿ%b(h°éàôÿÿÿ%Z(h±éÐôÿÿÿ%R(h²éÀôÿÿÿ%J(h³é°ôÿÿÿ%B(h´é ôÿÿÿ%:(hµéôÿÿÿ%2(h¶é€ôÿÿÿ%*(h·épôÿÿUH‰õSQH‹5{Z*èÞÿÿÿH‰ÃH…Àuèøÿÿ1íH…Ût%ëH‰îºH‰ÇèØýÿÿ‰ŅÀxÜHÿuH‰ßè5õÿÿ‰èZ[]ÃSH‹57`*¿1Àè[ýÿÿH‰U*H…Àu*H(AƒÊÿÇçc*vH‰Ôc*ÇÒc*è—é¿H‹5†_*¿1ÀèýÿÿH‰ÃT*H…Àu*Hß@ƒÊÿÇžc*ÛH‰‹c*ljc*ó—évH‹ÍT*H‹5öT*¿1ÀèÂüÿÿH‰kT*H…Àu*H@ƒÊÿÇNc*H‰;c*Ç9c*þ—é&H‹55^*¿1ÀèyüÿÿH‰T*H…Àu*HF@ƒÊÿÇc*gH‰òb*Çðb*	˜éÝH‹5ä]*¿1Àè0üÿÿH‰ÁS*H…Àu*Hý?ƒÊÿǼb*iH‰©b*ǧb*˜é”H‹5«]*¿1ÀèçûÿÿH‰pS*H…Àu*H´?ƒÊÿÇsb*nH‰`b*Ç^b*˜éKH‹5RW*¿1ÀèžûÿÿH‰S*H…Àu*Hk?ƒÊÿÇ*b*~H‰b*Çb**˜éH‹5!]*¿1ÀèUûÿÿH‰ÎR*H…Àu*H"?ƒÊÿÇáa*€H‰Îa*ÇÌa*5˜é¹H‹5hV*¿1ÀèûÿÿH‰}R*H…Àu*HÙ>ƒÊÿǘa*ƒH‰…a*ǃa*@˜épH‹5'V*¿1ÀèÃúÿÿH‰,R*H…Àu*H>ƒÊÿÇOa*…H‰<a*Ç:a*K˜é'H‹5ÎU*¿1ÀèzúÿÿH‰ÛQ*H…Àu*HG>ƒÊÿÇa*‡H‰ó`*Çñ`*V˜éÞH‹5­^*¿1Àè1úÿÿH‰ŠQ*H…Àu*Hþ=ƒÊÿǽ`*œH‰ª`*Ǩ`*a˜é•H‹5ŒV*¿1ÀèèùÿÿH‰9Q*H…Àu*Hµ=ƒÊÿÇt`*ŸH‰a`*Ç_`*l˜éLH‹5^*¿1ÀèŸùÿÿH‰èP*H…Àu*Hl=ƒÊÿÇ+`*£H‰`*Ç`*w˜éH‹(¿1ÀH‰ÙH‰ÚH‰ÞèMùÿÿH‰ŽP*H…Àu*H=ƒÊÿÇÙ_*ÁH‰Æ_*ÇÄ_*‚˜é±H‹5È_*¿1ÀèùÿÿH‰=P*H…Àu*HÑ<ƒÊÿǐ_*ñH‰}_*Ç{_*˜éhH‹5'[*¿1Àè»øÿÿH‰ìO*H…Àu*Hˆ<ƒÊÿÇG_*MH‰4_*Ç2_*˜˜éH‹5^V*¿1ÀèrøÿÿH‰›O*H…Àu*H?<ƒÊÿÇþ^*q
H‰ë^*Çé^*£˜éÖH‹5=U*¿1Àè)øÿÿH‰JO*H…Àu*Hö;ƒÊÿǵ^*s
H‰¢^*Ç ^*®˜éH‹5ÄU*¿1Àèà÷ÿÿH‰ùN*H…Àu*H­;ƒÊÿÇl^*u
H‰Y^*ÇW^*¹˜éDH‹5T*¿1Àè—÷ÿÿH‰¨N*H…Àu*Hd;ƒÊÿÇ#^*«H‰^*Ç^*Ęéû
H‹5rT*¿1ÀèN÷ÿÿH‰WN*H…Àu*H;ƒÊÿÇÚ]*„
H‰Ç]*ÇÅ]*Ϙé²
H‹5IT*¿1Àè÷ÿÿH‰N*H…Àu*HÒ:ƒÊÿÇ‘]*’
H‰~]*Ç|]*ژéi
H‹5W*¿1Àè¼öÿÿH‰µM*H…Àu*H‰:ƒÊÿÇH]*”
H‰5]*Ç3]*å˜é 
H‹5¿S*¿1ÀèsöÿÿH‰dM*H…Àu*H@:ƒÊÿÇÿ\*–
H‰ì\*Çê\*ð˜é×H‰ÚH‰ÞH‰ßè_öÿÿH‰ÐM*H…Àu*Hü9ƒÊÿÇ»\*œ
H‰¨\*Ǧ\*û˜é“H‹5ªV*¿1ÀèæõÿÿH‰ÏL*H…Àu*H³9ƒÊÿÇr\*¿
H‰_\*Ç]\*™éJH‹Z*H‹5ÒU*¿1Àè–õÿÿH‰wL*H…Àu*Hc9ƒÊÿÇ"\*Ç
H‰\*Ç
\*™éúH‹5‰U*¿1ÀèMõÿÿH‰&L*H…Àu*H9ƒÊÿÇÙ[*Ê
H‰Æ[*ÇÄ[*™é±H‹5PN*¿1ÀèõÿÿH‰ÕK*H…Àu*HÑ8ƒÊÿǐ[*BH‰}[*Ç{[*'™éhH‹5çQ*¿1Àè»ôÿÿH‰„K*H…Àu*Hˆ8ƒÊÿÇG[*îH‰4[*Ç2[*2™éH‹5žP*¿1ÀèrôÿÿH‰3K*H…Àu*H?8ƒÊÿÇþZ*óH‰ëZ*ÇéZ*=™éÖ
H‹5MP*¿1Àè)ôÿÿH‰âJ*H…Àu*Hö7ƒÊÿǵZ*öH‰¢Z*Ç Z*H™é
H‹5ÜU*¿1ÀèàóÿÿH‰‘J*H…Àu*H­7ƒÊÿÇlZ*H‰YZ*ÇWZ*S™éD
H‹5«O*¿1Àè—óÿÿH‰@J*H…Àu*Hd7ƒÊÿÇ#Z*&H‰Z*ÇZ*^™éû	H‹5ÒT*¿1ÀèNóÿÿH‰ïI*H…Àu*H7ƒÊÿÇÚY*¶H‰ÇY*ÇÅY*i™é²	H‹Y(H‹52K*¿1ÀèþòÿÿH‰—I*H…Àu*HË6ƒÊÿÇŠY*WH‰wY*ÇuY*t™éb	H‹5aW*¿1ÀèµòÿÿH‰FI*H…Àu*H‚6ƒÊÿÇAY*dH‰.Y*Ç,Y*™é	H‹5ÈV*1?èlòÿÿH…Àu*HO6ƒÊÿÇÿX*	H‰ìX*ÇêX*Š™é×H‹5ÖT*1?è*òÿÿH…Àu*H
6ƒÊÿǽX*
H‰ªX*ǨX*•™é•H‹5<V*1?èèñÿÿH…Àu*HË5ƒÊÿÇ{X*!H‰hX*ÇfX* ™éSH‹5¢M*¿1Àè¦ñÿÿH‰/H*H…Àu*H‚5ƒÊÿÇ2X*¿H‰X*ÇX*«™é
H‹5QM*1?è]ñÿÿH…Àu*H@5ƒÊÿÇðW*ÅH‰ÝW*ÇÛW*¶™éÈH‹5‡U*¿1ÀèñÿÿH‰œG*H…Àu*H5ƒÊÿǧW*…H‰”W*Ç’W*YéH‹5öN*¿1ÀèÒðÿÿH‰KG*H…Àu*H»4ƒÊÿÇ^W*ˆH‰KW*ÇIW*̙é6H‹5]I*¿1Àè‰ðÿÿH‰úF*H…Àu*Hr4ƒÊÿÇW*”H‰W*ÇW*יéíH‹5I*¿1Àè@ðÿÿH‰©F*H…Àu*H)4ƒÊÿÇÌV*°H‰¹V*Ç·V*â™é¤H‹5“T*¿1Àè÷ïÿÿH‰XF*H…Àu*Hà3ƒÊÿǃV*ÀH‰pV*ÇnV*í™é[H‹5*L*¿1Àè®ïÿÿH‰F*H…Àu*H—3ƒÊÿÇ:V*H‰'V*Ç%V*÷™éH‹5áK*¿1ÀèeïÿÿH‰¶E*H…Àu*HN3ƒÊÿÇñU*H‰ÞU*ÇÜU*šéÉH‹5°S*¿1ÀèïÿÿH‰eE*H…Àu*H3ƒÊÿǨU*¢H‰•U*Ç“U*šé€H‹5Q*¿1ÀèÓîÿÿH‰E*H…Àu*H¼2ƒÊÿÇ_U*ïH‰LU*ÇJU*šé7H‹5S*¿1ÀèŠîÿÿH‰ÃD*H…Àu*Hs2ƒÊÿÇU*H‰U*ÇU*!šéîH‹5åR*¿1ÀèAîÿÿH‰rD*H…Àu*H*2ƒÊÿÇÍT*:H‰ºT*ǸT*,šé¥¿è¡ìÿÿH‰*D*H…Àu*Hê1ƒÊÿǍT*AH‰zT*ÇxT*7šéeH‹´E*¿HÿH‹5%J*H‰P 1ÀèªíÿÿH‰ËC*H…Àu*H“1ƒÊÿÇ6T*H‰#T*Ç!T*DšéH‹5ÝI*¿1ÀèaíÿÿH‰zC*H…Àu*HJ1ƒÊÿÇíS*H‰ÚS*ÇØS*MšéÅH‹5P*¿1ÀèíÿÿH‰)C*H…Àu*H1ƒÊÿǤS*¿H‰‘S*ǏS*Xšé|H‹5KI*¿1ÀèÏìÿÿH‰ØB*H…Àu*H¸0ƒÊÿÇ[S*H‰HS*ÇFS*bšé3H‹5I*¿1Àè†ìÿÿH‰‡B*H…Àu*Ho0ƒÊÿÇS*H‰ÿR*ÇýR*kšéêH‹5‰F*1?è=ìÿÿH…Àu*H0ƒÊÿÇÐR*åH‰½R*Ç»R*všé¨H‹¿R*L‹
°R*VA¸1É1ö¿AQhåÿ5L*ÿ5ÕJ*RRPRRºè^èÿÿHƒÄPH…Àu*Hž/ƒÊÿÇ]R*åH‰JR*ÇHR*yšé5H‹5E*¿1ÀèˆëÿÿH‰A*H…Àu*Hq/ƒÊÿÇR*H‰R*ÇÿQ*‚šéìH‹5ËD*¿1Àè?ëÿÿH‰0A*H…Àu*H(/ƒÊÿÇËQ*H‰¸Q*ǶQ*šé£H‹5rD*¿1ÀèöêÿÿH‰ß@*H…Àu*Hß.ƒÊÿÇ‚Q* H‰oQ*ÇmQ*˜šéZH‹5!K*¿1Àè­êÿÿH‰Ž@*H…Àu*H–.ƒÊÿÇ9Q*#H‰&Q*Ç$Q*£šéH‹5ÐJ*¿1ÀèdêÿÿH‰=@*H…Àu*HM.ƒÊÿÇðP*$H‰ÝP*ÇÛP*®šéÈL‹
7E*L‹HE*1?H‹
E*H‹+E*H‹5E*èÿéÿÿH…Àu'Hï-ƒÊÿÇ’P*H‰P*Ç}P*·šëmH‹„P*L‹
uP*QA¸1É1ö¿AQjÿ5£D*ÿ5C*RRPRRºè&æÿÿHƒÄP1ÒH…Àu%H€-ƒÊÿÇ#P*H‰P*ÇP*ºš‰Ð[ÃUH‰ý1ÒH‰÷S1öQèÀâÿÿH…ÀtCH‹54D*H‰ÂH‰ïH‰ÃèvàÿÿH‹…ÀxHÿʽH‰uH‰ßèÚàÿÿëHÿÊH‰uH‰ßèÈàÿÿƒÍÿ‰èZ[]ÃAWAVAUE1íATI‰üUSHƒì(H‹5ÌG*è?æÿÿ…À…ÎH‹à(H‹5iC*A‰ÅH‰ßèîêÿÿH‰D$H…À„XH‹5IC*L‰çèÑêÿÿH‰D$H…À„;H9D$…ÂH‹51C*H‰ßè©êÿÿH‰$H…À„1H‹5C*L‰çèêÿÿI‰ÇH…À„"H9$uH‹5ìB*L‰çèlêÿÿI‰ÆH…Àu'é	H‹5ÐB*H‰Çè`êÿÿA‰ŅÀuÎ1Û1íE1öéI‹¼$H‹5®B*H‰Âè6ßÿÿ…ÀˆÈI‹¼$H‹5‡B*èêâÿÿA‰ŅÀˆ©H‹5B*L‰çèðéÿÿH‰ÅH…À…èâÿÿH‹5ØA*L‰çèÐéÿÿH‰ÃH…ÀtvI‹¼$H‹5ÁA*H‰ÂèÁÞÿÿ…Àx[I‹¼$H‹5žA*èyâÿÿA‰ŅÀx@L‰çè*çÿÿëh1Û1íE1öE1ÿHÇD$HÇ$ë1Û1íE1öE1ÿë
1Û1íE1öë1Û1íèÝçÿÿH…ÀuH‹(I‹T$ H5å$H‹81Àè{çÿÿAƒÍÿHƒ<$t H‹$H‹$H‹H‰D$HÿÈH‰uH‰ÏèÞÿÿHƒ|$uë+1Û1íE1öE1ÿH‹D$H‹L$H‹H‰$HÿÈH‰uH‰Ïè[ÞÿÿM…ÿt
IÿuL‰ÿèIÞÿÿHƒ|$t!H‹D$H‹T$H‹H‰$HÿÈH‰uH‰×è ÞÿÿM…öt
IÿuL‰÷èÞÿÿH…ítHÿMuH‰ïèûÝÿÿH…Ût-Hÿu(H‰ßèéÝÿÿëH‹5P@*H‰Ç1ÛèVèÿÿ…À…_þÿÿé§þÿÿHƒÄ(D‰è[]A\A]A^A_ÃAVE‰ÆAUI‰õH‰ÖATI‰ÌUH‰ÕSHìÐèôßÿÿH…À„ªH‰ÃH‹@ö€³€u H‹þ'H‰éL‰êH5¯#H‹81ÀèæÿÿëmL‹K(M9ás#H‹kþ'M‰àH‰éL‰êH5«#H‹81ÀèñåÿÿëAAÿÎuKM9ávFI‰æPL‰éI‰èAQHú#M‰áL‰÷¾È1Àè@Üÿÿ1ÒL‰ö1ÿèÔåÿÿZY…ÀyHÿuH‰ßèáÜÿÿ1ÛHÄÐH‰Ø[]A\A]A^ÃAWI‰×AVI‰þAUI‰õH5ÿ(ATI‰ÌUSAPèßÿÿH…À„ÁL‰îH‰ÇH‰ÃèáÜÿÿH‰ÅH…Àu(L‰÷è‘ãÿÿL‰éH5Ï#H‰ÂH‹ýþ'H‹81Àè#åÿÿëvL‰æH‰Çèæßÿÿ…Àu9H‰ïèJáÿÿL‰÷H‰ÅèOãÿÿI‰éM‰àL‰éH‰ÂH‹¼ü'H5µ#H‹81ÀèÛäÿÿë.L‰æH‰ïèNãÿÿI‰H…ÀtH‹1íHPÿH‰H…ÒuH‰ßèíÛÿÿëHÿuH‰ßèÞÛÿÿƒÍÿZ‰è[]A\A]A^A_ÃAWI‰×AVI‰þAUI‰õH5(ATI‰ÌUSAPè	ÞÿÿH…À„ÁL‰îH‰ÇH‰ÃèâÛÿÿH‰ÅH…Àu(L‰÷è’âÿÿL‰éH5X#H‰ÂH‹þý'H‹81Àè$äÿÿëvL‰æH‰ÇèçÞÿÿ…Àu9H‰ïèKàÿÿL‰÷H‰ÅèPâÿÿI‰éM‰àL‰éH‰ÂH‹½û'H5>#H‹81ÀèÜãÿÿë.L‰æH‰ïèOâÿÿI‰H…ÀtH‹1íHPÿH‰H…ÒuH‰ßèîÚÿÿëHÿuH‰ßèßÚÿÿƒÍÿZ‰è[]A\A]A^A_ÃH‹ßI*H…ÀtHÿÃAUA¸¹1ÀATHñ*¾USHìHl$ Ld$(H‰ïèÆÙÿÿèaäÿÿHË*¾L‰çH‰Á1Àè¨ÙÿÿŠD$(8D$ u
ŠD$*8D$"tbH\$0¾È1ÀM‰áHŽ?H‰ßL+-H‰éèlÙÿÿ1ÿºH‰Þèýâÿÿ…Ày'H2&ÇôH*H‰áH*ÇßH**œé!1ÿèËàÿÿH‰ÜH*H…Àu'Hø%ǺH*H‰§H*Ç¥H*.œéç1öH=»$èZÞÿÿH‰“H*H…Àu'H·%ÇyH*H‰fH*ÇdH*/œé¦1öH=z$èéàÿÿH…Àu'H}%Ç?H*H‰,H*Ç*H*0œél¾õH=Á *èLáÿÿH‰=H*H…Àu'H9%ÇûG*H‰èG*ÇæG*Tœé~H‰ÇèáØÿÿH‰úG*H…Àu'Hþ$ÇÀG*H‰­G*Ç«G*VœéíHÿH=)èŸÝÿÿH‰°G*H…Àu'H¼$Ç~G*H‰kG*ÇiG*Xœé«HÿH=Ï(è]ÝÿÿH‰fG*H…Àu'Hz$Ç<G*H‰)G*Ç'G*ZœéiHÿH‹8G*H5•(H‹=:G*è}Øÿÿ…Ày'H2$ÇôF*H‰áF*ÇßF*\œé!H[á)L‹#M…ät}ŠC 
C!H‹{t:€{"tè<ÙÿÿI‰$ë:H‹CH‹SHpÿH…Òt
1ÉèîÙÿÿI‰$ëè#ßÿÿI‰$ëH‹CHpÿè@ÜÿÿI‰$H‹H‹8H…ÿ„7è˜ÚÿÿHÿÀ„)HƒÃ(é{ÿÿÿWÀè^ÖÿÿH‰ß7*H…À„òîKèAÖÿÿH‰º7*H…À„ëò©Kè$ÖÿÿH‰•7*H…À„Îò¼KèÖÿÿH‰p7*H…À„±1ÿèÐ×ÿÿH‰Q7*H…À„š¿è¶×ÿÿH‰/7*H…À„€¿èœ×ÿÿH‰
7*H…À„f¿2è‚×ÿÿH‰ë6*H…À„L¿1‰èh×ÿÿH‰É6*H…À„2¿ʚ;èN×ÿÿH‰§6*H…À„1Ò1öH=Ì&èNÙÿÿH‰6*H…À„øHƒÏÿè×ÿÿH‰^6*H…À„ßH‹÷'ƒ8„öH‹Æ;*H‹5;*H‹=E*èëÜÿÿ…À‰ÔH"ÇÎD*H‰»D*ǹD*cœHƒ=áD*tLHƒ=ÏD*tH‹
–D*‹œD*H=›(‹5‹D*è®HH‹=¯D*H…ÿt7HÿHÇœD*u'è}Õÿÿë èvÞÿÿH…ÀuH‹ú÷'H5U(H‹8èËÙÿÿH‹lD*HÄ[]A\A]ÃH_!Ç!D*H‰D*ÇD*^œéNÿÿÿèjßÿÿH‰ÃH…Àu'H+!ÇíC*H‰ÚC*ÇØC*gœéÿÿÿH5Û'H‰Çè,ÕÿÿH…ÀuAH‹èC*H5À'H‰ßèaÖÿÿ…Ày'HÖ ǘC*H‰…C*ǃC*iœéÅþÿÿH‹=Ÿ7*è*FH…Àu'Hž Ç`C*+H‰MC*ÇKC*ʗéþÿÿH‹=Ÿ>*èòEH‰ƒA*H…Àu'H_ Ç!C*vH‰C*ÇC*˗éNþÿÿH‹=;*è³EH‰<A*H…Àu'H  ÇâB*|H‰ÏB*ÇÍB*̗éþÿÿH‹=Y>*ètEH‰õ@*H…Àu'HáÇ£B*ÓH‰B*ÇŽB*͗éÐýÿÿH‹=Z>*è5EH‰®@*H…Àu'H¢ÇdB*MH‰QB*ÇOB*Ηé‘ýÿÿH‹=ë=*èöDH‰g@*H…Àu'HcÇ%B*È
H‰B*ÇB*ϗéRýÿÿH‹=>*è·DH‰ @*H…Àu'H$ÇæA*>H‰ÓA*ÇÑA*ЗéýÿÿH‹=5*èxDH…Àu'HìÇ®A*YH‰›A*Ç™A*їéÛüÿÿH‹=}=*è@DH‰¡?*H…Àu'H­ÇoA*dH‰\A*ÇZA*җéœüÿÿH‹=þ<*èDH…Àu'H„Ç7A*	H‰$A*Ç"A*ӗédüÿÿH‹=f=*èÉCH‰"?*H…Àu'HEÇø@*¿H‰å@*Çã@*ԗé%üÿÿH‹=¯9*èŠCH…Àu'HÇÀ@*—H‰­@*Ç«@*՗éíûÿÿH‹=_>*èRCH‰£>*H…Àu'HÛǁ@*”H‰n@*Çl@*֗é®ûÿÿH‹= <*èCH‰\>*H…Àu'HœÇB@*@H‰/@*Ç-@*חéoûÿÿèÜÿÿ…ÀˆbûÿÿH‹ó'H=u%*HƒH‰Ò>*H‰Ã>*H‰´>*H‰¥>*H‰–>*H/*H‰È?*HI?H‰ò.*Hû?H‰ì.*èÕÿÿ…Ày'HäǦ?*;H‰“?*Ç‘?*›éÓúÿÿH‹5u?*H‹=ö%*Hß$*HÇ%*è]ïÿÿ…Ày'H”ÇV?*;H‰C?*ÇA?*›éƒúÿÿH‹5Í<*H‹=^?*H‰Úè.×ÿÿ…Ày'HSÇ?*;H‰?*Ç?*	›éBúÿÿH.*H=5!*H‰Þ=*H‰Ç>*HåH‰ñ-*è$Ôÿÿ…Ày'HÇ»>*iH‰¨>*Ǧ>*
›éèùÿÿH‹5‚>*H‹=ë!*HÇ!*èyîÿÿ…Ày'HÌÇr>*iH‰_>*Ç]>*›éŸùÿÿH=™ *è¥îÿÿ…Ày'H•Ç;>*iH‰(>*Ç&>*›éhùÿÿHb *H=[*H‰ü<*è_Óÿÿ…Ày'HPÇö=*H‰ã=*Çá=*›é#ùÿÿH*HÇR*H‰ßèîÿÿ…Ày'HÇ±=*H‰ž=*Çœ=*›éÞøÿÿHx,*H=*H‰j<*H‰[=*Hœ H‰U,*HÎçH‰O,*HPËH‰I,*Hb.H‰C,*H$YH‰=,*HF
H‰7,*HhQH‰1,*èlÒÿÿ…Ày'H]Ç=*JH‰ð<*Çî<*%›é0øÿÿH‹5Â<*H‹=s*H-\*HÇ‘*èºìÿÿ…Ày'H
dz<*JH‰ <*Çž<*,›éà÷ÿÿH‰ïèêìÿÿ…Ày'HÚÇ€<*JH‰m<*Çk<*-›é­÷ÿÿH+*H€*H‹51<*¹H‰ÇH‰<*HCó¥H‰+*H‰ßH@WH‰-;*H‰ò**H‰-C*èfÑÿÿ…Ày'HWÇý;*ÅH‰ê;*Çè;*4›é*÷ÿÿH‹5´;*H‹=
*HÇ2*è»ëÿÿ…Ày'HÇ´;*ÅH‰¡;*ÇŸ;*;›éáöÿÿH‰ßèëëÿÿ…Ày'HÛǁ;*ÅH‰n;*Çl;*<›é®öÿÿH=ÌH‰1:*è<ÍÿÿH‰ÃH…Àu'HáÇ?;*	H‰,;*Ç*;*J›élöÿÿA¸¹hH‰ÇHNH5uèeîÿÿH…Àu'H”Çò:*	H‰ß:*ÇÝ:*S›é!'HÿuH‰ßèãËÿÿH=0è§ÌÿÿH‰ÃH…Àu'HUǪ:*H‰—:*Ç•:*U›é×õÿÿA¸¹H‰ÇH,H5àèÐíÿÿH…Àu'HÇ]:*H‰J:*ÇH:*X›éŒ&HÿuH‰ßèNËÿÿH=›èÌÿÿH‰ÃH…Àu'HÉÇ:*H‰:*Ç:*Z›éBõÿÿA¸¹(H‰ÇH H5Kè;íÿÿH…Àu'H|ÇÈ9*H‰µ9*dz9*]›é÷%HÿuH‰ßè¹ÊÿÿH=\è}ËÿÿH‰ÃH…Àu'HÍÇ€9*ÏH‰m9*Çk9*_›é­ôÿÿA¸¹hH‰ÇHŽH5è¦ìÿÿH‰þ8*H…Àu'HyÇ,9*ÏH‰9*Ç9*b›é[%A¸¹P
H‰ßHÅH5¸èRìÿÿH…Àu'H,Çß8*æH‰Ì8*ÇÊ8*d›é%A¸¹8H‰ßHH5kèìÿÿH‰U8*H…Àu'HØÇ‹8*êH‰x8*Çv8*f›éº$A¸¹XH‰ßH7H5è±ëÿÿH‰ù7*H…Àu'H„Ç78*öH‰$8*Ç"8*h›éf$A¸¹àH‰ßHëH5Ãè]ëÿÿH…Àu'H7Çê7*GH‰×7*ÇÕ7*j›é$HÿuH‰ßèÛÈÿÿH=¥èŸÉÿÿH‰ÃH…Àu'H¬Ç¢7*H‰7*Ǎ7*l›éÏòÿÿA¸¹hH‰ÇH[H5UèÈêÿÿH…Àu'H_ÇU7*H‰B7*Ç@7*o›é„#A¸¹HH‰ßH<H5è{êÿÿH…Àu'HÇ7*H‰õ6*Çó6*q›é7#H‹¸H‹5(+*èSÉÿÿH‰ÅH…Àu'HÐÇÆ6*H‰³6*DZ6*r›éõ"1öH‰ÇèúÎÿÿI‰ÅH…Àu è­ÐÿÿH…ÀuH‹áè'H5:-H‹8èÌÿÿHÿMuH‰ïè„ÇÿÿM…ít”A¸¹H‰ßHuH54è§éÿÿH…Àu'H>Ç46*"H‰!6*Ç6*t›éc"HÿuH‰ßè%ÇÿÿH=:èéÇÿÿH‰ÃH…Àu'H*Çì5*H‰Ù5*Ç×5*ƒ›éñÿÿH
H$5*H‰ÇH5èêÿÿ…Ày'HâǤ5*H‰‘5*Ǐ5*„›éÓ!H
ÌHÔ4*H‰ßH5Âè¹éÿÿ…Ày'HšÇ\5*H‰I5*ÇG5*…›é‹!H
¢H„4*H‰ßH5šèqéÿÿ…Ày'HRÇ5*H‰5*Çÿ4*†›éC!HÿuH‰ßèÆÿÿH=Æ+èÉÆÿÿH‰ÃH…Àu'H
ÇÌ4*H‰¹4*Ç·4*–›éùïÿÿH
«+HL4*H‰ÇH5èàéÿÿ…Ày'HÂÇ„4*H‰q4*Ço4*—›é³ H
c+Hü3*H‰ßH5×è˜éÿÿ…Ày'HzÇ<4*H‰)4*Ç'4*˜›ék H
+H¬3*H‰ßH5œèPéÿÿ…Ày'H2Çô3*H‰á3*Çß3*™›é# H
Ó*H\3*H‰ßH5aèéÿÿ…Ày'HêǬ3*H‰™3*Ç—3*š›éÛH
‹*H3*H‰ßH5%èÀèÿÿ…Ày'H¢Çd3*H‰Q3*ÇO3*››é“H
C*H¼2*H‰ßH5èèxèÿÿ…Ày'HZÇ3*H‰	3*Ç3*œ›éKH
û)Hl2*H‰ßH5¬è0èÿÿ…Ày'HÇÔ2*H‰Á2*Ç¿2*›éH
³)H2*H‰ßH5pèèçÿÿ…Ày'HÊÇŒ2*H‰y2*Çw2*ž›é»H
k)HÌ1*H‰ßH54è çÿÿ…Ày'H‚ÇD2*H‰12*Ç/2*Ÿ›ésHÿuH‰ßè5ÃÿÿH=JèùÃÿÿH‰ÃH…Àu'H:Çü1*H‰é1*Çç1*¡›é)íÿÿH
3)H1*H‰ÇH5¯èçÿÿ…Ày'HòÇ´1*H‰¡1*ÇŸ1*¢›éãH
;)HÌ0*H‰ßH5xèÈæÿÿ…Ày'HªÇl1*H‰Y1*ÇW1*£›é›H
XH|0*H‰ßH5cè€æÿÿ…Ày'HbÇ$1*H‰1*Ç1*¤›éSH
)H,0*H‰ßH5%è8æÿÿ…Ày'HÇÜ0*H‰É0*ÇÇ0*¥›éH
»(HÜ/*H‰ßH5éèðåÿÿ…Ày'HÒ
Ç”0*H‰0*Ç0*¦›éÃH
»(HŒ/*H‰ßH5¬è¨åÿÿ…Ày'HŠ
ÇL0*H‰90*Ç70*§›é{H
“)H</*H‰ßH5iè`åÿÿ…Ày'HB
Ç0*H‰ñ/*Çï/*¨›é3H
c*Hì.*H‰ßH5&èåÿÿ…Ày'HúǼ/*H‰©/*ǧ/*©›éëH
«*Hœ.*H‰ßH5åèÐäÿÿ…Ày'H²Çt/*H‰a/*Ç_/*ª›é£H
c*HL.*H‰ßH5®èˆäÿÿ…Ày'HjÇ,/*H‰/*Ç/*«›é[HÿuH‰ßèÀÿÿH‹=$*1Ò1öè/H‰ÅH…Àu'HÇà.*H‰Í.*ÇË.*…œé
êÿÿH‹5ß#*H‹=à.*H‰ÂèH¿ÿÿ…Ày'HÝÇŸ.*H‰Œ.*ÇŠ.*‡œé HÿMuH‰ï菿ÿÿH‹=@ *1Ò1öèÿ.H‰ÅH…Àu'HÇR.*H‰?.*Ç=.*‘œééÿÿH‹5 *H‹=R.*H‰Â躾ÿÿ…Ày'HOÇ.*H‰þ-*Çü-*“œéHÿMuH‰ïè¿ÿÿH‹=:#*1Ò1öèq.H‰ÅH…Àu'HÇÄ-*
H‰±-*ǯ-*œéñèÿÿH‹53#*H‹=Ä-*H‰Âè,¾ÿÿ…Ày'HÁ
ǃ-*
H‰p-*Çn-*Ÿœé„HÿMuH‰ïès¾ÿÿ¿è¹ÇÿÿH‰ÅH…Àu'Hz
Ç<-*H‰)-*Ç'-*©œéièÿÿH‹³"*1öH‰ïHÿH‹¤"*èŸÃÿÿH‹=P"*1ÒH‰îèŽ-H‰ÃH…Àu*H
E1äÇÞ,*H‰Ë,*ÇÉ,*®œéßHÿMuH‰ïèνÿÿH‹5G"*H‰ßè0H‰ÅH…Àu'HÐ	Ç’,*H‰,*Ç},*±œéH‹5	"*H‹=’,*H‰Âèú¼ÿÿ…Ày*H	I‰ÜÇN,*H‰;,*Ç9,*³œéOHÿMuH‰ïè>½ÿÿHÿuH‰ßè1½ÿÿ¿èwÆÿÿH‰ÃH…Àu'H8	Çú+*H‰ç+*Çå+*¾œé'çÿÿH‹©'*1öH‰ßHÿH‹š'*è]ÂÿÿH‹=¦ *ºH‰ÞèI,H‰ÅH…Àu'HÚÇœ+*H‰‰+*LJ+*Üé'HÿuH‰ß荼ÿÿH‹5>'*H‰ïè>/H‰ÃH…Àu*HE1äÇN+*H‰;+*Ç9+*ƜéOH‹5ý&*H‹=N+*H‰Â趻ÿÿ…Ày*HKI‰ÜÇ
+*H‰÷**Çõ**ȜéHÿuH‰ßèû»ÿÿHÿMuH‰ïèí»ÿÿHT$Ht$HÇD$HÇD$H|$HÇD$HÇD$ HÇD$(HÇD$0èÁÿÿH=èg¼ÿÿH‰ÅH…À„{H5H‰ÇèܽÿÿHÿMH‰ÃuH‰ïèk»ÿÿH…ÛuH‹¿Ü'H5ë
H‹8è?ÿÿé;H‹lÜ'H9Ct,H‹wÜ'H5H&H‹8蘿ÿÿHÿ…H‰ßè»ÿÿé1öH‰ßèHÂÿÿHÿH‰**uH‰ßèôºÿÿH‹
**H…ÀuH‹!Ü'H5‚
H‹8èB¿ÿÿé½ÿ=	H‹ß)*t&ÿº	H5ï%‰ÁH‹æÛ'H‹81Àè\Ãÿÿé‡ÿ˜ƒøH‹§)*w'ÿ˜º
H5&‰ÁH‹ªÛ'H‹81Àè ÃÿÿëNÿ…ÀuH‹Û'H5&&H‹81ÀèüÂÿÿë*ÿÈtH‹oÛ'H58&H‹81ÀèÞÂÿÿëH‹|$H…ÿu?ëGH‹1Ü'H-1Çä(*½H‰-Ñ(*I‰ìÇÌ(*^H‹8蜼ÿÿ…ÀuVéHÿuèɹÿÿHÇD$H‹|$H…ÿt
Hÿu謹ÿÿHÇD$H‹|$H…ÿ„.Hÿ…%臹ÿÿé‹h(*‹5^(*H=2H‹
H(*ès,HT$0Ht$(H|$ èo%…ÀyH‰-$(*Ç&(*¾Ç(*§^ëjH‹5÷*H‹= &*1Òè	¿ÿÿH‰ÃH…ÀuH‰-ê'*Çì'*¿ÇÞ'*³^ë0H‰Ç茼HÿuH‰ßè߸ÿÿL‰%¸'*Ǻ'*¿Ç¬'*·^H‹|$H‹T$H‹t$èоÿÿH‹|$ H…ÿt
Hÿu蜸ÿÿH‹|$(H…ÿt
Hÿu舸ÿÿH‹|$0H…ÿ„ÁHÿ…¸èl¸ÿÿé®H‹¨&*òèW·ÿÿH‰ÅH…Àu'HhÇ*'*nH‰'*Ç'*ܜéWâÿÿH‹&*H‹5Â*H‰êH‹¸苷ÿÿ…Ày'H Çâ&*nH‰Ï&*ÇÍ&*ޜéãHÿMuH‰ïèҷÿÿH‹=«%*èֿÿÿH‹=7*èú)H‰ÅH…Àu'HËǍ&*šH‰z&*Çx&*éœéºáÿÿH‹5ü*H‰ÇèìÁÿÿI‰ÄH…Àu'HÇO&*šH‰<&*Ç:&*ëœéPHÿMuH‰ïè?·ÿÿH‹=°*L‰%Y*èl)H‰ÃH…Àu'H=Çÿ%*4H‰ì%*Çê%*ùœé,áÿÿH‹5n*H‰Çè^ÁÿÿH‰ÅH…Àu'HÿÇÁ%*4H‰®%*Ǭ%*ûœéLHÿuH‰ß貶ÿÿH‹=#*H‰-Ä*èß(H‰ÅH…Àu'H°Çr%*iH‰_%*Ç]%*	éŸàÿÿH‹5)*H‰ÇèÑÀÿÿI‰ÄH…Àu'HrÇ4%*iH‰!%*Ç%*é5HÿMuH‰ïè$¶ÿÿH‹=•*L‰%.*èQ(H‰ÃH…Àu'H"Çä$*dH‰Ñ$*ÇÏ$*éàÿÿH‹5S*H‰ÇèCÀÿÿH‰ÅH…Àu'HäǦ$*dH‰“$*Ç‘$*é1HÿuH‰ß藵ÿÿH‹=*H‰-™*èÄ'H‰ÅH…Àu'H•ÇW$*H‰D$*ÇB$*)é„ßÿÿH‹5Æ*H‰Ç趿ÿÿI‰ÄH…Àu'HWÇ$*H‰$*Ç$*+éHÿMuH‰ïè	µÿÿH‹*1öH=I*L‰%ú*荾ÿÿH‰ÃH…Àu'HþÇÀ#*åH‰­#*Ç«#*9éíÞÿÿH‹5*H‹=À#*H‰Âè(´ÿÿ…Ày'H½Ç#*åH‰l#*Çj#*;é
HÿuH‰ßèp´ÿÿèK·ÿÿH‰ÃH…Àu'H|Ç>#*H‰+#*Ç)#*CékÞÿÿH‹M*H‹5Ö*H‰Ç観ÿÿ…Ày'H;Çý"*H‰ê"*Çè"*EéˆH‹*H‹5u*H‰ßèe³ÿÿ…Ày'HúÿǼ"*H‰©"*ǧ"*FéGH‹S*H‹5Ô*H‰ßè$³ÿÿ…Ày'H¹ÿÇ{"*H‰h"*Çf"*GéH‹š*H‹5Û*H‰ßèã²ÿÿ…Ày'HxÿÇ:"*H‰'"*Ç%"*HéÅH‹*H‹5Š*H‰ß袲ÿÿ…Ày'H7ÿÇù!*H‰æ!*Çä!*Ié„H‹ð*H‹5I*H‰ßèa²ÿÿ…Ày'HöþǸ!*H‰¥!*Ç£!*JéCH‹§*H‹5 *H‰ßè ²ÿÿ…Ày'HµþÇw!*H‰d!*Çb!*KéH‹ö*H‹57*H‰ßè߱ÿÿ…Ày'HtþÇ6!*H‰#!*Ç!!*LéÁ
H‹5*H‹5¦*H‰ß螱ÿÿ…Ày'H3þÇõ *H‰â *Çà *Mé€
H‹4*H‹5-*H‰ßè]±ÿÿ…Ày'HòýÇ´ *H‰¡ *ÇŸ *Né?
H‹C*H‹5ô*H‰ßè±ÿÿ…Ày'H±ýÇs *H‰` *Ç^ *OéþH‹ú*H‹5;*H‰ßè۰ÿÿ…Ày'HpýÇ2 *H‰ *Ç *Pé½H‹*H‹5Š*H‰ß蚰ÿÿ…Ày'H/ýÇñ*H‰Þ*ÇÜ*Qé|H‹€*H‹5Á*H‰ßèY°ÿÿ…Ày'Hîüǰ*H‰*Ç›*Ré;H‹¿*H‹50*H‰ßè°ÿÿ…Ày'H­üÇo*H‰\*ÇZ*SéúH‹V*H‹5Ï*H‰ßèׯÿÿ…Ày'HlüÇ.*H‰*Ç*Té¹H‹ý*H‹5v*H‰ß薯ÿÿ…Ày'H+üÇí*H‰Ú*ÇØ*UéxH‹¼*H‹5¥*H‰ßèU¯ÿÿ…Ày'HêûǬ*H‰™*Ç—*Vé7H‹S*H‹5ä*H‰ßè¯ÿÿ…Ày'H©ûÇk*H‰X*ÇV*Wéö
H‹*H‹5*H‰ßèӮÿÿ…Ày'HhûÇ**H‰*Ç*Xéµ
H‹Q*H‹5:*H‰ß蒮ÿÿ…Ày'H'ûÇé*H‰Ö*ÇÔ*Yét
H‹ð*H‹5*H‰ßèQ®ÿÿ…Ày'HæúǨ*H‰•*Ç“*Zé3
H‹*H‹5°*H‰ßè®ÿÿ…Ày'H¥úÇg*H‰T*ÇR*[éò	H‹6*H‹5g*H‰ßèϭÿÿ…Ày'HdúÇ&*H‰*Ç*\é±	H‹*H‹5¶*H‰ß莭ÿÿ…Ày'H#úÇå*H‰Ò*ÇÐ*]ép	H‹¬*H‹5%*H‰ßèM­ÿÿ…Ày'HâùǤ*H‰‘*Ǐ*^é/	H‹Û*H‹5ü*H‰ßè­ÿÿ…Ày'H¡ùÇc*H‰P*ÇN*_éîH‹ª*H‹5Ë*H‰ßèˬÿÿ…Ày'H`ùÇ"*H‰*Ç
*`é­H‹ù*H‹5ú*H‰ß芬ÿÿ…Ày'HùÇá*H‰Î*ÇÌ*aélH‹ˆ*H‹5‰*H‰ßèI¬ÿÿ…Ày'HÞøÇ *H‰*Ç‹*bé+H‹'
*H‹5Ð*H‰ßè¬ÿÿ…Ày'HøÇ_*H‰L*ÇJ*céêH‹†*H‹5*H‰ßèǫÿÿ…Ày'H\øÇ*H‰*Ç	*dé©H‹*H‹5>*H‰ß膫ÿÿ…Ày'HøÇÝ*H‰Ê*ÇÈ*eéhH‹¤*H‹5Õ*H‰ßèE«ÿÿ…Ày'HÚ÷Çœ*H‰‰*LJ*fé'H‹³*H‹5|*H‰ßè«ÿÿ…Ày'H™÷Ç[*H‰H*ÇF*géæH‹‚*H‹5K*H‰ßèêÿÿ…Ày'HX÷Ç*H‰*Ç*hé¥H‹9*H‹5*H‰ß肪ÿÿ…Ày'H÷ÇÙ*H‰Æ*ÇÄ*iédH‹ð*H‹5!*H‰ßèAªÿÿ…Ày'HÖöǘ*H‰…*ǃ*jé#H‹ß*H‹5 *H‰ßèªÿÿ…Ày'H•öÇW*H‰D*ÇB*kéâH‹*H‹5*H‰ß迩ÿÿ…Ày'HTöÇ*H‰*Ç*lé¡H‹5e*H‹=*H‰Úè~©ÿÿ…Ày'HöÇÕ*H‰Â*ÇÀ*mé`HÿuH‰ßèƩÿÿ1ÒH5“üH=&¹èa«ÿÿH‰ÃH…Àu'HÞõÇ„*ÑH‰q*Ço*wé±ÓÿÿH‹S*H‹5Ì*H‰ÚH‹¸èå¨ÿÿ…Ày'H–õÇ<*ÑH‰)*Ç'*yéÇHÿuH‰ßè-©ÿÿH‹=þ*è1±ÿÿH‹5Z*H‹=ã*1Òèü®ÿÿH…Àu'H<õÇâ*H‰Ï*ÇÍ*„éÓÿÿH‹=‘*H‰Š*HÿuèȨÿÿH‹5ù*H‹=Š*1Ò裮ÿÿH…Àu'Hãôlj*H‰v*Çt*’é¶ÒÿÿH‹=0*H‰)*Hÿuèo¨ÿÿH‹5˜*H‹=1*1ÒèJ®ÿÿH…Àu'HŠôÇ0* H‰*Ç* é]ÒÿÿH‹=Ï*H‰È*Hÿuè¨ÿÿH‹57*H‹=Ø*1Òèñ­ÿÿH…Àu'H1ôÇ×*#H‰Ä*ÇÂ*®éÒÿÿH‹=n*H‰g*Hÿu轧ÿÿH‹5Ö*H‹=*1Ò蘭ÿÿH…Àu'HØóÇ~*$H‰k*Çi*¼é«ÑÿÿH‹=
*H‰*Hÿuèd§ÿÿÇê*Hƒ*èΧÿÿH‰w*è§ÿÿH‰s*趧ÿÿH‰o*誧ÿÿH‰k*螧ÿÿH‰g*蒧ÿÿH‰c*膧ÿÿH‰_*èz§ÿÿH‰޹1ÒH‰Q*H=2*ó¥H5¯ùH=¹è}¨ÿÿH‰ÃH…Àu'HúòÇ *%H‰*Ç‹*äéÍÐÿÿH‹_*H‹5è	*H‰ÚH‹¸è¦ÿÿ…Ày'H²òÇX*%H‰E*ÇC*æéãHÿuH‰ßèI¦ÿÿH‹=
*èM®ÿÿ1ÒH5
ùH=m¸èاÿÿH‰ÃH…Àu'HUòÇû*ãH‰è*Çæ*ñé(ÐÿÿH‹²*H‹5C	*H‰ÚH‹¸è\¥ÿÿ…Ày'H
òdz*ãH‰ *Çž*óé>HÿuH‰ß褥ÿÿH‹=]*設ÿÿH‹Ñ*1öH=¸*è#¯ÿÿH‰ÃH…Àu'H°ñÇV*H‰C*ÇA*üéƒÏÿÿH‹5…*H‹=V*H‰Â辤ÿÿ…Ày'HoñÇ*H‰*Ç*þé Hÿ…¯ÏÿÿH‰ßè¥ÿÿé¢ÏÿÿHÿMuH‰ïèï¤ÿÿM…ä„ÏÿÿIÿ$…ÏÿÿL‰çèԤÿÿéþÎÿÿHÿ…õÎÿÿH‰ß辤ÿÿéèÎÿÿH‹
’*‹˜*H=h÷‹5‡*èªH³ðÇu*H‰b*Ç`*Ӝé¢ÎÿÿI‰ÜëˆfHƒìH‹Æ'H…ÀtÿÐHƒÄÃDH=!*H*H9øtH‹æÄ'H…Àt	ÿà€Ã€H=ñ*H5ê*H)þHÁþH‰ðHÁè?HÆHÑþtH‹}Æ'H…ÀtÿàfDÀ€=É*u/UHƒ=†Æ'H‰åtH=ZÂ'è®ÿÿèhÿÿÿÆ¡*]ÀÀé{ÿÿÿf.„H‹G@H‹Ã„H‹GHƒH‹GËWt1Ò~
H‹‡€H‹Ãff.„‰òƒêx,HcҍFþHƒ|×H˜~ëo€HƒèHƒ|Ç\HcЅÀyí…öŽŸE1À1ÉHƒ•¸ëfDHƒÀHƒ|ÇDHcÐ9Æí1ÀAƒøÿuH÷Ù1ÀH9Èœ
D@CÃDH‹L×PH‰ÈHÁø?I‰ö~ÐHƒ~©1Ò@H‹D×PH‰ÊH÷ÚH‰ÆHÁþ?AƒøÿHDÊH‰ÂH÷ڃþÿHDÂH9Èœ
D@CøCÃH‹GPH‰ÆHÁþ?ëÕHƒìö‡²u31öÿ—8H…Àt!H‹*H‰PH‹$Ä'HƒH‰P H‰ØHƒÄÃH‹iÄ'1ÒH‹5*ÿ@뽄ATI‰ÔUH‰õSH‰ûH‹ H…ÿt	H‰ÖÿՅÀu!H‹»Ø1ÀH…ÿt[L‰æH‰è]A\ÿà€[]A\Ðf.„H‹G HƒH‹G ÃHƒìö‡²u#1öÿ—8H…ÀtH‹oÃ'HƒH‰PHƒÄÃfH‹¹Ã'1ÒH‹5X*ÿ@ëÍ„H‹H‰ðH…ÿtH‰Öÿà€1ÀÃDH‹G HƒH‹G ÃH‹‡@HƒH‹‡@Ãf.„A‰ðAƒèx_IcȉðHÁá9T|HE…À~K1öë€}2pA9ð~ D‰À)ðÑøðHcÈHÁá‹L9Ñ~ÞA‰ÀA9ðà9ʟ¶ÒÐÃÀ‹O1Àëã@¶Ç@€ÿs‡bH«ôHc‚HÐÿàfHYëÄH,ìÄH¹ëÄHìÄH‚ëÄH]ëÄH4ëÄ…öH	ìHçêHDÂÃ…öHwëHÚëHDÂÃ…öHgëH±ëHDÂÃHBëÃH¶êÄHBëÄHëÄH9ëÄHëÄH¹êÄH“êÄHlêÄHDêÄHðêÄH…ÿt;H…öt6H9÷„H‹OH‹VH9Ñt(€\Ht
1~\HtÐ1ÀH9Ñ”ÀÀ1ÀÃD·F\f9G\u΋GX;FXuÆATUS…À~7H‹_H9^…°Hÿ1Àëf„H‹TÇ HƒÀH;TÆ…ŒH9Áuç€\S¸t[]A\À¸Ã1^`9_`uäL‹gH‹nM…ätWH…ítÒI‹<$H‹uH…ÿtRH…ötÀI‹\$H9]uµ»èÿÿÿ…Àt§I‹<H‹tH…ÿt(H…ötI‹DHƒÃH;DøtÔ1Àë€1ÀH…í”Àésÿÿÿ1Û1ÀHƒ|”Àéaÿÿÿf.„UH‰ýSHƒìH‹ ¿'H‹ H‹H‰] HƒÀH‰H…ÿt
Hƒ/„H‹H‹}(HƒÀH‰](H‰H…ÿt	Hƒ/tbH‹H‹}0HƒÀH‰]0H‰H…ÿtHƒ/t5H‹}XH…ÿtHÇEXHƒ/tHƒÄ1À[]ÃDè+ÿÿHƒÄ1À[]ÃfèÿÿëÄf„èÿÿë—f„èûœÿÿégÿÿÿfDAWAÿAVAUATUSHƒìH‹.D‰D$‰D$H…í~9I‰ýI‰öI‰×A‰Ì1ÛAƒüt:D‹D$‹L$IWL‰ïIvè±ÿÿÿHƒÃM/H9ÝuÕHƒÄ[]A\A]A^A_ÃfDI‹}‹D$H‹…ÀuHƒêH‰uÇècœÿÿëHƒÂH‰ë¶€H‹9¾'H‹WHƒH‰GH…ÒtHƒ*t
1ÀÀHƒìH‰×èœÿÿ1ÀHƒÄÃDSH‰ûH‹H…ÿtHÇCHƒ/tH‹CH‰ß[H‹€Hÿà@èۛÿÿëäf„UH‰ýSHƒìH‹°½'H‹ H‹H‰] HƒÀH‰H…ÿt	Hƒ/tCH‹H‹½ØHƒÀH‰ØH‰H…ÿtHƒ/tHƒÄ1À[]Àèk›ÿÿHƒÄ1À[]Ãfè[›ÿÿë¶f„SH‰ûH‹ H…ÿtHÇC Hƒ/tEH‹»ØH…ÿtHǃØHƒ/tH‹CH‰ß[H‹€Hÿà€èûšÿÿëáf„èëšÿÿë´f„HƒìI‰øL‹O‹w@¾Dè9úÿÿH‹â»'H‹:M…ÉtBI‹1H‹L‹HµåL9Æt;I‹QðL‹NH‰ÁH5à1ÀH‹L‹L‰ÒHƒÄé?£ÿÿ€H}åL=æI‰ÁI‰ÐL‰Ñ1ÀH5˜ßHƒÄé£ÿÿDf.„H‹¾‰Ѓè0<	w3Hq¾IBЍQЀú	wfD€HƒÆDAоQЀú	vêH‰7ÃHƒìH‹»'H5¤ßH‹81À袢ÿÿ¸ÿÿÿÿHƒÄÄU1ÀH‰ý¿SHƒìèû¡ÿÿH…ÀtFH‰Ã1ÒH‰ÆH‰ï薟ÿÿHƒ+tHƒÄ[]Ãf„H‰ßH‰D$胙ÿÿH‹D$HƒÄ[]ÀHƒÄ1À[]ÀSH‰ûHƒì H|$HT$Ht$蔞ÿÿHƒH‹=)»'H9{ …ÿH9{X„=H‹{8H…ÿtI‹¦*…Ò~:H‹
[*H9Ï„â¸L>*ë@HƒÀI‹ÀH9Ï„ÇHcð9ÂèèãšÿÿHƒ+H‹|$H‹T$H‹t$蛜ÿÿH‹{ H…ÿtHÇC Hƒ/tdH‹{(H…ÿtHÇC(Hƒ/t=H‹{0H…ÿtHÇC0Hƒ/tH‹CH‰ßÿHHƒÄ [Ãè[˜ÿÿëãf„èK˜ÿÿë¼f„è;˜ÿÿë•f„H{PèGœÿÿéýþÿÿf1öfDƒê‰Ÿ*9ò„4ÿÿÿHP*HcÒH‹<ÐH‰<ðH‰Ðéÿÿÿ@Hƒ/HÇCX…±þÿÿèїÿÿé§þÿÿff.„UH‰ýH‰÷SHƒìèϠÿÿH…ÀtJH‰ÃH‹EH‰ïH‰ÞH‹@xÿPHƒ+tHƒÄ[]Ãf„H‰ßH‰D$ès—ÿÿH‹D$HƒÄ[]À1ÀëÌff.„ëŽ@f.„Hƒ:…
Hƒz…L‹‡ˆM…À„›…ö~rFÿLÅ1Àë„L‹‡ˆM‹L‰DPHƒÀI9Áuç1ÀIÇÂÿÿÿÿfDL‹‡€M‹ÀL‰DÂL‹M‰ÐM…ÉtM‹ÁL‰„HƒÀ9ÆÍH‰:H‹GPH‰BH‹GHºðÁ	ÑtY1ÀÃfDA‰òL‹GhAƒêx5IcÂLcÎE‰ÒM)ÑHÁàNÍðÿÿÿL‰DPL‹€M¯HƒèI9Âuæ…öOÿÿÿë@Hƒ1ÀÃH‹B·'SH5ÜH‰ÓH‹8èšÿÿHǸÿÿÿÿHÇC[Ãf„AWAVI‰þAUI‰ÕATUSHƒì8H‹I‹D‹d$pL‹|$xH‰D$H‹H‰$Aƒü„†H…Û~kIAAƒì1íI‰ÖH‰D$ I@E‰åI‰üH‰D$HAH‰D$(HFH‰D$AWL‰òL‰çHƒÅAUL‹L$0L‹D$(H‹L$8H‹t$ ègÿÿÿLd$Lt$XZH9ëuÈHƒÄ8[]A\A]A^A_ÀH‹D$H…À~Hƒ<$~I9ÇtJ1íH…Û~ÍL‰éL‹d$L‹,$€L‰öH‰ÏL‰úHƒÅ莙ÿÿMæH‰ÁLéH9ëuàHƒÄ8[]A\A]A^A_ÐL9<$u°H‹$HƒÄ8H‰þL‰ïH¯Ó[]A\A]A^A_éI™ÿÿf„AWM‰ÏAVM‰ÆAUATI‰üUSHƒì(L‹*H‹ƒùt^H…Û~CAÿ1í‰D$HBH‰D$HFH‰D$‹L$H‹T$L‰çM‰ùH‹t$M‰ðHƒÅMìè›ÿÿÿH9ëuØHƒÄ([]A\A]A^A_ÀH…Û~å1íf„L‰çL‰òL‰þHƒÅ螘ÿÿMìH9ëuæHƒÄ([]A\A]A^A_ÀAWAVI‰þAUI‰õATI‰ÔUSHƒì(L|$Hl$H\$L‰úH‰îH‰ßèü˜ÿÿL‰úH‰îH‰ß莔ÿÿ虜ÿÿH…ÀutH‹t$H…ötH‹|$è0ÿÿ…Àx\H‹D$H…ÀtHƒH‹D$H…ÀtHƒH‹t$H…öt	HƒH‹t$H‹|$H‹T$I‰>I‰uI‰$èS™ÿÿHƒÄ(1À[]A\A]A^A_ÃfH‹|$IÇIÇEIÇ$H…ÿtHƒ/tYH‹|$H…ÿtHƒ/t9H‹|$H…ÿtHƒ/tHƒÄ(¸ÿÿÿÿ[]A\A]A^A_ÃD軒ÿÿëàf„諒ÿÿëÀf„蛒ÿÿë f„SH‰ûHƒì HT$Ht$H|$èėÿÿH‹ChHƒH…À„ƒH‹{ ÿÐH‹{@贙ÿÿHƒ+H‹|$H‹T$H‹t$è–ÿÿH‹{XH…ÿtHÇCXHƒ/t5H‹{`H…ÿtHÇC`Hƒ/tH‹CH‰ßÿHHƒÄ [Ãèó‘ÿÿëãèë‘ÿÿëÄf„‹Sp…Ò„xÿÿÿ‹CtH‹{ …Àu
è%‘ÿÿécÿÿÿ‹K8H‹SHE1ÀH‹s@è½ôÿÿH‹{ ëÝ€AWAVLvÿAUATUSHƒì(L‹l$`L9ò~HG(L‰óL‰L$M‰ÄH‰D$I¯ØHBÿH‰ÍH‰D$LËDH‹|$L‰öIƒîè™ÿÿH‹L$H‰êL‰ïI¯ÄL<L‰þè̕ÿÿH‰ÞH‰êL‰ÿ辕ÿÿH‰ßH‰êL‰î谕ÿÿL)ãL;t$u®H‹ï²'HƒHƒÄ([]A\A]A^A_Ãff.„AUATUSH^ÿHƒìH9Ú=H‰ÍLg(LjÿfH‰Ú1ÉE1À1öL‰çè~“ÿÿH‹LÝHDÅH‹H‰H‰TÝHƒëL9ëuÐHƒÄ[]A\A]ÃDAVAUA‰ÕATI‰üUSH…ötuH‹=~ÿ)H‰õèNÿÿI‰ÆH…À„Ñè-“ÿÿH‰ÃH…À„ÀL‰çE‰èH‰éH‰ÂL‰öè]ÿÿI‰ÄHƒ+t[L‰à]A\A]A^ÄH‰ßèÿÿ[L‰à]A\A]A^Ã@1ÿèA™ÿÿH‰ÅH…ÀthH‹=úþ)è͏ÿÿI‰ÆH…ÀtE谒ÿÿH‰ÃH…Àt8L‰çE‰èH‰éH‰ÂL‰öèäŽÿÿHƒmI‰Äu€H‰ï袏ÿÿHƒ+…tÿÿÿë†fDHƒmuH‰ï聏ÿÿE1ä[]L‰àA\A]A^ÃfATI‰ÔUH‰õSH‰ûH‹ H…ÿt	H‰ÖÿՅÀuAH‹{(H…ÿt	L‰æÿՅÀu/H‹{0H…ÿt	L‰æÿՅÀuH‹{X1ÀH…ÿt[L‰æH‰è]A\ÿàfD[]A\Ðf.„ATI‰ÔUH‰õSH‰ûè~ÿÿÿ…ÀuH‹»@H…ÿt[L‰æH‰è]A\ÿàf[]A\Ðf.„UH‰ýSHƒìH…öt:H‰óHƒH‹} Hƒ/tH‰] HƒÄ1À[]Ã@苎ÿÿH‰] HƒÄ1À[]ÃfDH‹a°'ëÀDf.„UH‰þH‰ýSHƒìH‹=Uý)踘ÿÿH‰ÃH…ÀtHƒÄH‰Ø[]ÃfDH‹1°'H‰êH5uÚH‹81ÀèՖÿÿëÓAVA‰ÖAUA‰õATUSL‹gH‰ûè&ÿÿL‰çHSPHs‰ÅE‰ðD‰éèîðÿÿ[‰ï]A\A]A^é”ÿÿDf.„SH‰þH‰ûH‹=Âü)è
ÿÿH…ÀtHƒ[ÃfèKÿÿH‰ß[é2ÿÿÿfHƒì臖ÿÿ1ÒH…Àu‰ÐHƒÄÃf„H‹9¯'H‹8è!ÿÿºÿÿÿÿ…ÀtØèÿÿ1ÒëÏDf.„UH‰õSHƒì袗ÿÿH‰ÃH…Àt
HƒÄH‰Ø[]ÃH‹y®'H‹8èяÿÿ…ÀtãH‹–¯'H‰êH5kÙH‹81À貕ÿÿëÆAWAVI‰þAUI‰ÍATU‰ÕS‰óHƒì8èC“ÿÿI‰ąÛ…ÐA‰ï1ÛE…ÿ„ZL‹
kû)M…É„JD‹Sû)D‰úL‰ÏD‰Öè•ëÿÿA9ÂŽ,H˜HÁàIÁE;y…I‹HƒH‹{û)L‰ç1ÉH‰Þèþ”ÿÿI‰ÄH…À„"‰h0H‰ÇèW•ÿÿHƒ+t1Iƒ,$tHƒÄ8[]A\A]A^A_ÃL‰çè ŒÿÿHƒÄ8[]A\A]A^A_ÐH‰ßèŒÿÿIƒ,$uÇë×€Hƒ=ðú)t{HT$(Ht$ H|$è*‘ÿÿH‹5›ô)H‹=Ìú)è7–ÿÿI‰ÇH…À„H‰Çèóÿÿ…ÀI‹…ÀHƒèI‰„H‹Œ­'H9=®'„¬H‹T$(H‹t$ H‹|$èSÿÿA‰ßA÷ßE…ÿ…ªþÿÿ@L‰ïè،ÿÿI‰ÅH…À„ÿÿÿ…Û…4L‰÷輌ÿÿI‰ÆM…ö„pH‹!ú)HƒìE1À1ÉL‹
	ú)1Ò1ö1ÿAQUAVAUPPPPPèҏÿÿHƒÄPH‰ÃI‹EHƒèI‰EH…À„öIƒ.„ÜH…Û„™þÿÿL‹„ù)E…ÿ„QþÿÿM…Ò„:D‹
cù)D‰úL‰×D‰Îè¥éÿÿLcèE9éŽ9IcÍHÁáLÑD;y„RD;
2ù)„%IcÁD‰ÊHÁàLÐóo@ðƒêHƒè@A9Õ|ëAƒÁD‰yH‰D‰
ñø)HƒéÆýÿÿ„Hƒ+…ìýÿÿH‰ßèŠÿÿéßýÿÿf„L‰ö‰ÙH‰Ö1ÀH=šÖèF‹ÿÿI‰ÆéµþÿÿfDHƒèI‰„ûH‹T$(H‹t$ H‹|$觍ÿÿéúüÿÿfIƒm…{ýÿÿL‰ï證ÿÿénýÿÿ„èKŒÿÿH‹Œ«'H‹5Uò)H‹=†ø)èqÿÿH‹T$(H‹t$ H‹|$èMÿÿé üÿÿ„D9

ø)…Eq@L‰×IcöHÁæèÿÿI‰ÂH…À„ÂüÿÿIcÍD‹
Ú÷)H‰Û÷)HÁáD‰5Ì÷)HÁE9ÍŒ”þÿÿé´þÿÿ€L‰÷èøˆÿÿéþÿÿL‰ïèèˆÿÿéýýÿÿH‹Ѫ'H‰ÐL‰ÿH‰T$H‰$èňÿÿH‹$H‹T$H9ЄØþÿÿH;\«'„ýÿÿH‰Çèލÿÿ…À…»þÿÿé
ýÿÿH‹9«'H‹zª'몿趈ÿÿH…À„ûûÿÿH¹@H‰÷)H‰
÷)D‰xH‰HƒéÓûÿÿDIÁåK*éàýÿÿH‹9H‰Hƒ/…±ûÿÿèˆÿÿé§ûÿÿf„USHƒìH‹5[ñ)èn’ÿÿH…À„ÅH‹5¾ð)H‰ÇH‰ÅèS’ÿÿH‰ÃH…À„ïHƒmtpH‹5Ñì)H‰ßè1’ÿÿH‰ÅH…À„5Hƒ+t?¿腎ÿÿH‰ÃH…À„QH‰h H‹=vò)H‰ÆèƑÿÿH…À„]Hƒ+t'HƒÄ[]ÃH‰ßèh‡ÿÿë·fDH‰ïèX‡ÿÿë†fDH‰ßH‰D$èC‡ÿÿH‹D$HƒÄ[]ÀH
eÓ¾»wºhÇö)hH‰
îõ)Çìõ)»wH=eÏèúÿÿHƒÄ1À[]ÀHÓÇÃõ)hH‰°õ)Ç®õ)½wHƒmtH‹
˜õ)‹žõ)‹5”õ)ë¦f.„H‰ï蘆ÿÿH‹
qõ)‹wõ)‹5mõ)é|ÿÿÿHµÒÇ[õ)hH‰Hõ)ÇFõ)ÀwHƒ+u™H‰ßèP†ÿÿëfDH}ÒÇ#õ)hH‰õ)Çõ)Ãwé[ÿÿÿHUÒÇûô)hH‰èô)Çæô)Èwëžff.„AWAVAUATUSHƒìH‹G(H;ǧ'tHƒL‹g(HƒÄL‰à[]A\A]A^A_ÃH‹æ)I‰ý1íH‹HƒÀH‰L‹§€HcWtM<ÔM9üsQI‹<$襎ÿÿI‰ÆH…À„H…ítHƒm„©L‰öH‰ßèNŽÿÿH…À„±Hƒ+toIƒÄL‰õH‰ÃM9çw²H‹HƒÀH‰I‹}(Hƒ/„I‰](H‹HBH‰M‹e(fDH‰H…Ò„”H…í„.ÿÿÿHƒm…#ÿÿÿH‰ïèè„ÿÿéÿÿÿH‰ßH‰D$èӄÿÿH‹D$ézÿÿÿf„H‰ï踄ÿÿL‰öH‰ß蝍ÿÿH…À…OÿÿÿHÙÐL‰õ¾§vºWH‰ió)Çkó)WÇ]ó)§vë?H‰ßèh„ÿÿé_ÿÿÿH•о›vºVÇ1ó)VH‰ó)Çó)›vH
iÐH=¶ÌE1äè.÷ÿÿH‹HPÿéÿÿÿfè„ÿÿéÞþÿÿfDATH‹5'æ)UH‰ýSè]ŽÿÿH…ÀtpH‹}hH‰ÃèüŒÿÿH‰ÅH…À„ðH‰ÆH‰ßè‹ÿÿI‰ÄH…À„‰Hƒ+t#HƒmtL‰à[]A\Ã@H‰ï蘃ÿÿL‰à[]A\ÃH‰ß舃ÿÿHƒmuÕë߀H
­Ï¾9vºOÇIò)OH‰
6ò)Ç4ò)9vE1äH=úËèMöÿÿL‰à[]A\ÃDHƒ+HaÏH‰þñ)Çò)OÇòñ)=v„”Hƒmt}H‹
Öñ)‹Üñ)‹5Òñ)뜄Hƒ+¾;vH
ϺOH‰
¤ñ)Ǧñ)Oǘñ);v…^ÿÿÿH‰ß袂ÿÿH‹
{ñ)‹ñ)‹5wñ)é>ÿÿÿf.„H‰ïèx‚ÿÿévÿÿÿH‰ßèh‚ÿÿé_ÿÿÿHƒìH‹hès‹ÿÿH…ÀtHƒÄÃf„ºKH
pξûuH‰D$H=ËH‰
üð)Çþð)KÇðð)ûuèõÿÿH‹D$ë®ff.„HƒìHctèÂÿÿH…ÀtHƒÄÃf„ºGH
ξ¿uH‰D$H=ËÊH‰
Œð)ÇŽð)GÇ€ð)¿uè£ôÿÿH‹D$ë®ff.„AUATUSH‰ûHƒìHƒ¿„1ÿ變ÿÿI‰ÄH…À„rH‹«HcCtLlÅL9ís7H‹}èTŠÿÿH‰ÃH…À„¨H‰ÆL‰çè݆ÿÿ…À…íHƒ+t7HƒÅI9íwÉL‰çè†ÿÿH…À„õIƒ,$„BHƒÄ[]A\A]ÀH‰ßèЀÿÿë¿fDHct蟁ÿÿH‰ÃH…À„#H‹=ß)H‰Æèô‡ÿÿH…À„CHƒ+u«H‰ßH‰D$舀ÿÿH‹D$뗐HµÌÇ[ï)CH‰Hï)ÇFï)|uIƒ,$tfH‹
0ï)‹6ï)‹5,ï)H=}ÉèHóÿÿHƒÄ1À[]A\A]ÃHƒ+HYÌH‰öî)Çøî)CÇêî)~uu¢H‰ßèøÿÿIƒ,$ušL‰çèéÿÿ됀H
̾vuºCDZî)CH‰
žî)Çœî)vuékÿÿÿ€L‰çH‰D$è›ÿÿH‹D$é§þÿÿH
Å˾\uºAÇaî)AH‰
Nî)ÇLî)\uéÿÿÿ€Hƒ+¾^uH
„˺AH‰
î)Çî)AÇî)^u…ÞþÿÿH‰ßèÿÿH‹
óí)‹ùí)‹5ïí)é¾þÿÿfH5ËÇÛí)CH‰Èí)ÇÆí)ué{þÿÿf„AUATUSH‰û1ÿHƒìèˆÿÿH…À„£I‰ÄH‹«€HcCtLlÅL9ís3H‹}貇ÿÿH‰ÃH…ÀtbH‰ÆL‰çè?„ÿÿ…À…§Hƒ+t9HƒÅI9íwÍL‰ç考ÿÿH…À„çIƒ,$umL‰çH‰D$èC~ÿÿH‹D$ëY@H‰ßè0~ÿÿë½fDIƒ,$¾štH
Sʺ4H‰
ëì)Çíì)4Çßì)št„ÁH=ZÇèõðÿÿ1ÀHƒÄ[]A\A]ÄIƒ,$HÊH‰ì)ÇŸì)4Ç‘ì)œtuL‰çèŸ}ÿÿHƒ+tH‹
rì)‹xì)‹5nì)ë“@H‰ßèx}ÿÿëÝfDIƒ,$¾ŸtH
›Éº4H‰
3ì)Ç5ì)4Ç'ì)Ÿt…Hÿÿÿf„L‰çè(}ÿÿH‹
ì)‹ì)‹5ýë)éÿÿÿH
Eɾ”tº4Çáë)4H‰
Îë)ÇÌë)”téîþÿÿDf.„AWI‰ÿAVAUATI‰ô1öUSH‰Ó1ÒHƒìH‹=FÞ)è)ìÿÿH…À„ÐI‰ÅH‹CH‹5rà)L‰ïö€³„bèí†ÿÿI‰ÆH…À„áI‹x舆ÿÿH‰ÅH…À„%¿è2ƒÿÿI‰ÇH…À„–H‰h H‹S'H9C…¹HƒH‰ÞL‰ÿè"‚ÿÿH‰ÅH…À„cIƒ/„Hƒ+„"1ÒH‰îL‰÷èåÿÿH‰ÃH…À„KIƒ.„Hƒm„H‹CH;'„*H‹Lœ'L‹5¥'H‹:L9ó…AH5gÈL‰óè
€ÿÿHÏÇÇuê)H‰bê)Ç`ê)LrH‹
Qê)‹Wê)H=ÅA¾‹5@ê)ècîÿÿIƒmu@L‰ïè@{ÿÿH…Û„
Hƒ+…H‰ßè%{ÿÿéö苅ÿÿH‰ÅH…À„¯I‹xè&…ÿÿI‰ÆH…À„ÿ¿èЁÿÿI‰ÇH…À„L‰p 1ÒH‰ÆH‰ïHƒH‰X(軀ÿÿH‰ÃH…À„Iƒ/„µHƒm„šH‹CH;כ'…›L‹5‚œ'L9ó„HƒH‰ßè}ÿÿH‰ßH‰Åèÿÿ1ÒHLH9ÍsfD¶LHƒÂAˆLÿH9ÐuíHƒ+„IƒIƒm„ìþÿÿHƒ+„ýþÿÿHƒÄL‰ð[]A\A]A^A_ÄH‰ïèzÿÿéYÿÿÿL‰ÿèøyÿÿé>ÿÿÿL‰ÿèèyÿÿé×ýÿÿH‰ßèØyÿÿéÑýÿÿH‰ïèÈyÿÿéïýÿÿL‰÷è¸yÿÿéÔýÿÿIƒ.HäÅH‰è)ǃè)þÇuè)ëq„eH‰ÝHƒmtu1íM…ÿtIƒ/tXH…ítHƒmtlH‹
=è)‹Cè)H=ðÂA¾‹5,è)èOìÿÿIƒm…
ÿÿÿ1ÛéåýÿÿDH‰ßè yÿÿéØþÿÿL‰ÿèyÿÿëžfDH‰ï1íèþxÿÿë@E1ÿH‰ïèíxÿÿM…ÿt„Iƒ/…zÿÿÿL‰ÿèÖxÿÿémÿÿÿH
źø¾ÉqE1öH=UÂH‰
Žç)ǐç)øÇ‚ç)Éqè¥ëÿÿéfþÿÿHÅÄÇkç)þH‰Xç)ÇVç)àqéÿÿÿf„H•Ä1ÛÇ9ç)H‰&ç)Ç$ç)	ré¿üÿÿHlÄÇç)þH‰ÿæ)Çýæ)âqIƒ.…›þÿÿE1ÿL‰÷èxÿÿé€þÿÿH0ÄÇÖæ)H‰Ãæ)ÇÁæ)réiþÿÿH	Äǯæ)H‰œæ)Çšæ),rë›Iƒ.HáÃH‰~æ)Ç€æ)þÇræ)äq…þÿÿé`€H‰ßèð€ÿÿH‰ÅH…À…UIƒ.H•ÃH‰2æ)Ç4æ)þÇ&æ)éq„0ÿÿÿé½ýÿÿHƒmH`ÃH‰ýå)Çÿå)Çñå)7r…þÿÿé	þÿÿH‹‡—'L‹5à˜'H‹:L9ó„;ûÿÿH‹H H7Ê1ÀH‰ÝH5wÃE1ÿè…ÿÿHúÂÇ å)H‰å)Ç‹å)<réýÿÿHÓÂÇyå)þH‰få)Çdå)ïqébþÿÿH‹—'H‹8é¿úÿÿH‹H H»É1ÀH‰ÝH5ûÂE1ÿè	ÿÿH~ÂÇ$å)þH‰å)Çå)óqéžüÿÿH‰ÝL‰÷H‰ëèvÿÿéˆüÿÿH‰ÃéÚùÿÿ€HƒìH‹‡PH‰ñH…ÀtH‰ÖH‰ÏÿЅÀt1H‹ʗ'HƒHƒÄÐèûøÿÿH…Àt^Hƒ(ußH‰Çè¸uÿÿëÕfDHåÁ¾üƒºÛǁä)ÛH‰nä)Çlä)üƒH
¹ÁH=N¿èèÿÿ1Àë—DHÁ¾„ºÝÇ9ä)ÝH‰&ä)Ç$ä)„ë¶f.„UH‰ÕSH‰ûHƒìH‹GÿH…ÀtAH‹KH‰êH‰ÆH‰ßÿQ0H…ÀttHƒ(tH‹ç–'HƒHƒÄ[]Ã@H‰ÇèàtÿÿëàfDH
Á¾npºâÇ©ã)âH‰–ã)Ç”ã)npH
áÀH=¶¾è©çÿÿHƒÄ1À[]ÃHÅÀ¾xpºãÇaã)ãH‰Nã)ÇLã)xpë¶fHƒìH‹GÿH…Àt	HƒÄÃ@ºßH
xÀ¾'eH‰D$H=s¾H‰
ã)Çã)ßÇøâ)'eèçÿÿH‹D$ë³@UH‰õSHƒìH‹5`Ù)è[~ÿÿH…À„’H‰îH‰ÇH‰ÃèD~ÿÿH…Àt/Hƒ+t	HƒÄ[]ÃfH‰ßH‰D$è³sÿÿH‹D$HƒÄ[]ÀHƒ+¾åeH
̿ºêH‰
dâ)Çfâ)êÇXâ)åetNH=׽èræÿÿHƒÄ1À[]Ãf„H
…¿¾ãeºêÇ!â)êH‰
â)Çâ)ãeë´fH‰ßèsÿÿH‹
ñá)‹÷á)‹5íá)ë•éûþÿÿf.„UH‰õSHƒìH‹5PØ)èK}ÿÿH…À„’H‰îH‰ÇH‰Ãè$tÿÿH…Àt/Hƒ+t	HƒÄ[]ÃfH‰ßH‰D$è£rÿÿH‹D$HƒÄ[]ÀHƒ+¾&fH
¼¾ºíH‰
Tá)ÇVá)íÇHá)&ftNH=ï¼èbåÿÿHƒÄ1À[]Ãf„H
u¾¾$fºíÇá)íH‰
þà)Çüà)$fë´fH‰ßèrÿÿH‹
áà)‹çà)‹5Ýà)ë•AVAUI‰ý¿ATUSè+{ÿÿH‰ÃH…À„oH‹Ù)1öH‰ßHƒH‹øØ)è3wÿÿH‹=lÕ)ºH‰ÞèáÿÿH‰ÅH…À„sHƒ+„YH‹5ÂØ)H‰ïè:äÿÿI‰ÄH…À„®Hƒ8„Hƒm„H‹5šÚ)L‰ïèº{ÿÿH‰ÃH…À„®H‹5Ó)H‰ÇèŸ{ÿÿI‰ÆH…À„ÓHƒ+„H‹5RÚ)L‰÷èjrÿÿH‰ÅH…À„ÞIƒ.„ü¿èÊwÿÿI‰ÆH…À„öH‰h H‹5Ú)L‰ïè;{ÿÿH‰ÅH…À„ÏH‹5˜Ò)H‰Çè {ÿÿI‰ÅH…À„äHƒm„)¿èowÿÿH‰ÃH…À„Iƒ$L‰` L‰p(L‰h0Iƒ,$tKH‰Ø[]A\A]A^ÀH‰ïèPpÿÿéòþÿÿH‰Çè@pÿÿHƒm…ÜþÿÿëÛH‰ßè(pÿÿéšþÿÿL‰çèpÿÿH‰Ø[]A\A]A^Ã@H‰ßèpÿÿéâþÿÿL‰÷èðoÿÿé÷þÿÿH¼ÇÃÞ)ŒH‰°Þ)Ç®Þ)XHƒmt?H‹
˜Þ)‹žÞ)H=kº1ۋ5‹Þ)è®âÿÿM…ä…#ÿÿÿH‰Ø[]A\A]A^Ãf„H‰ïèxoÿÿë·fDH‰ïèhoÿÿéÊþÿÿH
y»º‹¾9Ç1Þ)‹H=þ¹H‰
Þ)ÇÞ)9è8âÿÿé¸þÿÿH9»E1äÇøÝ)‹H‰åÝ)ÇãÝ)>Hƒ+…2ÿÿÿE1íH‰ßèænÿÿM…í„ÿÿÿIƒm…ÿÿÿL‰ïèÊnÿÿéÿÿÿDHٺÇ›Ý)‹H‰ˆÝ)džÝ)AéÓþÿÿf„H
©ººŒ¾PÇaÝ)ŒH=.¹H‰
GÝ)ÇEÝ)PèháÿÿéáýÿÿHiºH‰ÝÇ(Ý)ŒH‰Ý)ÇÝ)Ré`þÿÿfDH9ºL‰óÇøÜ)ŒH‰åÜ)ÇãÜ)UéûþÿÿfDH	ºL‰óÇÈÜ)ŒH‰µÜ)dzÜ)]éËþÿÿfDIƒ.HչH‰ŽÜ)ǐÜ)ŒÇ‚Ü)_…ÎýÿÿL‰÷èŒmÿÿéÁýÿÿ€Iƒ.H•¹H‰NÜ)ÇPÜ)ŒÇBÜ)b…wþÿÿL‰óé^þÿÿff.„UH‰õSHƒìH‹5xÖ)è›wÿÿH…À„²H‹5ûÎ)H‰êH‰ÇH‰Ãèýsÿÿ…Àx)Hƒ+tH‹ìŽ'HƒHƒÄ[]ÐH‰ßèèlÿÿëãfDHƒ+¾üH
𸺈H‰
¤Û)ǦÛ)ˆÇ˜Û)ütH=—·è²ßÿÿHƒÄ1À[]Ãf„H‰ßèˆlÿÿH‹
aÛ)‹gÛ)‹5]Û)ëÅH
‰¸¾úºˆÇAÛ)ˆH‰
.Û)Ç,Û)úë”fSHƒìH‹5|Õ)èŸvÿÿH…À„–H‹5ÿÍ)H‰ÇH‰Ãè„vÿÿH…Àt/Hƒ+t	HƒÄ[ÃH‰ßH‰D$èókÿÿH‹D$HƒÄ[ÄHƒ+¾½H
ð·º…H‰
¤Ú)ǦÚ)…ǘÚ)½tNH=Ƕè²ÞÿÿHƒÄ1À[Ãf.„H
©·¾»º…ÇaÚ)…H‰
NÚ)ÇLÚ)»ë´fH‰ßèXkÿÿH‹
1Ú)‹7Ú)‹5-Ú)ë•ATH‹5Ô)UH‰ýSèuÿÿH…À„H‹5%Ð)H‰ÇH‰Ãè‚uÿÿI‰ÄH…À„6Hƒ+„H‹5=Ô)H‰ïè]uÿÿH‰ÅH…À„aH‹5ªÓ)H‰ÇèBuÿÿH‰ÃH…À„–Hƒm„»H‹5¼Ï)H‰ßèuÿÿH‰ÅH…À„ÐHƒ+„ÆH‹=·Ô)H‰îè‡pÿÿH‰ÃH…À„ÛHƒm„°H‹5‰Ô)H‰ßèapÿÿH‰ÅH…À„¥Hƒ+„H‰îL‰çèÀrÿÿH‰ÃH…À„ÄHƒm„	Iƒ,$„îH‹I‰ÜHPH‰H‰H…Àt)L‰à[]A\ÐH‰ïèøiÿÿé8ÿÿÿH‰ßèèiÿÿéçþÿÿH‰ßèØiÿÿL‰à[]A\ÃH‰ßèÈiÿÿé-ÿÿÿH‰ïè¸iÿÿéCÿÿÿHɵÇ‹Ø)€H‰xØ)ÇvØ)mHƒ+…;H‰ßè|iÿÿH‹
UØ)‹[Ø)H=¸´‹5JØ)èmÜÿÿM…ä„KÿÿÿI‹$L‰ãE1äHƒèé0ÿÿÿH‰ßè8iÿÿéèþÿÿL‰çè(iÿÿéÿÿÿH‰ïèiÿÿéêþÿÿH
)µº¾SE1äH=E´H‰
Î×)ÇÐ×)ÇÂ×)SèåÛÿÿéÇþÿÿHƒ+H
å´H‰
ž×)Ç ×)Ç’×)U„ ÿÿÿº¾UH=ã³èžÛÿÿé€þÿÿf„H
™´¾bº€ÇQ×)€H‰
>×)Ç<×)b@H=™³L‰ãèQÛÿÿI‹$E1äHƒèé þÿÿHI´Ç×)€H‰øÖ)ÇöÖ)dHƒmtH‹
àÖ)‹æÖ)‹5ÜÖ)ë¢fH‰ïèègÿÿH‹
ÁÖ)‹ÇÖ)‹5½Ö)ëƒHé³Ç«Ö)€H‰˜Ö)Ç–Ö)géþÿÿf„H¹³Ç{Ö)€H‰hÖ)ÇfÖ)jékÿÿÿf„H‰³ÇKÖ)€H‰8Ö)Ç6Ö)pé;ÿÿÿH‹
"Ö)‹(Ö)H=…²‹5Ö)è:ÚÿÿéÑýÿÿDATI‰ôUH‰ýSèáhÿÿH‰ÃH…Àt	H‰Ø[]A\ÐH‹Yˆ'H‹8è±iÿÿ…Àtäè˜iÿÿ[L‰æH‰ï]A\éÙòÿÿf„GÁ<4wiH
¼¶ÀHcHÈÿàfD¸Ãf.„¸Ãf.„¸Ãf.„¸Ãf.„¸Ãf.„HƒìH‹u‡'@¾×H5ʱH‹81Àèoÿÿ1ÀHƒÄÃf„¶wD1À@„ö„ÁAWAVAUATUSH‰ûHƒì(H‹GH‹H‹:Hƒ„‹‹WX@€þs„–@€þp„ŒD¶CG1ÉE„À„ A¾…Ò~'ƒêHOA¾HT× „L¯1HƒÁH9ÊuóÆCGHÇC0VK{@€ú4‡hH
U¼¶ÒHc‘HÊÿâDA¾ëфÀƒúH‹K0A”ÀDˆCGH‹H‹:H‹WH9Ñ…¤‹WX¹éLÿÿÿf„@ˆt$INÿL%Œ½H‰L$L-¬¼@H‹(¶CF@¾փî?H‹M<@„þ<^„ö@€þ4‡T@¶öIctµLîÿæfDA¿f.„H‹Q¶A\L9ú„W<C„a<Ht€|$H…ˆL9ú…H‹CH‹S H‹MHHH9Ê…†LúM…öt	L¯|$LúHƒk0H‰S H9Ý„H‹CHUH‰H‹EH…À„Ó€x\Su1H‹HHƒ9„H‹SH‹u(H‹BHzH‰{H‰JH‹SHðH‰BHƒ{0„ÀH‹C‹{@¶sDéÙþÿÿf„A¿f.„<@…ÿÿÿ¾{DH‰L$èÚüÿÿH‰ÇH…À„ÖH‹s 1ÒH‹L$H‰ðH÷÷H…Òt
HþH)ÖH‰s Hƒ{8…Ãþÿÿ¾{DH‰L$è•üÿÿH‹L$H‰C8H‹Q¶A\L9ú…¬þÿÿ8D$„¿þÿÿ<C…ŸþÿÿHƒy„˜þÿÿH‹SH‹EHrHBH‰sH‹IH‰JH‹SH‰BéÿÿÿfƒÿMÿIƒçüIƒÇé=þÿÿDƒÿMÿIƒçøIƒÇé%þÿÿDA¿éþÿÿDA¿éþÿÿDH‹Ƀ'H5¢®H‰L$E1ÿH‹8ègÿÿ¶CFH‹L$éÄþÿÿ@H‹™ƒ'H5ò­H‰L$E1ÿH‹81Àè kÿÿ¶CFH‹L$é’þÿÿÆD$Ié-ýÿÿÆD$Hé#ýÿÿÆD$UéýÿÿƒÿɃáƒÁCˆL$éýÿÿH‹9ƒ'@¾ÖH5Ž­H‹81ÀèÄjÿÿH‹C‹{@ÆD$¶sDéÔüÿÿ€@€þ4‡^ÿÿÿ@¶öIc4´LæÿæA¿éþÿÿDƒÿMÿIƒçðIƒÇ éíýÿÿDA¿éÝýÿÿDA¿éÍýÿÿDƒÿMÿIƒçøIƒÇéµýÿÿDƒÿMÿIƒçüIƒÇéýÿÿDH‹CHPðH‰SH‹hðH9Ý…üüÿÿ€Hƒ{0HÇCu)ÆCD1ÀÇC@HƒÄ([]A\A]A^A_ÃDH‰Õé´üÿÿH‰ßèÆÿÿHƒÄ(¸ÿÿÿÿ[]A\A]A^A_Ã@H5)­H‹ò'H‹81ÀèˆiÿÿHƒÄ(¸ÿÿÿÿ[]A\A]A^A_ÃH‹́'H5†¬H‹81Àè\iÿÿ¸ÿÿÿÿévÿÿÿH5;¬ë°f„AWAVI‰þAUATUH½>SH²¹Hƒì(HD$H‰t$H‰$¶€ú}‡¶ÂHcƒHØÿà„I‹FH‰t$HƒÆIƒ~(H‹H‹H‰t$D‹`X…	L‰÷èÑùÿÿƒøÿ„QH‹t$E1ÿLl$¶„Ét~€ù)ty€ù w
¸HÓàH…èuåL‰ïè…Åÿÿƒøÿ„E9ü~I‹VIcÏH‹H‹H‹TÊHcÈH9Ñ…^H‹t$¶€ù,t	€ù)…+€ù,uHFH‰D$¶NH‰ÆAƒÇ„Éu‚E9ü…¤„É„SAÆFGIÇF(„HƒÆH‰t$¶€ú}†çþÿÿH‹<$èßÄÿÿƒøÿ„oH˜I‰F(H‹t$é¶þÿÿfDE1äL‰÷èÅøÿÿƒøÿ„EI‹F(H‹t$I‰F0A¶FEHƒÆAˆFF¶FÿE‰f@AˆFDH‰t$IÇF(édþÿÿ@E1äA8VDuªE9f@u¤A¶FEA8FFu™HƒÆI‹F(IÇF(IF0H‰t$é(þÿÿ„A€~DtIƒ~„~L‰÷è&øÿÿƒøÿ„¦Iƒ~…bH‹D$HƒÄ([]A\A]A^A_ÃfDL‰÷èð÷ÿÿƒøÿ„pI‹F(IF A¶FEIÇF(IÇF0AˆFFH‹D$AÆFDHpH‰t$éŽýÿÿfDHƒÆL‰÷I‹^8H‰t$è“÷ÿÿƒøÿ„AÆFDH…Û„jÿÿÿI‹N 1ÒH‰ÈH÷óH…Ò„UÿÿÿHËH)ÓI‰^ éFÿÿÿ„HƒÆAÆFE=H‰t$éýÿÿDHFH‰D$¶VJš€ùv	€úd…ÊH‰ÆA¼éþÿÿ@HFM‹f(IÇF(H‰D$€~{M‹n8…öL‰÷èÝöÿÿƒøÿtaH‹D$AÆFDIÇF0HpIÇF8H‰t$M…ä„L‰÷E1ÿèQüÿÿH‰ÆH…Àt"IƒÇM9ü„ìH‹t$L‰÷è/üÿÿH‰ÆH…ÀuÞ1ÀHƒÄ([]A\A]A^A_ÃfDHFH‰D$¶H‰ÆAˆVEé(üÿÿ„H‹‰}'H5ú¨H‹8èÊ`ÿÿ1ÀHƒÄ([]A\A]A^A_Ãf„HFH‰D$€~:tHƒÆDH‰t$H‰ðHƒÆ€~ÿ:uîHpH‰t$é¸ûÿÿ„H‹}'H5ú¨H‹8èZ`ÿÿ1ÀëŽfDL‰÷èøÀÿÿ1ÀéyÿÿÿH‰t$M…í„rûÿÿM‰n8éiûÿÿI‹FD‰ùH5C©H‹H‹‹PXH‹»|'H‹81ÀèQdÿÿH…À…xüÿÿ1ÀéÜþÿÿH‹™|'ºZH5í¦H‹81Àè#dÿÿ1Àéÿÿÿ@H‹q|'¾ÑH5¯¨H‹81Àèýcÿÿ몉ÁH‹R|'H5c¨H‹81ÀèácÿÿëŽH‹8|'H5é§H‹8èy_ÿÿ1ÀéªþÿÿH‹|'H5´¨H‹8è\_ÿÿ1ÀéþÿÿDSH‹GH‰ûL‹@ ö€³t+H‹l|'H­¨L‰~H‹81Àè^ÿÿ‰ÂH‰؅Òu[ÃH‹){'1É1ÒH5&©H‹81ÀèDcÿÿHƒ+t1À[Ãf.„H‰ßèhZÿÿ1Àëè@AWI‰×AVI‰þAUATUH‰õSHÎHƒìHHD$(L‰D$Ll$0H‰D$HD$8HÇD$(HÇD$0HÇD$8H‰D$@H‹T$H‹t$L‰éL‰÷è[ÿÿ…À„	H‹H‹|$(H…Òt.H‰Øëf„HƒÀH‹H…ÒtH9:uïH‹T$0H)èI‰멐è»^ÿÿ…À„H‹H‹t$(H…ÀtVH‹8I‰ÜH9þt,èƒ[ÿÿ…Àˆ«tIƒÄI‹$H‹t$(H…Àt'H‹8H9÷u×L‰àH‹L$0H)èI‰Iƒ<$…=ÿÿÿH‹t$(H9Ýu(éŽfDè+[ÿÿ…Àxg„ÂHƒÅH‹t$(H9ëtkH‹EH‹8H9÷u×H‹T$H‰ñH5'H‹y'H‹81Àè§aÿÿ¸ÿÿÿÿHƒÄH[]A\A]A^A_ÃèËaÿÿH…À„IÿÿÿëÙè»aÿÿH…ÀuÏHƒÅH‹t$(H9ëu•H‰ñH‹T$H5g럀H‹y'H‹T$H5}§H‹81Àè3aÿÿHƒÄH¸ÿÿÿÿ[]A\A]A^A_ÃH‹t$(éNÿÿÿDAWAVAUATI‰ôUH‰ýSHƒì8L‹5%z'H‹^HÇD$HÇD$L‰t$ H…Ò…aHƒû„GHƒû…H‹V0I‹D$(M‹L$ H‹ØHƒìHu(A¸H‹=sy'HƒH‰ÙAVjÿ5ÚÁ)ÿ5D¸)jÿ5Á)Pjÿ5³Á)ÿ­Å)HƒÄPH…À„èHƒ+…¼H‰ßH‰D$èWÿÿH‹D$HƒÄ8[]A\A]A^A_ÃI‹\$„HƒûH>¤H
.¤HMȝÀHƒì¶ÀSH)¤L@H‹½w'H5~¦L
q§H‹81ÀèÕ_ÿÿH.£¾óÇëÅ)ÕÇÝÅ)óH‰ÎÅ)XZH
£ºÕH=q¦èäÉÿÿ1ÀHƒÄ8[]A\A]A^A_ÃL‰òé¿þÿÿ„I‰ÕHƒû„s~iHƒûtHƒû…1ÿÿÿH‹F0H‰D$ I‹D$(L‰ïH‰D$I‹D$ H‰D$èÜXÿÿI‰ÇHƒût`Hƒût{H…Ût4M…ÿ8L‹L$H‹D$H‹T$ éLþÿÿH…Û…ÏþÿÿH‰×è—XÿÿI‰ÇH‹5-À)L‰ïIƒïèÑUÿÿH‰D$H…À„–þÿÿH‹5d¿)L‰ïè´UÿÿH‰D$H…À„!IƒïM…ÿ~ŽH‹5¸)L‰ïèŽUÿÿH…À„®H‰D$ Iƒïé_ÿÿÿ€Hƒ+¾H
!ºûH‰
tÄ)ÇvÄ)ûÇhÄ)tH=¥H‰D$è}ÈÿÿH‹D$é‘þÿÿH‰ßH‰D$èSUÿÿ‹9Ä)‹5/Ä)H‹
 Ä)H‹D$ë»f„H‹F H‰×H‰D$èWÿÿI‰ÇéÿÿÿHT$H‰ÙL‰ïLö¡H5®W)è™úÿÿ…À‰¢þÿÿH
¡¾áÇÇÃ)ÕH‰´Ã)DzÃ)áéÙýÿÿHƒìH‹Ju'H
“¡H5¤jL
õ¤A¸H‡¡H‹81ÀèL]ÿÿH¥ Y^H‰\Ã)¾×ÇYÃ)ÕÇKÃ)×érýÿÿ@f.„AVAUATUH‰ýSHƒì L‹
²´)L‹%#v'H‹^L‰L$L‰d$H…Ò…THƒû„BHƒû„(H…Û„ŸH…ÛHޠI‰ØH
ˠH’¢HIÈHƒìH‹et'IÁø?SI÷ÐH5£H‹8L
¤Aƒà1Àèq\ÿÿHʟ¾uLJÂ)ÇyÂ)uH‰jÂ)XZH
¡ŸºH=5£è€Æÿÿ1ÀHƒÄ []A\A]A^ÐL‰âH‹ØH‹׳)HƒìHu(A¸H‹=òt'HƒH‹
G½)ATjQPjQH‰ÙPjÿ5ªµ)ÿÁ)HƒÄPH…À„‡Hƒ+u“H‰ßH‰D$èôRÿÿH‹D$HƒÄ []A\A]A^ÃfH‹V(L‹N évÿÿÿL‰âëïI‰ÕHƒû„Hƒû„‰H…Û…©þÿÿH‰×èUÿÿI‰ÆH…À\@L‹L$H‹T$é$ÿÿÿHƒ+¾›H
žº.H‰
DÁ)ÇFÁ).Ç8Á)›„âH=¢H‰D$èIÅÿÿH‹D$éÁþÿÿ€H‹F(H‰×H‰D$H‹F H‰D$è~TÿÿH…ÀŽuÿÿÿHT$H‰ÙL‰ïL¡ H5¼T)è‡÷ÿÿ…À‰OÿÿÿHø¾dǵÀ)H‰¢À)Ç À)dé+þÿÿH‹F H‰×H‰D$èTÿÿI‰ÆM…öŽÿÿÿH‹5¼³)L‰ïèDQÿÿH…À„vÿÿÿH‰D$IFÿé_ÿÿÿDH‰ßH‰D$è[Qÿÿ‹AÀ)‹57À)H‹
(À)H‹D$éôþÿÿfDH‹5ɳ)L‰ïèéPÿÿH…Àt‘H‰D$IƒîézÿÿÿfDAVAUATI‰üUSHƒì0H‹‚±)H‹
k±)H‹-Ür'H‹^H‰D$H‰L$H‰l$ H…Ò…Hƒû„v~$Hƒû„ºHƒû…ÀH‹V0H‹N(L‹N ëfI‰ÁH‰êH…Û…¡HƒìI‹œ$ØIt$(A¸HƒH‹=‡º)UjWPjÿ5ò²)QH‰ÙjWH‹=lr'ÿV¾)HƒÄPH…À„Hƒ+tHƒÄ0[]A\A]A^ÃfDH‰ßH‰D$èPÿÿH‹D$HƒÄ0[]A\A]A^Ãf„H‰êéLÿÿÿ„H…ÛHϜI‰ØH
¼œH©žHIÈHƒìH‹Vp'IÁø?SI÷ÐH5ŸH‹8L
ÿŸAƒà1ÀèbXÿÿH»›¾„'Çx¾)ªÇj¾)„'H‰[¾)XZH
’›ºªH=VŸèqÂÿÿHƒÄ01À[]A\A]A^ÃfH‰êé þÿÿ„I‰ÕHƒû„£ŽHƒûtHƒû…-ÿÿÿH‹F0H‰D$ H‹F(L‰ïH‰D$H‹F H‰D$èjQÿÿI‰ÆHƒû„“Hƒû…M…ö~*H‹5±)L‰ïèNÿÿH…À„OH‰D$ IƒîM…ö=L‹L$H‹L$H‹T$ H‹&¯)éþÿÿf„H…Û…—þÿÿH‰×èïPÿÿI‰ÆM…ö~ÃH‹5p´)L‰ïè(NÿÿH…ÀtH‰D$IƒîM…ö~¡H‹5æ°)L‰ïèNÿÿH…À„_ÿÿÿH‰D$IƒîéLÿÿÿ€Hƒ+¾ª'H
8šº
H‰
ì¼)Çî¼)
Çà¼)ª't6H=ߝH‰D$èõÀÿÿH‹D$é ýÿÿH…Û…ÿÿÿéNÿÿÿf.„H‰ßH‰D$è³Mÿÿ‹™¼)‹5¼)H‹
€¼)H‹D$ë£f„H‹F H‰×H‰D$èïOÿÿI‰ÆéÿÿÿHT$H‰ÙL‰ïL9œH5NQ)èùòÿÿ…À‰þÿÿHj™¾p'Ç'¼)ªH‰¼)Ǽ)p'é¬ýÿÿDAWAVAUATI‰ôUH‰ýSHƒì8H‹}­)L‹5în'HÇD$H‹^H‰D$L‰t$ H…Ò…vHƒû„dHƒû„JHƒû„°H…ÛHŸ™H
™HOÈŸÀHóœ¶ÀL
£—LOÊLDHƒìH‹m'SHs›H5̛H‹81Àè*UÿÿHƒ˜¾)Ç@»)kÇ2»))H‰#»)XZH
Z˜ºkH=Nœè9¿ÿÿ1ÀHƒÄ8[]A\A]A^A_ÄL‰òM‹L$ H‹ØHƒìHu(A¸H‹=´m'HƒH‰ÙAVjÿ5óµ)ÿ5]¬)jÿ5]®)Pjÿ5$®)ÿƹ)HƒÄPH…À„QHƒ+u„H‰ßH‰D$èžKÿÿH‹D$HƒÄ8[]A\A]A^A_Ãf.„H‹V0I‹D$(éeÿÿÿfL‰òëïI‰ÕHƒû„‹Ž•HƒûtHƒû……þÿÿH‹F0H‰D$ I‹D$(L‰ïH‰D$I‹D$ H‰D$èMÿÿI‰ÇHƒû„ˆHƒû…ùM…ÿ~*H‹5-­)L‰ïèµJÿÿH…À„5H‰D$ IƒïM…ÿ#L‹L$H‹D$H‹T$ é¾þÿÿfDH…Û…÷ýÿÿH‰×èMÿÿI‰ÇH‹5
­)L‰ïIƒïèYJÿÿH‰D$H…À„&M…ÿ~¬H‹5­)L‰ïè7JÿÿH…À„jÿÿÿH‰D$IƒïéWÿÿÿHƒ+¾=)H
p–º´H‰
$¹)Ç&¹)´Ç¹)=)t.H=GšH‰D$è-½ÿÿH‹D$éìýÿÿH…Û…$ÿÿÿéVÿÿÿfH‰ßH‰D$èóIÿÿ‹ٸ)‹5ϸ)H‹
8)H‹D$ë«f„H‹F H‰×H‰D$è/LÿÿI‰Çé,ÿÿÿHT$H‰ÙL‰ïL˜H5îM)è9ïÿÿ…À‰·þÿÿHª•¾)Çg¸)kH‰T¸)ÇR¸))é$ýÿÿI‹\$é›üÿÿf.„AWAVAUATI‰ôUH‰ýSHƒì8L‹5%k'H‹^HÇD$HÇD$L‰t$ H…Ò…aHƒû„GHƒû…H‹V0I‹D$(M‹L$ H‹ØHƒìHu(A¸H‹={i'HƒH‰ÙAVjÿ5ڲ)ÿ5D©)jÿ5ô°)Pjÿ5۰)ÿ­¶)HƒÄPH…À„èHƒ+…¼H‰ßH‰D$èHÿÿH‹D$HƒÄ8[]A\A]A^A_ÃI‹\$„HƒûH>•H
.•HMȝÀHƒì¶ÀSH9•L@H‹½h'H5~—L
q˜H‹81ÀèÕPÿÿH.”¾ )Çë¶)¹Çݶ) )H‰ζ)XZH
”º¹H=!˜èäºÿÿ1ÀHƒÄ8[]A\A]A^A_ÃL‰òé¿þÿÿ„I‰ÕHƒû„s~iHƒûtHƒû…1ÿÿÿH‹F0H‰D$ I‹D$(L‰ïH‰D$I‹D$ H‰D$èÜIÿÿI‰ÇHƒût`Hƒût{H…Ût4M…ÿ8L‹L$H‹D$H‹T$ éLþÿÿH…Û…ÏþÿÿH‰×è—IÿÿI‰ÇH‹5U¯)L‰ïIƒïèÑFÿÿH‰D$H…À„–þÿÿH‹5D¯)L‰ïè´FÿÿH‰D$H…À„!IƒïM…ÿ~ŽH‹5©)L‰ïèŽFÿÿH…À„®H‰D$ Iƒïé_ÿÿÿ€Hƒ+¾Æ)H
ºH‰
tµ)Çvµ)Çhµ)Æ)tH=¿–H‰D$è}¹ÿÿH‹D$é‘þÿÿH‰ßH‰D$èSFÿÿ‹9µ)‹5/µ)H‹
 µ)H‹D$ë»f„H‹F H‰×H‰D$èHÿÿI‰ÇéÿÿÿHT$H‰ÙL‰ïL“H5nJ)è™ëÿÿ…À‰¢þÿÿH
’¾Ž)ÇǴ)¹H‰´´)Dz´)Ž)éÙýÿÿHƒìH‹Jf'H
“’H5•jL
õ•A¸H—’H‹81ÀèLNÿÿH¥‘Y^H‰\´)¾„)ÇY´)¹ÇK´)„)érýÿÿ@f.„AWAVAUATI‰üUSH‰óHƒì8L‹5%g'H‹nHÇD$HÇD$HÇD$ L‰t$(H…Ò…ˆHƒý„nHƒý…ÄH‹V8H‹K0H‹C(L‹K HƒìI‹œ$ØIt$(A¸H‹=>f'HƒAVjÿ5X©)QH‰Ùjÿ5ì¬)Pjÿ5Ӭ)ÿ¥²)HƒÄPH…À„Hƒ+…äH‰ßH‰D$èyDÿÿH‹D$HƒÄ8[]A\A]A^A_ÃDL‰ïèÈFÿÿI‰ÇH‹5†¬)L‰ïIƒïèDÿÿH‰D$H…À…hH‹kHƒýH‘H
þHMȝÀHƒì¶ÀUHþL@H‹d'H5N“L
A”H‹81Àè¥LÿÿHþ¾4*Ç»²)Ç­²)4*H‰ž²)XZH
ՏºH=”贶ÿÿ1ÀHƒÄ8[]A\A]A^A_ÃL‰òé˜þÿÿ„Hƒý‡FÿÿÿI‰ÕH´žHcªHÐÿàH‹F8H‰D$(H‹C0H‰D$ H‹C(L‰ïH‰D$H‹C H‰D$è¤EÿÿI‰ÇHƒý„[~2Hƒý„pHƒýu+M…ÿÌL‹L$H‹D$H‹L$ H‹T$(éþÿÿH…í„•þÿÿM…ÿ~ÙHT$H‰éL‰ïLɏH5\G)ègèÿÿ…Ày·H܎¾ *Ç™±)H‰†±)Ç„±) *éÛþÿÿ€Hƒ+¾Z*H
 ŽºZH‰
T±)ÇV±)ZÇH±)Z*tNH=ǒH‰D$è]µÿÿH‹D$é¡þÿÿH‹5i¤)L‰ïèñAÿÿH…À„CÿÿÿH‰D$(Iƒïé0ÿÿÿf.„H‰ßH‰D$èBÿÿ‹é°)‹5߰)H‹
а)H‹D$ë‹f„H‹F L‰ïH‰D$è?DÿÿI‰ÇH‹5
ª)L‰ïè}AÿÿH‰D$H…À„IƒïH‹5L¦)L‰ïè\AÿÿH‰D$ H…Àt	IƒïétþÿÿHƒìH‹b'H
WŽH5ȐjL
¹‘A¸HPŽH‹81ÀèJÿÿHiY^H‰ °)¾*ǰ)ǰ)*éfýÿÿHƒìH‹§a'A¸H5bjL
S‘H
ڍH‹8Hæ1Àè©IÿÿH_¾*H‰µ¯)AXǵ¯)ǧ¯)*éþüÿÿf.„AWAVAUATI‰ôUH‰ýSHƒì(L‹5…b'H‹^HÇD$L‰t$H…Ò…jHƒû„PHƒû…–H‹V(M‹L$ H‹ØH‹נ)HƒìHu(A¸H‹=Zb'HƒH‹
Gª)AVjQPjQH‰ÙPjÿ5j¨)ÿ®)HƒÄPH…À„_Hƒ+…ÅH‰ßH‰D$èð?ÿÿH‹D$HƒÄ([]A\A]A^A_ÃI‹\$€H…ÛH¯ŒH
ŸŒHOÈŸÀH¶ÀL
³ŠLOÊL@HƒìH‹$`'SHšŒH5ݎH‹81Àè;HÿÿH”‹¾²*ÇQ®)_ÇC®)²*H‰4®)XZH
k‹º_H=ߏèJ²ÿÿ1ÀHƒÄ([]A\A]A^A_Ãf„L‰òé¶þÿÿ„I‰ÕHƒû„KHƒû„ÉH…Û… ÿÿÿH‰×èXAÿÿH‹59§)L‰ïI‰Çè–>ÿÿIƒïH‰D$H…À„èþÿÿM…ÿ#L‹L$H‹T$éOþÿÿ@Hƒ+¾Ø*H
¸ŠºžH‰
l­)Çn­)žÇ`­)Ø*tH=H‰D$èu±ÿÿH‹D$é#ÿÿÿH‰ßH‰D$èK>ÿÿ‹1­)‹5'­)H‹
­)H‹D$뻐H‹F(H‰×H‰D$H‹F H‰D$è†@ÿÿH…ÀŽRÿÿÿHT$H‰ÙL‰ïL	‹H5´B)èãÿÿ…À‰,ÿÿÿHŠ¾¢*ǽ¬)_H‰ª¬)Ǩ¬)¢*éiþÿÿH‹F H‰×H‰D$è@ÿÿI‰ÇéÛþÿÿ€H‹5_)L‰ïèI=ÿÿH…À„sÿÿÿH‰D$IGÿé\ÿÿÿfAWAVAUATI‰ôUH‰ýSHƒì8L‹5E_'H‹^HÇD$HÇD$L‰t$ H…Ò…aHƒû„GHƒû…H‹V0I‹D$(M‹L$ H‹ØHƒìHu(A¸H‹=3_'HƒH‰ÙAVjÿ5ú¦)ÿ5d)jÿ5t¡)Pjÿ5¥)ÿͪ)HƒÄPH…À„èHƒ+…¼H‰ßH‰D$è¡<ÿÿH‹D$HƒÄ8[]A\A]A^A_ÃI‹\$„HƒûH^‰H
N‰HMȝÀHƒì¶ÀSH[‰L@H‹Ý\'H5ž‹L
‘ŒH‹81ÀèõDÿÿHNˆ¾;+Ç«)£Çýª);+H‰îª)XZH
%ˆº£H=Ɍè¯ÿÿ1ÀHƒÄ8[]A\A]A^A_ÃL‰òé¿þÿÿ„I‰ÕHƒû„s~iHƒûtHƒû…1ÿÿÿH‹F0H‰D$ I‹D$(L‰ïH‰D$I‹D$ H‰D$èü=ÿÿI‰ÇHƒût`Hƒût{H…Ût4M…ÿ8L‹L$H‹D$H‹T$ éLþÿÿH…Û…ÏþÿÿH‰×è·=ÿÿI‰ÇH‹5•£)L‰ïIƒïèñ:ÿÿH‰D$H…À„–þÿÿH‹5ğ)L‰ïèÔ:ÿÿH‰D$H…À„!IƒïM…ÿ~ŽH‹5&)L‰ïè®:ÿÿH…À„®H‰D$ Iƒïé_ÿÿÿ€Hƒ+¾a+H
à†ºîH‰
”©)Ç–©)îLj©)a+tH=g‹H‰D$蝭ÿÿH‹D$é‘þÿÿH‰ßH‰D$ès:ÿÿ‹Y©)‹5O©)H‹
@©)H‹D$ë»f„H‹F H‰×H‰D$è¯<ÿÿI‰ÇéÿÿÿHT$H‰ÙL‰ïL(‡H5?)è¹ßÿÿ…À‰¢þÿÿH*†¾)+Çç¨)£H‰Ԩ)ÇҨ))+éÙýÿÿHƒìH‹jZ'H
³†H5$‰jL
ŠA¸H¹†H‹81ÀèlBÿÿHŅY^H‰|¨)¾+Çy¨)£Çk¨)+érýÿÿ@f.„AVAUATUH‰ýSHƒì L‹%J['H‹^L‰d$H…Ò…@H…Û„/Hƒû„­H…ÛH†H
†HIÈH‰ØH"„HÁø?L
]‰H…ÛLIÊL@HƒìH‹…Y'SH†H5>ˆH‹81ÀèœAÿÿHõ„¾°+Dz§)óǤ§)°+H‰•§)XZH
̄ºóH=¨‰諫ÿÿ1ÀHƒÄ []A\A]A^Ã@H‹V H‹ØHƒìHu(E1ÀL‹
ó˜)H‹=,Y'HƒH‹q¢)H‰ÙATjPAQjPAQjPÿI¦)HƒÄPH…ÀtpHƒ+u™H‰ßH‰D$è%8ÿÿH‹D$HƒÄ []A\A]A^ÃL‰âë‡I‰ÕH…Û„Hƒû…½þÿÿH‹F H‰×H‰D$èQ:ÿÿH…À‡H‹T$éJÿÿÿfDHƒ+¾Ö+H
؃º1H‰
Œ¦)Çަ)1Ç€¦)Ö+tH=—ˆH‰D$蕪ÿÿH‹D$éâþÿÿH‰ßH‰D$èk7ÿÿ‹Q¦)‹5G¦)H‹
8¦)H‹D$ë»HT$H‰ÙL‰ïLW„H5H<)èÓÜÿÿ…À‰SÿÿÿHDƒ¾¢+Ǧ)óH‰î¥)Çì¥)¢+éLþÿÿ€H‰×è`9ÿÿI‰ÆH…ÀŽÿÿÿH‹5
™)L‰ïè•6ÿÿH…À„{ÿÿÿH‰D$IFÿéÝþÿÿ@f.„AWAVAUATI‰ôUH‰ýSHƒì(L‹5…X'H‹^HÇD$L‰t$H…Ò…jHƒû„PHƒû…–H‹V(M‹L$ H‹ØH‹·–)HƒìHu(A¸H‹="X'HƒH‹
G )AVjQPjQH‰ÙPjÿ5jž)ÿ¤)HƒÄPH…À„_Hƒ+…ÅH‰ßH‰D$èð5ÿÿH‹D$HƒÄ([]A\A]A^A_ÃI‹\$€H…ÛH¯‚H
Ÿ‚HOÈŸÀH†¶ÀL
³€LOÊL@HƒìH‹$V'SH´‚H5݄H‹81Àè;>ÿÿH”¾.,ÇQ¤)4ÇC¤).,H‰4¤)XZH
kº4H=†èJ¨ÿÿ1ÀHƒÄ([]A\A]A^A_Ãf„L‰òé¶þÿÿ„I‰ÕHƒû„KHƒû„ÉH…Û… ÿÿÿH‰×èX7ÿÿH‹59)L‰ïI‰Çè–4ÿÿIƒïH‰D$H…À„èþÿÿM…ÿ#L‹L$H‹T$éOþÿÿ@Hƒ+¾T,H
¸€ºŒH‰
l£)Çn£)ŒÇ`£)T,tH=¯…H‰D$èu§ÿÿH‹D$é#ÿÿÿH‰ßH‰D$èK4ÿÿ‹1£)‹5'£)H‹
£)H‹D$뻐H‹F(H‰×H‰D$H‹F H‰D$è†6ÿÿH…ÀŽRÿÿÿHT$H‰ÙL‰ïL#H59)èÙÿÿ…À‰,ÿÿÿH€¾,ǽ¢)4H‰ª¢)Ǩ¢),éiþÿÿH‹F H‰×H‰D$è6ÿÿI‰ÇéÛþÿÿ€H‹5U)L‰ïèI3ÿÿH…À„sÿÿÿH‰D$IGÿé\ÿÿÿfAWAVAUATI‰ôUH‰ýSHƒì8L‹5EU'H‹^HÇD$HÇD$L‰t$ H…Ò…aHƒû„GHƒû…H‹V0I‹D$(M‹L$ H‹ØHƒìHu(A¸H‹=óT'HƒH‰ÙAVjÿ5úœ)ÿ5d“)jÿ5™)Pjÿ5˜)ÿ͠)HƒÄPH…À„èHƒ+…¼H‰ßH‰D$è¡2ÿÿH‹D$HƒÄ8[]A\A]A^A_ÃI‹\$„HƒûH^H
NHMȝÀHƒì¶ÀSH‹L@H‹ÝR'H5žL
‘‚H‹81Àèõ:ÿÿHN~¾·,Ç¡)’Çý )·,H‰î )XZH
%~º’H=iƒè¥ÿÿ1ÀHƒÄ8[]A\A]A^A_ÃL‰òé¿þÿÿ„I‰ÕHƒû„s~iHƒûtHƒû…1ÿÿÿH‹F0H‰D$ I‹D$(L‰ïH‰D$I‹D$ H‰D$èü3ÿÿI‰ÇHƒût`Hƒût{H…Ût4M…ÿ8L‹L$H‹D$H‹T$ éLþÿÿH…Û…ÏþÿÿH‰×è·3ÿÿI‰ÇH‹5}–)L‰ïIƒïèñ0ÿÿH‰D$H…À„–þÿÿH‹5l—)L‰ïèÔ0ÿÿH‰D$H…À„!IƒïM…ÿ~ŽH‹5&“)L‰ïè®0ÿÿH…À„®H‰D$ Iƒïé_ÿÿÿ€Hƒ+¾Ý,H
à|ºàH‰
”Ÿ)Ç–Ÿ)àLjŸ)Ý,tH=‚H‰D$蝣ÿÿH‹D$é‘þÿÿH‰ßH‰D$ès0ÿÿ‹YŸ)‹5OŸ)H‹
@Ÿ)H‹D$ë»f„H‹F H‰×H‰D$è¯2ÿÿI‰ÇéÿÿÿHT$H‰ÙL‰ïLX}H5n5)è¹Õÿÿ…À‰¢þÿÿH*|¾¥,Ççž)’H‰Ԟ)ÇҞ)¥,éÙýÿÿHƒìH‹jP'H
³|H5$jL
€A¸Hé|H‹81Àèl8ÿÿHÅ{Y^H‰|ž)¾›,Çyž)’Çkž)›,érýÿÿ@f.„AWAVAUATI‰ôUH‰ýSHƒì(L‹5EQ'H‹^HÇD$L‰t$H…Ò…jHƒû„PHƒû…–H‹V(M‹L$ H‹ØH‹—)HƒìHu(A¸H‹=ÚP'HƒH‹
™)AVjQPjQH‰ÙPjÿ5â˜)ÿܜ)HƒÄPH…À„_Hƒ+…ÅH‰ßH‰D$è°.ÿÿH‹D$HƒÄ([]A\A]A^A_ÃI‹\$€H…ÛHo{H
_{HOÈŸÀHÃ~¶ÀL
syLOÊL@HƒìH‹äN'SHˆ{H5}H‹81Àèû6ÿÿHTz¾5-ǝ)åǝ)5-H‰ôœ)XZH
+zºåH=Ÿè
¡ÿÿ1ÀHƒÄ([]A\A]A^A_Ãf„L‰òé¶þÿÿ„I‰ÕHƒû„KHƒû„ÉH…Û… ÿÿÿH‰×è0ÿÿH‹5±—)L‰ïI‰ÇèV-ÿÿIƒïH‰D$H…À„èþÿÿM…ÿ#L‹L$H‹T$éOþÿÿ@Hƒ+¾[-H
xyºBH‰
,œ)Ç.œ)BÇ œ)[-tH=Ï~H‰D$è5 ÿÿH‹D$é#ÿÿÿH‰ßH‰D$è-ÿÿ‹ñ›)‹5ç›)H‹
؛)H‹D$뻐H‹F(H‰×H‰D$H‹F H‰D$èF/ÿÿH…ÀŽRÿÿÿHT$H‰ÙL‰ïL÷yH5$2)èOÒÿÿ…À‰,ÿÿÿHÀx¾%-Ç}›)åH‰j›)Çh›)%-éiþÿÿH‹F H‰×H‰D$è×.ÿÿI‰ÇéÛþÿÿ€H‹5Ž)L‰ïè	,ÿÿH…À„sÿÿÿH‰D$IGÿé\ÿÿÿfAWAVAUATI‰ôUH‰ýSHƒì(L‹5N'H‹^HÇD$L‰t$H…Ò…jHƒû„PHƒû…–H‹V(M‹L$ H‹ØH‹WŒ)HƒìHu(A¸H‹=ZL'HƒH‹
Ǖ)AVjQPjQH‰ÙPjÿ5¢•)ÿœ™)HƒÄPH…À„_Hƒ+…ÅH‰ßH‰D$èp+ÿÿH‹D$HƒÄ([]A\A]A^A_ÃI‹\$€H…ÛH/xH
xHOÈŸÀHƒ{¶ÀL
3vLOÊL@HƒìH‹¤K'SHOxH5]zH‹81Àè»3ÿÿHw¾³-Çљ)GÇÙ)³-H‰´™)XZH
ëvºGH=|èʝÿÿ1ÀHƒÄ([]A\A]A^A_Ãf„L‰òé¶þÿÿ„I‰ÕHƒû„KHƒû„ÉH…Û… ÿÿÿH‰×èØ,ÿÿH‹5q”)L‰ïI‰Çè*ÿÿIƒïH‰D$H…À„èþÿÿM…ÿ#L‹L$H‹T$éOþÿÿ@Hƒ+¾Ù-H
8vº¥H‰
ì˜)Çî˜)¥Çà˜)Ù-tH=¿{H‰D$èõœÿÿH‹D$é#ÿÿÿH‰ßH‰D$èË)ÿÿ‹±˜)‹5§˜)H‹
˜˜)H‹D$뻐H‹F(H‰×H‰D$H‹F H‰D$è,ÿÿH…ÀŽRÿÿÿHT$H‰ÙL‰ïL¾vH5/)èÏÿÿ…À‰,ÿÿÿH€u¾£-Ç=˜)GH‰*˜)Ç(˜)£-éiþÿÿH‹F H‰×H‰D$è—+ÿÿI‰ÇéÛþÿÿ€H‹5A‹)L‰ïèÉ(ÿÿH…À„sÿÿÿH‰D$IGÿé\ÿÿÿfAWAVAUATI‰ôUH‰ýSHƒì(L‹5ÅJ'H‹^HÇD$L‰t$H…Ò…jHƒû„PHƒû…–H‹V(M‹L$ H‹ØH‹‰)HƒìHu(A¸H‹=âI'HƒH‹
‡’)AVjQPjQH‰ÙPjÿ5b’)ÿ\–)HƒÄPH…À„_Hƒ+…ÅH‰ßH‰D$è0(ÿÿH‹D$HƒÄ([]A\A]A^A_ÃI‹\$€H…ÛHïtH
ßtHOÈŸÀHCx¶ÀL
órLOÊL@HƒìH‹dH'SHuH5wH‹81Àè{0ÿÿHÔs¾1.Ç‘–)ªÇƒ–)1.H‰t–)XZH
«sºªH=y芚ÿÿ1ÀHƒÄ([]A\A]A^A_Ãf„L‰òé¶þÿÿ„I‰ÕHƒû„KHƒû„ÉH…Û… ÿÿÿH‰×è˜)ÿÿH‹51‘)L‰ïI‰ÇèÖ&ÿÿIƒïH‰D$H…À„èþÿÿM…ÿ#L‹L$H‹T$éOþÿÿ@Hƒ+¾W.H
ørº
H‰
¬•)Ç®•)
Ç •)W.tH=¯xH‰D$赙ÿÿH‹D$é#ÿÿÿH‰ßH‰D$è‹&ÿÿ‹q•)‹5g•)H‹
X•)H‹D$뻐H‹F(H‰×H‰D$H‹F H‰D$èÆ(ÿÿH…ÀŽRÿÿÿHT$H‰ÙL‰ïL†sH5ä+)èÏËÿÿ…À‰,ÿÿÿH@r¾!.Çý”)ªH‰ê”)Çè”)!.éiþÿÿH‹F H‰×H‰D$èW(ÿÿI‰ÇéÛþÿÿ€H‹5ˆ)L‰ïè‰%ÿÿH…À„sÿÿÿH‰D$IGÿé\ÿÿÿfAVAUATI‰üUSHƒì0H‹"†)H‹
†)H‹-|G'H‹^H‰D$H‰L$H‰l$ H…Ò…Hƒû„v~$Hƒû„ºHƒû…ÀH‹V0H‹N(L‹N ëfI‰ÁH‰êH…Û…¡HƒìI‹œ$ØIt$(A¸H‹=“E'HƒUjÿ5)Pjÿ5‡)QH‰Ùjÿ5éŠ)ÿó’)HƒÄPH…À„Hƒ+tHƒÄ0[]A\A]A^ÃH‰ßH‰D$è»$ÿÿH‹D$HƒÄ0[]A\A]A^Ãf„H‰êéLÿÿÿ„H…ÛHoqI‰ØH
\qHÆqHIÈHƒìH‹öD'IÁø?SI÷ÐH5¯sH‹8L
ŸtAƒà1Àè-ÿÿH[p¾À.Ç“)Ç
“)À.H‰û’)XZH
2pºH=.vè—ÿÿHƒÄ01À[]A\A]A^ÃfH‰êé þÿÿ„I‰ÕHƒû„£ŽHƒûtHƒû…-ÿÿÿH‹F0H‰D$ H‹F(L‰ïH‰D$H‹F H‰D$è
&ÿÿI‰ÆHƒû„“Hƒû…M…ö~*H‹5§…)L‰ïè/#ÿÿH…À„OH‰D$ IƒîM…ö=L‹L$H‹L$H‹T$ H‹ƃ)éþÿÿf„H…Û…—þÿÿH‰×è%ÿÿI‰ÆM…ö~ÃH‹5‰)L‰ïèÈ"ÿÿH…ÀtH‰D$IƒîM…ö~¡H‹5†…)L‰ïè¦"ÿÿH…À„_ÿÿÿH‰D$IƒîéLÿÿÿ€Hƒ+¾æ.H
Ønº_H‰
Œ‘)ÇŽ‘)_Ç€‘)æ.t6H=·tH‰D$蕕ÿÿH‹D$é£ýÿÿH…Û…ÿÿÿéNÿÿÿf.„H‰ßH‰D$èS"ÿÿ‹9‘)‹5/‘)H‹
 ‘)H‹D$ë£f„H‹F H‰×H‰D$è$ÿÿI‰ÆéÿÿÿHT$H‰ÙL‰ïLVoH5Î')è™Çÿÿ…À‰þÿÿH
n¾¬.Çǐ)H‰´)Dz)¬.é¬ýÿÿDAVAUATI‰üUSHƒì0H‹2‚)H‹
‚)H‹-ŒC'H‹^H‰D$H‰L$H‰l$ H…Ò…Hƒû„v~$Hƒû„ºHƒû…ÀH‹V0H‹N(L‹N ëfI‰ÁH‰êH…Û…¡HƒìI‹œ$ØIt$(A¸H‹=‹C'HƒUjÿ5.‹)Pjÿ5ƒ)QH‰Ùjÿ5ù†)ÿ)HƒÄPH…À„Hƒ+tHƒÄ0[]A\A]A^ÃH‰ßH‰D$èË ÿÿH‹D$HƒÄ0[]A\A]A^Ãf„H‰êéLÿÿÿ„H…ÛHmI‰ØH
lmHÞmHIÈHƒìH‹A'IÁø?SI÷ÐH5¿oH‹8L
¯pAƒà1Àè)ÿÿHkl¾O/Ç()dǏ)O/H‰)XZH
BlºdH=nrè!“ÿÿHƒÄ01À[]A\A]A^ÃfH‰êé þÿÿ„I‰ÕHƒû„£ŽHƒûtHƒû…-ÿÿÿH‹F0H‰D$ H‹F(L‰ïH‰D$H‹F H‰D$è"ÿÿI‰ÆHƒû„“Hƒû…M…ö~*H‹5·)L‰ïè?ÿÿH…À„OH‰D$ IƒîM…ö=L‹L$H‹L$H‹T$ H‹Ö)éþÿÿf„H…Û…—þÿÿH‰×èŸ!ÿÿI‰ÆM…ö~ÃH‹5 …)L‰ïèØÿÿH…ÀtH‰D$IƒîM…ö~¡H‹5–)L‰ïè¶ÿÿH…À„_ÿÿÿH‰D$IƒîéLÿÿÿ€Hƒ+¾u/H
èjºÖH‰
œ)Çž)Öǐ)u/t6H=÷pH‰D$襑ÿÿH‹D$é£ýÿÿH…Û…ÿÿÿéNÿÿÿf.„H‰ßH‰D$ècÿÿ‹I)‹5?)H‹
0)H‹D$ë£f„H‹F H‰×H‰D$èŸ ÿÿI‰ÆéÿÿÿHT$H‰ÙL‰ïLnkH5þ#)è©Ãÿÿ…À‰þÿÿHj¾;/Ç׌)dH‰Č)ÇŒ);/é¬ýÿÿDAVAUATI‰üUSHƒì0H‹B~)H‹
+~)H‹-œ?'H‹^H‰D$H‰L$H‰l$ H…Ò…Hƒû„v~$Hƒû„ºHƒû…ÀH‹V0H‹N(L‹N ëfI‰ÁH‰êH…Û…¡HƒìI‹œ$ØIt$(A¸H‹=c>'HƒUjÿ5>‡)Pjÿ5­)QH‰Ùjÿ5	ƒ)ÿ‹)HƒÄPH…À„Hƒ+tHƒÄ0[]A\A]A^ÃH‰ßH‰D$èÛÿÿH‹D$HƒÄ0[]A\A]A^Ãf„H‰êéLÿÿÿ„H…ÛHiI‰ØH
|iHõiHIÈHƒìH‹='IÁø?SI÷ÐH5ÏkH‹8L
¿lAƒà1Àè"%ÿÿH{h¾Þ/Ç8‹)ÛÇ*‹)Þ/H‰‹)XZH
RhºÛH=®nè1ÿÿHƒÄ01À[]A\A]A^ÃfH‰êé þÿÿ„I‰ÕHƒû„£ŽHƒûtHƒû…-ÿÿÿH‹F0H‰D$ H‹F(L‰ïH‰D$H‹F H‰D$è*ÿÿI‰ÆHƒû„“Hƒû…M…ö~*H‹5Ç})L‰ïèOÿÿH…À„OH‰D$ IƒîM…ö=L‹L$H‹L$H‹T$ H‹æ{)éþÿÿf„H…Û…—þÿÿH‰×è¯ÿÿI‰ÆM…ö~ÃH‹50)L‰ïèèÿÿH…ÀtH‰D$IƒîM…ö~¡H‹5¦})L‰ïèÆÿÿH…À„_ÿÿÿH‰D$IƒîéLÿÿÿ€Hƒ+¾0H
øfº&	H‰
¬‰)Ç®‰)&	Ç ‰)0t6H=7mH‰D$赍ÿÿH‹D$é£ýÿÿH…Û…ÿÿÿéNÿÿÿf.„H‰ßH‰D$èsÿÿ‹Y‰)‹5O‰)H‹
@‰)H‹D$ë£f„H‹F H‰×H‰D$è¯ÿÿI‰ÆéÿÿÿHT$H‰ÙL‰ïL…gH5. )蹿ÿÿ…À‰þÿÿH*f¾Ê/Ççˆ)ÛH‰Ԉ)Ç҈)Ê/é¬ýÿÿDAVAUATI‰üUSHƒì0H‹Rz)H‹
;z)H‹-¬;'H‹^H‰D$H‰L$H‰l$ H…Ò…Hƒû„v~$Hƒû„ºHƒû…ÀH‹V0H‹N(L‹N ëfI‰ÁH‰êH…Û…¡HƒìI‹œ$ØIt$(A¸H‹=›;'HƒUjÿ5Nƒ)Pjÿ5e{)QH‰Ùjÿ5©~)ÿ#‡)HƒÄPH…À„Hƒ+tHƒÄ0[]A\A]A^ÃH‰ßH‰D$èëÿÿH‹D$HƒÄ0[]A\A]A^Ãf„H‰êéLÿÿÿ„H…ÛHŸeI‰ØH
ŒeHfHIÈHƒìH‹&9'IÁø?SI÷ÐH5ßgH‹8L
ÏhAƒà1Àè2!ÿÿH‹d¾m0ÇH‡)+	Ç:‡)m0H‰+‡)XZH
bdº+	H=îjèA‹ÿÿHƒÄ01À[]A\A]A^ÃfH‰êé þÿÿ„I‰ÕHƒû„£ŽHƒûtHƒû…-ÿÿÿH‹F0H‰D$ H‹F(L‰ïH‰D$H‹F H‰D$è:ÿÿI‰ÆHƒû„“Hƒû…M…ö~*H‹5×y)L‰ïè_ÿÿH…À„OH‰D$ IƒîM…ö=L‹L$H‹L$H‹T$ H‹öw)éþÿÿf„H…Û…—þÿÿH‰×è¿ÿÿI‰ÆM…ö~ÃH‹5Ð|)L‰ïèøÿÿH…ÀtH‰D$IƒîM…ö~¡H‹5^y)L‰ïèÖÿÿH…À„_ÿÿÿH‰D$IƒîéLÿÿÿ€Hƒ+¾“0H
cº–	H‰
¼…)Ǿ…)–	ǰ…)“0t6H=wiH‰D$èʼnÿÿH‹D$é£ýÿÿH…Û…ÿÿÿéNÿÿÿf.„H‰ßH‰D$èƒÿÿ‹i…)‹5_…)H‹
P…)H‹D$ë£f„H‹F H‰×H‰D$è¿ÿÿI‰ÆéÿÿÿHT$H‰ÙL‰ïLžcH5^)èɻÿÿ…À‰þÿÿH:b¾Y0Ç÷„)+	H‰ä„)Çâ„)Y0é¬ýÿÿDAVAUATUH‰ýSHƒì L‹
Rv)L‹%Ã7'H‹^L‰L$L‰d$H…Ò…THƒû„BHƒû„(H…Û„ŸH…ÛH~bI‰ØH
kbH÷bHIÈHƒìH‹6'IÁø?SI÷ÐH5¾dH‹8L
®eAƒà1ÀèÿÿHja¾ï0Ç'„)›	Ç„)ï0H‰
„)XZH
Aaº›	H=ýgè ˆÿÿ1ÀHƒÄ []A\A]A^ÐL‰âH‹ØH‹wu)HƒìHu(A¸H‹=Ú5'HƒH‹
ç~)ATjQPjQH‰ÙPjÿ5Jw)ÿ¼‚)HƒÄPH…À„‡Hƒ+u“H‰ßH‰D$è”ÿÿH‹D$HƒÄ []A\A]A^ÃfH‹V(L‹N évÿÿÿL‰âëïI‰ÕHƒû„Hƒû„‰H…Û…©þÿÿH‰×è°ÿÿI‰ÆH…À\@L‹L$H‹T$é$ÿÿÿHƒ+¾1H
0`ºÛ	H‰
ä‚)Çæ‚)Û	Ç؂)1„âH=ËfH‰D$èé†ÿÿH‹D$éÁþÿÿ€H‹F(H‰×H‰D$H‹F H‰D$èÿÿH…ÀŽuÿÿÿHT$H‰ÙL‰ïLaH5Ü)è'¹ÿÿ…À‰OÿÿÿH˜_¾Þ0ÇU‚)›	H‰B‚)Ç@‚)Þ0é+þÿÿH‹F H‰×H‰D$è¯ÿÿI‰ÆM…öŽÿÿÿH‹5\u)L‰ïèäÿÿH…À„vÿÿÿH‰D$IFÿé_ÿÿÿDH‰ßH‰D$èûÿÿ‹á)‹5ׁ)H‹
ȁ)H‹D$éôþÿÿfDH‹5iu)L‰ïè‰ÿÿH…Àt‘H‰D$IƒîézÿÿÿfDAWAVAUATI‰ôUH‰ýSHƒì8L‹5…4'H‹^HÇD$HÇD$L‰t$ H…Ò…aHƒû„GHƒû…H‹V0I‹D$(M‹L$ H‹ØHƒìHu(A¸H‹=k4'HƒH‰ÙAVjÿ5:|)ÿ5¤r)jÿ5¤t)Pjÿ5“w)ÿ
€)HƒÄPH…À„èHƒ+…¼H‰ßH‰D$èáÿÿH‹D$HƒÄ8[]A\A]A^A_ÃI‹\$„HƒûHž^H
Ž^HMȝÀHƒì¶ÀSH_L@H‹2'H5Þ`L
ÑaH‹81Àè5ÿÿHŽ]¾x1ÇK€)à	Ç=€)x1H‰.€)XZH
e]ºà	H=QdèD„ÿÿ1ÀHƒÄ8[]A\A]A^A_ÃL‰òé¿þÿÿ„I‰ÕHƒû„s~iHƒûtHƒû…1ÿÿÿH‹F0H‰D$ I‹D$(L‰ïH‰D$I‹D$ H‰D$è<ÿÿI‰ÇHƒût`Hƒût{H…Ût4M…ÿ8L‹L$H‹D$H‹T$ éLþÿÿH…Û…ÏþÿÿH‰×è÷ÿÿI‰ÇH‹5
v)L‰ïIƒïè1ÿÿH‰D$H…À„–þÿÿH‹5ôr)L‰ïèÿÿH‰D$H…À„!IƒïM…ÿ~ŽH‹5fr)L‰ïèîÿÿH…À„®H‰D$ Iƒïé_ÿÿÿ€Hƒ+¾ž1H
 \º
H‰
Ô~)ÇÖ~)
ÇÈ~)ž1tH=ïbH‰D$è݂ÿÿH‹D$é‘þÿÿH‰ßH‰D$è³ÿÿ‹™~)‹5~)H‹
€~)H‹D$ë»f„H‹F H‰×H‰D$èïÿÿI‰ÇéÿÿÿHT$H‰ÙL‰ïLá\H5Î)èù´ÿÿ…À‰¢þÿÿHj[¾f1Ç'~)à	H‰~)Ç~)f1éÙýÿÿHƒìH‹ª/'H
ó[H5d^jL
U_A¸Hr\H‹81Àè¬ÿÿH[Y^H‰¼})¾\1ǹ})à	Ç«})\1érýÿÿ@f.„AVAUI‰ÕATI‰ôUH‰ýSHƒì0H‹„0'H‹^HÇD$HÇD$H‰T$ M…í…@Hƒû„ªHƒû„œHƒûH:[H
*[HMȝÀHƒì¶ÀSHµ[L@H‹¹.'H5z]L
m^H‹81ÀèÑÿÿH*Z¾ù8Çç|)ÇÙ|)ù8H‰Ê|)XZH
ZºH=aèà€ÿÿ1ÀHƒÄ0[]A\A]A^ÐH‹V0I‹L$(I‹D$ H‹ØHƒìHu(E1ÉA¸H‹=S.'Hƒjÿ5Ÿw)ÿ5	n)jÿ5iq)QH‰Ùjÿ5}r)Pÿf{)HƒÄPH…À„)Hƒ+…ÿÿÿH‰ßH‰D$èB
ÿÿH‹D$HƒÄ0[]A\A]A^ÃHƒû„v~lHƒûtHƒû…¸þÿÿH‹F0H‰D$ I‹D$(L‰ïH‰D$I‹D$ H‰D$è_ÿÿI‰ÆHƒûtcHƒût~H…Ût7M…ö;H‹D$H‹L$H‹T$ éÿÿÿfDH…Û…SþÿÿL‰ïèÿÿI‰ÆH‹5µq)L‰ïIƒîèQÿÿH‰D$H…À„¥H‹5tp)L‰ïè4ÿÿH‰D$H…À„!IƒîM…ö~‹H‹5†n)L‰ïèÿÿH…À„®H‰D$ Iƒîé\ÿÿÿ€Hƒ+¾9H
@Xº^H‰
ôz)Çöz)^Çèz)9tH=7_H‰D$èý~ÿÿH‹D$éþÿÿH‰ßH‰D$èÓÿÿ‹¹z)‹5¯z)H‹
 z)H‹D$ë»f„H‹F L‰ïH‰D$èÿÿI‰ÆéÿÿÿHT$H‰ÙL‰ïLYH5n)è±ÿÿ…À‰ŸþÿÿHŠW¾ç8ÇGz)H‰4z)Ç2z)ç8é]ýÿÿHƒìH‹Ê+'H
XH5„ZjL
u[A¸H—XH‹81ÀèÌÿÿH%WY^H‰Üy)¾Ý8ÇÙy)ÇËy)Ý8éöüÿÿI‹\$éxüÿÿ@AUATI‰ÔUH‰ýSHƒì(H‹1k)H‹¢,'H‹^H‰D$H‰T$M…ä…»Hƒû„}Hƒû„oH…Û„æH…ÛH]WI‰ØH
JWHöWHIÈHƒìH‹ä*'IÁø?SI÷ÐH5YH‹8L
ZAƒà1ÀèðÿÿHIV¾{9Çy)cÇøx){9H‰éx)XZH
 VºcH=l]èÿ|ÿÿ1ÀHƒÄ([]A\A]ÃfHƒû„žHƒû„H…Û…EÿÿÿL‰çè+ÿÿI‰ÅH…Àï€H‹D$H‹T$fDH‹ØHƒìHu(E1ÉH‹
j)A¸HƒH‹=†s)jWQjWH‹=p*'QH‰Ùj	ÿ5Œo)PÿMw)HƒÄPH…Àt<Hƒ+…MÿÿÿH‰ßH‰D$è-	ÿÿH‹D$HƒÄ([]A\A]ÃDH‹V(H‹F ésÿÿÿHƒ+¾¡9H
Uº¦H‰
Ìw)ÇÎw)¦ÇÀw)¡9„âH=C\H‰D$èÑ{ÿÿH‹D$éÊþÿÿ€H‹F(L‰çH‰D$H‹F H‰D$èÿÿH…ÀŽåþÿÿHT$H‰ÙL‰çLVH5„)è®ÿÿ…À‰¿þÿÿH€T¾j9Ç=w)cH‰*w)Ç(w)j9é4þÿÿH‹F L‰çH‰D$è—
ÿÿI‰ÅM…íŽsþÿÿH‹5Dj)L‰çèÌÿÿH…À„vÿÿÿH‰D$IEÿé_ÿÿÿDH‰ßH‰D$èãÿÿ‹Év)‹5¿v)H‹
°v)H‹D$éôþÿÿfDH‹5ùm)L‰çèqÿÿH…Àt‘H‰D$Iƒíézÿÿÿ@f.„AVAUI‰ÕATI‰ôUH‰ýSHƒì H‹d)'H‹^HÇD$H‰T$M…í…IHƒû„³Hƒû„¥H…ÛH$TH
THOÈŸÀHxW¶ÀL
(RLOÊL@HƒìH‹™''SHœTH5RVH‹81Àè°ÿÿH	S¾ù9ÇÆu)«Ç¸u)ù9H‰©u)XZH
àRº«H=\Zè¿yÿÿ1ÀHƒÄ []A\A]A^ÃH‹V(I‹|$ H‹ØHƒìHu(E1ÉH‹g)A¸HƒH‹
…p)jQPjQH‰ÙPjÿ5bp)WH‹=*('ÿLt)HƒÄPH…À„—Hƒ+uŒH‰ßH‰D$è,ÿÿH‹D$HƒÄ []A\A]A^Ãf.„Hƒû„NHƒû„ÌH…Û…®þÿÿL‰ïè[ÿÿH‹5ôo)L‰ïI‰Æè™ÿÿIƒîH‰D$H…À„UM…ö&H‹|$H‹T$éÿÿÿ€Hƒ+¾:H
¸QºöH‰
lt)Çnt)öÇ`t):tH=YH‰D$èuxÿÿH‹D$é®þÿÿH‰ßH‰D$èKÿÿ‹1t)‹5't)H‹
t)H‹D$뻐H‹F(L‰ïH‰D$H‹F H‰D$è†ÿÿH…ÀŽOÿÿÿHT$H‰ÙL‰ïL–RH5$)菪ÿÿ…À‰)ÿÿÿHQ¾é9ǽs)«H‰ªs)Ǩs)é9éôýÿÿH‹F L‰ïH‰D$èÿÿI‰ÆéØþÿÿ€H‹5Áf)L‰ïèIÿÿH…À„sÿÿÿH‰D$IFÿé\ÿÿÿI‹\$é#ýÿÿ„AVAUI‰ÕATI‰ôUH‰ýSHƒì H‹4&'H‹^HÇD$H‰T$M…í…IHƒû„³Hƒû„¥H…ÛHôPH
äPHOÈŸÀHHT¶ÀL
øNLOÊL@HƒìH‹i$'SHxSH5"SH‹81Àè€ÿÿHÙO¾w:Ç–r)ûLjr)w:H‰yr)XZH
°OºûH=TWèvÿÿ1ÀHƒÄ []A\A]A^ÃH‹V(I‹|$ H‹ØHƒìHu(E1ÉH‹Öc)A¸HƒH‹
Um)jQPjQH‰ÙPjÿ5g)WH‹=Â%'ÿq)HƒÄPH…À„—Hƒ+uŒH‰ßH‰D$èüÿÿH‹D$HƒÄ []A\A]A^Ãf.„Hƒû„NHƒû„ÌH…Û…®þÿÿL‰ïè+ÿÿH‹5¬f)L‰ïI‰ÆèiÿÿIƒîH‰D$H…À„UM…ö&H‹|$H‹T$éÿÿÿ€Hƒ+¾:H
ˆNº)H‰
<q)Ç>q))Ç0q):tH=VH‰D$èEuÿÿH‹D$é®þÿÿH‰ßH‰D$èÿÿ‹q)‹5÷p)H‹
èp)H‹D$뻐H‹F(L‰ïH‰D$H‹F H‰D$èVÿÿH…ÀŽOÿÿÿHT$H‰ÙL‰ïLrQH5	)è_§ÿÿ…À‰)ÿÿÿHÐM¾g:Ǎp)ûH‰zp)Çxp)g:éôýÿÿH‹F L‰ïH‰D$èçÿÿI‰ÆéØþÿÿ€H‹5‘c)L‰ïèÿÿH…À„sÿÿÿH‰D$IFÿé\ÿÿÿI‹\$é#ýÿÿ„AVAUI‰ÕATI‰ôUH‰ýSHƒì H‹#'H‹^HÇD$H‰T$M…í…IHƒû„³Hƒû„¥H…ÛHÄMH
´MHOÈŸÀHQ¶ÀL
ÈKLOÊL@HƒìH‹9!'SHANH5òOH‹81ÀèP	ÿÿH©L¾Ž=Çfo)½ÇXo)Ž=H‰Io)XZH
€Lº½H=TTè_sÿÿ1ÀHƒÄ []A\A]A^ÃH‹V(I‹|$ H‹ØHƒìHu(E1ÉH‹¦`)A¸HƒH‹
%j)jQPjQH‰ÙPjÿ5êc)WH‹=ê 'ÿìm)HƒÄPH…À„—Hƒ+uŒH‰ßH‰D$èÌÿþÿH‹D$HƒÄ []A\A]A^Ãf.„Hƒû„NHƒû„ÌH…Û…®þÿÿL‰ïèûÿÿH‹5|c)L‰ïI‰Æè9ÿþÿIƒîH‰D$H…À„UM…ö&H‹|$H‹T$éÿÿÿ€Hƒ+¾´=H
XKº
H‰
n)Çn)
Çn)´=tH=SH‰D$èrÿÿH‹D$é®þÿÿH‰ßH‰D$èëþþÿ‹Ñm)‹5Çm)H‹
¸m)H‹D$뻐H‹F(L‰ïH‰D$H‹F H‰D$è&ÿÿH…ÀŽOÿÿÿHT$H‰ÙL‰ïL;LH54)è/¤ÿÿ…À‰)ÿÿÿH J¾~=Ç]m)½H‰Jm)ÇHm)~=éôýÿÿH‹F L‰ïH‰D$è·ÿÿI‰ÆéØþÿÿ€H‹5a`)L‰ïèéýþÿH…À„sÿÿÿH‰D$IFÿé\ÿÿÿI‹\$é#ýÿÿ„AVAUATUH‰ýSH‰óHƒìL‹fHÇD$H…Òu<Iƒü…šH‹^ HƒH‹}Hƒ/tH‰]1ÀHƒÄ[]A\A]A^ÃDè£ýþÿëáI‰ÕM…ät0IƒüuZH‹F H‰×H‰D$èñÿþÿI‰ÆM…öÁH‹\$ë fDH‰×èÐÿþÿH‹5Yb)L‰ïI‰ÆèýþÿIƒîH‰D$H…ÀuÂL‹c@HƒìH‹½'HíJH5wLATL
"HA¸H
³JH‹81Àè¿ÿÿH4I¾ÀgÇÕk)ÇÇk)ÀgH‰¸k)XZH
IºH=uJèÎoÿÿ¸ÿÿÿÿéúþÿÿHT$L‰áL‰ïLiJH5›)è6¢ÿÿ…À‰ÿÿÿHÃH¾µgÇdk)H‰Qk)ÇOk)µgëDAUATUSH‰ûHƒìH‹-ä'H‹H‹uèOûþÿ…ÀtH‹{HƒÄH‰Þ[]A\A]éÕûþÿDH‹Cö€³€„öƒ³@tv1ÿèßÿÿI‰ÅH…ÀtW1ÒH‰ÆH‰ßèÚÿÿIƒmI‰ÄtpM…ät;I‹|$H‹uèÝúþÿ…ÀtiL‰æH‰ßènûþÿIƒ,$uHƒÄL‰ç[]A\A]é¥ûþÿDHƒÄ[]A\A]ÃDH‹'H5úOH‹8HƒÄ[]A\A]éàÿþÿL‰ïèhûþÿë†fDH‹é'I‹L$H‰ÚH5zOH‹81Àèÿÿé}ÿÿÿf.„AVAUATUH‰õSH‰ûHƒì L‹fHÇD$H…Ò…Iƒü…¾H‹n HƒEH‹{ Hƒ/„çH‰k H‹5ìc)H‰ïèDÿÿI‰ÄH…À„H5‘HH‰ÇèIþþÿ…À„IH5zHL‰çèâÿÿI‰ÅH…À„®óAoEH‹5y`)H‰ïC(óAoMK8I‹E H‰CHèÛÿÿH‰ÅH…À„·H‹»ØHƒ/t"H‰«Ø1ÀIƒ,$t"HƒÄ []A\A]A^ÃDè+úþÿë×f„L‰ç‰D$èúþÿ‹D$HƒÄ []A\A]A^ÃèûùþÿéÿÿÿfDI‰ÕM…ä„tIƒü…šH‹F H‰×H‰D$è9üþÿI‰ÆM…öCH‹l$é¹þÿÿH
ÉEºs¾hǁh)sH=FNH‰
gh)Çeh)hèˆlÿÿ¸ÿÿÿÿé,ÿÿÿfDH‹5aY)H‹=’f)1ÒèCÿþÿH‰ÃH…À„œH‰ÇèßüÿÿHƒ+„}HNE¾‹ºvÇh)vH‰óg)Çñg)‹H
"EH=³MèlÿÿƒÈÿé¥þÿÿfDèãÿÿH…À„DþÿÿHóD¾ºxÇ«g)xH‰˜g)Ç–g)ë£@HÁD¾§ºyÇyg)yH‰fg)Çdg)§énÿÿÿ€H‰×èØúþÿH‹5©a)L‰ïI‰ÆèøþÿIƒîH‰D$H…À…~þÿÿL‹eHƒìH‹Å'HõEH5GATL
*CA¸H
»EH‹81ÀèÇÿÿH D¾=ÇÝf)pÇÏf)=H‰Àf)XZH
÷CºpH=ƒLèÖjÿÿ¸ÿÿÿÿézýÿÿ@H‰ßè°÷þÿévþÿÿHÄC¾‡ºvÇ|f)vH‰if)Çgf)‡éqþÿÿHT$L‰áL‰ïL/EH5!)èüœÿÿ…À‰—ýÿÿHmC¾2Ç*f)pH‰f)Çf)2éJÿÿÿ„SH‹5¸U)1ÒH‹=7d)èúüþÿH…ÀteH‰ÃH‰ÇèšúÿÿHƒ+tDH)C¾ŸfÇÊe)H‰·e)ǵe)ŸfH
CºH=¢KèÅiÿÿ1À[ÐH‰ßè¨öþÿë²fDHÕB¾›fÇve)H‰ce)Çae)›f몀SH‹5U)1ÒH‹=‡c)èJüþÿH…ÀteH‰ÃH‰ÇèêùÿÿHƒ+tDHyB¾ÔfÇe)H‰e)Çe)ÔfH
RBºH=Kèiÿÿ1À[ÐH‰ßèøõþÿë²fDH%B¾ÐfÇÆd)H‰³d)DZd)Ðf몀SH‹5 T)1ÒH‹=×b)èšûþÿH…ÀteH‰ÃH‰Çè:ùÿÿHƒ+tDHÉA¾OyÇjd)H‰Wd)ÇUd)OyH
¢AºH=šJèehÿÿ1À[ÐH‰ßèHõþÿë²fDHuA¾KyÇd)H‰d)Çd)Ky몀SH‹5hS)1ÒH‹='b)èêúþÿH…ÀteH‰ÃH‰ÇèŠøÿÿHƒ+tDHA¾„yǺc)H‰§c)Ç¥c)„yH
ò@ºH=Jèµgÿÿ1À[ÐH‰ßè˜ôþÿë²fDHÅ@¾€yÇfc)H‰Sc)ÇQc)€y몀AUATUSHƒìHƒ¿ˆ„XH‰û1ÿèŽýþÿI‰ÄH…À„¢H‹«ˆHcCtLlÅL9ís3H‹}è4ýþÿH‰ÃH…ÀtdH‰ÆL‰çèÁùþÿ…À…±Hƒ+t;HƒÅI9íwÍL‰çèùþÿH…À„‘Iƒ,$u|L‰çH‰D$èÅóþÿH‹D$ëhfDH‰ßè°óþÿë»fDHÝ?ǃb)<H‰pb)Çnb)	uIƒ,$uvL‰çèwóþÿH‹
Pb)‹Vb)‹5Lb)H=ýHèhfÿÿ1ÀHƒÄ[]A\A]ÃIƒ,$Hx?H‰b)Çb)<Ç	b)uuL‰çèóþÿHƒ+uH‰ßè	óþÿH‹
âa)‹èa)‹5Þa)ë@H‹5aQ)H‹=`)1ÒèËøþÿH‰ÃH…À„®H‰ÇègöÿÿHƒ+tiH
ö>¾ðtº:Ç’a):H‰
a)Ç}a)ðté,ÿÿÿH
Å>¾uº<Çaa)<H‰
Na)ÇLa)uéûþÿÿ€H‰ßèPòþÿëfDH}>Ç#a)<H‰a)Ça)ué›þÿÿH
V>¾ìtº:Çò`):H‰
ß`)ÇÝ`)ìtéŒþÿÿSH‹58P)1ÒH‹=_)èÊ÷þÿH…ÀteH‰ÃH‰ÇèjõÿÿHƒ+tDHù=¾ƒ„Çš`)H‰‡`)Ç…`)ƒ„H
Ò=ºH=ZGè•dÿÿ1À[ÐH‰ßèxñþÿë²fDH¥=¾„ÇF`)H‰3`)Ç1`)„몀SH‹5€O)1ÒH‹=W^)è÷þÿH…ÀteH‰ÃH‰ÇèºôÿÿHƒ+tDHI=¾¸„Çê_)H‰×_)ÇÕ_)¸„H
"=ºH=âFèåcÿÿ1À[ÐH‰ßèÈðþÿë²fDHõ<¾´„Ç–_)H‰ƒ_)ǁ_)´„몀AUATUSHƒìH…ö„“L‹%f'H‰ýH‰óA‰պL‰fH‹5uY)H‹XIƒ$èßøþÿ…Àˆ÷„D‰è%¸…À„YH‹E H‰H‹E(H‰C‹E8‰C$H‹E@H‰C0H‹EHHÇC@H‰C8H‹EPÇC H‰C1ÀAƒåtH‹E0H‰C(HƒEH‹{Hƒ/tfH‰kL9åtE1ÀHƒÄ[]A\A]ÃH‹}XH‹5
W)ºè;øþÿ…ÀˆCD‰êâ؅	ÐADÅéTÿÿÿDHƒmt!HÇC몀èkïþÿë“f„H‰ïèXïþÿëÕfDH…;¾‰cº»Ç!^)»H‰^)Ç^)‰cH=•EH
R;è!bÿÿH‹{¸ÿÿÿÿH…ÿ„4ÿÿÿHƒ/„…HÇCHƒÄ¸ÿÿÿÿ[]A\A]ÃDH‹5yM)H‹=\)1Òè³ôþÿH‰ÅH…À„œH‰ÇèOòÿÿHƒm„|HÙ:¾ÓcºÀÇu])ÀH‰b])Ç`])ÓcéOÿÿÿèkîþÿéqÿÿÿfDH•:¾§cº½Ç1])½H‰])Ç])§céÿÿÿ€H‰ïè îþÿéwÿÿÿHP:¾ÏcºÀÇì\)ÀH‰Ù\)Ç×\)ÏcéÆþÿÿH‹k'H5DH‹8èDòþÿ¸ÿÿÿÿéÿýÿÿf.„ATUSH…ö„ÌL‹%œ'H‰ýH‰óL‰fIƒ$öÂt‹Gp…À…½1ÀöÂtH‹…€H‰C01ÀöÂtH‹…ˆH‰C81À÷ÂtH‹…H‰C@1âtH‹ExH‰C(H‹EPH‰‹Et‰C$H‹EhH‰CH‹E`H‰C‹Ep‰C HƒEH‹{Hƒ/t+H‰kL9åt
1À[]A\ÃHƒmtHÇCëå€èãìþÿëΐH‰ïèØìþÿëÝfDH‹5IK)H‹=úY)1Òè«òþÿH‰ÅH…À„œH‰ÇèGðÿÿHƒm„|HÑ8¾ÔrÇr[)H‰_[)Ç][)ÔrH=CH
£8ºèm_ÿÿH‹{¸ÿÿÿÿH…ÿ„CÿÿÿHƒ/tHÇC¸ÿÿÿÿé+ÿÿÿè+ìþÿëäf„H‰ïèìþÿéwÿÿÿHH8¾ÐrÇéZ)H‰ÖZ)ÇÔZ)ÐrérÿÿÿH‹h
'H5BH‹8èAðþÿ¸ÿÿÿÿé¿þÿÿ€SHì H‰´$øH‰”$H‰Œ$L‰„$L‰Œ$„Àt@)„$ )Œ$0)”$@)œ$P)¤$`)¬$p)´$€)¼$H\$ H„$°¾ÈÇD$H‰D$HL$H„$ðH‰ßHæAÇD$0H‰D$è´ëþÿH‰ßè<ôþÿHĠ[ÃH‹G HƒH‹G ÃAUATI‰ü¿USHƒìè©ëþÿH…À„ I‰ÅA‹D$t…ÀudH‹-¥'HƒE¿è~ñþÿH‰ÃH…À„¢Iƒ$H‹=NX)1ÒH‰ÞL‰c L‰k(H‰k0è`ðþÿH…Àt+Hƒ+„ÑHƒÄ[]A\A]ÃfDH‹-ù'HƒEëšfHƒ+¾qeH
l6ºäH‰
Y)ÇY)äÇøX)qe„ªH=û@è]ÿÿ1ÀHƒÄ[]A\A]ÐIƒmH 6H‰½X)Ç¿X)äDZX)fetWHƒm„|H‹
•X)‹›X)H= @‹5ŠX)è­\ÿÿ1Àëf„H‰ßH‰D$èƒéþÿH‹D$HƒÄ[]A\A]ÃL‰ïèhéþÿëŸfDH‰ßèXéþÿH‹
1X)‹7X)‹5-X)é6ÿÿÿH‰ïè8éþÿH‹
X)‹X)‹5
X)éÿÿÿH
U5¾beºäÇñW)äH‰
ÞW)ÇÜW)beéåþÿÿDf.„AVAUI‰ýHcþATI‰ÌUS‰ÓHƒìè¤éþÿH…À„ËI‰ƅÛutH‹-¥
'HƒE¿è~ïþÿH‰ÃH…À„ºIƒEH‹=NV)1ÒH‰ÞL‰k L‰s(H‰k0è`îþÿH…Àt;Hƒ+„Hƒ8L‰ h„ÐHƒÄ[]A\A]A^ÃH‹-é
'HƒEëŠfHƒ+¾¾yH
\4º’H‰
ôV)ÇöV)’ÇèV)¾y„ÊH=?èþZÿÿ1ÀHƒÄ[]A\A]A^ÀIƒ.H	4H‰¦V)ǨV)’ÇšV)³ytpHƒm„•H‹
~V)‹„V)H=±>‹5sV)è–Zÿÿ1Àë–fH‰ÇH‰D$èsçþÿH‹D$HƒÄ[]A\A]A^ÐH‰ßH‰D$èSçþÿH‹D$éèþÿÿf„L‰÷è8çþÿéƒÿÿÿH‰ßè(çþÿH‹
V)‹V)‹5ýU)éÿÿÿH‰ïèçþÿH‹
áU)‹çU)‹5ÝU)éöþÿÿH
%3¾¯yº’ÇÁU)’H‰
®U)ǬU)¯yéÅþÿÿDf.„UH‰ýSH‰óHƒìHH‹H‹~HÇD$HÇD$HPH‰H‹5ET)HÇD$ HÇD$(HÇD$0HÇD$8H9÷tè¯ïþÿ…Àt#H‹HBH‰H‰ØH‰H…Ò„ZHƒÄH[]ÃHT$ Ht$H|$ètëþÿ‹½`@€çf@€ϘHcÿèÞæþÿH‰D$(H…À„ ‹…d…À…*H‹Ó'Hƒ¿H‰D$0è¨ìþÿH‰D$8H…À„:H‹T$(HƒH‰ÆH‰X H‹=kS)H‰P(H‹T$0HÇD$(H‰P01ÒHÇD$0èmëþÿH‰D$0H…À„WH‹|$8Hƒ/„ÐHƒ+H‹l$0HÇD$8„¨HÇD$0H‹|$H…ÿt
Hƒ/„»HÇD$H‹|$H…ÿt
Hƒ/„ŽHÇD$H‹|$ H…ÿt
Hƒ/„‘HÇD$ H‰ëH‹Ué”þÿÿ@H‰ßH‰D$èËäþÿH‹D$HƒÄH[]ÀH‹a'HƒéÑþÿÿ„H‰ßè˜äþÿéKÿÿÿè‹äþÿé&ÿÿÿfDè{äþÿéhÿÿÿfDèkäþÿé;ÿÿÿfDè[äþÿéeÿÿÿfDH-…0Ç+S)²H‰-S)ÇS)KnHÇD$(H‹|$0H…ÿt
Hƒ/„ÙHÇD$0H‹|$8H…ÿt
Hƒ/„ÌHÇD$8H‹=Q)èŸæþÿ…À„Ò‹½R)‹5³R)H=;H‹
R)èÈVÿÿHT$(Ht$8H|$0èÄOÿÿ…Àˆ|H‹-…'H‹|$(HƒEHƒ/„±HÇD$(H‹|$0Hƒ/„‰HÇD$0H‹|$8Hƒ/„aH‹T$ H‹t$HÇD$8H‹|$èTéþÿH‹HPÿH‰èéçüÿÿDH‰-ùQ)ÇûQ)´ÇíQ)‹nH‹|$H‹T$ H‹t$èéþÿH‹|$(H…ÿt
Hƒ/„-H‹|$0H…ÿt
Hƒ/„)H‹|$8H…ÿt
Hƒ/„õ‹›Q)H‹
ˆQ)H=é9‹5ƒQ)è¦UÿÿH‹HPÿ1ÀéJüÿÿ„H-µ.Ç[Q)²H‰-HQ)ÇFQ)_nH‹|$(H…ÿ„"þÿÿHƒ/…þÿÿèAâþÿéþÿÿ@è3âþÿéþÿÿfDè#âþÿé*þÿÿfDH-M.ÇóP)²H‰-àP)ÇÞP)jnë–@èëáþÿé•þÿÿfDèÛáþÿémþÿÿfDèËáþÿéEþÿÿfDè»áþÿéÿÿÿfDè«áþÿéÉþÿÿfDè›áþÿéÍþÿÿfDHƒìH…ÿuè‚êþÿ1ÒH…Àu;‰ÐHƒÄÃ@Hƒ/tRH‹ƒ'H‰òH5É8H‹81ÀèêþÿºÿÿÿÿëÍ„H‹	'H‹8èñãþÿºÿÿÿÿ…Àt­èÓãþÿ1Ò뤀H‰t$èáþÿH‹t$띀ATUSH…Ò„I‰ôH‹5YF)H‰ÕèQëþÿH‰ÃH…À„•H‰êL‰æH‰Çèwéþÿ…Àx3H‹1íHPÿH‰H…Òt
‰è[]A\ÃH‰ßè àþÿ‰è[]A\Ãf„Hƒ+¾efH
¼,ºðH‰
TO)ÇVO)ðÇHO)eftN½ÿÿÿÿH=ò7è]Sÿÿ‰è[]A\ÃfDH
u,¾cfºðÇO)ðH‰
þN)ÇüN)cfë´fH‰ßèàþÿH‹
áN)‹çN)‹5ÝN)ë•H‹GH5°7½ÿÿÿÿH‹P H‹'H‹81ÀèŽèþÿéÿÿÿf„ATUSH‰ûèôAÿÿH‹-'H‹»@HƒEH‰«@H…ÿtHƒ/tOL‹£pM…ät4I9ìt$I‹D$H‹…Ò~kºÿÿÿÿðÁHǃxƒút*Hǃp[1À]A\Äè;ßþÿëªf„H‹»pH…ÿtÕHǃpHƒ/uÄèßþÿë½@‹0º­•1ÀH=È5è3óÿÿI‹D$Hévÿÿÿf„USH‰ûHƒì(HT$Ht$H|$èäþÿH‹H‹«pHPH‰H…ítFH;-–'„ðH‹EH‹…ҎºÿÿÿÿðÁHǃxƒútqHǃpH‹HƒèH‹|$H‹T$H‰H‹t$è0âþÿH‹»@H…ÿtHǃ@Hƒ/tH‰ßèËDÿÿHƒÄ([]Ã@èÞþÿH‰ßè³DÿÿHƒÄ([]Ã@H‹»pH…ÿtŽHǃpHƒ/…yÿÿÿèâÝþÿH‹HƒèéoÿÿÿfD‹0ºzƒ1ÀH=4èûñÿÿH‹EHé ÿÿÿfHǃpé9ÿÿÿAWAVAUATUSHì8H‹-xÿ&L‹¼$pI9ï„W…É…wH‹
`ÿ&HƒH‰ËA‰ü¿H‰T$H‰t$è*äþÿI‰ÁH…À„nH‹Ÿ=)I‰i 1ÒL‰ÎHƒEH‹=âJ)HƒI‰A(I‰Y0L‰L$èüâþÿL‹L$H…ÀI‰Æ„Iƒ)„Áóo„$póoŒ$€óo”$óoœ$ óo¤$°A†póo¬$ÀAŽ€óo´$Ðóo¼$àA–óo„$ðóoŒ$Až óo”$óoœ$ A¦°óo¤$0A®ÀA¶ÐA¾àA†ðAŽA–Až A¦0M…ÿtI‹GH‹…ÒˆºðÁ…ÒuIƒH‹5AE)L‰ÿèQæþÿI‰ÅH…À„5I‹¾@Hƒ/„„M‰®@I‹‡hH|$ IcÜIwP¹bHƒEI‰†hH‹„$xóH¥I~PHt$ ¹bóH¥I‰FP1ÀIŽI‰nXI®€E‰ftAö‡`•ÀHÁãI‰®€ƒÀHIdžA‰†`I†ÀI‰†ˆH9у.Iƒ¾‰ÍH‰Èë„Hƒ8‰¶HƒÀH9ÂwíI‹FhL|I‰F`L9ýƒhE1íH‹}èëãþÿI‰ÄH…À„¯M…ítIƒm„_I‹~`èÆãþÿH‰ÃH…À„²L‰æH‰ÇèãþÿI‰ÁH…À„ÓHƒ+„ùH‹âû&I9AL‰ÏL‰L$…èÞþÿL‹L$H‰ÃHƒûÿ„1Iƒ)„ßHƒÅI‰^`M‰åI9ï‡WÿÿÿH‹D$M‰÷M‰åI‰†HH‹D$I‰†PI‹HPI‰é7fDH‹
¡ü&HƒH‰Ëé„üÿÿDIƒ)H
&H‰
®H)ǰH)õÇ¢H)…„„ºõ¾…H=›1E1ÿè«LÿÿHÄ8L‰ø[]A\A]A^A_ÃfDH‰ßH‰D$èsÙþÿL‹L$éðþÿÿf„L‰ÏèXÙþÿéÿÿÿL‰ïèHÙþÿé”þÿÿI‰ŽéGþÿÿ@L‰Ïè(Ùþÿé2üÿÿIƒé|ÿÿÿ€HE%¾†ºÇáG)H‰ÎG)ÇÌG)†H
%H=Î0E1ÿèÞKÿÿI‹HƒèI‰H…ÀtoM…í„ÿÿÿIƒm…ÿÿÿL‰ïè£ØþÿéÿÿÿIƒ)M‰åH
Ì$H‰
iG)ÇkG)Ç]G)†tFº¾†H=Z0A¿ègKÿÿIƒ.u›L‰÷èHØþÿë‡fDè;ØþÿérüÿÿfDE1íL‰Ïè%ØþÿH‹
þF)‹G)‹5úF)H=0èKÿÿM…ö„–I‹E1ÿHƒèé'ÿÿÿfDH$M‰å¾†ºH‰­F)ǯF)Ç¡F)†éÐþÿÿ@Hå#M‰åLjF)H‰uF)ÇsF)†Hƒ+…\ÿÿÿH‰ßèy×þÿH‹
RF)‹XF)‹5NF)éOÿÿÿèkÝþÿL‹L$H…ÀI‰Åt6H‰ÇL‰L$èñÚþÿIƒmL‹L$H‰Ã…ÛüÿÿL‰ïè&×þÿL‹L$éÉüÿÿ@L‰L$èàþÿL‹L$H…À…bþÿÿHÇÃÿÿÿÿé«üÿÿ@‹0º,…1ÀH=°-èëÿÿI‹GHéÑúÿÿfH#E1íE1öÇ¥E)õH‰’E)ǐE)…éÿÿÿHÕ"¾5…ºúÇqE)úH‰^E)Ç\E)5…é‹ýÿÿE1äé<üÿÿE1ÿé ýÿÿDf.„UH‰ýSH‰óHƒìH‹H‹5ùC)H9÷tèßþÿ…Àu1Ò1öëDH‹µHH‹•P‹d‹}tÿ³Èÿ³Àÿ³¸ÿ³°ÿ³¨ÿ³ ÿ³˜ÿ³ÿ³ˆÿ³€ÿsxÿspÿshÿs`ÿsXÿsPÿsHÿs@ÿs8ÿs0ÿs(ÿs ÿsÿsÿsÿ3èù÷ÿÿHÄÐH…Àt
HƒÄ[]ÃfDºMH
°!¾LJH‰D$H=ƒ-H‰
<D)Ç>D)MÇ0D)LJèSHÿÿH‹D$ë¯ff.„ATI‰üUSHƒìH‹5v>)è‰ßþÿH…À„ H‹5Ù=)H‰ÇH‰ÃènßþÿH‰ÅH…À„Hƒ+„(H‹5é9)H‰ïèIßþÿH‰ÃH…À„Hƒm„’L‰æ¿1ÀH‹-áA)èìÜþÿI‰ÄH…À„h1ÒH‰ïH‰ÆèƒÚþÿIƒ,$H‰ÅtiH…í„H¿èVÛþÿI‰ÄH…À„òH‰X H‹=O?)H‰ÆH‰h(è“ÞþÿH…Àt>Iƒ,$„“HƒÄ[]A\Ãf.„H‰ïè(ÔþÿéaÿÿÿL‰çèÔþÿëfDIƒ,$¾{wH
; ºdH‰
ÓB)ÇÕB)dÇÇB){wtMH=&,èáFÿÿHƒÄ1À[]A\ÃfDH‰ßè¸ÓþÿéËþÿÿL‰çH‰D$è£ÓþÿH‹D$HƒÄ[]A\ÃDL‰çèˆÓþÿH‹
aB)‹gB)‹5]B)ë–H
¥¾YwºdÇAB)dH‰
.B)Ç,B)Ywébÿÿÿ€HmÇB)eH‰B)ÇþA)iwHƒ+uˆH‰ßèÓþÿH‹
áA)‹çA)‹5ÝA)éÿÿÿH%ÇËA)dH‰¸A)ǶA)[wë¶@HýÇ£A)dH‰A)ÇŽA)^wHƒm…ÿÿÿH‰ïè“ÒþÿH‹
lA)‹rA)‹5hA)éžþÿÿHƒ+H©H‰FA)ÇHA)dÇ:A)swuªH‰ßèHÒþÿë fDSH‰ûHƒìH‹Gö€³tKHƒH‰ßö€³tcèöÑþÿHƒ+tHƒÄ[Ãf.„H‰ßH‰D$èóÑþÿH‹D$HƒÄ[ÄH;ó&t	è²Ùþÿ…ÀtèÉÚþÿH…ÀtTHÇÀÿÿÿÿë«èsÿÿÿ뛐H‰ßèhÕþÿH‰ÃH…ÀtÒH‹@H;ó&„hÿÿÿH‰ßè§vÿÿH‰ÃH…Àt»H‹@éOÿÿÿfDH‹ùñ&H5?H‹8èÊÕþÿ딄SH‰ûHƒìH‹Gö€³tKHƒH‰ßö€³tcèÑþÿHƒ+tHƒÄ[Ãf.„H‰ßH‰D$èÑþÿH‹D$HƒÄ[ÄH;!ò&t	èÂØþÿ…ÀtèÙÙþÿH…ÀtTHÇÀÿÿÿÿë«èsÿÿÿ뛐H‰ßèxÔþÿH‰ÃH…ÀtÒH‹@H;ò&„hÿÿÿH‰ßè·uÿÿH‰ÃH…Àt»H‹@éOÿÿÿfDH‹	ñ&H5OH‹8èÚÔþÿ딄AVAUI‰ýATUSHƒìH‹52)èµÚþÿH…À„H‹5-?)1ÒH‰ÇH‰ÃèÖþÿH‰ÅH…À„tHƒ+„òH‹5s7)H‹=„9)èoÚþÿI‰ÄH…À„sL‰î¿1ÀL‹5=)èØþÿH‰ÃH…À„á1ÒH‰ÆL‰÷è´ÕþÿHƒ+I‰Å„‡M…턾L‰î¿1Àèß×þÿI‰ÆH…À„[1ÒH‰ÆL‰çèvÕþÿIƒ.H‰Ãt}Iƒm„…H…Û„@Iƒ,$tRH‰ÞH‰ïèWÕþÿH…À„®HƒmtgHƒ+t}HƒÄ[]A\A]A^Ã@H‰ßè(ÏþÿélÿÿÿH‰ßèÏþÿéÿÿÿL‰çèÏþÿë¤fDL‰÷èøÎþÿIƒm…{ÿÿÿL‰ïèåÎþÿénÿÿÿH‰ïH‰D$èÓÎþÿHƒ+H‹D$…ƒÿÿÿH‰ßH‰D$è·ÎþÿH‹D$HƒÄ[]A\A]A^ÃDHƒmH´H‰m=)Ço=)|Ça=)„‹Hƒ+t5H‹
F=)‹L=)‹5B=)H=Ë&è^AÿÿHƒÄ1À[]A\A]A^ÀH‰ßè0ÎþÿëÁfDH
A¾ëº|Çù<)|H‰
æ<)Çä<)ëë f.„HƒmHH‰½<)Ç¿<)|DZ<)þ„ÇIƒ,$…KÿÿÿL‰çè°Íþÿé>ÿÿÿHÁǃ<)|H‰p<)Çn<)ùéÿÿÿHƒm¾üH
º|H‰
C<)ÇE<)|Ç7<)ü…ïþÿÿH‰ïèAÍþÿéÏþÿÿ@IƒmuL‰ïè)ÍþÿHƒmH=H‰ö;)Çø;)|Çê;)
…9ÿÿÿH‰ïèôÌþÿé,ÿÿÿ€H‰ïèàÌþÿéhþÿÿf.„AWAVAUI‰ý¿ATUSHƒìè•ÓþÿH…À„¼H‰ÅI‹EL‰ïHƒI‹EH‹5»4)H‰E èúÖþÿH‰ÃH…À„L‹=gî&L9ø„-¿èDÓþÿI‰ÆH…À„HƒH‰ÆH‰ïH‰X èÅÔþÿI‰ÄH…À„)Iƒ.„Hƒm„'L‹5U/)H‹=&;)L‰öènÍþÿH‰ÅH…À„JHƒ¿èÔÒþÿI‰ÆH…À„ÐI‹E¿HƒI‹EI‰F H‹,)HƒI‰F(M‰~0Iƒè—ÒþÿI‰ÅH…À„H‰h L‰p(Iƒ$L‰`0Iƒ,$„ëH…Ût
Hƒ+„`HƒÄL‰è[]A\A]A^A_ÃfDH‹Áì&H‹8èÎþÿ…À„®èüÍþÿL‹=5í&IƒI‹]L‹5n.)H‹=?:)L9û…½L‰öè~ÌþÿI‰ÄH…À„ªHƒ¿èäÑþÿI‰ÆH…À„XI‹E¿HƒI‹EI‰F H‹$+)HƒI‰F(HƒEI‰n0è¦ÑþÿI‰ÅH…À„âL‰` I‰ìL‰p(Hƒm…ÿÿÿL‰çèœÊþÿéÿÿÿ€Iƒ.HÁH‰^9)Ç`9)
ÇR9)¹h„Hƒm„©L‰åfDH‹
)9)‹/9)‹5%9)H=Þ"I‰ìE1íè;=ÿÿéŒþÿÿfDH‰ßèÊþÿé“þÿÿL‰÷èÊþÿHƒm…ÙýÿÿH‰ïèõÉþÿéÌýÿÿH
%º¾IhE1íH=}"H‰
®8)ǰ8)Ç¢8)IhèÅ<ÿÿé0þÿÿH‰ïè¨ÉþÿéJÿÿÿHØ¾XhºÇt8)H‰a8)Ç_8)XhH
¬H="I‰ìE1íèn<ÿÿé¿ýÿÿf„L‰÷èHÉþÿéßþÿÿHu¾ohºÇ8)H‰þ7)Çü7)ohë›fIƒ.HAH‰Þ7)Çà7)ÇÒ7)th…”þÿÿL‰÷èÜÈþÿM…䄃þÿÿIƒ,$…xþÿÿL‰çèÀÈþÿékþÿÿècËþÿL‰÷èK:ÿÿH‰ÅH…À…¡üÿÿH
ÔL‰徬hº
H‰
d7)Çf7)
ÇX7)¬hé.þÿÿèËþÿL‰÷èû9ÿÿI‰ÄH…À…AýÿÿH„¾ÚhºÇ 7)H‰
7)Ç7)Úhé§þÿÿfDHƒmH
HH‰
å6)Çç6)
ÇÙ6)®htvL‰微hº
é ýÿÿDIƒ.H	H‰¦6)Ǩ6)Çš6)çh„ÈþÿÿéÔþÿÿ€HÕÇ{6)H‰h6)Çf6)Ühé¦þÿÿH‰ïL‰åènÇþÿéýÿÿI‰ìL‰ûéHûÿÿ@f.„AVAUATA‰ÔUH‰õSH‰ûèjÉþÿHƒH‰ïA‰ÅèÉþÿH…À„2H‰ï1ÒH‰ÆèÎþÿH‰ÅH…í„1IcüèáÇþÿI‰ÄH…À„UH‰ÆH‰ïè*ÑþÿI‰ÆH…À„æHƒm„CIƒ,$„(HƒL‰ö¿1ÀèõÎþÿH‰ÅH…À„i1ÒH‰ÆH‰ßèŒÌþÿHƒmI‰Ä„fIƒ.„LH‹HPÿM…ä„IH‰H…Ò„L‰çèÊÿÿIƒ,$„íH
о5ŒºêÇ&5)êH‰
5)Ç5)5ŒH=è-9ÿÿHƒ+„D‰ïèKÌþÿ[¸ÿÿÿÿ]A\A]A^ÃDHƒmH(H‰Å4)ÇÇ4)êǹ4)Œ„»I‹$HPÿI‰$H…ÒtBH‹
“4)‹™4)‹54)éyÿÿÿfL‰çè˜ÅþÿéËþÿÿH‰ïèˆÅþÿIƒ,$…µþÿÿëÛL‰çèpÅþÿë´fDL‰çè`ÅþÿéÿÿÿH‰ßèPÅþÿL‰çèèÈÿÿIƒ,$…èþÿÿëÓL‰÷è0Åþÿé§þÿÿH‰ïè ÅþÿIƒ.…’þÿÿëÜ@H‰ïèÅþÿé8ÿÿÿH‰ßèøÄþÿéàþÿÿ1ö1ÿèWÄþÿH‰ÅéÍýÿÿ€H

¾ŒºêÇ©3)êH‰
–3)Ç”3)Œé~þÿÿ€Hƒm¾ŒH
˺êH‰
c3)Çe3)êÇW3)Œ…@þÿÿH‰ïèaÄþÿH‹
:3)‹@3)‹563)é þÿÿf„Iƒ.uL‰÷è2ÄþÿH‹HPÿH`I‰ÜÇ3)êH‰ð2)Çî2)0Œé>þÿÿAW1ÒAVAUATI‰üUSH‰ó1öHƒìHH‹=y%)HÇD$HÇD$HÇD$ HÇD$(HÇD$0HÇD$8è&3ÿÿH‰ÅH‰D$H…À„…I‹t$hH‰ßHÇD$è/ÈþÿH‰ÃH‰D$H…À„žHT$(Ht$ HÇD$H|$è±ÈþÿH‹52$)H‰ïè²ÍþÿI‰ÅH‰D$0H…À„ÑI‹|$xèGÍþÿI‰ÅH…À„«¿èñÉþÿH‰D$8H…À„ÃL‰h 1ÒHƒH‹t$8H‹|$0H‰^(èÖÈþÿI‰ÅH‰D$H…À„H‹|$8Hƒ/„¶HÇD$8H‹|$0Hƒ/„®I‹|$xL‹t$HÇD$0HÇD$è}ÄþÿHƒø„IƒM‰ôH‹T$(H‹t$ H‹|$èˆÈþÿHƒm„ÐHƒ+t7M…ötIƒ.tHƒÄHL‰à[]A\A]A^A_Ãf.„L‰÷è(ÂþÿëÚfDH‰ßèÂþÿë¿fDHEÇë0)èH‰Ø0)ÇÖ0)³pI‰ìE1ö1ÛH‹|$0H…ÿt
Hƒ/„âH‹|$8H…ÿt
Hƒ/„ÞH‹
—0)‹0)H=z‹5Œ0)è¯4ÿÿH…ítHƒmA¼uH‰ïè…ÁþÿH…Û…ÿÿÿé ÿÿÿ€L‰÷èXÉþÿ…À„À1öL‰÷èvÁþÿI‰ÄHÇD$M…ä…ÅþÿÿHu
Ç0)òH‰0)Ç0).qé`f„èÁþÿé@þÿÿfDèûÀþÿéHþÿÿfDèëÀþÿéÿÿÿfDèÛÀþÿéÿÿÿfDH
Ç«/)ëH‰˜/)Ç–/)¿pé»þÿÿf„1ÿè¹ÉþÿI‰ÅH…À„=H‰ÆL‰÷èâÁþÿIƒmI‰Ä…!ÿÿÿL‰ïèlÀþÿéÿÿÿ€L%•Ç;/)íL‰%(/)Ç&/)ÛpH‹|$H…ÿt
Hƒ/„HÇD$H‹|$0H…ÿt
Hƒ/„HÇD$0M…ítIƒm„H‹|$8H…ÿt
Hƒ/„àHD$0Ll$8HÇD$8L|$H‰ÆL‰êH‰D$L‰ÿèÅþÿH‹5V')H‰ïèÊþÿI‰ÆH…À„*H‹|$H‰Æè
ÃþÿIƒ.‰D$„ÿH‹T$8H‹t$0E1öH‹|$èHÃþÿ‹D$HÇD$HÇD$0HÇD$8…À„ˆ‹'.)‹5.)H=þH‹
.)è22ÿÿH‹t$L‰úL‰ïè2+ÿÿ…ÀˆjH‹5‹)H‹=4,)1ÒèåÄþÿI‰ÆH…À„§H‰ÇèÂÿÿIƒ.„WL‰%°-)E1öǯ-)ïÇ¡-)pqH‹|$H‹T$(H‹t$ èÅÄþÿH‹|$H…ÿ„uHƒ/I‰ì…¤üÿÿ腾þÿéšüÿÿL‰÷èx¾þÿéôþÿÿL%¥
ÇK-)íL‰%8-)Ç6-)Ýpéþÿÿf„L%u
Ç-)íL‰%-)Ç-)þpéÛýÿÿf„è¾þÿéÜýÿÿfDèû½þÿéþÿÿfDèë½þÿéÙýÿÿfDL‰ïèؽþÿéßýÿÿL%
Ç«,)íL‰%˜,)Ç–,)	qéýÿÿf„L‰%y,)Ç{,)îÇm,)`qéÇþÿÿL‰÷èx½þÿéœþÿÿL‰%I,)ÇK,)îÇ=,)Xqé—þÿÿHÇD$éüÿÿL‰%,)Ç,)ïÇ,)lqéiþÿÿI‰ìé4ûÿÿf.„HƒìH‹‡HH…ÀtH‰÷ÿÐH…ÀtFHƒÄÐèëøÿÿH…ÀuðH	¾Cº×Ç·+)×H‰¤+)Ç¢+)Cë4„Hå¾©ƒºÕǁ+)ÕH‰n+)Çl+)©ƒH
¹H=~è/ÿÿ1Àétÿÿÿf.„H‹Gö€³té.¼þÿfDSH‰ûHƒìH;qÝ&t	èÄþÿ…Àtè)ÅþÿH…ÀthHÇÀÿÿÿÿHƒÄ[ÃH‰ßèϿþÿH‰ÃH…ÀtÙH‹pÝ&H9Cu,f.„H‰ßèˆÿÿÿHƒ+uÅH‰ßH‰D$èջþÿH‹D$ë±H‰ßèæ`ÿÿH‰ÃH…ÀuÎë˜H‹EÜ&H5‹	H‹8èÀþÿë€@SH‰ûHƒìH‹Gö€³tCèf»þÿHcÈH9ÁuHƒÄ[ÄHƒøÿtEH‹ûÜ&H5œH‹8èĿþÿ¸ÿÿÿÿëÏDH;yÜ&t	èÃþÿ…Àtè1ÄþÿH…Àtm¸ÿÿÿÿë§è ÄþÿH…Àt±ëíH‰ßèѾþÿH‰ÃH…ÀtÓH‹rÜ&H9Cu+@H‰ßèPÿÿÿHƒ+…hÿÿÿH‰߉D$èںþÿ‹D$éSÿÿÿH‰ßèé_ÿÿH‰ÃH…ÀuÉë“H‹HÛ&H5ŽH‹8è¿þÿéxÿÿÿ@SH‰ûHƒìH‹Gö€³tSH‹5|Ü&1Òè
Ãþÿ…Àx/ƒøtHƒÄH‰ß[鷼þÿ€H‹ñÛ&H5ºH‹8躾þÿHÇÀÿÿÿÿHƒÄ[ÃDH;iÛ&t	è
Âþÿ…Àt&è!ÃþÿH…ÀuÒH‹¥Ú&H5ëH‹8èv¾þÿHƒÈÿë½H‰ß踽þÿH‰ÃH…ÀtÊH‹YÛ&H9Cu(H‰ßè8ÿÿÿHƒ+uH‰ßH‰D$èŹþÿH‹D$éxÿÿÿH‰ßèÓ^ÿÿH‰ÃH…ÀuËé\ÿÿÿfDAVAUATUSH‹Û&H9Þ„H‰õI‰ü1öH‰ï蘹þÿI‰ÅH…À„lI‹|$Hƒ/„}M‰l$H‹EHƒøÿ„‚HƒøŽøL‹-a!)L‰ïèA¾þÿ…À„™L‰îL‰çèŽÃþÿH…À„ÕHƒ(„‹H‹5,!)L‰çèlÃþÿI‰ÄH…À„ÀH‹5É)H‰ÇèQÃþÿI‰ÅH…À„¥Iƒ,$„úH‰ï¾èݸþÿH‰ÅH…À„¹H‰ƿ1ÀèâÀþÿI‰ÄH…À„þ1ÒH‰ÆL‰ïèy¾þÿIƒ,$I‰Æ„ëHƒm„ÐI‹EHPÿM…ö„ÖI‰UH…Ò„¢Iƒ.„ˆHƒH‰Ø[]A\A]A^ÄIƒ,$¾D’H
[ºH‰
ó&)Çõ&)Çç&)D’„ÙH=Úèý*ÿÿ[1À]A\A]A^Ãfè۷þÿéyþÿÿfDL‰çèȷþÿéùþÿÿL‰÷踷þÿékÿÿÿL‰ï訷þÿéQÿÿÿH‰ï蘷þÿé#ÿÿÿL‰ç舷þÿéÿÿÿH‰Çèx·þÿéhþÿÿH‹ù×&H5òH‹8èʻþÿ¾’ºH
…H‰
"&)Ç$&)Ç&)’é0ÿÿÿf„L‰çè·þÿH‹
ñ%)‹÷%)‹5í%)éÿÿÿH
5¾’ºÇÑ%)H‰
¾%)Ǽ%)’éÖþÿÿ€H
ý¾0’º
Ç™%)
H‰
†%)Ç„%)0’éžþÿÿ€H‹×&H5:H‹8èêºþÿ¾7’º
H
¥H‰
B%)ÇD%)
Ç6%)7’éPþÿÿf„èë¸þÿéîýÿÿfDH
e¾B’ºÇ%)H‰
î$)Çì$)B’éþÿÿ€H-ÇÓ$)H‰À$)I‹EǺ$)K’HPÿI‰UH…ÒtH‹
ž$)‹¤$)‹5š$)é´ýÿÿDL‰ï蠵þÿëÙfDHƒmt,I‹EHPÿH¾Çd$)H‰Q$)ÇO$)Z’ë—H‰ïè]µþÿëʐf.„SH‹8×&H‹FH9Þt	H;PÖ&uvè‘ûÿÿH…Àt$Hƒ(tH‰ØHƒ[ÃDH‰ÇèµþÿëèfDH=¾)iÇÞ#)H‰Ë#)ÇÉ#))iH
ºH=æèÙ'ÿÿ1À[ÃDH‹H H‹EÕ&H5XH´H‹81Àè]½þÿHÒ¾(iÇs#)H‰`#)Ç^#)(ië“@AUATUSHƒì(H‹-OÖ&H‹^H‰l$H…Ò…ýH…Û„ìHƒû…úH‹^ L‹%7)L‰çè7¹þÿ…À„L‰æH‰ß脾þÿH…À„{Hƒ(„¡H‹5
)H‰ßèb¾þÿI‰ÄH…À„–H5¯H‰Çèg·þÿIƒ,$A‰Å„YH‹-¢!)E…í„5H‰޿1Àèê»þÿI‰ÄH…Àt*1ÒH‰ÆH‰ï腹þÿIƒ,$H‰Ã„WH…Û…ÚfDH
‘ÿ¾eYºÿÇI")ÿH‰
6")Ç4")eYé•€H…ÛHH
HIÈH‰ØH-þHÁø?L
hH…ÛLIÊL@HƒìH‹Ó&SHH5IH‹81À觻þÿHÿ¾<Yǽ!)åǯ!)<YH‰ !)XZH
×þºåH=#
1Ûè´%ÿÿHƒÄ(H‰Ø[]A\A]ÃfDè;µþÿH‹-d )H‹{H9ýtH‰îèӻþÿ…ÀtHƒHƒÄ(H‰Ø[]A\A]ÃDH‰ëéþÿÿL‹%)H‹=R!)L‰æ蚳þÿH‰ÅH…À„®HƒH‰޿1Àè[ºþÿH‰ÃH…À„O1ÒH‰ÞH‰ïèò·þÿHƒ+I‰Ä„EM…ä„,Hƒm„!L‰æ¿1ÀH‹°)èºþÿH‰ÅH…À„¯1ÒH‰ßH‰Æ袷þÿHƒmH‰Ã„I‹$HƒèH…Û„‹I‰$H…À…âþÿÿL‰çè~±þÿéÕþÿÿf„L‰çèh±þÿéšýÿÿH‰ÇèX±þÿéRýÿÿI‰ÔH…Û„´Hƒû…úýÿÿH‹F H‰×H‰D$虳þÿH…À
H‹\$éàüÿÿfDH‹™Ñ&H5º
H‹8èjµþÿHýÇÕ)5H‰Â)ÇÀ)ÑHT$Ht$H|$è¶þÿH‹D$H…ÀtHƒH‹D$H…ÀtHƒH‹T$H…Òt	HƒH‹T$H‹t$H‹|$èf´þÿ¿謸þÿH=½
èð±þÿH‹T$H‹t$H‹|$I‰Äè9´þÿM…ä„0L‰çè(¶þÿIƒ,$t!H‹-)é±ýÿÿDL‰çè(°þÿéœüÿÿL‰çè°þÿëÕHT$H‰ÙL‰çLþH5-¹(è˜Uÿÿ…À‰ÐþÿÿH	ü¾.YÇÆ)åH‰³)DZ).Yéýÿÿ@H‰ï踯þÿéÒýÿÿH‰ß訯þÿé®ýÿÿH‰ï蘯þÿéïýÿÿH‰×èø±þÿI‰ÅH…ÀŽ\þÿÿH‹5õ)L‰çè-¯þÿH…À„NÿÿÿH‰D$IEÿé-þÿÿfDHiûÇ+)8H‰)Ç)øéQþÿÿf„H‰ïèø´þÿéÒþÿÿI‹$HƒèH
!ûI‰$H‰
Ö)ÇØ)ÇÊ)«YH…À„þ«Yºéüÿÿf.„HƒmHÔúH‰)Ǐ)ǁ)¨Yta¾¨YºH
¦úéÏûÿÿè+±þÿL‰çè ÿÿH‰ÅH…À…=üÿÿH
€ú¾šYºÇ8)H‰
%)Ç#)šYé„ûÿÿH‰ïè.®þÿH‹
)‹
)‹5)édûÿÿL‰çè®þÿH‹
ç)‹í)‹5ã)éDûÿÿfDAWAVAUATUH‰ýSH‰óHƒì(H‹FH;aÏ&L‹wPt
H;ÜÎ&…ÎHƒE1äHÇD$HÇD$E1íHƒ|$…¶H‹Ï&H9C…H‰ß荷þÿL9àŽÓL‰æH‰ßIƒÄèŵþÿI‰ÇH…À„)M…ítIƒm„éH‹²Î&L‰ÿI9G…ñèà°þÿH‰ÁHƒùÿ„#‹Et…Àu|H‹uhH…ö„H‹E`Hƒþÿ„QH™HÇÇÿÿÿÿH÷þH…ÉyH‹•€L‹L$JʈJH9ÁH¯ÎIÎH…ÿxI>I‰þHƒD$M‰ýM…ö…ÿÿÿH-âøéĐL‹D$H‹•ˆHÇÇÿÿÿÿH‹…€J‹4ÂH‹•J‹ÀH…Ò„yÿÿÿJ‹<ÂépÿÿÿDL‰ïèX¬þÿH‹ÁÍ&L‰ÿI9G„ÿÿÿèO²þÿI‰ÅH…Àt7H‰Çè߯þÿIƒmH‰Á…ôþÿÿL‰ïH‰D$è¬þÿH‹L$Hƒùÿ…âþÿÿDèû´þÿH…À…HÇÁÿÿÿÿéÃþÿÿfDH‰ßH‹D$ÿÐI‰ÇH…À…qþÿÿèŴþÿH…ÀtH‹
‰Í&H‰ÇH‹1è.¯þÿ…À„PèQ®þÿHƒ+M‰ï…µH‰ß茫þÿ騀L9c~ÙL‰æH‰ßIƒÄè˳þÿI‰ÇH…À…þÿÿH”÷M‰ïÇ7)H‰$)Ç")/lë-„He÷M‰ïÇ)H‰õ)Çó)'lHƒ+„IH‹
Ú)‹à)‹5Ö)H=‡E1öèïÿÿM…ÿt
Iƒ/„@HƒÄ(L‰ð[]A\A]A^A_ÃfDH‹|$èγþÿI‰ÅH…À„íH‹=c)H‰ÆèӴþÿI‰ÄH…À„aIƒm„LL‰æ¿1ÀL‹-[)覲þÿH‰ÅH…À„Ù1ÒL‰ïH‰Æè=°þÿHƒmI‰Å„?M…턵Iƒ,$„L‰ïèíÿÿIƒm„øH-Mö¾d‚º£Çé)£H‰-Ö)H‰éÇÑ)d‚H=èíÿÿHƒ+H‰-²)Ç´)ŽÇ¦)Ll…·þÿÿH‰ß谩þÿH‹
‰)‹)‹5…)éªþÿÿ„L‰ÿ舩þÿé³þÿÿH‹aÊ&H5BH-§õH‹8èӭþÿH‰-<)¾»H‰éÇ6)•º•Ç#)»éMÿÿÿfDL‰ïè(©þÿé§þÿÿL‰ïè©þÿéûþÿÿL‰çè©þÿéØþÿÿH‰ïèø¨þÿé´þÿÿH‰÷訰þÿH‰ÃH…À„™H‹@IÇÄÿÿÿÿH‹€èH‰D$H…À…ûÿÿHñôE1ÿÇ”)H‰)Ç)lé‡ýÿÿfL‰Ï許þÿI‰ÅH…À„ŸH‹==)H‰Æ譲þÿI‰ÄH…À„¸Iƒm„L‰æ¿1ÀL‹-5)耰þÿH‰ÅH…À„¯1ÒL‰ïH‰Æè®þÿHƒmI‰Å„#I‹$HPÿM…í„‹I‰$H…Ò„øL‰ï蓫ÿÿIƒm„ÿH-ô¾5‚º Ç¹) H‰-¦)H‰éÇ¡)5‚éËýÿÿ@H‰ÂHÂ…£úÿÿH…À‰šúÿÿH‹,É&H5…H-ÂóH‹8èî«þÿH‰-W)¾¿H‰éÇQ)•º•Ç>)¿éhýÿÿL‰ïèH§þÿéíþÿÿH
x󺍾lE1öH=ÈH‰
)Ç)Çõ)lèÿÿé3üÿÿL‰çèû¦þÿéûþÿÿH‰ïèî¦þÿéÐþÿÿL‰ïèá¦þÿéôþÿÿHóÇ·)ŽH‰¤)Ç¢)KléªûÿÿH-êò¾Z‚º£Ç†)£H‰-s)H‰éÇn)Z‚é˜üÿÿH-¶òI‹$ÇX)£H‰-E)ÇC)_‚HPÿI‰$H…ÒtH‹
')‹-)‹5#)éMüÿÿfDL‰çè(¦þÿëØH-[òÇ)£H‰-î)Çì)\‚Iƒmu¯L‰ïèõ¥þÿH‹
Î)‹Ô)‹5Ê)éôûÿÿH-ò¾+‚º Ç®) H‰-›)H‰éÇ–)+‚éÀûÿÿH-ÞñÇ„) H‰-q)Ço)-‚ëI‹$HPÿH-²ñÇX) H‰-E)ÇC)0‚éÿþÿÿH‹ñM‰ïÇ.)H‰)Ç)9lé!úÿÿff.„UH‰ýSH‰óHƒìH‹H‹5É)H9÷t	è_®þÿ…ÀtCH;-äÆ&…®Hƒ}HptHƒÄH‰Ø[]ÃfDH‰ïèȤþÿHƒÄH‰Ø[]ÃfDL‹€L‹…ˆ1ÒHÇÇÿÿÿÿH‹H‰+H‹EPH‰C‹ut…ö~¨„I‹ÑH‰DÓI‹ÐH‰DÓPH‰øH…ÉtH‹ÑH‰„ӐHƒÂ9ÖÒHƒÄH‰Ø[]ÄH‹ù)H…Û„€H‹}H9û„5ÿÿÿH‰Þè{­þÿ…À…%ÿÿÿH‹EH‹K H5DÿH‹P H‹‰Ä&H‹81À诬þÿH
$𺠾m†1ÛH=5ÿH‰
®)ǰ) Ç¢)m†èÅÿÿéÐþÿÿH‹)Æ&H5ÁñH‹8è
¨þÿë©„SH‰ûHì°Ht$è[þÿÿH…À„BóoóoHóoP óoX0óo`@)„$à‹KtóohPóop`)Œ$ðóoxpóo€€)”$óoˆóo )œ$)¤$ óo˜°óo ÀH‹)¬$0)´$@)¼$PH‹Ph)„$`)Œ$p)”$€)œ$)¤$ …É~KHƒ¼$pyZH9”$0uPH„$àƒéHÈë€Hƒ¸˜y.HƒÀH9PPu$H¯PH9ÈuâH‹Å&HƒHİ[ÃfDH‹9Ä&HƒHİ[Ã@ºtH
`î¾QxH‰D$H=›ýH‰
ì)Çî)tÇà)QxèÿÿH‹D$Hİ[ÃDéKþÿÿf.„SH‰ûHì°Ht$è›üÿÿH…À„RóoóoHóoP óoX0óo`@óohP)„$àóop`óoxp)Œ$ðóo€€óoˆ)”$Hcstóo )œ$)¤$ óo˜°óo ÀH‹)¬$0Nÿ)´$@)¼$PH‹Ph)„$`)Œ$p)”$€)œ$)¤$ …ö~WHcÁHƒ¼ÄpycH9”Ä0uYH„ôà‰ÉHÁáH‰ÇH)ÏH‰ùë„Hƒ¸€y.HƒèH9PHu$H¯PH9ÈuâH‹;Ã&HƒHİ[ÃfDH‹iÂ&HƒHİ[Ã@ºnH
ì¾xH‰D$H=óûH‰
)Ç)nÇ)xè3ÿÿH‹D$Hİ[ÃDé;þÿÿf.„AWAVI‰öAUATI‰ÔUH‰ýL‰÷SHì(HÇD$ Ht$PHÇD$(HÇD$0èžúÿÿH…À„}H‹}hI‰ÅL¼$ 1ÛHÿ‡g‹d…É…©H‹EL‰âL‰þH‰ïÿP0H…À„pHƒ(„H‹…H…À„‰HcUtHÐH9Ðré¤@HƒÀH9†“Hƒ8xíH‹5~ý(H‹=W)1Òè¥þÿH‰ÅH…À„TH‰Ç褢ÿÿHƒm„±H-.ë¾|ÇÏ
)¿H‰-¼
)Ǻ
)|H
뺿H=—úèÊÿÿH‰-“
)Ç•
)ÛLJ
)üoHT$HHt$@HÇD$ H|$8Hl$0HÇD$(HÇD$0Ld$(Ll$ ècþÿ1Ò1ö1ÿèv¤þÿH‹D$8H‰êL‰æL‰ïL‹t$@L‹|$HH‰D$èT
ÿÿ…Àˆ\H‰ßD‹-
)D‹%
)H‹-ô)è_¢þÿH‹|$L‰úL‰öè¤þÿH‹T$0H‹t$(H‹|$ èˡþÿD‰-Ð)HÇD$ HÇD$(HÇD$0D‰%ª)H‰-›)H‰éD‰êH=¶ùD‰æè¶ÿÿ1ÀëWfL‹%‰¿&Iƒ<$„&L‹EhE‹vtMUPIE‹•d…Ò…°I‹}M‰ùD‰ñL‰ÒH‰Æè»ÿÿH‰ß裡þÿIƒ$L‰àHÄ([]A\A]A^A_Ãf„èkþÿH‰ÃI‰ÇH…À……ýÿÿH-QéA¼oA½Í蔢þÿH‰-Ý)Çß)ÍÇÑ)oé)ÿÿÿ@M‰'H‹…H…À…wýÿÿL‹%¶¾&é3ÿÿÿ1ÒD‰öL‰ïL‰D$H‰D$L‰T$è”ÿÿL‹T$M‰ùD‰ñH‹D$I‹}L‹D$L‰ÒH‰ÆèàÿÿºD‰öL‰ïè`ÿÿéÿÿÿL‰çè`œþÿéÍþÿÿH‰ÇèPœþÿéåüÿÿH‰ïè@œþÿéBýÿÿH-mèA¼foÇ
)ÈA½ÈH‰-ô
)Çò
)foéJþÿÿDH5èÇÛ
)ÖH‰È
)ÇÆ
)åoé:ýÿÿf„H‰êL‰æL‰ïè¡þÿé‘ýÿÿDH-íç¾|ÇŽ
)¿H‰-{
)Çy
)|éºüÿÿff.„AVAUATI‰ôUSH‰û蝝þÿHƒ‰ÅM…äurH‰ßèúžÿÿ¾ŸŒºñH
…çH‰
"
)Ç$
)ñÇ
)ŸŒH=Zéè2ÿÿHƒ+t‰ïèU¡þÿ[¸ÿÿÿÿ]A\A]A^ÀH‰ßèøšþÿëÚfDL‰æ‹HƒÆ‚ÿþþþ÷Ò!Ð%€€€€té‰ÂÁê©€€DÂHVHDò‰Ç@ÇHƒÞL)æ„gL‰ç1Ò襡þÿI‰ÄM…ä„bHƒL‰æ¿1ÀèƢþÿI‰ÅH…À„1ÒH‰ÆH‰ßè] þÿIƒmI‰Æ„×Iƒ,$„üH‹HBÿM…öt]H‰H…À„ÔL‰÷èԝÿÿIƒ.„²H
_澋ŒºïÇû)ïH‰
è)Çæ)‹ŒéËþÿÿIƒ,$„èH‹HBÿ¾†ŒH
æÇ½)ïH‰
ª)ºïÇ£)†ŒH‰H…À…þÿÿH‰ß觙þÿH‹
€)‹†)‹5|)éaþÿÿ€L‰ï耙þÿéÿÿÿL‰÷èp™þÿéAÿÿÿH‰ßè`™þÿéÿÿÿL‰çèP™þÿé÷þÿÿ1ö1ÿ诘þÿI‰Äé•þÿÿH
lå¾vŒºïÇ)ïH‰
õ)Çó)vŒéØýÿÿL‰çèþ˜þÿéÿÿÿf„AVAUATUSH‹Hc@tA‰ÆAÁîAÆAÑþƒøŽÓH_H,ÇE1äL-ùôë&€Hƒ½ˆy=AƒÄHƒÃHƒíE9掙H‹UHH‹C@H‰S@H‹UH‰EHH‹H‰H‰EHƒ»€x¹H‹=š)L‰îèÚüÿÿƒøÿu¯HŠäÇ0)½H‰)Ç).ƒè^šþÿH‹
)‹
)H=’ô‹5ü)‰Ãèÿÿ‰ßèFžþÿ[1À]A\A]A^Ã[¸]A\A]A^Ãf.„USHÇÃÿÿÿÿHìèH‹GPD‹GtHt$L‹—€L‹ŸˆH‰|$H‰D$H‹H‰ò1ÀE…À~:f.„M‹ÂL‰JM‹ÃL‰JPI‰ÙH…ÉtL‹ÁHƒÀL‰ŠHƒÂA9ÀÐèÁÿÿH‰ÃH…ÀtcH;<¹&…ÖH»pèJþÿÿ…À„rH‹H‰ØH‰H…ÒtHÄè[]Ãf.„H‰ßH‰D$è—þÿH‹D$HÄè[]Ã@H%ãº<¾L‡ÇÁ)<H‰ÙH=kóH‰¤)Ç¢)L‡èÅ	ÿÿH‰Ž)¾tH‰ÙLj)*º*Çu)tH=Fóè‘	ÿÿHÄè1À[]ÃDH‹-))H…í„æH‹xH9ý„
ÿÿÿH‰î諟þÿ…À…ýþÿÿH‹CH‹M H5tñH‹P H‹¹¶&H‹81ÀèߞþÿHƒ+¾
tH
Kâº*H‰
ã)Çå)*Ç×)
t…\ÿÿÿH‰ßèá•þÿH‹
º)‹À)‹5¶)é<ÿÿÿf„H
õáº+¾tÇ‘)+H=^òH‰
w)Çu)tè˜ÿÿH‹HPÿ1ÀéNþÿÿH‹ó·&H5‹ãH‹8èԙþÿé@ÿÿÿDf.„AWLcÏAVAUATUSHcÞD‰ÎHìèH‹„$ H¼$ ‰T$H‹@hH‰D$èÄñþÿˆD$A9ÙŒ—¡D‰˅ÛŽqL¬$ ÇD$E1ÿL´$ðM‰èL‰l$ A‰ÝL‰ÃDL‹cK‹lþD‰úI9ì„ÃIƒü„©D‰|$èϖþÿHc|$A‰Åèr•þÿI‰ÆH…À„ÖH‰ï螝þÿI‰ÇH…À„ÂL‰ç芝þÿH‰ÅH…À„î¿è4›þÿH‰ÃH…À„hH‰h0H‹=]û(H‰ÆL‰p L‰x(èmžþÿH‰ÅH…À„Hƒ+„wH‰î¿1ÀL‹%>)èAœþÿH‰ÃH…À„E1ÒL‰çH‰ÆèؙþÿHƒ+I‰Ä„KH‹EHPÿM…ä„"H‰UH…Ò„ML‰çèU—ÿÿIƒ,$„*L%ß߾勺åÇ{)åL‰%h)L‰áÇc)å‹H=¼áèÿÿD‰ï觙þÿL‰%@)ÇB)Ç4)‘èw•þÿH‹
 )‹&)H=Cð‹5)‰Ãè6ÿÿ‰ßè_™þÿÇD$ÿÿÿÿ‹D$HÄè[]A\A]A^A_ÐHÇCPÇD$Hƒ»‰’IƒÇHƒÃE9ý	þÿÿH‹„$0D‰ëH‹¼$(L‹l$ H‹´$pH…À„'SÿMDÕH‰úë HÇM9Åt*I‹uXIƒÅI‹EH…À„HƒèH¯ÆH…öÖHÂM9ÅuÖH‹D$L‹„$øLéãH‹=ÿ(H5§àèíÊÿÿƒøÿ…RÿÿÿHiÞÇ)H‰ü)Çú)¯éÁþÿÿDHƒ+L%9ÞL‰%Ö)ÇØ)åÇÊ)݋t¾݋ºåL‰áéSþÿÿfDH‰ßèþÿH‹
™)‹Ÿ)‹5•)é-þÿÿ„H‰ß蘑þÿé|ýÿÿH‰ß舑þÿé¨ýÿÿL‰çèx‘þÿéÉýÿÿH‰ïèh‘þÿé¦ýÿÿE‰ȉÞA)؃L´$ðH<݉öAQÿI>HÁæHcÒI|>øITÖH)÷H‹HƒèHƒêH‰JH‹HHH‰JHH‹ˆˆH‰ŠˆH9øuÖA@ÿL‰ñHÇÂÿÿÿÿH´ÄøHÇAH‹„$@HƒÁH‰‘ˆH‰AHH9ñuÜé¶ûÿÿ€L%åܾċdžÿ(æL‰%sÿ(Çqÿ(ċºæH
¹Üéýüÿÿ„‰ßD‰ÉD)σéx]J4ÍH„$ ‰ɍSÿHðHÁáH´4HcÒH)ÎH”Ô0H‹HƒèHƒêH‰JH‹HHH‰JHH‹ˆˆH‰ŠˆH9ðu֍OÿH”$(HÇÆÿÿÿÿH„$ H<Êë
fDHƒÂHÇ@H‹Œ$pH‰°H‰HPH‰ÐH9úuÙé¶úÿÿ@Iƒ.¾ƋL%ÜÛL‰%yþ(Ç{þ(æÇmþ(Ƌ…öþÿÿL‰÷èwþÿé²ýÿÿfL%¥ÛÇKþ(æL‰%8þ(Ç6þ(ȋIƒ.tXIƒ/tBH…í„yýÿÿH‹EHPÿH‰UH…Ò…dýÿÿH‰ïèþÿH‹
õý(‹ûý(‹5ñý(é‰ûÿÿ@L‰ÿèøŽþÿë´fDL‰÷èèŽþÿëžfDL%ÛÇ»ý(æL‰%¨ý(Ǧý(ʋékÿÿÿf„H‹EHPÿL%ÝÚǃý(åL‰%pý(Çný(à‹éPÿÿÿH‰úfDL‹„$øI‰ÑH‹„$H‹¼$@H…À„øL‰ñM‰Â1öë)f.„ƒÆIÀ9ó~,H‹yXHƒÁH‹AH…À„±HƒèH¯ÇH…ÿԃÆIÂ9óÔH‹D$LÀM‰ÐI‰ÂL9Òs	M9È‚E1ÿ‹l$…í…óDo¤$ DsÿóDoœ$0óDo”$@óDoŒ$PóDo„$`óo¼$pD)¤$óo´$€óo¬$D)œ$ óo¤$ óo„$°D)”$0H‹„$ )¼$`óoœ$Àóo”$ÐóoŒ$àD)Œ$@D)„$PH‹Ph)´$p)¬$€)¤$)„$ )œ$°)”$À)Œ$Ð…ÛŽ^
McÎJƒ¼̠‰>J;”Ì`…0HcÃH´$E‰óH‰×LÅIÁãJI‰ÈM)Øë#€Hƒ¹€‰òHƒéH9yH…äH¯yI9ÈuÚóoŒ$ðóo”$óoœ$óo¤$ )Œ$óo¬$0óo„$@)”$ óo´$Póo¼$`)œ$0óoŒ$póo”$€)¤$@H‹Œ$ðóoœ$)¬$Póo¤$ óo¬$°)„$`H‹Ih)´$p)¼$€)Œ$)”$ )œ$°)¤$À)¬$ÐJƒ¼̠‰ªJ;ŒÌ`…œLÖH‰÷L)ßëf„Hƒ¾€y~HƒîH9NHutH¯NH9÷uâD‹\$E…Û…÷	L„$0IÀL9À†¨
€I¯IƒÀI9ÀróH‹´$(H‹¼$ø膏þÿD‹T$E…Ò…
L‰ÿè0Šþÿé´÷ÿÿ€|$F„]D‹L$E…É…?HŒ$@H´$pÿt$SH‹”$H‹¼$8LŒ$L„$@è…ôþÿY^L‰ÿèˉþÿÇD$éG÷ÿÿóoŒ$ €|$Fóo”$0óoœ$@H‹„$ )Œ$óo¤$Póo¬$`)”$ óo´$p)œ$0I‰ÅH‹Phóo¼$€)¤$@óo„$óoŒ$ )¬$Póo”$°óoœ$Àóo¤$Ð)´$`óo¬$à)¼$p)„$€)Œ$)”$ )œ$°)¤$À)¬$Є„CÿHÇÇÿÿÿÿ…Û~`H˜Hƒ¼Ġ‰@H;”Ä`…2LýH„Ä H‰Ö1ÉëHƒ¼ø€‰	LÀH9p@…üƒÁH¯09ËuÙHcÃL„$0H‰T$8HÁàI4H‰D$0L9ƆFH‰ÑL‰ÀDH¯HƒÀH9ÆwóI‰ÌL‰çL‰D$(H‰T$ èFþÿH‹T$ L‹D$(H…ÀI‰Ç„ÅL‰|$HL‰l$@…ÛŽýLT$@CÿHÇÇÿÿÿÿMJI‰ÆHŒ$ M‰ÓI4ÁL‰ÐfDH‹iH‰¸HƒÀHƒÁH‰hH9Æuä€|$F„H‹t$0I2ID2D‰öHÁæH)ñH‰P@H¯HƒèH9ÈuïL‰Ð1Òf.„HƒxuHÇ@PƒÂHƒÀ9ÓæóoŒ$ €|$Fóo”$0I‹Uhóoœ$@)Œ$óo¤$Póo¬$`)”$ óo„$p)œ$0óo´$€óo¼$)¤$@óoŒ$ óo”$°)¬$Póoœ$Àóo¤$Ðóo¬$à)„$`)´$p)¼$€)Œ$)”$ )œ$°)¤$À)¬$ЄIcƅÛ~bHÇÆÿÿÿÿHƒ¼Ġ‰ÝH;”Ä`…ÏH<õH„Ä 1ÉëHƒ¼ð€‰©HøH9P@…œƒÁH¯9ËÙH‹´$(L‰âL‰ÿè‹þÿfot$@fo|$PfoŒ$foD$`´$ fot$pfo”$ ¼$0fo¼$€foœ$°„$@fo¤$Àfo¬$д$Pfo„$àfo´$ð¼$`fo¼$Œ$p”$€œ$¤$ ¬$°„$À´$м$àé­÷ÿÿ„IƒÁI‰SPI¯SM‰ËI9ñuëéwýÿÿfDM‰Ðél÷ÿÿ„H¬$ð‰ÞH‰ïèþáþÿ<F…‰úÿÿH¼$ èIìÿÿ…À„ÝH‰ïè9ìÿÿ…À…dúÿÿHVÑÇüó(2H‰éó(Ççó(©Žé®ñÿÿf.„H´$pÿt$8IJPSMJL%ÑH‹T$XH‹¼$8èÒîþÿXZM…ÿ…IþÿÿL‰%ó(Ç’ó(Ç„ó(èéKñÿÿ€fH~ÀD)¤$D)œ$ D)”$0D)Œ$@D)„$P)¼$`)´$p)¬$€)¤$)„$ )œ$°)”$À)Œ$ÐH…À‰MùÿÿH;”$`…?ùÿÿD‰ñH´$LÍH‰ðH‰ÑJ<ë$„Hƒ¸˜‰
ùÿÿHƒÀH9HP…üøÿÿH¯HH9ÇuÚóo„$ðóo´$ óo¼$0óoŒ$@)„$óo„$óo”$P)´$@óoœ$`óo¤$p)„$ óo„$óo¬$€)¼$PH‹„$ðóo´$ )„$0H‹Œ$€óo„$óo¼$°)Œ$`H‹@h)”$p)œ$€)¤$)¬$ )„$°)´$À)¼$ÐH…ɉø÷ÿÿH;„$`…ê÷ÿÿJë @Hƒ¾˜‰Ò÷ÿÿHƒÆH9FP…Ä÷ÿÿH¯FH9ÎuÚHcÃéH÷ÿÿf.„H¬$ð1҉ÞH‰ïèLôþÿHŒ$@H´$pÿt$SH‹”$H‹¼$8LŒ$L„$@è2ìþÿH‰ïº‰Þèôþÿ_AXé˜÷ÿÿL´$ð‰ÞH‰T$ L‰÷è¡ÞþÿH‹T$ ˆD$éêøÿÿ1?ézøÿÿ1>éïúÿÿH‹=Ôî(1öè=æÿÿƒøÿ„ùH‹„$ H‹T$ L‹D$(I‰Åé
ùÿÿL´$ðé—ðÿÿI‰ÔéÍøÿÿH‹”$(H‹D$ÇD$L‹„$øLM‰ÂéRóÿÿM‰ÂéXóÿÿH‰ÍÇ/ð(1H‰ð(Çð( ŽéáíÿÿL´$ð1҉ÞH‰D$L‰÷èóþÿH‹D$H‹”$ L„$0IÀH‹RhL9À‡æõÿÿH‹´$(H‹¼$øèy…þÿº‰ÞL‰÷èºòþÿéíõÿÿL´$ðëâL%ðÌÇ–ï(ÈL‰%ƒï(ǁï(ïŠèĂþÿH‹
mï(‹sï(H=hÝ‹5bï(‰Ãèƒóþÿ‰ß謆þÿé°ûÿÿH‹´$(H‹¼$øèò„þÿéuõÿÿf.„AW1ÀAVA‰ιAUATI‰üUSH‰óHìH|$0H‰T$H‰|$(óH«H‹L‰D$D‰L$$H‰D$E…öŽ/Hƒ¾‰¸ëDHƒÀHƒ¼È‰u‰ÂA9ÆæIcþ薆þÿH‰ÅH…À„rAFÿE1íHÅH‰$ëDJ‰D- IƒÅL;,$„ÕJ‹|+蓈þÿI‰ÇH…ÀuÛH‹|$0H…ÿtHƒ/„4HÇD$0HÇD$8Hƒm„BM…ÿt
Iƒ/„[foD$0foL$@L‰àfoT$Pfo\$`fod$pA$fo¬$€fo´$AL$fo¼$ fo„$°AT$ foŒ$Àfo”$ÐA\$0foœ$àAd$@fo¤$ðAl$PAt$`A|$pA„$€AŒ$A”$ Aœ$°A¤$ÀHÄ[]A\A]A^A_Ã1ÒfH‹iŸ&H5‚ÛH‹81Àèø†þÿH‹|$0H…ÿtOHƒ/u@1íE1ÿè~þÿHÇD$0HÇD$8H…í„ÉþÿÿHƒm…¾þÿÿH‰ïèð}þÿé±þÿÿHÇD$0HÇD$8é¦þÿÿL‰ÿèÈ}þÿé˜þÿÿIcþ蛄þÿH‰ÅH…À„wÿÿÿ€H‹D$H‹|$L‹xx赆þÿI‰ÅH…À„ L‰ÿ衇þÿI‰ÇH…À„ÞH‹|$è[þÿH…À„{H‹|$1ÒH‰ÆèS„þÿH‰ÂH…Ò„è¿H‰$è„þÿH‹$H…À„VHƒEH‹=øê(H‰ÆL‰x0H‰P81ÒH‰h L‰h(H‰$èò‚þÿL‹$H…ÀI‰Ç„©Iƒ(„òIƒ?„ÛH‹‹”$@L‰ÿ‹t$$H‹ˆhèá“ÿÿH…À„MýÿÿH‹T$(¹D‰öH‰Çècåþÿ…Àˆ0ýÿÿÿ´$øD‰öD‰÷ÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ³Èÿ³Àÿ³¸ÿ³°ÿ³¨ÿ³ ÿ³˜ÿ³ÿ³ˆÿ³€ÿsxÿspÿshÿs`ÿsXÿsPÿsHÿs@ÿs8ÿs0ÿs(ÿs ÿsÿsÿsÿ3‹”$àèæÿÿHĠ…ÀˆîûÿÿHƒm…üÿÿéQýÿÿIƒ(¾gH
uǺùH‰

ê(Çê(ùÇê(gtcH=ØE1ÿèîþÿé˜ûÿÿL‰ÿèûzþÿéþÿÿL‰ÇèîzþÿéþÿÿHÇ¾gÇ¿é(ùH‰¬é(Ǫé(gºùH
òÆëL‰Çè¬zþÿH‹
…é(‹‹é(‹5é(ë€Iƒm¾
gHÂÆH‰_é(Çaé(ùÇSé(
gu§L‰ïèazþÿë³H”ÆÇ:é(ùH‰'é(Ç%é(gIƒm„ƒIƒ/t3H…Ò„wÿÿÿHƒ*…mÿÿÿH‰×èzþÿH‹
êè(‹ðè(‹5æè(éâþÿÿL‰ÿH‰$èíyþÿH‹$ë»1ö1ÿèNyþÿH‰Âé†üÿÿHÆÇ±è(ùH‰žè(Çœè(gérÿÿÿL‰ïH‰$è£yþÿH‹$éhÿÿÿf.„UHÇÅÿÿÿÿSH‰ûHìxH‹GPD‹`‹OtH‰æL‹—€H‰<$H‰D$AƒáÇH‰ò1ÀL‹ŸˆL‹‡…É~0I‹<ÂH‰zI‹<ÃH‰zPH‰ïM…ÀtI‹<ÀHƒÀH‰ºHƒÂ9ÁыƒdL‹ChAƒÉXH¼$ HƒìHvÌPèªøÿÿèåþÿZYH…À…
fo„$ H‰ßfoŒ$°H´$Ðfo”$Àfoœ$Ðfo¤$à)„$Ðfo¬$ð)Œ$àfo´$fo¼$)”$ðfo„$ foŒ$0)œ$fo”$@foœ$P)¤$fo¤$`)¬$ )´$0)¼$@)„$P)Œ$`)”$p)œ$€)¤$蝡ÿÿH…À„_HÄx[]Ãf.„HÄ¾yºˆÇ¡æ(ˆH‰Žæ(ÇŒæ(yH
ÙÃH=6Õè¡êþÿHÄx1À[]ÃHºÃ¾yºÇVæ(H‰Cæ(ÇAæ(yë³€é»ýÿÿf.„UIÇÃÿÿÿÿSH‰ûHì¨H‹CPD‹`‹KtH‰åH‰$L‹‡€H‰D$Aƒá§H‰êL‹—ˆ1ÀH‹¿…É~0I‹4ÀH‰rI‹4ÂH‰rPL‰ÞH…ÿtH‹4ÇHƒÀH‰²HƒÂ9ÁыƒdL‹ChAƒÉ8H¼$ÐHƒìH=ÃH‰îPèWöÿÿè’þÿZYH…À…çfo„$ÐH‰îH‰ßfoŒ$àfo”$ðfoœ$fo¤$)$fo¬$ fo´$0)L$fo¼$@fo„$P)T$ foŒ$`fo”$p)\$0foœ$€)d$@fo¤$)l$P)t$`)|$p)„$€)Œ$)”$ )œ$°)¤$ÀèhŸÿÿH…À„ZHĨ[]ÃDHÕÁ¾¬xº|Çqä(|H‰^ä(Ç\ä(¬xH
©ÁH=.ÓèqèþÿHĨ1À[]ÃHŠÁ¾·xºÇ&ä(H‰ä(Çä(·xë³€éÛýÿÿf.„AVAUATI‰üUSHƒìH‹Fö€³„8H‰÷èÈtþÿH‰ÅHƒýÿ„›H‰èH]HƒèHIØHÁûHƒÃH‹5eÛ(L‰çè%þÿI‰ÆH…À„Éè„wþÿI‰ÄH…À„H‰ßè°}þÿH‰ÃH…À„TH‹5­Ö(H‰ÂL‰çèòsþÿ…ÀˆºHƒ+„àL‹-ÑØ(H‹=bã(L‰îèªuþÿH‰ÃH…À„>HƒH‹5[Õ(H‰ßè›~þÿI‰ÅH…À„gHƒ+„=H‹5Ü(L‰êL‰çèƒsþÿ…Àˆ›Iƒm„H‹5ÙÓ(L‰âL‰÷èÎyþÿH‰ÃH…À„BIƒ.„Iƒ,$„õH‹5>Ý(H‰ßè~þÿI‰ÄH…À„BHƒ+„ðH‹5ÉÔ(¿1ÀèÅ{þÿI‰ÅH…À„I1ÒH‰ÆL‰çè\yþÿIƒmH‰Ã„ÆI‹$HƒèH…Û„%I‰$H…À„¸H‹5‰Ô(H‰ßè¡}þÿI‰ÄH…À„Hƒ+„SH‹5â(1ÒL‰çèúxþÿH‰ÃH…À„Iƒ,$„;H‰ïè|þÿH‰ÅH…ÀtsH‹=̔&H‰ÆH‰úèA{þÿHƒmI‰Ä„3M…ätNL‰æH‰ßètþÿIƒ,$„(H‹HJÿH…Àt/H‰H…É„èHƒÄ[]A\A]A^ÃH‰ßèxrþÿéþÿÿH‹H†¾ÇHá(H‰5á(HBÿÇ/á(ÖH‰H…ÀtWH‹
á(‹á(H=Ћ5
á(è0åþÿHƒÄ1À[]A\A]A^ÐHƒ+H%¾H‰Þà(Çàà(ÇÒà(Äu©H‰ßèàqþÿëŸfDH‰ßèÐqþÿé¶ýÿÿH‰ßèÀqþÿé þÿÿL‰çè°qþÿé¸þÿÿH‰ßH‰D$è›qþÿH‹D$éÿÿÿH‰ïèˆqþÿéÀþÿÿL‰çH‰D$èsqþÿH‹D$éÁþÿÿf„Hy½1ÛÇ9à(H‰&à(Ç$à(œ@Iƒ.„îIƒ,$t?H…ÛtHƒ+t$M…í„ÔþÿÿIƒm…ÉþÿÿL‰ïèqþÿé¼þÿÿH‰ßèðpþÿëÒfDL‰çèàpþÿë·fDL‰ïèÐpþÿéÛüÿÿL‰çèÀpþÿéþüÿÿL‰÷è°pþÿéãüÿÿH‰ßè pþÿéýÿÿL‰ïèpþÿé-ýÿÿL‰çè€pþÿé;ýÿÿH;¬‘&tH‰ßèJxþÿ…À„[è]yþÿH…À„¶Hƒ+uH‰ßèFpþÿfDè;yþÿ»HÇÅÿÿÿÿH…À„bûÿÿH
?¼ºè¾KÇ÷Þ(èH=ìÍH‰
ÝÞ(ÇÛÞ(Kèþâþÿ1ÀéWýÿÿ€Hù»Ç»Þ(H‰¨Þ(ǦÞ(ézýÿÿf„HɻE1íLjÞ(H‰uÞ(ÇsÞ(éNþÿÿfDIƒ.H•»H‰NÞ(ÇPÞ(ÇBÞ(‰…ýÿÿL‰÷èLoþÿéýÿÿ€L‰÷è8oþÿéþÿÿHI»E1íÇÞ(H‰õÝ(ÇóÝ(‹éÎýÿÿfDè«qþÿL‰ïè“àþÿH‰ÃH…À…­úÿÿH»E1íÇ¿Ý(H‰¬Ý(ǪÝ(—é…ýÿÿDHѺÇ“Ý(H‰€Ý(Ç~Ý(™éYýÿÿH©ºE1íÇhÝ(H‰UÝ(ÇSÝ(¦é.ýÿÿfDHyºI‰ÝÇ8Ý(H‰%Ý(Ç#Ý(²é#ýÿÿfDI‹$HƒèH
AºÇÝ(H‰
ðÜ(ÇîÜ(ÁI‰$H…À…ºûÿÿL‰çèñmþÿé­ûÿÿ@HºÇÃÜ(H‰°Ü(I‹$ǪÜ(ÓHƒèë¶@H;éŽ&tH‰÷H‰t$è‚uþÿH‹t$…Àt)è”vþÿH…À…KýÿÿH‹Ž&H5Z»H‹8èåqþÿé0ýÿÿH‰÷è(qþÿH‰ÃH…ÀtÇH‹@H;Ŏ&u2ö€³„ÈüÿÿH‰ßèmþÿH‰ÅHƒ+…IøÿÿH‰ßè&mþÿé<øÿÿH‰ßè9ÿÿH‰ÃH…À„ÍüÿÿH‹@ë·H‰ßè¿pþÿI‰ÅH…À„‘üÿÿH‹\Ž&I9Eu)I‹EL‰ïö€³t.è±lþÿH‰ÅIƒmuL‰ïè¿lþÿë…L‰ïèÕÿÿI‰ÅH…ÀuÇéTüÿÿèS›ÿÿH‰ÅëÐH‹'&H5mºH‹8èøpþÿé/üÿÿAWAVAUATI‰üUSHƒì8H‹G‰t$,ö€³„
Hƒ1ÿèŸuþÿH‰D$H…À„QH‹¢Ì(HƒI‹D$H;B&t
H;±&…ƒIƒ$M‰å1ÉHÇD$E1ÿE1ÀE1öHƒ|$D‰|$M‰ÇL‰d$ I‰ÌÇD$(…ðH‹d&I9E…êL‰ïèÒuþÿL9àމL‰æL‰ïIƒÄè
tþÿH‰ÅH…À„>M…ÿt
Iƒ/„HƒM…öt
Iƒ.„H‹5ÕË(H‰ßèmqþÿH‰$H…À„ØHƒ+„–H9-GØ(„žL‹5
Ž&L9utH‰ïèTjþÿ…À„,‹D$…Àu
1ÀL9u”	D$H‹|$H‰îèÊpþÿƒøÿ„áHƒ|$I‰ÞI‰ïH‹$„ÿÿÿL‰ïH‹D$ÿÐH‰ÅH…À…7ÿÿÿL‰<$L‹d$ D‹|$èÂsþÿL‹$H…Àt)H‹‚Œ&H‰ÇH‹2è'nþÿL‹$…À„Š
èFmþÿL‹$fIƒm„yHƒ+„ZH‹|$L‰$è}tþÿL‹$Hƒøÿ„	Hcl$,H)Å…ZE…ÿ„¨H‹ñŒ&HƒH‹|$L‰$èOoþÿL‹$H…ÀI‰Å„
	¿L‰$èñpþÿL‹$H…ÀI‰Ç„W	H‰X L‰ÅL‰óL‰h(Iƒ,$…ü„L‰çèØiþÿHƒ|$…àéó€H‰ßè¸iþÿH9-©Ö(…bþÿÿ‹T$(…Ò„oH‹5€É(H‹|$èNoþÿƒøÿ„mÇD$(ÇD$éoþÿÿL‰ÿèhiþÿéÔýÿÿL‰÷èXiþÿé×ýÿÿ¿è&pþÿH…ÀtIƒ$L‰` I‰ÄéÚüÿÿH
eµº ¾GzE1ÿH=•·H‰
î×(Çð×( Çâ×(GzèÜþÿHƒÄ8L‰ø[]A\A]A^A_ÃM9eަL‰æL‰ïIƒÄè'qþÿH‰ÅH…À…ýÿÿHð´M‰øL‹d$ ÇŽ×(§H‰{×(Çy×(¤zéV@H½´H‰$L‹d$ E1ÿH‰N×(ÇP×(§ÇB×(¸zH‹$H‹H‰D$HƒèH‰„þIƒm„ÏM…ÿ„}Iƒ/„£H‹
üÖ(‹×(‹5øÖ(H=‰¶èÛþÿI‹$E1ÿHPÿI‰$H…Ò„þÿÿH‹D$H‹HQÿH‰$H‰H…Òt4H…ÛtHƒ+t9H…í„ËþÿÿHƒm…ÀþÿÿH‰ïè­gþÿé³þÿÿ„H‰Çè˜gþÿëÂfDH‰ßèˆgþÿë½fDL‰ÿèxgþÿéPÿÿÿL‰óL‰ÅE1ÿL‰ïè_gþÿé$ÿÿÿf.„H‰$L‰ÅL‰óE1ÿH‹<$è:gþÿéôþÿÿDH‹|$ èöjþÿHƒøÿ„ÌHcT$,HÇÇÿÿÿÿH)ÂHIúH‰T$HƒÇèKpþÿI‰ÆH…À„$H‹T$E1ÿHBH…Òx2H‰\$L‰ûI‰ÇH‹±Æ(H‰ÞL‰÷HƒÃHƒè6lþÿI9ßuáH‹\$HºÿÿÿÿÿÿÿH‹|$L‰ñH‰Öèiþÿƒøÿ„Iƒ.…úüÿÿL‰÷èwfþÿÇD$(ÇD$éaûÿÿfH•²L‹d$ M‰øÇ3Õ(§H‰ Õ(ÇÕ(œzHƒ+„ÜþÿÿIƒm„±þÿÿH‹
úÔ(‹Õ(L‰óL‰ŋ5ðÔ(éóýÿÿH‹±Ò(H;â‡&L‹d$ H‹}„èîjþÿ…À…ÜH‹uH‹=ƒÒ(èpþÿI‰ÇM…ÿ„1ÀL‰þ¿L‹5ÑÒ(èämþÿH…À„z1ÒL‰÷H‰ÆH‰D$èykþÿH‹L$I‰ÆHƒ)„§M…ö„MIƒ/„„L‰÷èühÿÿIƒ.„’H‡±E1ÿÇ*Ô(±H‰Ô(ÇÔ(;{éÎüÿÿ„HU±L‹d$ E1ÿÇóÓ(´H‰àÓ(ÇÞÓ(`{é—üÿÿº¤H
 ±¾mzÇÁÓ(¤H=N³H‰
§Ó(A¿ÇŸÓ(mzèÂ×þÿIƒ,$…²ûÿÿ1í1Ûé¾úÿÿfDL‰çèPlþÿI‰ÅH…À„°H‹@HÇÁÿÿÿÿH‹€èH‰D$H…À…\øÿÿH™°E1ÀE1öÇ9Ó(§H‰&Ó(Ç$Ó(“zéþÿÿ€M‰øL‹d$ D‹|$éŽùÿÿfDHM°L‹d$ E1ÿÇëÒ(­H‰ØÒ(ÇÖÒ({éûÿÿf„L‰ÿèØcþÿéoþÿÿH‰ÏèÈcþÿéLþÿÿL‰÷è¸cþÿéaþÿÿI‰ÞI‰èé„ýÿÿDH‰ïL‰$è´lþÿL‹$H…ÀH‰Ã…GùÿÿH¹¯ºº¾¯{ÇUÒ(ºH‰BÒ(Ç@Ò(¯{H
¯L‰$L‰óA¿H=½±èHÖþÿIƒ,$L‹$L‰Å…:ûÿÿéAùÿÿH‰ßL‰$ècþÿL‹$鑸ÿÿL‰ïL‰$ècþÿL‹$érøÿÿ¿L‰$HIýè5lþÿL‹$H…ÀH‰Ã„RE1íH…í~3L‰$$M‰ìM‰ÅH‹¡Â(L‰æH‰ßIƒÄHƒè&hþÿL9åuáL‹$$M‰èH‹|$H‰ÙL‰$HºÿÿÿÿÿÿÿH‰ÖèüdþÿL‹$ƒøÿ„7Hƒ+…øÿÿH‰ßL‰$èYbþÿL‹$éÿ÷ÿÿH…®L‹d$ E1ÿÇ#Ñ(ªH‰Ñ(ÇÑ(ÚzéÇùÿÿHV®ÇüÐ(±H‰éÐ(ÇçÐ(6{é ùÿÿH‹}èÑiþÿ…À…üÿÿH‹}H‹–Î(H‰þH‰ÇèócþÿI‰ÇéüÿÿI‰ÇL‹d$ Hø­ÇžÐ(ªH‰‹Ð(ljÐ(ÛzéBùÿÿHѭÇwÐ(±H‰dÐ(ÇbÐ(4{éùÿÿHª­M‰÷L‹d$ ÇHÐ(ªH‰5Ð(Ç3Ð(äzéìøÿÿH{­º¶¾v{ÇÐ(¶H‰Ð(ÇÐ(v{é½ýÿÿHJ­ÇðÏ(ºH‰ÝÏ(ÇÛÏ(´{Hƒ+…ÈúÿÿH‰ßL‰$èÝ`þÿL‹$é³úÿÿH	­E1ÀE1öÇ©Ï(§H‰–Ï(Ç”Ï(‘zë·H߬Ç…Ï(ºH‰rÏ(ÇpÏ(¶{éMúÿÿH
¸¬º¸¾Š{L‰$H=ç®L‰óH‰
=Ï(Ç?Ï(¸Ç1Ï(Š{èTÓþÿL‹$L‰Åé4øÿÿHm¬ÇÏ(¸H‰Ï(ÇþÎ(“{éÿÿÿHF¬E1ÿL‰ÅH‰$H‰ÙÎ(L‰óÇØÎ(§ÇÊÎ(®zéƒ÷ÿÿf.„AWAVAUATUSHƒìXH‹-CÀ(L‹%,À(H‹&H‹^H‰|$H‰l$0L‰d$8H‰D$@H…Ò…\
Hƒû„
~(Hƒû„Hƒû…$L‹~0L‹f(H‹n ëfDL‹=A&H…Û…H‹aÎ(¿H‹˜(ÿhE1É1É1ÒA¸H‰ÆH‰ïÿÓH‰ÃH…À„æ
Hƒ8„”H‹Î(¿L‹¨(ÿhE1É1É1ÒA¸H‰ÆL‰çAÿÕI‰ÅH…À„Ù
Hƒ8„GA‹E ;C „RL‹%#Ã(H‹=´Í(L‰æèü_þÿH‰ÅH…À„X
HƒH‹5À(H‰ïèíhþÿI‰ÄH…À„Ù
Hƒm„Æ¿è<eþÿH…À„IƒE1ÒH‰ÆL‰çL‰h HƒH‰X(H‰D$è dþÿL‹T$H…ÀI‰Æ„WIƒ*„õIƒ,$„úH‹#Í(IƒL‰÷ÿ0I‰ÄH…À„º
Hƒ8„ 
H‹-QÂ(H‹=âÌ(H‰îè*_þÿH‰ÂH…À„ŽHƒH‹5‹Ç(H‰×H‰T$èhþÿH‹T$H…ÀI‰Â„õHƒ*„ë	H‹üÁ(H‹=Ì(L‰T$H‰ÆH‰D$èË^þÿL‹T$H…ÀH‰Å„:HƒH‹5ßÃ(H‰ïL‰T$è²gþÿL‹T$H…ÀI‰Ã„	Hƒm„&
1ÀL‰æ¿L‰T$L‰\$èMeþÿL‹\$L‹T$H…ÀH‰Å„§1ÒL‰ßH‰ÆL‰T$L‰\$èÐbþÿHƒmL‹\$H‰ÁL‹T$„`
H…É„oIƒ+„%
H‰Î1?L‰T$H‰L$èÜdþÿH‹L$L‹T$H…ÀH‰Å„&1ÒL‰×H‰ÆH‰L$L‰T$è_bþÿHƒmL‹T$I‰ÃH‹L$„¯
Hƒ)„í
I‹HƒèM…Û„õI‰H…À„¹
L;Ú~&”ÀL;~&”ÂÂu
L;~&…Œ¶èIƒ+„W…í„ÜH‹L$HƒìL‰úI‰ÙA¸H‹=ã|&L‹™ØHq(IƒH‹ÝÅ(L‰Ùÿ5¬}&jPÿ5;¼(jPATjPL‰\$Xÿ¨É(HƒÄPL‹\$H…ÀI‰Ç„ËIƒ+…L‰ßèy[þÿé
@H‰Çèh[þÿé_üÿÿ…À…¦üÿÿH‰ïèP\þÿf.ÀÏòD$‹üL‰çè4\þÿf.¤Ï‹.	ò\D$L‹%‘¿(H‹="Ê(L‰æòD$èd\þÿH‰ÅH…À„
HƒH‹5}Á(H‰ïèUeþÿI‰ÃH…À„q
Hƒm„>òD$L‰\$ è¾YþÿL‹\$ H…ÀI‰Ä„­
H‰ƿ1ÀL‰\$ èÙbþÿL‹\$ H…ÀH‰Å„ø
1ÒL‰ßH‰Æèk`þÿHƒmL‹\$ I‰Â„Iƒ,$„]I‹HPÿM…Ò„Ï
I‰H…Ò„‰L;ê|&”ÀL;(|&”ÂÂ…µL;|&„¨L‰×L‰T$ è«\þÿL‹T$ …	ʼnH¦E1ÿE1ÛE1öH‰ÅÈ(E1äÇÄÈ(LǶÈ(!%fDIƒ*…Ó1íL‰×L‰\$è¯YþÿH…íL‹\$„¶Hƒm…«H‰ïL‰\$è‰YþÿL‹\$销H‰ÇèpYþÿA‹E ;C …±úÿÿéþýÿÿfDL‹=A{&éäùÿÿ@H…ÛH'¦I‰ØH
¦HʧHIÈHƒìH‹®y&IÁø?SI÷ÐH5g¨H‹8L
W©Aƒà1ÀèºaþÿH¥¾$ÇÐÇ(ùÇÂÇ($H‰³Ç(XZH
ꤺùH=ζ1ÛèÇËþÿHƒÄXH‰Ø[]A\A]A^A_ÃDH‰ïè˜Xþÿé-úÿÿH‰ïH‰D$ èƒXþÿL‹\$ é«ýÿÿf„¶èIƒ*„³…í„k	H‹D$òD$L‹ØIƒL‰T$ è;WþÿL‹T$ H…ÀI‰Ã„š	òD$L‰T$ H‰D$èWþÿL‹\$L‹T$ H…ÀH‰Å„/
H‹Â(M‰ÙL‰ÑL‰úH‹t$Hƒìÿ5Ðy&A¸H‹=Ûx&jPHƒÆ(ÿ5N¸(jPUjPL‰\$`L‰T$Xÿ·Å(HƒÄPL‹T$L‹\$H…ÀI‰Ç„õ	Iƒ*„ÓIƒ+„¹HƒmA¾A¼„’Hƒ+„ËIƒmL‰û„fM…ätIƒ,$„ÀM…ö„€þÿÿIƒ.…vþÿÿL‰÷è%WþÿéiþÿÿL‰×èWþÿéþøÿÿL‰çèWþÿéùøÿÿL‰çL‰T$(L‰\$ èîVþÿL‹T$(L‹\$ é‚üÿÿ€H‰ïH‰D$(èËVþÿL‹T$(L‹\$ éTüÿÿ@L‰ßL‰T$ è«VþÿL‹T$ é`üÿÿHƒ*Hµ¢H‰nÅ(ÇpÅ([ÇbÅ(Ñ%„$H‹
MÅ(‹SÅ(H=p´‹5BÅ(èeÉþÿH…Û…£M…í„óþÿÿIƒm…èþÿÿL‰ïè0VþÿéÛþÿÿIƒ*H=¢H‰öÄ(ÇøÄ([ÇêÄ(Ö%„œE1ÿE1ÛHƒm„UüÿÿM…ÛtI‹HPÿI‰H…Ò„“M…ÿtIƒ/thH‹
¡Ä(‹§Ä(H=ij‹5–Ä(è¹ÈþÿHƒ+t1ÛéPÿÿÿ@E1ÿH‰ßL‰ûèŠUþÿé9ÿÿÿDL‰çèxUþÿé3þÿÿL‹=Yw&éöÿÿ@L‰ÿèXUþÿëŽfDH‰×èHUþÿéÏþÿÿL‰ßè8Uþÿé`ÿÿÿI‰ÕHƒû„ÓŽHƒûtHƒû…ÅûÿÿH‹F0H‰D$@H‹F(L‰ïH‰D$8H‹F H‰D$0èZWþÿH‰ÅHƒû„ƒHƒû…3H…í~*H‹5÷¶(L‰ïèTþÿH…À„$H‰D$@HƒíH…íH‹l$0L‹d$8L‹|$@éHõÿÿH…Û…?ûÿÿH‰×èïVþÿH‰ÅH…í~ÓH‹50º(L‰ïè(TþÿH…ÀtH‰D$0HƒíH…í~±H‹5V»(L‰ïèTþÿH…À„oÿÿÿH‰D$8Hƒíé\ÿÿÿ€HA E1íE1äE1öH‰ñÂ(ÇóÂ(EÇåÂ(À$é„ýÿÿ„H	 E1äE1öÇÅÂ(FH‰²Â(ǰÂ(Ï$éOýÿÿH‰Çè¸SþÿéÓõÿÿL‰×è¨Sþÿé@ûÿÿH‰×L‰T$è“SþÿL‹T$éþõÿÿf„L‰ßL‰\$èVþÿL‹\$…	ʼn[÷ÿÿH}ŸÇ?Â([H‰,Â(Ç*Â(ø%I‹HPÿE1ÿéQýÿÿHIŸÇÂ(ZH‰øÁ(ÇöÁ(À%é•üÿÿf„H‰ïL‰T$H‰D$èîRþÿL‹T$L‹\$é¹õÿÿ€H‰ïèÐRþÿéaûÿÿL‰ßèÀRþÿé:ûÿÿL‰×L‰\$è«RþÿL‹\$éûÿÿH…Û…êýÿÿéþÿÿfL‰ßH‰L$L‰T$è~RþÿH‹L$L‹T$éºõÿÿ€H‰ïH‰D$ è[RþÿH‹L$ L‹T$L‹\$éõÿÿ€…þöÿÿè5[þÿH…À„ðöÿÿHEžE1äE1öÇÁ(IH‰îÀ(ÇìÀ(í$é‹ûÿÿ€…ÌöÿÿòD$èçZþÿòD$H…À„²öÿÿHñE1äE1öÇ­À(JH‰šÀ(ǘÀ(÷$é7ûÿÿH‰ïH‰L$ L‰T$H‰D$è‘QþÿH‹L$ L‹T$L‹\$é&õÿÿDL‰×L‰\$èkQþÿL‹\$é0õÿÿH‰ÏL‰T$L‰\$èNQþÿL‹T$L‹\$éòôÿÿ€èãSþÿL‰çèËÂþÿI‰ÆH…À…iH8E1äÇ÷¿(UH‰ä¿(Çâ¿({%éúÿÿDè›SþÿL‰çèƒÂþÿI‰ÆH…À…)HðœE1äǯ¿(LH‰œ¿(Çš¿(
%é9úÿÿDL‰ßè PþÿéœôÿÿH±œE1öÇp¿(UH‰]¿(Ç[¿(}%érúÿÿfDHœE1öE1äÇ=¿(LH‰*¿(Ç(¿(%é?úÿÿHQœM‰ãE1öÇ
¿(UH‰ú¾(I‹$E1äÇñ¾(%HPÿéÈüÿÿHœE1öÇؾ(LH‰ž(I‹Ç>(%HPÿé—üÿÿ€Há›M‰ãE1ÿǝ¾(UH‰о(E1äÇ…¾(¨%éÐõÿÿ„Iƒ,$„EI‹HPÿH—›E1öE1äÇS¾(LH‰@¾(Ç>¾(%éüÿÿH‹F H‰×H‰D$0è¯QþÿH‰ÅéÝúÿÿ€èÛQþÿH‰ïèÃÀþÿH‰ÂH…À…]ñÿÿH0›Çò½([H‰߽(Çݽ(Ï%é|øÿÿH‹5a®(H‹=¼(1ÒèËTþÿI‰ÆH…À„ÀH‰ÇègRÿÿIƒ.„”H֚E1äE1öÇ’½(MH‰½(Ç}½(1%éøÿÿH©šE1ÿE1öE1äH‰Y½(Ç[½(PÇM½(N%é˜ôÿÿE1ÿéœôÿÿ„HišM‰ßE1ÛÇ%½([H‰½(ǽ(å%é[ôÿÿL‰T$èÆPþÿH‹|$謿þÿL‹T$H…ÀI‰Ã…=HšE1ÿÇӼ([H‰<(Ǿ¼(Ô%é	ôÿÿHé™E1ÿE1öE1äH‰™¼(Ç›¼(QǍ¼(X%éØóÿÿIƒ*A¾H¯™A¼H‰b¼(Çd¼(OÇV¼(b%…r÷ÿÿé§óÿÿHƒ)uH‰ÏL‰T$èMMþÿL‹T$Ha™E1ÿE1ÛǼ([H‰
¼(Ǽ(õ%éSóÿÿH‹5Œ¬(H‹=-º(1ÒèöRþÿH‰ÅH…À„H‰Çè’PÿÿHƒm„ËH™Ç»(\H‰¯»(Ç­»(&éLöÿÿH٘Ç›»(]H‰ˆ»(dž»(%&I‹HPÿéZùÿÿHT$0H‰ÙL‰ïL›H5)P(èòþÿ…À‰È÷ÿÿH…˜¾y$ÇB»(ùH‰/»(Ç-»(y$éoóÿÿL‰çL‰\$è3LþÿL‹\$é¤üÿÿL‰÷è!Lþÿé_ýÿÿH‰ïèLþÿé(ÿÿÿH(˜E1äÇçº(MH‰Ժ(ÇҺ(-%éqõÿÿHþ—Ç:(\H‰­º(Ç«º(&éJõÿÿH‰Åé`îÿÿH‰Åé"íÿÿH‰Åé²ðÿÿfDAWAVAUATI‰üUSHƒìH‰T$H…Ò„Hƒ‹GpH‰õ…À…Ï‹wtH‰ïèäÞÿÿH‰ÃH…À„ØH;Am&„H‰ÇèÃQþÿHƒø…‰1öH‰ßèSþÿI‰ÇH…À„ã¾H‰ßèvSþÿI‰ÅH…À„úHƒ+„¨Hƒm„°H‹-žm&I9ï”ÁL;=Ùl&”ÀÈu
L;=Ãl&…í¶ÙI‹D$…Û„}H‹t$L‰çÿPI‰ÆH…À„–H9è”ÀL;5‘l&”ÂÂ…^L;5wl&„QL‰÷èMþÿ…À‰DH¦–º¨¾´mÇB¹(¨H‰/¹(Ç-¹(´mé¡H‹T$L‰îL‰çÿP I‰ÆH…À„NHƒ(„lIƒ/„RfIƒmtHƒÄ‰Ø[]A\A]A^A_ÄL‰ïèèIþÿëÝfDL‰ÿèxLþÿ‰ÅÀ‰ÿÿÿH–º¦¾žmE1öH‰“¸(Ç•¸(¦Ç‡¸(žmH
ԕH=ѧ蜼þÿIƒ/»ÿÿÿÿ„°M…ö„dÿÿÿIƒ.…ZÿÿÿL‰÷èbIþÿéMÿÿÿDH‰ßèPIþÿHƒm…PþÿÿH‰ïè=IþÿéCþÿÿ„¶ÀL‰îL‰ç…À„ÿèzJþÿH‰ÃH…À„ÝI‹D$L‰òH‰ÞL‰çÿPH‰ÅH…À„“Hƒ+„WHƒm„<Iƒ/»…YÿÿÿL‰ÿèÅHþÿéCÿÿÿL‰ÿè¸Hþÿé£þÿÿH‰Çè¨Hþÿé‡þÿÿH‹5)§(H‹=ºµ(1Òè{NþÿH‰ÃH…À„ØH‰ÇèLÿÿHƒ+„MH
¢”º¢¾gmÇ>·(¢H=‹¦H‰
$·(I‰í»ÿÿÿÿÇ·(gmè=»þÿéþÿÿ„è{IþÿH‰ÃH…À„­H;øi&…,I‹D$H‹T$H‰ÞL‰çÿPH‰ÅH…À…òþÿÿH”Ǿ¶(«H‰«¶(Ç©¶(ÚmHƒ+„oH‹
¶(‹–¶(‹5Œ¶(H=ݥ»ÿÿÿÿ裺þÿIƒ/…þÿÿé·þÿÿ@H
µ“º¤¾ymÇQ¶(¤H=ž¥H‰
7¶(I‰í»ÿÿÿÿÇ-¶(ymèPºþÿé+ýÿÿH‹Ág&H5º¥E1öE1ÿH‹8èŒKþÿHQ“Ç÷µ(¤H‰äµ(Çâµ(mHƒ+t4H‹
͵(‹ӵ(I‰íH=¥‹5¿µ(èâ¹þÿM…ÿ…=ýÿÿƒËÿéDýÿÿH‰ßè¸FþÿëÂfD*H…Àx1HƒøHì–H
Ÿ‘HEÊH‰ÂH‹¥g&H5æ¤H‹81Àè4OþÿH©’E1öE1ÿÇIµ(¤H‰6µ(Ç4µ(méMÿÿÿ€Hu’E1öǵ(¤H‰µ(ǵ(‰méÿÿÿfDHƒ+HA’H‰޴(Çà´(¤ÇҴ(‹m„ŒIƒ/t.H‹
·´(‹½´(I‰íH=¤‹5©´(»ÿÿÿÿèǸþÿé¢ûÿÿfL‰ÿè¨EþÿëÈfDH‰ïè˜Eþÿé·üÿÿH‰ßèˆEþÿéœüÿÿH‹™f&ºH5ݜH‹81Àè#NþÿéêþÿÿfDH‰ßèPEþÿégÿÿÿH‰ßè@EþÿH‹
´(‹´(‹5´(é„ýÿÿ„H‰ßèEþÿé¦üÿÿHE‘¾¨mº§Çá³(§H‰γ(Ç̳(¨mé@ûÿÿ€H
‘¾ómº­Ç©³(­H‰–³(Ç”³(óméûÿÿH
ܐº¢¾cmÇx³(¢H=ŢH‰
^³(I‰í»ÿÿÿÿÇT³(cmèw·þÿéRúÿÿH—º«¾×mÇ3³(«H‰ ³(dz(×mé’úÿÿHf¾¾mº©Ç³(©H‰ï²(Çí²(¾méaúÿÿH‹GH5½›»ÿÿÿÿH‹P H‹d&H‹81Àè›LþÿéÍùÿÿH‹-—±(H…í„’H‹xH9ý„·ûÿÿH‰îèMþÿ…À…§ûÿÿH‹CH‹M H5ڞH‹P H‹d&H‹81ÀèELþÿHºÇ`²(«H‰M²(ÇK²(ÙméûÿÿH“L‰íÇ6²(©H‰#²(Ç!²(Àmé:üÿÿH‹­e&H5E‘H‹8èŽGþÿë—ff.„AWH‰ðAVAUI‰ýATUSHƒì8H‹åd&H‹5£(L‹%£(H‹hH‰\$H‰t$L‰d$ H‰\$(H…Ò…ÞHƒý‡œH
žHc©HÊÿâ@H‰$L‹`0H‹p(H‹@ H‰D$¿1ÀH‹--±(èÀJþÿI‰ÆH…À„<1ÒH‰ïH‰ÆèWHþÿIƒ.H‰Å„êH…í„L‹5¦(H‹=S±(L‰öè›CþÿI‰ÇH…À„HƒH‹5œ©(L‰ÿèŒLþÿI‰ÆH…À„PIƒ/„¦ºL‰öH‰ïèöKþÿI‰ÇH…À„ÚIƒ.„°L;=‰d&”ÀL;=Çc&”ÂÂ…ôI9ß„ëL‰ÿèSDþÿA‰ƅÀˆøIƒ/„ÜE…ö„äH‹5&¢(ºL‰çèJþÿ…ÀˆéM‹½ØIu(L‹$I‹L‰ùHSI‰H‹T$„âH‹={c&ÿ]¯(H…À„¤Iƒ/„âfHƒm„ÕHƒÄ8[]A\A]A^A_ÃfDH‰$H‰\$éoþÿÿfH‰$é[þÿÿ€H‰$éGþÿÿ€H‹H8H‰$é/þÿÿIƒ/D¶ð…$ÿÿÿL‰ÿèº@þÿE…ö…ÿÿÿL‹5"¥(H‹=³¯(L‰öèûAþÿI‰ÇH…À„7HƒH‹5¨(L‰ÿèìJþÿI‰ÆH…À„hIƒ/„ºL‰öH‰ïèVJþÿI‰ÇH…À„jIƒ.„€L;=éb&”ÀL;='b&”ÂÂ…¤I9ß„›L‰ÿè³BþÿA‰ƅÀˆIƒ/„~E…ö„EH‹5† (ºL‰çèqHþÿ…Àˆ	M‹½ØIu(L‹$I‹L‰ùHSI‰H‹T$„bH‹=ƒ`&ÿµ­(H…À…`þÿÿHµ‹Çw®(bH‰d®(Çb®(«é×DL‰÷èh?þÿé	ýÿÿL‰ÿèX?þÿéMýÿÿH‰ïH‰$èD?þÿH‹$HƒÄ8[]A\A]A^A_ÐL‰÷è(?þÿéCýÿÿH…íHÿ‹I‰èH
ì‹HªHIÈHƒìH‹†_&IÁø?UI÷ÐH5?ŽH‹8L
/Aƒà1Àè’GþÿHëŠ¾Ç¨­(4Çš­(H‰‹­(XZH
Šº4H=N衱þÿHƒÄ81À[]A\A]A^A_ÃD¶ðéoþÿÿ€H‹=±`&ÿ{¬(H…À„êIƒ/… ýÿÿL‰ÿH‰$èD>þÿH‹$éýÿÿH
QŠºZ¾.Ç	­(ZH=ΜH‰
ï¬(Çí¬(.è±þÿHƒÄ81À[]A\A]A^A_ÀHƒý‡¾þÿÿH
G™I‰ÖHc©HÊÿâH‹P8H‰T$(H‹P0H‰T$ H‹P(H‹@ L‰÷H‰T$H‰D$è@þÿI‰ÄHƒý„3~aHƒý„MHƒýu&M…ä~*H‹5q¡(L‰÷è)=þÿH…À„H‰D$(IƒìM…äH‹D$H‹t$L‹d$ H‰D$H‹D$(H‰$é™úÿÿH…íuÐé]fèË?þÿL‰÷賮þÿI‰ÇH…À…ÜúÿÿH
 ‰¾:º[Çث([H‰
ū(Çë(:H=‰›èܯþÿ1Àé•ûÿÿDHوÇ›«([H‰ˆ«(dž«(<Iƒ/tH‹
q«(‹w«(‹5m«(ë«L‰ÿèx<þÿH‹
Q«(‹W«(‹5M«(ë‹L‰ÿèX<þÿéíûÿÿH‹=É]&ÿSª(H…À…àýÿÿHSˆM‰þÇ«(dH‰ÿª(Çýª(Æë%H)ˆÇëª([H‰ت(Ç֪(?Iƒ.…LÿÿÿL‰÷èÜ;þÿH‹
µª(‹»ª(‹5±ª(éìþÿÿ@L‰÷è¸;þÿésûÿÿHɇÇ‹ª([H‰xª(Çvª(Aéëþÿÿf„L‰ÿèx;þÿéuûÿÿH‹@ L‰÷H‰D$èÏ=þÿI‰ÄM…äŽþÿÿH‹5T£(L‰÷è;þÿH…ÀtH‰D$IƒìM…äŽßýÿÿH‹5Ž (L‰÷èÞ:þÿH…À„ýÿÿH‰D$ IƒìéŠýÿÿ€H‡Ç۩(`H‰ȩ(ÇƩ(“é;þÿÿf„L‰÷è8=þÿI‰ÄM…äŽnýÿÿH‹5åœ(L‰÷èm:þÿH…À„QÿÿÿH‰D$Iƒìé:ÿÿÿfDH
©†¾Lº\Ça©(\H‰
N©(ÇL©(Lé‡ýÿÿ€è=þÿL‰÷èë«þÿI‰ÇH…À…´ùÿÿH
X†¾Œº`Ç©(`H‰
ý¨(Çû¨(Œé6ýÿÿfDH!†Çã¨(`H‰Ш(ÇΨ(ŽéCýÿÿHù…Ç»¨(`H‰¨¨(Ǧ¨(‘éËýÿÿf„H‹=	¤(H9ß„H‰ïè¨>þÿ…À…êH‹=é£(H‰îèÁCþÿI‰ÇM…ÿ„öL‰þ¿1ÀL‹%Œ¦(èŸAþÿH‰ÃH…À„†1ÒL‰çH‰Æè6?þÿHƒ+I‰Ä„_I‹HƒèM…ä„\I‰H…À„6L‰çèµ<ÿÿIƒ,$„H
#…¾öºfÇۧ(fH‰
ȧ(ÇƧ(öéüÿÿf„H
鄾žºaÇ¡§(aH‰
ާ(ÇŒ§(žéÇûÿÿ€H±„Çs§(]H‰`§(Ç^§(YéÓûÿÿH‰„M‰þÇH§(_H‰5§(Ç3§(téXüÿÿHT$H‰éL‰÷LنH5;(èÈÝþÿ…À‰ÒúÿÿH9„¾úÇö¦(4H‰ã¦(Çá¦(úéKùÿÿL‰çèì7þÿéÝþÿÿL‰ÿèß7þÿé½þÿÿH‰ßèÒ7þÿé”þÿÿHæƒÇ¨¦(fH‰•¦(Ç“¦(ñéûÿÿH‰ïè~?þÿH‹=÷¡(…À…ÿýÿÿH‰îè§9þÿI‰ÇéþÿÿH
˜ƒ¾çºgÇP¦(gH‰
=¦(Ç;¦(çévúÿÿ@f.„AWAVI‰ÖAUI‰õATUSHƒì8ö‡²…ß1öÿ—8H‰ÃH…Û„þH‹-ôX&H‹ť(HÇCXHÇD$H‰CH‰k H‰k(H‰k0M‹eHƒEHÇD$HÇD$ M…ö…˜Iƒü„·Iƒü„¤IƒüH‚ƒH
rƒHMȝÀHƒì¶ÀATH5…L@H‹W&H5EL
´†H‹81Àè?þÿH‚¾ÞiÇ.¥(YÇ ¥(ÞiH‰¥(XZH
d‚ºYH=•è'©þÿHƒ+„í1ÛéfDI‹E0H‰D$ M‹u(M‹e L‰t$L‰d$I‹Fö€³„„L‰÷è¬5þÿHcÐA‰ÆH9Ð…­Aƒþÿ„ÃH‹|$ H…ÿ„}H;=NX&A”ÅH;=‹W&”ÀDèu	H9ï…"E¶íIƒ$H‹{ Hƒ/„óL‰c H‹(£(D‰³`H9C„ŸI9ì…–‹Т(ƒø~[H‹S8H…ÒtrAƒæ…ÀD‰«dHC@HSDHǃhH‰CáH)ÊH…ÉHEÂH‰CHHƒÄ8H‰Ø[]A\A]A^A_ÄHcÈH&¢(ƒÀH‹ʉY¢(H‰S8H…ÒuŽè;5þÿH‰C8H…Àu€è=:þÿ¾žjºiH؀H‰u£(Çw£(iÇi£(žjH
¶€H=c“è~§þÿéRþÿÿf„èû6þÿA‰Ńøÿ…ÑþÿÿèJ=þÿH…À„ÃþÿÿHv€¾×iÇ£(YH‰£(Ç£(×iéæýÿÿDHƒøÿ„õH‹—U&H58H‹8è`8þÿèë<þÿA¾ÿÿÿÿH…À„)þÿÿH€¾ÕiDz¢(YH‰Ÿ¢(ǝ¢(ÕiéýÿÿHsPD‰òL‰çè8þÿƒøÿ„ Hƒ{X…GþÿÿH‰kXHƒEé9þÿÿ€ès3þÿéþÿÿfDH‹Sx1:Ou	1z”	ƒdé(þÿÿf„H‹‰U&1ÒH‹5(¢(ÿ@H‰ÃéüÿÿfIƒü„V~dIƒütIƒü…`üÿÿI‹E0H‰D$ I‹E(L‰÷H‰D$I‹E H‰D$èQ5þÿI‰ÇIƒüt]IƒütxM…ät1M…ÿL‹d$L‹t$éÐüÿÿDM…ä…üÿÿL‰÷è5þÿI‰ÇH‹5¥–(L‰÷IƒïèI2þÿH‰D$H…À„ÚH‹5ü™(L‰÷è,2þÿH‰D$H…À„VIƒïM…ÿ~‘H‹5Nš(L‰÷è2þÿH…À„–H‰D$ Iƒïébÿÿÿ€E1íé¢üÿÿH‰ß1Ûè2þÿéýÿÿè;þÿH…À„ýýÿÿéþÿÿfDH-~¾%jº]Çɠ(]H‰¶ (Ç´ (%jéFýÿÿ€I‹E L‰÷H‰D$è4þÿI‰Çé,ÿÿÿHT$L‰áL‰÷LO€H5ž:(è)×þÿ…À‰½þÿÿH¶}¾ÈiÇW (YH‰D (ÇB (Èié&ûÿÿDH;R&tL‰÷è9þÿ…À„Ÿè2:þÿH…À…9ýÿÿH‹²Q&H5ø~H‹8èƒ5þÿéýÿÿfDHƒìH‹Q&H
Ö}H5G€jL
8A¸H“H‹81Àè9þÿH}Y^H‰ŸŸ(¾¾iÇœŸ(YÇŽŸ(¾iérúÿÿM‹eéôùÿÿL‰÷èP4þÿI‰ÇH…À„MÿÿÿH‹@L‹5éQ&L9ðu7@ö€³twL‰ÿè?0þÿHcÐA‰ÆH9Ðu1Iƒ/…úÿÿL‰ÿèB0þÿé€úÿÿL‰ÿèUÕþÿI‰ÇH…À„9üÿÿH‹@ë³HƒøÿtdH‹®Q&H5O‰H‹8èw4þÿIƒ/…
üÿÿL‰ÿèõ/þÿéüÿÿH;!Q&tL‰ÿè¿7þÿ…Àt.èÖ8þÿH…ÀuÊH‹ZP&H5 }H‹8è+4þÿë²è´8þÿH…Àt’ë¦L‰ÿèe3þÿI‰ÅH…ÀtÂL9pu8I‹Eö€³tbL‰ïèb/þÿHcÈA‰ÆH9Èu-Iƒm…ÿÿÿL‰ïèd/þÿéÿÿÿH‰ÇèwÔþÿI‰ÅH…Àu¸éCÿÿÿHƒÀtAH‹ÕP&H5vˆAƒÎÿH‹8èš3þÿë±H;YP&tL‰ïè÷6þÿ…Àtè8þÿH…ÀtfAƒÎÿëŒèþ7þÿH…ÀtµëîL‰ïè¯2þÿH‰ÂH…ÀtÔL9pu,H‰×H‰T$è4sÿÿH‹T$A‰ÆHƒ*…KÿÿÿH‰×èº.þÿé>ÿÿÿH‰ÇèÍÓþÿH‰ÂH…ÀuÄëšH‹,O&H5r|H‹8èý2þÿ낐f.„Hƒìè7÷ÿÿH…Àt(H‹+(HǀpH‰PH‹EP&HƒH‰@HƒÄÃDAWAVAUATUSHƒì8H‹P&H‹LŽ(H‰|$H‹nH‰\$H‰D$H‰\$ H…Ò…CHƒý„~'Hƒý„Hƒý…“L‹n0H‹F(L‹v ëDI‰ÝI‰ÞH…í…qH‰ƿ1ÀH‹-Xœ(èë5þÿI‰ÇH…À„1ÒH‰ïH‰Æè‚3þÿIƒ/H‰Å„H…í„ìL‹=í‘(H‹=~œ(L‰þèÆ.þÿI‰ÄH…À„
HƒH‹5ǔ(L‰çè·7þÿI‰ÇH…À„;Iƒ,$„€ºL‰þH‰ïè 7þÿI‰ÄH…À„DIƒ/„úL;%³O&”ÀL;%ñN&”ÂÂu	I9Ü…ID¶øIƒ,$„
E…ÿ„H‹D$M‰èL‰òH‹=/O&L‹ ØHp(Iƒ$L‰áÿ¾š(H…À„Iƒ,$„’Hƒm„SHƒÄ8[]A\A]A^A_ÄL‰ÿèh,þÿéÞþÿÿI‰Ýéyþÿÿ„H…íH/yI‰èH
yHùzHIÈHƒìH‹¶L&IÁø?UI÷ÐH5o{H‹8L
_|Aƒà1ÀèÂ4þÿHx¾
Çؚ(šÇʚ(
H‰»š(XZH
òwºšH=ފèўþÿHƒÄ81À[]A\A]A^A_ÃL‰çè¨+þÿésþÿÿL‰çè8.þÿA‰DžÀ‰¨þÿÿH¦wÇhš(ÎH‰Uš(ÇSš(:Iƒ,$„¨‹5Bš(‹@š(H‹
-š(H=^ŠèQžþÿ1ÀHƒm…­þÿÿH‰ïH‰D$è'+þÿH‹D$HƒÄ8[]A\A]A^A_ÃL‰ÿè+þÿéùýÿÿL‰çH‰D$èó*þÿH‹D$éWþÿÿf„I‰Ýéýüÿÿ„L‹%A(H‹=ҙ(L‰æè,þÿI‰ÇH…À„îHƒH‹5#’(L‰ÿè5þÿI‰ÄH…À„Iƒ/„5ºL‰æH‰ïèu4þÿI‰ÇH…À„)Iƒ,$„.L;=M&”ÀL;=EL&”ÂÂu	I9ß…­D¶àIƒ/„E…ä„H‹D$M‰èL‰òH‹=\K&L‹¸ØHp(IƒL‰ùÿ˜(H…À„¼Iƒ/…WýÿÿL‰ÿH‰D$èÜ)þÿH‹D$é@ýÿÿfL‰çèÈ)þÿééüÿÿI‰ÕHƒý„ÓŽHƒýtHƒý…MýÿÿH‹F0H‰D$ H‹F(L‰ïH‰D$H‹F H‰D$èê+þÿI‰ÆHƒý„ƒHƒý…#M…ö~*H‹5W(L‰ïè)þÿH…À„6H‰D$ IƒîM…ö$L‹t$H‹D$L‹l$ é_ûÿÿH…í…ÇüÿÿH‰×è+þÿI‰ÆM…ö~ÓH‹50‹(L‰ïè¸(þÿH…ÀtH‰D$IƒîM…ö~±H‹5æ(L‰ïè–(þÿH…À„oÿÿÿH‰D$Iƒîé\ÿÿÿ€L‰çè°(þÿ‹5’—(‹—(H‹
}—(éKýÿÿ„H
©tºÍ¾'Ça—(ÍH=†‡H‰
G—(ÇE—('èh›þÿ1ÀéÊûÿÿèû*þÿL‰ÿèã™þÿI‰ÄH…À…áúÿÿH
PtºÎ¾3Ç—(ÎH‰
õ–(Çó–(3é¹üÿÿfDHtÇۖ(ÎH‰Ȗ(ÇƖ(5énüÿÿf„HésÇ«–(ÎH‰˜–(Ç––(8Iƒ/…DüÿÿL‰ÿèœ'þÿé7üÿÿ€L‰ÿè(*þÿA‰ąÀ‰DýÿÿH–sÇX–(ÐH‰E–(ÇC–(fë«f„L‰ÿèH'þÿé¾üÿÿH…í…úýÿÿé&þÿÿfL‰çè('þÿéÅüÿÿL‰ÿè'þÿéäüÿÿH)sÇë•(ÏH‰ؕ(Ç֕(Hé~ûÿÿf„H‹F H‰×H‰D$è?)þÿI‰ÆéÝýÿÿ€èk)þÿL‰çèS˜þÿI‰ÇH…À…ýûÿÿH
ÀrºÐ¾_Çx•(ÐH‰
e•(Çc•(_é)ûÿÿfDH‰rÇK•(ÐH‰8•(Ç6•(aé›þÿÿf„HYrÇ•(ÐH‰•(Ç•(dé®úÿÿf„H‹=q(H9ß„§H‰ïè+þÿ…À…€H‹=Q(H‰îè!0þÿI‰ÄM…䄌L‰æ¿1ÀL‹-ì’(èÿ-þÿH‰ÃH…À„1ÒL‰ïH‰Æè–+þÿHƒ+I‰Å„õI‹$HƒèM…í„ñI‰$H…À„ÊL‰ïè)ÿÿIƒm„ªH
qºÓ¾“Ç9”(ÓH‰
&”(Ç$”(“éêùÿÿHPqÇ”(ÑH‰ÿ“(Çý“(tébýÿÿHT$H‰éL‰ïLÂsH5‡'(è’Êþÿ…À‰¶ûÿÿHq¾öÇ(šH‰­“(Ç«“(öéåøÿÿL‰ïè¶$þÿéIÿÿÿL‰çè©$þÿé)ÿÿÿH‰ßèœ$þÿéþþÿÿH°pÇr“(ÓH‰_“(Ç]“(ŽéùÿÿH‰ïèH,þÿH‹=Ɏ(…À…iþÿÿH‰îèq&þÿI‰ÄékþÿÿH
bpºÓ¾ŒÇ“(ÓH‰
“(Ç“(ŒéËøÿÿ„AWAVAUATUSHƒì8H‹ëE&H‹„(H‰|$H‹nH‰\$H‰D$H‰\$ H…Ò…CHƒý„~'Hƒý„Hƒý…“L‹n0H‹F(L‹v ëDI‰ÝI‰ÞH…í…qH‰ƿ1ÀH‹-(’(è»+þÿI‰ÇH…À„1ÒH‰ïH‰ÆèR)þÿIƒ/H‰Å„H…í„ìL‹=½‡(H‹=N’(L‰þè–$þÿI‰ÄH…À„
HƒH‹5—Š(L‰çè‡-þÿI‰ÇH…À„;Iƒ,$„€ºL‰þH‰ïèð,þÿI‰ÄH…À„DIƒ/„úL;%ƒE&”ÀL;%ÁD&”ÂÂu	I9Ü…ID¶øIƒ,$„
E…ÿ„H‹D$M‰èL‰òH‹=OE&L‹ ØHp(Iƒ$L‰áÿސ(H…À„Iƒ,$„’Hƒm„SHƒÄ8[]A\A]A^A_ÄL‰ÿè8"þÿéÞþÿÿI‰Ýéyþÿÿ„H…íHÿnI‰èH
ìnHÐpHIÈHƒìH‹†B&IÁø?UI÷ÐH5?qH‹8L
/rAƒà1Àè’*þÿHëm¾•&Ǩ(dÇš(•&H‰‹(XZH
ÂmºdH=ހ衔þÿHƒÄ81À[]A\A]A^A_ÃL‰çèx!þÿésþÿÿL‰çè$þÿA‰DžÀ‰¨þÿÿHvmÇ8(£H‰%(Ç#(Å&Iƒ,$„¨‹5(‹(H‹
ý(H=^€è!”þÿ1ÀHƒm…­þÿÿH‰ïH‰D$è÷ þÿH‹D$HƒÄ8[]A\A]A^A_ÃL‰ÿèØ þÿéùýÿÿL‰çH‰D$èà þÿH‹D$éWþÿÿf„I‰Ýéýüÿÿ„L‹%…(H‹=¢(L‰æèê!þÿI‰ÇH…À„îHƒH‹5ó‡(L‰ÿèÛ*þÿI‰ÄH…À„Iƒ/„5ºL‰æH‰ïèE*þÿI‰ÇH…À„)Iƒ,$„.L;=×B&”ÀL;=B&”ÂÂu	I9ß…­D¶àIƒ/„E…ä„H‹D$M‰èL‰òH‹=\B&L‹¸ØHp(IƒL‰ùÿ܍(H…À„¼Iƒ/…WýÿÿL‰ÿH‰D$è¬þÿH‹D$é@ýÿÿfL‰çè˜þÿééüÿÿI‰ÕHƒý„ÓŽHƒýtHƒý…MýÿÿH‹F0H‰D$ H‹F(L‰ïH‰D$H‹F H‰D$èº!þÿI‰ÆHƒý„ƒHƒý…#M…ö~*H‹5'ƒ(L‰ïèßþÿH…À„6H‰D$ IƒîM…ö$L‹t$H‹D$L‹l$ é_ûÿÿH…í…ÇüÿÿH‰×èO!þÿI‰ÆM…ö~ÓH‹5(L‰ïèˆþÿH…ÀtH‰D$IƒîM…ö~±H‹5¶†(L‰ïèfþÿH…À„oÿÿÿH‰D$Iƒîé\ÿÿÿ€L‰çè€þÿ‹5b(‹`(H‹
M(éKýÿÿ„H
yjº¢¾²&Ç1(¢H=†}H‰
(Ǎ(²&è8‘þÿ1ÀéÊûÿÿèË þÿL‰ÿ賏þÿI‰ÄH…À…áúÿÿH
 jº£¾¾&Ç،(£H‰
Ō(ÇÌ(¾&é¹üÿÿfDHéiÇ«Œ(£H‰˜Œ(Ç–Œ(À&énüÿÿf„H¹iÇ{Œ(£H‰hŒ(ÇfŒ(Ã&Iƒ/…DüÿÿL‰ÿèlþÿé7üÿÿ€L‰ÿèøþÿA‰ąÀ‰DýÿÿHfiÇ(Œ(¥H‰Œ(ÇŒ(ñ&ë«f„L‰ÿèþÿé¾üÿÿH…í…úýÿÿé&þÿÿfL‰çèøþÿéÅüÿÿL‰ÿèèþÿéäüÿÿHùhÇ»‹(¤H‰¨‹(Ǧ‹(Ó&é~ûÿÿf„H‹F H‰×H‰D$èþÿI‰ÆéÝýÿÿ€è;þÿL‰çè#ŽþÿI‰ÇH…À…ýûÿÿH
hº¥¾ê&ÇH‹(¥H‰
5‹(Ç3‹(ê&é)ûÿÿfDHYhÇ‹(¥H‰‹(Ç‹(ì&é›þÿÿf„H)hÇëŠ(¥H‰؊(Ç֊(ï&é®úÿÿf„H‹=1†(H9ß„§H‰ïèØ þÿ…À…€H‹=†(H‰îèñ%þÿI‰ÄM…䄌L‰æ¿1ÀL‹-¼ˆ(èÏ#þÿH‰ÃH…À„1ÒL‰ïH‰Æèf!þÿHƒ+I‰Å„õI‹$HƒèM…í„ñI‰$H…À„ÊL‰ïèãÿÿIƒm„ªH
Qgº¨¾'Ç	Š(¨H‰
ö‰(Çô‰('éêùÿÿH gÇâ‰(¦H‰ω(Ç͉(ÿ&ébýÿÿHT$H‰éL‰ïL™iH5—(èbÀþÿ…À‰¶ûÿÿHÓf¾&ǐ‰(dH‰}‰(Ç{‰(&éåøÿÿL‰ïè†þÿéIÿÿÿL‰çèyþÿé)ÿÿÿH‰ßèlþÿéþþÿÿH€fÇB‰(¨H‰/‰(Ç-‰('éùÿÿH‰ïè"þÿH‹=‰„(…À…iþÿÿH‰îèAþÿI‰ÄékþÿÿH
2fº¨¾'Çêˆ(¨H‰
׈(ÇՈ('éËøÿÿ„AWAVAUATUSH‰óHƒì8H‹nHÇD$HÇD$HÇD$ H…Ò…oHƒý…UL‹v H‹n(H‹F0L‰t$H‰l$H‰D$ H‹Eö€³„©H‰ïèIþÿI‰ÄIƒüÿ„L‹l$ Iü1‰…H‹5~(H‹=‡(è§#þÿH‰ÃH…À„{L‰ö¿1Àè\!þÿI‰ÄH…À„è1ÒH‰ÆH‰ßèóþÿIƒ,$H‰Å„­H‹HƒèH…í„ÄH‰H…À„L;-Â:&t/I‹EH;Ý9&…¿L‰îH‰ïè_ÿÿH…À„#Hƒ(„H‹UH‰èH‰UH…Ò„
HƒÄ8[]A\A]A^A_ÃL9àtH‰ßèQ þÿ…À„Š	èd!þÿH…À„õ	Hƒ+u
H‰ßèMþÿDèC!þÿIÇÄÿÿÿÿH…À…Ü¿èy!þÿH‰ÃH…À„­H‹Ƃ(1öH‰ßHƒH‹¶‚(èþÿH‹=²{(1ÒH‰Þèp‡þÿI‰ÅH…À„´Hƒ+„H‹5ƒ‚(L‰ï苊þÿH‰ÅH…À„'Hƒ8„Iƒm„úL‰çè‚þÿH‰ÃH…À„>H‹=¿‚(H‰ÆèÇ!þÿI‰ÄH…À„ËHƒ+„qHƒEL‰æ¿1ÀèþÿH‰ÃH…À„I1ÒH‰ÆH‰ïè4þÿHƒ+I‰Å„GIƒ,$„\H‹EHPÿM…í„&H‰UH…Ò„.L‰ïè¦ÿÿIƒm„;H0c¾–‘Çх(H‰¾…(Ǽ…(–‘H
	cºH=Avè̉þÿHƒmuH‰ïè­þÿ1ÀHƒÄ8[]A\A]A^A_Ã@IƒmH
ÈbH‰
e…(Çg…(ÇY…(p‘„³º¾p‘H=Úuèe‰þÿ1Àë¦H‹kDHƒìH‹Í6&HeH5‡eUL
yfA¸H
ÄcH‹81ÀèÐþÿHEb¾=‘Çæ„(Ç؄(=‘H‰Ʉ(XZH
bºH=Tuè߈þÿ1Àéÿÿÿ„H‰ßè¸þÿéÙýÿÿL‰ïè¨þÿéùýÿÿH‰Çè˜þÿéÞýÿÿH‰ÇèˆþÿéâüÿÿH‰ïH‰D$èsþÿH‹D$HƒÄ8[]A\A]A^A_ÀH‰ßèPþÿérüÿÿL‰çè@þÿéFüÿÿI‰ÔHƒý„Ž¥HƒýtHƒý…ÍþÿÿH‹F0H‰D$ H‹C(L‰çH‰D$H‹C H‰D$èbþÿI‰ÅHƒý„šHƒý„±H…ítjM…íMH‹l$L‹t$é<ûÿÿfDL‰ïè°þÿH‹
‰ƒ(‹ƒ(H=t‹5~ƒ(衇þÿ1Àéßýÿÿf.„H…í…/þÿÿH‰×èßþÿI‰ÅH‹5¥w(L‰çIƒíèþÿH‰D$H…À„úýÿÿH‹5¤w(L‰çèüþÿH‰D$H…À„tIƒíH‹5kw(L‰çèÛþÿH‰D$ H…À„ìIƒíé.ÿÿÿ@H‰ßèøþÿé‚üÿÿH‰ßèèþÿé¬üÿÿH‰ïèØþÿéÅüÿÿL‰çèÈþÿé—üÿÿL‰ïè¸þÿé¸üÿÿHå_Ç‹‚(H‰x‚(H‹Çs‚(€‘HPÿH‰H…Ò„ŠH‹
T‚(‹Z‚(H=çr‹5I‚(èl†þÿé›üÿÿHŒ_¾8‘Ç-‚(H‰‚(Ç‚(8‘éDýÿÿH‹HƒèH
V_Çü(H‰
é(Çç(¶‘H‰H…À…Cþÿÿ1íH‰ßèéþÿH‹
(‹ȁ(H=Ur‹5·(èڅþÿH…í…üÿÿ1Àéüÿÿf.„H
å^º¾¨‘ǁ(H=rH‰
g(Çe(¨‘舅þÿ1ÀéÆûÿÿH
¥^º¾h‘ÇA(H=ÎqH‰
'(Ç%(h‘èH…þÿ1Àé†ûÿÿHe^ǁ(H‰ø€(H‹Çó€(m‘HƒèéÿÿÿfH‹H H‹…2&H5˜^Hô_H‹81ÀèþÿH^¾Αdz€(	H‰ €(Çž€(Αº	H
æ]H=#q讄þÿH‹EHPÿ1Àéõøÿÿ€H½]¾ϑÇ^€(	H‰K€(ÇI€(ϑë©€H]¾~‘Ç.€(H‰€(Ç€(~‘éXúÿÿ@H‹F H‰×H‰D$è‡þÿI‰ÅéÄüÿÿ€Iƒ,$„ÏH‹EHPÿH*]H‰ëÇÍ(H‰º(Ǹ(‘‘éDýÿÿL‹%ù1&L9àtH‰ïè”þÿ…À„Zè§þÿH…À…VøÿÿH‹'1&H5m^H‹8èøþÿé;øÿÿHT$H‰éL‰çLI_H5·(è¶þÿ…À‰ûÿÿH\¾.‘Ç0(H‰(Ç(.‘éGúÿÿL‰çè&þÿé$ÿÿÿHƒìH‹¦0&H
¹]H5`_jL
Q`A¸HÍ^H‹81Àè¨þÿH\Y^H‰¸~(¾*‘ǵ~(ǧ~(*‘éÓùÿÿHƒìH‹?0&A¸H5ú^jL
ë_H
<]H‹8Hc^1ÀèAþÿH¶[_¾$‘H‰M~(AXÇM~(Ç?~($‘ékùÿÿH‰ïè
þÿH‰ÃH…À„’þÿÿH‹@L‹-£0&L9èu5fDö€³„öÿÿH‰ßèóþÿI‰ÄHƒ+… õÿÿH‰ßèþþÿé“õÿÿH‰ßè´þÿH‰ÃH…À„öÿÿH‹@ë·H‰ßè—þÿH‰ÅH…À„böÿÿL9hu)H‹Eö€³t1H‰ïèþÿI‰ÄHƒmu–H‰ïèžþÿëŒH‰Ç贳þÿH‰ÅH…ÀuÇé,öÿÿL9àtH‰ïèZþÿ…Àt+èqþÿH…ÀtkIƒÌÿë¹H‹ï.&H55\H‹8èÀþÿéðõÿÿH‰ïèþÿI‰ÇH…ÀtÅL9hu"L‰ÿèÍQÿÿIƒ/I‰Ä…sÿÿÿL‰ÿèþÿéfÿÿÿH‰Çè+³þÿI‰ÇH…ÀuÎë•H‹Š.&H5Ð[H‹8è[þÿézÿÿÿfDAWI‰÷AVAUATUSHƒì8H‹¸/&H‹5Ém(H‰<$I‹oHÇD$H‰\$H‰t$ H‰\$(H…Ò…èHƒý„Ž~,Hƒý„ÂHƒý…ÈM‹o8I‹w0M‹w(ëf.„I‰ÝI‰ÞHƒý… I‹G H‰D$¿1ÀH‹-á{(ètþÿI‰ÇH…À„@1ÒH‰ïH‰ÆèþÿIƒ/H‰Å„>H…í„L‹=vq(H‹=|(L‰þèOþÿI‰ÄH…À„CHƒH‹5Pt(L‰çè@þÿI‰ÇH…À„tIƒ,$„	ºL‰þH‰ïè©þÿI‰ÄH…À„}Iƒ/„ƒL;%</&”ÀL;%z.&”ÂÂu	I9Ü…ÒD¶øIƒ,$„ƒE…ÿ„jH‹$HƒìH‹Ól(A¸H‹=-&L‹¡ØHq(Iƒ$H‹?v(L‰áAUjRPjRL‰òPjÿ5on(L‹L$Xÿz(HƒÄPH…À„÷Iƒ,$„ìHƒm„­HƒÄ8[]A\A]A^A_ÃfL‰ÿèÈþÿéµþÿÿI‰ÝéDþÿÿ„L‰çè¨þÿéêþÿÿL‰çè8þÿA‰DžÀ‰ÿÿÿH¦WÇhz(^H‰Uz(ÇSz(L(Iƒ,$„‹5Bz(H‹
3z(‹9z(H=îjèQ~þÿ1ÀHƒm…SÿÿÿH‰ïH‰$è(þÿH‹$HƒÄ8[]A\A]A^A_ÃDL‰ÿèþÿépþÿÿL‰çH‰$èô
þÿH‹$éÿþÿÿL‰ïèP
þÿI‰ÆH‹5>m(L‰ïIƒîèŠ
þÿH‰D$H…À…0I‹o„H…íHWH
WHOÈŸÀHãZ¶ÀL
“ULOÊLD@HƒìH‹+&UHZYH5¼YH‹81ÀèþÿHsV¾(Ç0y(Ç"y((H‰y(XZH
JVºH=Æiè)}þÿHƒÄ81À[]A\A]A^A_ÄI‰Ýéˆüÿÿ„L‹%an(H‹=òx(L‰æè:þÿI‰ÇH…À„þHƒH‹5Cq(L‰ÿè+þÿI‰ÄH…À„/Iƒ/„uºL‰æH‰ïè•þÿI‰ÇH…À„9Iƒ,$„^L;=',&”ÀL;=e+&”ÂÂu	I9ß…}D¶àIƒ/„?E…ä„&H‹$L‰òH‹=ˆ*&L‹¸ØHp(IƒL‰ùL‹
k(AUjL‹D$ÿw(Y^H…À„¾Iƒ/…ýÿÿL‰ÿH‰$èïþÿH‹$éúüÿÿfDL‰çèØþÿépüÿÿL‰çèÈþÿ‹5ªw(H‹
›w(‹¡w(écýÿÿHƒý‡öýÿÿI‰ÕH dHcªHÐÿàI‹G8H‰D$(I‹G0H‰D$ I‹G(L‰ïH‰D$I‹G H‰D$èÔ
þÿI‰ÆHƒý„Ë~]Hƒý„åHƒýu&M…ö~*H‹59l(L‰ïèñþÿH…À„H‰D$(IƒîM…ööH‹D$L‹t$H‹t$ L‹l$(H‰D$é±úÿÿH…íuÔéýÿÿfDH
Tº]¾9(ǹv(]H=ngH‰
Ÿv(ǝv(9(èÀzþÿ1ÀéÈûÿÿf„èK
þÿL‰ÿè3yþÿI‰ÄH…À…¨úÿÿH
 Sº^¾E(ÇXv(^H‰
Ev(ÇCv(E(é	üÿÿfDHiSÇ+v(^H‰v(Çv(G(é¾ûÿÿf„H9SÇûu(^H‰èu(Çæu(J(Iƒ/…”ûÿÿL‰ÿèìþÿé‡ûÿÿ€L‰ÿèx	þÿA‰ąÀ‰týÿÿHæRǨu(dH‰•u(Ç“u(€(ë«f„I‹G L‰ïH‰D$èÿþÿI‰ÆM…öŽmþÿÿH‹5¬h(L‰ïè4þÿH…ÀtH‰D$IƒîM…öŽGþÿÿH‹5^n(L‰ïèþÿH…À„þÿÿH‰D$ Iƒîéòýÿÿ€L‰ÿè(þÿé~üÿÿL‰çèþÿé•üÿÿL‰ÿèþÿé´üÿÿHRÇÛt(_H‰Èt(ÇÆt(b(énúÿÿf„è{þÿL‰çècwþÿI‰ÇH…À…íûÿÿH
ÐQºd¾y(Ljt(dH‰
ut(Çst(y(é9úÿÿfDH™QÇ[t(dH‰Ht(ÇFt({(é[þÿÿf„HiQÇ+t(dH‰t(Çt(~(é¾ùÿÿf„H‹=io(H9ß„§H‰ïè
þÿ…À…€H‹=Io(H‰îè1þÿI‰ÄM…䄌L‰æ¿1ÀL‹-üq(è
þÿH‰ÃH…À„1ÒL‰ïH‰Æè¦
þÿHƒ+I‰Å„õI‹$HƒèM…í„ñI‰$H…À„ÊL‰ïè#ÿÿIƒm„ªH
‘Pºi¾µ(ÇIs(iH‰
6s(Ç4s(µ(éúøÿÿH`PÇ"s(eH‰s(Ç
s(–(é"ýÿÿHT$H‰éL‰ïLýRH5(袩þÿ…À‰äûÿÿHP¾(ÇÐr(H‰½r(Ç»r((éùÿÿL‰ïèÆþÿéIÿÿÿL‰çè¹þÿé)ÿÿÿH‰ßè¬þÿéþþÿÿHÀOÇ‚r(iH‰or(Çmr(°(éøÿÿH‰ïèXþÿH‹=Ám(…À…iþÿÿH‰îèþÿI‰ÄékþÿÿH
rOºi¾®(Ç*r(iH‰
r(Çr(®(éÛ÷ÿÿ„AWAVAUATI‰ÔUH‰õSHìÈH‹ò$&H‰<$H9Ú…UH´$ðL‰çèÅ]ÿÿI‰ÇH…À„ÉH9Ý…Ht$ H‰ïè£]ÿÿI‰ÅH…À„wH‹5˜g(L‰çè
þÿI‰ÆH…À„”H‹@ö€³„»L‰÷ècþÿHcðA‰ÄH9ð…|Aƒüÿ„âIƒ.„ H‹5Ag(H‰ïèÁþÿI‰ÆH…À„H‹@ö€³„dL‰÷èþÿHcð‰ÅH9ð…ƒýÿ„Iƒ.„[H‹$‰îD‰狐dAÿµÈAÿµÀAÿµ¸Aÿµ°Aÿµ¨Aÿµ Aÿµ˜AÿµAÿµˆAÿµ€AÿuxAÿupAÿuhAÿu`AÿuXAÿuPAÿuHAÿu@Aÿu8Aÿu0Aÿu(Aÿu AÿuAÿuAÿuAÿuAÿ·ÈAÿ·ÀAÿ·¸Aÿ·°Aÿ·¨Aÿ· Aÿ·˜Aÿ·Aÿ·ˆAÿ·€AÿwxAÿwpAÿwhAÿw`AÿwXAÿwPAÿwHAÿw@Aÿw8Aÿw0Aÿw(Aÿw AÿwAÿwAÿwAÿ7èœkÿÿHĠƒøÿ„”HƒH‰ØHÄÈ[]A\A]A^A_ÃL‰÷è¸þÿéSþÿÿL‰÷è¨þÿé˜þÿÿL‹5an(M…ö„µH‹zI9þ„ŽýÿÿL‰öèÛ	þÿ…À…~ýÿÿI‹D$I‹N H5£[H‹P H‹è &H‹81Àè	þÿfDH
}L¾ýnº½Ço(½H‰
o(Ço(ýnë:f.„H
EL¾þnº½Çán(½H‰
În(ÇÌn(þn@H=¹_èärþÿ1ÀéøþÿÿDL‹5‰m(M…ö„øH‹}I9þ„ÛüÿÿL‰öè	þÿ…À…ËüÿÿH‹EI‹N H5ÌZH‹P H‹ &H‹81Àè7þÿH
¬K¾oº¾ÇHn(¾H‰
5n(Ç3n(oéfÿÿÿfDH
uK¾oº¾Çn(¾H‰
þm(Çüm(oé/ÿÿÿ€H
=K¾oº¿ÇÙm(¿H‰
Æm(ÇÄm(oé÷þÿÿ€H‹
 &H‰L$H9ÈtL‰÷è—þÿ…À„0èªþÿH…ÀuH‹.&H5tLH‹8èÿþÿ€èƒþÿA¼ÿÿÿÿH…À„
üÿÿH©JÇOm(¿H‰<m(Ç:m(oIƒ.„`H‹
!m(‹'m(‹5m(éPþÿÿH
eJ¾oº¿Çm(¿H‰
îl(Çìl(oéþÿÿ€Hƒøÿ„IH‹&H5 WH‹8èHþÿéKÿÿÿH‹
&H‰L$H9ÈtL‰÷è—þÿ…À„ûèªþÿH…ÀuH‹.&H5tKH‹8èÿþÿ€èƒþÿ½ÿÿÿÿH…À„`ûÿÿHªIÇPl(¿H‰=l(Ç;l(oéüþÿÿfDH
}I¾!oº½Çl(½H‰
l(Çl(!oé7ýÿÿ€HƒøÿtxH‹›&H5<VH‹8èdþÿégÿÿÿ€L‰÷èàüýÿé“þÿÿH‹T&H5ìJH‹8è5þÿéxüÿÿH‹9&H5ÑJH‹8èþÿé.ýÿÿè þÿH…À„©þÿÿé
þÿÿèþÿH…À„zÿÿÿé÷þÿÿL‰÷è7þÿH‰ÁH…À„¼ýÿÿH‹Ô&H‹@H‰T$H9ÐuGfDö€³„VH‰ÏH‰L$èüýÿH‹L$HcðA‰ÄH9ðu1Hƒ)…¨ùÿÿH‰Ïèüýÿé›ùÿÿH‰Ïè'¡þÿH‰ÁH…À„sýÿÿH‹@ë¥Hƒøÿ„WH‹|&H‰L$H5UH‹8è@þÿH‹L$Hƒ)…9ýÿÿH‰Ïè¹ûýÿé,ýÿÿL‰÷èlÿýÿI‰ÁH…À„ñýÿÿH‹
	&H‹@H‰L$H9ÈuCö€³„!L‰ÏL‰L$èNûýÿL‹L$Hcð‰ÅH9ðu1Iƒ)…7ùÿÿL‰ÏèMûýÿé*ùÿÿL‰Ïè` þÿI‰ÁH…À„¬ýÿÿH‹@ë¦Hƒøÿ„­H‹µ&L‰L$H5QTH‹8èyÿýÿL‹L$Iƒ)…rýÿÿL‰ÏèòúýÿéeýÿÿH;D$tH‰ÏH‰L$è¹þÿH‹L$…À„ËH‰L$èÂþÿH‹L$H…À…éþÿÿH‹=&H5ƒHH‹8èÿýÿH‹L$éÉþÿÿH‰L$èŠþÿH‹L$H…À„‘þÿÿé¬þÿÿL‰L$èmþÿL‹L$H…À„;ÿÿÿéVÿÿÿH;D$tL‰ÏL‰L$è&þÿL‹L$…À„	L‰L$è/þÿL‹L$H…À…ÿÿÿH‹ª&H5ðGH‹8è{þýÿL‹L$éýþÿÿH‰Ïè¹ýýÿH‹L$H…ÀI‰Â„ÿÿÿH‹D$I9BuYI‹Bö€³„ÀL‰×H‰L$L‰T$èšùýÿL‹T$H‹L$HcðA‰ÄH9ðu;Iƒ*…uýÿÿL‰×H‰L$èŽùýÿH‹L$é^ýÿÿL‰×蜞þÿH‹L$H…ÀI‰Âu’éŸýÿÿHƒÀ„ÊL‰T$H‹ì&H5RH‰L$H‹8AƒÌÿè¬ýýÿH‹L$L‹T$ë‹L‰ÏèèüýÿL‹L$H…ÀI‰Â„ÞþÿÿH‹D$I9BuXI‹Bö€³„šL‰×L‰L$L‰T$èÉøýÿL‹T$L‹L$Hcð‰ÅH9ðu;Iƒ*…lýÿÿL‰×L‰L$è¾øýÿL‹L$éUýÿÿL‰×è̝þÿL‹L$H…ÀI‰Âu“é–ýÿÿHƒÀ„ÖL‰T$H‹&H5½QL‰L$H‹8ƒÍÿèÝüýÿL‹L$L‹T$ëŒH;D$t$L‰×L‰L$L‰T$è(þÿL‹T$L‹L$…À„}L‰T$L‰L$è'þÿL‹L$L‹T$H…À„HƒÍÿé7ÿÿÿH;D$t L‰×H‰L$L‰T$èÓÿýÿL‹T$H‹L$…ÀtsL‰T$H‰L$èÖþÿH‹L$L‹T$H…À„¯AƒÌÿéþÿÿL‰T$L‰L$è«þÿL‹L$L‹T$H…À„ÿÿÿë‚L‰T$H‰L$è‡þÿH‹L$L‹T$H…À„þÿÿë¯L‰×è*ûýÿL‹T$H‹L$H…ÀH‰Â„oÿÿÿH‹D$H9BuTH‰×L‰T$H‰L$H‰T$è’;ÿÿH‹T$H‹L$A‰ÄL‹T$Hƒ*…qýÿÿH‰×L‰T$H‰L$è÷ýÿL‹T$H‹L$éPýÿÿH‰×L‰T$H‰L$èœþÿH‹L$L‹T$H…ÀH‰Âuˆé	ÿÿÿH5¢DH‹N&éAþÿÿL‰×èqúýÿL‹T$L‹L$H…ÀH‰Â„eþÿÿH‹D$H9BuSH‰×L‰T$L‰L$H‰T$èÙ:ÿÿH‹T$L‹L$‰ÅL‹T$Hƒ*…‰ýÿÿH‰×L‰T$L‰L$èLöýÿL‹T$L‹L$éhýÿÿH‰×L‰T$L‰L$èK›þÿL‹L$L‹T$H…ÀH‰Âu‰éþÿÿH5êCH‹–&é¹üÿÿAWAVAUATUSH‰óHƒìXH‹Ø&H‹nH‰|$HÇD$0HÇD$8HÇD$@H‰D$HH…Ò…&
Hƒý„\Hƒý…²H‹F8H‰D$L‹{0L‹s(L‹k H‹¦d(¿H‹˜(ÿhE1É1É1ÒA¸H‰ÆL‰ïÿÓH‰ÅH…À„³
Hƒ8„H‹bd(¿H‹˜(ÿhE1É1É1ÒA¸H‰ÆL‰÷ÿÓH‰ÃH…À„×Hƒ8„ÝH‹d(¿L‹ (ÿhE1É1É1ÒA¸H‰ÆL‰ÿAÿÔI‰ÄH…À„z
Hƒ8„x‹C ;E „œL‹5%Y(H‹=¶c(L‰öèþõýÿI‰ÅH…À„‚HƒH‹57^(L‰ïèïþýÿI‰ÆH…À„Ó
Iƒm„
L‹-ÙX(H‹=jc(L‰îè²õýÿI‰ÂH…À„žHƒH‹5S[(L‰×L‰T$èžþýÿL‹T$H…ÀI‰Ç„íIƒ*„ó	¿èéúýÿH‰ÁH…À„uHƒE1ÒH‰ÆL‰ÿH‰h HƒH‰X(H‰D$èÊùýÿH‹L$H…ÀI‰À„ñHƒ)„¯Iƒ/„ÅL‰Æ1?L‰D$èáûýÿL‹D$H…ÀI‰Ç„ 1ÒH‰ÆL‰÷èsùýÿIƒ/L‹D$I‰Å„áIƒ(„ÇI‹HƒèM…í„øI‰H…À„›L;-ô&”ÀL;-2&”ÂÂu
L;-&…	D¶ðIƒm„ÿE…ö…L‹-W(H‹=b(L‰îèXôýÿI‰ÆH…À„dHƒH‹5‘\(L‰÷èIýýÿH‰ÁH…À„…Iƒ.„“L‹-4W(H‹=Åa(H‰L$L‰îèôýÿH‹L$H…ÀI‰Ç„”HƒH‹5¤Y(L‰ÿH‰L$èïüýÿH‹L$H…ÀI‰Æ„ÂIƒ/„	¿H‰L$è5ùýÿH‹L$H…À„øHƒ1ÒH‰ÆL‰÷H‰X Iƒ$L‰`(H‰L$ H‰D$èøýÿL‹T$H‹L$ H…ÀI‰Ç„Iƒ*„_	Iƒ.„=	1ÀL‰þ¿H‰L$è!úýÿH‹L$H…ÀI‰Æ„i	1ÒH‰ÏH‰Æè³÷ýÿIƒ.H‹L$I‰Å„ÁIƒ/„—M…í„A	Hƒ)„tL;-=&”ÀL;-{&”ÂÂ…p
L;-a&„c
L‰ïèôýÿA‰ƅÀˆ¡Iƒm„ÍE…ö…(L‹5µU(H‹=F`(L‰öèŽòýÿI‰ÅH…À„aHƒH‹5ÇZ(L‰ïèûýÿI‰ÆH…À„‚Iƒm„cL‹-iU(H‹=ú_(L‰îèBòýÿH‰ÁH…À„ñHƒH‹5{X(H‰ÏH‰L$è.ûýÿH‹L$H…ÀI‰Â„Hƒ)„‰¿L‰T$èt÷ýÿL‹T$H…ÀI‰Å„HƒE1ÒL‰×H‰ÆH‰h Iƒ$L‰`(L‰T$èOöýÿL‹T$H…ÀI‰Ç„.Iƒm„ÐIƒ*„¹1ÀL‰þ¿èjøýÿH…À„U1ÒH‰ÆL‰÷H‰D$èÿõýÿH‹L$I‰ÅHƒ)„ÕIƒ/„åI‹HPÿM…í„$I‰H…Ò„¼L;-€&”ÀL;-¾&”ÂÂ…»
L;-¤&„®
L‰ïèFòýÿA‰ƅÀˆ0Iƒm„ÌE…ö…ZH‹D$HƒìI‰èH‹=Ì&L‹¨ØHp(IƒEL‹
uY(L‰éjAQATjAQSjH‹T$Xÿ2](HƒÄ@H…À…šHN;Ç^(‚
H‰ý](Çû](„4Iƒm…õL‰ïèýîýÿéèH‹k@HƒýHÎ;H
¾;HMȝÀHƒì¶ÀUHÆ=L@H‹M&H5>L
?H‹81Àèe÷ýÿH¾:¾2Ç{]($
Çm](2H‰^](XZH
•:º$
H=Nètaþÿ1ÀHƒÄX[]A\A]A^A_ÃH‹9&H‰D$馸ÿÿ€H‰Çè0îýÿéâøÿÿH‰Çè îýÿéùÿÿA;D$ …Yùÿÿ…À…QùÿÿL‰ïèýîýÿf.mbòD$‹ñL‰ÿèáîýÿf.QbòD$ ‹L‰÷èÅîýÿf.5bf(È‹;òd$f/á‡Óf/L$ ‡'òt$f.t$ ‹uH‹D$òD$òL$(L‹¸ØIƒèdìýÿòL$(H…À„	f(ÁH‰D$èGìýÿL‹T$H…ÀI‰Æ„Ö	òD$ L‰T$è&ìýÿL‹T$H…ÀI‰Å„e
H‹t$HƒìM‰ÑL‰ùH‹W(ÿ5é&A¸HƒÆ(H‹=@&jPAUjPAVjPH‹T$hL‰T$XÿÓZ(HƒÄPL‹T$H…À„‰
Iƒ/„oIƒ*„EIƒ.„#Iƒm„ÀHƒm„§Hƒ+„ºIƒ,$…þÿÿL‰çH‰D$è`ìýÿH‹D$HƒÄX[]A\A]A^A_Ã@H‰Çè@ìýÿé{÷ÿÿHQ8E1äÇ[(h
H‰ýZ(ÇûZ(O2‹öZ(H‹
ãZ(H=L‹5ÞZ(è_þÿH‹EHPÿ1ÀH‰UH…ÒuH‰ïH‰D$èÑëýÿH‹D$H…ÛtHƒ+uH‰ßH‰D$è´ëýÿH‹D$M…ä….ÿÿÿHƒÄX[]A\A]A^A_ÀHƒý‡–üÿÿI‰ÔHGHcªHÐÿàH‹F8H‰D$HH‹C0H‰D$@H‹C(L‰çH‰D$8H‹C H‰D$0è´íýÿI‰ÅHƒý„3~7Hƒý„HHƒýu0M…íLH‹D$HL‹l$0L‹t$8L‹|$@H‰D$éqõÿÿH…í„ÐM…í~ÔHT$0H‰éL‰çLÜ9H5gñ'èrþÿ…Ày²Hç6¾ø1ǤY($
H‰‘Y(ǏY(ø1é&üÿÿfH
¹6ºg
¾@2ÇqY(g
H=–JH‰
WY(ÇUY(@2èx]þÿ1ÀéÿûÿÿL‰ïèXêýÿéëõÿÿHi6Ç+Y(i
H‰Y(ÇY(^2éþÿÿf„L‰×èêýÿéöÿÿL‰ïè¨ìýÿA‰ƅÀ‰ÛöÿÿH6ÇØX({
H‰ÅX(ÇÃX(ˆ3éÆúÿÿfDH‹5ùK(L‰çèéýÿH…À„ÈþÿÿH‰D$HIƒíéµþÿÿf.„H¹5Ç{X({
H‰hX(ÇfX(C31É@Iƒm„EH…É„TýÿÿHƒ)…JýÿÿH‰ÏèRéýÿé=ýÿÿDL‰ÿH‰L$è;éýÿH‹L$éÍöÿÿL‰çè˜ëýÿI‰ÅH‹5FO(L‰çIƒíèÒèýÿH‰D$0H…À„úÿÿH‹5MN(L‰çèµèýÿH‰D$8H…À„
IƒíH‹5”K(L‰çè”èýÿH‰D$@H…À„6	Iƒíé˜ýÿÿDL‰÷H‰L$è«èýÿH‹L$é¬öÿÿL‰×H‰L$è“èýÿH‹L$éŠöÿÿf„H‹F L‰çH‰D$0èßêýÿI‰ÅécÿÿÿIƒ/„Hv4E1öÇ5W(}
H‰"W(Ç W(í3I‰ÍL‰ñéµþÿÿDL‰ïH‰L$èèýÿH‹L$é¤þÿÿH‰ÏH‰D$èèýÿL‹D$é:ôÿÿf„L‰ÿL‰D$èãçýÿL‹D$é$ôÿÿf„L‰ïH‰D$èÃçýÿH‹D$é)ûÿÿf„L‰÷è¨çýÿéXôÿÿL‰Çè˜çýÿé,ôÿÿL‰ÿèˆçýÿL‹D$é
ôÿÿfDL‰÷H‰D$èkçýÿH‹D$éÆúÿÿL‰×H‰D$èSçýÿH‹D$é¤úÿÿf„L‰ÿH‰D$L‰T$è.çýÿH‹D$L‹T$épúÿÿ€L‰ïèçýÿéôóÿÿD¶ðé§õÿÿ€…	ùÿÿèíïýÿH…À„ûøÿÿHý2Ç¿U(l
H‰¬U(ǪU(€2é­úÿÿD…åøÿÿè­ïýÿH…À„×øÿÿH½2ÇU(m
H‰lU(ÇjU(Š2émúÿÿD…¿øÿÿòD$(ègïýÿòL$(H…À„¥øÿÿHq2Ç3U(n
H‰ U(ÇU(”2é!úÿÿL‰÷H‰L$è#æýÿH‹L$éVóÿÿf„è»èýÿL‰÷è£WþÿI‰ÅH…À…iñÿÿH2ÇÒT({
H‰¿T(ǽT(A3éÀùÿÿH‹59E(H‹=úR(1Òè«ëýÿI‰ÅH…À„hH‰ÇèGéþÿIƒm„ãHµ1ÇwT(q
H‰dT(ÇbT(¬2éeùÿÿDH‹5ÑD(H‹=šR(1ÒèKëýÿI‰ÅH…À„\H‰ÇèçèþÿIƒm„àHU1ÇT(s
H‰T(ÇT(Ì2éùÿÿD……÷ÿÿH‹5cD(H‹=4R(1ÒèåêýÿI‰ÅH…À„WH‰ÇèèþÿIƒm„ÕHï0DZS(u
H‰žS(ÇœS(ì2韸ÿÿ€èSçýÿL‰ïè;VþÿH‰ÁH…À…R	H¨0ÇjS({
H‰WS(ÇUS(F3I‹HƒèI‰H…À…íúÿÿE1íL‰÷H‰L$èJäýÿH‹L$M…í…ÄúÿÿéÊúÿÿ€HI01ÉE1íÇS({
H‰óR(ÇñR(H3Iƒ*u E1ÿL‰×H‰L$èóãýÿM…ÿH‹L$tIƒ/tM…öt™Iƒ.u“é|ÿÿÿL‰ÿH‰L$èÃãýÿH‹L$ëÙ@HÑ/1ÉE1öÇŽR(w
H‰{R(ÇyR(	3E1íë£@H¡/ÇcR({
H‰PR(ÇNR(h3ëÓ@Hy/E1íÇ8R(x
H‰%R(Ç#R(3Iƒ*¹…Cÿÿÿé'ÿÿÿ€H‰ÏèãýÿéñÿÿL‰ÿH‰L$èãýÿH‹L$éRñÿÿf„L‰÷èèâýÿH‹L$é-ñÿÿfDHñ.dzQ({
H‰ Q(ÇžQ(s3é ÿÿÿHÉ.Ç‹Q(y
H‰xQ(ÇvQ(3éNÿÿÿf„L‰ïèxâýÿé&ñÿÿIƒ(„=I‹HƒèH
x.Ç:Q({
H‰
'Q(1ÉÇ#Q(…3éÐýÿÿfDHI.ÇQ(v
H‰øP(ÇöP('3éÎþÿÿf„D¶ðé\òÿÿ€H‹5YA(H‹=O(1ÒèËçýÿI‰ÅH…À„H‰ÇègåþÿIƒm„ÊHÕ-Ç—P(|
H‰„P(Ç‚P(—3é…õÿÿL‰ïèáýÿéðÿÿè3äýÿL‰ïèSþÿI‰ÆH…À…‡îÿÿHˆ-ÇJP(}
H‰7P(Ç5P(©3é8õÿÿHa-Ç#P(}
H‰P(ÇP(«3I‹Hƒèé´üÿÿH‰ÏH‰D$è
áýÿL‹T$é`ðÿÿH‰L$è©ãýÿL‰ïè‘RþÿH‹L$H…ÀI‰Æ…«Hù,Ç»O(}
H‰¨O(ǦO(®3選ÿÿL‰ïè±àýÿéûÿÿHÅ,I‰Í1ÉÇ‚O(}
H‰oO(ÇmO(°3é—üÿÿL‰×èxàýÿé:ðÿÿL‰ïL‰T$èfàýÿL‹T$éðÿÿL‰ïèTàýÿéûÿÿHh,Ç*O(}
H‰O(ÇO(Ð3éð÷ÿÿH‰Ïè àýÿéðÿÿL‰÷èàýÿé7ðÿÿL‰ÿèàýÿéðÿÿL‰ïèùßýÿéûÿÿH
,I‰ÍL‰ñÇÉN(}
H‰¶N(E1öDZN(Û3é»ûÿÿL‰ïè¼ßýÿé'ðÿÿHÐ+Ç’N(}
H‰N(Ç}N(ð3é€ðÿÿHƒìH‹&H
^,H5Ï.jL
À/A¸H_.H‹81ÀèèýÿHp+Y^H‰'N(¾î1Ç$N($
ÇN(î1é­ðÿÿL‰Çè!ßýÿé¶üÿÿH‹5}>(H‹=FL(1Òè÷äýÿI‰ÅH…À„pH‰Çè“âþÿIƒm„H+ÇÃM(~
H‰°M(Ç®M(ÿ3é±òÿÿèláýÿL‰÷èTPþÿI‰ÅH…À…ŠíÿÿHÁ*ǃM(
H‰pM(ÇnM(4éqòÿÿHš*Ç\M(
H‰IM(ÇGM(4éÜôÿÿHƒìH‹ßþ%A¸H5š-jL
‹.H
+H‹8H&-1ÀèáæýÿH:*_¾è1H‰íL(AXÇíL($
ÇßL(è1évïÿÿL‰ïèêÝýÿé)üÿÿèàýÿL‰ïèxOþÿH‰ÁH…À…úìÿÿHå)ǧL(
H‰”L(Ç’L(4I‹Hƒèé8ùÿÿH·)ÇyL(
H‰fL(ÇdL(4I‹Hƒèé
ùÿÿH‰)1ÉÇIL(
H‰6L(Ç4L(84é>ùÿÿH`)Ç"L(q
H‰L(Ç
L(¨2éñÿÿH9)M‰ïE1íÇõK(
H‰âK(ÇàK(C4é¸ùÿÿH)ÇÎK(s
H‰»K(ǹK(È2é¼ðÿÿIƒ/„ I‹H
Ø(HƒèÇ–K(
H‰
ƒK(1ÉÇK(U4é,øÿÿH«(ÇmK(u
H‰ZK(ÇXK(è2é[ðÿÿH„(ÇFK(
H‰3K(Ç1K(X4é4íÿÿL‰ÿH‰L$è7ÜýÿH‹L$éÐóÿÿH‹5†;(H‹=WI(1ÒèâýÿI‰ÅH…À„¨H‰Çè¤ßþÿIƒmthH(ÇØJ(€
H‰ÅJ(ÇÃJ(g4éÆïÿÿL‰ïèÎÛýÿéáüÿÿHâ'ǤJ(|
H‰‘J(ǏJ(“3é’ïÿÿL‰ÿèšÛýÿéÓþÿÿL‰ïèÛýÿëŽH¤'ÇfJ(~
H‰SJ(ÇQJ(û3éTïÿÿH}'Ç?J(€
H‰,J(Ç*J(c4é-ïÿÿI‰ÂéóæÿÿI‰Çéšèÿÿf.„AWAVAUATUH‰õSHƒì8L‹5p;(H‹^H‰|$HÇD$ L‰t$(H…Ò…XHƒû„ÂHƒû„´H…ÛH³'H
£'HOÈŸÀH+¶ÀL
·%LOÊL@HƒìH‹(û%SH™)H5á)H‹81Àè?ãýÿH˜&¾–VÇUI(ÇGI(–VH‰8I(XZH
o&ºH=‹:1ÛèLMþÿHƒÄ8H‰Ø[]A\A]A^A_Ãf.„L‹v(H‹E H‰$IƒH‹>(H‹=I(H‰ÞèZÛýÿH‰ÅH…À„ÎHƒH‹5“@(H‰ïèKäýÿH‰ÃH…À„ŸHƒm„ÜH‹$H‹@ö€³„_Hƒ+A¼„ÇH‹>(H‹=¡H(H‰ÞèéÚýÿH‰ÅH…À„]
HƒH‹5C(H‰ïèÚãýÿI‰ÄH…À„Hƒm„‹H‹4$¿1ÀèƒáýÿH‰ÅH…À„	1ÒH‰ÆL‰çèßýÿHƒmH‰Ã„ÜI‹$HPÿH…Û„óI‰$H…Ò„®H‹5O;(H‹|$è]ãýÿI‰ÇH…À„!H‰޿1ÀèáýÿH‰ÅH…À„¦1ÒH‰ÆL‰ÿè©ÞýÿHƒmI‰Ä„#	I‹HPÿM…ä„‚I‰H…Ò„÷Iƒ,$„ÜH‹HPH‰H‰H…À„¶fDIƒ.…"þÿÿL‰÷èVØýÿéþÿÿH‹<$H‰ÞE1äè1âýÿ…ÀA•ÄHƒ+„YH‹¢<(H‹=3G(E…ä…‰þÿÿH‰ÞèrÙýÿI‰ÇH…À„žHƒH‹5“A(L‰ÿècâýÿI‰ÅH…À„çIƒ/„%H‹4$¿1Àè
àýÿI‰ÄH…À„i
1ÒH‰ÆL‰ïè¤ÝýÿIƒ,$H‰Ã„FI‹EHƒèH…Û„E
I‰EH…À„L‹%<(H‹=ŠF(L‰æèÒØýÿH‰ÅH…À„ÖHƒH‹5C<(H‰ßèÃáýÿI‰ÇH…À„_
¿èÞýÿI‰ÅH…À„‘
Iƒ1ÒH‰ÆH‰ïL‰p L‰x(èÝýÿH‰D$H…À„ª
Iƒm„'
Hƒm„
Iƒ.„ò	H‹5Ë;(H‰ßèKáýÿI‰ÄH…À„§
H‹5(7(H9ð„H‹ˆ÷%I9D$„ý	ºL‰çè àýÿI‰ÅH…À„$L‹5=ù%I‹$M9õHPÿA”ÇI‰$A¶ÇH…Ò„]	L;-^ø%”ÁL;-Lø%”ÂÑ…ÍE„ÿ…ÄL‰ïèàØýÿ…À‰´HQ"L‰íÇE(ÖH‰ýD(I‹EÇ÷D(„WHƒèL‹t$E1íE1ÿE1äHÇD$éû€H‰ïèàÕýÿéüÿÿH‰ßèÐÕýÿéšýÿÿH‰ïèÀÕýÿéhüÿÿL‰ÿè°ÕýÿéÎýÿÿL‹5Qø%¸A¿IƒM‰õIƒ,$„tIƒm„±L‹=ê9(H‹={D(L‰þ…À…èè»ÖýÿH‰ÅH…À„
HƒH‹5ì>(H‰ïè¬ßýÿI‰ÇH…À„ï
Hƒm„EH‹5†7(H‰ßè†ßýÿI‰ÅH…À„XH‹t$H‰Çè]ÖýÿI‰ÄH…À„¹Iƒm„6¿è¼ÛýÿH‰ÅH…À„AL‰` è§×ýÿI‰ÅH…À„oL‹5,9(H‹=½C(L‰öèÖýÿI‰ÄH…À„ÿHƒH‹5&;(L‰çèöÞýÿH‰ÁH…À„nIƒ,$„éH‹5p<(H‰ÊL‰ïH‰$èÙÓýÿH‹$…ÀˆwHƒ)„ùL‰êH‰îL‰ÿè%ÚýÿH‰$H…À„¢Iƒ/„ûHƒm„ãIƒm„ËH‹5Y6(H‹|$ègÞýÿI‰ÅH…À„”H‹4$¿1ÀèÜýÿH‰ÅH…À„1ÒH‰ÆL‰ïè²ÙýÿHƒmI‰Æ„¶M…ö„÷Iƒm„¯Iƒ.„H‹5w8(H‰ßè÷ÝýÿH‰ÅH…À„¿èÁÜýÿI‰ÅH…À„!H‹F3(H‰Ç1öHƒèÐØýÿH‰îL‰ïè5ÜýÿI‰ÄH…À„1Iƒm„Õ
Hƒm„‡
H‹$H‹t$L‰çèÂÛýÿ…ÀˆVL‰çè"ØýÿI‰ÅH…À„H‰ÆH‰ßèKÔýÿH‰ÅH…À„[Iƒm„Hƒ+„ûH‹$L‹t$H‰ëH‹I‰ÏH‰D$HƒèH‰…
fDL‰ÿè˜ÒýÿéîI‰ÔHƒû„#Hƒû„¡H…Û…œ÷ÿÿH‰×èØÔýÿH‹5	3(L‰çI‰ÆèÒýÿIƒîH‰D$ H…À„M…öóH‹D$ L‹t$(H‰$éøÿÿ„èËÔýÿH‰ßè³CþÿI‰ÇH…À…¶H 1ÛE1äÇÝ@(ÌH‰Ê@(ÇÈ@(¼VH‹
¹@(‹¿@(H=2‹5®@(èÑDþÿH…ÛtHƒ+t61ÛM…ÿt
Iƒ/„ÿÿÿM…ä„4ùÿÿIƒ,$…)ùÿÿL‰çè‰Ñýÿéùÿÿ@1íH‰ßH‰ëèsÑýÿ뽐L‰ïèhÑýÿéÛùÿÿL‰çèXÑýÿé­ùÿÿL‰çèHÑýÿéEøÿÿH‰ïè8ÑýÿéøÿÿHIE1íE1ÿE1äH‰ù?(H‹EÇ÷?(ÌÇé?(¾VHƒèHÇD$H‰EH…ÀtkM…ätIƒ,$„«M…ÿt
Iƒ/„óE1ÿHƒ|$tH‹L$H‹H‰$HƒèH‰„àE1äM…í„Iƒm…±þÿÿL‰ïè‰Ðýÿé¤þÿÿ@H‰ïèxÐýÿë‹fDIƒ,$H„H‰=?(Ç??(ÖÇ1?(W…­L‹t$E1ÿHÇD$fL‰çè(ÐýÿéHÿÿÿI‹$HPÿH1M‰ç1ÛE1íH‰â>(Çä>(ÍÇÖ>(èVI‰H…Ò…ƒHÇD$L‰ÿèÑÏýÿéÿÿÿ@H‰ÏèÀÏýÿéÿÿÿH‰ßè°ÏýÿéC÷ÿÿL‰çè Ïýÿé÷ÿÿL‰ÿèÏýÿéüöÿÿH‰ïè€ÏýÿéÐöÿÿèÓÐýÿI‰ÄH…À„QHƒH‹5ô4(L‰çèÄÙýÿI‰ÇH…À„ÏIƒ,$„M¿èÖýÿI‰ÄH…À„CHƒ1ÒL‰æL‰ÿH‰X H‹$HƒI‰D$(èõÔýÿH‰ÅH…À„‡Iƒ,$„Iƒ/„$L9õ”ÀH;-Ïð%”ÂÂ…üH;-µð%„ïH‰ïèWÑýÿA‰ąÀˆáHƒm„þE…ä„«H‹-	3(H‹=š=(H‰îèâÏýÿI‰ÅH…À„RHƒH‹58(L‰ïèÓØýÿI‰ÇH…À„±Iƒm„ÍH‰޿1Àè}ÖýÿH‰ÅH…À„U1ÒH‰ÆL‰ÿèÔýÿHƒmI‰Æ„>I‹HJÿM…ö„-I‰H…É„Hƒ+„ûL‰óH‹5>0(H‹|$èLØýÿI‰ÇH…À„•	H‰޿1ÀèÖýÿH‰ÅH…À„©1ÒH‰ÆL‰ÿè˜ÓýÿHƒmI‰Å„)I‹HBÿM…턁I‰H…À„'Iƒm„H‹L‹t$HPH‰éåôÿÿ€I‹EHƒèH
iL‰íE1ÿE1íH‰
<(E1ä1ÛÇ<(ÑÇ<(5WHÇD$éüÿÿfL‰ç‰D$èÍýÿ‹D$éŽöÿÿL‰÷èðÌýÿéöÿÿH‰ïèàÌýÿéçõÿÿL‰ïèÐÌýÿéÌõÿÿL‰ï‰D$è¼Ìýÿ‹D$é:÷ÿÿL‰çè8Îýÿf. Az„ðöÿÿ„L‹
î%L‹52ï%IƒM9ñM‰ÍA”ÇA¶ÇéÜöÿÿèÏýÿH‰ßèû=þÿI‰ÇH…À…MôÿÿHh1ÛE1äÇ%;(ÑH‰;(Ç;($WéCúÿÿèËÎýÿH‰ßè³=þÿI‰ÇH…À…Î
H 1ÛE1äÇÝ:(ÍH‰Ê:(ÇÈ:(×VéûùÿÿH‹F(H‰×H‰D$(H‹F H‰D$ è.ÎýÿH…ÀŽzùÿÿHT$ H‰ÙL‰çL¬H5<Ô'è7qþÿ…À‰TùÿÿH¨¾†VÇe:(H‰R:(ÇP:(†Vé
ñÿÿH‹F H‰×H‰D$ è¿ÍýÿI‰Æéùÿÿ€HYE1íE1ÿ1ÛH‰
:(H‹EÇ:(ÍÇú9(ÙVHƒèHÇD$éúÿÿH1ÛÇÙ9(ÑH‰Æ9(I‹ÇÁ9(&WHPÿéâúÿÿD¶àéüÿÿ€HÙE1äǘ9(ÎH‰…9(ǃ9(õVé¶øÿÿfDè;ÍýÿL‰çè#<þÿI‰ÇH…À…F	HE1äÇO9(ÓH‰<9(Ç:9(BWémøÿÿDH‹5±3(L‰çèùÉýÿH…À„{þÿÿH‰D$(IFÿédþÿÿfI‹HPÿH2E1íÇñ8(ÎH‰Þ8(ÇÜ8(Wéúÿÿ€HE1íE1äǽ8(ÓH‰ª8(H‹EǤ8(DWHÇD$Hƒèé¶øÿÿf.„H¹E1äÇx8(ÓH‰e8(H‹EÇ_8(eWHÇD$HƒèéqøÿÿDHyE1ÿE1äÇ58(ÓH‰"8(H‹EÇ8(pWHƒèé7øÿÿHAL‹t$E1ÿÇû7(ÖH‰è7(Çæ7(Wé÷ÿÿf„L‰çèèÈýÿé¦ùÿÿH‰ïèØÈýÿé®óÿÿL‰çèÈÈýÿéÕùÿÿL‰ÿè¸ÈýÿéÏùÿÿL‰ïè¨Èýÿé½óÿÿH‰ïè›ÈýÿéõùÿÿL‹t$E1ÿE1äé¦öÿÿL‰çH‰$èzÈýÿH‹$éôÿÿH‰ïèiÈýÿéÊúÿÿL‰ïè\ÈýÿéäúÿÿL‰ÿèOÈýÿéÌúÿÿH‰ÏèBÈýÿéúóÿÿL‰ïè5Èýÿé(ôÿÿH‰ïè(ÈýÿéôÿÿL‰ÿèÈýÿéøóÿÿèÁÊýÿL‰ÿè©9þÿI‰ÇH…À…´HM‰üL‹t$ÇÐ6(ØH‰½6(Ç»6(WéîõÿÿèyÊýÿL‰ÿèa9þÿI‰ÇH…À…tHÎE1äL‹t$Lj6(ÞH‰u6(Çs6("Xé¦õÿÿL‰÷è~ÇýÿéãóÿÿH’L‹t$E1íÇL6(ØH‰96(Ç76(‘WHÇD$é[öÿÿHZE1íE1äL‹t$H‰6(H‹EÇ6(ÞÇø5($XHƒèHÇD$é
öÿÿH‰ïèöÆýÿé=óÿÿL‰ïèéÆýÿéDóÿÿHýM‰ýE1ÿǹ5(ØH‰¦5(Ǥ5(±WL‹t$éöÿÿHËL‹t$Lj5(ÞH‰u5(I‹Çp5('XHPÿé‘öÿÿL‰ïèwÆýÿé&øÿÿH‹M‰ýÇJ5(ØL‹t$H‰25(I‹$M‰çÇ)5(¼WHPÿéJöÿÿHQL‰íL‹t$Ç5(ÞH‰ø4(I‹EE1íÇï4()XHÇD$HƒèéõÿÿH‰ßL‰óèêÅýÿéø÷ÿÿL‰ÿèÝÅýÿéÞ÷ÿÿH‰ïèÐÅýÿéµ÷ÿÿHäǦ4(ØH‰“4(H‹EǍ4(ÁWHƒèé‘ïÿÿH‰ïè”ÅýÿélòÿÿH¨L‹t$M‰åÇb4(ÞH‰O4(I‹ÇJ4(,XHPÿékõÿÿL‰ïèQÅýÿéòÿÿHeÇ'4(ÞH‰4(Ç4(1XH‹EL‹t$E1äHÇD$HƒèéôÿÿI‹H"HƒêL‹t$E1íH‰Ï3(ÇÑ3(ÚÇÃ3(XéèôÿÿHïL‹t$E1äÇ©3(ÞH‰–3(H‹Eǐ3(8XHƒèH‰L$é¦óÿÿèEÇýÿL‰÷è-6þÿI‰ÄH…À…ìïÿÿHšL‹t$ÇW3(ÞH‰D3(H‹EÇ>3(3XHÇD$HƒèéPóÿÿH‹]égéÿÿHTE1äL‹t$Ç3(ÚH‰û2(Çù2(óWé,òÿÿH%L‹t$Çâ2(ÞH‰Ï2(H‹EÇÉ2(5XHÇD$HƒèéÛòÿÿL‹t$L‹<$éCòÿÿL‰ïè¹ÃýÿéàðÿÿHÍL‹<$E1äLj2(ßH‰u2(Çs2(WXéÊüÿÿHŸÇa2(ÞH‰N2(ÇL2(:Xé5þÿÿE1ÿé¯òÿÿHpE1äL‹t$L‹<$H‰2(Ç2(ßÇ2(IXéDñÿÿèÏÅýÿH‰ïè·4þÿI‰ÇH…À…²H$E1äL‹t$ÇÞ1(ÙH‰Ë1(ÇÉ1(ÌWéüðÿÿI‹HòHƒêL‹t$E1íH‰Ÿ1(Ç¡1(ÙÇ“1(ÝWé¸òÿÿH¿L‹t$E1äÇy1(ÙH‰f1(Çd1(ÎWéÛñÿÿHE1äL‹t$L‹<$H‰=1(Ç?1(àÇ11(cXédðÿÿH]Ç1(àH‰1(Ç
1(eXL‹t$L‹<$H‰l$éNñÿÿ€H!Çã0(àH‰Ð0(ÇÎ0(jXëÂHý
L‹t$L‹<$Ƕ0(âH‰£0(Ç¡0(„XéÔïÿÿHÍ
L‹t$L‹<$dž0(áH‰s0(Çq0(zXé¤ïÿÿH
L‹<$Ç[0(âH‰H0(ÇF0(†XéúÿÿI‰ÅéßòÿÿH‰Åé_çÿÿI‰ÄéÞñÿÿH‰ÅéîëÿÿH‰Åé¸çÿÿH‰ÅéÇéÿÿf„AWAVAUATUSH‰óHƒìXH‹øâ%H‹nH‰|$HÇD$0HÇD$8HÇD$@H‰D$HH…Ò….Hƒý„ÌHƒý…"H‹F8H‰D$L‹{0L‹s(L‹k H‹Æ/(¿H‹˜(ÿhE1É1É1ÒA¸H‰ÆL‰ïÿÓH‰ÃH…À„+Hƒ8„H‹‚/(¿H‹¨(ÿhE1É1É1ÒA¸H‰ÆL‰÷ÿÕH‰ÅH…À„_Hƒ8„MH‹>/(¿L‹ (ÿhE1É1É1ÒA¸H‰ÆL‰ÿAÿÔI‰ÄH…À„JHƒ8„à‹E ;C „L‹-E$(H‹=Ö.(L‰îèÁýÿI‰ÇH…À„"HƒH‹5W)(L‰ÿèÊýÿI‰ÅH…À„³Iƒ/„©
H‹5Â(ºH‰ßèuÉýÿI‰ÆH…À„ñH‰ƿ1ÀèšÇýÿI‰ÇH…À„Î1ÒH‰ÆL‰ïè1ÅýÿIƒ/H‰Á„Ä
Iƒ.„ú
H…É„«Iƒm„Æ
H;
¿á%”ÀH;
ýà%”ÂÂ…BH;
ãà%„5H‰ÏH‰L$è€ÁýÿH‹L$…ÀA‰ÅˆHƒ)„–E…í„
H‹æ'(H;Ÿà%H‹=è(„ïè­Ãýÿ…À…ÀH‹5Î(H‹=·'(èÂÈýÿH‰ÁH…É„‘H‰Î1?H‰L$L‹5˜+(è›ÆýÿH‹L$H…ÀI‰Å„>1ÒL‰÷H‰ÆH‰L$è(ÄýÿIƒmH‹L$I‰Æ„ôM…ö„Hƒ)„ÔL‰÷èªÁþÿIƒ.„µH
ÇÛ,(²H‰È,(ÇÆ,(t<é¹f„L‰çè8ÀýÿI‰ÅH‹5†"(L‰çIƒíèr½ýÿH‰D$0H…À…
H‹kHƒýH~
H
n
HMȝÀHƒì¶ÀUH
L@H‹ýÝ%H5¾L
±
H‹81ÀèÆýÿHn	¾;Ç+,(.Ç,(;H‰,(XZH
E	º.H=‘1Ûè"0þÿHƒÄXH‰Ø[]A\A]A^A_ÃH‹éÞ%H‰D$é6üÿÿ€H‰Çèà¼ýÿérüÿÿH‰Çèмýÿé¦üÿÿA;D$ …éüÿÿ…À…áüÿÿI‹Eö€³„DL‰ïè|¼ýÿI‰ÅIƒýÿ„‡I‹Fö€³„îL‰÷èV¼ýÿH‰D$Hƒ|$ÿ„ÕI‹Gö€³„tL‰ÿè,¼ýÿI‰ÇIƒÿÿ„'Iýÿɚ;ZH|$ÿɚ;KH‹D$LèL9øŒ:
H‹D$L‰ïL‹°ØIƒèڼýÿI‰ÅH…À„Þ
H‹|$èļýÿI‰ÂH…À„L‰ÿH‰D$諼ýÿL‹T$H…ÀI‰Ç„ÚH‹t$HƒìE1ÀL‰ñjA¹H‹=\Ý%ÿ5þ(HƒÆ(Pjÿ5y (ARL‰T$@jÿ5: (AUH‹T$hÿm)(L‹T$XHƒÄPH…À„CIƒ.„Y	Iƒm„&	Iƒ*„l	Iƒ/„êHƒ+t<HƒmH‰ÃtSfIƒ,$…þÿÿL‰çè
»ýÿéöýÿÿ„H‰ÇèøºýÿéûÿÿH‰ßH‰D$èãºýÿH‹D$H‰ÃH…ítHƒmuH‰ïèǺýÿM…äu¢é«ýÿÿDD¶èéßûÿÿ€Hƒý‡þüÿÿI‰ÔH@HcªHÐÿàH‹F8H‰D$HH‹C0H‰D$@H‹C(L‰çH‰D$8H‹C H‰D$0è̼ýÿI‰ÅHƒý„³~7Hƒý„ÈHƒýu0M…í$H‹D$HL‹l$0L‹t$8L‹|$@H‰D$éiùÿÿH…í„HüÿÿM…í~ÔHT$0H‰éL‰çL˜	H5_Á'èŠ_þÿ…Ày²Hÿ¾÷:Ǽ((.H‰©((ǧ((÷:éŽüÿÿf.„L‹-!(H‹=²((L‰îèúºýÿI‰ÂH…À„HƒH‹53#(L‰×L‰T$èæÃýÿL‹T$H…ÀI‰Ç„`Iƒ*„H‹5”(ºH‰ïèGÃýÿI‰ÅH…À„ÐH‰ƿ1ÀèlÁýÿI‰ÆH…À„1ÒH‰ÆL‰ÿè¿ýÿIƒ.H‰Á„†Iƒm„[H…É„öIƒ/„0H;
‘Û%A”ÅH;
ÎÚ%”ÀDè…H;
³Ú%„
H‰ÏH‰L$èP»ýÿH‹L$…ÀA‰Åˆ­Hƒ)„¦E…í…ÐùÿÿL‹-þ(H‹='(L‰îè׹ýÿH‰ÁH…À„
HƒH‹5"(H‰ÏH‰L$èÃÂýÿH‹L$H…ÀI‰Å„$
Hƒ)„˜L‹5©(H‹=:'(L‰ö肹ýÿH‰ÂH…À„
HƒH‹5(H‰×H‰T$ènÂýÿH‹T$H…ÀI‰Æ„6
Hƒ*„ëL‹=T(H‹=å&(L‰þè-¹ýÿI‰ÀH…À„w
HƒH‹5–!(L‰ÇL‰D$èÂýÿL‹D$H…ÀH‰Á„ö
Iƒ(„î	¿H‰L$è_¾ýÿH‹L$H…ÀI‰Ç„*Hƒ1ÒH‰ÏH‰ÆH‰X HƒEH‰h(H‰L$è;½ýÿH‹L$H…ÀI‰À„ Iƒ/„ð
Hƒ)„Æ
¿L‰D$è÷½ýÿL‹D$H…ÀI‰Ç„¡L‰@ 1ÒH‰ÆL‰÷Iƒ$L‰`(èܼýÿI‰ÀH…À„¨Iƒ/„Iƒ.„ì
L‰Æ1?L‰D$èø¾ýÿL‹D$H…ÀI‰Æ„˜1ÒH‰ÆL‰ï芼ýÿIƒ.L‹D$I‰Ç„ø
Iƒ(„Þ
M…ÿ„tIƒm„ò
L;=Ù%”ÀL;=QØ%”ÂÂ…fL;=7Ø%„YL‰ÿèٸýÿA‰ŅÀˆTIƒ/„ù
E…í…üH‹D$HƒìI‰ØH‹=È×%L‹¸ØHp(IƒL‰ùL‹
¯(jÿ5O(ATjÿ5Í(UjH‹T$Xÿ·#(HƒÄ@H…À…†úÿÿHÛǝ$(¸H‰Š$(Lj$(-=E1í1ÉE1À„M…ÿt
Iƒ/„M…Àt
Iƒ(„âH…Ét
Hƒ)„ÃM…ít>Iƒmu7L‰ïèOµýÿë-DHa1íE1äÇ$(H‰$(Ç	$(A;H‹
ù#(‹ÿ#(H=„‹5î#(è(þÿH…Û„úÿÿH‹HƒèH‰„øùÿÿ1ÛéúÿÿL‰ÿèشýÿéJõÿÿHéE1äǨ#(žH‰•#(Ç“#(P;ë‰f„H¹Ç{#(ŸH‰h#(Çf#(_;éYÿÿÿf„L‰ÿH‰D$èc´ýÿH‹L$é%õÿÿf„L‰ïH‰L$èC´ýÿH‹L$é#õÿÿf„L‰÷H‰L$è#´ýÿH‹L$éïôÿÿf„H‹59(L‰çèsýÿH…À„ðùÿÿH‰D$HIƒíéÝùÿÿf.„HùÿÇ»"(±H‰¨"(Ǧ"(/<éþÿÿf„H‹F L‰çH‰D$0è¶ýÿI‰ÅH‹5(L‰çèM³ýÿH‰D$8H…À„ÌIƒíH‹5ä(L‰çè,³ýÿH‰D$@H…À„’
IƒíéùÿÿDL‰×èH³ýÿéèùÿÿHYÿÇ"(±H‰"(Ç"(C<Hƒ)…ôýÿÿH‰Ïè³ýÿéçýÿÿIƒm„ã
HÿÇ×!(±H‰Ä!(ÇÂ!(]<é5ýÿÿH‹=(詺ýÿ…À…,ôÿÿH‹=ú(H‹ã(H‰þH‰ÇèȴýÿH‰Áé!ôÿÿH‰Ï蘲ýÿé0ýÿÿL‰ÇH‰L$胲ýÿH‹L$éýÿÿf„L‰ÿL‰D$H‰L$è^²ýÿH‹L$L‹D$éÎüÿÿ€L‰ÿH‰D$è;²ýÿH‹D$éÿöÿÿH‰Ïè(²ýÿé]óÿÿL‰ïL‰T$H‰D$è²ýÿL‹T$H‹D$é¹öÿÿ€L‰÷L‰T$H‰D$èæ±ýÿL‹T$H‹D$é†öÿÿ€L‰×H‰D$èñýÿH‹D$é}öÿÿf„E¶íéùÿÿ€H‰Ï蘱ýÿé[ùÿÿè;´ýÿL‰ïè##þÿH…À…oH“ýÇU (±H‰B (Ç@ (-<é3üÿÿH;D$(tH‰×H‰T$è¹ýÿH‹T$…À„˜H‰T$è(ºýÿH‹T$H…À„Hƒ*uH‰×è±ýÿ@èºýÿIÇÅÿÿÿÿH…À„dôÿÿHýÇÎ(£H‰»(ǹ(;é¬ûÿÿH;D$(tL‰÷蝸ýÿ…À„*谹ýÿH…À„ùIƒ.uL‰÷虰ýÿf„苹ýÿHÇD$ÿÿÿÿH…À„ôÿÿH’üÇT(¤H‰A(Ç?(‹;é2ûÿÿH;D$(tL‰÷è#¸ýÿ…À„%
è6¹ýÿH…À„*Iƒ.uL‰÷è°ýÿ€è¹ýÿIÇÇÿÿÿÿH…À„ÄóÿÿHüÇÞ(¥H‰Ë(ÇÉ(•;é¼úÿÿ@H‹(H;ºÑ%H‹=(„H	èȴýÿ…À…	H‹5é(H‹=Ò(èݹýÿI‰ÅM…턁	L‰î¿1ÀL‹=¸(軷ýÿI‰ÆH…À„«1ÒL‰ÿH‰ÆèRµýÿIƒ.I‰Ç„™I‹EHƒèM…ÿ„€I‰EH…À„nL‰ÿèϲþÿIƒ/„vH>ûÇ(¨H‰í(Çë(¸;éÞùÿÿfDH‰×èð®ýÿé÷ÿÿD¶èé±øÿÿ€H‹5)(H‹=(1Ò賴ýÿI‰ÅH…À„w	H‰ÇèO²þÿIƒm„ÎH½úÇ(«H‰l(Çj(Ø;é]ùÿÿDH‘úÇS(±H‰@(Ç>(2<M‰ê1ÉE1íE1ÀE1ÿ„Iƒ*…¦øÿÿL‰×L‰D$H‰L$è$®ýÿL‹D$H‹L$é…øÿÿDH)úE1ÿ1ÉE1ÀH‰Ú(ÇÜ(­ÇÎ(õ;Iƒ.…	L‰÷L‰D$H‰L$èʭýÿH‹L$L‹D$M‰êM‰ýE1ÿ€M…Ò…gÿÿÿéøÿÿfL‰ÇH‰D$蓭ýÿH‹L$éûõÿÿf„Iƒ.„þHùÇQ(±H‰>(Ç<(@<éùþÿÿ€HaùE1ÿÇ (®H‰
(Ç(ÿ;Iƒ.„TIƒmtE1í1ÉE1ÀéUÿÿÿDL‰ïL‰T$E1íèð¬ýÿ1ÉE1ÀL‹T$é1ÿÿÿHùøÇ»(¯H‰¨(Ǧ(	<ë™@L‰ÿH‰L$諬ýÿH‹L$é¹óÿÿL‰ïH‰L$蓬ýÿH‹L$éŽóÿÿf„L‰÷H‰D$ès¬ýÿH‹L$écóÿÿf„H‰ÏL‰D$èS¬ýÿL‹D$é#õÿÿf„L‰ÿH‰L$H‰D$ è.¬ýÿL‹D$ H‹L$éïôÿÿ€H1øÇó(¬H‰à(ÇÞ(<éÎþÿÿH‰Ïèè«ýÿéMóÿÿL‰÷L‰D$èӫýÿL‹D$éýôÿÿf„L‰ÿH‰D$賫ýÿL‹D$éÓôÿÿf„L‰Ç蘫ýÿéõÿÿL‰÷舫ýÿL‹D$éöôÿÿfDL‰ïèp«ýÿéõÿÿè®ýÿL‰ïèûþÿH…À…¿	Hk÷Ç-(µH‰(Ç(†<éöÿÿL‰ÿè#«ýÿéúôÿÿH7÷Çù(µH‰æ(Çä(ˆ<éÙ÷ÿÿ袭ýÿL‰÷èŠþÿH‰ÂH…À…ÌòÿÿH÷öǹ(µH‰¦(Ǥ(‹<éaüÿÿHÐöM‰êE1ÿÇŒ(µH‰y(I‰ÕÇt(<énýÿÿè2­ýÿL‰ïèþÿH…À…–HŠöÇL(±H‰9(Ç7(J<é*õÿÿèõ¬ýÿL‰ÿèÝþÿI‰ÀH…À…tòÿÿHJöE1ÿ1ÉÇ(µH‰ô(Çò(<éüÿÿHöE1í1ÉE1ÀH‰Ï(ÇÑ(±ÇÃ(L<é–ûÿÿL‰ïèΩýÿé%ûÿÿL‰ïèiýÿé…úÿÿL‰÷贩ýÿéZúÿÿL‰ÿ觩ýÿé}úÿÿH»õE1ÿÇz(µH‰g(Çe(’<é’ûÿÿL‰÷èp©ýÿéõûÿÿH„õÇF(±H‰3(Ç1(O<é¤óÿÿH]õE1ÀÇ(µH‰	(Ç(²<é4ûÿÿH3õÇõ(µH‰â(Çà(½<é
ûÿÿHõÇÎ(±H‰»(ǹ(`<é®õÿÿHƒìH‹QÉ%H
šõH5øjL
üøA¸H?øH‹81ÀèS±ýÿH¬ôY^H‰c(¾í:Ç`(.ÇR(í:é9ëÿÿH~ôM‰êM‰ÅÇ:(µH‰'(Ç%(á<éûÿÿHQô1ÉÇ(µH‰þ(Çü(ì<é)úÿÿIƒ(uL‰Çè¨ýÿHôÇÜ(µH‰É(ÇÇ(þ<é„ùÿÿHóóǵ(µH‰¢(Ç (=éòÿÿHƒìH‹8È%A¸H5óöjL
ä÷H
kôH‹8H#÷1Àè:°ýÿH“ó_¾ç:H‰F(AXÇF(.Ç8(ç:éêÿÿL‰÷èC§ýÿé>éÿÿH‰Ïè6§ýÿééÿÿL‰ïè)§ýÿH‹L$éúèÿÿH‹5p(H‹=I(1Òèú¬ýÿI‰ÅH…À„ÁH‰Ç薪þÿIƒm„-HóÇÆ(¶H‰³(DZ(=é¤ñÿÿHÝòE1ÿE1ÒÇ™(¨H‰†(Ç„(³;é~ùÿÿH‹=Ð(èk®ýÿ…À…ÓöÿÿH‹=¼(H‹¥(H‰þH‰Ç芨ýÿI‰ÅéÈöÿÿfH‹5‘Ç%H‰t$(H9ðtL‰ïè'®ýÿ…À„Žè:¯ýÿH…À…)õÿÿH‹ºÆ%H5ôH‹8苪ýÿéõÿÿfDH)òÇë(¨H‰Ø(ÇÖ(±;éÉðÿÿf„H‹5Ç%H‰t$(H9ðtL‰ÿ觭ýÿ…À„’躮ýÿH…À…™õÿÿH‹:Æ%H5€óH‹8èªýÿé~õÿÿfDH‹5ÁÆ%H‰t$(H9ðtL‰÷èW­ýÿ…À„¸èj®ýÿH…À…ÑôÿÿH‹êÅ%H50óH‹8軩ýÿé¶ôÿÿfDHYñÇ(«H‰(Ç(Ô;éùïÿÿL‰ïè¥ýÿéòÿÿH%ñÇç(²H‰Ô(ÇÒ(o<éÇñÿÿHþðÇÀ(²H‰­(Ç«(m<éžïÿÿL‰ï趤ýÿéÆýÿÿL‰ïèi¨ýÿH‰ÂH…À„^þÿÿH‹5Æ%H‹@H‰t$ H9ðuA„ö€³„ óÿÿH‰×H‰T$èF¤ýÿH‹T$I‰ÅHƒ*…»çÿÿH‰×èL¤ýÿé®çÿÿH‰×è_IþÿH‰ÂH…À„+óÿÿH‹@ë­L‰ÿèå§ýÿI‰ÆH…À„ZþÿÿH‹5‚Å%H‹@H‰t$ H9ðu3@ö€³„¡óÿÿL‰÷èˣýÿI‰ÇIƒ.…•çÿÿL‰÷è֣ýÿéˆçÿÿL‰÷èéHþÿI‰ÆH…À„¥óÿÿH‹@ë·L‰÷èo§ýÿI‰ÆH…À„4þÿÿH‹5Å%H‹@H‰t$ H9ðu7fDö€³„¯òÿÿL‰÷èS£ýÿH‰D$Iƒ.…óæÿÿL‰÷è\£ýÿéææÿÿL‰÷èoHþÿI‰ÆH…À„³òÿÿH‹@ëµHVïÇ(¶H‰(Ç(=éöíÿÿL‰÷èΦýÿH‰ÂH…À„ÇòÿÿH‹D$ H9Bu9H‹BH‰×H‰T$ ö€³t9轢ýÿH‹T$ I‰ÇHƒ*…ãþÿÿH‰×èâýÿéÖþÿÿH‰×èÖGþÿH‰ÂH…Àu·é|òÿÿèdÐþÿH‹T$ I‰ÇëÅH‰×èR¦ýÿH‹T$H…ÀH‰Á„OñÿÿH‹D$ H9AuMH‹AH‰T$ H‰ÏH‰L$ö€³tMè7¢ýÿH‹L$H‹T$ I‰ÅHƒ)…âýÿÿH‰ÏH‰T$è3¢ýÿH‹T$éËýÿÿH‰ÏèAGþÿH‹T$H…ÀH‰ÁužéõðÿÿèÊÏþÿH‹T$ H‹L$I‰Åë±H‹„Â%H5ÊïH‹8èU¦ýÿH‹T$éÁðÿÿI‰ÂéIèÿÿM‰êM‰ýE1ÿéôÿÿL‰÷L‰T$踡ýÿL‹T$é•ôÿÿH‹7Â%H5}ïH‹8è¦ýÿéìðÿÿH‰Áé$éÿÿL‰÷èC¥ýÿH‰ÂH…À„ÂðÿÿH‹D$ H9Bu;H‹BH‰×H‰T$ ö€³t;è2¡ýÿH‹T$ H‰D$Hƒ*…ÐýÿÿH‰×è6¡ýÿéÃýÿÿH‰×èIFþÿH‰ÂH…Àuµéuðÿÿè×ÎþÿH‹T$ H‰D$ëÃI‰ÇéUáÿÿH‹ŒÁ%H5ÒîH‹8è]¥ýÿé»ðÿÿ„AWAVAUI‰õATUSHìˆH‹µÂ%L‹fH‰<$HÇD$`HÇD$hH‰D$pH…Ò…%Iƒü„Ã	Iƒü…‰L‹f0M‹u(M‹m H‹–(¿HÇD$`HÇD$8HÇD$@L‹¸(HÇD$HHÇD$PHÇD$XÿhE1É1É1ÒA¸H‰ÆL‰÷Aÿ×H‰ÅH…À„,
Hƒ8„J
H‹(¿D‹} H‹˜(ÿhE1É1É1ÒA¸H‰ÆL‰ïÿÓH‰ÃH…À„Ä
Hƒ8„
E…ÿ…Y‹s …ö…NL‰÷螠ýÿf.òD$‹ªI‹Eö€³„IL‰ïèQŸýÿH‰D$Hƒ|$ÿ„P¾H‹=D(òD$ÿx
(ƒøÿ„wfï>H‹=?(òH*D$ÿR
(ƒøÿ„ÉL;%Á%„„L‹5}(H‹=(L‰öèV ýÿI‰ÅH…À„RHƒH‰D$8H‹5Â(L‰ïèB©ýÿI‰ÇH‰D$@H…À„qH‹|$8Hƒ/„‚L‹5#(H‹=´
(HÇD$8L‰öèóŸýÿI‰ÅH…À„ÜHƒH‰D$8H‹57(L‰ïèߨýÿI‰ÇH…À„ßH‹|$8Hƒ/„”HÇD$8¿è!¥ýÿI‰ÅH…À„H‹D$8H…Àt
I‰E HÇD$8Iƒ$H‹|$@1ÒL‰îM‰e M‰}(èò£ýÿI‰ÆH‰D$HH…À„FIƒm„¾H‹|$@Hƒ/„ŸH‹D$HH‰D$@HƒH‹|$HHƒ/„rL‹|$@H‹Î(HÇD$HHÇD$@A‹w I‹(ÿðH‹5'(M‹wI‰ÄH‹$H‹¸Øèà§ýÿI‰ÅH…À„IH‹$H‹5!(H‹¸Ø轧ýÿH‰D$HH…À„H‹50(1ÒH‰Çè£ýÿH‰D$@H…À„^H‹|$HHƒ/„aHÇD$HH‹|$@Hƒ/„9HÇD$@諡ýÿH‰D$M…ä~`H‹$O$æL‰l$(M‰õM‰æL‹d$H‰,$HPPHƒÀ(H‰\$ H‰ÕH‰ÃfòD$H‰êL‰æH‰ßIƒÅèh¥ýÿI‰EøM9îußH‹,$H‹\$ L‹l$(H‹|$觠ýÿH‹5øû'1ÒL‰ïèV¢ýÿH‰D$`Iƒm„6L‹l$`M…턲Iƒm„×HÇD$`Iƒ?„êHƒm…5€H‰ïèœýÿéM‹e€IƒüHÞèH
ÎèHMȝÀHƒì¶ÀATHaéL@H‹\¼%H5ëL
ìH‹81Àèt¤ýÿHÍç¾î4ÇŠ
(ˆ
Ç|
(î4H‰m
(XZH
¤çºˆ
H=(üE1ÿè€þÿHĈL‰ø[]A\A]A^A_úH‹5<ÿ'H‰ïÿk	(ƒøÿ„BºH‹5>(H‰ßÿM	(ƒøÿ„ŒL;%½%„—L‹-€ÿ'H‹=
(L‰îèYœýÿI‰ÇH…À„M	HƒH‹5Ê(L‰ÿèJ¥ýÿI‰ÅH‰D$8H…À„1
Iƒ/„ïL‹-0ÿ'H‹=Á	(L‰îè	œýÿI‰ÇH…À„HƒH‹5R(L‰ÿèú¤ýÿI‰ÆH…À„nIƒ/„Ü	¿èJ¡ýÿI‰ÇH‰D$@H…À„éIƒ$H‹|$81ÒH‰ÆL‰` L‰p(è- ýÿI‰ÄH…À„ÁH‹|$@Hƒ/„‚HÇD$@H‹|$8Hƒ/„ZL‰d$8Iƒ<$„2HÇD$8E1öH‹	(A‹t$ I‹|$(ÿðH‰ÙH‰êL‰æL‹ç(H‰D$¿1ÀAÿI‰ÅH…À„È
H;‘»%H‰D$@…nM…öt
Iƒ.„GH‹$H‹5(HÇD$@H‹¸ØèףýÿH‰D$H…À„iH‹$H‹5(H‹¸Ø貣ýÿH‰D$8H…À„H‹5%(H‰Ç1ÒHÇD$Hè
ŸýÿH‹|$HH‰D$@H…ÿtHƒ/„á
H‹D$@HÇD$HH…À„
H‹|$8Hƒ/„‹
HÇD$8H‹|$@Hƒ/„c
HÇD$@E1öèrýÿH‰D$H‹$HPPHƒÀ(Hƒ|$H‰ÖŽ	L‰$$L‹|$M‰ìH‰l$ L‰õI‰ÆH‰\$H‰óI‹„$8H‰ÚL‰÷L‹¨8I‹„$HH‹°8I‹„$@H‹€8H‹6òè¡ýÿI”$8E1ÒI‰EA‹L$IƒD$(…É(ëjH‹ˆ0Hˆ8H‹Hƒ@0AƒÂHƒÂE;T$}DH‹Hƒ@ H‹‹H…Étɀ¸@„H‹ˆ0AƒÂHƒÂH‹I@HcI(Hˆ8E;T$|¼HƒÅI9ï…*ÿÿÿM‰åH‹l$ H‹\$L‹$$H‹|$诛ýÿL‹t$H‹5ûö'1ÒL‰÷èYýÿH‰D$`I‹H‰$HƒèI‰„@	H‹|$`H…ÿ„6Hƒ/„àHÇD$`I‹$M‰çHPI‰$I‰$H…À„‹M…ítIƒm„kH…ítHƒm„ÛúÿÿH…Û„zûÿÿHƒ+…pûÿÿH‰ßèؖýÿécûÿÿL‹%¹¸%é?öÿÿ@ƒùu3H‹H8H;ˆ8ÂHƒÁH‰H8H‹H‹ˆ8Hˆ8é’þÿÿ@…Ɉ†þÿÿHcñLðI‹x0I9¸0aIÇ@0H‹ƒéH‹´ð0H)°8ë+DIÇ@0H‹ƒéH‹´ð0H)°8ƒùÿ„(þÿÿH‹HcñLðI‹x0I;¸0}ÃHƒÇH‰|ð0H‹H‹Œð0Hˆ8éñýÿÿHÇ@8H‹Hƒ@0H‹H‹ˆ0H+ˆ8Hˆ8éÁýÿÿH‰Ç谕ýÿé©õÿÿH‰Ç蠕ýÿéáõÿÿL‰ï萕ýÿéˆþÿÿL‰ç耕ýÿéhþÿÿI‰ÖIƒü„k~iIƒütIƒü…YùÿÿH‹F0H‰D$pI‹E(L‰÷H‰D$hI‹E H‰D$`覗ýÿI‰ÇIƒütbIƒüt}M…ät6M…ÿC
L‹l$`L‹t$hL‹d$péˆôÿÿDM…ä…÷øÿÿH‰×è_—ýÿI‰ÇH‹5ýù'L‰÷Iƒï虔ýÿH‰D$`H…À„ÀøÿÿH‹5¼ø'L‰÷è|”ýÿH‰D$hH…À„˜IƒïM…ÿ~ŒH‹5Îö'L‰÷èV”ýÿH…À„·H‰D$pIƒïé]ÿÿÿ€H‹
‘(H‰ÚH‰î1?ÿ‘I‰ÅH…À„?H‰D$8L9à…ëL‹5µø'H‹=F(HÇD$8L‰ö腕ýÿI‰ÄH…À„HƒH‹5öû'L‰çèvžýÿI‰ÆH‰D$@H…À„›Iƒ,$„:H‹5Kö'L‰ïèKžýÿI‰ÄH…À„íL‹=@ø'H‹=Ñ(L‰þè•ýÿI‰ÆH…À„<
HƒH‹5bú'L‰÷è
žýÿI‰ÇH…À„šIƒ.„d¿èZšýÿH‰D$HH…À„p
L‰` H‹|$@1ÒH‰ÆL‰x(èE™ýÿH‰D$8H…À„Ó
H‹|$HHƒ/„¸HÇD$HH‹|$@Hƒ/„H‹D$8H‰D$@HƒH‹|$8Hƒ/„cL‹d$@M‰îHÇD$8HÇD$@éöøÿÿ@HùÞ1ÛE1íE1ÿH‰ª(Ǭ(è
Çž(?5fDH‹|$8H…ÿtHƒ/uE1ö蘒ýÿM…ötIƒ.tmH‹|$@H…ÿtHƒ/tmH‹|$HH…ÿtHƒ/t=H‹
F(‹L(H=	ó‹5;(è^þÿM…ÿ„2ûÿÿI‹M‰üE1ÿHƒèéûÿÿè+’ýÿë¼f„L‰÷è’ýÿë‰fDè’ýÿëŒf„HÞE1íE1ÿÇÕ(ê
H‰Â(ÇÀ(`5é#ÿÿÿL‰ÿèȑýÿé÷ÿÿ軑ýÿébóÿÿfDL‰ç訑ýÿé¹ýÿÿèK”ýÿL‰ïè3þÿI‰ÇH…À…žöÿÿH ÝE1íÇ_(ñ
H‰L(ÇJ(¨5é­þÿÿDèS‘ýÿéúÿÿfDèC‘ýÿé„óÿÿfDè3‘ýÿéWóÿÿfDL‰ïè ‘ýÿé5óÿÿH4ÝÇöÿ'H‰ãÿ'Çáÿ')8éDþÿÿH
ÝÇÏÿ'ô
H‰¼ÿ'Ǻÿ'6Iƒ,$uL‰çèÐýÿL‹|$8M…ÿ„þÿÿDIƒ/„ûE1ÿéþÿÿfDL‰ÿ萐ýÿéöÿÿH‹$H‹5ø'H‹¸ØèášýÿI‰ÇH…À„Ç
H‹$H‹5"ø'H‹¸Ø辚ýÿH‰D$8H…À„ó
H‹51ÿ'H‰Ç1ÒHÇD$Hè–ýÿH‹|$HH‰D$@H…ÿtHƒ/„íH‹D$@HÇD$HH…À„PH‹|$8Hƒ/„?HÇD$8H‹|$@Hƒ/„HT$PHt$XHÇD$@H|$`è•ýÿH‹$H‹t$òD$HPPHx(èf˜ýÿH‰ÇènýÿI‰ÅH‰D$@H…À„þ
H‹T$PH‹t$XHÇD$@H‹|$`耕ýÿ1ÒL‰ÿL‰l$PH‹5×î'è:•ýÿH‰D$XIƒ/„ƒL‹|$XM…ÿ„ÑIƒ/„¥HÇD$XL‹|$PHÇD$PHƒm…øÿÿéäòÿÿ@HÛE1íE1ÿÇÍý'î
H‰ºý'Ǹý'‹5éüÿÿL‰çèýÿL‹d$8é¼ôÿÿfD諎ýÿéœôÿÿfD蛎ýÿétôÿÿfDH©ÚE1íE1ÿÇeý'ï
H‰Rý'ÇPý'”5é³ûÿÿè[Žýÿé“õÿÿfDèKŽýÿékõÿÿfDL‰÷è8Žýÿé¬ôÿÿè+ŽýÿétïÿÿfDèŽýÿéõÿÿfDH‹|$èŽýÿé±öÿÿH‹F H‰×H‰D$`è_ýÿI‰Çéùÿÿ€…PîÿÿèՖýÿH…À„BîÿÿHåÙE1íE1ÿÇ¡ü'H‰Žü'ÇŒü'7éïúÿÿ€H±ÙÇsü'ñ
H‰`ü'Ç^ü'ª5fDIƒ/tL‹|$8M…ÿ„ÏúÿÿE1öé¤üÿÿ@L‰ÿèHýÿëÜL9ðtL‰ÿè•ýÿ…À„è,–ýÿH…À„ñ
Iƒ/u
L‰ÿèýÿDè–ýÿHÇD$ÿÿÿÿH…À„™íÿÿHÙE1íE1ÿÇÎû'H‰»û'ǹû'
7éúÿÿ@HáØE1íE1ÿǝû'H‰Šû'Ljû'7éëùÿÿèCýÿL‰ïè+þýÿI‰ÇH…À…æñÿÿH˜ØE1íÇWû'ñ
H‰Dû'ÇBû'­5é¥ùÿÿDHiØE1íE1ÿÇ%û'H‰û'Çû'7ésùÿÿL‰÷èŒýÿéøÿÿH)ØE1íÇèú'ñ
H‰Õú'ÇÓú'¯5évþÿÿfDºí¾;ZM‰õM‰çH
ø×H=óÚǤú'íH‰
‘ú'Ǐú';Zè²þýÿH»×HÇD$@H‰kú'Çmú'ø
Ç_ú'[6éÂøÿÿfL‹l$8H„×ÇFú'ñ
H‰3ú'Ç1ú'Ñ5M…í„’Iƒm„E1í隸ÿÿDL‹=Áù'M…ÿ„0	H‹xI9ÿ„uñÿÿL‰þèc”ýÿ…À„ L‹l$@é[ñÿÿH	×M‰çÇÈù'ù
H‰µù'dzù'i6éøÿÿfD車ýÿé½íÿÿfD諊ýÿé•íÿÿfD蛊ýÿé“÷ÿÿfD苊ýÿéf÷ÿÿfDè{Šýÿé>÷ÿÿfDH‰ÖE1íE1ÿÇEù'ñ
H‰2ù'Ç0ù'Ü5é“÷ÿÿL‰ÿè8Šýÿé	îÿÿHIÖÇù'ù
H‰øø'Çöø'k6H‹T$M‰çH‹H‰$HƒèH‰…B÷ÿÿH‰×èê‰ýÿé5÷ÿÿDHùÕÇ»ø'ù
H‰¨ø'Ǧø'y6ë®@賉ýÿéßùÿÿfD裉ýÿé·ùÿÿfDèCŒýÿL‰÷è+ûýÿI‰ÅH‰D$8H…À…™êÿÿH“ÕÇUø'H‰Bø'Ç@ø'Ð7E1ÿéÃöÿÿHiÕE1íÇ(ø'H‰ø'Çø'Ò7évöÿÿfDL‰ïè‰ýÿé½ìÿÿH
;Õºê¾ZÇä÷'êH=ØH‰
Ê÷'ÇÈ÷'ZèëûýÿHôÔHÇD$8H‰¤÷'Ǧ÷'ó
ǘ÷'ù5éSÿÿÿèV‹ýÿL‰÷è>úýÿI‰ÅH‰D$8H…À…êÿÿH¦ÔÇh÷'H‰U÷'ÇS÷'Õ7éÿÿÿL‰ïè^ˆýÿéìÿÿL‹%òö'M…ä„¿H‹xI9ü„øóÿÿL‰æ蔑ýÿ…À„§L‹l$8éÞóÿÿfèˆýÿé	øÿÿèJýÿL‰÷è©ùýÿI‰ÇH…À…]	HÔÇØö'ô
H‰Åö'ÇÃö'6é&õÿÿHT$`L‰áL‰÷LNÕH5Ž'èX-þÿ…À‰—òÿÿHÉÓ¾Ü4džö'ˆ
H‰sö'Çqö'Ü4éùëÿÿHÓE1íÇ\ö'H‰Iö'ÇGö'×7éªôÿÿHsÓÇ5ö'ô
H‰"ö'Ç ö'6éaöÿÿHLÓÇö'H‰ûõ'Çùõ'ù7éœùÿÿH%ÓM‰çÇäõ'ù
H‰Ñõ'ÇÏõ'Õ6é2ôÿÿHûÒE1ÿǺõ'ô
H‰§õ'Ç¥õ'6éôÿÿL‰ÿ谆ýÿép÷ÿÿHÄÒM‰ìE1íÇ€õ'H‰mõ'Çkõ'8é¬õÿÿL‰ÿèv†ýÿéN÷ÿÿè‰ýÿL‰ÿèøýÿI‰ÆH…À…¯òÿÿHqÒÇ3õ'ô
H‰ õ'Çõ'
6é_õÿÿHJÒÇõ'H‰ùô'Ç÷ô'+8Iƒm„^E1íéLóÿÿIƒ,$HÒH‰Éô'ÇËô'ô
ǽô'36…_øÿÿL‰çèDžýÿéRøÿÿHÛÑǝô'H‰Šô'Ljô'98ëH·ÑE1íÇvô'	H‰cô'Çaô'27éÄòÿÿHÑÇOô'ô
H‰<ô'Ç:ô'>6éõûÿÿHfÑÇ(ô'	H‰ô'Çô'47Iƒ/„²E1íE1ÿéfòÿÿHƒìH‹›¥%A¸H5VÔjL
GÕH
ÎÑH‹8HnÒ1À蝍ýÿHöÐ_¾Ò4H‰©ó'AXÇ©ó'ˆ
Ç›ó'Ò4é#éÿÿM‰ïéòÿÿH¿Ðǁó'	H‰nó'Çló'B7éTÿÿÿH‹|$8L5“ÐÇUó'
L‰5Bó'Ç@ó'X7H…ÿt
Hƒ/„lHÇD$8H‹|$@H…ÿt
Hƒ/„YHÇD$@H‹|$HH…ÿt
Hƒ/„F‹õò'‹5ëò'H=¬äHÇD$HH‹
Ìò'è÷öýÿHT$HHt$8H|$@èóïýÿ…Àˆ·H‹L$HH‹T$81?H‹t$@èð‹ýÿH…À„Â1ÒH‰ÆL‰ÿH‰D$腉ýÿIƒ/H‹L$H‰Æ„SHƒ)„2H…ö„ËH;5¦%”ÀH;5W¥%”ÂÂ…¯H;5=¥%„¢H‰÷H‰t$èڅýÿH‹t$A‰ÇHƒ.„‘E…ÿˆZH‹|$@E…ÿ„RH…ÿt
Hƒ/„¡HÇD$@H‹|$8H…ÿt
Hƒ/„pHÇD$8H‹|$HH…ÿt
Hƒ/„]H‹T$PH‹t$XHÇD$HH‹|$`èˈýÿéšãÿÿL‰ïE1í蛂ýÿéæïÿÿH¯ÎÇqñ'H‰^ñ'Ç\ñ'z8é¿ïÿÿL‰ÿE1íE1ÿèa‚ýÿé¬ïÿÿHuÎE1íÇ4ñ'	H‰!ñ'Çñ'¯7é‚ïÿÿfL‹5a£%L9ðtL‰ïèü‰ýÿ…À„½è‹ýÿH…À…öôÿÿH‹¢%H5ÕÏH‹8è`†ýÿéÛôÿÿH‹a¤%H5ùÏH‹8èB†ýÿHëÍM‰õM‰çǧð'ø
H‰”ð'Ç’ð']6éõîÿÿHƒ.D¶ø…xþÿÿH‰÷菁ýÿébþÿÿH‹¤%H5›ÏH‹8èä…ýÿHÍE1íE1ÿÇIð'ó
H‰6ð'Ç4ð'û5é—îÿÿH‰ÏH‰t$è:ýÿH‹t$é·ýÿÿL‰ÿH‰D$ è#ýÿH‹t$ H‹L$é‘ýÿÿL‰5íï'Çïï'	Çáï'o7H‹T$PH‹t$XE1ÿH‹|$`è‡ýÿé-îÿÿè؀ýÿéŠüÿÿè΀ýÿéüÿÿèĀýÿé°üÿÿH‹T$HH‹t$8萄ýÿL‰5‰ï'HÇD$@HÇD$8HÇD$HÇpï'	Çbï'„7é|ÿÿÿèp€ýÿé†ýÿÿèf€ýÿé™ýÿÿè\€ýÿéUýÿÿL‰ïè„ýÿI‰ÇH…À„/þÿÿH‹@L‹-¨¡%L9èu4ö€³„ÝòÿÿL‰ÿèûýÿH‰D$Iƒ/… àÿÿL‰ÿè€ýÿé“àÿÿL‰ÿè%þÿI‰ÇH…À„ÛòÿÿH‹@ëµL‰5¾î'ÇÀî'	Dzî's7éÌþÿÿL‰5žî'Ç î'	Ç’î'|7é¬þÿÿL‰5~î'Ç€î'	Çrî'x7éŒþÿÿI‹EI‹L$ H5µÚH‹P H‹úŸ%H‹81Àè ˆýÿéçýÿÿI‹EI‹O H5ŒÚH‹P H‹џ%H‹81Àè÷‡ýÿé`ýÿÿH‹»Ÿ%H5ÍH‹8范ýÿéôñÿÿL‰ÿèςýÿI‰ÆH…À„ÒñÿÿL9hu1I‹FL‰÷ö€³t6èÈ~ýÿH‰D$Iƒ.…ÃþÿÿL‰÷èÑ~ýÿé¶þÿÿH‰Çèä#þÿI‰ÆH…Àu¿é”ñÿÿèr¬þÿH‰D$ëÈL‰ÿE1ÿéìÿÿI‰ÄéƒêÿÿL‰ïE1íéðëÿÿf.„AWAVI‰ÖAUATUH‰õSHƒìhö‡²…‡1öÿ—8H‰ÃH…Û„H‹í'L‹%- %H‰CH‹Rç'L‰cXL‰c`L‹mIƒ$HÇD$0HÇD$8HÇD$@HÇD$PH‰D$HM…ö…?Iƒý„ÎIƒý„»Iƒý„ÃIƒýH¯ÊH
ŸÊHMȝÀHƒì¶ÀAUHbÌLDH‹,ž%H5íÌL
àÍH‹81ÀèD†ýÿH¹ÉZ¾Ò`H‰Pì'YºzÇLì'zÇ>ì'Ò`H
‹ÉH=(ÞèSðýÿHƒ+„‰	1ÛHƒÄhH‰Ø[]A\A]A^A_ÃDH‹E@H‰D$PH‹E8H‰D$HH‹E0H‹}(H‹m H‰D$@H‰|$8H‰l$0H‹\ž%H9G…Ê荀ýÿH‰D$Hƒ|$ÿ„”H‹D$HH‹|$PL‹l$@H‰D$H…ÿ„WH;=XŸ%”ÀH;=–ž%”ÂÂu	L9ç…Ö¶	D$$H‹EH;”%t	L9å…‘M9å„àIƒEL9å„H‹EHƒøÿ„lH‹L$‰C8H‰KP…À„
Hƒ|$Žl
I‹Eö€³„»H;L%…IƒEH‹{`Hƒ/„CL‰k`L‰ïèÿ~ýÿI‰ÇH…À„Hc{8L‰{0HÁçèÂýÿHcS8H‰C@HÐH‰SHH…À„)H‹EHƒ}HPH‰U~rE1öL‰öH‰ïD‰t$èóƒýÿI‰ÇH…À„GH‹ðœ%L‰ÿI9G…SèýÿH‰ÆHƒþÿ„Iƒ/„ÿH…öŽ%H‹C@J‰4ðIƒÆL9u™H‹EHƒèH‰EH…À„ÿH‹5€â'H‹|$º衃ýÿ…Àˆþ
„û
H‹Tâ'HƒH‹{XHƒ/„i
H‹;â'H‹{HH‹s@H‹T$H‰CX‹C8…À~+D@ÿH‹T$1Àë	fDH‰ÈH‰ÇH¯ÆHHI9Àuë‹D$$H‰S(L‰ïºH‹5Yå'‰Cp聄ýÿI‰ÇH…À„8H;%@”ÅH;[œ%”À@è…?
M9ç„6
L‰ÿèæ|ýÿ‰Ńøÿ„/Iƒ/„H‹D$$‰kt…ÀtQL‹{(L‰ÿ躀ýÿH‰ÁH‰C H…À„¬…ít1L‰øH™H÷|$H…À~"I‹4$H‰ÊHÁ@L‰"HƒÂH9ÑuôHðI‰$Iƒm…“üÿÿL‰ïèÂyýÿé†üÿÿDèS|ýÿ‰D$$ƒøÿ…ýÿÿ衂ýÿH…À„ýÿÿHÍžÃ`º{Çiè'{H‰Vè'ÇTè'Ã`éüÿÿ€H‹51á'L‰ïèCýÿI‰ÇH…À„å	H‹5&æ'1?èrýÿH…À„y1ÒH‰ÆL‰ÿH‰D$èýÿH‹L$I‰ÆHƒ)„õI‹HƒèM…ö„LI‰H…À„ùIƒm„ÞI‹FH;š%…uIƒH‹{`M‰õHƒ/u	@è³xýÿL‰k`M9å…¯üÿÿH‹/™%H50ÚM‰åH‹8èý|ýÿ¾¤aºH¸ÄH‰Uç'ÇWç'ÇIç'¤aé^@L‰ÿH‰t$(èKxýÿH‹t$(éêüÿÿHuÄÇç'—H‰ç'Çç'éaHƒmuE1äH‰ïèxýÿM…ätIƒ,$„”M…ÿtIƒ/tyH‹
Êæ'‹Ðæ'‹5Ææ'H=·ØèâêýÿM…턆úÿÿIƒm…{úÿÿL‰ïè¶wýÿénúÿÿI‹HƒèH
ÞÃI‰H‰
xæ'Çzæ'‹Çlæ'|aH…ÀuŽ€L‰ÿèpwýÿézÿÿÿL‰çè`wýÿé_ÿÿÿÇD$$éÄúÿÿèC€ýÿH…À…"Iƒ/HÇÆÿÿÿÿ„ùHc|$H‰t$èúwýÿH‹t$H…ÀI‰Ç„YH‰÷è!€ýÿI‰ÄH…À„u¿èË}ýÿI‰ÆH…À„ÏL‰`(H‹=Ôá'H‰ÆL‰x èýÿI‰ÄH…À„àIƒ.„ŠL‰æ¿1ÀL‹=Ùã'èÜ~ýÿI‰ÆH…À„D1ÒL‰ÿH‰Æès|ýÿIƒ.I‰Ç„ÖM…ÿ„!Iƒ,$„âL‰ÿèúyþÿIƒ/„ÀH…ÂE1ÿÇ(å'™H‰å'Çå'béþÿÿfDè+|ýÿH…À„ÊþÿÿH‰ÇH‰D$(èµyýÿL‹D$(H‰ÆIƒ(…ˆúÿÿL‰ÇH‰D$(èæuýÿH‹t$(éqúÿÿ@H‹!˜%1ÒH‹5Àä'ÿ@H‰Ãéf÷ÿÿf.„Iƒý‡Õ÷ÿÿH_ÑJcªHÐÿàfDH‹E@H‰D$PH‹E8H‰D$HH‹E0H‰D$@H‹E(L‰÷H‰D$8H‹E H‰D$0èËwýÿI‰ÇIƒý‡HÑJcªHÐÿàfDè3~ýÿH…À…xHÇD$ÿÿÿÿéPøÿÿ@è#{ýÿI‰ÅH…ÀtÓH‰Çè³xýÿIƒmH‰D$…øÿÿL‰ïèëtýÿéøÿÿfDH‹
ñ•%L‹@ HÄH5ÇÕH‹P•%H‹I H‹81Àèr}ýÿHçÀǍã'zH‰zã'Çxã'Ø`éH÷ÿÿH‹•%HÍÃH5»ÕH‹81Àè)}ýÿHžÀÇDã'zH‰1ã'Ç/ã'Ú`éÿöÿÿfH‹ɔ%H5¢ÕH‹8èšxýÿ¾aºHUÀH‰òâ'Çôâ'Çæâ'aH
3ÀH=ÐÔèûæýÿéüÿÿfDHÀ¾aºÇ±â'H‰žâ'Çœâ'aë´fH‰ßè¨sýÿéjöÿÿL‰÷è˜sýÿéýÿÿL‰ÿèˆsýÿé3ýÿÿL‰çèxsýÿéýÿÿH‹E L‰÷H‰D$0èÏuýÿI‰ÇH‹5µÙ'L‰÷è
sýÿH‰D$8H…À„hIƒïH‹5œÚ'L‰÷èìrýÿH‰D$@H…À„DIƒïM…ÿH‹l$0H‹|$8éöÿÿfDH‹5IØ'L‰÷è±rýÿH…ÀtH‰D$HIƒïM…ÿ~ÉH‹5ŸÜ'L‰÷èrýÿH…ÀtH‰D$PIƒïM…ÿ~§HT$0L‰éL‰÷LdÁH5s{'è>þÿ…Ày…HϾ¾¯`ºzÇká'zH‰Xá'ÇVá'¯`éõÿÿf„L‰÷èÈtýÿI‰ÇH‹5¶Ô'L‰÷IƒïèrýÿH‰D$0H…À…ØþÿÿL‹méZôÿÿH‹5éÐ'H‹=Rß'1ÒèxýÿH‰ÅH…À„H‰ÇèŸuþÿHƒm„tH)¾¾1aº…ÇÅà'…H‰²à'ǰà'1aéÅýÿÿH‹5yÐ'H‹=êÞ'1Òè›wýÿH‰ÅH…À„cH‰Çè7uþÿHƒm„H}¾QaºˆÇ]à'ˆH‰Jà'ÇHà'Qaé]ýÿÿM9æ…YH‹{`Iƒ$M‰åHƒ/„øÿÿL‰c`銸ÿÿL‰ÿH‰t$è#qýÿH‹t$éðùÿÿf„H‰Ïèqýÿéþ÷ÿÿL‰ïèøpýÿéøÿÿL‰ÿèèpýÿéú÷ÿÿèÛyýÿH…À„ïôÿÿH½¾¦aºÇ£ß'H‰ß'ÇŽß'¦aH
ۼé¼øÿÿf.„H‹5AÏ'H‹=’Ý'1ÒèkvýÿH‰ÅH…À„H‰ÇètþÿHƒm„H‘¼¾Ðaº”Ç-ß'”H‰ß'Çß'ÐaëˆfDL‰÷è pýÿéiùÿÿ@¶íéÔõÿÿ€H‹5!Ù'H‹|$ºè‚xýÿ…Àˆ„¬H‹õØ'HƒH‹{XHƒ/„…H‹ÜØ'H‹sHH‹K@H‹T$H‰CX‹C8xÿHcDžÿˆõÿÿfH‰ÆH¯ÁHƒè…Àyïéêôÿÿf.„H‰ïèxoýÿéýÿÿH‰ïèhoýÿé×ýÿÿH•»¾naº‹Ç1Þ'‹H‰Þ'ÇÞ'naé1ûÿÿ€H‰ïè oýÿéôóÿÿHM»E1äÇðÝ'—H‰ÝÝ'ÇÛÝ'ìaHƒmuH‰ïèänýÿI‹HƒèI‰H…Àt
E1ÿéÁöÿÿDL‰ÿE1ÿè½nýÿé¬öÿÿ„HåºÇ‹Ý'™H‰xÝ'ÇvÝ'béköÿÿf„HµºÇ[Ý'™H‰HÝ'ÇFÝ'béfÿÿÿH‰ïèQnýÿéðýÿÿHºE1ÿÇ$Ý'™H‰Ý'H‹EÇÝ'bHƒèH‰E„öÿÿé	öÿÿHEºÇëÜ'™H‰ØÜ'ÇÖÜ'béöþÿÿL‰ÿèámýÿé«óÿÿHºM‰÷Ç´Ü'™H‰¡Ü'ÇŸÜ'bé”õÿÿHç¹¾¿`ºzǃÜ'zH‰pÜ'ÇnÜ'¿`é+ðÿÿè|mýÿéòÿÿH¬¹¾-aº…ÇHÜ'…H‰5Ü'Ç3Ü'-aéHùÿÿèAmýÿéqýÿÿHq¹¾MaºˆÇ
Ü'ˆH‰úÛ'ÇøÛ'Maé
ùÿÿH@¹¾<bºÇÜÛ'H‰ÉÛ'ÇÇÛ'<bé4üÿÿHƒìH‹_%H‚»H5¼jL
½A¸H
‹¹H‹81ÀèauýÿHָ^ºzH‰mÛ'_¾Ÿ`ÇiÛ'zÇ[Û'Ÿ`éïÿÿH£¸¾Ìaº”Ç?Û'”H‰,Û'Ç*Û'Ìaé—ûÿÿHr¸¾µbºªÇÛ'ªH‰ûÚ'ÇùÚ'µbéfûÿÿèuýÿH…À„ÃñÿÿH3¸ÇÙÚ'ªH‰ÆÚ'ÇÄÚ'¶béàóÿÿHƒìH‹\Œ%L
¼A¸jHpºH5»H‹8H
…¸1Àè^týÿHӷAXÇwÚ'zH‰dÚ'AY¾™`ºzÇVÚ'™`éîÿÿHž·¾fbº Ç:Ú' H‰'Ú'Ç%Ú'fbé’úÿÿL9%9Ö'„üH‹|$è1pýÿ…À…ØH‹t$H‹=Ö'èHuýÿH‰ÅH…í„æH‰î¿1ÀL‹%#Ø'è&sýÿI‰ÆH…À„o1ÒL‰çH‰Æè½pýÿIƒ.I‰Ä„HH‹EHƒèM…ä„DH‰EH…À„L‰çè:nþÿIƒ,$„ýHĶ¾˜bº¤Ç`Ù'¤H‰MÙ'ÇKÙ'˜bé¸ùÿÿH‹5É'H‹=`×'1Òè9pýÿH‰ÅH…À„XH‰ÇèÕmþÿHƒm„‹H_¶¾âbº°ÇûØ'°H‰èØ'ÇæØ'âbéSùÿÿM‰îH‹H H‹{Š%HB½M‰õH5„¶H‹81Àèrýÿ¾’aºŒHûµH‰˜Ø'ÇšØ'ŒÇŒØ'’aéùøÿÿH‰ïè—iýÿéhÿÿÿL‰çèŠiýÿéöþÿÿH‰ïè}iýÿéÖþÿÿL‰÷èpiýÿé«þÿÿH µE1ÿÇCØ'¤H‰0Ø'Ç.Ø'“bé#ñÿÿH‹|$èqýÿ…À…þÿÿH‹t$H‹=+Ô'è>kýÿH‰ÅéþÿÿHKµ¾‘bº¤Çç×'¤H‰Ô×'ÇÒ×'‘bé?øÿÿHµ¾Þbº°Ç¶×'°H‰£×'Ç¡×'Þbéøÿÿ@AWAVAUATI‰ôUSHì¸L‹-…Š%H‹nH‰|$(HDŽ$HDŽ$˜L‰¬$ H…Ò…
Hƒý„©Hƒý…ïH‹n0M‹t$(M‹d$ HÇD$hL‰÷HÇD$pHÇD$xHDŽ$€HDŽ$ˆHDŽ$èÊkýÿH‰D$Hƒøÿ„»
H‹×'¿L‹¸(ÿhE1É1É1ÒA¸H‰ÆL‰çAÿ×H‰D$H…À„¶H‹D$Hƒ8„/	H‹¸Ö'¿L‹¸(ÿhE1ɹA¸ºH‰ÆL‰÷Aÿ×H‰ÃH…À„
Hƒ8„ôH‹CºH‹5´Ê'H‰ßH‰D$ ÿ^Õ'ƒøÿ„ÍH‹D$H‹|$ Hpÿÿ9Õ'f/™Û‡ÛH‹D$‹p …ö…[L9í„BH´$H¼$€H”$ˆè5lýÿL‹-ÖÊ'H‹=×Õ'L‰îèhýÿH…À„ÎHƒH‰D$pH‹5~Í'H‰ÇèqýÿH‰D$hH…À„ðH‹|$pHƒ/„ÉH‰î¿1ÀL‹l$hHÇD$pè¤nýÿI‰ÆH…À„81ÒL‰ïH‰Æè;lýÿIƒ.I‰Å„–H‹|$pL‰l$xH…ÿtHƒ/„ÕL‹l$xHÇD$pH‹|$hM…í„Hƒ/„gHÇD$hH‹|$èÌfýÿH‰D$hH…À„î¿è´lýÿI‰ÅH‰D$pH…À„‹H‹D$xH‹¼$€HÇD$xHÇD$pI‰E H‹D$hHÇD$hI‰E(H…ÿt
Hƒ/„/H‹¼$HDŽ$€H…ÿt
Hƒ/„üH‹¼$ˆHDŽ$H…ÿt
Hƒ/„ÉHDŽ$ˆH‹-žÉ'H‹=/Ô'H‰îèwfýÿH‰ÁH…À„[HƒH‰D$xH‹5›Å'H‰ÏècoýÿH‰D$hH…À„•H‹|$xHƒ/„HÇD$x¿è£kýÿH‰ÁH‰D$xH…À„ÂIƒEH‹D$xL‰h ègýÿH‰ÁH‰D$pH…À„~H‹-ÿÈ'H‹=Ó'H‰îèØeýÿI‰ÀH…À„üHƒH‹5!Ë'L‰ÇL‰D$èÄnýÿL‹D$H…ÀH‰Á„—Iƒ(„ÉH‹5:Ì'H‹|$pH‰ÊH‰L$è cýÿH‹L$…Àˆ;Hƒ)„ÉH‹T$pH‹t$xH‹|$hèåiýÿI‰ÆH…À„ýH‹|$hHƒ/„*HÇD$hH‹|$xHƒ/„HÇD$xH‹|$pHƒ/„ÚH‹ÃÒ'I‹nHÇD$pA‹v IƒI‹~(ÿðI‰ÇI‹D$ö€³„›#L‰çèGcýÿI‰ÄIƒüÿ„ZfïÀòI*ľH‹=UÈ'ÿoÑ'ƒøÿ„zH‹D$(H‹5ÊÊ'H‹¸ØèŽmýÿH‰ÁH‰„$ˆH…À„ÒH‹D$(H‹5ÆÊ'H‹¸ØèbmýÿH‰D$pH…À„ÑH‹5ÕÑ'H‰Ç1ÒHÇD$xèºhýÿH‹|$xH‰ÁH…ÿt
Hƒ/„{HÇD$xH…É„”H‹|$pHƒ/„‚HÇD$pHƒ)„‡è:gýÿH‰D$0L‰øH™H÷|$H‰ÁH…À~{H‹t$H‹D$(I‰ï1íL‰t$(HÁæHPPHƒÀ(H‰\$8H‰t$H‰ëI‰ÖL‰ýL‰l$@I‰ÏI‰ÅDL‹D$H‹L$ H‰êM‰ñL‰æL‰ïHƒÃè‘dýÿHl$I9ßu×L‹t$(H‹\$8L‹l$@H‹|$0èfýÿH‹¼$ˆH…ÿtBH‹5RÁ'1Òè³gýÿH‹¼$ˆH‰ÁHƒ/„îHDŽ$ˆH…É„ª Hƒ)„ƒIƒL‰õE1äE1ÿL‰t$HÇD$éI‹l$f.„HƒýH>®H
.®HMȝÀHƒì¶ÀUH’°L@H‹½%H5~°L
q±H‹81ÀèÕiýÿH.­¾ÄCÇëÏ'Ú
ÇÝÏ'ÄCH‰ÎÏ'XZH
­ºÚ
H=‘ÂèäÓýÿHÇD$H‹D$Hĸ[]A\A]A^A_Ã@L‰íé]øÿÿ„ºH‹5¤Å'H‰Çÿ³Î'ƒøÿ„šL9í„qL‹%êÄ'H‹={Ï'L‰æèÃaýÿI‰ÆH…À„çHƒH‹54È'L‰÷è´jýÿI‰ÀH…À„XIƒ.„¦¿L‰D$èÿfýÿL‹D$H…ÀI‰Æ„ÞHƒEH‰h L‰D$èÛbýÿL‹D$H…ÀH‰ÁH‰D$h„æH‹-VÄ'H‹=çÎ'L‰D$H‰îè*aýÿL‹D$H…ÀH‰Á„lHƒH‰D$pH‹5aÆ'H‰ÏL‰D$èjýÿL‹D$H…ÀH‰ÁH‰D$x„+H‹|$pHƒ/„×
H‹T$xH‹|$hL‰D$HÇD$pH‹5`Ç'èÓ^ýÿL‹D$…Àˆ€H‹|$xHƒ/„¯
H‹T$hL‰ÇL‰öL‰D$HÇD$xè	eýÿL‹D$H…ÀH‰ÁH‰D$x„0Iƒ(„Ù
Iƒ.„¿
H‹|$hHƒ/„ 
L‹d$xH‹t$¿HÇD$hH‹
áÍ'Iƒ$H‹D$xHÇD$xH‰D$H‰Â1Àÿ‘I‰ÇH…À„…H‰D$xL9è…>HÇD$xé¨fDH‰Çèh^ýÿéÄöÿÿH‰ÇèX^ýÿéÿöÿÿI‰ÖHƒý„;Ž}HƒýtHƒý…ÍüÿÿH‹F0H‰„$ I‹D$(L‰÷H‰„$˜I‹D$ H‰„$èo`ýÿI‰ÇHƒýtnHƒý„ˆH…ít;M…ÿ¼L‹¤$L‹´$˜H‹¬$ é€õÿÿH…í…WüÿÿH‰×è`ýÿI‰ÇH‹5½Â'L‰÷IƒïèY]ýÿH‰„$H…À„üÿÿH‹5ùÀ'L‰÷è9]ýÿH‰„$˜H…À„½IƒïM…ÿŽ}ÿÿÿH‹5„¿'L‰÷è]ýÿH…À„!H‰„$ IƒïéKÿÿÿfHI©1íE1íE1äHÇD$E1ÿ1Û1ÉÇóË';E1öÇâË'þCHÇD$H‰ÊË'H‹D$hDH…Àt
Hƒ(„©H‹|$pH…ÿt
Hƒ/„­H‹|$xH…ÿt
Hƒ/„YH…Ét
Hƒ)„bH‹
sË'‹yË'H=>¾‹5hË'è‹ÏýÿHÇD$H…Ût
Hƒ+„³M…öt
Iƒ.„´H‹\$H…ÛtH‹H‰D$ HƒèH‰„¥H‹\$H…ÛtH‹H‰D$HƒèH‰„–M…ÿt
Iƒ/„—M…ätIƒ,$„—M…ítIƒmt+H…í„ûÿÿHƒm…ûÿÿH‰ïèÏ[ýÿéÿúÿÿf.„L‰ïè¸[ýÿëËfDH‰ßè¨[ýÿé@ÿÿÿL‰÷è˜[ýÿé?ÿÿÿH‰ßèˆ[ýÿéNÿÿÿH‰ßèx[ýÿé]ÿÿÿL‰ÿèh[ýÿé\ÿÿÿL‰çèX[ýÿé\ÿÿÿH‰L$èF[ýÿH‹L$é“þÿÿ@H‰Ïè0[ýÿé‘þÿÿH‰ÇH‰L$è[ýÿH‹L$é@þÿÿH‰L$è[ýÿH‹L$é?þÿÿ@H§1íE1íE1äH‰ÂÉ'E1ÿE1ö1ÛHÇD$H‹D$h1ÉǬÉ'<ÇžÉ'DéÑýÿÿH‹|$è†[ýÿH‰ÁH‰D$pH…À„›¿èkaýÿI‰ÅH‰D$xH…À„ÅHÇD$xH‹D$pHÇD$pI‰E é-õÿÿf.„Hi¦Ç+É'=H‰É'ÇÉ'DH‹D$h1íE1íE1äE1ÿE1ö1ÉHÇD$é+ýÿÿH‹!É'H‹t$¿1Àÿ’I‰ÇH…À„\HÇD$E1äH9è…èH‹5/¼'L‰ÿè/dýÿH‰ÁH‰D$xH…À„BH‹|$è„ZýÿH‰D$hH…À„÷¿èl`ýÿH‰ÁH…À„ÓH‹D$hH‹|$xH‰ÎH‰L$0HÇD$hH‰A è\_ýÿH‹L$0H…ÀI‰ÀH‰D$h„ÎH‹|$xHƒ/„	HÇD$xHƒ)„ôH‹-•½'H‹=&È'L‹l$hHÇD$hH‰îè`ZýÿH…À„bHƒH‰D$hH‹5‡¹'H‰ÇèOcýÿI‰ÆH…À„9H‹|$hHƒ/„	HÇD$h¿è‘_ýÿI‰ÀH‰D$hH…À„6IƒEH‹D$hL‰h èm[ýÿI‰ÀH‰D$xH…À„ÜH‹-í¼'H‹=~Ç'H‰îèÆYýÿI‰ÀH…À„@HƒH‹5¿'L‰ÇL‰D$0è²býÿL‹D$0H…ÀH‰ÁH‰D$p„éIƒ(„r
H‹T$pH‹5À'H‹|$xèŒWýÿ…Àˆ¾H‹|$pHƒ/„H‹T$xH‹t$hL‰÷HÇD$pèÊ]ýÿI‰ÀH‰D$pH…À„Iƒ.„QH‹|$hHƒ/„YHÇD$hH‹|$xHƒ/„7HÇD$xH‹l$pHƒEL‹t$pHÇD$pH‹5¿'I‹FH‰D$8I‹G H‰D$0H‹D$(H‹¸Øè½aýÿH‰ÁH‰„$€H…À„šH‹D$(H‹5õ¾'H‹¸Øè‘aýÿH‰D$xH…À„ H‹5Æ'H‰Ç1ÒHÇD$hèé\ýÿH‹|$hH‰D$pH…ÿtHƒ/„H‹D$pHÇD$hH…À„žH‹|$xHƒ/„xHÇD$xH‹|$pHƒ/„VHÇD$pèT[ýÿHƒ|$0H‰D$@Ž/H‹D$(L‹\$8E1ÒL‰t$8H‰l$HL‹t$0L‰ÕHPPHƒÀ(H‰\$0L‰ÛH‰D$(H‹D$L‰l$PI‰ÕHÁàL‰d$XM‰üI‰ÇI‹”$8H‹L$ M‰éL‹D$H‹|$(H‹²8H‰ÚH‹6è”XýÿA‹L$IƒD$(1҅É)ëqH‹ˆ0Hˆ8I‹„Ô8Hƒ@0HƒÂA9T$~JI‹„Ô8Hƒ@ I‹„Ô8‹H…Ét¾€¸@„H‹ˆ0HƒÂH‹I@HcI(Hˆ8A9T$¶HƒÅLûI9î…@ÿÿÿM‰çL‹t$8H‹\$0H‹l$HL‹l$PL‹d$XH‹|$@èzYýÿH‹¼$€H…ÿt[H‹5¾´'1Òè[ýÿH‹¼$€H‰„$Hƒ/„ÅH‹Œ$HDŽ$€H…É„øHƒ)„6HDŽ$HƒEH‰l$éføÿÿèËTýÿéñÿÿfDè»TýÿéôðÿÿfDè«TýÿéÌðÿÿfDL‰D$è–TýÿL‹D$éõÿÿ@L‰D$è~TýÿL‹D$é=õÿÿ@èkTýÿé-ïÿÿfDè[TýÿéúîÿÿfDèKTýÿéÇîÿÿfDè;TýÿéVõÿÿfDL‰÷è(Týÿé4õÿÿL‰ÇèTýÿéõÿÿH, ÇîÂ'iH‰ÛÂ'ÇÙÂ'ÖFH‹¼$ˆHƒ/„æHDŽ$ˆH‹D$hL‰õE1äE1ÿHÇD$1ÉéÕöÿÿHΟ1íÇŽÂ'[H‰{Â'H‹D$hÇtÂ'ÑEécùÿÿH
¯Ÿ1íE1íE1äºç¾ÝYE1öH‰
DÂ'H=âÇ?Â'çÇ1Â'ÝYèTÆýÿH]Ÿ1ÉÇÂ'GH‰
Â'H‹D$hÇÂ'vDHÇD$é-öÿÿH
5Ÿ1íE1íE1öºê¾ZH=¢H‰
ÆÁ'ÇÈÁ'êǺÁ'ZèÝÅýÿHæž1ÉHÇD$xH‰”Á'H‹D$hÇ‘Á'KǃÁ'¼Dé¶õÿÿfDƒùu;H‹H8H;ˆ8ÚHƒÁH‰H8I‹„Ô8H‹ˆ8Hˆ8é‚üÿÿ€…ɈsüÿÿHcùH4øL‹F0L9†0kHÇF0I‹„Ô8ƒéH‹´ø0H)°8ë+HÇF0I‹„Ô8ƒéH‹´ø0H)°8ƒùÿ„üÿÿI‹„Ô8HcùH4øL‹F0L;†0}¹IƒÀL‰Dø0I‹„Ô8H‹Œø0Hˆ8éÏûÿÿ@HÇ@8I‹„Ô8Hƒ@0I‹„Ô8H‹ˆ0H+ˆ8Hˆ8é”ûÿÿf„HyÇ;À'@H‰(À'Ç&À'/Dé÷ÿÿf„H‹5A°'H‹=Z¾'1ÒèWýÿH‰ÁH…À„˜H‰ÇH‰D$è¢TþÿH‹L$Hƒ)„CHÇο'BH‰»¿'ǹ¿'FDéžöÿÿ@èÃPýÿéèëÿÿfDè³Pýÿé-êÿÿfDL‰÷è Pýÿé]êÿÿè“PýÿéêÿÿfDL‰÷H‰D$è{PýÿL‹D$éCðÿÿL‰ÇH‰D$ècPýÿH‹L$é ìÿÿf„èKPýÿé!êÿÿfDH‰Ïè8Pýÿé*ìÿÿH‰Ïè(PýÿéÿöÿÿH‰L$0èPýÿH‹L$0éÕöÿÿ@H‹F H‰×H‰„$èdRýÿI‰Çédòÿÿ@HœÇþ'EH‰°¾'Ç®¾'bDé“õÿÿè»OýÿéòöÿÿfDè[RýÿH‰ïèCÁýÿH‰ÁH‰D$xH…À…êÿÿH«›Çm¾'bH‰Z¾'ÇX¾'wFH‹D$h1íE1äE1ÿHÇD$E1öéròÿÿfHi›1íE1äE1ÿH‰¾'E1ö1ÉǾ'bÇ	¾'yFHÇD$éBòÿÿH‰L$èOýÿH‹L$éjìÿÿ@H‰ÏèðNýÿélìÿÿè“QýÿL‰ïè{ÀýÿH‰D$pH…À… èÿÿL5æšH‹|$hÇ£½'^L‰5½'Ç޽'ûEH…ÿt
Hƒ/„×HÇD$hH‹|$pH…ÿt
Hƒ/„jHÇD$pH‹|$xH…ÿt
Hƒ/„]‹C½'‹59½'H=°HÇD$xH‹
½'èEÁýÿHT$xHt$hH|$pèAºýÿ…ÀˆLH‹*o%H9E…Ç	HƒEH‹|$èÙNýÿI‰ÀH…À„å
¿H‰D$è¾TýÿL‹D$H…ÀH‰Á„õL‰@ H‰ÆH‰ïH‰D$è¹SýÿH‹L$H…ÀI‰Å„ŒHƒm„
Hƒ)„óH‹|$pH…ÿt
Hƒ/„HÇD$pH‹|$hH…ÿt
Hƒ/„óHÇD$hH‹|$xH…ÿt
Hƒ/„àH‹”$ˆH‹´$HÇD$xH‹¼$€è?Sýÿéíçÿÿf.„èMýÿéŒþÿÿfDèûLýÿé™þÿÿfDH	™Ç˻'bH‰¸»'Ƕ»'|FéYýÿÿf„è»LýÿéþÿÿfDH‰Ïè¨Lýÿé°ûÿÿL5¹˜Ç{»'^L‰5h»'Çf»'ýEéâýÿÿf„èOýÿL‰çè¾ýÿH‰ÁH…À…ª
Hp˜Ç2»'IH‰»'Ç»'ŽDH‹D$h1íE1íE1äHÇD$E1ÿE1öé4ïÿÿ@H)˜Çëº'bH‰غ'Çֺ'Féyüÿÿf„Hù—Ç»º'IH‰¨º'Ǧº'DE1íE1äE1ÿ1ÉHÇD$Iƒ.t$M…ÀtIƒ(t9H‹D$h1íE1öéªîÿÿf.„L‰÷L‰D$ H‰L$ènKýÿL‹D$ H‹L$ë¾fL‰ÇH‰L$1íE1öèNKýÿH‹D$hH‹L$é_îÿÿ€H‰D$è.KýÿH‹L$éqèÿÿ@HÇD$xH‹|$pH…ÿ…ÚäÿÿH‹|$hL5—Ç߹'^L‰5̹'Çʹ'Fé7üÿÿDHñ–dz¹'bH‰ ¹'Çž¹'ˆFéAûÿÿL‰Çè¨JýÿéòÿÿH‰Ïè˜JýÿéýÿÿH‰ïH‰L$èƒJýÿH‹L$éÜüÿÿf„èMýÿH‰ïè¼ýÿH‰ÁH…À…¢Hp–Ç2¹'bH‰¹'ǹ'ƒFéÀúÿÿHI–E1íE1äE1ÿH‰ù¸'1ÉÇù¸'IÇë¸'“DHÇD$éVþÿÿDL5	–Ç˸'^L‰5¸¸'Ƕ¸'Fé2ûÿÿf„H‰D$è¶IýÿH‹L$éþçÿÿHŕE1äE1ÿǁ¸'bH‰n¸'Çl¸'…FHÇD$é×ýÿÿèqIýÿéwñÿÿH…•1íE1íE1öH‰6¸'H‹D$hÇ3¸'LÇ%¸'ËDéXìÿÿL5Q•H‹|$hǸ'^L‰5û·'Çù·'FéfúÿÿH‰ÏèIýÿépçÿÿH•E1íE1äE1ÿH‰ȷ'Çʷ'IǼ·'˜DHÇD$éýÿÿHߔÇ¡·'IH‰Ž·'ÇŒ·'ŸDéáüÿÿH¸”1íE1íE1öH‰i·'1ÉÇi·'LÇ[·'ÍDéëÿÿL‰÷èfHýÿé¢ðÿÿè\Hýÿé¿ðÿÿèRHýÿéðÿÿL‰D$èóJýÿH‰ïè۹ýÿL‹D$H…ÀH‰ÁH‰D$p…uèÿÿH>”E1íE1äE1ÿH‰î¶'Çð¶'IÇâ¶'šDHÇD$éBüÿÿH”1íE1äE1ÿH‰¶¶'1ÉH‹D$hDZ¶'bÇ£¶'ŠFHÇD$éÍêÿÿHƓ1íE1íE1öH‰w¶'H‹D$hÇt¶'LÇf¶'ÏDé™êÿÿètGýÿéðùÿÿèjGýÿéúÿÿè`GýÿéúÿÿHt“E1íE1äE1ÿH‰$¶'Ç&¶'IǶ'œDHÇD$éxûÿÿH”$H‰éL‰÷Lg–H5O'è¡ìýÿ…À‰éÿÿH“¾²CÇϵ'Ú
H‰¼µ'Ǻµ'²CéáåÿÿL‰5¦µ'Ǩµ'_Çšµ'8FH‹”$ˆE1íE1äE1ÿH‹´$H‹¼$€è¬Lýÿ1ÉHÇD$éãúÿÿ@H‘’I‰ÎE1íÇMµ'LH‰:µ'1ÉÇ6µ'ÔDéŸúÿÿH;zg%tH‰ÏH‰L$èNýÿH‹L$…À„H‰L$èOýÿH‹L$H…À„,Hƒ)uH‰ÏèFýÿèûNýÿIÇÄÿÿÿÿòdºH…À„’âÿÿHü‘Ǿ´'fH‰«´'Ç©´'·FééñÿÿHՑÇ—´'gH‰„´'Ç‚´'ÁFéÂñÿÿè@HýÿH‰ïè(·ýÿH‰D$hH…À…ŒìÿÿH“‘1íE1ö1ÉH‰E´'ÇG´'MÇ9´'âDé{èÿÿèGEýÿé îÿÿè=Eýÿé~îÿÿHQ‘Ç´'iH‰´'Çþ³'ÔFH‹D$hL‰õE1äE1ÿHÇD$éèÿÿH‘Çճ'[H‰³'Ç3'ÏEéžøÿÿHìE1íE1äE1ÿH‰œ³'Çž³'Iǐ³'¡DHÇD$éðøÿÿH³1í1ÉÇq³'MH‰^³'H‹D$hÇW³'äDéŠçÿÿHƒ1ÉÇC³'MH‰0³'Ç.³'çDé—øÿÿH‰ïè¹MýÿH‰ÅH…À…*öÿÿL‰5³'dz'`Çú²'DFé[ýÿÿH&Çè²'iH‰ղ'ÇӲ'äFéõïÿÿH‹-²'H…í„DH‹xH9ý„ûéÿÿH‰îè!Mýÿ…À…ëéÿÿI‹GH‹M H5êžH‹P H‹/d%H‹81ÀèULýÿH®M‰þE1íE1äH‰^²'E1ÿ1ÉE1ÀÇX²'GÇJ²'xDHÇD$éª÷ÿÿ@èKCýÿéfìÿÿH‹-߱'H…í„¿H‹xH9ý„¥äÿÿH‰îèLýÿ…À„L‹|$xé‹äÿÿ€L‰5á±'1ÉÇá±'`Çӱ'FFL‰D$ I‰îE1íE1äH‹”$ˆH‹´$H‰L$E1ÿH‹¼$€èØHýÿH‹L$L‹D$ HÇD$éööÿÿH¹Ž1ÉÇy±'MH‰f±'Çd±'ìDéÍöÿÿHŽÇR±'BH‰?±'Ç=±'BDéöÿÿèKBýÿé1íÿÿH_Ž1ÉE1ÀDZ'MH‰	±'DZ'óDépöÿÿèÅDýÿH‰ï譳ýÿI‰ÀH…À…«éÿÿHŽ1ÉÇڰ'MH‰ǰ'ÇŰ'îDé.öÿÿL‰5±°'dz°'`Ç¥°'HFéÍþÿÿH‰Ïè°Aýÿé½ìÿÿHƒìH‹0b%A¸H5ëjL
ܑH
cŽH‹8HӐ1Àè2JýÿH‹_¾¨CH‰>°'AXÇ>°'Ú
Ç0°'¨CéWàÿÿH\Ç°'MH‰°'Ç	°'ðDérõÿÿL‰5õ¯'E1ÀÇô¯'`Çæ¯'MFéþÿÿèô@ýÿéíÿÿHÇʯ'iH‰·¯'ǵ¯'.Gé²ûÿÿHáŒ1ÉÇ¡¯'MH‰ޝ'ÇŒ¯'õDéõôÿÿH¸ŒÇz¯'RH‰g¯'H‹D$hÇ`¯'-Eé“ãÿÿHŒŒÇN¯'RH‰;¯'Ç9¯'/EH‹¼$€Hƒ/t<HDŽ$€H‹D$h1ÉéKãÿÿHDŒÇ¯'RH‰ó®'Çñ®'=Eë¶è@ýÿë½HŒÇۮ'RH‰Ȯ'H‹D$hÇn'™EéôâÿÿH;a%tL‰çè£Gýÿ…À„“è¶HýÿH…À…­ùÿÿH‹6`%H5|H‹8èDýÿé’ùÿÿH‹b%H5£H‹8èìCýÿéâûÿÿH‹ða%H5ˆH‹8èÑCýÿHz‹1íE1íE1ÿH‰+®'E1öH‹D$h1ÉÇ#®'KÇ®'¾DéHâÿÿL‰çèàBýÿH‰ÁH…À„YÿÿÿL‹%}`%L9`u=H‹Aö€³„­øÿÿH‰ÏH‰L$èÉ>ýÿH‹L$I‰ÄHƒ)…sÛÿÿH‰ÏèÏ>ýÿéfÛÿÿH‰ÇèâãýÿH‰ÁH…Àu³éµøÿÿI‰ÀéEÚÿÿI‰ÆéRÞÿÿH‰Ïè]BýÿH‹L$H…ÀH‰Â„føÿÿL9`uMH‹BH‰L$0H‰×H‰T$ö€³tMèG>ýÿH‹T$H‹L$0I‰ÄHƒ*…oÿÿÿH‰×H‰L$èC>ýÿH‹L$éXÿÿÿH‰ÇèQãýÿH‹L$H…ÀH‰ÂužéøÿÿèÚkþÿH‹L$0H‹T$I‰Äë±I‹GH‹M H5<™H‹P H‹^%H‹81Àè§FýÿéþÿÿH‹k^%H5±‹H‹8è<BýÿH‹L$é´÷ÿÿfAWAVAUATUH‰õSHì¸H‹•_%H‹^H‰|$ HDŽ$ H‰„$¨H…Ò…¯Hƒû„Hƒû…KL‹n(H‹] HÇD$xH‰ßHDŽ$€HDŽ$ˆHDŽ$HDŽ$˜HDŽ$ èæ@ýÿH‰D$Hƒøÿ„·H‹ ¬'¿H‹¨(ÿhH‰ßE1ÉA¸¹ºH‰ÆÿÕH‰ÃH‰D$xH…À„âH‰„$€HƒH‹|$xHƒ/„§H‹-¡'H‹=©«'HÇD$xH‹œ$€HDŽ$€H‰îèÔ=ýÿI‰ÄH…À„ØHƒH‰D$xH‹5¦'L‰çèÀFýÿH‰ÅH‰„$ˆH…À„lH‹|$xHƒ/„=H‹-ž 'H‹=/«'HÇD$xH‰îèn=ýÿH‰ÁH…À„‚HƒH‹5ÿ¡'H‰ÏH‰L$èZFýÿH‹L$H…ÀI‰Ç„™Hƒ)„ï
¿è¥BýÿH‰ÅH…À„IHƒ1ÒH‰îL‰ÿH‰X H‹
œ'HƒH‰E(è…AýÿI‰ÄH‰D$xH…À„tHƒm„9
Iƒ/„
H‹t$x¿1ÀH‹¬$ˆè–CýÿI‰ÄH…À„Ú1ÒH‰ïH‰Æè-AýÿIƒ,$H‰Å„
H‹|$xH‰¬$€Hƒ/„¸	H‹Œ$€HÇD$xH…É„FH‹¼$ˆHƒ/„Ì	H‹¼$€H;=]%HDŽ$ˆ”ÀH;=¿\%”ÂÂ…Œ	H;=¥\%„	èJ=ýÿ‰ŅÀˆPH‹¼$€Hƒ/„.
HDŽ$€…í…H‹CL;-_\%H‰D$8„H´$˜H¼$H”$ è§?ýÿH‹-Hž'H‹=I©'H‰îè‘;ýÿH…À„HƒH‰„$€H‹5í 'H‰Çè}DýÿH‰D$xH…À„_H‹¼$€Hƒ/„í
L‰î¿1ÀH‹l$xHDŽ$€è
BýÿI‰ÄH…À„¡1ÒH‰ïH‰Æè¤?ýÿIƒ,$H‰Å„vH‹¼$€H‰¬$ˆH…ÿtHƒ/„'H‹¬$ˆHDŽ$€H‹|$xH…í„gHƒ/„;HÇD$xH‹|$è(:ýÿH‰D$xH…À„ê¿è@ýÿI‰ÄH‰„$€H…À„?H‹„$ˆH‹¼$HDŽ$ˆHDŽ$€I‰D$ H‹D$xHÇD$xI‰D$(H…ÿt
Hƒ/„­H‹¼$˜HDŽ$H…ÿt
Hƒ/„zH‹¼$ HDŽ$˜H…ÿt
Hƒ/„GHDŽ$ H‹-ìœ'H‹=}§'H‰îèÅ9ýÿI‰ÇH…À„¹HƒH‰D$xH‹5é˜'L‰ÿè±BýÿH‰ÅH‰„$€H…À„ÝH‹|$xHƒ/„ŽH‹-œ'H‹= §'HÇD$xH‰îè_9ýÿI‰ÇH…À„HƒH‰D$xH‹5[Ÿ'L‰ÿèKBýÿI‰ÆH…À„oH‹|$xHƒ/„@HÇD$x¿è>ýÿH‰ÁH…À„H‹D$xH…Àt
H‰A HÇD$xIƒ$H‹¼$€1ÒH‰ÎL‰a L‰q(H‰L$èV=ýÿH‹L$H…ÀH‰ÅH‰„$ˆ„-Hƒ)„kH‹¼$€Hƒ/„iH‹„$ˆHDŽ$€HƒH‹¬$ˆH‰D$H‹E‹u HDŽ$ˆH‹}(H‰D$@H‹	¦'ÿðHƒ|$H‰D$0Žâ
H‹5kœ'H‰ßè3AýÿH‰ÁH‰„$€H…À„™	H‹5 ¥'1ÒH‰ÇèŽ<ýÿI‰ÅH‰„$ˆH…À„›H‹¼$€Hƒ/„HH‹5ñ–'1ÒH‹¼$ˆHDŽ$€èV@ýÿH‰ÁH‰„$€H…À„ÞH‹¼$ˆHƒ/„ÀH‹¼$€H;=ÑX%HDŽ$ˆ”ÀH;=X%”ÂÂ…ð
H;=éW%„ã
èŽ8ýÿA‰ŅÀˆ³H‹¼$€Hƒ/„HDŽ$€E…í„Ì	L‹=-š'H‹=¾¤'L‰þè7ýÿI‰ÅH…À„ñHƒH‰„$ˆH‹5g'L‰ïèï?ýÿI‰ÅH…À„H‹¼$ˆHƒ/„zH‰Þ1?HDŽ$ˆè†=ýÿI‰ÇH…À„‚1ÒH‰ÆL‰ïè;ýÿIƒ/I‰Æ„†H‹¼$ˆL‰´$€H…ÿtHƒ/„	L‹´$€HDŽ$ˆM…ö„IIƒm„LL‹¬$€L;-ºV%…SH‹D$I‹MfïÀHDŽ$€H‹T$8HƒèI‰ÏH‰D$f.„òXÂòÁHƒèHƒøÿuìH‹D$ H‹5œ'H‹¸ØèÔ>ýÿH‰ÁH‰„$ H…À„ H‹D$ H‹5œ'H‹¸Øè¨>ýÿH‰ÁH…À„)H‹5£'1ÒH‰ÇHDŽ$ˆH‰D$(èú9ýÿH‹¼$ˆH‹L$(H‰„$€H…ÿtHƒ/„ÛH‹„$€HDŽ$ˆH…À„FHƒ)„÷H‹¼$€Hƒ/„ÛHDŽ$€è\8ýÿHƒ|$0H‰D$PŽÞH‹D$L‹t$@H‰l$XHÇD$(H‹l$8HÁàH‰\$8H‹\$H‰D$HH‹D$ L‰l$@HƒÀ(L‰d$ M‰üI‰Åfò¸§H…ÛtLE1ÿòCLüòBDýL‰ïòT$èô7ýÿòT$ò†§f(ÈòYÊò\ØòYÓòCþIƒÇI9ßu·H‹t$Ht$(H‹D$(òATöøLt$HH9D$0ÿÿÿL‹d$ L‹l$@H‹l$XH‹\$8H‹|$PèÓ6ýÿH‹¼$ H…ÿtFH‹5’'1Òèx8ýÿH‹¼$ H‰ÁHƒ/„ØHDŽ$ H…É„YHƒ)„@H‹D$L‹t$HƒHƒ+„ÓH‹\$éÂH‹]f.„H…ÛHÿ~H
ï~HOÈŸÀHS‚¶ÀL
}LOÊL@HƒìH‹tR%SH^H5-H‹81Àè‹:ýÿHä}¾ÈMÇ¡ 'HÇ“ 'ÈMH‰„ 'XZH
»}ºHH=w“1Û蘤ýÿHĸH‰Ø[]A\A]A^A_ÃL‹-YS%éýóÿÿ@è[1ýÿé>öÿÿfDL‰ÿèH1ýÿéÔõÿÿH‰ïè81ýÿéºõÿÿ¶èéöÿÿ„è1ýÿé*öÿÿfDL‰çè1ýÿéÔõÿÿèû0ýÿéOôÿÿfDèë0ýÿé¹ôÿÿfDH‰ÏèØ0ýÿéõÿÿI‰ÔHƒû„C	Hƒû„¹H…Û…þÿÿH‰×è3ýÿH‹5aš'L‰çI‰ÅèV0ýÿIƒíH‰„$ H…À„SþÿÿM…폨	H‹œ$ L‹¬$¨éóÿÿè[0ýÿéÈõÿÿfDHi|E1öE1ÿ1ÉH‰Ÿ'E1äE1í1íÇŸ'±1ÛÇŸ'NHÇD$H‹|$xH…ÿt
Hƒ/„H‹¼$€H…ÿt
Hƒ/„H‹¼$ˆH…ÿt
Hƒ/„H…Ét
Hƒ)„'M…ÿt
Iƒ/„(M…öt
Iƒ.„)H‹
zž'‹€ž'H=u‘‹5ož'蒢ýÿH…ÛtHƒ+„1ÛH…ítHƒmtMM…ítIƒmtQM…ätIƒ,$tUH‹T$H…Ò„·ýÿÿH‹H‰D$HƒèH‰…¢ýÿÿH‰×è"/ýÿé•ýÿÿDH‰ïè/ýÿë©fDL‰ïè/ýÿë¥fDL‰çèð.ýÿë¡fDH‰L$èÞ.ýÿH‹¼$€H‹L$éØþÿÿ@H‰L$è¾.ýÿH‹L$éÏþÿÿ@H‰L$è¦.ýÿH‹L$éÎþÿÿ@H‰Ïè.ýÿéÌþÿÿL‰ÿè€.ýÿéËþÿÿL‰÷èp.ýÿéÊþÿÿE1öH‰ßL‰óèZ.ýÿéäþÿÿDH‹|$è&/ýÿH‰ÅH‰„$€H…À„w
¿è5ýÿI‰ÄH‰„$ˆH…À„˜
H‹„$€HDŽ$ˆHDŽ$€I‰D$ éoõÿÿf.„HùyE1öE1ÿE1äH‰©œ'H‹¼$€Ç£œ'²Ç•œ'NHÇD$E1í1í1Éé¤ýÿÿ„è;0ýÿH‰ïè#ŸýÿI‰ÄH‰D$xH…À…ñÿÿH‹yE1öE1ÿÇGœ'µH‰4œ'H‹¼$€Ç*œ'Në“è;-ýÿé¯ôÿÿfDè+-ýÿé|ôÿÿfDè-ýÿéIôÿÿH/yÇñ›'ãH‰ޛ'Çܛ'²O@H‹|$xE1íE1öE1ÿH…ÿ…Óüÿÿéïüÿÿ@HéxÇ«›'µH‰˜›'Ç–›'NE1öE1ÿ1ÉE1äHÇD$E1íé‚üÿÿfè‹,ýÿéhôÿÿfDè+/ýÿH‰ïèžýÿH‰ÅH…À…H€xÇB›'µH‰/›'Ç-›'"Në•HYxE1öE1äE1íH‰	›'1íÇ	›'µÇûš'$NHÇD$éõûÿÿDèû+ýÿé	òÿÿfDH‹D$ H‹5„“'H‹¸ØèH6ýÿI‰ÅH‰„$ H…À„ìH‹D$ H‹5€“'H‹¸Øè6ýÿH‰ÁH…À„v
H‹5‘š'1ÒH‰ÇHDŽ$ˆH‰D$èn1ýÿH‹¼$ˆH‹L$H‰„$€H…ÿtHƒ/„l
H‹„$€HDŽ$ˆH…À„a
Hƒ)„Œ	H‹¼$€Hƒ/„p	HDŽ$€èÐ/ýÿHƒ|$0H‰D$PŽõH‹D$H‹t$@HÇD$(H‹L$8H‰l$`HÁàL‰d$XH‰D$HHÆHÁH‰\$hI‰ÌH‰óHƒ|$Ž|H‹D$ H‹t$(fïÉL‹t$8Hh(H‹D$@L<ðM‰ýòAH‰ïIƒÆIƒÅòL$è•+ýÿòL$òAEøòXÈM9ôuÐò%؞ò^áf(ÌòAIƒÇòYÁòAGøL9ûuèH‹t$H\$HHt$(H‹D$(H9D$0YÿÿÿL‹d$XH‹l$`H‹\$hH‹|$Pè0.ýÿL‹¬$ M…턟÷ÿÿH‹5p‰'1ÒL‰ïèÎ/ýÿH‹¼$ H‰„$˜Hƒ/„>	L‹¬$˜HDŽ$ M…í„_
Iƒm„J	HDŽ$˜E1íé8÷ÿÿ„è{)ýÿé¶ñÿÿfDH‰uE1ö1ÉE1äH‰:˜'E1íÇ9˜'µÇ+˜'DNHÇD$é%ùÿÿDL‰çè()ýÿé}ïÿÿè)ýÿé»ïÿÿfDH)uH‹¼$€I‰îÇà—'µH‰͗'Ç˗'ONé1ûÿÿfDH‰ÏèÐ(ýÿéˆñÿÿèÃ(ýÿéñÿÿfDHÑtE1äE1í1íH‰‚—'E1öE1ÿÇ~—'µÇp—'aNHÇD$镸ÿÿf.„1íé:íÿÿf„è[(ýÿéÏîÿÿfDHitE1öE1ÿ1ÉH‰—'E1äE1í1íÇ—'µÇ—'dNHÇD$éøÿÿD¶èé,òÿÿ€H‹F(H‰×H‰„$¨H‹F H‰„$ èP*ýÿH…ÀŽ_÷ÿÿH”$ H‰ÙL‰çLDwH50'èVÍýÿ…À‰6÷ÿÿHÇs¾¸MÇ„–'HH‰q–'Ço–'¸MéàõÿÿfH‹F H‰×H‰„$ èÜ)ýÿI‰Åéãöÿÿ@H‹5A†'H‹=Š”'1Òè;-ýÿH‰ÅH‰„$€H…À„
H‰ÇèÏ*þÿH‹¼$€Hƒ/„H6s1ÉE1ä1íHDŽ$€H‰ܕ'Çޕ'¶ÇЕ'sNHÇD$éêùÿÿf.„H‹5ùˆ'L‰çè&ýÿH…À„áþÿÿH‰„$¨IEÿéÇþÿÿ€èK)ýÿH‰ïè3˜ýÿI‰ÇH‰D$xH…À…2îÿÿH›rH‹¼$€E1öÇR•'ÁH‰?•'Ç=•'BO飸ÿÿHir1ÉÇ)•'ÁH‰•'Ç•'DOHÇD$é.ùÿÿfDèÃ(ýÿH‰ï諗ýÿH‰„$€H…À…ÞëÿÿH-rH‹|$xÇД'½H‰-½”'Ç»”'ÅNH…ÿt
Hƒ/„¤H‹¼$€HÇD$xH…ÿt
Hƒ/„”H‹¼$ˆHDŽ$€H…ÿt
Hƒ/„‹g”'‹5]”'H=V‡HDŽ$ˆH‹
;”'èf˜ýÿH”$ˆHt$xH¼$€è\‘ýÿ…ÀˆÒH‹EF%I9E…ÞIƒEH‹|$èô%ýÿI‰ÆH…À„H¿èÞ+ýÿH‰ÁH…À„kL‰p H‰ÆL‰ïH‰D$èÞ*ýÿH‹L$H…ÀI‰Ä„ÏIƒm„Hƒ)„H‹¼$€H…ÿt
Hƒ/„!H‹|$xHDŽ$€H…ÿt
Hƒ/„H‹¼$ˆHÇD$xH…ÿt
Hƒ/„ëH‹”$ H‹´$˜HDŽ$ˆH‹¼$èX*ýÿé¸ëÿÿè+$ýÿé®íÿÿfDè$ýÿéRþÿÿfDè$ýÿébþÿÿfDèû#ýÿéuþÿÿfDè›&ýÿH‰ï胕ýÿI‰ÇH‰D$xH…À…èëÿÿHëoH‹¼$€E1öÇ¢’'ÁH‰’'Ǎ’'GOéóõÿÿH-¹oÇ{’'½H‰-h’'Çf’'ÇNéµýÿÿf„èk#ýÿé6íÿÿfDHyoÇ;’'ÁH‰(’'Ç&’'IOE1ÿ1ÉE1í1íHÇD$éóÿÿfDH‹¼$€HDŽ$ˆH…ÿ…réÿÿH‹|$xH-oÇّ'½H‰-Ƒ'Çđ'ÖNéýÿÿ€èË"ýÿéõìÿÿfDL‰ïH‰L$è³"ýÿH‹L$éçýÿÿf„H‰Ïè˜"ýÿéÛýÿÿH©nE1ÿE1í1íH‰Z‘'Ç\‘'ÁÇN‘'kOHÇD$éHòÿÿ„H-inÇ+‘'½H‰-‘'Ç‘'ÙNéeüÿÿf„H9nE1öE1ÿE1íH‰é'Çë'ÁÇݐ'vOHÇD$é×ñÿÿèâ!ýÿé|ìÿÿH-ömH‹|$xdz'½H‰- 'Çž'ÛNéÞûÿÿè¬!ýÿé†öÿÿH‰ÏèŸ!ýÿégöÿÿL‰ÿè’!ýÿémìÿÿL‰ïè…!ýÿé§ìÿÿè{!ýÿéÕüÿÿèq!ýÿéýÿÿèg!ýÿéáüÿÿH‰-;'E1öE1ÿ1ÉÇ5'¾Ç''OH‹”$ E1äE1í1íH‹´$˜H‹¼$H‰L$è5'ýÿH‹L$HÇD$éòðÿÿèý ýÿéÛùÿÿèó ýÿéíëÿÿH‰L$èä ýÿH‹„$€H‹L$é€õÿÿèÍ ýÿéíÿÿH‰ÏèÀ ýÿéüìÿÿHÔl1ÉE1äÇ‘'ºH‰~'Ç|'™NHÇD$é–óÿÿè ýÿé¸öÿÿH•lE1öÇT'ºH‰A'Ç?'›NéýÿÿL‰ïèJ ýÿé©öÿÿL‰ïè½)ýÿH‰ÁH…À…ÇH‰-
'E1öE1ÿǏ'¿ÇøŽ'OéÌþÿÿH‰L$(è ýÿH‹„$€H‹L$(éìÿÿHlE1öE1ÿ1ÉH‰¹Ž'Ç»Ž'ãÇ­Ž'ÀOé°ïÿÿH‰-™Ž'M‰ï1ÉÇ–Ž'¿ÇˆŽ'Oé\þÿÿH‰D$è‘ýÿH‹L$éíÿÿH‰-`Ž'M‰ïÇ_Ž'¿ÇQŽ'Oé%þÿÿH}kÇ?Ž'ãH‰,Ž'Ç*Ž'ÃOéMòÿÿH‰Ïè5ýÿéàìÿÿHIkE1öE1ÿ1ÉH‰ú'E1íÇù'ãÇë'ÅOéîîÿÿH‰-׍'E1öM‰ïÇӍ'¿Çō'Oé™ýÿÿHñjE1öE1ÿ1ÉH‰¢'Ǥ'Ç–'ÍPé™îÿÿèT!ýÿL‰ÿè<ýÿI‰ÅH‰„$ˆH…À…úèÿÿH¡jE1öE1ÿ1ÉH‰R'ÇT'ëÇF'ÒOéIîÿÿHrjE1öE1ÿ1ÉH‰#'Ç%'ëǍ'ÔOéîÿÿHCjǍ'H‰òŒ'ÇðŒ'ÏPH‹¼$ Hƒ/„šE1öE1ÿE1íHDŽ$ éÌíÿÿHõiÇ·Œ'H‰¤Œ'Ç¢Œ'ÝPë°H‹¼$ˆHDŽ$€H…ÿ…èÿÿH´iL‰éÇsŒ'ëH‰`Œ'Ç^Œ'ãOéðÿÿL‹5Œ'M…ö„‰I‹}I9þ„èÿÿL‰öè¬&ýÿ…À„´L‹¬$€ésèÿÿ€HIiE1öE1ÿÇŒ'òH‰ò‹'Çð‹'!PéóìÿÿHiÇދ'òH‰ˋ'Çɋ'#PH‹¼$ Hƒ/„¶HDŽ$ E1öE1ÿé¨ìÿÿHÑh1ÉE1äÇŽ‹'¶H‰{‹'Çy‹'oNHÇD$é“ïÿÿHœhÇ^‹'òH‰K‹'ÇI‹'1Pé{ÿÿÿH‰L$èRýÿH‹L$éRþÿÿHahE1öE1ÿ1ÉH‰‹'Ç‹'Ç‹'dQé	ìÿÿH‰L$èýÿH‹L$é6ÿÿÿHhE1öE1ÿÇڊ'òH‰NJ'ÇŊ'«PéÈëÿÿH‹Q>%H5éiH‹8è2 ýÿHÛgE1öE1ÿ1ÉH‰ŒŠ'E1íÇ‹Š'ëÇ}Š'æOé€ëÿÿI‹EI‹N H5ÁvH‹P H‹<%H‹81Àè,$ýÿë¨I‰ÅéDöÿÿH‰Áé\ßÿÿf.„AWAVAUATI‰ôUSHƒìXH‹(=%L‹-I{'H‹"=%H‹nH‰|$HÇD$ H‰\$(H‰\$0L‰l$8H‰D$@H…Ò…ËHƒý‡ÙHÖvHcªHÐÿàH‹Ñ<%H‰D$M‹l$8I‹D$0H‰$I‹l$(M‹d$ Iƒ$HƒEH9Ý„ÁL‰î¿1ÀL‹5@‰'èÓ"ýÿI‰ÇH…À„1ÒL‰÷H‰Æèj ýÿIƒ/I‰Æ„½M…ö„äL‹=Õ~'H‹=f‰'L‰þè®ýÿI‰ÂH…À„ÂHƒH‹5ÿ€'L‰×L‰T$èš$ýÿL‹T$H…ÀI‰Ç„‘Iƒ*„ºL‰þL‰÷èÿ#ýÿI‰ÂH…À„	Iƒ/„L;’<%”ÀL;Ð;%”ÂÂ…]I9Ú„TL‰×L‰T$èWýÿL‹T$…ÀA‰Çˆ	Iƒ*„;E…ÿ„CH‹t$H;58<%A”ÀH;5u;%”ÀDÀ…ÑH9Þ„ÈH‰÷èýÿA‰øÿ„ÄH‹D$Hƒì1ÉL‰çH‰îL‹ØLH(IƒARH‹T$L‰T$ÿ‚‡'_AXH…ÀI‰ÇL‹T$„ÎIƒ*„ÄH9$„JIƒL‰ûIƒ.„ÔIƒ/„å€Iƒ,$„æHƒm„ÊHƒÄXH‰Ø[]A\A]A^A_ÃH‹¡:%H‰$H‰ÝH‰D$é×ýÿÿ„H‹:%H‰$H‰D$éµýÿÿH‹i:%H‰D$é˜ýÿÿ€H‹F@H‰D$é~ýÿÿfL‰÷è¸ýÿI‰ÅH‹5þ}'L‰÷IƒíèòýÿH‰D$ H…À…h
I‹l$€H…íH÷dH
çdHOÈŸÀHKh¶ÀL
ûbLOÊL…HƒìH‹h8%UH\gH5!gH‹81Àè ýÿHØc¾rÇ•†'iLJ†'rH‰x†'XZH
¯cºiH=›y1Û茊ýÿéµþÿÿ€Iƒ*D¶ø…ÅýÿÿL‰×èZýÿE…ÿ…½ýÿÿH‹Â{'H‹=S†'H‰ÆH‰D$è–ýÿI‰ÇH…À„Ê
HƒH‹5ß}'L‰ÿè‡!ýÿI‰ÂH…À„óIƒ/„Y
L‰ֺL‰÷L‰T$èì ýÿL‹T$H…ÀI‰Ç„+Iƒ*„
L;=z9%”ÀL;=¸8%”ÂÂu	I9߅ȶÀIƒ/„û…À„s
H‹L$H;
?9%A”ÀH;
|8%”ÀDÀ…€H9Ù„wH‰ÏèýÿA‰øÿ„!H‹D$Hƒì1ÉH‰îL‰çL‹˜ØLH(IƒASH‹T$L‰\$ÿ‘„'Y^H…ÀI‰ÇL‹\$„®Iƒ+…ýÿÿL‰ßèýÿéûüÿÿ€H‰ïèðýÿé)ýÿÿIƒ$Hƒ+„AL‹5:v'IƒIƒ,$„L‰åM‰ôéûÿÿ„L‰ÿè¨ýÿé6ûÿÿE¶ÀéCüÿÿ€L‰×èˆýÿétûÿÿè+ýÿL‰ÿè‡ýÿI‰ÇH…À…–H€aºÈ¾ÓÇ8„'ÈH‰%„'Ç#„'ÓH
TaH=Ewè8ˆýÿ„Iƒ.»uL‰÷è
ýÿM…ÿ„,üÿÿIƒ/…"üÿÿL‰ÿèòýÿIƒ,$…üÿÿL‰çèßýÿé
üÿÿf.„L‰ÿH‰D$èÃýÿL‹T$éÐúÿÿf„IƒEH‹5´6%ºL‰ïè—ýÿH‰ÁH…À„›H;47%”ÂH;r6%”ÀÐu
H;$…ɶÒHƒ)„d
…Ò„äIƒm„aH‹ºx'H‹=Kƒ'H‰ÆH‰$èýÿH‰ÁH…À„s
HƒH‹5¸}'H‰ÏH‰$è|ýÿH‹$H…ÀI‰Ã„ì
Hƒ)„21ÀL‰þ¿L‰$èýÿL‹$H…À„ò
1ÒL‰ßH‰ÆL‰$H‰D$è¬ýÿH‹L$L‹$I‰ÂHƒ)„.I‹HƒèM…Ò„½
I‰H…À„úH‹5ëu'L‰×L‰$èçýÿL‹$H…ÀH‰Á„Iƒ*„H‹5N‚'H‰ϺH‰$èEýÿH‹$H…ÀI‰Â„uHƒ)„	L;Ô5%”ÀL;5%”ÂÂu	I9څʶØIƒ*„	…Û„ûùÿÿIƒE1ÀL‰þ¿è!ýÿH…À„(1ÒH‰ÆL‰ïH‰$è·ýÿH‹$H‰ÃHƒ)„F
I‹EHƒèH…Û„ý
I‰EH…À„
Iƒ.…¥ùÿÿétýÿÿf„H
™^ºÁ¾¾1ÛH=~tH‰
?'ÇA'ÁÇ3'¾èV…ýÿéiùÿÿL‰×è8ýÿé/ùÿÿHƒý‡úÿÿI‰ÖH nHcªHÐÿàH‹F@H‰D$@I‹D$8H‰D$8I‹D$0H‰D$0I‹D$(L‰÷H‰D$(I‹D$ H‰D$ èGýÿI‰ÅHƒý‡žHßmHcªHÐÿàf.„L‰çL‰åM‰ôè¢ýÿéôöÿÿDH‰ßèýÿé²ûÿÿH¡]1ÉÇa€'ÈH‰N€'ÇL€'ÕIƒ*u(E1ÛL‰×L‰\$H‰$èJýÿL‹\$H‹$M…ÛtIƒ+tH…ÉtHƒ)t+H‹
€'‹
€'H=/s‹5ù'è„ýÿéçûÿÿ€H‰ÏèøýÿëËfDH	]M‰ûÇÈ'ÈH‰µ'dz'ØI‹E1ÿHƒèI‰1ÉH…ÀuŒL‰ßH‰$è«ýÿH‹$élÿÿÿfH¹\1ÉE1ÿÇv'ÈH‰c'Ça'Úéÿÿÿ@H‹5Ù1%ºL‰ïè\ýÿH‰ÁH…À„vH;ù2%”ÂH;72%”ÀÐ…dH9Ù„[H‰ÏH‰$è¿ýÿH‹$…	ˆ¨Hƒ)„×…Ò…«ûÿÿH‹pt'H‹='H‰ÆH‰$èEýÿI‰ÃH…À„áHƒH‹5~x'L‰ßL‰$è2ýÿL‹$H…ÀH‰Á„¶Iƒ+„¹
H‹5iu'H‰ÏH‰$èýÿH‹$H…ÀI‰Ã„°Hƒ)„ý
L‰޺L‰ïL‰$ègýÿL‹$H…ÀH‰Á„¬Iƒ+„%H;
ö1%”ÂH;
41%”ÀÐ…Á	H9Ù„¸	H‰ÏH‰$è¼ýÿH‹$…	ˆŠHƒ)„CIƒm„…Ò…¨úÿÿéòõÿÿ@L‰ÿè€ýÿ…À‰+øÿÿHñZdz}'ÊH‰ }'Çž}'Iƒ/„£E1ÿéyýÿÿ@H‰ÏH‰$è4ýÿH‹$…	‰ úÿÿHŸZI‰ËÇ^}'ãH‰K}'ÇI}' Iƒm„
I‹Hƒèé‰ýÿÿf.„L‰×L‰$èÔýÿL‹$…	ÉûÿÿH?Z1ÉÇÿ|'äH‰ì|'Çê|'ãé™üÿÿDE¶Àé”÷ÿÿ€L‰ï‰$èÝ
ýÿ‹$éÜþÿÿDH‹F L‰÷H‰D$ è/ýÿI‰ÅM…íސH‹5´t'L‰÷èd
ýÿH…ÀtH‰D$(IƒíM…í~nH‹5ºo'L‰÷èB
ýÿH…ÀtH‰D$0IƒíM…í~LH‹5pu'L‰÷è 
ýÿH…ÀtH‰D$8IƒíM…í~*H‹5u'L‰÷èþýÿH…À„ÃH‰D$@IƒíM…폱H‹D$0L‹d$ H‹l$(L‹l$8H‰$H‹D$@H‰D$é@òÿÿIƒmHYH‰É{'ÇË{'ãǽ{'±…“ûÿÿM‰êélûÿÿ€H‰ÏH‰$è´ýÿL‹$é¹øÿÿL‰ÿL‰T$è›ýÿL‹T$éõÿÿL‰ßL‰$è„ýÿL‹$éñøÿÿH‰ÏL‰\$H‰$ègýÿL‹\$L‹$é³øÿÿf„L‰×èHýÿérõÿÿL‰×H‰$è4ýÿH‹$éÎøÿÿL‹=™p'H‹=*{'L‰þèr
ýÿI‰ÂH…À„ûHƒH‹5Ër'L‰×L‰T$è^ýÿL‹T$H…ÀI‰Ç„/Iƒ*„TºL‰þL‰÷èÃýÿI‰ÂH…À„2Iƒ/„L;V.%”ÀL;”-%”ÂÂ…ÑI9Ú„ÈL‰×L‰T$èýÿL‹T$…ÀA‰ÇˆIƒ*„hE…ÿ„lH‹L$H;
ü-%”ÀH;
:-%”ÂÂ…¯H9Ù„¦H‰ÏèÆ
ýÿA‰øÿ„ú	H‹D$Hƒì1ÉH‰îL‰çL‹ØLH(IƒARH‹T$L‰T$ÿ@y'I‰ÇXZM…ÿL‹T$…ÇñÿÿHîV1ÉÇ®y'ÍH‰›y'Ç™y'@éHùÿÿ@L‰ÿ‰D$èœ
ýÿ‹D$éðóÿÿ‰D$è‡ýÿD‹D$H…À„%ñÿÿH’VºÉ¾åE1ÿH‰>y'Ç@y'ÉÇ2y'åé
õÿÿDHYV1ÉÇy'ÉH‰y'Çy'èé³øÿÿ€H‰ÏH‰$è
ýÿL‹$éÐöÿÿH‰ω$èí	ýÿ‹$é‰õÿÿDL‰×èØ	ýÿéÖöÿÿ¶Òé·ùÿÿ„D¶øéLþÿÿ€è[ýÿH‹<$èB{ýÿH‰ÁH…À…wõÿÿH¯Uºä¾ÊÇgx'äH‰Tx'ÇRx'Êé*ôÿÿDèýÿH‹|$èñzýÿI‰ÇH…À…òÿÿH^UºÊ¾ÿÇx'ÊH‰x'Çx'ÿéÙóÿÿ@H)UÇëw'äH‰Øw'ÇÖw'Ìé¸÷ÿÿf„I‹HƒèHòTÇ´w'äH‰¡w'ÇŸw'Ûéñ÷ÿÿfHÉT1Éljw'ÊH‰vw'Çtw'é#÷ÿÿ€L‰ïèxýÿéÛõÿÿH‰Ïèhýÿé­õÿÿHyTÇ;w'äH‰(w'Ç&w'ÞéÕöÿÿf„H‰ω$è%ýÿ‹$éøÿÿDH1TÇóv'ÊH‰àv'ÇÞv'é;ùÿÿH	TM‰êÇÈv'ãH‰µv'dzv'ŸéböÿÿfDHÙSI‰Ëǘv'äH‰…v'H‹Ç€v'áHƒèéÎöÿÿ€D¶ÀéeüÿÿL‰×èwýÿéŸûÿÿHT$ H‰éL‰÷LìVH5‰
'èô¬ýÿ…À‰)úÿÿHeS¾YÇ"v'iH‰v'Ç
v'YéŠïÿÿL‰ÿH‰D$èýÿL‹T$é\ûÿÿL‰ÿE1ÿèþýÿéÎõÿÿL‰×èñýÿé‹ûÿÿH‹]k'H‹=îu'H‰ÆH‰D$è1ýÿI‰ÇH…À„kHƒH‹5rm'L‰ÿè"ýÿI‰ÂH…À„ùIƒ/„€L‰ֺL‰÷L‰T$è‡ýÿL‹T$H…ÀI‰Ç„—Iƒ*„gL;=)%”ÀL;=S(%”ÂÂ…=I9ß„4L‰ÿèßýÿ…Àˆ1Iƒ/„y…À„†H‹L$H;
É(%”ÀH;
(%”ÂÂ…ßH9Ù„ÖH‰Ïè“ýÿA‰øÿ„ÿH‹D$Hƒì1ÉH‰îL‰çL‹˜ØLH(IƒASH‹T$L‰\$ÿt'A[I‰ÇXL‹\$M…ÿ…‹ïÿÿHºQÇ|t'ÏH‰it'Çgt'lI‹Hƒèé²ôÿÿ¶ÒéZöÿÿHQÇCt'ËH‰0t'Ç.t'I‹Hƒèéyôÿÿ‰D$è1ýÿD‹D$H…À„ÈîÿÿH<QºË¾E1ÿH‰ès'Çês'ËÇÜs'é´ïÿÿL‰ßH‰$èãýÿH‹$é2õÿÿHóPM‰êDzs'ãH‰Ÿs'ǝs'§éLóÿÿI‹EHƒèHÁPM‰ëÇ€s'åH‰ms'Çks'üé½óÿÿH‰ÏH‰$èrýÿL‹$éîôÿÿH‚PI‰ËÇAs'ãH‰.s'Ç,s'¨éÞõÿÿL‰ïL‰$è3ýÿ1ÉL‹$éìòÿÿL‰ßH‰$èýÿH‹$éÆôÿÿ¶ÀéÔýÿÿè¶ýÿL‰ÿèžuýÿI‰ÇH…À…	HPºÌ¾+ÇÃr'ÌH‰°r'Ç®r'+é†îÿÿH‰ω$è¶ýÿ‹$éªôÿÿHÇO1ÉLJr'ÌH‰tr'Çrr'-é!òÿÿHžOM‰ûÇ]r'ÌH‰Jr'ÇHr'0I‹E1ÿHƒèéòÿÿHjO1ÉE1ÿÇ'r'ÌH‰r'Çr'2éÁñÿÿD¶Àé5ýÿÿL‰ÿL‰T$èýÿL‹T$éiüÿÿL‰×èýýÿéŒüÿÿè£ýÿH‹<$èŠtýÿH‰ÁH…À…/H÷NM‰êǶq'ãH‰£q'Ç¡q'¯éPñÿÿL‰ÿ‰D$è¨ýÿ‹D$érüÿÿH‹g'H‹=¡q'H‰ÆH‰D$èäýÿI‰ÇH…À„ÛHƒH‹5c'L‰ÿèÕýÿI‰ÃH…À„‹Iƒ/„PL‰޺L‰÷L‰\$è:ýÿL‹\$H…ÀI‰Ç„¹Iƒ+„þL;=È$%”ÀL;=$%”ÂÂ…õI9ß„ìL‰ÿè’ýÿ…ÀˆKIƒ/„Ì…À„RH‹L$H;
|$%”ÀH;
º#%”ÂÂ…H9Ù„øH‰ÏèFýÿA‰ǃøÿ„^H‹D$1ÉH‰îL‰çL‹ØLH(IƒAPE‰øARH‹T$L‰T$ÿ÷o'AYAZH…ÀI‰ÇL‹T$…DèÿÿHkM1ÉÇ+p'ÑH‰p'Çp'˜éÅïÿÿf„‰D$è
ýÿD‹D$H…À„ïõÿÿH"MºÍ¾=E1ÿH‰Îo'ÇÐo'ÍÇÂo'=éšëÿÿHîLM‰êÇ­o'ãH‰šo'ǘo'´éGïÿÿHÄLdžo'ãH‰so'Çqo'·é#òÿÿHLM‰êÇ\o'ãH‰Io'ÇGo'¹éöîÿÿèýÿH‹|$èëqýÿI‰ÇH…À…~ùÿÿHXLºÎ¾WÇo'ÎH‰ýn'Çûn'WéÓêÿÿ¶ÀéþÿÿHLÇán'ÎH‰În'ÇÌn'^é)ñÿÿHøK1ÉǸn'ÎH‰¥n'Ç£n'\éRîÿÿD¶øéþÿÿHÆKLjn'ÎH‰un'Çsn'YéÐðÿÿH‹=÷c'èºqýÿI‰ÇH…À„lH‹5`'H‰ÇèÏ	ýÿI‰ÂH…À„Iƒ/„dL‰ֺL‰÷L‰T$è4	ýÿL‹T$H…ÀI‰Ç„KIƒ*„ÐL;=Â!%”ÀL;=!%”ÂÂ…¬I9ß„£L‰ÿèŒýÿ…Àˆ‡Iƒ/„à…À„™H‹L$H;
v!%”ÀH;
´ %”ÂÂ…oH9Ù„fH‰Ïè@ýÿA‰ǃøÿ„íH‹D$E‰øH‰îL‰çL‹˜ØLH(IƒQ1ÉASH‹T$L‰\$ÿêl'^_H…ÀI‰ÇL‹\$…9èÿÿHhJÇ*m'ÓH‰m'Çm'ÄI‹Hƒèé`íÿÿL‰ßèþüÿéõûÿÿL‰ÿ‰D$èþüÿ‹D$éüÿÿL‰ÿH‰D$èòýüÿL‹\$é™ûÿÿ‰D$èßýÿD‹D$H…À„ê÷ÿÿHêIºÏ¾iE1ÿH‰–l'ǘl'ÏÇŠl'iébèÿÿèHýÿH‹|$è.oýÿI‰ÇH…À…ûÿÿH›IºÐ¾ƒÇSl'ÐH‰@l'Ç>l'ƒéèÿÿ¶ÀéeþÿÿL‰×èAýüÿé#þÿÿè7ýÿH…À„”ûÿÿHGIºÑ¾•E1ÿH‰ók'Çõk'ÑÇçk'•é¿çÿÿL‰ÿ‰D$èîüüÿ‹D$éþÿÿL‰ÿH‰D$èØüüÿL‹T$é…ýÿÿHçHM‰ú1ÉǤk'ÐH‰‘k'E1ÿÇŒk'…é;ëÿÿH¸HM‰ú1ÉÇuk'ÐH‰bk'E1ÿÇ]k'ŠéëÿÿH‰HÇKk'ÐH‰8k'Ç6k'ˆI‹HƒèéëÿÿD¶øé¥ýÿÿH‹=ª`'èmnýÿI‰ÇH…À„©H‹5J]'H‰Çè‚ýÿI‰ÃH…À„_Iƒ/„>L‰޺L‰÷L‰\$èçýÿL‹\$H…ÀI‰Ç„êIƒ+„ÓL;=u%”ÀL;=³%”ÂÂ…¯I9ß„¦L‰ÿè?þüÿ…ÀˆPIƒ/„w…À„H‹L$H;
)%”ÀH;
g%”ÂÂ…ÝH9Ù„ÔH‰ÏèóýüÿA‰ǃøÿ„~H‹D$E‰ø1ÉH‰îL‰çL‹ØLH(IƒASARH‹T$L‰T$ÿ”i'I‰ÇXZM…ÿL‹T$…óáÿÿHG1ÉÇÚi'ÕH‰Çi'ÇÅi'ðétéÿÿHñF1ÉDZi'ÒH‰ži'Çœi'´éKéÿÿI‰ÃéÒêÿÿè¢ýÿH…À„üÿÿH²FºÓ¾ÁE1ÿH‰^i'Ç`i'ÓÇRi'Áé*åÿÿI‰Âé[îÿÿHvFÇ8i'ÒH‰%i'Ç#i'¶é€ëÿÿHOFM‰ûÇi'ÒH‰ûh'Çùh'±I‹E1ÿHƒèéAéÿÿHFºÒ¾¯ÇÓh'ÒH‰Àh'Ǿh'¯é–äÿÿI‰Âé‹ßÿÿèÄýÿH…À„tþÿÿHÔEºÕ¾íE1ÿH‰€h'Ç‚h'ÕÇth'íéLäÿÿD¶øé7þÿÿH‹=ï]'è²kýÿI‰ÇH…À„—H‹5wZ'H‰ÇèÇýÿI‰ÂH…À„HIƒ/„'L‰ֺL‰÷L‰T$è,ýÿL‹T$H…ÀI‰Ç„ØIƒ*„ÁL;=º%”ÀL;=ø%”ÂÂ…I9ß„”L‰ÿè„ûüÿ…Àˆ>Iƒ/„e…À„ýH‹L$H;
n%”ÀH;
¬%”ÂÂ…ÓH9Ù„ÊH‰Ïè8ûüÿA‰ǃøÿ„tH‹D$1ÉH‰îL‰çL‹˜ØLH(IƒAPE‰øASH‹T$L‰\$ÿÑf'AYAZH…ÀI‰ÇL‹\$….âÿÿH]DÇg'×H‰g'Ç
g'I‹HƒèéUçÿÿL‰ÿ‰D$è
øüÿ‹D$étüÿÿ¶ÀébüÿÿL‰ßèñ÷üÿé üÿÿHDÇÇf'ÔH‰´f'Dzf'àI‹HƒèéýæÿÿL‰ÿH‰D$è±÷üÿL‹\$é«ûÿÿHÀCM‰ú1ÉÇ}f'ÔH‰jf'E1ÿÇef'ÝéæÿÿH‘CºÔ¾ÛÇIf'ÔH‰6f'Ç4f'ÛéâÿÿH`CM‰ú1ÉÇf'ÔH‰
f'E1ÿÇf'âé´åÿÿèýÿH…À„~þÿÿH#Cº×¾E1ÿH‰Ïe'ÇÑe'×ÇÃe'é›áÿÿD¶øéAþÿÿH‹=>['èiýÿI‰ÇH…À„2H‹5æ_'H‰ÇèýÿI‰ÃH…À„èIƒ/„ÇL‰޺L‰÷L‰\$è{ýÿL‹\$H…ÀI‰Ç„sIƒ+„\L;=	%”ÀL;=G%”ÂÂ…8I9ß„/L‰ÿèÓøüÿ…ÀˆÏIƒ/„…À„íH‹L$H;
½%”ÀH;
û%”ÂÂ…ÃH9Ù„ºH‰Ïè‡øüÿA‰ǃøÿ„dH‹D$E‰øH‰îL‰çL‹ØLH(IƒQ1ÉARH‹T$L‰T$ÿd'^_H…ÀI‰ÇL‹T$…ˆÜÿÿH¯A1ÉÇod'ÙH‰\d'ÇZd'Hé	äÿÿL‰ÿ‰D$èaõüÿ‹D$é†üÿÿ¶ÀétüÿÿL‰×èHõüÿé2üÿÿH\A1ÉÇd'ÖH‰	d'Çd'é¶ãÿÿL‰ÿH‰D$è
õüÿL‹T$éÂûÿÿHAM‰ûÇÛc'ÖH‰Èc'ÇÆc'	I‹E1ÿHƒèéäÿÿHè@ºÖ¾Ç c'ÖH‰c'Ç‹c'écßÿÿH·@Çyc'ÖH‰fc'Çdc'éÁåÿÿèrýüÿH…À„ŽþÿÿH‚@ºÙ¾EE1ÿH‰.c'Ç0c'ÙÇ"c'EéúÞÿÿD¶øéQþÿÿH‹5¥Z'L‰÷èþüÿI‰ÇH…À„.H;º%A”ÅH;÷%”ÀDè…I9ß„þL‰ÿè‚öüÿA‰ŅÀˆÄIƒ/„­E…í„=H9-^'„L‰÷è¿øüÿ…À…ùH‹=^'L‰öèØýüÿI‰ÇM…ÿ„­H‹=­`'L‰þè­YýÿH‰ÃH…À„^Iƒ/„GH‰ßèÿöýÿHƒ+„(Hn?ºà¾‹E1ÿH‰b'Çb'àÇb'‹éæÝÿÿL‰ÿ‰D$èóüÿ‹D$éëüÿÿ¶ÀéÙüÿÿL‰ßèüòüÿé—üÿÿH?ÇÒa'ØH‰¿a'ǽa'8I‹HƒèéâÿÿL‰ÿH‰D$è¼òüÿL‹\$é"üÿÿHË>M‰ú1ÉLja'ØH‰ua'E1ÿÇpa'5éáÿÿHœ>Ç^a'ØH‰Ka'ÇIa'3é1áÿÿHu>M‰ú1ÉÇ2a'ØH‰a'E1ÿÇa':éÉàÿÿH‰ßè%òüÿéËþÿÿL‰ÿèòüÿé¬þÿÿH,>M‰ûÇë`'àH‰Ø`'ÇÖ`'†I‹E1ÿHƒèéáÿÿHø=ºà¾„ǰ`'àH‰`'Ç›`'„ésÜÿÿL‰÷è†ùüÿ…À…÷ýÿÿH‹=\'L‰öè¯óüÿI‰ÇéòýÿÿH‹5xQ'H‹=±^'1Òèb÷üÿI‰ÇH…À„ÁH‰ÇèþôýÿIƒ/„¢Hm=ºÛ¾qE1ÿH‰`'Ç`'ÛÇ
`'qéåÛÿÿL‰ÿèñüÿéFýÿÿH,=Çî_'ÚH‰Û_'ÇÙ_'aé6âÿÿE¶íéýÿÿHü<ºÚ¾_Ç´_'ÚH‰¡_'ÇŸ_'_éwÛÿÿL‰ÿèªðüÿéQÿÿÿH¾<ºÛ¾mÇv_'ÛH‰c_'Ça_'mé9Ûÿÿ@AWAVAUI‰õATUSHì˜H‹E%H‹nH‹úU'H‰|$HÇD$pHÇD$xH‰„$€H‰œ$ˆH…Ò…

Hƒý„ÄHƒý„¶Hƒý„ÜHƒýHÚ<H
Ê<HMȝÀHƒì¶ÀUHi?LDH‹X%H5?L
@H‹81ÀèpøüÿHÉ;¾ÆGdž^'pÇx^'ÆGH‰i^'XZH
 ;ºpH=¼QE1ÿè|býÿHĘL‰ø[]A\A]A^A_ÀH‹^8I‹E0H‰D$M‹e(I‹m HÇD$@ºH‰ßHÇD$HHÇD$PHÇD$XHÇD$`HÇD$hHÇD$pHƒEHƒH‹5tW'H‰\$8èj÷üÿ…Àˆš	H‹|$8„‡H‹5pT'ºèF÷üÿA‰ŅÀˆ›H‹|$8Hƒ/„´HÇD$8E…í…ÊHD$PLt$HLl$@L‰öH‰ÂH‰D$ L‰ïèÈóüÿL‹=iR'H‹=j]'L‰þè²ïüÿH…À„HƒH‰D$XH‹5U'H‰Çè¡øüÿH‰D$`H…À„CH‹|$XHƒ/„Œ1ÀL‰æ¿L‹|$`HÇD$Xè7öüÿH…À„N1ÒL‰ÿH‰ÆH‰D$èÌóüÿH‹L$I‰ÇHƒ)„rH‹|$XL‰|$8H…ÿtHƒ/„‘L‹|$8HÇD$XM…ÿ„H‹|$`Hƒ/„#HÇD$`H‹|$8Hƒ/„ûHÇD$8H‹|$@H…ÿt
Hƒ/„žHÇD$@H‹|$HH…ÿt
Hƒ/„qHÇD$HH‹|$PH…ÿt
Hƒ/„DH‹5}M'1ÒL‰çHÇD$Pè÷üÿI‰ÇH‰D$XH…À„¡H;š%”ÀL;=Ø%”ÂÂu
L;=Â%…ĶÀIƒ/„‡HÇD$X…À….H¿ÿÿÿÿÿÿÿèíüÿI‰ÇH‰D$XH…À„æºH‰ÆL‰çè~öüÿI‰ÇH‰D$`H…À„=H‹|$XHƒ/„ÆHÇD$XH‹|$`H;=ù%”ÀH;=7%”ÂÂ…ŒH;=%„èÂîüÿA‰DžÀˆH‹|$`Hƒ/„8HÇD$`E…ÿ…6I‹D$ö€³„D*L‰çè¼ëüÿH‰D$Hƒ|$ÿ„KH‹|$ L‰öL‰êèñüÿL‹%,P'H‹=½Z'L‰æèíüÿH…À„dHƒH‰D$XH‹5$U'H‰ÇèôõüÿH‰D$8H…À„^H‹|$XHƒ/„wH‰î¿1ÀL‹d$8HÇD$XèŠóüÿI‰ÅH…À„V1ÒL‰çH‰Æè!ñüÿIƒmI‰Ä„sH‹|$XL‰d$`H…ÿtHƒ/„*L‹d$`HÇD$XH‹|$8M…ä„"Hƒ/„$HÇD$8L‹d$`Hƒm„ûH‹5¬O'L‰çHÇD$`è#õüÿH‰D$`H…À„]H‹5þJ'H9ð„ÅH‹
^%H9H„¤ºH‰ÇèwôüÿH‹t$`H‰D$8H…À„lHƒ.„:HÇD$`H‹|$8H;=õ%”ÀH;=3%”ÂÂu
H;=%…w¶èHƒ/„zHÇD$8…í…ÉH‹52L'L‰çèjôüÿH‰D$8H…À„rH‹5MJ'ºH‰ÇèØóüÿH‰D$`H…À„"H‹|$8Hƒ/„£HÇD$8H‹|$`H;=V%”ÀH;=”%”ÂÂ…QH;=z%„DèìüÿA‰ŅÀˆI#H‹|$`Hƒ/„åHÇD$`H‹-ÍM'H‹=^X'E…í…uH‰îèêüÿH…À„ç*HƒH‰D$XH‹5ÔR'H‰ÇèŒóüÿH‰D$pH…À„‘+H‹|$XHƒ/„!$H‹5`I'1ÒL‰çHÇD$XèåòüÿH‰D$XH…À„­+H¿ÿÿÿÿÿÿÿè¨éüÿH‰D$hH…À„,ºH‰ÆL‰çèªòüÿH‰D$8H…À„ò-H‹|$hHƒ/„6&H‹t$8H‹|$XHÇD$hè¥èüÿH‰D$hH…À„ˆ.H‹|$XHƒ/„3&HÇD$XH‹|$8Hƒ/„&H‹t$h¿1ÀHÇD$8H‹l$pèaðüÿI‰ÅH…À„"/1ÒH‰ïH‰ÆèøíüÿIƒmH‰Å„&H‹|$8H‰l$`H…ÿt
Hƒ/„ì'HÇD$8H‹|$hHƒ/„%HÇD$hHƒ|$`„•.H‹|$pHƒ/„¾%HÇD$pH‹|$`H;=@
%@”ÅH;=}	%”À@èuH;=f	%tèêüÿ…Àˆ/H‹|$`@•ÅHƒ/„.&HÇD$`@¶íéfHƒ/„îHÇD$8éžøÿÿ„H‹		%H‰D$éÌ÷ÿÿ€L‰ÿè éüÿ…ÀˆèL‹|$Xé%úÿÿfDèãæüÿéBøÿÿfDèÓæüÿé²ùÿÿfDèÃæüÿé…ùÿÿfDè³æüÿéXùÿÿfDD¶øéúÿÿ€è“æüÿé0úÿÿfDèƒæüÿéjøÿÿfDèsæüÿéûøÿÿfDècæüÿéÓøÿÿfDH‰ÏèPæüÿ選ÿÿèCæüÿéÿÿÿfDL‰ÿ‰D$è,æüÿ‹D$édùÿÿèæüÿéeøÿÿfDHƒý‡
öÿÿI‰ÔH,BHcªHÐÿàH‹F8H‰„$ˆI‹E0H‰„$€I‹E(L‰çH‰D$xI‹E H‰D$pè.èüÿH‰ÃHƒý„U~fHƒý„jHƒýu)H…Û~-H‹5ûJ'L‰çèKåüÿH…À„]H‰„$ˆHƒëH…ۏHH‹„$€H‹l$pL‹d$xH‹œ$ˆH‰D$éöÿÿH…íuÎéZ€HQ1E1íE1ÿÇ
T'íH‰úS'ÇøS'HH‹|$8H…ÿt
Hƒ/„ä
H‹|$XH…ÿt
Hƒ/„à
H‹|$`H…ÿt
Hƒ/„Ü
H‹|$hH…ÿt
Hƒ/„ˆ
H‹|$pH…ÿt
Hƒ/„„
H‹
…S'‹‹S'H=àF‹5zS'èWýÿM…ÿt
Iƒ/„–
E1ÿM…ítIƒm„#
H…í„öôÿÿHƒm…ëôÿÿH‰ïèOäüÿéÞôÿÿf.„½H‹|$PH…ÿtHƒ/uè&äüÿHÇD$PH‹|$HH…ÿtHƒ/uèäüÿHÇD$HH‹|$@H…ÿtHƒ/uèêãüÿHÇD$@…í…‰"H‹-JH'H‹=ÛR'H‰îè#åüÿI‰ÇH…À„çHƒH‰D$hH‹57M'L‰ÿèîüÿI‰ÇH‰D$pH…À„NH‹|$hHƒ/„ïHÇD$h¿èLêüÿI‰ÇH‰D$hH…À„KIƒ$H‹D$hL‰` è(æüÿI‰ÇH‰D$`H…À„aH‹-¨G'H‹=9R'H‰îèäüÿI‰ÇH…À„¥HƒH‰D$8H‹5ÅI'L‰ÿèmíüÿI‰ÇH‰D$XH…À„H‹|$8Hƒ/uèÜâüÿH‹T$XH‹5ØJ'HÇD$8H‹|$`è=âüÿ…ÀˆH‹|$XHƒ/uè¥âüÿH‹T$`H‹t$hHÇD$XH‹|$pèxèüÿI‰ÇH‰D$XH…À„LH‹|$pHƒ/uègâüÿHÇD$pH‹|$hHƒ/uèNâüÿHÇD$hH‹|$`Hƒ/uè5âüÿHÇD$`H‹l$XIƒ,$uL‰çèâüÿH‹5AD'H‰ïHÇD$XèpìüÿI‰ÇH‰D$XH…À„4H‹@ö€³„˜H‹5Ï%1ÒL‰ÿè]êüÿ…ÀˆÅƒø„ÔL‰ÿèäüÿI‰ÄIƒüÿ„§H‹|$XHƒ/„@HÇD$XH;-x%…¾H‹EH‰D$ M…ä„H¾ÿÿÿÿÿÿÿH‹E1ö1Àë@H‹L$ H‹ÁH‰ñL)ñH9ʏÀHƒÀIÖL9àuÜIƒþÿ„ªH‹5ÓF'ºH‰ßè¦éüÿ…Àˆ¶t
Iþÿɚ;2H‹5ˆI'ºH‰ßè{éüÿ…ÀˆtH¿ÿÿÿÿÿÿÿI9þíL9t$ôH‹D$H;§%„L‹-"E'H‹=³O'L‰îèûáüÿI‰ÇH…À„µHƒH‰D$XH‹5÷F'L‰ÿèçêüÿI‰ÇH‰D$hH…À„G H‹|$XHƒ/„ÅH‹t$¿1ÀHÇD$XL‹l$hèxèüÿI‰ÇH…À„ô 1ÒL‰ïH‰ÆèæüÿIƒ/I‰Å„H‹|$XL‰l$`H…ÿtHƒ/„§L‹l$`HÇD$XM…í„Á H‹|$hHƒ/„ÔHÇD$hH‹|$`H;=n%”ÀH;=¬%”ÂÂ…0H;=’%„#è7âüÿA‰ŅÀˆë H‹|$`Hƒ/„‹HÇD$`E…í…H‹D$H‹
w%H9H…¢%HƒH‰D$hL‰çè”ÞüÿI‰ÇH‰D$`H…À„&¿è	æüÿI‰ÇH‰D$XH…À„'H‹D$`H‹|$hL‰þHÇD$`I‰G èùäüÿI‰ÇH‰D$`H…À„Ä&H‹|$hHƒ/„°HÇD$hH‹|$XHƒ/„ŽHÇD$XL‹|$`HÇD$`H‹C'H‹=¬M'H‰ÆH‰D$èïßüÿI‰ÅH…À„¿HƒH‰D$`H‹5?'L‰ïèÛèüÿH‰D$XH…À„éH‹|$`Hƒ/„fHÇD$`¿èåüÿI‰ÅH‰D$`H…À„Ù IƒH‹D$`L‰x èøàüÿI‰ÅH‰D$hH…À„Á!H‹xB'H‹=	M'H‰ÆH‰D$èLßüÿI‰ÅH…À„‰#HƒH‰D$pH‹5D'L‰ïè8èüÿI‰ÅH‰D$8H…À„±#H‹|$pHƒ/„eH‹T$8H‹5¤E'HÇD$pH‹|$hè	Ýüÿ…Àˆb!H‹|$8Hƒ/„H‹T$hH‹t$`HÇD$8H‹|$XèEãüÿI‰ÅH‰D$8H…À„X$H‹|$XHƒ/„HÇD$XH‹|$`Hƒ/„ãHÇD$`H‹|$hHƒ/„ÁHÇD$hL‹l$8HÇD$8M…ä„}H‹5?'L‰ïèFçüÿH‰D$8H…À„Z'L‰çèÜüÿH‰D$hH…À„'H‹|$8H‰ÆèåÝüÿH‰D$`H…À„P'H‹|$8Hƒ/„_#HÇD$8H‹|$hHƒ/„=#HÇD$hH‹L$`H‹Aö€³„ó,H‹5Bþ$1ÒH‰ÏH‰L$èËäüÿ…Àˆ3'ƒøH‹L$„'H‰ÏèmÞüÿH‰D$Hƒ|$ÿ„'H‹|$`Hƒ/„À"HÇD$`L;-Ýý$…L'I‹EH‹5lD'ºH‰ßH‰D$(èZäüÿ…Àˆ'H‹D$H‹5VC'H‹¸Ø„´èæüÿH‰D$@H…À„ö)H‹D$H‹5RC'H‹¸ØèîåüÿH‰D$hH…À„œ)H‹5aJ'H‰Ç1ÒHÇD$8èFáüÿH‹|$8H‰D$`H…ÿt
Hƒ/„&HÇD$8Hƒ|$`„ý)H‹|$hHƒ/„'HÇD$hH‹|$`Hƒ/„ò&HÇD$`è³ßüÿH‹|$L‰âL‰öAQH‰Ãÿt$0L‹L$ HƒÇ(L‹D$(H‹L$0è×ÚüÿH‰ßA‰ÄèìÞüÿH‹|$PAZA[H…ÿt<H‹5/:'1ÒèàüÿH‹|$@H‰ÃHƒ/„‰&HÇD$@H…Û„§)Hƒ+„Å(AƒÄ„¿'IƒEL‰ëIƒ/ttIƒmM‰ï…êõÿÿ@L‰ïè@ÚüÿéÐõÿÿè3ÚüÿénõÿÿfDè#ÚüÿérõÿÿfDèÚüÿéõÿÿfDèÚüÿéõÿÿfDèóÙüÿéõÿÿfD1ÛL‰ÿI‰ßèÛÙüÿé[õÿÿfDèËÙüÿé¾íÿÿfDH‹5É8'H‹=êF'1Òè›ßüÿI‰ÇH‰D$8H…À„EH‰Çè2ÝýÿH‹|$8Hƒ/„ƒHœ%E1íE1ÿHÇD$8H‰FH'ÇHH'îÇ:H'HéQôÿÿDèóÛüÿL‰ÿèÛJýÿH‰D$XH…À…íêÿÿHF%ÇH'ñH‰õG'ÇóG'?HH‹|$8H…ÿt
Hƒ/„GHÇD$8H‹|$XH…ÿt
Hƒ/„HÇD$XH‹|$`H…ÿt
Hƒ/„íHÇD$`H‹=ÕE'èhÛüÿ…À„Š‹†G'‹5|G'H=Õ:H‹
fG'è‘KýÿHT$XHt$`H|$8èDýÿ…ÀˆÕH‹5f7'H‹=E'1Òè@ÞüÿI‰ÄH…À„ÌH‰ÇèÜÛýÿIƒ,$„)H‰
G'ÇG'óÇþF'€HH‹T$PH‹t$HE1íE1ÿH‹|$@èÞüÿéçòÿÿ€èë×üÿéìÿÿfDHù#Ç»F'ñH‰¨F'ǦF'AHé®þÿÿf„èKÚüÿ‰ŅÀˆ1H‹|$8ésíÿÿ€H‰iF'ÇkF'òÇ]F'pHéZÿÿÿH‹F L‰çH‰D$pèÏÙüÿH‰ÃH‹5Å;'L‰çè
×üÿH‰D$xH…À„÷HƒëH…ÛŽÅñÿÿH‹5[9'L‰çèãÖüÿH…À„€ñÿÿH‰„$€Hƒëéjñÿÿf„èûÖüÿésýÿÿfDL‰çèXÙüÿH‰ÃH‹5ž?'L‰çHƒëè’ÖüÿH‰D$pH…À…hÿÿÿI‹mé¿æÿÿHÔ"Ç–E'H‰ƒE'ǁE' Jf„H‹|$8E1íH…ÿ…yñÿÿé’ñÿÿH“"ÇUE'H‰BE'Ç@E'LI„H‹|$hH…ÿt
Hƒ/„¼HÇD$hH‹|$pH…ÿt
Hƒ/„¯HÇD$pH‹|$XH…ÿt
Hƒ/„¢HÇD$XH‹|$`H…ÿt
Hƒ/„•HÇD$`H‹=
C'èØüÿ…À„Ó‹®D'‹5¤D'H=ý7H‹
ŽD'è¹HýÿHT$hHt$pH|$`èµAýÿ…Àˆ}H‹|$`H…ÿt
Hƒ/„	HÇD$`H‹|$pH…ÿt
Hƒ/„ÔHÇD$pH‹|$hH…ÿt
Hƒ/„ÇH‹T$@H‹t$HHÇD$hH‹|$PèBÛüÿH¿ÿÿÿÿÿÿÿèóÕüÿI‰ÇH‰D$hH…À„H‹=³='H‰Æè3ßüÿI‰ÇH‰D$pH…À„H‹|$hHƒ/„vH‹t$p¿1ÀHÇD$hL‹-ïA'èòÜüÿH‰ÅH…À„÷1ÒL‰ïH‰Æè‰ÚüÿHƒmI‰Å„L‰l$hM…í„×H‹|$pHƒ/„ÞHÇD$pH‹|$hèû×ýÿH‹|$hHƒ/„²H‰%C'L‰åE1íE1ÿHÇD$hÇC'	ÇC'lJé
ïÿÿf.„H‰éB'ÇëB'ÇÝB'JH‹T$@H‹t$HL‰åE1íH‹|$PE1ÿèøÙüÿéÃîÿÿH‰ïèÈÓüÿéøèÿÿè»ÓüÿéÒèÿÿfDL‰ïè¨Óüÿé€èÿÿHÇD$8H‹|$XH…ÿ…ÎåÿÿHÇD$8H™H‰RB'ÇTB'ñÇFB'PHéúÿÿf„HiÇ+B'õH‰B'ÇB'›Hé™üÿÿf„H‰÷èÓüÿé¹èÿÿH)E1íE1ÿÇåA'õH‰ÒA'ÇÐA'œHéÓíÿÿèÛÒüÿéÌçÿÿfDèËÒüÿé	úÿÿfDè»ÒüÿéÜùÿÿfDè«Òüÿé¯ùÿÿfDè›Òüÿé|èÿÿfDè‹ÒüÿéïÿÿfDH‹5y1'H‹=ª?'1Òè[ØüÿI‰ÇH‰D$XH…À„á
H‰ÇèòÕýÿH‹|$XHƒ/„cH\E1ÿHÇD$XH‰	A'ÇA'öÇý@'«Hé€ûÿÿH)E1íE1ÿÇå@'íH‰Ò@'ÇÐ@'HéÓìÿÿH‰ÇèhÓüÿf.PFz„(H‹qô$HƒH‹t$`H‰D$8éJçÿÿfDHÁǃ@'÷H‰p@'Çn@'½Héñúÿÿè{Ñüÿé:ûÿÿfDèkÑüÿéGûÿÿfDè[ÑüÿéTûÿÿfDèKÑüÿéaûÿÿfDD¶èéÈçÿÿ€HIE1íÇ@'÷H‰õ?'Çó?'¿HéöëÿÿfDHE1íE1ÿÇÕ?'÷H‰Â?'ÇÀ?'ÁHéÃëÿÿH‹Áò$HƒéÿÿÿH¿ÿÿÿÿÿÿÿè‘ÑüÿI‰ÇH‰D$`H…À„…H‹=é4'H‰ÆèÑÚüÿI‰ÇH‰D$XH…À„°H‹|$`Hƒ/„pH‹t$X¿1ÀHÇD$`L‹%='èØüÿH‰ÃH…À„¯1ÒL‰çH‰Æè'ÖüÿHƒ+I‰Ä„OL‰d$`M…䄐H‹|$XHƒ/„(HÇD$XH‹|$`èšÓýÿH‹|$`Hƒ/„üHE1íE1ÿHÇD$`H‰®>'ǰ>'øÇ¢>'ÖHé¥êÿÿH;D$(tL‰ÿè†×üÿ…À„2è™ØüÿH…À„âIƒ/u
L‰ÿè‚Ïüÿfè{ØüÿHÇD$ÿÿÿÿH…À„žãÿÿH‚E1íE1ÿÇ>>'ùH‰+>'Ç)>'èHé,êÿÿ@èãÑüÿL‰çèË@ýÿH‰D$XH…À…ŠãÿÿH6H‹|$8I‰ìÇð='þH‰Ý='ÇÛ='IH…ÿ„šøÿÿHƒ/uèßÎüÿHÇD$8選ÿÿH‰îè(ÐüÿH…À„£
HƒH‰D$8H‹55'H‰ÇèÙüÿH‰D$XH…À„:H‹|$8Hƒ/„¼H‹5‹6'L‰çHÇD$8èâØüÿH‰D$8H…À„yH‹-Õ2'H‹=f='H‰îè®ÏüÿI‰ÅH…À„ÅHƒH‹5ç4'L‰ïèŸØüÿH‰D$hH…À„Iƒm„B	¿èìÔüÿH‰D$pH…À„H‹T$8H‹|$XH‰ÆHÇD$8H‰P H‹T$hHÇD$hH‰P(1Òè»ÓüÿH‰D$`H…À„KH‹|$pHƒ/„Õ
HÇD$pH‹|$XHƒ/„³
HÇD$XH‹|$`H;=1ð$”ÀH;=oï$”ÂÂ…uH;=Uï$„hèúÏüÿ‰ŅÀˆÍH‹|$`Hƒ/„ô
HÇD$`…í„ðèÿÿH‹-¡1'H‹=2<'éØãÿÿDH1I‰ìÇð;'þH‰Ý;'ÇÛ;'
IéžöÿÿfDHÇD$`H‹|$XH…ÿ…½áÿÿH‹|$8HåI‰ìǤ;'þH‰‘;'Ǐ;'Ié¯ýÿÿfH‹‘î$HƒH‹t$`éÓúÿÿèƒÌüÿé"÷ÿÿfDèsÌüÿé/÷ÿÿfDècÌüÿéåöÿÿfDèSÌüÿé¶êÿÿfDHaH‹|$8Ç;'ÿH‰;'Ç	;')Ié)ýÿÿ@èÌüÿéSâÿÿfDL‰çèÌüÿéÊóÿÿHÇÓ:'ÿH‰À:'Ǿ:'+Iéõÿÿè{ÎüÿH‰ïèc=ýÿI‰ÇH‰D$hH…À…èÿÿHËE1íL‰åLJ:'
H‰t:'Çr:'~JéuæÿÿDè{ËüÿéâÿÿfDH‰H‹|$8ÇF:'ÿH‰3:'Ç1:'.IéQüÿÿ@HYE1íL‰åÇ:'
H‰:'Ç:'€JéæÿÿH)E1íL‰åÇå9'
H‰Ò9'ÇÐ9'ƒJéÓåÿÿèÛÊüÿ铸ÿÿHïE1íL‰åÇ«9'
H‰˜9'Ç–9'ˆJé™åÿÿHÂL‰åE1íE1ÿH‰r9'Çt9'
Çf9'JéiåÿÿD¶èééêÿÿèÍüÿH‰ïè<ýÿI‰ÇH‰D$8H…À…FçÿÿHkE1íL‰åÇ'9'
H‰9'Ç9'ŠJé)åÿÿHT$pH‰éL‰çL¨H5<Ò&è§oýÿ…À‰’äÿÿH¾±GÇÕ8'pH‰Â8'ÇÀ8'±GéLÚÿÿHìL‰åÇ«8'
H‰˜8'Ç–8'ŒJéóÿÿL‰çèñÈüÿI‰ÇH‰D$XH…À„"¿èfÐüÿI‰ÇH‰D$`H…À„ûHÇD$`H‹D$XHÇD$XI‰G é«êÿÿHnE1íÇ-8'îH‰8'Ç8'Hé/äÿÿHDL‰åÇ8'
H‰ð7'Çî7'‘JéqòÿÿèüÈüÿ醸ÿÿ¶èé¤ûÿÿèêÈüÿéúøÿÿèàÈüÿéÎøÿÿH‰ßèÓÈüÿ餸ÿÿèÉÈüÿé:úÿÿL‹-U7'M…í„H‹}I9ý„%çÿÿL‰îèÿÑüÿ…À…çÿÿH‹EI‹M H5È#H‹P H‹
é$H‹81Àè3ÑüÿHŒE1íE1ÿÇH7'H‰57'Ç37'­Jé6ãÿÿH‹
wé$H‰L$(H9ÈtL‰ÿè
Ðüÿ…À„‘è ÑüÿH…ÀuH‹¤è$H5êH‹8èuÌüÿDèûÐüÿIÇÄÿÿÿÿH…À„DæÿÿHE1íE1ÿÇÀ6'H‰­6'Ç«6'¢Jé®âÿÿH×H‹|$8Ç”6'H‰6'Ç6'NI韸ÿÿèÇüÿé1çÿÿ„H¿ÿÿÿÿÿÿÿèQÈüÿI‰ÇH‰D$XH…À„H‹=á('H‰Æè‘ÑüÿI‰ÇH‰D$`H…À„¯H‹|$XHƒ/„†H‹t$`¿1ÀHÇD$XL‹%M4'èPÏüÿH‰ÃH…À„Ä1ÒL‰çH‰ÆèçÌüÿHƒ+I‰Ä„6
L‰d$XM…ä„¥H‹|$`Hƒ/„
HÇD$`H‹|$XèZÊýÿH‹|$XHƒ/„ã	HÄE1ÿHÇD$XH‰q5'Çs5'Çe5'ÜJéèïÿÿH‰Q5'ÇS5'óÇE5'|HéBîÿÿHqE1íE1ÿÇ-5'H‰5'Ç5'îJéáÿÿHDH‹|$8Ç5'H‰î4'Çì4'PIé÷ÿÿèúÅüÿé"æÿÿL‰ÿèíÅüÿéÖåÿÿH‹yç$H5BH‹8èBÊüÿéÍýÿÿH‹5¾$'H‹=÷2'1Òè¨ËüÿI‰ÇH‰D$XH…À„@H‰Çè?ÉýÿH‹|$XHƒ/„¾H©E1ÿHÇD$XH‰V4'ÇX4'ÇJ4'KéÍîÿÿèXÅüÿé€ðÿÿL‰çè›ÄüÿI‰ÇH‰D$`H…À„0¿èÌüÿI‰ÇH‰D$hH…À„H‹D$HƒI‰G H‹D$`HÇD$hI‰G(HÇD$`éHæÿÿèíÄüÿékåÿÿèãÄüÿ鐿ÿÿèÙÄüÿéÕÛÿÿL‰ïèÌÄüÿé±öÿÿHàE1íE1ÿÇœ3'"H‰‰3'LJ3'?KéŠßÿÿè•ÄüÿéDðÿÿè‹ÄüÿéðÿÿH‰ïè~ÄüÿéîïÿÿH’ÇT3'öH‰A3'Ç?3'§HéÂíÿÿèMÄüÿéOäÿÿHƒìH‹Íä$H5ŽL
jA¸H
H®H‹81ÀèÏÌüÿH([¾¡GH‰Û2']ÇÜ2'pÇÎ2'¡GéZÔÿÿè¼ÄüÿI‰ÇH‰D$XH…À„H‹=ü-'H‰ÆèüÍüÿI‰ÇH‰D$`H…À„Å
H‹|$XHƒ/„U
H‹t$`¿1ÀHÇD$XL‹%¸0'è»ËüÿH‰ÃH…À„)
1ÒL‰çH‰ÆèRÉüÿHƒ+I‰Ä„¤
L‰d$XM…ä„

H‹|$`Hƒ/„}
HÇD$`H‹|$XèÅÆýÿH‹|$XHƒ/„Q
H/E1ÿHÇD$XH‰Ü1'ÇÞ1'#ÇÐ1'cKéSìÿÿèÞÂüÿéCõÿÿèÔÂüÿé!õÿÿH‹5¸!'H‹=ù/'1ÒèªÈüÿI‰ÇH‰D$XH…À„<H‰ÇèAÆýÿH‹|$XHƒ/„‚H«E1ÿHÇD$XH‰X1'ÇZ1'&ÇL1'ƒKéÏëÿÿE1öé-áÿÿèRÂüÿéÀÙÿÿèHÂüÿéõÿÿè>Âüÿé‘äÿÿè4ÂüÿéfÚÿÿè*ÂüÿéåÙÿÿè ÂüÿéÃÙÿÿH4E1íÇó0'øH‰à0'ÇÞ0'ÌHéáÜÿÿèìÁüÿéuäÿÿèâÁüÿé8ÚÿÿL‰ïèÕÁüÿéÖÙÿÿHé
Ç«0'øH‰˜0'Ç–0'ÎHéëÿÿf„H‹
Ñâ$H‰L$(H9ÈtL‰çègÉüÿ…À„Ÿ
èzÊüÿH…À…ññÿÿH‹úá$H5@H‹8èËÅüÿéÖñÿÿfDHi
é"ìÿÿè?Áüÿé5äÿÿè5Áüÿéäÿÿè+Áüÿéñãÿÿè!ÁüÿéÈÙÿÿèÇÃüÿH‰ïè¯2ýÿH‰D$8H…À…KòÿÿH
ÇÜ/'H‰É/'ÇÇ/'WIéŠêÿÿè…ÃüÿL‰ïèm2ýÿI‰ÇH‰D$XH…À…6àÿÿHÕÇ—/'+H‰„/'Ç‚/'»KéêÿÿHÇD$`H¥E1íE1ÿÇa/'øH‰N/'ÇL/'ÑHéOÛÿÿHxH‹|$8Ç5/'H‰"/'Ç /'YIé@ñÿÿè.Àüÿéháÿÿè$ÀüÿéFáÿÿH8E1íÇ÷.'+H‰ä.'Çâ.'½KéåÚÿÿèð¿üÿé
ØÿÿHÇÆ.'H‰³.'DZ.'\IétéÿÿèoÂüÿH‹|$èU1ýÿI‰ÅH‰D$`H…À…*áÿÿH½Ç.'/H‰l.'Çj.'LémÚÿÿè(ÂüÿH‰ïè1ýÿI‰ÅH…À…&ñÿÿH}H‹|$8Ç:.'H‰'.'Ç%.'fIéEðÿÿHÇD$`H‹|$XH…ÿ…ßÿÿH:E1ÿÇù-'+H‰æ-'Çä-'ÌKégèÿÿH‰Ð-'E1íL‰åÇÌ-'Ǿ-'RJéÁÙÿÿH‰ª-'E1íL‰åǦ-'
ǘ-'\Jé›Ùÿÿ覾üÿép÷ÿÿHº
E1íE1ÿÇv-'+H‰c-'Ça-'ÏKédÙÿÿH
ÇO-'/H‰<-'Ç:-'Lé½çÿÿèøÀüÿH‰ïèà/ýÿH‰D$XH…À…ÕÿÿHK
H‹|$8Ç-'H‰õ,'Çó,'ÅIéïÿÿH‹|$8H
ÇÜ,'H‰É,'ÇÇ,'hIH…ÿtHƒ/„ñHÇD$8Iƒm…lçÿÿL‰ï贽üÿé_çÿÿHÇD$hH‰,'L‰åE1íE1ÿÇx,'	Çj,'gJémØÿÿH–	H‹|$8ÇS,'H‰@,'Ç>,'ÇIé^îÿÿHj	Ç,,'/H‰,'Ç,'LéØÿÿHC	H‹|$8Ç,'H‰í+'Çë+'ÊIéîÿÿH	H‹|$8ÇÔ+'H‰Á+'Ç¿+'ŒIéßíÿÿèͼüÿé8÷ÿÿèüüÿéöÿÿ蹼üÿéçõÿÿH‰ß謼üÿé½õÿÿHÀH‹|$8Ç}+'H‰j+'Çh+'ËIH…ÿ…íÿÿé6æÿÿH‹H‹|$8ÇH+'H‰5+'Ç3+'—IéSíÿÿH_Ç!+'/H‰+'Ç+'Lé×ÿÿH8E1íÇ÷*'/H‰ä*'Çâ*'#LéåÖÿÿè`ÆüÿH‰D$@H…À„
H‹D$H‹5ž#'H‹¸Øè:ÆüÿH‰D$hH…À„C
H‹5­*'H‰Ç1ÒHÇD$8è’ÁüÿH‹|$8H‰D$`H…ÿt
Hƒ/„ŽHÇD$8Hƒ|$`„¡H‹|$hHƒ/„ˆHÇD$hH‹|$`Hƒ/„fHÇD$`èÿ¿üÿH‹|$L‰öL‰âQH‰Ãÿt$0L‹L$ HƒÇ(L‹D$(H‹L$0è¤ÄüÿH‰ßè<¿üÿH‹|$P^AXH…ÿ„“àÿÿH‹5|'1ÒèÝÀüÿH‹|$@H‰D$HHƒ/„èHÇD$@H‹|$HH…ÿ„/
Hƒ/„ÚHÇD$HéBàÿÿHÃÇ…)'H‰r)'Çp)'ÍIé3äÿÿHœH‹|$8ÇY)'H‰F)'ÇD)'¤Iédëÿÿè½üÿH‹|$èè+ýÿI‰ÅH‰D$pH…À…`ÜÿÿHPÇ)'/H‰ÿ('Çý('LéÕÿÿèºüÿét÷ÿÿHÇá('/H‰Î('ÇÌ(' LéãÔÿÿHøH‹|$8ǵ('H‰¢('Ç ('ÏIé3ýÿÿH‹|$è)ÃüÿI‰ÇH‰D$hH…À…LÚÿÿH±E1íÇp('.H‰]('Ç[('ùKé^ÔÿÿH‡ÇI('*H‰6('Ç4(' Ké·âÿÿèB¹üÿé¡õÿÿè8¹üÿé6Ýÿÿè.¹üÿé¹Üÿÿè$¹üÿé—ÜÿÿH8H‹|$8Çõ''H‰â''Çà''àIésüÿÿ1íéòÐÿÿHÇÇ''/H‰´''Dz''%LéÉÓÿÿè8üÿé¥õÿÿ趸üÿéyõÿÿH‰ß詸üÿéOõÿÿH½E1íÇ|''.H‰i''Çg''ûKéjÓÿÿH“E1íÇR''*H‰?''Ç=''¢Ké@ÓÿÿHiH‹|$8Ç&''H‰''Ç''ãIé1éÿÿH=E1íÇü&'.H‰é&'Çç&'LéêÒÿÿHÇÕ&'.H‰Â&'ÇÀ&'ýKéCáÿÿHìÇ®&'H‰›&'Ç™&'ÊJéáÿÿH‹%Ú$H5½H‹8è¼üÿéïÿÿHªE1íÇi&'H‰V&'ÇT&'ÌJéWÒÿÿH€ÇB&'H‰/&'Ç-&'Ké°àÿÿHÇD$XHPE1íE1ÿÇ&'H‰ù%'Ç÷%'×JéúÑÿÿH#E1íÇâ%',H‰Ï%'ÇÍ%'ÚKéÐÑÿÿL‰ç蘺üÿI‰ÇH…À„MõÿÿH‹@L‹%1Ø$L9àu5@ö€³„öæÿÿL‰ÿ胶üÿH‰D$Iƒ/…½ÊÿÿL‰ÿ茶üÿé°ÊÿÿL‰ÿèŸ[ýÿI‰ÇH…À„óæÿÿH‹@ëµH†ÇH%'&H‰5%'Ç3%'Ké¶ßÿÿHÇD$XHVE1íE1ÿÇ%'#H‰ÿ$'Çý$'^KéÑÿÿH)E1íÇè$',H‰Õ$'ÇÓ$'ÜKéÖÐÿÿHÿE1íǾ$'$H‰«$'Ç©$'SKé¬ÐÿÿHÕÇ—$'$H‰„$'Ç‚$'QKéßÿÿH®Çp$'5H‰]$'Ç[$'ULé^ÐÿÿH‡ÇI$'5H‰6$'Ç4$'SLéKÐÿÿH`Ç"$'5H‰$'Ç
$'WLéÐÿÿèµüÿéÙÙÿÿH‹§Ö$H5pH‹8èp¹üÿèû½üÿHÇD$ÿÿÿÿH…À„ÝØÿÿHÇÄ#'5H‰±#'ǯ#'[Lé²ÏÿÿHÛǝ#'8H‰Š#'Lj#'pLé‹ÏÿÿH‹,#'H…Ò„‘I‹}H9ú„—ØÿÿH‰ÖH‰T$(èѽüÿH‹T$(…À…}ØÿÿI‹EH‹J H5•H‹P H‹ÚÔ$H‹81Àè½üÿHYÇ#'6H‰#'Ç#'fLé	Ïÿÿè´üÿéöØÿÿè
´üÿéÙÿÿè´üÿémÙÿÿèö³üÿéhøÿÿèì³üÿéùÿÿèâ³üÿ鐸ÿÿèسüÿénøÿÿHìÿÇ®"'BH‰›"'Ç™"'MH‹|$@Hƒ/„žHÇD$@é„ÎÿÿL‰ÿèL·üÿI‰ÅH…À„[ëÿÿL‹%éÔ$L9`uNI‹Eö€³tVH‹5WÕ$1ÒL‰ïèå»üÿ…Àxxƒø„‡L‰ï萵üÿI‰ÄIƒm…ÑÿÿL‰ïè*³üÿétÑÿÿH‰Çè=XýÿI‰ÅH…Àu¢éëÿÿH;D$(tL‰ïèáºüÿ…À„ãèô»üÿH…ÀuH‹xÓ$H5¾H‹8èI·üÿIƒm…ÎêÿÿL‰ïèƲüÿéÁêÿÿH‹RÔ$H5H‹8è·üÿëÐL‰÷聳üÿH‰D$`H…À„úH‹=¤'H‰ÆèļüÿH‰D$hH…À„¶H‹|$`Hƒ/„H‹t$hH‹=k'HÇD$`è}ýÿH‰D$`H…À„NH‹|$hHƒ/„ÈHÇD$hH‹|$`轵ýÿH‹|$`Hƒ/„œHÇD$`HþH‰× 'ÇÙ '>ÇË 'ñLéÎÌÿÿèٱüÿé÷ÿÿHíýǯ '9H‰œ 'Çš '}LéüýÿÿH‰ß襱üÿé.×ÿÿH¹ýÇ{ '9H‰h 'Çf '{LéiÌÿÿH’ýÇT 'BH‰A 'Ç? 'Mé¡ýÿÿHkýÇ- 'BH‰ 'Ç 'MéÌÿÿHDýÇ '9H‰ó'Çñ'‹LéSýÿÿèÿ°üÿéXýÿÿH‹sÓ$H5ÿH‹8èTµüÿéŸüÿÿèڰüÿéóÿÿHîüǰ'9H‰'Ç›'¿LéžËÿÿH‹7Ñ$H5}þH‹8èµüÿéáÿÿH¬üÇn'BH‰['ÇY'SMé\ËÿÿL‰ÿè$´üÿH‰ÁH…À„ºàÿÿL9`u;H‹AH‰ÏH‰L$(ö€³t;è°üÿH‹L$(H‰D$Hƒ)…†ùÿÿH‰Ïè°üÿéyùÿÿH‰Çè/UýÿH‰ÁH…Àuµéràÿÿè½ÝýÿH‹L$(H‰D$ëÃH
üÇÌ'>H‰¹'Ç·'ìLéºÊÿÿèůüÿéYýÿÿHÙûÇ›'@H‰ˆ'dž'áLé‰ÊÿÿH²ûÇt'@H‰a'Ç_'ßLébÊÿÿèm¯üÿéZýÿÿèc¯üÿé.ýÿÿH;Ð$tH‰ÏH‰L$è(·üÿH‹L$…Àtzè:¸üÿH…À…1úÿÿH‹ºÏ$H5ýH‹8苳üÿéúÿÿL‰ïèβüÿI‰ÆH…À„	üÿÿL9`u"L‰÷èTôýÿIƒ.I‰Ä…ªûÿÿL‰÷è߮üÿéûÿÿH‰ÇèòSýÿI‰ÆH…ÀuÎéìûÿÿH‰Ïè}²üÿH‰ÂH…À„rÿÿÿH‹Ð$H9Bu.H‰×H‰T$(è÷óýÿH‹T$(H‰D$Hƒ*…kÒÿÿH‰×è{®üÿé^ÒÿÿH‰×èŽSýÿH‰ÂH…ÀuÂéaùÿÿAWI‰ÿAVAUATI‰ôUSHìˆH‹ª'H‹nHÇD$pH‰\$xH…Ò…ïHƒý„ÁHƒý„³H…íHòúH
âúHOÈŸÀHFþ¶ÀL
öøLOÊL@HƒìH‹gÎ$UH€ýH5 ýH‹81Àè~¶üÿH×ù¾ÛQÇ”'dž'ÛQH‰w'XZH
®ùºH=
E1íèŠ ýÿHĈL‰è[]A\A]A^A_ÃDH‹^(I‹l$ HÇD$HH‰ïHÇD$PHÇD$XHÇD$`HÇD$hHÇD$pHƒEHƒèà°üÿH‰D$Hƒøÿ„qL‹%z'H‹='L‰æèK®üÿI‰ÅH…À„ŸHƒL‹%L'H‹=Ý'L‰æè%®üÿI‰ÆH…À„‰HƒH‰D$PH‹5‘'L‰÷è·üÿI‰ÆH‰D$XH…À„0H‹|$PHƒ/„qH‰î¿1ÀL‹t$XHÇD$P褴üÿI‰ÄH…À„(1ÒL‰÷H‰Æè;²üÿIƒ,$I‰Æ„µH‹|$PH…ÿt
Hƒ/„éHÇD$PM…ö„H‹|$XHƒ/„HÇD$X¿èղüÿH‰D$PH…À„GH‹L$XH…Ét
H‰H HÇD$XHƒ1ÒH‰ÆL‰ïH‰X L‰p(觱üÿH‰D$HH…À„¹H‹|$PHƒ/„RHÇD$PIƒm„.H‹D$HHƒ+H‰D$„
H‹}H‹5ÿ'HÇD$HH9÷„…谴üÿ…ÀtqH‹5-'H‰ï譵üÿI‰ÄH‰D$PH…À„ÜH‹ÕÍ$H‹
Í$H9ØH‰L$”ÀI9Ì”ÂÂu
L;%òÌ$…¤D¶èIƒ,$„HÇD$PE…í…ãH‹5<'H9t$„yH‹D$H‹
Ë$H9H„ÓH‹|$º褴üÿI‰ÄH‰D$XH…À„
!H‹<Í$H9Ø”ÀL;%wÌ$”ÂD¶èÂuL;%]Ì$tL‰çè­üÿA‰ŅÀˆÀ!H‹|$XHƒ/„YHÇD$XE…í…b"I‹¿ØH‹5É'蔴üÿI‰ÄH…À„)#I‹¿ØH‹5Ò'èu´üÿH‰D$HH…À„ž#H‹5è'H‰Ç1ÒHÇD$PèͯüÿH‹|$PH‰D$XH…ÿtHƒ/„×H‹D$XHÇD$PH…À„s'H‹|$HHƒ/„HÇD$HH‹|$XHƒ/„æHT$pHt$hHÇD$XH|$`èɮüÿL‹t$IG(H‰D$IƒîM…öŽVH‰\$H‹|$L‰öè±üÿH‰ïI‰Åè!±üÿ…À„IL‰îH‰ïè>©üÿH‰D$XH…À„H+H‰ïèø°üÿ…À„°L‰öH‰ïè©üÿH‰D$HH…À„;H‰ïL‹|$Xèʰüÿ…ÀtH‹Eö€³ „­L‰÷èݱüÿH‰ÃH…À„,L‰úH‰ÆH‰ïèS±üÿHƒ+A‰Ç„nE…ÿˆH‹|$XHƒ/„–H‰ïL‹|$HHÇD$XèX°üÿ…ÀtH‹Eö€³ „³L‰ïèk±üÿI‰ÅH…À„_,L‰úH‰ÆH‰ïèá°üÿIƒmA‰Ç„#H‹|$HE…ÿˆÀHƒ/„kHÇD$HIƒî…¯þÿÿH‹|$`H…ÿt
Hƒ/„æ+HÇD$`H‹|$hH…ÿt
Hƒ/„Ó+HÇD$hH‹|$pH…ÿt
Hƒ/„À+H‹5+'1ÒL‰çHÇD$p耭üÿH‰D$pIƒ,$„¯+L‹d$pM…ä„-Iƒ,$„\+L‹-PÉ$H‹\$HÇD$pIƒEéé„è;§üÿé
ûÿÿfDè۩üÿL‰çèÃýÿI‰ÆH‰D$PH…À…búÿÿH+óH‹|$HÇè'>H‰Õ'ÇÓ'RE1äH…ÿtHƒ/„“*M…ítIƒm„M…öt
Iƒ.„H‹|$PH…ÿt
Hƒ/„H‹|$XH…ÿt
Hƒ/„’H‹
k'‹q'E1íH=	‹5]'è€ýÿM…ätIƒ,$tDH…ítHƒmt(H…Û„ÕøÿÿHƒ+…ËøÿÿH‰ßè=¦üÿé¾øÿÿ„H‰ïè(¦üÿëÎfDL‰çè¦üÿë²fDè¦üÿé…ùÿÿfDèû¥üÿédÿÿÿfDH	òÇË'>H‰¸'Ƕ'XRIƒmA¼…ÿÿÿE1öL‰ï貥üÿéäþÿÿDL‰÷蠥üÿéáþÿÿ蓥üÿéèþÿÿfDL‰ç耥üÿé>ùÿÿès¥üÿéfùÿÿfDH‰ßè`¥üÿééùÿÿL‰ïèP¥üÿéÅùÿÿèC¥üÿé¤ùÿÿfDI‰ÕHƒý„Hƒý„H…í…÷ÿÿH‰×耧üÿH‹5±'L‰ïH‰Ã辤üÿHƒëH‰D$pH…À„L%H…ۏH‹l$pH‹\$xé}÷ÿÿ@H‹5±	'H‰ïè1¯üÿH‰D$HH…À„³H‹5'H9ð„ÓH‹
lÅ$H9H„ZºH‰Ç腮üÿI‰ÄH…À„÷H‹t$HH‹Ç$H‹I9ÜA”ÆHPÿE¶îH‰H…Ò„ŸHÇD$HL;%7Æ$”ÂL;%%Æ$”ÀÂuE„öuL‰çèfüÿA‰ŅÀˆ3Iƒ,$„E…í„ò
H‹5+'H‰ïèc®üÿI‰ÄH…À„Ô!H9Ø”ÃH;ÒÅ$”ÀØ…÷L;%¸Å$„êL‰çèZ¦üÿ‰ÅÀˆ#Iƒ,$„…Û„
H‹†Å$H‰D$(H9Å…(H‹EH‹5%'H‰ïH‰D$èà­üÿI‰ÄH…À„ŒH‰ÇèL«üÿ…À„´1öL‰çèj£üÿI‰ÆL‰t$HM…ö„²!Iƒ,$„¾H‹\$HH‹Cö€³„H&H‰ßèð¢üÿH‰D$ Hƒ|$ ÿ„ÿH‹|$HHƒ/„H‹5ñ
'H‰ïHÇD$HèH­üÿH‰D$HH…À„H‹5#	'H‰Çè+­üÿI‰ÄH…À„—H‹|$HHƒ/„°HÇD$HI‹D$ö€³„ú%L‰çè]¢üÿH‰ÃHƒûÿ„ÈIƒ,$„…L‹%Ö'H‹=g'L‰æ诣üÿI‰ÅH…À„çHƒH‹5 
'L‰ï蠬üÿH‰D$HH…À„ÑIƒm„
H‰ßèï¢üÿI‰ÄH…À„>¿è٨üÿI‰ÆH‰D$PH…À„ÕL‰` 迤üÿI‰ÅH…À„ÏL‹%D'H‹=Õ'L‰æè£üÿI‰ÆH…À„ÏHƒH‹5^'L‰÷è¬üÿH‰D$XH…À„ŠIƒ.„H‹T$XH‹5‚	'L‰ïèò üÿ…ÀˆAH‹|$XHƒ/„ÛH‹t$PH‹|$HL‰êHÇD$Xè0§üÿI‰ÆH‰D$XH…À„gH‹|$HHƒ/„ÀHÇD$HH‹|$PHƒ/„˜HÇD$PIƒm„tL‹d$XHÇD$XL;d$(…ÂI‹D$I‹¿ØH‹5h'H‰D$8è.«üÿH‰D$0H…À„EI‹¿ØH‹5j'è
«üÿI‰ÅH…À„GH‹5‚'H‰Ç1ÒHÇD$Pèg¦üÿH‹|$PH‰D$XH…ÿtHƒ/„ÚH‹D$XHÇD$PH…À„ÙIƒm„!H‹|$XHƒ/„HT$pHt$hHÇD$XH|$`èp¥üÿL‹t$IƒîHƒû„M…öŽ‹IG(H‰D$H‹D$ H‰l$ H‹l$8I‰ÅL‰d$8I‰ÄM¯îLl$„H‹|$L‰ö胧üÿH‹L$H‰ÚH‰ïI¯ÄL<L‰þè8¤üÿL‰îH‰ÚL‰ÿè*¤üÿL‰ïH‰ÚH‰îè¤üÿM)åIƒîu³H‹l$ L‹d$8H‹D$(Hƒ8H‰D$X„ÁHÇD$XH‹|$`H…ÿt
Hƒ/„HÇD$`H‹|$hH…ÿt
Hƒ/„òHÇD$hH‹|$pH…ÿt
Hƒ/„ßH‹\$0H‹5zþ&1ÒHÇD$pH‰ßèϤüÿH‰D$pH‹H‰D$HƒèH‰„°H‹|$pH…ÿ„¾ Hƒ/„ƒHÇD$pL‹l$(H‹\$IƒEé øÿÿH©êH‹|$HE1äÇc
':H‰P
'ÇN
'RH…ÿ„£÷ÿÿHƒ/…™÷ÿÿèNžüÿé÷ÿÿf„èë üÿL‰çèÓýÿI‰ÄH…À…ê$H@êH‹|$HÇý'>H‰ê'Çè'Rë˜fDH‹5!'H‰ïèY¨üÿI‰ÄH‰D$PH…À„¸H9Ø”ÀL;d$”ÂÂ…L;%«¿$„õL‰çèM üÿA‰ŅÀˆL‹d$PIƒ,$„RHÇD$PE…í„¥òÿÿL‹%ñ'H‹=‚'L‰æèʞüÿI‰ÅH…À„ŽHƒH‹5»þ&L‰ï軧üÿI‰ÆH‰D$XH…À„ÖIƒm„O	¿è¤üÿH‰D$HH…À„¼HƒEH‰h H‹oý&HƒH‹T$HH‰B(H‹D$1ÒHƒH‹t$HH‹|$XH‰F0è̢üÿI‰ÄH‰D$PH…À„
H‹|$HHƒ/„l
HÇD$HH‹|$XHƒ/„D
HÇD$XL‹l$PHƒm„
H‹-ü'H‹='HÇD$PH‰îè̝üÿI‰ÄH…À„FHƒH‰D$XH‹50'L‰ç踦üÿH‰D$HH…À„¥H‹|$XHƒ/„«H‹5û&L‰ïHÇD$XèsüÿI‰ÄH‰D$XH…À„GH‰ƿ1ÀH‹l$Hè.¤üÿI‰ÄH…À„›1ÒH‰ïH‰ÆèšüÿIƒ,$H‰Å„¹
H‹|$XH‰l$PHƒ/„¡L‹d$PH‹|$HHÇD$XM…ä„WHƒ/„Œ
I‹¿ØH‹5'HÇD$HL‹d$PHÇD$PèӥüÿH‰D$ H…À„¿I‹¿ØH‹5'貥üÿH‰D$HH…À„WH‹5%
'H‰Ç1ÒHÇD$Xè
¡üÿH‹|$XH‰D$PH…ÿtHƒ/„ÍH‹D$PHÇD$XH…À„[H‹|$HHƒ/„ÍHÇD$HH‹|$PHƒ/„«H|$pHT$`HÇD$PHt$hè üÿL‰ïènžüÿHƒøÿ„VHhÿH…íŽmIG(H‰D$H‹|$H‰îèA¢üÿI‰ÆH9è„AL‰ïèM¢üÿ…À„ÅL‰öL‰ïèjšüÿH‰D$PH…À„®H‹5½º$H‰ÂL‰çèڢüÿ…Àˆ@H‹|$PHƒ/„Ñ	HÇD$PL‰ïèò¡üÿ…À„JH‰îL‰ïèšüÿI‰ÇL‰|$PM…ÿ„ôL‰ïèơüÿ…ÀtI‹Eö€³ „–L‰÷è٢üÿI‰ÆH…À„œL‰úH‰ÆL‰ïèO¢üÿIƒ.„Y…Àˆ|H‹|$PHƒ/„‡HÇD$PL‰ïè]¡üÿ…ÀtI‹Eö€³ „cH‰ïèp¢üÿI‰ÆH…À„âL‰âH‰ÆL‰ïèæ¡üÿIƒ.„ì…ÀˆÂHƒí…œþÿÿH‹|$pH…ÿt
Hƒ/„gHÇD$pH‹|$hH…ÿt
Hƒ/„THÇD$hH‹|$`H…ÿt
Hƒ/„#H‹\$ H‹5Hø&1ÒHÇD$`H‰ß蝞üÿH‰D$`H‹H‰D$HƒèH‰„H‹|$`H…ÿ„êHƒ/„ÿH‹dº$L‰íHÇD$`H‰D$(éºùÿÿfDL‰çèðšüÿA‰ŅÀˆÏL‹d$PéCíÿÿH‰Çèüÿf.¨ŠB…<H‹ź$H‹t$HA½A¾HƒI‰ÜHƒ.„CHÇD$HéÏóÿÿDH‰Çèh™üÿf.`z„xH‹qº$A½HƒH‰ÚH‰T$XéRíÿÿf.„1ÿ蹠üÿH‰ÃH…À„UH‰ÆL‰çèâ˜üÿHƒ+I‰Æ….ôÿÿH‰ßèm—üÿé!ôÿÿ„HyãH‹|$HÇ6'>H‰#'Ç!'RéIðÿÿ@H‹|$PH…ÿtHƒ/„lHÇD$PH,ãH‹|$HE1öÇæ'>H‰Ó'ÇÑ'+Réùïÿÿ@L‰ïèøŸüÿI‰ÇH…À„RH‰ÆH‰ïè!˜üÿIƒ/…™íÿÿL‰ÿH‰D$ 誖üÿH‹D$ é‚íÿÿH¹âH‹|$HÇv'>H‰c'Ça'MRé‰ïÿÿ@L‰çèh–üÿé5óÿÿè[–üÿéfóÿÿfDL‰÷èhŸüÿI‰ÇH…À„H‰ÆH‰ï著üÿIƒ/…2íÿÿL‰ÿH‰D$ è–üÿH‹D$ éíÿÿH‹}H‹5'H9þ„°êÿÿé¢êÿÿ€èë•üÿéFóÿÿfDL‰çèؕüÿénóÿÿL‰çèȕüÿéÖêÿÿD¶èéøÿÿ€H‰÷訕üÿéTñÿÿH‹F(H‰×H‰D$xH‹F H‰D$pèö—üÿH…ÀŽšðÿÿHT$pH‰éL‰ïLåH5ä&èÿ:ýÿ…À‰tðÿÿHpá¾ËQÇ-'H‰'Ç'ËQé–çÿÿH‹F H‰×H‰D$p臗üÿH‰Ãé#ðÿÿ€L‰ïè•üÿéäòÿÿL‰çèð”üÿéàðÿÿèã”üÿé`ìÿÿfD¶Ûé ñÿÿH‹59þ&L‰ï联üÿH…À„;ÿÿÿH‰D$xHCÿé$ÿÿÿf.„蛔üÿé‹ìÿÿfDL‰÷訝üÿI‰ÇH…À„åH‰ÆL‰ïèѕüÿIƒ/…úÿÿL‰ÿH‰D$(èZ”üÿH‹D$(éúÿÿH‹A¶$H‹ò¶$E1íHƒH9ÚA”Åé{üÿÿ€H‰ßè ”üÿé…ëÿÿL‰úL‰öH‰ïèjšüÿA‰ÇélëÿÿfL‰ïèø“üÿéÐëÿÿèë“üÿééÿÿfDL‰ïèؓüÿé¤öÿÿH‹y¶$A½A¾HƒI‰Üé´ûÿÿH‰ïèȜüÿH…À„¬H‰ÆL‰ïH‰D$(èï”üÿH‹L$(I‰ÇHƒ)…‘ùÿÿH‰Ïèu“üÿé„ùÿÿL‰÷èh“üÿéÝñÿÿH‹ñ'H…Û„ÜH‹}H9û„»ïÿÿH‰Þ蛜üÿ…À…«ïÿÿH‹EH‹K H5dîH‹P H‹©³$H‹81ÀèϛüÿH(ßH‹|$HH‹\$E1äH‰Ô'ÇÖ'DÇÈ'‰RéuôÿÿHñÞH‹|$HH‹\$Ç©'EH‰–'Ç”'“RéAôÿÿ€L‰úL‰îH‰ïèò˜üÿA‰Çégêÿÿf.„è{’üÿéñÿÿfDH‰ïèh’üÿéØõÿÿè[’üÿé²õÿÿfDèK’üÿéŠõÿÿfDL‰çè8’üÿé¡ôÿÿL9ètL‰çèšüÿ…À„tè›üÿH…À„ëIƒ,$u	L‰çè’üÿèûšüÿHÇD$ ÿÿÿÿH…À„êîÿÿHÞH‹|$HH‹\$E1äH‰®'ǰ'EÇ¢'˜RéOóÿÿDHÉÝÇ‹'FH‰x'Çv'£RH‹\$E1äéÇêÿÿL‰ïèx‘üÿéðÿÿèk‘üÿé^ðÿÿfDè[‘üÿé6ðÿÿfDHiÝH‹|$HH‹\$Ç!'UH‰'Ç'—Sé¹òÿÿ€H1ÝH‹|$HH‹\$Çéÿ&FH‰Öÿ&ÇÔÿ&¥Réòÿÿ€L‹%Ѳ$H‹‚³$H‹t$HIƒ$I9ÜA”ÆE¶î黸ÿÿ„諐üÿéŠùÿÿfD蛐üÿéçÿÿfD苐üÿéèæÿÿfDè{üÿéKôÿÿHÜH‹|$HH‹\$E1äH‰;ÿ&Ç=ÿ&UÇ/ÿ&™SéÜñÿÿè=üÿé%öÿÿHQÜM‰åHÇD$HH‹\$H‰ùþ&Çûþ&EÇíþ&•Ré2êÿÿHÜÇÛþ&@H‰Èþ&ÇÆþ&nRéKþÿÿL9ètL‰÷謗üÿ…À„Ž还üÿH…À„éIƒ.uL‰÷訏üÿ裘üÿHÇÃÿÿÿÿH…À„#íÿÿH‹|$HM‰åH‹\$E1öHœÛÇ^þ&FH‰Kþ&ÇIþ&¨Réqèÿÿè’üÿL‰çèïýÿI‰ÄH…À…H\ÛH‹|$HH‹\$Çþ&KH‰þ&Çÿý&³Ré¬ðÿÿè
üÿéUóÿÿL‰çèüÿéVëÿÿM…öމïÿÿL‹l$ H‹D$H‰l$IƒÇ(H‹l$8L‰d$M‰ôL‰ëI¯ÞHÃI‰ÞH‰ÃfL‰æL‰ÿ腖üÿI¯ÅHØH‹0H‰uI‹6H‰0H‹EI‰M)îIƒìuÑH‹l$L‹d$éïÿÿH›ÚH‹|$HH‹\$ÇSý&@H‰@ý&Ç>ý&pRéëïÿÿHjÚH‹\$Ç'ý&KH‰ý&Çý&µRéWèÿÿè ŽüÿéîíÿÿL‰ïèŽüÿéÒíÿÿL‰çèŽüÿé:òÿÿèüüÿéjòÿÿèòüÿéoôÿÿèèüÿéäÿÿH‹|$HM‰åH‹\$E1öHìÙÇ®ü&@H‰›ü&Ç™ü&sRéÁæÿÿL5ÅÙH‹\$Ç‚ü&iL‰5oü&Çmü&CUHÇD$HH‹|$PH…ÿt
Hƒ/„AHÇD$PH‹|$XH…ÿt
Hƒ/„.‹1ü&‹5'ü&H=ÀïHÇD$XH‹
ü&è3ýÿHT$PHt$XH|$Hè/ùüÿ…ÀˆBH‹L$PH‹T$X¿1ÀH‹t$Hè,•üÿI‰ÇH…À„Ò
1ÒH‰ÆL‰çèÒüÿIƒ,$I‰Å„óIƒ/„ÜM…í„GI9Ý”ÀL;-®$”ÂÂ…ºL;-ƒ®$„­L‰ïè%üÿIƒm‰Ã„¦…ÛˆB
H‹|$H…Û„yH…ÿt
Hƒ/„‘HÇD$HH‹|$XH…ÿt
Hƒ/„~HÇD$XH‹|$PH…ÿt
Hƒ/„kH‹T$pH‹t$hHÇD$PH‹|$`è’üÿL‹-æ­$H‹\$IƒEéˆåÿÿ€Iƒm¶Ø…bÿÿÿL‰ïèʋüÿéMÿÿÿHÞ×H‹|$HH‹\$Ç–ú&KH‰ƒú&ǁú&¸Ré.íÿÿH‹|$(芋üÿé0ìÿÿL5ž×H‹\$H‹|$HÇVú&iL‰5Cú&ÇAú&EUH…ÿ„ËýÿÿHƒ/…ÁýÿÿèA‹üÿé·ýÿÿL‰÷‰D$(è0‹üÿ‹D$(é’ñÿÿè"‹üÿéµýÿÿè‹üÿéÈýÿÿH,×H‹|$HM‰åÇæù&KH‰Óù&H‹\$ÇÌù&ºRéôãÿÿL‰ÿè׊üÿéþÿÿL‰çèʊüÿéþÿÿL‰5žù&Ç ù&fÇ’ù&_UH‹|$`H‹T$pE1äH‹t$h賐üÿH‹|$HH‹\$éìÿÿèŠüÿéêÿÿHÇD$XH‹\$L5…ÖH‹|$HÇBù&iL‰5/ù&Ç-ù&AUéçþÿÿL‰÷‰D$(è4Šüÿ‹D$(éÿðÿÿL‰úL‰öL‰ïè}üÿéƒðÿÿèŠüÿéKïÿÿè	Šüÿé)ïÿÿHÖH‹|$HE1äÇ×ø&KH‰Äø&H‹\$ǽø&¿Réjëÿÿè{ŒüÿL‰çècûüÿI‰ÄH…À…HÐÕH‹|$HH‹\$Ljø&VH‰uø&Çsø&¯Sé ëÿÿHŸÕH‹|$HH‹\$ÇWø&cH‰Dø&ÇBø&åTéïêÿÿH‹\$L5iÕÇ+ø&iL‰5ø&Çø&GUéÐýÿÿHBÕH‹|$HH‹\$E1öH‰î÷&Çð÷&KÇâ÷&ÆRé
âÿÿL‰âH‰îL‰ïèGüÿé¶ïÿÿ荋üÿL‰çèuúüÿI‰ÆH…À…çÿÿHâÔH‹|$HH‹\$Çš÷&KH‰‡÷&Ç…÷&ÁRé­áÿÿH±ÔH‹|$HH‹\$E1äH‰]÷&Ç_÷&cÇQ÷&çTéþéÿÿH}ÔH‹|$HH‹\$Ç5÷&VH‰"÷&Ç ÷&±SéHáÿÿè.ˆüÿéñèÿÿè$ˆüÿééÿÿèˆüÿééÿÿH‹|$0èˆüÿéAéÿÿHÔH‹|$HH‹\$Ç×ö&KH‰Äö&ÇÂö&ÃRéêàÿÿH‹5¦æ&H‹=Ïô&1Ò谍üÿI‰ÄH‰D$XH…À„sH‰ÇèG‹ýÿH‹|$XHƒ/„y
H±ÓH‹|$HE1äHÇD$XH‰Yö&H‹\$ÇVö&dÇHö&öTéõèÿÿHtÓÇ6ö&VH‰#ö&Ç!ö&ÑSé¦õÿÿè/‡üÿé)ìÿÿè%‡üÿésèÿÿH9ÓH‹|$HH‹\$Çñõ&UH‰Þõ&ÇÜõ& Sé‰èÿÿHÓH‹|$HH‹\$ÇÀõ&fH‰­õ&Ç«õ&	UéXèÿÿH×ÒH‹|$HH‹\$Ǐõ&VH‰|õ&Çzõ&ßSé'èÿÿH¦ÒH‹|$HH‹\$E1äH‰Rõ&ÇTõ&UÇFõ&¢SéóçÿÿHrÒÇ4õ&fH‰!õ&Çõ&UIƒ,$„ñH‹|$HH‹\$E1äé´çÿÿèňüÿH‰ïè­÷üÿI‰ÄH‰D$XH…À…¥éÿÿHÒH‹|$HH‹\$L‰íH‰Áô&ÇÃô&Wǵô&îSébçÿÿHáÑH‹|$HH‹\$Ç™ô&KH‰†ô&Ç„ô&ÈRé¬ÞÿÿHÇD$PL5§ÑÇiô&^L‰5Vô&ÇTô&eTH‹|$HH…ÿt
Hƒ/„5HÇD$HH‹|$PH…ÿt
Hƒ/„HÇD$PH‹|$XH…ÿt
Hƒ/„ñ‹ô&‹5úó&H=“çHÇD$XH‹
Ûó&èøüÿHT$XHt$HH|$Pèñüÿ…ÀˆbH‹L$XH‹T$H¿1ÀH‹t$PèÿŒüÿI‰ÇH…À„žH‹|$ 1ÒH‰Æ蔊üÿH‹L$ H‰ÅH‹H‰D$HƒèH‰„Iƒ/„ëH…í„H9Ý”ÀH;l$”ÂÂ…±H;-G¦$„¤H‰ïèé†üÿHƒm‰Ã„…ÛˆÛH‹|$P…Û„iH…ÿt
Hƒ/„HÇD$PH‹|$HH…ÿt
Hƒ/„äHÇD$HH‹|$XH…ÿt
Hƒ/„ÑH‹T$`H‹t$hL‰íHÇD$XH‹|$pèމüÿH‹§¥$H‰D$(é	åÿÿHƒm¶Ø…kÿÿÿH‰ï藃üÿéVÿÿÿL‰ÿ芃üÿéÿÿÿH‰Ïè}ƒüÿéñþÿÿL‰5Qò&ÇSò&XÇEò&•TH‹|$pH‹T$`L‰íH‹t$hèf‰üÿH‹|$HH‹\$éÑäÿÿè2ƒüÿéòýÿÿè(ƒüÿéþÿÿèƒüÿéÁýÿÿL‹-ªñ&M…í„EI‹|$I9ý„ âÿÿL‰îèSŒüÿ…À…âÿÿI‹D$I‹M H5ÞH‹P H‹`£$H‹81À膋üÿHßÎH‹|$HH‹\$Ç—ñ&LH‰„ñ&Ç‚ñ&×Ré/äÿÿH®ÎL‰íÇmñ&WH‰Zñ&ÇXñ&ðSéÝðÿÿH„ÎH‹|$HH‹\$Ç<ñ&MH‰)ñ&Ç'ñ&âRéÔãÿÿHSÎÇñ&fH‰ñ&Çñ&UéÜûÿÿH,ÎH‹|$HH‹\$Çäð&@H‰Ñð&ÇÏð&zRé|ãÿÿL5ûÍǽð&^L‰5ªð&Ǩð&gTéOüÿÿHÔÍH‹|$HH‹\$L‰íH‰€ð&Ç‚ð&WÇtð&óSé!ãÿÿIƒ,$H‹\$H–ÍH‰Oð&ÇQð&EÇCð&•R… M‰åE1äéÛÿÿHcÍÇ%ð&MH‰ð&Çð&äRH‹L$0H‹H‰D$HƒèH‰„ÃH‹|$HH‹\$H…ÿ„
E1öéÚÿÿHÇD$PL5ÍÇÅï&_L‰5²ï&ǰï&qTéWûÿÿ辀üÿéeôÿÿ贀üÿéxôÿÿ誀üÿé‹ôÿÿH‹|$HM‰åH‹\$E1öH®ÌÇpï&@H‰]ï&Ç[ï&|RéƒÙÿÿH‡ÌÇIï&MH‰6ï&Ç4ï&òRéÿÿÿ1íéyäÿÿHYÌH‹\$L‰íÇï&WH‰ï&Çþî&Té«áÿÿL5*ÌÇìî&_L‰5Ùî&Ç×î&sTé~úÿÿH‹T$PH‹t$X軃üÿL‰5´î&HÇD$HHÇD$XHÇD$PÇ›î&fǍî&tUéöôÿÿI‹l$éƒÑÿÿH¯ËH‹|$HH‹\$L‰íH‰[î&Ç]î&XÇOî&TéüàÿÿL5{ËÇ=î&`L‰5*î&Ç(î&}TéÏùÿÿL‰çè3üÿéùÿÿL‰5î&Ç	î&fÇûí&lUédôÿÿL‰5çí&Çéí&fÇÛí&cUéDôÿÿM…í„+ØÿÿE1öé	ØÿÿHöÊǸí&XH‰¥í&Ç£í&TH‹L$ H‹H‰D$HƒèH‰„hH‹|$HH‹\$L‰íé)àÿÿH¨ÊÇjí&XH‰Wí&ÇUí& Të°L‰5Dí&ÇFí&fÇ8í&hUé¡óÿÿH‰ÏèC~üÿé0ýÿÿL5WÊÇí&YL‰5í&Çí&5T髸ÿÿè~üÿéúÿÿè~üÿé%úÿÿèþ}üÿéáùÿÿHÊH‹|$HH‹\$ÇÊì&MH‰·ì&ǵì&pSébßÿÿH‹\$éRóÿÿH‹T$XH‹t$H菁üÿL‰5ˆì&HÇD$PHÇD$HHÇD$XÇoì&XÇaì&ªTéúÿÿH‹íŸ$H5…ËH‹8è΁üÿéJêÿÿL‰52ì&Ç4ì&XÇ&ì&¢TéÜùÿÿH‰ÏL‰íè.}üÿH‹|$HH‹\$é¹Þÿÿè}üÿé}õÿÿL‰5îë&Çðë&XÇâë&™Té˜ùÿÿL‰5Îë&ÇÐë&XÇÂë&žTéxùÿÿDL‹-ž$L9ètH‰ß蜄üÿ…À„B诅üÿH…À…¦êÿÿH‹/$H5uÊH‹8èüÿé‹êÿÿL‹-¼$L9ètL‰çèW„üÿ…À„kèj…üÿH…À…¹ìÿÿH‹êœ$H50ÊH‹8軀üÿéžìÿÿèA|üÿécÕÿÿHUÈH‹|$HH‹\$Ç
ë&dH‰úê&Çøê&òTé¥ÝÿÿL‰çè|üÿé—Ôÿÿèù{üÿéÔÿÿèï{üÿé#Ôÿÿèå{üÿé6ÔÿÿH‹\$H‹|$HéòÿÿL‰çèÉ{üÿéDÔÿÿH‹=ž$H5ÕÉH‹8è€üÿéãøÿÿè¤{üÿéÓâÿÿèš{üÿéâÿÿè{üÿé¢âÿÿH‹|$ è{üÿééâÿÿèw{üÿé÷âÿÿH‰ßè*üÿI‰ÄH…À„ªþÿÿH‹ǜ$H9Xu8I‹D$ö€³„éÿÿL‰çè{üÿH‰D$ Iƒ,$…ØÿÿL‰çè{üÿéØÿÿH‰Çè1 ýÿI‰ÄH…Àu¹ééÿÿL‰çè¼~üÿI‰ÆH…À„þÿÿH‹Yœ$H9Xu3I‹Fö€³„ùêÿÿL‰÷èªzüÿH‰ÃIƒ.…CØÿÿL‰÷èµzüÿé6ØÿÿH‰ÇèÈýÿI‰ÆH…Àu½éóêÿÿH´ÆH‹|$HH‹\$L‰íH‰`é&Çbé&XÇTé&ÄTéÜÿÿH€ÆH‹|$HH‹\$Ç8é&fH‰%é&Ç#é&ŽUéÐÛÿÿL‰÷èî}üÿI‰ÅH…À„^êÿÿH9Xu0I‹EL‰ïö€³t5èçyüÿH‰ÃIƒm…2ÿÿÿL‰ïèñyüÿé%ÿÿÿH‰ÇèýÿI‰ÅH…ÀuÀé!êÿÿ肨ýÿH‰ÃëÉH‹Vš$H5œÇH‹8è'~üÿéüéÿÿI‰ÅéPÜÿÿL‰çèb}üÿI‰ÅH…À„xçÿÿH9Xu2I‹EL‰ïö€³t7è[yüÿH‰D$ Iƒm…:þÿÿL‰ïècyüÿé-þÿÿH‰ÇèvýÿI‰ÅH…Àu¾é9çÿÿèô§ýÿH‰D$ ëÇI‰ÅéZÌÿÿE1äésÒÿÿI‰ÅéæÖÿÿH‹®™$H5ôÆH‹8è}üÿéúæÿÿf.„AW19AVI‰þAUI‰õATUSHìH”$@H‰×óH«H‹e›$D‹E…À„y
I‹~H‹5væ&H9÷„•è‚üÿ…À…ˆM‹^PA‹~tL‰t$pM‹†€M‹ŽˆI‹¶L‰\$x…ÿŽÑH\$p1ÀIÇÂÿÿÿÿH‰ÚI‹ÀH‰JI‹ÁH‰JPL‰ÑH…ötH‹ÆHƒÀH‰ŠHƒÂ9ÇÑL‰ðH‰\$(HÇD$ë6fDL;5š$…{
IƒI†pM‹žxL‰t$H‰D$(I‹†pH‰„$@I‹EH;e™$L‰œ$Ht
H;ܘ$…Ž
IƒE1íHÇ$E1ä1ÛHƒ<$ÇD$ÿÿÿÿÇD$L‰t$@D‰d$…LH‹™$I9E…ÄL‰ïè|üÿH9èŽSH‰îL‰ïHƒÅè´üÿI‰ÇH…À„È
H…Ût
Hƒ+„L‰ÿèQvüÿA‰ƅÀ…6L;=™$„ÉH‹5úØ&L‰ÿèzüÿH‰ÂH…À„H‹§™$H9Ø”ÀH;â˜$”ÁÁu
H;̘$…ž¶À…ÃH‹HƒèH‰D$ H‰„ìHÇD$ H‹5vØ&L‰ÿèüÿH‰ÂH…À„ÒH9Ø”ÀH;}˜$”ÁÁ…ÒH;c˜$„ÅH‰×H‰T$0èyüÿH‹T$0…Àˆó…À…®H‹HƒèH‰D$8H‰„×HÇD$8H‹5þ×&L‰ÿ莀üÿH‰ÂH…À„JH9Ø”ÀH;ý—$”ÁÁu
H;ç—$…‘¶À…¦	H‹HƒèH‰D$0H‰„Ï	HÇD$0H‹5©×&L‰ÿè)€üÿH‰ÃH…À„
Hƒ(„ó	H‹5l×&L‰ÿè€üÿI‰ÂH…À„P
Hƒ(„Þ	H‹5O×&L‰ÿL‰T$HèÚüÿL‹T$HH…ÀI‰À„‘
Hƒ(„Ï	H‹D$(L;3—$N‹ŒàN‹\àPJ‹Là„;	H‹D$0I‰ÆIÁþ?AƒæH…ÀuR‹T$H‹=Câ&L‰D$hH5'ØL‰T$`H‰L$XL‰L$PL‰\$H薭ýÿL‹\$HL‹L$PƒøÿH‹L$XL‹T$`L‹D$h„äH;­–$…E…ö„ÇHAÿH‰D$ H‹t$ I¯óL;…–$…ÀHÇÁÿÿÿÿ„H+L$ L;d–$t"H‹\$0H‰ÈH™H÷ûL¯ÛH¯ØH9Ù„]HH¸H…ÉHHÈHcD$L‰œĐH‰ŒÄPL‰ŒÄЋD$…ÀˆÃHcD$H´ÄЋD$‹|$M…ÉIøƒÀ‰D$‰|$é H‹Y•$L‰ÿI9G…Ü	è‡wüÿH‰ÃHƒûÿ„zH‹D$(J‹ŒàN‹tàPJ‹DàH…ÛˆŠH…Ûˆ±H9ͨ‹t$I¯ޅöˆÈHcD$HœÄÐH…Éx&‹T$…Ò…ZH‹„$HHH‰Œ$H€IƒÄHƒ<$L‰ûD‰d$„´ûÿÿL‰ïH‹$ÿÐI‰ÇH…À…ÜûÿÿL‹t$@è|üÿH…Àt%H‹ޔ$H‰ÇH‹2èƒvüÿ…À„pè¦uüÿfDIƒm„ëI‹~H‹5šà&H9÷t
è0|üÿ…À„qHƒ|$„H‹D$A‹ŽdH‹PH‹°Hÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$‹¼$Üè@”ýÿHÄÐH‰ÅH…À„
H;¶“$I‰ß„ÚL‹%~ß&M…ä„€H‹xI9ü„½L‰æèøzüÿ…À…­H‹EI‹L$ H5ÀÌH‹P H‹’$H‹81Àè+züÿH ½I‰íI‰ßÇ@à&	H‰-à&Ç+à&-~éãfDH‰×H‰T$ èËsüÿH‹T$ …À‰KúÿÿHS½H‰ÓÇöß&øH‰ãß&Çáß&€}éÓ@‹T$H‹=ÕÝ&H‰L$ H5°À脩ýÿH‹L$ ƒøÿ….ýÿÿHû¼Ç¡ß&@H‰Žß&ÇŒß&½~èÏrüÿH‹
xß&‹~ß&H=‹Ó‹5mß&‰ÅèŽãüÿ‰ïè·vüÿH‰Pß&ÇRß&ìÇDß&1}éü€èKyüÿH…À…}H‹D$(HÇÃÿÿÿÿJ‹ŒàN‹tàPJ‹Dà@HÃH…Û‰süÿÿéÿÿÿ€H‹q‘$H‰×H9B…tH‰T$0èšsüÿH‹T$0H‰D$ Hƒ|$ ÿ„´Hƒ*…ùÿÿH‰×èÂoüÿéùÿÿDH‰ßè°oüÿérøÿÿ¶À„RùÿÿH‹‘$H9BH‰×H‰T$0…Oè/süÿH‹T$0H‰D$8Hƒ|$8ÿ„|Hƒ*…2ùÿÿH‰×èWoüÿé%ùÿÿfHcD$HDŽÄPH‰ÆHDŽĐƒÆHDŽÄÐÿÿÿÿ‰t$éÈûÿÿ„‹T$H‹=õÛ&H5¶Ñ詧ýÿƒøÿ… ûÿÿH%»ÇËÝ&ƒH‰¸Ý&ǶÝ&:é%þÿÿf„Hœ$Hé8ûÿÿI9mŽ–H‰îL‰ïHƒÅè÷vüÿI‰ÇH…À…C÷ÿÿH:I‰ßÇcÝ&êH‰PÝ&ÇNÝ&}éH‰×H‰T$0èópüÿH‹T$0…À‰XøÿÿH{ºH‰ÓÇÝ&úH‰Ý&Ç	Ý&¬}Iƒm„FHƒ+„WH‹
åÜ&‹ëÜ&‹5áÜ&H=«½1íèûàüÿHƒ|$tH‹t$H‹H‰$HƒèH‰„*M…ÿt
Iƒ/„+HÄH‰è[]A\A]A^A_ÃfDHƒ|$ ˆ”H;L$ ŽIH‹t$ I¯óL;i$…¤E…öHÇÀÿÿÿÿHEÈéàøÿÿH•¹H‰ÓÇ8Ü&ùH‰%Ü&Ç#Ü&–}éÿÿÿfDL‰ïèètüÿI‰ÅH…À„«H‹@HÇÅÿÿÿÿH‹€èH‰$H…À…NõÿÿH2¹E1ÿÇÕÛ&êH‰ÂÛ&ÇÀÛ&ñ|ë{fDL‰ïèÈlüÿH…Û„³þÿÿHƒ+…©þÿÿH‰ßè­lüÿéœþÿÿ„H‰÷è˜lüÿéÉþÿÿL‰ÿèˆlüÿéÈþÿÿHµ¸I‰ßÇXÛ&êH‰EÛ&ÇCÛ&ú|Iƒm…DþÿÿL‰ïèHlüÿé7þÿÿH‹©$H‰×H9B…eH‰T$HèÒoüÿH‹T$HH‰D$0Hƒ|$0ÿ„Hƒ*…:öÿÿH‰×èúküÿé-öÿÿDL9Ã…wHÇD$ 1öL;ō$„O÷ÿÿHƒ|$8ˆãH‹D$8H9ÁHOÈé2÷ÿÿfH‰Çè¨küÿéöÿÿH‰ÇH‰D$Hè“küÿL‹T$Héöÿÿf„H‰ÇL‰T$PH‰D$HènküÿL‹T$PL‹D$Héöÿÿ€H´$Hé=÷ÿÿA‹~t…ÿ{òÿÿH‹•$1íH‹8è+oüÿºÒH
[·¾x|H=̺H‰
ìÙ&ÇîÙ&ÒÇàÙ&x|èÞüÿé3ýÿÿfDH·ÇÃÙ&øH‰°Ù&Ç®Ù&~}éfþÿÿHõ¶Ç›Ù&ùH‰ˆÙ&džÙ&”}é>þÿÿf„H‹IØ&H…Û„ I‹~H9û„hòÿÿH‰ÞèËsüÿ…À…XòÿÿI‹FH‹K H5”ÅH‹P H‹ي$H‹81ÀèÿrüÿH
t¶ºÕ¾|1íH=޹H‰
þØ&ÇÙ&ÕÇòØ&|èÝüÿéEüÿÿèpüÿI‰ÆH…À„ŸùÿÿH‰Çè—müÿIƒ.H‰Ã…öÿÿL‰÷èÒiüÿéùõÿÿDHýµÇ£Ø&úH‰Ø&ÇŽØ&ª}éFýÿÿHյÇ{Ø&üH‰hØ&ÇfØ&À}éýÿÿf„H‹D$ H…ÀˆbH9ÁÐûÿÿL‰ÞH‰L$ H¯ñélýÿÿ„E…ö…‰ôÿÿëÜè@oüÿH‹T$0H…À„5H‰ÇH‰T$HH‰D$0èÀlüÿH‹L$0H‹T$HH‰D$8Hƒ)…‚ùÿÿH‰ÏH‰T$0èêhüÿH‹T$0ékùÿÿHµÇ»×&FH‰¨×&Ǧ×&þ~èéjüÿH‹
’×&‹˜×&H=¥Ë‹5‡×&‰Åè¨Ûüÿ‰ïèÑnüÿH‰j×&Çl×&Ç^×&ç}éüÿÿH
¦´E1ÿ¾ï|ºêH‰
6×&Ç8×&êÇ*×&ï|éDúÿÿDHm´Ç×&ýH‰×&ÇþÖ&Í}é¶ûÿÿL‹t$@éõÿÿfDHL$ ‰lúÿÿHÇD$ 1öéeúÿÿDHL$8¸HHÈéMóÿÿDHý³Ç£Ö&þH‰Ö&ÇŽÖ&Ú}éFûÿÿH|$pL‰ðHÇD$H‰|$(éïÿÿDH‰T$ è†müÿH‹T$ H…ÀtLH‰ÇH‰T$8H‰D$0è
küÿH‹L$0H‹T$8H‰D$ Hƒ)…a÷ÿÿH‰ÏH‰T$0è4güÿH‹T$0éJ÷ÿÿf.„H‰T$ èpüÿH‹T$ H…À…ÿHÇD$ ÿÿÿÿé&÷ÿÿL‰ïèòfüÿéôÿÿH‰T$0èãoüÿH‹T$0H…À…öHÇD$8ÿÿÿÿé^÷ÿÿH‰T$0èÍlüÿH‹T$0H…ÀH‰Ãt3H‰ÇH‰T$HèSjüÿHƒ+H‹T$HH‰D$0…wúÿÿH‰ßè‡füÿH‹T$HéeúÿÿH‰T$0èsoüÿH‹T$0H…À…°HÇD$0ÿÿÿÿéKúÿÿA‹Ždÿ´$1Ò1öÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$‹¼$Üèê‡ýÿHÄÐH‰ÅH…À„H;`‡$I‰ß„|÷ÿÿL‹%(Ó&M…ä„EH‹xI9ü„_÷ÿÿL‰æè¢nüÿ…À…O÷ÿÿH‹EI‹L$ H5jÀH‹P H‹¯…$H‹81ÀèÕmüÿHJ±I‰íI‰ßÇêÓ&H‰×Ó&ÇÕÓ&V~éøÿÿ„H‹Y‡$H5ñ²H‹8è:iüÿé†úÿÿHú°Ç Ó&ïH‰Ó&Ç‹Ó&(}éCøÿÿH‹?‡$H…´1íI‰ßH5ÌÇH‹81Àè:müÿº
H
ª°¾~H=´H‰
;Ó&Ç=Ó&
Ç/Ó&~èR×üÿésöÿÿH
r°I‰߾+~º	H‰
Ó&ÇÓ&	ÇöÒ&+~éöÿÿH>°H‰ÓÇáÒ&øH‰ÎÒ&ÇÌÒ&„}é¾õÿÿH°H‰ÓÇ·Ò&ùH‰¤Ò&Ç¢Ò&š}é”õÿÿHê¯H‰ÓǍÒ&úH‰zÒ&ÇxÒ&°}éjõÿÿH/I‰ßÇcÒ&êH‰PÒ&ÇNÒ&}é÷ÿÿH
–¯I‰߾L~ºH‰
&Ò&Ç(Ò&ÇÒ&L~é4õÿÿH‹¦…$H5>±H‹8è‡güÿé§ñÿÿH‹‹…$H5#±H‹8èlgüÿéâýÿÿH‰ÁéŸîÿÿDf.„H;5ÑÏ&AVAUATUS„óH‰ð‹wtH‰ýH‰Çè:öýÿH‰ÃH…À„>L‹5—„$L9ð„fH‰ÇèiüÿHƒø…”1öH‰ßèâjüÿI‰ÄH…À„>¾H‰ßèÉjüÿI‰ÅH…À„-Hƒ+„sL;%ü„$”ÀL;%:„$”ÂÂu	M9ô…жÀ…WH‹EL‰îH‰ïÿH…À„:H‹UH‰ÆH‰ïÿR(H‰ÃH…À„iIƒ,$„¥Iƒmt'H‰Ø[]A\A]A^ÃH‰ûHƒH‰Ø[]A\A]A^ÃDL‰ïè¸aüÿH‰Ø[]A\A]A^Ã@L‰çè@düÿ…À‰iÿÿÿHͭ¾ælºšÇiÐ&šH‰VÐ&ÇTÐ&ælH
¡­H=ÞÄ»èdÔüÿIƒ,$…[ÿÿÿL‰çèAaüÿéNÿÿÿ@Hm­ÇÐ&—H‰Ð&ÇþÏ&ÑlHƒ+„ŒH‹
åÏ&‹ëÏ&‹5áÏ&H=rÄ1ÛèûÓüÿéÿþÿÿfDH‰ßèØ`üÿé€þÿÿL‰îH‰ïèÅçÿÿH‰ÃH…À…ÀþÿÿHî¬¾ñlº›ÇŠÏ&›H‰wÏ&ÇuÏ&ñléÿÿÿ„H‰ßèx`üÿégÿÿÿH
¥¬¾Álº—ÇAÏ&—H‰
.Ï&Ç,Ï&ÁléFÿÿÿ€H‹@$H5º¾H‹8è’düÿHW¬ÇýÎ&—H‰êÎ&ÇèÎ&ØléåþÿÿšH…Àx1HƒøH4°H
çªHEÊH‰ÂH‹í€$H5.¾H‹81Àè|hüÿHñ«Ç—Î&—H‰„Î&Ç‚Î&ÉléþÿÿDHū¾mºžÇaÎ&žH‰NÎ&ÇLÎ&méóýÿÿ€H‹q€$ºH5µ¶H‹81ÀèûgüÿézÿÿÿfDHƒ+Ha«H‰þÍ&ÇÎ&—ÇòÍ&ÓlthIƒ,$…ñýÿÿL‰çèõ^üÿH‹
ÎÍ&‹ÔÍ&‹5ÊÍ&éäýÿÿDH
«¾mºÇ©Í&H‰–Í&Ç”Í&mé;ýÿÿ€H‰ßè˜^üÿëŽfDAWAVI‰öAUATUSHì¨H‹e€$L‹fH‹-*¿&H‹ӿ&H‰|$H‰„$€H‹¿¾&HÇD$pHÇD$xH‰¬$ˆH‰D$XH‰„$H‰œ$˜H…Ò…
Iƒüt~'IƒütIƒü…ŸH‹F@H‰D$XI‹n8M‹n0ë@L‹-Ñ$Iƒü…wI‹F M‹~(H‰$H‹$ºH‰ßHƒIƒHƒH‹5œÅ&è7füÿ…Àˆo…YHƒ+„oL‹5Â&H‹=‘Ì&L‰öèÙ^üÿI‰ÄH…À„ÅHƒH‹5Ç&L‰çèÊgüÿI‰ÀH…À„>Iƒ,$„	H‹4$1?L‰D$èneüÿL‹D$H…ÀI‰Æ„Ý1ÒL‰ÇH‰ÆL‰D$èûbüÿIƒ.L‹D$H‰D$„÷Hƒ|$„«Iƒ(„ÑH‹4$H‹H‰D$HƒèH‰„àL‹%9Á&H‹=ÊË&L‰æè^üÿI‰ÀH…À„†HƒH‹5;Æ&L‰ÇL‰$èÿfüÿL‹$H…ÀI‰Ä„WIƒ(„L‰þ¿1Àè¦düÿI‰ÆH…À„ª1ÒH‰ÆL‰çè=büÿIƒ.H‰$„—Hƒ<$„„Iƒ,$„qIƒ/„WL;-~$„úL‹5ƒÀ&H‹=Ë&L‰öè\]üÿI‰ÇH…À„HƒH‹5•Â&L‰ÿèMfüÿI‰ÆH…À„Iƒ/„ÇI‹Eö€³…F	L‰öL‰ïè›eüÿIƒ.A‰Ä„îE…ä…3	IƒEH‹5ñ½&H‹|$èïeüÿI‰ÄH…À„ÓH‰Çè;_üÿH‰D$ Hƒøÿ„Iƒ,$„
Hƒ|$ …H‹5¦½&H‹<$è¥eüÿI‰ÄH…À„1H‰Çèñ^üÿI‰ÇHƒøÿ„ŒIƒ,$„9Iƒÿ„H‹58º&H‹=)È&1ÒèÚ`üÿI‰ÆH…À„<H‰Çèv^ýÿIƒ.„3(Hå¦Ç§É&”
H‰”É&Ç’É&?L‹<$1ÉE1ÉE1ÒHÇD$ 1íE1öHÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$HÇD$éâH‹5©»&ºH‰ßè¼büÿ…Àˆ$„…üÿÿH‹5ïÂ&ºH‰ßèšbüÿA‰ƅÀˆÿHƒ+„5E…ö„]üÿÿH‹55¹&H‹=Ç&1ÒèÇ_üÿI‰ÅH…À„å!H‰Çèc]ýÿIƒm„Hѥ1ÉE1ÉE1ÒH‰‚È&H‹$1íE1öÇ{È&„
E1íÇjÈ&>H‰D$HÇD$ HÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$HÇD$鯀H‰ßèYüÿé„ûÿÿH)¥1ÉE1ÉE1ÒH‰ÚÇ&H‹$1íE1öÇÓÇ&ˆ
E1íÇÂÇ&¡>HÇD$ HÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$HÇD$H‰D$@M…ätIƒ,$„M…Àt
Iƒ(„¹M…Òt
Iƒ*„ÚM…Ét
Iƒ)„óH…Ét
Hƒ)„üH‹

Ç&‹Ç&H=Ȼ1ۋ5Ç&è#ËüÿM…ítIƒm„;M…öt
Iƒ.„<H‹T$H…ÒtH‹H‰$HƒèH‰„.H‹L$H…ÉtH‹H‰$HƒèH‰„ H‹t$8H…ötH‹H‰$HƒèH‰„H‹T$(H…ÒtH‹H‰$HƒèH‰„H‹L$HH…ÉtH‹H‰$HƒèH‰„öH‹|$0H…ÿtH‹H‰$HƒèH‰„èH‹t$@H…ötH‹H‰$HƒèH‰„ÚH‹T$PH…ÒtH‹H‰$HƒèH‰„ÌH‹L$ H…ÉtH‹H‰$HƒèH‰„¾H…ítHƒm„¾H‹|$H‹H‰$HƒèH‰„ÅIƒ/„«HĨH‰Ø[]A\A]A^A_ÃfDL‰ÿèYüÿH‰ÃH‹5¼&L‰ÿHƒëè:VüÿH‰D$pH…À…hM‹f„IƒüH>£H
.£HMȝÀHƒì¶ÀATH<¦LD@H‹»v$H5|¥L
o¦H‹81ÀèÓ^üÿH,¢¾9>ÇéÄ&
ÇÛÄ&9>H‰ÌÄ&XZH
¢º
H=¹1ÛèàÈüÿéÿÿÿL‰ïèÀUüÿé¸ýÿÿL‰÷è°Uüÿé·ýÿÿH‰×è UüÿéÅýÿÿH‰ÏèUüÿéÓýÿÿH‰÷è€UüÿéáýÿÿH‰×èpUüÿéïýÿÿH‰Ïè`UüÿéýýÿÿèSUüÿéþÿÿfDH‰÷è@UüÿéþÿÿH‰×è0Uüÿé'þÿÿH‰Ïè Uüÿé5þÿÿH‰ïèUüÿé5þÿÿL‰ÿèUüÿéHþÿÿH‹|$èîTüÿé,þÿÿf„L‰çL‰T$hH‰L$`L‰L$XL‰$èÅTüÿL‹T$hH‹L$`L‹L$XL‹$é=üÿÿDL‰ÇL‰T$`H‰L$XL‰$è’TüÿL‹T$`H‹L$XL‹$éüÿÿ€L‰×H‰L$XL‰$ègTüÿH‹L$XL‹$éüÿÿf„L‰ÏH‰$èDTüÿH‹$éøûÿÿH‰Ïè0Tüÿé÷ûÿÿL‰çH‰D$èTüÿL‹D$éÎöÿÿL‰ÇèTüÿé"÷ÿÿL‰÷èøSüÿL‹D$é÷öÿÿfDH‰÷èàSüÿé÷ÿÿL‰ÇèÐSüÿéV÷ÿÿL‰ÿèÀSüÿéœ÷ÿÿL‰çè°Süÿé‚÷ÿÿL‰÷è Süÿé\÷ÿÿIƒü‡.ýÿÿI‰×HȯJc¢HÐÿàH‹F@H‰„$I‹F8H‰„$ˆI‹F0H‰„$€I‹F(L‰ÿH‰D$xI‹F H‰D$pèªUüÿH‰ÃIƒü‡ÿH‚¯Jc¢HÐÿàD1ÿèa\üÿI‰ÅH…À…u÷ÿÿHŸÇàÁ&‹
H‰ÍÁ&ÇËÁ&æ>1ÉE1ÉE1Ò1íHÇD$ E1öL‹<$HÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$HÇD$éúÿÿf„Iƒ.uL‰÷èbRüÿ¿è¨[üÿI‰ÆH…À„|IƒEL‰ê1öH‰ÇM‰õè·Wüÿé¢öÿÿfHIžÇÁ&ƒ
H‰øÀ&ÇöÀ&o>H‹$1ÉE1ÉE1ÒHÇD$ E1ÀE1ä1íH‰D$E1öE1íHÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$HÇD$H…Û„ùÿÿHƒ+…ùÿÿH‰ßL‰T$hH‰L$`L‰L$XL‰$èpQüÿL‹T$hH‹L$`L‹L$XL‹$騸ÿÿ„L‰çèHQüÿéòõÿÿHYÇÀ&ˆ
H‰À&H‹$ÇÀ&°>H‰D$1ÉE1ÉE1Ò1íHÇD$ E1öE1íHÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$HÇD$é?øÿÿ€èSSüÿL‰÷è;ÂüÿI‰ÆH…À…š<H¨œ1ÉE1ÉE1ÒH‰Y¿&H‹$1íE1íÇR¿&ˆ
ÇD¿&Ÿ>HÇD$ HÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$HÇD$H‰D$é ÷ÿÿL‰ÿèøOüÿé,ôÿÿH‹5Q²&H‹<$èPZüÿI‰ÄH…À„H‰Çè¼Wüÿ…À„$1öL‰çèÚOüÿI‰ÇM…ÿ„®Iƒ,$„ãH‹5²&H‹<$èZüÿI‰ÄH…À„+H‰ÇèoWüÿ…À„§¾L‰çèŠOüÿI‰ÀM…À„éIƒ,$„ãL‰ƺL‰ÿL‰D$è>YüÿL‹D$H…ÀI‰Ä„VIƒ/„tIƒ(„]L;%Âq$A”ÇL;%ÿp$”ÀDø…³L;%äp$„¦L‰çè†QüÿA‰DžÀˆ’Iƒ,$„ÁE…ÿ…ÈóÿÿH‹5(±&H‹|$è&YüÿI‰ÄH…À„
H‰Çè’Vüÿ…À„‚
1öL‰çè°NüÿI‰ÀM…À„¡Iƒ,$„©H‹5ڰ&H‹<$L‰D$èÔXüÿL‹D$H…ÀI‰Ä„»H‰ÇL‰D$è6VüÿL‹D$…À„¹1öL‰çèONüÿL‹D$I‰ÇM…ÿ„;Iƒ,$„£L‰ǺL‰þL‰D$èþWüÿL‹D$H…ÀI‰Ä„TIƒ(„3Iƒ/„L;%‚p$”ÀL;%Ào$”ÂÂ…íL;%¦o$„àL‰çèHPüÿA‰DžÀˆIƒ,$„:E…ÿ…_H‹5j­&L‰ïèÚNüÿI‰ÄH…À„ÅH‰ÇèMüÿI‰ÆH…À„üIƒ,$„H‹5°¯&H‹|$è®WüÿH‰D$H…À„WL‹|$L‰ÿèUüÿ…À„ã1öL‰ÿè1MüÿI‰ÄM…ä„ÛH‹|$H‹H‰D$(HƒèH‰„;L‰æL‰÷è Rüÿƒøÿ„wIƒ,$„|H‹5Ů&H‹|$è+WüÿH…À„BH‰D$L‰ö1?èÞTüÿL‹D$H…ÀI‰Ä„§1ÒL‰ÇH‰ÆL‰D$èkRüÿIƒ,$L‹D$I‰Ç„sM…ÿ„yIƒ(„SH‹5¯&L‰ÿè¶VüÿI‰ÀH…À„Iƒ/„€H‹5‘®&H‹|$L‰D$èŠVüÿL‹D$H…ÀH‰D$„ØL‹|$L‰D$L‰ÿèåSüÿL‹D$…À„¨1öL‰ÿèþKüÿL‹D$I‰ÂM…Ò„H‹t$H‹H‰D$HƒèH‰„[¿L‰T$L‰D$èRüÿL‹D$L‹T$H…ÀI‰Á„nH‹²«&1ÒL‰ÎL‰ÇL‰L$(HƒI‰A M‰Q(L‰D$èOQüÿL‹D$L‹L$(H…ÀH‰D$„¹Iƒ)„»Iƒ(„ÈH‹5´´&H‹<$è“UüÿH…À„µL‹%‹¯&H‹=º&H‰D$L‰æè_LüÿL‹D$H…ÀI‰Á„°HƒH‹5ó²&L‰ÏL‰D$0L‰L$(èAUüÿL‹L$(L‹D$0H…ÀH‰D$„Iƒ)„#H‹t$1?L‰D$(èÙRüÿL‹D$(H…ÀI‰Ä„1ÒL‰ÇH‰ÆèkPüÿIƒ,$L‹D$(I‰Ç„ÌH‹|$H‹H‰D$(HƒèH‰„žM…ÿ„Iƒ(„¾H‹4$H‹H‰D$HƒèH‰„˜H‹5‹«&ºH‰ßèžRüÿ…Àˆˆ„+¿èFSüÿI‰ÄH…À„û"H‹[«&1öL‰çHƒH‹K«&èNOüÿH‹=ç­&1ÒL‰æè=¹üÿI‰ÀH…À„î#Iƒ,$„%H‹5«&L‰ÇL‰$èS¼üÿL‹$H…ÀH‰D$„N#H‹D$Hƒ8„¸Iƒ(„¡H‹D$L‰þ¿Hƒ1ÀèQüÿI‰ÄH…À„)$H‹|$1ÒH‰Æè%OüÿIƒ,$I‰À„”M…À„$H‹|$H‹H‰$HƒèH‰„`I‹@H;Šj$L‰ÇL‰$t
H;j$…ù&è_OüÿL‹$Hƒø…$%1öL‰ÇL‰$è#QüÿL‹$H…ÀH‰D$8„$L‰ǾL‰$èQüÿL‹$H…ÀH‰D$(„q(L‰ǾL‰$èÝPüÿL‹$H…ÀH‰D$H„à'Iƒ(„¨ HÇD$PHÇD$@HÇD$0H‹5/¯&ºH‰ïèÂPüÿ…Àˆ½!HÇD$ H‹5ò°&„>ºH‰ßè—Püÿ…Àˆã%„H‹5²¨&ºH‰ïèuPüÿ…Àˆ%t"H‹5üª&ºH‰ïèWPüÿ…Àˆ(-…Ã&H‹5"©&ºH‰ßè5Püÿ…ÀˆS+H‹=¬&„‹è˹üÿI‰ÂH…À„±,H‹5H±&H‰ÇH‰$èÜQüÿL‹$H…ÀI‰Á„Z,Iƒ*„É$H‹=ë&L‰$肹üÿL‹$H…À„ü+H‹5F¯&H‰ÇL‰L$ H‰$èQüÿL‹$L‹L$ H…ÀI‰Ä„Ü2Iƒ(„°+Hƒ|$HL‰$„£6H‹5o±&H‹|$HèMQüÿL‹$H…ÀI‰À„K6Hƒ|$(„×5H‹t$(H‰ÇL‰L$`H‰$èûMüÿL‹$L‹L$`H…ÀH‰D$ „|5Iƒ(„.¿L‰$è\MüÿL‹$H…ÀH‰Á„Ì/H‹D$ 1ÒH‰ÎL‰çL‰L$`H‰A H‹D$HH‰$HƒH‰A(è0LüÿH‹$L‹L$`H…ÀI‰Â„9Hƒ)„x-Iƒ,$„,¿L‰T$ L‰$èãLüÿL‹$L‹T$ H…ÀI‰Ä„“/L‰P IƒL‰x(L‰$è¹HüÿL‹$H…ÀI‰Â„Ù/H‹T$XH‹5]¨&H‰ÇH‰$L‰L$ è,EüÿL‹$L‹L$ …Àˆt/H‹T$XH‹5¯&L‰×L‰$L‰L$ èþDüÿL‹$L‹L$ …Àˆ0L‰ÒL‰ÏL‰æL‰T$XL‰$èFKüÿL‹$L‹T$XH…ÀH‰D$ „°/Iƒ)„‘/Iƒ,$„q/Iƒ*„R6H‹|$ H;=Äg$”ÀH;=g$”ÂÂ…)6H;=èf$„6èGüÿ…ÀˆÞ5…À„+H‹5®­&ºH‰ßèYMüÿ…ÀˆU%„Hƒ|$P„ï(H‹D$PHƒH‰ÅH‹5$¯&H‰ïèOüÿI‰ÄH…À„™(H‹|$H‰ÆèKDüÿI‰ÁH…À„5*Iƒ,$„4H‹|$L‰ÎL‰$èSJüÿL‹$H…ÀH‰Ã„Ý)Iƒ)„üH‹t$H‹H‰$HƒèH‰„ÖL‰÷è8IüÿI‰ÄH…À„é'H‹5m¦&H‰ÂH‰ßèêJüÿ…Àˆ%Iƒ,$„ì$HƒH‰\$éËëÿÿf„L‰çèÈCüÿéºèÿÿHُL‰û1ÉE1ÉH‰в&E1ÒE1ÀE1äǃ²&Œ
1íE1íL‹<$Çl²&þ>HÇD$ HÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$HÇD$éñÿÿfDL‰ïè CüÿécéÿÿH‹F L‰ÿH‰D$pèwEüÿH‰ÃH‹5}«&L‰ÿèµBüÿH‰D$xH…À„ÅHƒëH…Û>H‹D$pL‹|$xH‹œ$˜L‹¬$€H‰$H‹„$H‹¬$ˆH‰D$XéÛäÿÿfDH‹5ɤ&L‰ÿèQBüÿH…ÀtH‰„$€HƒëH…Û~H‹5t«&L‰ÿè,BüÿH…ÀtH‰„$ˆHƒëH…ÛŽtÿÿÿH‹5“£&L‰ÿèBüÿH…À„ÙH‰„$HƒëHƒû„ÍH…ÛŽ=ÿÿÿHT$pL‰áL‰ÿL’H5ÒI&èçüÿ…À‰ÿÿÿHŽ¾ >Ç˰&
H‰¸°&Ƕ°& >éßëÿÿHâÇ¤°&“
H‰‘°&Ǐ°&r?éÂîÿÿH»Ç}°&”
H‰j°&Çh°&Œ?1ÉE1ÉE1Ò1íHÇD$ L‹<$HÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$HÇD$é»èÿÿ@1ÿè1JüÿI‰ÇH…À„"H‰ÆL‰çèZBüÿIƒ/I‰À…`òÿÿL‰ÿH‰D$èà@üÿL‹D$éIòÿÿfDD¶øé*óÿÿ€H‰ßè¸@üÿ龿ÿÿHɌ1ÉE1ÉE1ÒH‰z¯&E1À1íE1öÇt¯&‰
E1íÇc¯&Î>HÇD$ HÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$HÇD$é¥çÿÿDèËBüÿL‰ç賱üÿI‰ÆH…À…¤)H Œ1ÉE1ÉE1ÒH‰Ѯ&1íE1íÇή&‰
Ç.&½>HÇD$ HÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$HÇD$é!çÿÿf1ÿL‰D$è”HüÿL‹D$H…ÀI‰Æ„€H‰ÆL‰çL‰D$è³@üÿIƒ.L‹D$I‰Ç…ñÿÿL‰÷è9?üÿL‹D$éñÿÿ€HA‹Ç®&‰
H‰ð­&Çî­&¿>éìíÿÿH‹Çۭ&ƒ
H‰ȭ&Çƭ&u>éËìÿÿf„L‰çL‰D$èÃ>üÿL‹D$é@ðÿÿf„L‰÷è¨>üÿéãÿÿH¹ŠÇ{­&‘
H‰h­&Çf­&D?é™ëÿÿf„L‰çL‰D$èc>üÿL‹D$éFðÿÿf„HiŠÇ+­&‘
H‰­&Ç­&F?L‹<$1ÉE1ÉE1ÒE1ÀHÇD$ 1íE1öHÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$HÇD$éDåÿÿ@L‰ÿè¸=üÿéÚïÿÿL‰Çè¨=üÿéÀïÿÿ1ÿè¹FüÿI‰ÆH…À„	H‰ÆL‰çèâ>üÿIƒ.I‰Ç…¾íÿÿL‰÷èm=üÿé±íÿÿ„è@üÿL‰÷èó®üÿI‰ÆH…À…w*H`‰Ç"¬&Œ
H‰¬&Ç
¬&ü>1ÉE1ÉE1Ò1íHÇD$ E1íL‹<$HÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$HÇD$é]äÿÿfDH‹5ù›&H‹=â©&1Òè“BüÿI‰ÆH…À„H‰Çè/@ýÿIƒ.„NHžˆÇ`«&’
H‰M«&ÇK«&V?é´áÿÿfDL‰çèP<üÿé¹îÿÿE¶ÿédíÿÿ€1ÿèQEüÿI‰ÇH…À„ûH‹|$H‰Æèx=üÿIƒ/I‰Ä…ýîÿÿL‰ÿè<üÿéðîÿÿfDHˆÇӪ&“
H‰*&Ǿª&h?éñèÿÿ¿èæDüÿI‰ÆH…À„E	H‰ÆL‰çè=üÿIƒ.I‰À…;ìÿÿL‰÷H‰D$è•;üÿL‹D$é$ìÿÿH¡‡Çcª&“
H‰Pª&ÇNª&j?é3ýÿÿHƒû…<ùÿÿH‹HC&L‰ÿH‹0è;üÿH‰ÃH…À„ùÿÿH‹D$pL‹|$xL‹¬$€H‹¬$ˆH‰$H‹„$H‰D$Xé>Ýÿÿf„H‡Ç۩&ƒ
H‰ȩ&ÇƩ&{>éËèÿÿf„L‰çèÈ:üÿétíÿÿL‰çè¸:üÿéëÿÿè«:üÿé»íÿÿfDH¹†Ç{©&•
H‰h©&Çf©&¢?é™çÿÿf„L‰çL‰D$èc:üÿL‹D$éëÿÿf„L‰çèH:üÿéwíÿÿ1ÿL‰D$èTCüÿL‹D$H…ÀI‰Ç„qH‹|$H‰ÆL‰D$èq;üÿIƒ/L‹D$I‰Â…)îÿÿL‰ÿH‰D$(èò9üÿL‹T$(L‹D$é
îÿÿHü…Ǿ¨&•
H‰«¨&Ç©¨&¤?éŽûÿÿL‰Çè´9üÿé–êÿÿL‰ÿL‰D$è¢9üÿL‹D$éuêÿÿH±…1ÉE1ÉE1ÒH‰b¨&1íE1öL‹<$Ç[¨&•
ÇM¨&§?HÇD$ HÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$HÇD$éŸàÿÿL‰çè9üÿé2êÿÿL‰Çèú8üÿé ìÿÿL‰çèí8üÿL‹D$é{ìÿÿHü„L‹<$1ÉE1ÉH‰¬§&E1ÒÇ«§&•
ǝ§&©?é‘úÿÿL‰ÿH‰D$è£8üÿL‹D$éiìÿÿH²„Çt§&•
H‰a§&Ç_§&¬?1ÉE1ÉE1ÒL‰û1íE1öHÇD$ HÇD$PL‹<$HÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$HÇD$éoæÿÿH&„Çè¦&•
H‰զ&ÇӦ&¯?é¸ùÿÿHÿƒ1ÉE1ÉE1ÒH‰°¦&H‹$1íE1öÇ©¦&„
Ç›¦&‰>HÇD$ HÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$HÇD$H‰D$é÷ÞÿÿH‰÷L‰T$(L‰D$èF7üÿL‹T$(L‹D$é„ëÿÿL‰÷è/7üÿé¥úÿÿH‹5[–&H‹=T¤&1Òè=üÿI‰ÆH…À„¢H‰Çè¡:ýÿIƒ.„\
HƒÇҥ&–
H‰¿¥&ǽ¥&¾?é&ÜÿÿHé‚Ç«¥&
H‰˜¥&Ç–¥&?é„ùÿÿH‚Ç„¥&œ
H‰q¥&Ço¥&Ð?é¢ãÿÿL‰ÏL‰D$èu6üÿL‹D$é.ëÿÿL‰Çèc6üÿé+ëÿÿHw‚1ÉE1ÉE1ÒH‰(¥&E1À1íL‹<$Ç!¥&œ
Ç¥&Ò?HÇD$ HÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$HÇD$éUÝÿÿH‹5¾&ºH‰ßèQ>üÿ…Àˆy¿„[èù>üÿI‰ÀH…À„)H‹Ž&1öL‰ÇL‰$HƒH‹z&èý:üÿL‹$H‹=’™&1ÒL‰Æèè¤üÿL‹$H…ÀI‰Á„9Iƒ(„Ò
H‹5?&L‰ÏL‰$èû§üÿL‹$H…ÀH‰D$0„çH‹D$0Hƒ8„_Iƒ)„HH‹D$0L‰þ¿Hƒ1Àè8=üÿI‰ÄH…À„5H‹|$01ÒH‰ÆèÍ:üÿIƒ,$I‰Á„Ë
M…É„H‹t$0H‹H‰$HƒèH‰„”
I‹AH;2V$L‰ÏL‰$t
H;ªU$…éè;üÿL‹$Hƒø…h1öL‰ÏL‰$èË<üÿL‹$H…ÀH‰D$(„äL‰ϾL‰$è¨<üÿL‹$H…ÀH‰D$8„Iƒ)L‰Ï„HÇD$PHÇD$@HÇD$HHÇD$éºëÿÿH€Çۢ&“
H‰Ȣ&ÇƢ&t?é«õÿÿHòÇ´¢&
H‰¡¢&ÇŸ¢&ß?1ÉE1ÉE1Ò1íHÇD$ L‹<$HÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$éûÚÿÿHu1ÉE1ÉE1ÒH‰&¢&E1ÀÇ%¢&“
Ç¢&w?é»úÿÿHCL‹<$1ÉE1ÉH‰ó¡&H‹\$E1ÒE1ÀÇê¡&
Çܡ&á?HÇD$ E1ä1íHÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$HÇD$éûàÿÿL‰÷è‘2üÿéÀ×ÿÿL‰ÏL‰D$(è2üÿL‹D$(éÆçÿÿHŽ~L‰û1ÉL‹<$H‰>¡&E1ÉE1ÒE1ÀÇ7¡&“
1íE1öÇ$¡&y?HÇD$ HÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$HÇD$éHàÿÿHÿ}L‹<$1ÉE1ÉH‰¯ &E1Ò1íǬ &ž
Çž &ü?HÇD$ HÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$HÇD$éðØÿÿHy}L‹<$1ÉE1ÉH‰) &E1ÒE1À1íÇ# &
Ç &ä?HÇD$ HÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$HÇD$éWØÿÿHð|DzŸ&“
H‰ŸŸ&ǝŸ&|?é9øÿÿL‰D$(è¦0üÿL‹D$(éNæÿÿL‰çè”0üÿL‹D$(é"æÿÿH‰÷è‚0üÿé[æÿÿL‰Çèu0üÿé5æÿÿH‰|ÇKŸ&ž
H‰8Ÿ&Ç6Ÿ&î?éÉîÿÿHb|Ç$Ÿ&“
H‰Ÿ&ÇŸ&?éôñÿÿHƒìH‹§P$H
ð|H5ajL
R€A¸HøH‹81Àè©8üÿH|Y^H‰¹ž&¾>Ƕž&
Ǩž&>éÑÙÿÿHÔ{L‰û1ÉE1ÉH‰…ž&E1ÒE1ä1íÇž&ž
L‹<$Çmž&ÿ?HÇD$ HÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$HÇD$é‘ÝÿÿHH{1ÉE1ÉÇž&ž
H‰ò&Çð&@E1Ò1íL‹<$HÇD$ HÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$éBÖÿÿHËzL‹<$1ÉE1ÉH‰{&H‹\$E1ÒÇu&ž
Çg&@é†ûÿÿH“zÇU&’
H‰B&Ç@&R?éÓìÿÿèž7üÿI‰ÁH…À„–H‹—&1öL‰ÏL‰$HƒH‹—&è¢3üÿL‹$H‹=7’&1ÒL‰Î荝üÿL‹$H…ÀI‰Â„(Iƒ)„bH‹5̖&L‰×L‰$蠠üÿL‹$H…ÀH‰D$@„“H‹D$@Hƒ8„3Iƒ*„H‹D$@L‰þ¿Hƒ1ÀèÝ5üÿI‰ÄH…À„à
H‹|$@1ÒH‰Æèr3üÿIƒ,$H‰D$P„ÌHƒ|$P„µ
H‹|$@H‹H‰$HƒèH‰„ÖHÇD$0HÇD$HHÇD$(HÇD$8HÇD$éÕäÿÿH4y1É1íL‹<$H‰å›&Çç›&ž
Çٛ&&@HÇD$ HÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$HÇD$é+ÔÿÿL‰÷è“,üÿé—õÿÿH§x1ÉÇg›&ž
H‰T›&ÇR›&1@é]ýÿÿH~xÇ@›&¯
H‰-›&Ç+›&@@釸ÿÿL‰D$(èä.üÿL‰çè̝üÿL‹D$(H…ÀI‰ÁH‰D$…NH/xÇñš&¯
H‰ޚ&Çܚ&B@1ÉE1Ò1íL‹<$HÇD$ HÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8é5ÓÿÿH¾wÇ€š&¯
H‰mš&Çkš&D@ëL‰çH‰$èu+üÿL‹$éÆáÿÿH‹\$H‹H‰D$ HƒèH‰uH‰ßL‰D$ èI+üÿL‹D$ H]wL‹<$1ÉE1ÉH‰
š&Çš&¯
Çš&T@HÇD$ E1Ò1íHÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$éWÒÿÿL‰Çè¿*üÿéRáÿÿH‰ÇL‰$è®*üÿL‹$é3áÿÿL‰$èœ*üÿL‹$éŽáÿÿL‰çH‰$è‡*üÿL‹$éWáÿÿH—vÇY™&°
H‰F™&ÇD™&a@1ÉE1ÉE1ÒHÇD$ 1íHÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$é¤Ñÿÿè@œüÿI‰ÂH…À„/
H‹5“&H‰ÇH‰$èQ4üÿL‹$H…ÀI‰Ä„ÕIƒ*„bHƒ|$(„cH‹|$Xèá0üÿI‰ÂH…À„NH‹|$(1ÒH‰ÆH‰$è’3üÿL‹$H…ÀH‰D$ „øIƒ*„ýH‹t$ L‰ç虏üÿH‹t$ H‰ÁH‹H‰$HƒèH‰„¿H…É„•Iƒ,$„ÚH;
âK$”ÂH;
 K$”ÀÐ…¯H;
K$„¢H‰ÏH‰$è¤+üÿH‹$…ÀA‰ÄˆHƒ)„E…ä…_H‹‹K$HƒH‰D$ H‹D$ H;vK$”À¶ÀéÖãÿÿH‹5¤&ºH‰ßè71üÿ…Àˆ	„WHƒ|$8„”H‹=þŒ&èZüÿI‰ÄH…À„KH‹5ŽŠ&H‰ÇèÖ2üÿI‰ÁH…À„"Iƒ,$„êHƒ|$(L‰$„ÂH‹|$(è/üÿL‹$H…ÀH‰Å„|L‰ÏH‰ÆL‰$èFŽüÿHƒmL‹$H‰Á„-H…É„¿Iƒ)„H‹|$8H‰ÎH‰$è0/üÿH‹$H…ÀH‰Å„gHƒ)…#ãÿÿH‰Ïè¾'üÿéãÿÿL‰Çè±'üÿHÇD$PHÇD$@HÇD$0éKßÿÿL‰ÏH‰$è…'üÿL‹$é‰ùÿÿL‰ÇH‰$èp'üÿL‹$éòÿÿH€sÇB–&–
H‰/–&Ç-–&º?éÀåÿÿHYsÇ–&³
H‰–&Ç–&Þ@é½üÿÿH‰÷L‰$è
'üÿL‹$éWòÿÿL‰çH‰$èø&üÿL‹$é òÿÿHsÇʕ&±
H‰·•&ǵ•&k@élüÿÿL‰ÏèÀ&üÿé«ñÿÿH‰ÇL‰$è¯&üÿL‹$éŒñÿÿL‰çèž&üÿé'ùÿÿL‰×è‘&üÿé×øÿÿH‰ÇL‰$è€&üÿL‹$鏸ÿÿèr&üÿé ùÿÿH†rÇH•&½
H‰5•&Ç3•&…A1ÉE1ÉE1Ò1íHÇD$ éÒÍÿÿHLrÇ•&±
H‰û”&Çù”&s@1ÉE1ÉE1Ò1íHÇD$ HÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8éSÍÿÿHÜq1ÉE1ÉE1ÒH‰”&1íǍ”&±
Ç”&p@HÇD$ HÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8HÇD$éÊÌÿÿH‰÷èB%üÿéáÿÿL‰Ïè5%üÿé÷àÿÿL‰çH‰$è$%üÿL‹$é·àÿÿH4q1ÉE1ÉE1ÒH‰å“&L‹d$Çâ“&²
Çԓ&Ž@HÇD$ E1À1íHÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8é#Ìÿÿè^,üÿL‹$H…ÀI‰Ä„/Iƒ)„I‹D$L‰çH‹èH‰$ÿÒH‰D$(H…À„sL‰çH‹$ÿÒH‰D$8H…À„eL‰çH‹$ÿҾH‰Çè¤Býÿ…ÀˆïIƒ,$…øïÿÿL‰çè$üÿéëïÿÿH-p1ÉE1ÉE1ÒH‰ޒ&1íÇޒ&²
ÇВ&§@HÇD$ HÇD$PHÇD$@HÇD$0HÇD$HHÇD$(é=Ëÿÿë	H…Àx9HƒøHésL‰$H
˜nHEÊH‰ÂH‹žD$H5߁H‹81Àè-,üÿL‹$H‚oÇD’&²
H‰1’&Ç/’&—@é1ýÿÿHƒ|$8„ÿH‹=§‡&èj•üÿH‰ÁH…À„¸H‹57…&H‰ÇH‰$è{-üÿH‹$H…ÀI‰Ä„fHƒ)„–Hƒ|$(„)H‹t$(L‰çè‰üÿI‰ÁH…À„ßIƒ,$„QH‹|$8L‰ÎL‰$è*üÿL‹$H…ÀH‰Å„ßIƒ)…óÝÿÿL‰ÏèŽ"üÿéæÝÿÿL‰×H‰$è}"üÿL‹$é"ÛÿÿHnÇO‘&´
H‰<‘&Ç:‘&è@éñ÷ÿÿHfn1ÉE1ÉE1ÒH‰‘&1íÇ‘&¾
Ç	‘&—Aé»ÉÿÿH5n1ÉE1ÉE1ÒH‰æ&1íÇæ&½
Çؐ&‹AéŠÉÿÿè¦)üÿL‹$H…ÀH‰D$0„UIƒ(„>H‹|$0H‹GL‹ èAÿÔH‰D$8H…À„H‹|$0AÿÔH‰D$(H…À„_H‹|$0AÿÔH‰D$HH…À„@H‹|$0AÿԾH‰ÇèØ?ýÿ…Àˆ¢H‹t$0H‹H‰$HƒèH‰…æØÿÿH‰÷è?!üÿHÇD$PHÇD$@HÇD$0éÙØÿÿH8m1ÉÇø&´
H‰å&Çã&í@éÝõÿÿH‹5€&H‹= Ž&1ÒèÑ&üÿH‰D$ H…À„Ò
H‹\$ H‰ßèf$ýÿH‹H‰$HƒèH‰„¢
HËlǍ&¿
H‰z&Çx&­Aé@úÿÿH¤lL‹T$(1É1íL‹d$8E1ÉH‰L&ÇN&²
Ç@&«@HÇD$ HÇD$PHÇD$@HÇD$0HÇD$(HÇD$8éÇÿÿH6lL‹d$81É1íH‰æŽ&E1ÉE1ÒÇâŽ&²
ÇԎ&©@HÇD$ HÇD$PHÇD$@HÇD$0HÇD$HHÇD$8é1ÇÿÿHÊkL‹L$@1É1íH‰zŽ&E1ÒÇyŽ&¹
ÇkŽ&vAHÇD$ HÇD$Pé5õÿÿH…k1ÉE1ÉE1ÒH‰6Ž&1íÇ6Ž&Ì
Ç(Ž&´BéÚÆÿÿHTk1ÉE1É1íH‰Ž&ÇŽ&¸
Çú&[AHÇD$ HÇD$PéÄôÿÿL‰çèóüÿéÛÿÿHk1ÉE1ÉE1ÒH‰¸&E1ÀÇ·&×
Ç©&GCH‰\$é7ÆÿÿHÐjL‹D$0Ǎ&¶
H‰z&Çx&A1ÉE1ÉE1Ò1íHÇD$ HÇD$PHÇD$@HÇD$HHÇD$(HÇD$8HÇD$éÒÅÿÿH[jǍ&´
H‰
&Ǎ&ð@HÇD$ 1ÉE1Ò1íHÇD$PHÇD$@HÇD$HHÇD$(HÇD$8HÇD$étÅÿÿHîi1ÉÇ®Œ&¸
H‰›Œ&Ç™Œ&XAéXóÿÿHÅi1ÉÇ…Œ&¸
H‰rŒ&ÇpŒ&SAé,óÿÿH‹t?$HƒH‰D$ éœôÿÿD¶âépôÿÿL‰×è]üÿé‘óÿÿH‹ù?$HœmH5‹€H‹81Àèù%üÿHRi1ÉÇŒ&Ä
H‰ÿ‹&Çý‹&5BE1ÉE1ÒE1À1íHÇD$ é|ÄÿÿHi1ÉE1É1íH‰Nj&Çɋ&Ä
Ç»‹&2BHÇD$ édÄÿÿHÞh1ÉE1É1íH‰‹&Ç’‹&Ä
Ç„‹&0BHÇD$ é-ÄÿÿH‰÷H‰$è‚üÿH‹$é,óÿÿL‰×èqüÿéöòÿÿH‰ÏèdüÿétóÿÿL‰çH‰$èSüÿH‹$éóÿÿHchÇ%‹&Á
H‰‹&Ç‹&¿AéØõÿÿH<h1ÉE1ÉE1ÒH‰íŠ&ÇïŠ&×
ÇáŠ&ECH‰\$éŽÃÿÿHh1ÉE1ÉE1ÒH‰¹Š&Ç»Š&Ö
Ç­Š&3Cé_ÃÿÿH‹a>$HCiH5ó~1íH‹81Àè_$üÿ1ÉE1ÉE1ÒH°gÇrŠ&Í
H‰_Š&Ç]Š&¾BéÃÿÿL‰çH‰$èdüÿL‹$隸ÿÿH‰ÏèSüÿé]øÿÿL‰ÇL‰$èBüÿL‹$é;ÔÿÿHRg1ÉE1Ò1íH‰Š&ÇŠ&Â
Çø‰&ÎAHÇD$ é¡ÂÿÿHg1É1íÇى&Â
H‰Ɖ&Çĉ&ËAHÇD$ émÂÿÿHçf1ÉE1É1íH‰™‰&Ç›‰&Â
Ǎ‰&ÉAHÇD$ é6ÂÿÿH°f1ÉE1ÉE1ÒH‰a‰&1íÇa‰&¾
ÇS‰&AéÂÿÿHf1ÉE1ÒÇ<‰&Ö
H‰)‰&Ç'‰&8CéÙÁÿÿHSf1ÉE1ÒE1ÀH‰‰&lj&Ö
Çøˆ&5Cé‹ÁÿÿL‰çL‰T$ L‰$èúüÿL‹T$ L‹$éÖÓÿÿL‰ÏH‰$èàüÿH‹$éæñÿÿH‰ïH‰D$XèÊüÿH‹L$XL‹$é¸ñÿÿH‹Õ:$ºH5qH‹81Àè_"üÿL‹$é-öÿÿH¯e1ÉE1ÉE1ÒH‰`ˆ&1íÇ`ˆ&Î
ÇRˆ&ÓBéÁÿÿL‰çH‰$èYüÿL‹$éñÿÿH‹5	z&ºH‰ïèÌ!üÿ…ÀˆS
„ðH‹=ßy&èb‹üÿH‰ÁH…À„©H‹5×y&H‰ÇH‰$ès#üÿH‹$H…ÀI‰Ä„WHƒ)„@H‹5
x&1ÒL‰çèÈüÿH‰ÅH…À„ñIƒ,$„ÙHƒm…ÙÓÿÿH‰ïè®üÿéÌÓÿÿH‰ÏL‰$H‰D$ è˜üÿL‹T$ L‹$éiÒÿÿL‰ÇL‰$è~üÿL‹$éëÑÿÿHŽd1ÉE1Ò1íH‰@‡&ÇB‡&¶
Ç4‡&!AHÇD$ HÇD$PHÇD$@HÇD$HHÇD$8HÇD$鰿ÿÿEH…Àx9HƒøHMhL‰$H
übHEÊH‰ÂH‹9$H5CvH‹81Àè‘ üÿL‹$HæcǨ†&¶
H‰•†&Ç“†&Aé†ùÿÿH¿cL‹D$(1É1íH‰o†&E1ÒÇn†&¶
Ç`†&#AHÇD$ HÇD$PHÇD$@HÇD$HHÇD$(HÇD$é;ÿÿHVcL‹T$81É1íL‹D$(E1ÉH‰þ…&dž&¶
Çò…&1AHÇD$ HÇD$PHÇD$@HÇD$HHÇD$(HÇD$8HÇD$éF¾ÿÿH‹ß7$ºH5#nH‹81ÀèiüÿL‹$éÓþÿÿH¹bE1ÒE1À1íH‹\$ H‰e…&Çg…&Â
ÇY…&úAHÇD$ éÅÄÿÿI‰À鹹ÿÿHtb1É1íÇ2…&Â
H‰…&Ç…&
BHÇD$ éƽÿÿH@b1ÉE1À1íH‰ò„&Çô„&Â
Çæ„&BHÇD$ ép½ÿÿH	b1ÉE1À1íH‰»„&ǽ„&Â
ǯ„&BHÇD$ é9½ÿÿL‰çL‰$è­üÿL‹$ézÐÿÿL‰ÏL‰$è˜üÿL‹$éZÐÿÿH¨a1ÉE1À1íH‰Z„&Ç\„&Â
ÇN„&Béá¼ÿÿHza1ÉE1À1íH‰,„&Ç.„&Â
Ç „&BHÇD$ 骼ÿÿHCa1ÉE1ÉE1ÒH‰ôƒ&1íÇôƒ&Ò
Çæƒ&ÞB阼ÿÿH‹š7$HeH5,x1íH‹81Àè˜üÿ1ÉE1ÉE1ÒHé`Ç«ƒ&Ò
H‰˜ƒ&Ç–ƒ&ÝBéH¼ÿÿHÂ`1ÉE1Òǃ&Ò
H‰lƒ&Çjƒ&äBé¼ÿÿH‹7$HÁdH5°w1íH‹81Àèüÿ1ÉE1ÒL‹$Hl`Ç.ƒ&Ò
H‰ƒ&ǃ&ãBé˻ÿÿHE`1ÉE1Ò1íH‰÷‚&Çù‚&Â
Çë‚&ÐAHÇD$ 酻ÿÿI‰Ä鄶ÿÿH`1ÉE1ÒE1ÀH‰·‚&1íÇ·‚&Ô
Ç©‚&!Cé<»ÿÿH‹]6$HdH5ïv1íH‹81Àè[üÿ1ÉE1ÉE1ÒH¬_E1ÀÇk‚&Ô
H‰X‚&ÇV‚&CééºÿÿH‚_E1ÉE1ÒÇ>‚&Ò
H‰+‚&Ç)‚&öBéۺÿÿHU_E1Ò1íÇ‚&Ò
H‰ÿ&Çý&óB鯺ÿÿH‹|$ èüÿéOòÿÿH_1ÉE1ÉE1ÒH‰ˁ&1íÇˁ&¿
ǽ&©AéoºÿÿI‰ÇéܶÿÿL‹L$éÔÇÿÿH×^L‹L$H1É1íL‹T$(L‹d$8E1ÀH‰z&Ç|&²
H‹\$0Çi&»@HÇD$ HÇD$PHÇD$@HÇD$0HÇD$HHÇD$(HÇD$8éŸÀÿÿHÇD$ H‹\$0H‹H‰$HƒèH‰tr芄üÿ…Àu3H‹T$ H\bH
]H5dpHƒúHEÈH‹
3$H‹81Àè£üÿL‹T$(L‹d$81ÉE1ÉHí]ǯ€&²
H‰œ€&Çš€&Ã@éÁìÿÿH‰ßè¥üÿë„HÇD$(HÇD$ éXÿÿÿL‰Çè„üÿéµïÿÿH˜]1ÉE1ÉE1ÒH‰I€&1íÇI€&²
Ç;€&±@HÇD$ HÇD$PHÇD$@HÇD$HHÇD$(HÇD$8騸ÿÿH1]1ÉE1Ò1íH‰ã&Çå&Â
Ç×&×Aéj¸ÿÿH‰$H‹‡3$H*a1íH5tL‰L$XH‹81Àè€üÿ1ÉE1ÒL‹$HÐ\L‹L$XǍ&Â
H‰z&Çx&ÖAHÇD$ é¸ÿÿH›\1ÉE1Ò1íH‰M&ÇO&Â
ÇA&ÔAHÇD$ é˷ÿÿH‹ì2$HV`H5~s1íH‹81Àèêüÿ1ÉE1ÒE1ÀH;\L‹$Çù~&Â
H‰æ~&Çä~&ÓAHÇD$ én·ÿÿHÇD$ Iƒ,$thèI‚üÿ…Àu3H‹T$ H`H
ÎZH5#nHƒúHEÈH‹Ì0$H‹81ÀèbüÿH»[L‹D$(Çx~&¶
H‰e~&Çc~&9AéæðÿÿL‰çènüÿëŽL‰ÏèdüÿéÛêÿÿHx[Ç:~&¶
H‰'~&Ç%~&)AéñÿÿHQ[1ÉE1ÒE1ÀH‰~&1íÇ~&Ò
Çô}&àB釶ÿÿH [1ÉE1ÉE1ÒH‰Ñ}&1íÇÑ}&Å
ÇÃ}&ZBéu¶ÿÿ¶ÀééÉÿÿL‰×èÆüÿé¡ÉÿÿHÚZ1ÉE1ÒÇ—}&Ô
H‰„}&Ç‚}&$Cé4¶ÿÿH®ZE1ÉE1Ò1íH‰_}&Ça}&Ô
ÇS}&Cé¶ÿÿHZE1ÉE1Ò1íH‰0}&Ç2}&Ô
Ç$}&CéֵÿÿH‹Ø0$HE^H5jq1íH‹81ÀèÖüÿ1ÉE1ÉE1ÒH'ZÇé|&Ô
H‰Ö|&ÇÔ|&C醵ÿÿHZE1ÉE1Ò1íH‰±|&dz|&Ä
Ç¥|&JBHÇD$ éNµÿÿHÈYÇŠ|&Ä
H‰w|&Çu|&GBésðÿÿH¡Y1ÉE1ÉE1ÀH‰R|&1íÇR|&Ä
ÇD|&8Bé״ÿÿHpY1ÉE1ÉE1ÀH‰!|&1íÇ!|&Ä
Ç|&6BHÇD$ 靴ÿÿH6YE1À1íÇó{&Â
H‰à{&ÇÞ{&BHÇD$ éh´ÿÿL‰çèàüÿéôÿÿHôX1ÉE1ÉE1ÒH‰¥{&E1ÀǤ{&Ç
Ç–{&|Bé)´ÿÿH‰Ïè¡üÿé³óÿÿHµXE1ÉE1Ò1íH‰f{&Çh{&Ç
ÇZ{&qBé´ÿÿH†XE1ÉE1Ò1íH‰7{&Ç9{&Ç
Ç+{&oBéݳÿÿH‹5Wk&H‹=hy&1ÒèüÿH‰ÅH…Àt{H‰Çè¹ýÿHƒmtbH+X1ÉE1ÉE1ÒH‰Üz&1íÇÜz&Ê
ÇÎz&—B逳ÿÿHúW1ÉE1ÉE1ÒH‰«z&1íÇ«z&Æ
ǝz&eBéO³ÿÿH‰ïè¨üÿë”H¿W1ÉE1ÉE1ÒH‰pz&Çrz&Ê
Çdz&“Bé³ÿÿ€AW1ÀAVI‰ÖAUATUSH‰óHì(HƒH‰|$0H¼$àHƒH‰L$ ¹óH«IƒH¼$°¹H‹-•o&H‰|$8óH«H‹=z&L‰D$H‰îL‰Œ$ˆHDŽ$ HDŽ$¨HDŽ$°HDŽ$¸HDŽ$ÀHDŽ$ÈèüÿH…À„`HƒI‰ÅH‰„$ H‹52t&L‰ïèúüÿI‰ÄH…À„H‹¼$ Hƒ/„Œ¿HDŽ$ è6üÿI‰ÅH‰„$ H…À„’HƒH‰X è
üÿI‰ÅH‰„$¨H…À„AH‹,$H‹5«r&H‰Çè‹	üÿ…Àˆ£H‹”$¨H‹´$ L‰çèÛüÿI‰ÅH‰„$°H…À„Iƒ,$„\H‹¼$ Hƒ/„:H‹¼$¨HDŽ$ Hƒ/„Hƒ+H‹„$°HDŽ$¨H‰„$€„ÖH‹5Wn&H‹¼$€HDŽ$°èÆüÿI‰ÅH‰„$°H…À„2-H‹5£i&H9ð„:H‹û)$I9E„‘L‰ïºèüÿI‰ÅH‰„$¨H…À„à&H‹©+$H‹´$°H‰„$Hƒ.„?H‹¼$¨H;¼$HDŽ$°”ÀH;=±*$”ÂÂ…fH;=—*$„Yè<üÿ‰ÅÀˆr-H‹¼$¨Hƒ/„EHDŽ$¨…Û„JH´$ÀH¼$¸H”$Èè¯
üÿH‹Pl&H‹=Qw&H‰Þè™	üÿH…À„À.HƒH‰„$°H‹5õn&H‰Çè…üÿH‰„$ H…À„ì6H‹¼$°Hƒ/„²,H‹5Sn&H‹¼$€HDŽ$°èBüÿH‰ÃH…À„æ7H‹5·v&1ÒH‰Çè¥
üÿH‰„$°H…À„,GHƒ+„Z-H‹´$°¿1ÀH‹œ$ è¾üÿH‰ÅH…À„²G1ÒH‰ßH‰ÆèU
üÿHƒmH‰Ã„—-H‹¼$°H‰œ$¨Hƒ/„í,Hƒ¼$¨H‹¼$ HDŽ$°„2GHƒ/„@-H‹¼$¸L‹¬$¨HDŽ$ HDŽ$¨H…ÿt
Hƒ/„é(H‹¼$ÀHDŽ$¸H…ÿt
Hƒ/„¶(H‹¼$ÈHDŽ$ÀH…ÿt
Hƒ/„ƒ(H‹5ôf&L‰ïºHDŽ$ÈèsüÿI‰ÇH‰„$°H…À„öFH;„$”ÀL;=E($”ÂÂu
L;=/($…	(¶ØIƒ/„Œ,HDŽ$°…Û…È$H‹D$H;ü'$„æH‰ÇèÎ	üÿH‰$Hƒøÿ„;KH‹aj&H‹=òt&H‰Þè:üÿI‰ÇH…À„-LHƒH‰„$°H‹5Ûg&L‰ÿè#üÿI‰ÇH‰„$¨H…À„MH‹¼$°Hƒ/„­'H‹þi&H‹=t&HDŽ$°H‰ÞèËüÿI‰ÄH…À„‰'HƒH‹5äl&L‰çè¼üÿH‰ÅH…À„yNIƒ,$„%5H‹¦i&H‹=7t&H‰ÞèüÿI‰ÄH…À„æPHƒH‹5€l&L‰çèpüÿI‰ÇH…À„ÒQIƒ,$„ñDL‰þ¿1Àè
üÿH‰ÃH…À„­S1ÒH‰ÆH‰ïè±
üÿHƒ+I‰Ä„$EL‰¤$°Iƒ/„šDL‹¼$°M…ÿ„xSHƒm„EH‹57l&H‹¼$°èâüÿI‰ÇH…À„WH‹¼$°Hƒ/„ñEL‰þ1?HDŽ$°H‹œ$¨èqüÿH‰ÅH…À„EY1ÒH‰ßH‰Æè
üÿHƒmH‰Ã„¥FH‹¼$°H‰œ$ H…ÿt
Hƒ/„.KHDŽ$°Iƒ/„|EL‹¼$ M…ÿ„ëXH‹¼$¨Hƒ/„ZFH‹D$H‹5>r&HDŽ$¨L‹¼$ HDŽ$ H‹xH9÷„ù,èÔüÿ…À…ì,H‹…r&¿H‹˜(ÿhE1É1É1ÒA¸H‰ÆH‹|$ÿÓH‰D$H‰„$ H…À„UhH‹D$H‰„$¨HƒH‹¼$ Hƒ/„½OH‹„$¨H‹\$HDŽ$ H‰D$xH‹H‰D$HƒèH‰„}OH‹D$xH;´$$HDŽ$¨…,jH‹|$xH‹5Žg&H‹_è

üÿH‰D$H‰„$¨H…À„=iH‹5àb&H9t$„á_H‹D$H‹
9#$H9H„ÇUH‹|$ºèPüÿH‹´$¨H‰D$H‰„$ H…À„ÆmHƒ.„ŒSH‹¼$ H;¼$HDŽ$¨”ÀH;=ú#$”ÂÂ…HH;=à#$„Hè…üÿ‰ŅÀˆHzH‹¼$ Hƒ/„ THDŽ$ …í…p}H‹5Þc&H‹|$xèüÿH‰D$H‰„$ H…À„ރH‹|$ºL‰îè|üÿH‰D$H‰„$¨H…À„ò‚H‹¼$ Hƒ/„YH‹¼$¨H;¼$HDŽ$ ”ÀH;=&#$”ÂÂ…>KH;=#$„1Kè±üÿ‰ŅÀˆ`‡H‹¼$¨Hƒ/„)_HDŽ$¨…í…5ˆH‰ßH‹4$ÿôn&H‹Ee&H‹=Öo&ò$H‰ÞèüÿH‰D$H…À„t‹HƒH‰„$ H‹5 g&H‹|$èþ
üÿI‰ÄH…À„ñ‹H‹¼$ Hƒ/„Mdò$HDŽ$ èZÿûÿH‰D$H‰„$ H…À„¥’H‹t$¿1ÀèsüÿH‰ÃH…À„>–1ÒH‰ÆL‰çè
üÿHƒ+H‰Å„blH‹¼$ H‰¬$¨Hƒ/„ÂhH‹„$¨HDŽ$ H‰D$H…À„;Iƒ,$„ÒiH‹¼$¨H;¼$”ÀH;=¤!$”ÂÂ…‘VH;=Š!$„„Vè/üÿ‰ÅÀˆIH‹¼$¨Hƒ/„oHDŽ$¨…Û…”›H‹Ðc&H‹=an&H‰Þè©üÿI‰ÄH…À„šHƒH‹5e&L‰çèš	üÿH‰D$H‰„$ H…À„iœIƒ,$„½‚H‹5úa&H‹¼$ èe	üÿI‰ÄH…À„¥¥H‹¼$ Hƒ/„&…H‹58_&1ÒH‹|$xHDŽ$ è¸üÿH‰D$H‰„$ H…À„/¦H‹t$¿1ÀèÑüÿH‰ÃH…À„¦1ÒH‰ÆL‰çèhüÿHƒ+H‰Å„¹‡H‹¼$ H‰¬$¨Hƒ/„•‡H‹„$¨HDŽ$ H‰D$H…À„ˡIƒ,$„[‡H‹¼$¨H;¼$”ÃH;= $”ÀØ…LjH;=è$„?jèüÿ‰ÅÀˆk¦H‹¼$¨Hƒ/„HDŽ$¨…Û…ò$ò\0rfThrè£üûÿH‰D$H‰„$¨H…À„ɼH‹|$ºL‰þè{üÿI‰ÄH…À„á»H‹¼$¨Hƒ/„–’L;¤$HDŽ$¨”ÃL;%7$”ÀØ…õ€L;%$„è€L‰çè¿ÿûÿ‰ÅÀˆ(ÇIƒ,$„²•H‹D$xH‰D$…Û„ÛH‹5™\&H‹="j&1ÒèÓüÿH‰D$H…À„ßH‹\$H‰ßèhýÿH‹H‰$HƒèH‰„ÞÞHÍH1ÉE1äE1ÉH‰~k&H‹D$x1íH‹¼$ H‹œ$€Çik&‡Ç[k&üH‰D$ÆD$xHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$é×€èÛûûÿéjñÿÿfDHéGÆD$x1É1íH‰™j&E1ÉE1ÿH‹¼$ Çj&aÇj&ÉHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$f.„H…ÿt
Hƒ/„‰M…ätIƒ,$„©H‹¼$¨H…ÿt
Hƒ/„²H‹¼$°H…ÿt
Hƒ/„ËH…ítHƒm„ëH…Ét
Hƒ)„M…Ét
Iƒ)„]H‹
ni&‹ti&H=a^1í‹5ai&è„müÿ€|$xuH‹D$pH‹@H‹…ÒŽBðƒ(„€	M…ítIƒm„¸M…ÿt
Iƒ/„¹H‹T$H…ÒtH‹H‰D$pHƒèH‰„ªH‹t$H…ötH‹H‰D$HƒèH‰„›H‹L$ H…ÉtH‹H‰D$HƒèH‰„ŒH‹T$(H…ÒtH‹H‰D$HƒèH‰„]H‹t$8H…ötH‹H‰D$HƒèH‰„NH‹L$@H…ÉtH‹H‰D$HƒèH‰„?H‹T$hH…ÒtH‹H‰D$HƒèH‰„0H‹t$`H…ötH‹H‰D$HƒèH‰„!H‹L$0H…ÉtH‹H‰D$HƒèH‰„H‹T$PH…ÒtH‹H‰D$HƒèH‰„H‹t$HH…ötH‹H‰D$HƒèH‰„ôH‹L$XH…ÉtH‹H‰D$HƒèH‰„õH‹<$H…ÿtH‹H‰D$HƒèH‰„çH…Ût
Hƒ+„èM…öt
Iƒ.„éH‹\$H…ÛtH‹H‰$HƒèH‰„‹HÄ(H‰è[]A\A]A^A_ÃfDHƒ/¶Ø…»ïÿÿè6øûÿHDŽ$¨…Û…¶ïÿÿH‹5ƒZ&H‹¼$€è~üÿI‰ÅH‰„$¨H…À„ª H‹´$ˆH‰ÇèJùûÿI‰ÅH‰„$°H…À„æ&H‹¼$¨Hƒ/„”L‹¬$°H‹5X&HDŽ$¨HDŽ$°L9H‹]$I9E„cºL‰ïèvüÿI‰ÇH‰„$°H…À„²'H;„$”ÀL;=H$”¶ØÂ…kL;=+$„^L‰ÿèÍùûÿ‰ÅÀ‰LH<CÆD$x1É1íH‰ìe&E1äE1ÉE1ÿH‹¼$ H‹œ$€ÇÕe&mÇÇe&ÇHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$éMûÿÿDH‰×èPöûÿé–üÿÿH‰÷è@öûÿé¥üÿÿH‰Ïè0öûÿé´üÿÿH‰×è öûÿéÃüÿÿH‰÷èöûÿéÒüÿÿH‰ÏèöûÿéáüÿÿH‰×èðõûÿéðüÿÿH‰÷èàõûÿéÿüÿÿH‰ßèÐõûÿéhýÿÿH‰ÏèÀõûÿéþüÿÿè³õûÿéýÿÿfDH‰ßè õûÿéýÿÿL‰÷èõûÿé
ýÿÿL‰ïè€õûÿé;ûÿÿL‰ÿèpõûÿé:ûÿÿH‰×è`õûÿéIûÿÿH‰÷èPõûÿéXûÿÿH‰Ïè@õûÿégûÿÿL‰Ïè0õûÿé–úÿÿL‰Œ$ˆH‰Œ$€èõûÿL‹Œ$ˆH‹Œ$€é$úÿÿfDL‰Œ$ˆH‰Œ$€èãôûÿL‹Œ$ˆH‹Œ$€éúÿÿfDH‰ïL‰Œ$ˆH‰Œ$€è°ôûÿL‹Œ$ˆH‹Œ$€éèùÿÿH‰ÏL‰Œ$€èˆôûÿL‹Œ$€é×ùÿÿL‰Œ$ˆH‰Œ$€ècôûÿL‹Œ$ˆH‹Œ$€éMùÿÿfDL‰çL‰Œ$ˆH‰Œ$€è0ôûÿL‹Œ$ˆH‹Œ$€é*ùÿÿ‹0º'$1ÀH=ØJèCýÿH‹D$pH‹@Hé›ùÿÿDH‹„$»HƒH‰„$°H‹¼$°Hƒ/„•HDŽ$°…Û„™íÿÿH‹"X&H‹=³b&H‰ÞèûôûÿI‰ÇH…À„•HƒH‰„$¨H‹5üV&L‰ÿèäýûÿI‰ÇH‰„$ H…À„É;H‹¼$¨Hƒ/„.#L‰ö1?HDŽ$¨H‹œ$ èkûûÿH‰ÅH…À„>1ÒH‰ßH‰ÆèùûÿHƒmH‰Ã„l2H‹¼$¨H‰œ$°H…ÿtHƒ/„r3H‹œ$°HDŽ$¨H‹¼$ H…Û„Õ=Hƒ/„.2H‹5S&H‹¼$°HDŽ$ H9þ„£8H‹[$H9G„Û3ºèwüûÿH‹¼$°I‰ÇH‰„$ H…À„÷?Hƒ/„92H‹¼$ H;¼$HDŽ$°”ÀH;=#$”ÂÂ…H;=	$„ƒè®ôûÿ‰ÅÀˆÄAH‹¼$ Hƒ/„R2HDŽ$ …Û„ÆëÿÿH‹5§Q&H‹=_&1Òè¹÷ûÿI‰ÇH‰„$ H…À„llH‰ÇèMõüÿH‹¼$ Hƒ/„GH´=HDŽ$ H‰a`&Çc`&nÇU`&öH‹œ$€1ÉE1É1íÆD$xE1ÿHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$éãõÿÿ@H‹t$pH‹H‰D$xHƒèH‰…föÿÿH‰÷è®ðûÿéYöÿÿf„H‰ßè˜ðûÿéçÿÿè‹ðûÿéêæÿÿfDè{ðûÿ鼿ÿÿfDL‰çèhðûÿé—æÿÿHy<ÆD$x1É1íH‰)_&E1ÉE1ÿE1íH‹¼$ Ç_&aÇ_&ÈHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$é’ôÿÿfH‰÷è˜ïûÿé´æÿÿL‰ïèñûÿf.dŠ*
…$
H‹$H‹´$°HƒH‰„$H‰„$¨écæÿÿ@èóñûÿH‰ïèÛ`üÿI‰ÅH‰„$ H…À…ŽäÿÿH@;1ÉE1É1íH‰ò]&E1ÿÇñ]&aÇã]&¼HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xéƒóÿÿ@H‰:1ÉE1É1íH‰;]&E1ÿE1íH‹¼$ Ç/]&aÇ!]&¾HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xé¢òÿÿfHÉ91ÉE1É1íH‰{\&E1ÿÇz\&aÇl\&ÁHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xéüñÿÿDH‹¡$H‰„$Hƒé‡ýÿÿHù81ÉE1É1íH‹¼$ E1ÿH‰ [&Ç¢[&aÇ”[&ÆHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xéñÿÿDE1ÿIƒL;5$„¬
H‹}P&H‹=[&H‰ÞèVíûÿI‰ÄH…À„}<HƒH‹5_O&L‰çèGöûÿH‰D$H‰„$¨H…À„e=Iƒ,$„t-¿èŒòûÿI‰ÄH…À„A?IƒL‰p èsîûÿH‰D$H‰„$ H…À„ï@H‹îO&H‹=Z&H‰ÞèÇìûÿH‰ÅH…À„!CHƒH‹5èQ&H‰ïè¸õûÿH‰ÁH…À„¸HHƒm„~2H‹52S&H‹¼$ H‰ÊH‰$è–êûÿH‹$…ÀˆBHƒ)„B3H‹”$ H‹¼$¨L‰æèØðûÿH‰$H…À„‰KH‹¼$¨Hƒ/„Ú4HDŽ$¨Iƒ,$„¶4H‹¼$ Hƒ/„š4HDŽ$ Iƒ.„CH‹\$ H‹„$H9ÔÀH;h$”ÂÂ…µH;N$„¨H‰ßèðìûÿ…Àˆk4…À„XH‹D$H;$$„à,H‹5R&H‰ÇèôûÿH‰D$H‰„$ H…À„NIH‹5úX&H‹|$1ÒèæïûÿH‰D$ H…À„ÜIH‹¼$ Hƒ/„52H‹\$ HDŽ$ H‰ßè­ñûÿ…À„­.HÇÆÿÿÿÿH‰ßèÆéûÿH‰ÁH…É„³LH‹|$ H‰ÎH‰L$è(êûÿH‹L$H…ÀH‰D$(H‰„$ „NHƒ)„46H‹„$ H‹\$ H‰D$H‹H‰D$HƒèH‰„6H‹5UL&H‹|$0HDŽ$ èóûÿH‰ÁH…À„ïSH‰D$L‰ö1?è?ñûÿH‹L$H…ÀH‰Ã„TW1ÒH‰ÏH‰ÆH‰L$èÌîûÿHƒ+H‹L$H‰Å„H:H‰¬$ H…í„+WHƒ)„ :H‹„$ H‹5(K&HDŽ$ H‹|$H‰D$ èõòûÿH‰D$(H‰„$ H…À„õX¿èEïûÿH‰ÁH…À„7cH‹D$ H‰L$HƒH‰A è"ëûÿH‹L$H…ÀI‰Ä„úkH‹ÚJ&H‹5kJ&H‰ÇH‰L$è–çûÿH‹L$…ÀˆvJH‹¼$ H‰ÎL‰âH‰L$èáíûÿH‹L$H…ÀH‰D$(H‰„$¨„üqH‹¼$ Hƒ/„JHDŽ$ Hƒ)„úIIƒ,$„âIH‹-L&H‹=¥V&H‹œ$¨HDŽ$¨H‰îèÙèûÿH‰D$@H…À„duHƒH‰„$¨H‹5øP&H‹|$@è¾ñûÿI‰ÄH…À„vH‹¼$¨Hƒ/„	P¿HDŽ$¨èúíûÿH‰D$@H‰„$¨H…À„'wHƒH‹„$¨H‰X èÏéûÿH‰ÁH…À„H}H‹Ô$H‹5mO&H‰ÇH‰D$èHæûÿH‹L$…ÀˆŸgH‹-,K&H‹=½U&H‰L$H‰îèèûÿH‹L$H…ÀH‰D$@„/HƒH‰„$ H‹5:M&H‹|$@H‰L$èÛðûÿH‹L$H…ÀH‰Å„ŽH‹¼$ Hƒ/„qlH‹5IN&H‰ÏH‰êH‰L$HDŽ$ è¥åûÿH‹L$…Àˆ€Hƒm„3mH‹´$¨H‰ÊL‰çH‰L$èåëûÿH‹L$H…ÀH‰D$(„˜ˆIƒ,$„/qH‹¼$¨Hƒ/„	qHDŽ$¨Hƒ)„æpHƒ+„ÏpHÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@L;5O$ÆD$x„’CHÇD$XHÇD$pH‹5#J&H‹¼$€èžïûÿH‰ÅH…À„3wH‹5ƒE&H9Æ„ßNH‹Û$H9E„\UºH‰ïèôîûÿH‰ÁH…À„yvHƒm„“NH;Œ$”ÃH;
Ã$”ÀØ…nKH;
©$„aKH‰ÏH‰L$èFçûÿH‹L$…	ÈõwHƒ)„ÇR…Û…•RL;5n$„bH‹5YI&H‹|$(è×îûÿH‰ÁH…À„®H‹5¼D&H9ð„e{H‹$H9A„„{H‰ϺH‰L$è(îûÿH‹L$H…ÀH‰Å„“Hƒ)„{H;¬$”ÃH;-ó$”ÀØ…@yH;-Ù$„3yH‰ïè{æûÿ‰ÅÀˆ“Hƒm„	y…Û„^aH‹=/H&èòUüÿH‰ÅH…À„“ªH‹5‡K&H‰ÇèîûÿH‰ÁH…À„ݨHƒm„ڋH‰L$èVæûÿH‹L$H…ÀH‰Å„P©H‹5fK&H‹¼$€H‰L$è¼íûÿH‹L$H…ÀI‰Á„ۨH‹5<K&H‰ÂH‰ïH‰Œ$ˆH‰D$èœâûÿL‹L$H‹Œ$ˆ…Àˆž§Iƒ)„n‹H‹5vB&H‰ÏH‰êH‰L$èÖèûÿH‹L$H…ÀI‰Ä„ÎÇHƒ)„U§Hƒm„ާH‹t$(H‹¼$€èäûÿI‰ÁH…À„1ÈH‹5“Q&H‰ÂL‰çH‰D$è;ëûÿL‹L$…ÀˆÂÇIƒ)„…§L‰t$L‰åL‹4$Iƒ$H‹œ$€L‰$$éÞçÿÿfH‹A$H‹ò$H‹´$°HƒH‰œ$éÐòÿÿf„H9.1ÉE1äE1ÉH‰êP&1íH‹¼$ E1ÿÇßP&bH‹œ$€ÇÉP&ÚHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xéJæÿÿf.„H‹ÁE&H‹=RP&H‰ÞèšâûÿI‰ÇH…À„ñ.HƒH‰„$ H‹5›D&L‰ÿèƒëûÿI‰ÇH‰„$¨H…À„/H‹¼$ Hƒ/„=!L‰ö1?HDŽ$ H‹œ$¨è
éûÿH‰ÅH…À„31ÒH‰ßH‰Æè¡æûÿHƒmH‰Ã„3"H‹¼$ H‰œ$°H…ÿtHƒ/„Å%H‹œ$°HDŽ$ H…Û„å2H‹¼$¨Hƒ/„	"H‹5¶@&H‹¼$°HDŽ$¨H9þ„€(H‹ú$H9G„I&ºèêûÿH‹¼$°I‰ÇH‰„$¨H…À„W4Hƒ/„"H‹¼$¨H;¼$HDŽ$°”ÀH;=Â$”ÂÂ…?H;=¨$„2èMâûÿ‰ÅÀˆÀ5H‹¼$¨Hƒ/„$HDŽ$¨…Û„eÙÿÿH‹5N?&H‹=§L&1ÒèXåûÿI‰ÇH‰„$¨H…À„ÈgH‰ÇèìâüÿH‹¼$¨Hƒ/„M>HS+ÆD$x1É1íH‰N&E1äE1ÉE1ÿH‹¼$ H‹œ$€HDŽ$¨ÇàM&iÇÒM&™HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$éXãÿÿ„H‹¹>&H‰$HƒIƒ.…½óÿÿL‰÷è?Þûÿé°óÿÿf.„L‰ÿèÈàûÿ‰ÅÀˆéL‹¼$°éÛ×ÿÿèÞûÿés×ÿÿfDèûÝûÿé@×ÿÿfDèëÝûÿé
×ÿÿfDèÛÝûÿéIØÿÿèàûÿH‰ßèiOüÿI‰ÇH…À…—ÃHÖ)1ÉM‰üE1ÉH‹¼$ 1íH‰}L&ÇL&tH‹œ$€ÇiL&$HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xéêáÿÿè¥ßûÿH‰ßèNüÿI‰ÇH‰„$¨H…À…VéÿÿHò(1ÉE1äE1ÉH‹¼$ 1íH‰™K&Ç›K&mH‹œ$€Ç…K&ÎHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xéáÿÿfDH)(1ÉE1äE1ÉH‰ÚJ&1íH‹¼$ E1ÿÇÏJ&bH‹œ$€Ç¹J&ØHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xé:àÿÿf.„è;ÛûÿéDÓÿÿfDè+ÛûÿébãÿÿfDH9'ÆD$x1É1íH‰éI&E1äE1ÉE1ÿÇâI&bH‹¼$ E1íH‹œ$€ÇÁI&ÝHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$éGßÿÿ€èKÚûÿé	ÓÿÿfDH‰ßè8Úûÿé™Òÿÿè+ÚûÿéaæÿÿfDL‰ïè¨Ûûÿf. Nz„æÿÿ„H‹ñû#1ÛHƒH‹„$H9Üû#H‹Õû#”ÃéöåÿÿDèËÙûÿé¶ÒÿÿfDH‰ïè¸Ùûÿé\Òÿÿ¶Àé`ïÿÿ„L‰ÿè˜ÙûÿégÓÿÿ¶ØéŒçÿÿ„¶ØéÝùÿÿ„èÜûÿH‰ßèKüÿH‰„$°H…À….ÑÿÿH-k%H‹¼$ Ç%H&eH‰-H&ÇH&øH…ÿtHƒ/…$'èÙûÿHDŽ$ H‹¼$¨H…ÿt
Hƒ/„¹H‹¼$°HDŽ$¨H…ÿt
Hƒ/„¦H‹=ïE&HDŽ$°èvÛûÿ…À„’‹”G&‹5ŠG&H={<H‹
tG&èŸKüÿH”$°H´$ H¼$¨è’Düÿ…ÀˆjH‹5C8&H‹=”E&1ÒèEÞûÿH‰ÃH…À„n7H‰ÇèáÛüÿHƒ+„d H‰-G&ÇG&gÇG&NH‹¼$¸E1ä1íE1ÿH‹”$ÈH‹´$ÀE1íèÞûÿÆD$x1ÉE1ÉH‹¼$ H‹œ$€HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$éHÜÿÿ„Hi#1ÉE1äE1ÉH‰F&1íH‹¼$ E1ÿÇF&lH‹œ$€ÇùE&¶HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xézÛÿÿf.„H‹ñ:&H‹=‚E&H‰ÞèÊ×ûÿH‰D$H…À„¾7H‹D$HƒH‰„$¨H‹5´<&H‹|$èªàûÿH‰ÅH…À„:H‹¼$¨Hƒ/„!H‹5>&H‹|$HDŽ$¨èoàûÿH‰D$H‰„$¨H…À„ß;H‹Z:&H‹=ëD&H‰Þè3×ûÿH‰D$H…À„;BHƒH‰„$°H‹5"=&H‹|$èàûÿH‰ÁH…À„íBH‹¼$°Hƒ/„'¿H‰L$HDŽ$°èOÜûÿH‹L$H…ÀI‰Ä„˜NHƒ¼$°tHDŽ$°H‹„$¨1ÒL‰æH‰ïI‰L$(I‰D$ HDŽ$¨èÛûÿH‰D$H‰„$ H…À„OIƒ,$„V*Hƒm„>*H‹¼$ H;¼$”ÀH;=Îö#”ÂÂ…H;=´ö#„øèY×ûÿ‰ÅÀˆ WH‹¼$ Hƒ/„O,HDŽ$ …Û„ÑÿÿH‹ú8&H‹=‹C&H‰ÞèÓÕûÿH‰D$H…À„‡HƒH‹5z6&H‹|$èÀÞûÿI‰ÄH…À„uH‹\$H‹H‰D$HƒèH‰„]H‹›8&H‹=,C&H‰ÞètÕûÿH‰D$H…À„?€HƒH‹5‹;&H‹|$èaÞûÿH‰D$H‰„$¨H…À„ZH‹\$H‹H‰D$HƒèH‰„Ô^H‹5Â;&H‹|$è ÞûÿH‰D$H…À„¡uH‹t$1?HDŽ$°H‹¬$¨è½ÛûÿH‰ÃH…À„v…1ÒH‰ïH‰ÆèTÙûÿHƒ+H‰Å„ßeH‹¼$°H…ÿt
Hƒ/„ÂjH‹\$HDŽ$°H‹H‰D$HƒèH‰„0`H…í„ݖH‹¼$¨Hƒ/„ÞdH‹5°:&H‰ïHDŽ$¨èTÝûÿH‰D$H‰„$¨H…À„ñ‹Hƒm„¶dH‹´$¨¿1ÀèïÚûÿH‰ÃH…À„•1ÒH‰ÆL‰çè†ØûÿHƒ+H‰Å„xlH‹¼$¨H‰¬$ Hƒ/„XdH‹„$ HDŽ$¨H‰D$H…À„ЛIƒ,$„$lIƒH‹¼$ ºL‰þè)ÜûÿH‰ÅH…À„šH;„$”ÃH;ô#”ÀØ…[[H;-éó#„N[H‰ïè‹Ôûÿ‰ÅÀˆ£šHƒm„«k…Û„ÎcH‹„$ HƒH‹„$ H‰„$¨Iƒ/„pkH‹¼$ Hƒ/„4jH‹„$¨H‰„$ HƒH‹¼$¨Hƒ/„jHDŽ$¨H‹œ$ Iƒ/„
kHDŽ$ I‰ßéÒÍÿÿfDè3Ñûÿé=øÿÿfDè#ÑûÿéPøÿÿfDH-1Çó?&eH‰-à?&ÇÞ?&úéé÷ÿÿH	1ÉE1äE1ÉH‰º?&1íH‹¼$ E1ÿǯ?&lH‹œ$€Ç™?&¸HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xéÕÿÿf.„èÐûÿéÈÜÿÿfDL‰çèÐûÿéÎÊÿÿH‰-Ù>&ÇÛ>&fÇÍ>&>éÄ÷ÿÿH-ùH‹¼$ Ç³>&eH‰- >&Çž>&ýé‰öÿÿHÉ1ÉE1äE1ÉH‹¼$ 1íH‰p>&Çr>&mH‹œ$€Ç\>&ÅHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xéÝÓÿÿDH‹<$ºL‰îèרûÿH‰D$H‰„$ H…À„i7H‹\$H‹„$H9ÔÀH;Ÿð#”ÂÂ…‚H;…ð#„uH‰ßè'Ñûÿ‰ÅÀˆ–8H‹„$ H‰D$H‹L$H‹H‰D$HƒèH‰„ÜHDŽ$ …Û…a=H‹5£.&H‹<$1Òè0ØûÿH‰D$H‰„$ H…À„N>H‹\$H‹„$H9ÔÀH;øï#”ÂÂ…H;Þï#„
H‰ßè€Ðûÿ‰ÅÀˆ¦JH‹„$ H‰D$H‹L$H‹H‰D$HƒèH‰„’$HDŽ$ …Û…PH‹D$H;ï#„&H‹ú1&H‹=‹<&H‰ÞèÓÎûÿH‰D$H…À„žYHƒH‰„$¨H‹5Ú5&H‹|$è¸×ûÿH‰ÁH…À„Ù_H‹¼$¨Hƒ/„
6H‹|$ºH‰L$H‹5|-&HDŽ$¨è×ûÿH‹L$H…ÀH‰D$H‰„$¨„GbH‹t$1?H‰L$èÕûÿH‹L$H…ÀH‰Ã„b1ÒH‰ÏH‰Æè¤ÒûÿHƒ+H‹L$H‰Å„é:H‹¼$¨H‰¬$ Hƒ/„ê8H‹„$ HDŽ$¨H‰D$H…À„„bHƒ)„µ:H‹4$H‹¼$ 1ÒèIÖûÿH‰ÁH…À„òdH‹¼$ Hƒ/„!FH;Œ$HDŽ$ ”ÃH;
î#”ÀØ…+H;
ëí#„+H‰ÏH‰L$èˆÎûÿH‹L$…	ÈUiHƒ)„bI…Û…ScH‹(,&H‹|$HƒH‹5H4&H‰D$8èÖûÿH‰D$H‰„$ H…À„‡yH‹|$1ÒH‹5z:&HDŽ$¨èaÑûÿH‹¼$¨H‰ÅH…ÿt
Hƒ/„wVHDŽ$¨H‹¼$ H…í„ÛoHƒ/„zRH‹\$HDŽ$ H‹H‰D$HƒèH‰„GRH‹{/&H‹=:&H‰ÞèTÌûÿH‰D$H…À„¶nHƒH‹5{+&H‹|$èAÕûÿH‰D$ H‰„$ H…À„pH‹\$H‹H‰D$HƒèH‰„ÄW¿èwÑûÿH‰ÁH…À„ŠpIƒL‰p H‰D$èYÍûÿH‹L$H…ÀH‰D$H‰„$¨„—H‹Ï.&H‹=`9&H‰L$H‰Þè£ËûÿH‹L$H…ÀH‰D$„ž~HƒH‹5å0&H‹|$H‰L$è†ÔûÿH‹L$H…ÀI‰Ä„¶}H‹\$H‹H‰D$HƒèH‰„·hH‹5ì1&H‹¼$¨L‰âH‰L$èOÉûÿH‹L$…ÀˆŸ”Iƒ,$„lhH‹”$¨H‹¼$ H‰ÎH‰L$èŠÏûÿH‹L$H…ÀH‰D$@„|zH‹¼$ Hƒ/„hHDŽ$ Hƒ)„ógH‹¼$¨Hƒ/„Å`H‹5N,&H‹|$@HDŽ$¨è ÓûÿH‰D$H‰„$¨H…À„§ŠH‹58&H‹|$1Òè÷ÎûÿH‰D$hH…À„“xH‹¼$¨Hƒ/„òuHDŽ$¨1À1ÛHÇD$HHÇD$PHÇD$L‰|$pH‰l$L‰l$L‹l$8L‰´$˜I‰ÆH‹4$1ÒL‰ïèÒûÿI‰ÄH…À„ÏvH;„$A”ÇH;hê#”ÀDø…¥_L;%Mê#„˜_L‰çèïÊûÿA‰DžÀˆDˆIƒ,$„pvE…ÿ„4ÃH‹5I+&H‹|$0èÒûÿH‰„$¨H…À„¾ˆH‹<$L‰îè’ÈûÿH‰ÅH…À„«Ã¿èÌÎûÿH‰„$ H…À„&ÃH‰h H‹¼$¨H‰Æè÷-üÿH‹¼$ H‰D$`Hƒ/„ù‰Hƒ|$`HDŽ$ „>šH‹¼$¨Hƒ/„ىHDŽ$¨H…Ût
Hƒ+„øvH‹5Ì'&ºL‰ïèWÑûÿI‰ÄH…À„lÀH;„$”ÃH;1é#”ÀØ…ruL;%é#„euL‰çè¹Éûÿ‰ÅÀˆuÁIƒ,$„§‡…Û„†1ÿèÐûÿI‰ÄH…À„ȤH‹Òè#L‰îH‰ÇèGÏûÿIƒ,$H‰Ã„›¤H…Û„Ÿ¤H‹|$hH‰ÞèÈûÿHƒ+I‰Ä„k¤M…ä„|¤H‹þ&&H‹|$L‰æè9Ïûÿ…Àˆ¨£Iƒ,$„·™H‹=ç*&èª8üÿH‰„$¨H…À„ÀH‹5º.&H‰ÇèºÐûÿH‰„$ H…À„ѽH‹¼$¨Hƒ/„y‡H‹¼$ H‹t$HDŽ$¨è9,üÿH‹¼$¨H‰ÃH…ÿt
Hƒ/„KÀHDŽ$¨H‹¼$ H…Û„۽Hƒ/„$‡H‹L$HDŽ$ H…ÉtH‹H‰D$ HƒèH‰„;¾H‰ßè…Íûÿ…À„U‘HƒÎÿH‰ßè¡ÅûÿI‰ÄM…ä„s‘L‰æH‰ßè
ÆûÿH‰„$ H…À„
’Iƒ,$„ò‘H‹„$ Hƒ+H‰D$„$”H‹5¸'&H‹|$HDŽ$ èŠÏûÿH‰„$ H…À„‰“¿èßËûÿI‰ÄH…À„ՒH‹D$`HƒI‰D$ èÀÇûÿH‰„$¨H…À„’H‹x'&H‹5	'&H‰Çè9Äûÿ…Àˆ¹•H‹”$¨H‹¼$ L‰æè‰ÊûÿI‰ÇH…À„û”H‹¼$ Hƒ/„ߔHDŽ$ Iƒ,$„»”H‹¼$¨Hƒ/„’”HDŽ$¨M…öt
Iƒ.„3¼H‹=¨(&èk6üÿH‰ÅH…À„º“H‹5%&H‰Çè€ÎûÿH‰„$¨H…À„ù’Hƒm„¡¿èÊÊûÿH‰ÅH…À„S IƒL‰x è±ÆûÿI‰ÄH…À„˜ŸH‹”$H‹5~&&H‰Çè.Ãûÿ…ÀˆמH‹¼$¨L‰âH‰îèƒÉûÿH‰„$ H…À„KžH‹¼$¨Hƒ/„/žHDŽ$¨Hƒm„žIƒ,$„óH‹œ$ H‹CH;Sä#H‰ß”ÂH;¾ä#”ÀˆT$x„9«èšÉûÿHƒø…&ª1öH‰ßèfËûÿI‰ÄH…À„t©H‰߾èMËûÿH‰ÃH…À„èH‹¼$ Hƒ/„ږHDŽ$ H‹L$PH…ÉtH‹H‰D$ HƒèH‰„î’H‹L$HH…ÉtH‹H‰D$ HƒèH‰„š–H‹5¦$&H‰ßèæÌûÿH‰ÅH…À„]¯H‹5[1&1ÒH‰ÇèIÈûÿH‰„$ H…À„í®Hƒm„ծH‹¼$ Hƒ/„¹®H‹5„#&L‰ÿHDŽ$ è€ÌûÿH‰ÅH…À„ã­H‰ÞH‰Çè)(üÿH‰„$ H…À„U­Hƒm„=­L‹´$ Iƒ/„­H‹5ô#&L‰÷HDŽ$ è ÌûÿH‰„$ H…À„„¬H‰ÆL‰ïè”ÇûÿH‰ÅH…À„kH‹¼$ Hƒ/„¥«H‹_ã#H‰îL‰ïHDŽ$ èÈÉûÿI‰ÇH…À„ϪM…ö„ú®H‹|$hL‰òH‰ÆèãÉûÿIƒ/„ˮ…Àˆ¤ªHƒm„ŒªH‹5?#&L‰÷èwËûÿH‰ÅH…À„ũH‰ÆL‰ïèpÉûÿH‰„$ H…À„B±Hƒm„*±L‹¼$ Iƒm„}±H‰\$HM‰ýH‹\$`HDŽ$ L‰d$PéøÿÿfDH‰ïèÀûÿé‡ÍÿÿèƒÀûÿéÈÍÿÿfDH‹¼$ H-‰ÇK/&eH‰-8/&Ç6/&H…ÿtHƒ/„“HDŽ$ Hƒ+…!çÿÿH‰ßè!Àûÿéçÿÿ@èÀûÿé½ÍÿÿfDL‰ÿèÀûÿéY»ÿÿL‰çèð¿ûÿé»ÿÿH-ÇÃ.&eH‰-°.&Ç®.&陿ÿÿ1Ûéb¸ÿÿf„諿ûÿé¹ÞÿÿfD蛿ûÿé¤ÍÿÿfDH‰ß舿ûÿéϺÿÿH‰ïèx¿ûÿéíºÿÿèn¿ûÿé„ÌÿÿH‚1ÉE1äE1ÉH‹¼$ 1íH‰).&Ç+.&hH‹œ$€Ç.&iHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xé–Ãÿÿè1Àûÿf.)3z„²H‹„$HƒH‹¼$°H‰„$ éÌÿÿH‰ïèh¾ûÿéÀÝÿÿè^¾ûÿéºÿÿL‰ÿèQ¾ûÿéwºÿÿèG¾ûÿéíÝÿÿL‰çè:¾ûÿéÒÿÿHN
ÆD$x1É1íH‰þ,&E1äE1ÉE1ÿH‹¼$ H‹œ$€Çç,&hÇÙ,&jHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$é_Âÿÿèj½ûÿéuÝÿÿH‰ïè]½ûÿéN¹ÿÿèS½ûÿ霹ÿÿH‹5ï#&H‹|$0è­ÇûÿH‰ÅH…À„¦A¿èÄûÿH‰ÁH…À„QBH‹|&H‰L$HƒH‰A IƒEL‰i(èٿûÿH‹L$H…ÀH‰D$H‰„$¨„NFH‹5&H‹|$L‰òH‰L$èE¼ûÿH‹L$…Àˆ¯%H‹)!&H‹=º+&H‰L$H‰Þèý½ûÿH‹L$H…ÀH‰D$„èPHƒH‹5?#&H‹|$H‰L$èàÆûÿH‹L$H…ÀH‰D$ H‰„$ „PH‹\$H‹H‰D$HƒèH‰„0&H‹”$ H‹54$&H‰L$H‹¼$¨蚻ûÿH‹L$…Àˆ=IH‹¼$ Hƒ/„-H‹”$¨H‰ÎH‰ïH‰L$HDŽ$ èÇÁûÿH‹L$H…ÀH‰D$H‰„$ „2UHƒm„K7Hƒ)„47H‹¼$¨Hƒ/„F7H‹„$ HDŽ$¨HDŽ$ H‰D$(HÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$ HÇD$é´Õÿÿ¶Øé¢ìÿÿè
»ûÿéwÛÿÿHÇÇÿÿÿÿèÄûÿH‰ÃH…À„	H‹|$ H‰ÆèC¼ûÿHƒ+H‰Á…3ÑÿÿH‰ßH‰D$èɺûÿH‹L$éÑÿÿ躺ûÿé1ÚÿÿHÎÆD$x1É1íH‰~)&E1äE1ÉE1ÿH‹¼$ H‹œ$€Çg)&rÇY)&HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$é߾ÿÿH‹àÛ#Hƒébûÿÿ¶èé¸ÿÿèb»ûÿf.Z.z„j	H‹„$HƒH‹¼$°H‰„$¨é§ÙÿÿèL¼ûÿH‰ßè4+üÿI‰ÇH‰„$°H…À…¾³ÿÿH™1ÉE1äE1ÉH‹¼$ 1íH‰@(&ÇB(&tH‹œ$€Ç,(&HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$x魽ÿÿ踸ûÿéȴÿÿH‰ïH‰$觸ûÿH‹$émÍÿÿH·1ÉE1äE1ÉH‹¼$ 1íH‰^'&Ç`'&tH‹œ$€ÇJ'&!HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xé˼ÿÿ¶Øé
êÿÿH‰ßè˷ûÿéßÿÿ¶ØéãÿÿH‰Ï趷ûÿé±ÌÿÿH‹¢Ù#Hƒéóýÿÿ蜷ûÿéÁÍÿÿH°Çr&&mH‰_&&Ç]&&ÐHÇD$p1ÉE1É1íHÇ$H‹œ$€HÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xéî»ÿÿH‹ÐØ#HƒH‹¼$°éJøÿÿHà1ÉE1ÉE1ÿH‰‘%&H‹¼$ Ç‹%&tH‹œ$€Çu%&&HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xéöºÿÿè¶ûÿé\ËÿÿL‰çèôµûÿé=ËÿÿèêµûÿéËÿÿ¶èé޴ÿÿHöL‰t$1É1íL‹4$ÆD$xE1äE1ÉH‰—$&H‹¼$ H‹œ$€Ç‰$&Ç{$&eHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$é
ºÿÿèµûÿéôÞÿÿH‹¼$¨HDŽ$°H…ÿ…ÂÿÿH‹¼$ HÆD$x1É1íH‰´#&E1äE1ÉE1ÿH‹œ$€Ç¥#&mÇ—#&ßHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$é¹ÿÿèضûÿH‰ßèÀ%üÿI‰ÇH…À…A“H-1ÉM‰üE1ÉH‰Þ"&H‹¼$ ÇØ"&tH‹œ$€ÇÂ"&)HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xéC¸ÿÿH‰ßèK³ûÿév°ÿÿèA³ûÿé9°ÿÿH‰ßè4³ûÿéóÉÿÿH‰Ïè'³ûÿé¿ÉÿÿH;ÿ1ÉÇû!&tH‹¼$ H‰à!&E1ÉH‹œ$€ÇÓ!&+HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xéT·ÿÿH}þÇ?!&mH‰,!&Ç*!&âéÈúÿÿèè´ûÿH‰ßèÐ#üÿI‰ÇH‰„$ H…À…úÐÿÿH5þÇ÷ &hH‰ä &Çâ &qé€úÿÿHDŽ$ éÜØÿÿHýý1ÉE1äE1ÉH‹¼$ 1íH‰¤ &Ǧ &hH‹œ$€Ç &sHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xé¶ÿÿE1äée¬ÿÿH2ý1ÉE1äE1ÉH‰ã&H‹¼$ ÇÝ&tH‹œ$€ÇÇ&;HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xéHµÿÿH‹IÒ#HƒH‹¼$°é’öÿÿHYüÆD$x1É1íH‰	&E1äE1ÉE1ÿH‹¼$ H‹œ$€Çò&mÇä&åHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$éj´ÿÿH‰Ïèr¯ûÿéáÿÿè²ûÿH‰ßè!üÿI‰ÄH‰D$H…À…PƒHhû1ÉE1É1íH‰&H‹¼$ Ç&‹H‹œ$€Çþ&,HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ L‰t$ÆD$x錳ÿÿH‰÷蔮ûÿég¬ÿÿH‰Ï臮ûÿéÓÅÿÿH‰ßèz®ûÿH‹L$é¦ÅÿÿH‰D$èf®ûÿH‹L$éÒØÿÿHuú1ÉE1É1íH‰'&H‹¼$ Ç!&‹H‹œ$€Ç&.HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ L‰t$ÆD$x陲ÿÿ褭ûÿé֫ÿÿH‹¼$ HDŽ$°H…ÿ…ôÌÿÿH›ùÇ]&hH‰J&ÇH&‚éî»ÿÿHtù1ÉE1äE1ÉH‹¼$ 1íH‰&Ç&tH‹œ$€Ç&>HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$x鈱ÿÿH‰Çè ®ûÿf.!z„^H‹„$HƒH‹´$¨H‰„$ é-ªÿÿHxø1ÉE1É1íH‰*&H‹¼$ Ç$&‹H‹œ$€Ç&1HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$L‰t$ÆD$x铰ÿÿH¼÷1ÉE1äE1ÉH‹¼$ 1íH‰c&Çe&hH‹œ$€ÇO&…HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xéЯÿÿ1ÛéϦÿÿHòöÇ´&tH‰¡&ÇŸ&Né=óÿÿH‰ï說ûÿéµÕÿÿL‰ç蝪ûÿéÕÿÿ蓪ûÿéó¸ÿÿH§ö1ÉE1É1íH‰Y&H‹œ$€ÇS&‹ÇE&6HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ L‰t$ÆD$xéâ®ÿÿHüõÆD$x1É1íH‰¬&E1äE1ÉE1ÿH‹¼$ H‹œ$€Ç•&hLJ&ˆHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$é
®ÿÿH‰Ïè©ûÿéaÛÿÿ¶Ø鋩ÿÿH!õL‰t$E1ÉH‹¼$ H‹œ$€ÆD$x1íH‰»&ǽ&‹Ç¯&=HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$é>­ÿÿèI¨ûÿé§Óÿÿè?¨ûÿ鿦ÿÿèåªûÿH‰ßèÍüÿH‰ÅH‰D$H…À…x‰H5ô1ÉÇõ&‹H‹¼$ H‰Ú&E1ÉH‹œ$€ÇÍ&8HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ L‰t$ÆD$xé[¬ÿÿH‹<$H‹Gö€³„üxè1§ûÿH‰D$ Hƒ|$ ÿ„ÚPI‹Eö€³„d†L‰ïè§ûÿH‰D$Hƒ|$ÿ„»Q‹´$`…ö…ü,H‹X&H‰D$XHƒH|$'ŽH‹|$ 辧ûÿH‰D$H‰„$ H…À„bH‹|$螧ûÿH‰ÁH…À„BaH‹t$XH‰ÇH‰D$èà§ûÿH‹L$H…ÀI‰Ä„c\Hƒ)„ãIH‹¼$ ºL‰æèp°ûÿH‰ÁH…À„dH‹¼$ Hƒ/„GHDŽ$ Iƒ,$„ŸFH;Œ$”ÃH;
!È#”ÀØ…³8H;
È#„¦8H‰ÏH‰L$褨ûÿH‹L$…	ȇaHƒ)„—F…Û„üH‹ü&fïÉfï?òGòH*L$ÿÐH‰D$(H…À„žbH‹D$(H‹5@
&H‹XH‹D$0H‹¸Øèû¯ûÿH‰D$H‰„$ÈH…À„¿aH‹D$0H‹51
&H‹¸ØèͯûÿI‰ÄH…À„]WH‹5B&H‰Ç1ÒHDŽ$ è$«ûÿH‹¼$ H‰ÅH…ÿt
Hƒ/„yNHDŽ$ H…í„…XIƒ,$„ŒEHƒm„ŽE誩ûÿH‹t$H‹|$0H‰ÙH‰ŸH‰òH+T$ H…ÒHNÐèáüÿH‰ïèé¨ûÿH‹¼$ÈH…ÿtWH‹5-&1Ò莪ûÿH‹¼$ÈH‰D$Hƒ/„EHƒ|$HDŽ$È„GWH‹\$H‹H‰D$HƒèH‰„ÐDH‹4$L‰ïè٤ûÿI‰ÄH…À„[gH‹&Æ#H‰ÇH‰Ö蛬ûÿH‰ÃH…À„ƒfH‹|$(H‰Æèr¥ûÿHƒ+H‰Å„ÈGH‰¬$ H…í„dfIƒ,$„þPH‹5z&H‹¼$ èE®ûÿI‰ÄH…À„TH‹¼$ Hƒ/„GEH‹5¨&L‰ç1ÒHDŽ$ 芩ûÿH‹¼$ H‰D$H…ÿt
Hƒ/„_Hƒ|$HDŽ$ „œIƒ,$„ÀaHÇD$pH‹\$(H‹H‰D$HƒèH‰„aH‹D$pH…À”ÂH;Å#”À	ÂL;5
Å#ˆT$x„ªDH‹5q&H‹|$L‰òèì©ûÿ…ÀˆtHÇD$0H‹D$HÇD$ H‰D$(HÇD$8HÇD$PHÇD$HHÇD$`HÇD$@HÇD$hHÇD$éR½ÿÿH‹…Ä#HƒéöÿÿHîE1ÉÇ\&‹H‹¼$ H‰A&H‹œ$€Ç7&:HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$L‰t$ÆD$x鼦ÿÿèǡûÿé͠ÿÿHÇD$pHÇD$XH‹D$(H‹5<&H‹xH9÷t
èöªûÿ…À„L¼ÿÿH‹5ï&H‹|$(èí«ûÿH‰ÁH…À„^@H‹5Ò&H‰D$¿1À虩ûÿH‹L$H…ÀH‰Ã„…?1ÒH‰ÏH‰ÆH‰L$è&§ûÿHƒ+H‹L$H‰Å„;'H…í„X?Hƒ)„'H‹\$(H‹H‰D$HƒèH‰„4'H‰l$(髻ÿÿèè ûÿé©Áÿÿ¶ÛéÕÿÿH‰-´&Ƕ&gǨ&JéŸÈÿÿHÔìÇ–&’H‰ƒ&ǁ&zHÇD$p1ÉE1É1íHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ L‰t$H‹œ$€L‹4$ÆD$xHÇ$é¥ÿÿH%ìL‰t$1É1íL‹4$E1äE1ÉÆD$xH‰Æ&H‹¼$ ÇÀ&’H‹œ$€Çª&ˆHÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$HÇ$éB¤ÿÿHkë1ÉE1É1íH‰&H‹¼$ Ç&‹H‹œ$€Ç&?HÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$L‰t$ÆD$x鎣ÿÿèI¡ûÿH‰ßè1üÿH‰D$H‰„$¨H…À…0ÈÿÿH”ê1ÉE1äE1ÉH‹¼$ 1íH‰;
&Ç=
&vH‹œ$€Ç'
&fHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$ÆD$x鱢ÿÿL‰ç蹝ûÿé¶ÿÿH‰Ï謝ûÿéùµÿÿH‰L$蝝ûÿH‹L$éϵÿÿH¬éE1É1íL‰t$H‰[&L‹4$H‹¼$ H‹œ$€ÇI&•Ç;&ÈÆD$xHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(éסÿÿHéL‰t$1É1íL‹4$ÆD$xE1äE1ÉH‰¡&H‹D$ H‹¼$ H‹œ$€ÇŽ&“Ç€&•H‰D$HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ é¡ÿÿèœûÿ驛ÿÿH2è1ÉE1äE1ÉH‰ã
&H‹¼$ ÇÝ
&vH‹œ$€ÇÇ
&hHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xéH ÿÿHqçE1É1íÇ.
&“H‰
&H‹D$ Ç
&—HÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@H‰D$é™úÿÿHêæ1ÉE1É1íH‰œ	&H‹œ$€Ç–	&yLj	&
HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$ÆD$xé1ŸÿÿH‹¼#HƒH‹´$¨éžíÿÿH#æ1ÉE1äE1ÉH‰Ô&H‹¼$ ÇÎ&vH‹œ$€Ç¸&kHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$ÆD$xéBžÿÿ¶Û鳴ÿÿHcå1ÉE1äE1ÉH‰&H‹D$x1íH‹¼$ ÆD$xÇ&}H‹œ$€Çì&#HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$H‰D$évÿÿH‹&H…Û„X]H‹D$xH‹xH9û„²•ÿÿH‰Þ輡ûÿ…À…¢•ÿÿH‹D$xH‹K H5„óH‹@H‹P H‹Ÿ#H‹81Àèë ûÿHDä1ÉE1äE1ÉH‰õ&H‹D$x1íH‹¼$ H‹œ$€Çà&{ÇÒ&H‰D$ÆD$xHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$éNœÿÿfDHqãÇ3&›H‰ &Ç&6é˜öÿÿè,—ûÿé4—ÿÿè"—ûÿéí¯ÿÿH‰D$è—ûÿH‹L$éßÉÿÿH"ãE1äE1ÉL‰t$H‰Ð&L‹4$H‹¼$ H‹œ$€Ç¾&™Ç°&ÆD$xHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$é:›ÿÿH‰ïH‰L$è=–ûÿH‹L$éV±ÿÿH‹„$HƒH‰ÁHƒmtÓ1ÛH;Œ$”Ãét±ÿÿH‰ßH‰L$èþ•ûÿH‹L$é¹ÙÿÿL‰çèì•ûÿé!–ÿÿHâL‰t$1É1íL‹4$ÆD$xE1äE1ÉH‰¡&H‹¼$ H‹œ$€Ç“&›Ç…&7HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$éšÿÿH=áE1äE1É1íL‰t$L‹4$H‰å&H‹¼$ Çß&”H‹œ$€ÇÉ&¤HÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇ$ÆD$xé\™ÿÿH…àÇG&}H‰4&Ç2&%H‹D$x1ÉE1É1íHÇ$H‹œ$€HÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$H‰D$ÆD$xé˜ÿÿ¶ÛéЕÿÿH‰ß裓ûÿ鑓ÿÿH‰L$蔓ûÿH‹L$éÇÿÿè5–ûÿH‰ßèüÿH‰D$H‰„$°H…À…®½ÿÿH€ß1ÉE1äE1ÉH‰1&H‹¼$ Ç+&vH‹œ$€Ç&mHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$ÆD$x韗ÿÿHÈÞE1äLJ&vH‹¼$ H‰l&E1ÉH‹œ$€Ç_&oHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xéà–ÿÿH‹D$(L‰t$H‹œ$€L‹4$HÇ$HƒH‰ÅéR—ÿÿH‰Ï辑ûÿé,­ÿÿH‰ß豑ûÿH‹L$éÅÿÿH‰Ï蟑ûÿé>ÅÿÿHDŽ$ H§ÝE1É1íL‰t$H‰V&L‹4$H‹œ$€ÆD$xÇG&”Ç9&²HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ éð•ÿÿH‹5zð%H‹=þ%1Ò輖ûÿH‰D$H‰„$ H…À„M\H‹|$èL”üÿH‹¼$ Hƒ/„}/H³ÜHDŽ$ H‰`ÿ%Çbÿ%œÇTÿ%FL‰t$1ÉL‹4$E1ÉH‹œ$€ÆD$x1íHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$éå”ÿÿèяûÿéYÿÿHåÛǧþ%žH‰”þ%Ç’þ%XéïÿÿH‰ïè-‘ûÿf.%z„ZùÿÿH‹~±#HƒH‰ÁéVùÿÿH“Û1ÉE1É1íH‰Eþ%ÇGþ%•Ç9þ%¿HÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@éÌîÿÿH‰L$èñŽûÿH‹L$éìÒÿÿH‹=Xó%èüÿH‰ÁH…À„§HH‹5°ö%H‰ÇH‰D$è+™ûÿH‹L$H…ÀI‰Ä„€Hƒ)„çC¿èv•ûÿH‰ÁH…À„m…H‹$H‰L$(HƒH‰A èT‘ûÿH‹L$(H…ÀH‰D$H‰„$ „¶„H‹=Êò%H‰L$(èˆüÿH‹L$(H…ÀH‰D$H‰„$¨„ރH‹5æô%H‹|$H‰L$(臘ûÿH‹L$(H…ÀH‰Å„ƒH‹¼$¨Hƒ/„´CH‹5õõ%H‹¼$ H‰êH‰L$HDŽ$¨èLûÿH‹L$…ÀˆʁHƒm„]CH‹”$ H‰ÎL‰çH‰L$茓ûÿH‹L$H…ÀH‰D$(„è€Iƒ,$„CHƒ)„ùBH‹¼$ Hƒ/„ÝBfïÀò
öH‹D$(HDŽ$ òH*D$ òYÎH‹@H‰D$@f/Áƒ‹BòH,ÐH‰ÐH‹=Œñ%HÑèH	ÐH‰ÂHÁêH	ÐH‰ÂHÁêH	ÐH‰ÂHÁêH	ÐH‰ÂHÁêH	ÐH‰ÂHÁê H	ÐH‰D$HHXèÿûÿH‰D$H‰„$ H…À„tH‹5ô%H‹|$è—ûÿH‰ÁH…À„¨~H‹¼$ Hƒ/„ÝAH‰ßH‰L$PHDŽ$ è@’ûÿH‹L$PH…ÀH‰D$H‰„$ „‡HƒÏÿH‰L$è’ûÿH‹L$H…ÀI‰Ä„ƒpH‹=§ð%H‰L$PèeþûÿH‹L$PH…ÀH‰D$H‰„$¨„´oH‹5#í%H‹|$H‰L$Pèd–ûÿH‹L$PH…ÀH‰D$H‰„$°„ànH‹¼$¨Hƒ/„ºn¿H‰L$HDŽ$¨茒ûÿH‹L$H…ÀI‰Á„ó^Hƒ¼$¨tHDŽ$¨H‹„$ 1ÒL‰ÎH‰ÏM‰a(I‰A H‹„$°L‰L$PI‰A0H‰L$HDŽ$ HDŽ$°è)‘ûÿH‹L$L‹L$PH…ÀH‰Å„¬cIƒ)„‹cHƒ)„tcH¼$€194H;-é¬#H‰|$ó«„-cH‹}H‹5©ø%H9÷„§bè3”ûÿ…À…šbH
4ç%1Ҿ=H‰ïèաüÿH‰ÃH„$PI‰ÄH…Û„"_‹Ktƒù…4bH
©ÚHôæ%HDŽ$ØH‰Œ$XHŒ$PH”$ÐI‰ÌH‰Œ$йHÁá.H‰„$PHDŽ$`H‰”$hHDŽ$pHDŽ$xHDŽ$€HDŽ$ˆH‰Œ$ë3H‹”$hHJH‰Œ$hH‹HH‰JH‹”$hHÇBH‹@H‹€x\StÇH‹sxL‰çè1)üÿH…À„"^H‰ßH‹WhL‹
æ%‰ÐL9È…æ`H‹‡€H‹Hƒù޽`H‹‡ˆH…À„¼]H9…‰`H‹‡H…Àt%Hƒ8‰naH‹‡ˆH…ÀtH;t
Hƒé8a1ÉH‹T$H…۾•ÁèÚñûÿƒÀ„†]¹4L‰çH‹t$ó¥H‹„$P¹4H‹|$8L‰æó¥H‰D$pH…À„ÞbHƒm„ÆbH‹D$0H‹5fð%H‹œ$¸H‹¸Øè"“ûÿH‹L$pH;
–ª#H‰D$H‰„$È”D$xH…À„åaH‹D$0H‹5Gð%H‹¸Øèã’ûÿH‰ÁH…À„šaH‹5X÷%1ÒH‰ÇH‰D$èAŽûÿH‹L$H…ÀH‰Å„©]Hƒ)„’]Hƒm„S^èæŒûÿH‹l$@M‰ñM‰îH‰D$H‹D$0I‰íH‰ÝH‹\$HL‹d$HƒÀ(L+d$ H‰D$8L9d$މ\H‹|$8L‰âE1À1É1öL‰L$H蟊ûÿL‹L$HH‰ÂH!ÚëH9È„Û[HƒÂH!ÚHtÕH‹HƒùÿuâH‰I‰EIƒÄIƒÅë H¬Ó1ÉE1äE1ÉH‰]ö%H‹D$x1íH‹¼$ H‹œ$€ÇHö%}Ç:ö%(H‰D$ÆD$xHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$鶋ÿÿHßÒE1ÉÇžõ%vH‹¼$ H‰ƒõ%H‹œ$€Çyõ%“HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xéúŠÿÿH‰D$è†ûÿH‹L$é˹ÿÿHÒ1ÉE1ÉÇÌô%vH‰¹ô%Ç·ô%žHÇD$pHÇD$8HÇ$H‹œ$€HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$ÆD$xéHŠÿÿHbÑÇ$ô%nH‰ô%Çô%òé­ÍÿÿH;ÑE1äE1É1íL‰t$L‹4$H‰ãó%H‹¼$ ÇÝó%•H‹œ$€ÇÇó%ÁHÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇ$ÆD$xéc‰ÿÿH‰Ïèk„ûÿé¿ÈÿÿH‰ïH‰L$èY„ûÿH‹L$éžÈÿÿèJ„ûÿé°ÈÿÿH‹5ä%H‹=oñ%1Òè ŠûÿH‰D$H‰„$ H…À„EIH‹|$谇üÿH‹¼$ Hƒ/„FHÐ1ÉE1É1íH‰Éò%H‹D$xH‹œ$€ÆD$xHDŽ$ Ç­ò%~ÇŸò%7H‰D$HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$é?ˆÿÿHIÏL‰t$1É1íL‹4$ÆD$xE1äE1ÉH‰êñ%H‹¼$ H‹œ$€ÇÜñ%žÇÎñ%YHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$é]‡ÿÿH‰Ïèe‚ûÿ鑶ÿÿH‹5¹ã%H‹¼$€輌ûÿI‰ÁH…À„a9H‹=±æ%H‰D$èoôûÿL‹L$H…ÀH‰Å„ò8H‹5¯ë%H‰ÇL‰L$èzŒûÿL‹L$H…ÀH‰Á„‚8Hƒm„Y%¿L‰Œ$H‰L$跈ûÿH‹L$L‹Œ$H…ÀH‰Å„¾9H‹D$(L‰Œ$H‰L$HƒH‰E è„ûÿH‹L$L‹Œ$H…ÀI‰ÄH‰„$°„69H‹=ïå%L‰Œ$H‰L$è¥óûÿH‹L$L‹Œ$H…ÀI‰Ä„¼8H‹5Ýç%H‰ÇH‰L$L‰Œ$蠋ûÿH‹L$L‹Œ$H…ÀH‰„$ „ÐuIƒ,$„:H‹”$ H‹5é%L‰Œ$H‹¼$°H‰L$è^€ûÿH‹L$L‹Œ$…Àˆz9H‹¼$ Hƒ/„D9H‹”$°H‰ÏH‰îL‰Œ$H‰L$HDŽ$ è{†ûÿH‹L$L‹Œ$H…ÀH‰„$ „}Hƒ)„Ù8Hƒm„·8H‹¼$°Hƒ/„‘8¿L‰L$HDŽ$°è‡ûÿL‹L$H…ÀH‰ÅH‰„$°„n|H‹„$ L‰L$HDŽ$ H‰E èЂûÿL‹L$H…ÀH‰ÅH‰„$ „ípH‹”$ˆH‹58é%H‰ÇL‰L$è;ûÿL‹L$…Àˆd1H‹”$ H‹´$°L‰ÏL‰L$聅ûÿL‹L$H…ÀH‰Å„IpIƒ)„1H‹¼$°Hƒ/„kDH‹¼$ HDŽ$°Hƒ/„CDL‰t$H‹œ$€HDŽ$ L‹4$HÇ$騄ÿÿH5ËE1É1íH‰\$(L‰t$L‹4$H‰Ûí%H‹¼$ H‹œ$€ÆD$xÇÈí%—Ǻí%äHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@édƒÿÿHÊ1ÉE1äE1ÉH‰>í%H‹D$x1íH‹¼$ ÆD$xÇ,í%H‹œ$€Çí%KHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$H‰D$頂ÿÿHÉÉÇ‹ì%H‰xì%Çvì%Ié?éÿÿH‹5Ý%H‹=³ê%1ÒèdƒûÿH‰D$H‰„$ H…À„Ä>H‹|$èô€üÿH‹¼$ Hƒ/„—&H[ÉHDŽ$ H‰ì%Ç
ì%ŸÇüë%hé£ìÿÿH(ÉÆD$x1É1íH‰Øë%E1äE1ÉH‹¼$ H‹œ$€ÇÄë%vǶë%£HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$é<ÿÿL‰çèD|ûÿé6}ÿÿ¶Ûé"ÿÿHPÈE1ÉL‰t$H‹¼$ L‹4$1íH‰óê%Çõê%•H‹œ$€Çßê%ÆHÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇ$ÆD$xé{€ÿÿH¤Ç1ÉE1äE1ÉL‰t$L‹4$H‰Lê%H‹¼$ ÇFê%™H‹œ$€Ç0ê%HÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇ$ÆD$xéºÿÿHãÆE1äL‰t$H‹¼$ L‹4$E1ÉH‰…é%LJé%™H‹œ$€Çqé%HÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇ$ÆD$xéû~ÿÿH‹TÚ%H‰D$XHƒéÿÒÿÿH‰Ïèîyûÿ騨ÿÿH‰ßèáyûÿH‹L$鳨ÿÿH‰L$èÍyûÿH‹L$é{“ÿÿH‰ßè»yûÿH‰l$(éo”ÿÿè¬yûÿéÐzÿÿHÀÅ1ÉE1äE1ÉH‰qè%H‹D$x1íH‹¼$ H‹œ$€Ç\è%ÇNè%MH‰D$ÆD$xHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$éÊ}ÿÿH‰ïH‰L$èÍxûÿH‹L$鶒ÿÿH‰ßè»xûÿ鬭ÿÿè±xûÿé|­ÿÿH‹5eØ%H‹=Öå%1Òè‡~ûÿH‰D$H‰„$¨H…À„¾?H‹|$è|üÿH‹¼$¨Hƒ/„÷H~Ä1ÉE1äE1ÉH‰/ç%H‹D$x1íH‹¼$ H‹œ$€HDŽ$¨Çç%€Çç%\H‰D$ÆD$xHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$é||ÿÿH¥Ã1ÉE1äE1ÉH‹¼$ 1íH‰Læ%ÇNæ%iH‹œ$€Ç8æ%•HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xé¹{ÿÿL‰çèÁvûÿé˜xÿÿè·vûÿéaxÿÿH‰ßèªvûÿé:xÿÿ¶Û鼤ÿÿH‰ßè•vûÿéf¢ÿÿH©ÂE1äL‰t$H‹¼$ L‹4$E1ÉH‰Kå%ÇMå%™H‹œ$€Ç7å%HÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇ$ÆD$xéÊzÿÿHóÁE1ÉL‰t$H‹¼$ L‹4$1íH‰–ä%ǘä%•H‹œ$€Ç‚ä%ÉHÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇ$ÆD$xé'zÿÿèâwûÿH‰ßèÊæûÿH‰D$H‰„$ H…À…utÿÿH-ÁÇïã%‚H‰Üã%ÇÚã%wé£àÿÿH‰ßèåtûÿé¡ÿÿèÛtûÿé©ÿÿH‰ßèÎtûÿé$ÿÿH‰ÏèÁtûÿé
ÿÿH‰L$è²tûÿH‹L$éãŽÿÿL‰çH‰L$è›tûÿH‹L$麎ÿÿHªÀ1ÉE1É1íH‰\ã%H‹D$xH‹¼$ ÆD$xÇLã%‚H‹œ$€Ç6ã%yHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$H‰D$é·xÿÿèrvûÿH‰ßèZåûÿH‰D$H‰„$¨H…À…K¦ÿÿH½¿L‰t$1É1íL‹4$E1äE1ÉÆD$xH‰^â%H‹¼$ ÇXâ%¢H‹œ$€ÇBâ%…HÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇ$éÚwÿÿH‰ßèârûÿéßÿÿH‰ßèÕrûÿé/¨ÿÿHé¾E1äE1ÉL‰t$H‰—á%L‹4$H‹¼$ H‹œ$€Ç…á%™Çwá%ÆD$xHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$éwÿÿèrûÿé6tÿÿè²tûÿH‰ïèšãûÿH‰D$@H‰„$¨H…À……ŠÿÿHý½H‰\$(1É1íL‰t$E1äL‹4$E1ÉH‰žà%H‹¼$ Ç˜à%—H‹œ$€Ç‚à%ØHÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇ$ÆD$xé0vÿÿHY½H‰\$(1É1íL‰t$E1ÉL‹4$H‰ýß%H‹¼$ Ç÷ß%—H‹œ$€Çáß%ÚHÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇ$ÆD$xé†uÿÿH¯¼Çqß%‚H‰^ß%Ç\ß%‹H‹D$x1ÉE1É1íHÇ$H‹œ$€HÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$H‰D$ÆD$xéÜtÿÿHö»H‰\$(1É1íL‰t$E1ÉL‹4$H‰šÞ%H‹¼$ Ç”Þ%—H‹œ$€Ç~Þ%ÝHÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇ$ÆD$xé,tÿÿHU»1ÉE1äE1ÉH‰Þ%H‹D$x1íH‹¼$ H‹œ$€ÇñÝ%‚ÇãÝ%ŽH‰D$ÆD$xHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$é_sÿÿHˆºE1äE1ÉL‰t$H‰6Ý%L‹4$H‹¼$ HÇ$Ç$Ý%èH‹œ$€ÇÝ%p#ésÿÿènûÿé›ÿÿènûÿ鞛ÿÿH‰ïènûÿé=›ÿÿIƒL‰¼$¨é=œÿÿHº1ÉE1äE1ÉL‰t$L‹4$H‰°Ü%H‹¼$ HÇ$H‹œ$€ÇšÜ%èÇŒÜ%n#érÿÿH¸¹ÇzÜ%‚H‰gÜ%ÇeÜ%|éýÿÿH‰ßèpmûÿéšÿÿ¶ÛénÇÿÿH|¹E1äE1É1íL‰t$L‹4$H‰$Ü%H‹¼$ ÇÜ%¢H‹œ$€ÇÜ%‡HÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇ$ÆD$xé’qÿÿH»¸E1äE1É1íL‰t$L‹4$H‰cÛ%H‹¼$ H‹œ$€HÇ$ÇMÛ%èÇ?Û%s#éBqÿÿHk¸L‹d$E1ÉÇ%Û%™H‰Û%ÇÛ%HÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$L‰t$H‹œ$€L‹4$ÆD$xHÇ$é¡pÿÿH‰L$èHnûÿH‰ßè0ÝûÿH‹L$H…ÀH‰D$…÷®ÿÿH–·E1äL‰t$H‹¼$ L‹4$E1ÉH‰8Ú%Ç:Ú%™H‹œ$€Ç$Ú%HÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇ$ÆD$xé·oÿÿèÂjûÿé`mÿÿH‰ïèµjûÿéê†ÿÿ¶Ûé׆ÿÿ1íéÿÿÿHº¶E1äE1É1íL‰t$L‹4$H‰bÙ%H‹¼$ Ç\Ù%¢H‹œ$€ÇFÙ%ŠHÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇ$ÆD$xéÙnÿÿ1íéÕiÿÿHûµE1É1íǸØ%¢H‰¥Ø%Ç£Ø%˜HÇD$pHÇD$8HÇD$Xé$ÉÿÿH´µE1É1íH‰\$(L‰t$L‹4$H‰ZØ%H‹¼$ ÇTØ%—H‹œ$€Ç>Ø%âHÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇ$ÆD$xéãmÿÿH‰ÏèëhûÿéلÿÿH‹„$HƒH‰ÅHƒ)tÞ1ÛH;¬$”Ãéî„ÿÿE¶ÿér ÿÿH‰ÏH‰L$è9jûÿf.1ÝH‹L$zt²H‹‰Š#HƒH‰Åë±èƒhûÿé1Ÿÿÿèyhûÿé4•ÿÿH‹5ýÇ%H‹=žÕ%1ÒèOnûÿH‰D$H…À„=:H‹\$H‰ßèäküÿH‹H‰D$HƒèH‰„i*HH´L‰t$1É1íL‹4$ÆD$xE1äE1ÉH‰éÖ%H‹¼$ H‹œ$€ÇÛÖ%£ÇÍÖ%¬HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$é\lÿÿèggûÿéò•ÿÿè]gûÿé•ÿÿL‰çèPgûÿéAjÿÿHd³E1äE1É1íL‰t$L‹4$H‰Ö%H‹¼$ ÇÖ%¢H‹œ$€ÇðÕ%›HÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇ$ÆD$xézkÿÿH£²E1ÉÇbÕ%™H‰OÕ%ÇMÕ%HÇD$pHÇD$8HÇD$XéÎÅÿÿL‰ÿè=fûÿéæ”ÿÿL‰ÿè0fûÿ郔ÿÿH‰ïè#fûÿéH”ÿÿL‰çèfûÿéϓÿÿH‰ßè	fûÿé{“ÿÿH²H‰\$(E1ÉH‹¼$ L‰t$L‹4$H‰½Ô%H‹œ$€Ç·Ô%—Ç©Ô%êÆD$xHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@éNjÿÿH‰L$èhûÿH‰ïèìÖûÿH‹L$H…ÀH‰D$@H‰„$ …°~ÿÿHJ±E1É1íÇÔ%—H‰ôÓ%ÇòÓ%åHÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hH‰\$(éóøÿÿè³dûÿé°àÿÿèYgûÿH‰ßèAÖûÿI‰ÄH…À…\eÿÿH®°1ÉE1É1íH‰`Ó%H‹D$xH‹¼$ ÆD$xÇPÓ%„H‹œ$€Ç:Ó%¯HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$H‰D$é»hÿÿH‹5|Ã%H‹=õÐ%1Òè¦iûÿH‰D$H‰„$¨H…À„EH‹|$è6güÿH‹¼$¨Hƒ/„B/H¯1ÉE1äE1ÉH‰NÒ%H‹D$x1íH‹¼$ H‹œ$€HDŽ$¨Ç-Ò%ƒÇÒ%H‰D$ÆD$xHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$é›gÿÿHĮdžÑ%„H‰sÑ%ÇqÑ%±éòÿÿL‰t$E1äL‹4$E1ÉHŽ®ÆD$x1íH‹¼$ H‰8Ñ%H‹œ$€Ç2Ñ%¢Ç$Ñ%HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$é³fÿÿHܭL‹4$E1ä1íH‰ŒÐ%H‹•ƒ#E1ÉH‹¼$ H‹œ$€ÇtÐ%åÇfÐ%X#HÇ$H‰D$é\fÿÿH‰Ïèdaûÿé˜ÿÿH‰L$èUaûÿH‹L$é֗ÿÿL‰çH‰L$è>aûÿH‹L$é}—ÿÿH‰ßH‰L$è'aûÿH‹L$é2—ÿÿèaûÿéyÐÿÿH,­L‹4$E1ä1íH‰ÜÏ%H‹å‚#E1ÉH‹¼$ HÇ$H‹œ$€H‰D$Ç·Ï%åÇ©Ï%J#é¬eÿÿH‹5eÀ%H‹=æÍ%1Òè—fûÿH‰D$H‰„$¨H…À„„]H‹|$è'düÿH‹¼$¨Hƒ/„^]Hެ1ÉE1äE1ÉH‰?Ï%H‹D$x1íH‹¼$ H‹œ$€HDŽ$¨ÇÏ%…ÇÏ%×H‰D$ÆD$xHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$éŒdÿÿL‰çH‰L$è_ûÿH‹L$éJ¹ÿÿH‰ßè}_ûÿé#»ÿÿès_ûÿéçºÿÿL‰çèf_ûÿégºÿÿH‰ïèY_ûÿéeºÿÿH‰ÏèL_ûÿé\¹ÿÿH‰D$è=_ûÿH‹L$éá¸ÿÿH‹l$1ÉE1ÉÆD$xH=«H‹¼$ Ç÷Í%wH‰äÍ%H‹œ$€ÇÚÍ%°HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$é`cÿÿèk^ûÿ鯺ÿÿH‹D$L‰t$HÇD$8H‰D$(HÇD$ HÇD$HÇD$hHÇD$@HÇD$HHÇD$PHÇD$0HÇD$`éQ¼ÿÿHª1ÉE1É1íH‰ÌÌ%H‹¼$ ÇÆÌ%wH‹œ$€Ç°Ì%¸HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$ÆD$xé:bÿÿHc©E1É1íL‰t$H‰\$(L‹4$H‰	Ì%H‹¼$ ÇÌ%—H‹œ$€ÇíË%ìHÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇ$ÆD$xé’aÿÿH‰Ïèš\ûÿé¶ÿÿH‰ïL‰Œ$H‰D$è€\ûÿL‹Œ$H‹L$é€Úÿÿèi\ûÿéÿãÿÿH}¨Ç?Ë%„H‰,Ë%Ç*Ë%ÅéÉëÿÿH‰ßè5\ûÿé+¸ÿÿèÛ^ûÿH‰ßèÃÍûÿH‰D$H…À…3‘ÿÿH.¨1ÉE1äE1ÉL‰t$L‹4$H‰l$1íH‹¼$ H‰ÇÊ%H‹œ$€ÇÁÊ%¦Ç³Ê%ãHÇD$pHÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇ$ÆD$xéO`ÿÿHx§1ÉE1äE1ÉL‰t$L‹4$H‰ Ê%H‹œ$€ÇÊ%¥ÇÊ%ÖHÇD$pHÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇ$ÆD$xéŸ_ÿÿHȦH‹L$E1ÉÇ‚É%¦H‰oÉ%ÇmÉ%åHÇD$pHÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$L‰t$H‹œ$€H‰l$L‹4$1íHÇ$ÆD$xé_ÿÿH¦E1äE1ÉL‰t$H‰l$L‹4$1íH‰½È%H‹¼$ Ç·È%¦H‹œ$€Ç¡È%èHÇD$pHÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇ$ÆD$xé4^ÿÿH]¥1ÉE1É1íH‰È%H‹D$xH‹¼$ ÆD$xÇÿÇ%„H‹œ$€ÇéÇ%´HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$H‰D$éj]ÿÿ1íéZÿÿHŒ¤ÇNÇ%„H‰;Ç%Ç9Ç%·éØçÿÿHe¤H‰\$(H‹¼$ E1ÉL‰t$L‹4$H‰Ç%H‹œ$€ÇÿÆ%—ÇñÆ%çHÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇ$ÆD$xé–\ÿÿH‰ïH‰D$è™WûÿH‹L$étÿÿL‰ÏH‰L$è‚WûÿH‹L$é{tÿÿH‘£1ÉE1äE1ÉH‰BÆ%H‹D$x1íH‹¼$ H‹œ$€Ç-Æ%„ÇÆ%ÈH‰D$ÆD$xHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$é›[ÿÿè¦Vûÿé_ÙÿÿèœVûÿé}±ÿÿL9àtH‰ßèj^ûÿ…À„U7è}_ûÿH…À„”7Hƒ+uH‰ßèfVûÿèa_ûÿHÇD$ ÿÿÿÿH…À„¯ÿÿHh¢L‰t$1É1íL‹4$ÆD$xE1äE1ÉH‰	Å%H‹¼$ H‹œ$€ÇûÄ%¶ÇíÄ%l HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$é|ZÿÿL9àtH‰ßè_]ûÿ…À„È5èr^ûÿH…À„6Hƒ+uH‰ßè[UûÿèV^ûÿHÇD$ÿÿÿÿH…À„.®ÿÿH]¡L‰t$1É1íL‹4$ÆD$xE1äE1ÉH‰þÃ%H‹¼$ H‹œ$€ÇðÃ%·ÇâÃ%v HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$éqYÿÿH‹L$E1É1íÆD$xH‹ H‹¼$ ÇEÃ%wH‰2Ã%H‹œ$€Ç(Ã%µHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$é·XÿÿèrVûÿH‰ßèZÅûÿH‰D$H…À…ªÿÿHş1ÉE1É1íH‰wÂ%H‹¼$ ÇqÂ%wH‹œ$€Ç[Â%³HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$ÆD$xéåWÿÿèðRûÿéŠÿÿL‰çèãRûÿéõ®ÿÿè‰UûÿH‰ßèqÄûÿH‰D$H…À…b~ÿÿHܞ1ÉE1äE1ÉH‹¼$ 1íH‰ƒÁ%Ç…Á%wH‹œ$€ÇoÁ%®HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$ÆD$xéùVÿÿH"ž1ÉE1É1íH‰ÔÀ%ÇÖÀ%¥ÇÈÀ%ÈHÇD$pHÇD$XéR±ÿÿL‰çèÁQûÿ郉ÿÿ¶Û饊ÿÿH‹l$L‰t$01ÉE1ÉL‹´$˜L‹|$pL‰l$8H¬L‹l$H‰\$`L‰t$L‹4$H‰l$1íH‹¼$ H‰CÀ%H‹œ$€Ç=À%¨Ç/À%!HÇD$pHÇD$XHÇD$(HÇD$ HÇ$ÆD$xéVÿÿH*E1äE1ÉL‰t$H‰ؿ%L‹4$H‹¼$ HÇ$Çƿ%ëH‹œ$€Ç°¿%œ#é³UÿÿHܜ1ÉE1äE1ÉL‰t$L‹4$H‰„¿%H‹¼$ H‹œ$€HÇ$Çn¿%ëÇ`¿%Ÿ#écUÿÿH‰ßèkPûÿéûˆÿÿHœ1ÉE1äE1ÉL‰t$L‹4$H‰l$1íH‹¼$ H‰¿%H‹œ$€Ç¿%§Ç¿%HÇD$pHÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$(HÇD$ HÇD$HÇ$ÆD$xé©TÿÿHқL‰t$1É1íL‹4$E1ÉH‰{¾%H‹¼$ ÆD$xÇp¾%ÅH‹œ$€ÇZ¾%L!HÇD$pHÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$ HÇD$HÇ$éûSÿÿH$›E1äE1ÉL‰t$H‰l$L‹4$1íH‰ǽ%H‹¼$ Ç}%¦H‹œ$€Ç«½%öHÇD$pHÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$(HÇD$ HÇD$HÇ$ÆD$xéGSÿÿL‰ÏèONûÿéÔÎÿÿHcšL‰t$1É1íL‹4$E1äH‰½%H‹¼$ H‹œ$€Çþ¼%÷Çð¼%$HÇ$éëRÿÿ1íézÿÿH
šÇϼ%ÁH‰¼¼%Ǻ¼%à H‹¼$ÈHƒ/„gL‰t$1ÉL‹4$E1ÉH‹¼$ H‹œ$€1íHDŽ$ÈÆD$xHÇD$pHÇD$8HÇ$HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$ HÇD$éRÿÿHA™L‰t$1É1íL‹4$E1äE1ÉÆD$xH‰â»%H‹¼$ Çܻ%ÁH‹œ$€Çƻ%1!HÇD$pHÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$ HÇ$épQÿÿH™˜Ç[»%ÁH‰H»%ÇF»%î é‡þÿÿèTLûÿéþÿÿHh˜L‰t$H‹¼$ E1ÉH‰l$L‹4$H‹l$ÆD$xH‰þº%H‹œ$€Çøº%¦Çêº%ñHÇD$pHÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇ$é‚PÿÿH‰L$è8NûÿH‰ßè ½ûÿH‹L$H…ÀH‰D$…AÿÿH†—E1äE1ÉL‰t$H‰l$L‹4$1íH‰)º%H‹¼$ Ç#º%¦H‹œ$€Ç
º%ïHÇD$pHÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇ$ÆD$xé©OÿÿH‰Ïè±Jûÿé¼ÿÿH‰D$è¢JûÿH‹L$é¾ÿÿò\ÁòH,ÐHºú?ég½ÿÿè€Jûÿé½ÿÿH‰ÏèsJûÿéú¼ÿÿL‰çH‰L$èaJûÿH‹L$éټÿÿH‰ïH‰L$èJJûÿH‹L$錼ÿÿH‰L$è6JûÿH‹L$é8¼ÿÿHE–E1ÉL‰t$H‹¼$ L‹4$1íH‰è¸%Çê¸%½H‹œ$€ÇԸ%µ HÇD$pHÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇ$ÆD$xégNÿÿH•L‰t$E1äL‹4$H‰=¸%H‹¼$ HÇ$H‹œ$€Ç'¸%÷Ǹ%ë#éNÿÿHE•1ÉE1äL‰t$H‰ô·%L‹4$H‹¼$ HÇ$Çâ·%÷H‹œ$€Ç̷%é#éÏMÿÿHø”L‰t$1É1íL‹4$E1äH‰¡·%H‹¼$ HÇ$Ç“·%÷H‹œ$€Ç}·%ç#é€MÿÿH©”L‰t$H‹¼$ L‹4$H‰Q·%HÇ$H‹œ$€ÇC·%÷Ç5·%õ#é8MÿÿHa”L‰t$H‹¼$ L‹4$H‰	·%HÇ$H‹œ$€Çû¶%÷Çí¶%ó#éðLÿÿH”L‰t$E1äL‹4$H‰ƶ%H‹¼$ HÇ$H‹œ$€Ç°¶%÷Ç¢¶%î#é¥LÿÿL‰L$è«GûÿL‹L$é[ÇÿÿH‰ïL‰L$è”GûÿL‹L$é2ÇÿÿH‰ÏL‰L$è}GûÿL‹L$éÇÿÿL‰Œ$H‰L$èaGûÿL‹Œ$H‹L$阯ÿÿHh“L‰t$E1äL‹4$H‰¶%H‹¼$ H‹œ$€HÇ$Çÿµ%÷Çñµ%ú#éôKÿÿL‰çL‰Œ$H‰L$èïFûÿL‹Œ$H‹L$éÖÅÿÿHö’1ÉǶµ%wH‹¼$ H‰›µ%E1ÉH‹œ$€Ç޵%ÊHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$ÆD$xéKÿÿHA’E1äE1É1íL‰t$L‹4$H‰é´%H‹¼$ Çã´%ÈH‹œ$€Çʹ%s!HÇD$pHÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇ$ÆD$xé`JÿÿH‰‘E1äE1É1íL‰t$L‹4$H‰1´%H‹¼$ Ç+´%½H‹œ$€Ç´%³ HÇD$pHÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇ$ÆD$xé¨IÿÿHѐ1ÉE1É1íH‰ƒ³%Ç…³%½Çw³%± HÇD$pHÇD$8é¤ÿÿèsDûÿéð ÿÿL‰t$E1äL‹4$E1ÉHxÆD$x1íH‹¼$ H‰"³%H‹œ$€Ç³%½Ç³%» HÇD$pHÇD$8HÇ$HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$é¦HÿÿHϏL‰t$1É1íL‹4$E1äE1ÉÆD$xH‰p²%H‹¼$ Çj²%ÁH‹œ$€ÇT²%Þ HÇD$pHÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$ HÇ$éþGÿÿH'L‰t$1É1íL‹4$E1äE1ÉÆD$xH‰ȱ%H‹¼$ Ç±%¿H‹œ$€Ç¬±%È HÇD$pHÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$ HÇD$HÇ$éMGÿÿHvŽE1ÉL‰t$H‹¼$ L‹4$1íH‰±%DZ%½H‹œ$€Ç±%¸ HÇD$pHÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇ$ÆD$xé˜FÿÿH‰ßè AûÿécžÿÿL‰çè“Aûÿé3žÿÿH§1ÉE1É1íH‰Y°%H‹D$xH‹¼$ ÆD$xÇI°%†H‹œ$€Ç3°%ëHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$H‰D$é´EÿÿH݌1ÉE1äE1ÉH‰ޝ%H‹D$x1íH‹¼$ ÆD$xÇ|¯%†H‹œ$€Çf¯%éHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$H‰D$éðDÿÿH‹l$L‰t$01ÉE1ÉL‹´$˜L‹|$pL‰l$8Hø‹L‹l$H‰\$`L‰t$L‹4$H‰l$1íH‹¼$ H‰®%H‹œ$€Ç‰®%¨Ç{®%"ÆD$xHÇD$pHÇ$HÇD$XHÇD$(HÇD$ éMDÿÿL‰çèU?ûÿéLxÿÿH‹l$L‰t$01ÉE1äL‹´$˜H‰D$ E1ÉHJ‹L‹|$pL‰l$8H‰\$`L‹l$L‰t$L‹4$H‰l$1íH‹¼$ H‰׭%H‹œ$€Çѭ%©Çí%-HÇD$pHÇD$XHÇD$(HÇ$ÆD$xéžCÿÿè©>ûÿé}xÿÿèŸ>ûÿéÒxÿÿH³ŠÇu­%ŸH‰b­%Ç`­%déڝÿÿHŒŠ1ÉE1äE1ÉL‰t$L‹4$H‰l$1íH‹¼$ H‰%­%H‹œ$€Ç­%§Ç­%HÇD$pHÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$(HÇD$ HÇ$ÆD$xé¶BÿÿH‹|$è¼=ûÿéˆÕÿÿè²=ûÿéýuÿÿè¨=ûÿévÿÿ1íékÿÿHDŽ$ H©‰L‰t$1É1íL‹4$ÆD$xE1ÉH‰M¬%H‹¼$ H‹œ$€Ç?¬%ÅÇ1¬%I!HÇD$pHÇD$8HÇ$HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$ HÇD$éÒAÿÿHûˆL‰t$1É1íL‹4$E1ÉH‰¤«%H‹¼$ ÆD$xÇ™«%ÅH‹œ$€Çƒ«%G!HÇD$pHÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$ HÇD$HÇ$é$AÿÿHMˆ1ÉÇ
«%wH‹¼$ H‰òª%E1ÉH‹œ$€Çåª%ÇHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xéf@ÿÿH‰Ïèn;ûÿéžXÿÿH‚‡L‰t$E1äL‹4$H‰/ª%H‹¼$ H‹œ$€HÇ$Ǫ%ñǪ%µ#é@ÿÿH‹—]#H5/‰H‹8èx?ûÿéآÿÿèþ:ûÿ鳻ÿÿèô:ûÿ鋻ÿÿL‰Ïèç:ûÿénXÿÿH‰ïèÚ:ûÿéXÿÿHî†Ç°©%~H‰©%Ç›©%3éd¦ÿÿHdžE1äE1ÉL‰t$H‰u©%L‹4$H‹¼$ HÇ$Çc©%ñH‹œ$€ÇM©%®#éP?ÿÿHy†L‰t$E1äL‹4$H‰&©%H‹¼$ HÇ$H‹œ$€Ç©%ñÇ©%³#é?ÿÿH.†E1äE1ÉL‰t$H‰ܨ%L‹4$H‹¼$ HÇ$Çʨ%ñH‹œ$€Ç´¨%±#é·>ÿÿHà…E1äE1ÉL‰t$H‰l$L‹4$1íH‰ƒ¨%H‹¼$ Ç}¨%¦H‹œ$€Çg¨%íHÇD$pHÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇ$ÆD$xé>ÿÿH,…1ÉE1äE1ÉL‰t$L‹4$H‰ԧ%H‹¼$ HÇ$H‹œ$€Ç¾§%ñǰ§%¬#é³=ÿÿH܄1ÉE1äE1ÉH‰§%H‹D$x1íH‹¼$ ÆD$xÇ{§%€H‹œ$€Çe§%XHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$H‰D$éï<ÿÿH„1ÉM‰üE1ÉH‰ɦ%H‹¼$ Çæ%wH‹œ$€Ç­¦%ßHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ÆD$xé.<ÿÿHWƒM‰ü1ÉE1ÉH‰¦%H‹¼$ H‹œ$€ÆD$xÇõ¥%wÇç¥%àHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$ém;ÿÿH–‚1ÉE1É1íH‰H¥%ÇJ¥%wÇ<¥%ÚHÇD$pHÇD$8逰ÿÿHV‚E1äE1É1íL‰t$L‹4$H‰þ¤%H‹¼$ HÇ$H‹œ$€Çè¤%ëÇڤ%š#éÝ:ÿÿH‚1ÉE1É1íH‰¸¤%H‹D$xH‹¼$ H‹œ$€Ç¥¤%†Ç—¤%íH‰D$ÆD$xHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇD$é:ÿÿH<L‰t$E1ÉL‹4$H‰l$1íH‹¼$ H‰ڣ%H‹œ$€Çԣ%¦Çƣ%ôÆD$xHÇD$pHÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$éY9ÿÿH‚€ÇD£%œH‰1£%Ç/£%B驓ÿÿè=4ûÿé´ÐÿÿHƒÏÿèO=ûÿI‰ÇH…Àt%H‰ÆH‰ßè|5ûÿIƒ/I‰Ä…‘nÿÿL‰ÿè4ûÿé„nÿÿH‹l$L‰t$01ÉE1äL‹´$˜H€L‹|$pL‰l$8H‰\$L‹l$E1ÉL‰t$L‹4$H‰l$1íH‹¼$ H‰Ž¢%H‹œ$€Çˆ¢%­Çz¢%ÆD$xHÇD$pHÇ$HÇD$XHÇD$(HÇD$ éL8ÿÿL‰çèT3ûÿénÿÿH‰D$ L‹|$p1ÉE1ÉHYH‰\$H‹l$H‰¢%Ç
¢%­Çü¡%‘HÇD$pHÇD$XL‰t$0L‹´$˜L‰l$8L‹l$L‰t$H‹œ$€H‰l$L‹4$1íHÇD$(HÇ$ÆD$xé·7ÿÿH‹l$L‰t$01ÉE1ÉL‹´$˜L‹|$pH‰D$ H°~L‰l$8L‹l$L‰t$L‹4$H‰l$1íH‹¼$ H‰G¡%H‹œ$€ÇA¡%®Ç3¡%¥HÇD$pHÇD$XHÇD$(HÇ$ÆD$xé7ÿÿH‹l$L‰t$01ÉE1ÉL‹´$˜L‹|$pH~L‰l$8H‰Ϡ%L‹l$L‰t$H‹¼$ H‰l$L‹4$1íÇ´ %®H‹œ$€Çž % HÇD$pHÇD$XHÇD$(HÇD$ HÇ$ÆD$xép6ÿÿH‰D$ L‹|$p1ÉE1ÉHŠ}L‰t$0H‹l$H‰9 %L‹´$˜Ç3 %®Ç% %žHÇD$pHÇD$XL‰l$8L‹l$HÇD$(éèÖÿÿH‰ßè1ûÿéÏkÿÿH‰éH‹l$L‰ûH‰D$ L‹|$pL‰l$8E1äE1ÉL‹´$˜L‹l$Hò|H‰\$0H‰l$1íH‹¼$ L‰t$L‹4$H‰ŽŸ%H‹œ$€ÇˆŸ%¯ÇzŸ%¹HÇD$pHÇD$XHÇD$(HÇ$ÆD$xéU5ÿÿH‹l$L‰ûH‰ÁL‹|$pL‹´$˜L‰l$8E1äE1ÉH[|L‹l$H‰\$0L‰t$L‹4$H‰l$1íH‹¼$ H‰òž%H‹œ$€Çìž%¯Çޞ%·HÇD$pHÇD$XHÇD$(HÇD$ HÇ$ÆD$xé°4ÿÿè»/ûÿédkÿÿH‰Ïè®/ûÿémÿÿL‰çè¡/ûÿé8kÿÿè—/ûÿékÿÿH‹l$L‰t$01ÉE1ÉL‹´$˜L‹|$pH‰D$XHŠ{L‰l$8L‹l$L‰t$L‹4$H‰l$1íH‹¼$ H‰!ž%H‹œ$€Çž%®Ç
ž%¨HÇD$pHÇD$(HÇD$ HÇ$ÆD$xéè3ÿÿH‹l$L‰t$01ÉE1ÉL‹´$˜L‹|$pHõzL‰l$8H‰©%L‹l$L‰t$H‹¼$ H‰l$L‹4$1íH‹œ$€ÆD$xǁ%®Çs%§HÇD$pHÇ$HÇD$XHÇD$(HÇD$ éJ3ÿÿL‹%‹O#L9àtH‹<$è%6ûÿ…À„·
è87ûÿH…À…É×ÿÿH‹¸N#H5þ{H‹8è‰2ûÿé®×ÿÿH-zL‰t$1É1íL‹4$E1äE1ÉÆD$xH‰Μ%H‹¼$ ÇȜ%£H‹œ$€Ç²œ%¨HÇD$pHÇD$8HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇ$éJ2ÿÿH‹l$L‰t$01ÉE1ÉL‹´$˜L‹|$pL‰l$8HRyL‹l$H‰\$`L‰t$L‹4$H‰l$1íH‹œ$€H‰é›%Çë›%©Çݛ%CHÇD$pHÇD$XHÇD$(HÇD$ HÇ$ÆD$xéÎ1ÿÿL‰çè·,ûÿé<fÿÿè­,ûÿéilÿÿHÁxL‰t$H‹¼$ 1íL‹4$ÆD$xH‰b›%H‹œ$€Ç\›%ÎÇN›%ê!HÇD$pHÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$ HÇD$HÇ$éï0ÿÿL‹d$é@ÿÿèð+ûÿéiÿÿH‰Ïèã+ûÿéYiÿÿL‰àH!ØHTÅHƒ:ÿtHƒÀH!ØHTÅHƒ:ÿuîL‰"M‰eé¤ÿÿHƒ¿„p¢ÿÿH‹ºL#H5ãH‹8èû/ûÿH…Ût
Hƒ+„ËHDŽ$€HDŽ$ˆéN¢ÿÿƒ¼$`M‰õM‰Î…TH‹|$èq/ûÿH‹¼$ÈH…ÿ„*H‹5±Š%1Òè1ûÿH‹¼$ÈH‰„$ÀHƒ/„øH‹„$ÀHDŽ$ÈH‰D$H…À„<H‹\$H‹H‰D$HƒèH‰„H‹D$(HDŽ$ÀH‰D$éy‡ÿÿH‰ßè©*ûÿé(ÿÿÿH‰Ïèœ*ûÿéa¢ÿÿH°vÇr™%ÏH‰_™%Ç]™%"H‹¼$ÈHƒ/„¥L‰t$E1äL‹4$E1ÉHDŽ$È1íH‹¼$ H‹œ$€HÇD$8HÇ$HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$ HÇD$éÈ.ÿÿH‰ïèÐ)ûÿ頡ÿÿH‰ßèÃ)ûÿéòþÿÿH‰L$è´)ûÿH‹L$éGÿÿÿHÃuL‰t$1É1íL‹4$E1äE1ÉH‰i˜%H‹¼$ Çc˜%ÏÇU˜%ý"H‹œ$€HÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$ HÇ$é.ÿÿè)ûÿéþýÿÿH‹D$(H‰D$鿅ÿÿH‹L$@H‹t$ ºH‹|$0èþ—ûÿéŽýÿÿH‹òI#H5KH‹8è3-ûÿé3ýÿÿH‹‡H…À…XŸÿÿé]ŸÿÿH
®sHíxIƒùL‹…%H‰ÎHGðHƒúHOÈPH‹™I#VH5qH‹81Àè'1ûÿZYéÕüÿÿ1ÛH‹wI#ºH5[ŒH‹81Àè1ûÿH„$PI‰Äé¦üÿÿH‹µhH=“„%è‰ûÿ…À„Kÿÿ‹Mtƒùu®H„$PH‰ï1ÛI‰ÄéTžÿÿH‹I#H5xH‹8èS,ûÿéSüÿÿH‹÷H#1ÒH5ŽŒH‹81Àè„0ûÿé4üÿÿH¼$P¹4H‹t$H‰¬$€I‰üó¥陞ÿÿH‰Ïè“'ûÿéœÿÿL‰ÏH‰L$è'ûÿH‹L$é^œÿÿHsL‰t$H‹¼$ E1äL‹4$ÆD$xH‰0–%H‹œ$€Ç*–%ÎÇ–%ø!HÇD$pHÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$ HÇD$HÇ$é½+ÿÿHærǨ•%ÏH‰••%Ç“•%
"é1üÿÿH¿rL‰t$1É1íL‹4$E1äE1ÉH‰e•%H‹¼$ Ç_•%ÏÇQ•%"H‹œ$€HÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$ HÇ$éü*ÿÿH‰ïè&ûÿé-ÿÿHrE1äL‰t$H‹¼$ L‹4$E1ÉH‰º”%Ǽ”%ÎH‹œ$€Ç¦”%ý!HÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$ HÇD$HÇ$ÆD$xéK*ÿÿL‰çèS%ûÿébÿÿH‰ïèF%ûÿéèaÿÿè<%ûÿéÇaÿÿL‰ûH‰D$ H‰éL‹|$pH@qL‰l$8H‹l$E1ÉL‹l$H‰\$0L‹´$˜H‰ړ%Çܓ%¯ÇΓ%ÄHÇD$pHÇD$XéäñÿÿH‰éH‹l$L‰ûL‰l$8L‹´$˜HÐpL‹|$pH‰\$0L‹l$ÆD$xE1ÉL‰t$L‹4$H‰l$1íH‹¼$ H‰Z“%H‹œ$€ÇT“%¯ÇF“%ÃHÇD$pHÇ$HÇD$XHÇD$(HÇD$ é)ÿÿH‰éH‹l$L‰ûL‰l$8L‹´$˜H.pL‹|$pE1ÉL‹l$H‰\$0L‰t$L‹4$H‰l$1íH‹¼$ H‰½’%H‹œ$€Ç·’%¯Ç©’%ÁHÇD$pHÇD$XHÇD$(HÇD$ HÇ$ÆD$xé{(ÿÿH‹l$L‰ûH‰ÁL‹|$pL‹´$˜L‰l$8E1äE1ÉHoL‹l$H‰\$0L‰t$L‹4$H‰l$1íH‹¼$ H‰’%H‹œ$€Ç’%¯Ç’%¼HÇD$pHÇD$XHÇD$(HÇD$ HÇ$ÆD$xéÖ'ÿÿH‰ïèÞ"ûÿéå^ÿÿH‹l$L‰t$01ÉE1ÉL‹´$˜L‹|$pHÖnL‰l$8H‰Š‘%L‹l$L‰t$H‹¼$ H‰l$L‹4$1íH‹œ$€ÆD$xÇb‘%«ÇT‘%^HÇD$pHÇ$HÇD$XHÇD$(HÇD$ é+'ÿÿH‰ßè3"ûÿéˆ[ÿÿL‰çè&"ûÿéX[ÿÿH‹l$L‰t$01ÉE1äL‹´$˜H#nE1ÉL‹|$pL‰l$8L‹l$L‰t$L‹4$H‰l$1íH‹¼$ H‰²%H‹œ$€Ç¬%«Çž%\ÆD$xHÇD$pHÇ$HÇD$XHÇD$(HÇD$ ép&ÿÿH™mL‰t$1É1íH‰I%E1äE1ÉH‹D$L‹4$H‹¼$ Ç4%áH‰D$(H‹œ$€Ç% #HÇD$8HÇ$HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$ HÇD$éÃ%ÿÿI‰Äé¼ÿÿL‹%üA#L9àtL‰ïè—(ûÿ…À„•èª)ûÿH…À…FËÿÿH‹*A#H5pnH‹8èû$ûÿé+ËÿÿH‹<$è=$ûÿH‰ÃH…À„4òÿÿH‹-ÚA#H9hu5H‹Cö€³„¼ÉÿÿH‰ßè+ ûÿH‰D$ Hƒ+…ðxÿÿH‰ßè4 ûÿéãxÿÿH‰ÇèGÅûÿH‰ÃH…Àu»é´ÉÿÿL‰ïèÒ#ûÿH‰ÃH…À„WÿÿÿH‹-oA#H9hu5H‹Cö€³„\ÊÿÿH‰ßèÀûÿH‰D$Hƒ+…¯xÿÿH‰ßèÉûÿé¢xÿÿH‰ÇèÜÄûÿH‰ÃH…Àu»éTÊÿÿH‰ßèg#ûÿI‰ÄH…À„$ÊÿÿH9huSI‹D$L‰çö€³t6è_ûÿH‰D$Iƒ,$u˜L‰çèkûÿëŽH‹ò?#H58mH‹8èÃ#ûÿéåÉÿÿè	MüÿH‰D$ëÈH‰ÇèZÄûÿI‰ÄH…ÀuéÄÉÿÿH‰ßèå"ûÿI‰ÄH…À„—ÈÿÿH9huZI‹D$L‰çö€³t=èÝûÿH‰D$ Iƒ,$…§þÿÿL‰çèåûÿéšþÿÿH‹i?#H5¯lH‹8è:#ûÿéQÈÿÿè€LüÿH‰D$ ëÁH‰ÇèÑÃûÿI‰ÄH…Àu–é0ÈÿÿH‹l$éC3ÿÿH³j1ÉE1äE1ÉH‰d%H‹D$x1íH‹¼$ ÆD$xÇR%ƒH‹œ$€Ç<%™HÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$H‰D$éÆ"ÿÿH‹|$èÌûÿé!ÿÿHài1ÉE1äE1ÉH‹¼$ 1íH‰‡Œ%ljŒ%‡H‹œ$€ÇsŒ%øHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$ÆD$xéý!ÿÿH‰L$èûÿH‹L$é2‘ÿÿHiE1ÉL‰t$H‹¼$ L‹4$1íH‰µ‹%Ç·‹%ÎH‹œ$€Ç¡‹%Ä!HÇD$pHÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$ HÇ$ÆD$xéF!ÿÿHohE1ÉL‰t$H‹¼$ L‹4$1íH‰‹%Ç‹%ÎH‹œ$€ÇþŠ%Â!HÇD$pHÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$ HÇ$ÆD$xé£ ÿÿHÌgE1ÉL‰t$H‹¼$ L‹4$1íH‰oŠ%ÇqŠ%ÎH‹œ$€Ç[Š%À!HÇD$pHÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$ HÇD$HÇ$ÆD$xé÷ÿÿH gL‰t$E1ÉL‹4$H‰͉%H‹¼$ HÇ$H‹œ$€Ç·‰%ñÇ©‰%·#é¬ÿÿHÕfL‰t$1É1íL‹4$L‰$$E1äH‰z‰%H‹¼$ Çt‰%òH‹œ$€Ç^‰%Ç#éaÿÿHŠfL‰t$1É1íL‹4$L‰$$E1äH‰/‰%H‹¼$ Ç)‰%òH‹œ$€Ç‰%Å#éÿÿI‰ÄéÃÿÿH‹l$L‰úH‰D$(1ÉL‹´$˜H fE1ÉL‹|$pL‰l$8L‹l$L‰t$L‹4$H‰l$1íH‹¼$ H‰¯ˆ%H‹œ$€Ç©ˆ%¯Ç›ˆ%ÞHÇD$pH‰T$0HÇD$XHÇD$ HÇ$évÿÿH‹l$L‰ûL‰l$81ÉL‹´$˜HˆeL‹|$pE1ÉL‹l$H‰\$0L‰t$L‹4$H‰l$1íH‹¼$ H‰ˆ%H‹œ$€Çˆ%¯Çˆ%ÜHÇD$pHÇD$XHÇD$(HÇD$ HÇ$éÚÿÿL‰|$XH‹l$L‰l$8L‹|$pL‹l$L‹´$˜»H…Àx1HƒøHiH
¸cHEÊH‰ÂH‹¾9#H5ÿvH‹81ÀèM!ûÿL‰t$1ÉL‹4$E1äH˜dH‰l$E1ÉH‹¼$ H‰A‡%H‹D$X1íH‹œ$€Ç4‡%¯Ç&‡%ÏH‰D$0HÇD$pHÇ$HÇD$XHÇD$(HÇD$ éøÿÿH‹!9#ºH5eoH‹81Àè« ûÿéYÿÿÿè¡ûÿH‰„$¨H…À„†H‹¼$ Hƒ/„jH‹¼$¨HDŽ$ H‹GL‹°èAÿÖI‰ÄH…À„H‹¼$¨AÿÖH‰ÃH…À„îH‹¼$¨Aÿ־H‰ÇèÑ5üÿ…Àˆ,H‹¼$¨Hƒ/„HDŽ$¨ésTÿÿH‹l$L‰t$0H‰ÁE1ÉL‹´$˜L‹|$pL‰l$8H-cL‹l$H‰\$HL‰d$PH‹¼$ E1äL‰t$L‹4$H‰l$1íH‹œ$€H‰´…%Ƕ…%³Ç¨…%G HÇD$pHÇD$XHÇD$(HÇD$ HÇ$ÆD$xézÿÿH‰ïè‚ûÿégUÿÿH‰éL‰t$0H‹l$E1ÉL‹´$˜L‹|$pL‰l$8HtbL‹l$H‰\$HL‰d$PH‹¼$ E1äL‰t$L‹4$H‰l$1íH‹œ$€H‰û„%Çý„%²Çï„%= ÆD$xHÇD$pHÇ$HÇD$XHÇD$(HÇD$ éÁÿÿèÌûÿéQTÿÿH‹l$L‰t$0H‰ÁE1ÉL‹´$˜L‹|$pL‰l$8H¾aL‹l$H‰\$HL‰d$PH‹¼$ E1äL‰t$L‹4$H‰l$1íH‹œ$€H‰E„%ÇG„%²Ç9„%: HÇD$pHÇD$XHÇD$(HÇD$ HÇ$ÆD$xéÿÿH‰D$ L‹|$p1ÉH(aH‰áƒ%H‹l$Çރ%²ÇЃ%8 HÇD$pL‰t$0L‹´$˜L‰l$8L‹l$E1ÉH‰\$HHÇD$XL‰d$PéŒãÿÿL‰ÿè¥ûÿéÕRÿÿH‰ïè˜ûÿé¶RÿÿH‰D$ H§`H‰éL‰úH‰Zƒ%L‹|$pÇWƒ%±H‹l$L‰l$8L‹´$˜Ç7ƒ%+ L‹l$HÇD$pE1ÉH‰\$HL‰d$PH‰T$0HÇD$XéãÿÿH‹l$L‰úH‰ÁL‹|$pL‹´$˜H"`L‰l$8E1ÉL‹l$H‰\$HL‰d$PH‹¼$ E1äL‰t$L‹4$H‰l$1íH‹œ$€H‰¡‚%Ç£‚%±Ç•‚% HÇD$pH‰T$0HÇD$XHÇD$(HÇD$ HÇ$ÆD$xébÿÿèmûÿé=QÿÿH‰ïè`ûÿéQÿÿH‰D$ Ho_H‰éL‰úH‹l$L‰l$8L‹|$pL‹l$H‰‚%L‹´$˜Ç‚%°Çú% éÃþÿÿH‹l$L‰úH‰ÁL‹|$pL‹´$˜H_L‰l$8E1ÉL‹l$H‰\$HL‰d$PH‹¼$ E1äL‰t$L‹4$H‰l$1íH‹œ$€H‰%Ǐ%°Ç% HÇD$pH‰T$0HÇD$XHÇD$(HÇD$ HÇ$ÆD$xéNÿÿL‰ÿ‰D$ èRûÿ‹D$ é QÿÿH‹|$hH‰ÆèûÿéQÿÿè2ûÿéæúÿÿH‹l$L‰úL‰l$8H‰ÙL‹´$˜H.^E1ÉL‹|$pL‹l$H‰T$0L‰t$L‹4$H‰l$1íH‹¼$ H‰½€%H‹œ$€Ç·€%¯Ç©€%ìÆD$xHÇD$pHÇ$HÇD$XHÇD$(HÇD$ é{ÿÿL‰|$XH‹l$»L‰l$8L‹|$pL‹l$L‹´$˜H‹¼$¨Hƒ/„ÍHDŽ$¨貃ûÿ…Àu1HƒûH…aH‰ÚH
5\H5ŠoHEÈH‹72#H‹81ÀèÍûÿH&]1ÉE1ÉL‰t$H‰Õ%H‹D$XH‰l$L‹4$1íH‹¼$ H‰D$0H‹œ$€ÆD$xÇ­%¯ÇŸ%ôHÇD$pHÇ$HÇD$XHÇD$(HÇD$ évÿÿèûÿé)ÿÿÿL‰|$XH‹l$1ÛL‰l$8L‹|$pL‹l$L‹´$˜éïþÿÿèOûÿ錸ÿÿH‹l$L‰ûH‰D$ 1ÉL‹|$pL‰l$8E1äE1ÉL‹´$˜L‹l$H7\H‰\$0H‰l$1íH‹¼$ L‰t$L‹4$H‰Ó~%H‹œ$€ÇÍ~%¯Ç¿~%äHÇD$pHÇD$XHÇD$(HÇ$ÆD$xéšÿÿH‰ïè¢ûÿéÉNÿÿH‰D$ H±[H‰éL‹|$pL‰t$0H‹l$L‰l$8L‹l$L‹´$˜H‰F~%ÇH~%³Ç:~%I HÇD$pé|úÿÿL‰ïè<ûÿévNÿÿHP[1ÉE1äL‰t$H‰ÿ}%L‹4$H‹¼$ HÇ$Çí}%÷H‹œ$€Ç×}%	$éÚÿÿH[L‰t$1ÉL‹4$H‰±}%H‹œ$€Ç«}%÷ǝ}%$HÇ$é·ÿÿHÁZE1ÉL‰t$H‹¼$ L‹4$1íH‰d}%Çf}%ÈH‹œ$€ÇP}%u!HÇD$pHÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇ$ÆD$xéãÿÿHZE1äE1É1íL‰t$L‹4$H‰´|%H‹¼$ Ç®|%ÎH‹œ$€Ç˜|%»!HÇD$pHÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$ HÇD$HÇ$ÆD$xé4ÿÿH]Y1ÉÇ|%ÎH‰
|%Ç|%¹!HÇD$pHÇD$8E1É1íHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@é–lÿÿHÇD$pHÞXH‰—{%Ç™{%ÎÇ‹{%¾!ëŠHºXE1ÉL‰t$H‹¼$ L‹4$1íH‰]{%Ç_{%ÈH‹œ$€ÇI{%†!HÇD$pHÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$ HÇD$HÇ$ÆD$xéåÿÿHXL‰t$E1ÉL‹4$H‰»z%H‹¼$ H‹œ$€ÆD$xǨz%ÈÇšz%„!HÇD$pHÇD$8HÇ$HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$é2ÿÿH[WL‰t$H‹œ$€L‹4$H‰z%Çz%÷Ç÷y%÷#HÇ$éÿÿHWL‰t$H‹¼$ E1ÉL‹4$ÆD$xH‰»y%H‹œ$€Çµy%Èǧy%!HÇD$pHÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇ$é?ÿÿHhVE1ÉL‰t$H‹¼$ L‹4$1íH‰y%Ç
y%ÈH‹œ$€Ç÷x%!HÇD$pHÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇ$ÆD$xé“ÿÿH¼UE1É1íÇyx%ÈH‰fx%Çdx%}!HÇD$pHÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ éXÿÿH6UE1ÉL‰t$H‹¼$ L‹4$1íH‰Ùw%ÇÛw%ÈH‹œ$€ÇÅw%x!HÇD$pHÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$HÇ$ÆD$xéX
ÿÿH‰D$ L‹|$p1ÉE1ÉHrTL‰t$0H‹l$L‰l$8L‹l$L‹´$˜H‰w%Çw%¬Çw%sHÇD$pHÇD$XéãÖÿÿL‰÷èüûÿéÀCÿÿH‹l$L‰t$01ÉE1äL‹´$˜HùSH‰\$(E1ÉL‹|$pL‰l$8L‰t$L‹l$L‹4$H‰l$1íH‰‹v%H‹œ$€Ç…v%¬Çwv%‚HÇD$pHÇD$XHÇD$ HÇ$ÆD$xéRÿÿH‰ÏèZûÿé¸AÿÿHnS1ÉE1É1íH‰ v%Ç"v%ÅÇv%[!HÇD$pHÇD$8HÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@é´ýÿÿH‹l$L‰t$01ÉE1ÉL‹´$˜L‹|$pHÜRL‰l$8H‰u%L‹l$L‰t$H‹¼$ H‰l$L‹4$1íÇuu%ªH‹œ$€Ç_u%PHÇD$pHÇD$XHÇD$(HÇD$ HÇ$ÆD$xé1ÿÿH‹l$L‰t$01ÉE1äL‹´$˜H‰D$ E1ÉH;RL‹|$pL‰l$8L‰t$L‹l$L‹4$H‰l$1íH‰Õt%H‹¼$ ÇÏt%¬H‹œ$€Ç¹t%qHÇD$pHÇD$XHÇD$(HÇ$ÆD$xé”
ÿÿèŸûÿé«?ÿÿH‹l$L‰t$01ÉE1ÉL‹´$˜L‹|$pH—QL‰l$8H‰Kt%L‹l$L‰t$H‹¼$ H‰l$L‹4$1íH‹œ$€ÆD$xÇ#t%ªÇt%QHÇD$pHÇ$HÇD$XHÇD$(HÇD$ éì	ÿÿH‹D$@H‹l$L‰t$0L‰l$8L‹|$pL‹l$L‹´$˜H‰\$`HƒH‰D$(H‰l$HÇD$ éOÿÿH‰D$ H‰éL‹|$pE1ÉH¾PL‰t$0H‹l$L‰l$8L‹l$L‹´$˜H‰\$`H‰Vs%ÇXs%©ÇJs%1HÇD$pHÇD$Xé*ÓÿÿH‹l$L‰t$0H‰ÁE1äL‹´$˜HLPL‹|$pE1ÉL‰l$8L‹l$H‰\$`H‹¼$ L‰t$L‹4$H‰l$1íH‹œ$€H‰Îr%ÇÐr%©ÇÂr%/HÇD$pHÇD$XHÇD$(HÇD$ HÇ$ÆD$xé”ÿÿH½O1ÉE1äL‰t$H‰lr%L‹4$H‹¼$ HÇ$ÇZr%÷H‹œ$€ÇDr%$éGÿÿHpOL‰t$H‹œ$€L‹4$H‰r%Çr%÷Çr%ü#HÇ$é&ÿÿèûÿ阢ÿÿH&O1ÉE1äE1ÉH‰×q%H‹D$x1íH‹¼$ ÆD$xÇÅq%…H‹œ$€Ç¯q%ÓHÇD$pHÇD$8HÇ$HÇD$XHÇD$HHÇD$PHÇD$0HÇD$`HÇD$hHÇD$@HÇD$(HÇD$ HÇD$H‰D$é9ÿÿf„AWI‰ÿAVAUATUH‰õSH‰ÓHƒìHL‹%$#L‹
Ë$#L‹5|b%L‹nHÇD$HÇD$8L‰d$L‰L$ L‰d$(L‰t$0H…Ò…!Iƒý‡gH@^JcªHÐÿà€H‹^HH‰\$8L‹u@L‰t$0L‹E8L‰D$(H‹M0H‰L$ L‹m(L‰l$H‹m H‰l$H…Û„IL9Ë”ÀH;l##”ÂÂuML9ãtHH‰ßH‰L$L‰$è÷ûÿL‹$H‹L$ƒøÿ‰ÃtWHƒìH‰îM‰ñL‰êSL‰ÿèÁõþÿY^HƒÄH[]A\A]A^A_öØëÔM‰àékÿÿÿM‰àL‰ÉM‰åéoÿÿÿfM‰àL‰ÉéYÿÿÿDèë	ûÿL‹$H‹L$H…Àt–HöL¾bdzo%H‰ o%Çžo%béÁH‰ßèûÿI‰ÆH‹5®j%H‰ßIƒîèRûÿL‹
;##H…ÀH‰D$…hL‹mf„M…íHOMH
?MHOÈŸÀH£P¶ÀL
SKLOÊLD€HƒìH‹à #AUHnPH5{OH‹81ÀèÙûÿH2L¾iÇïn%Çán%iH‰Òn%XZH
	LºH=½cèèrûÿHƒÄH1À[]A\A]A^A_ÀIƒý‡FÿÿÿH;\JcªHÐÿàfDH‹FHH‰D$8H‹E@H‰D$0H‹E8H‰D$(H‹E0H‰D$ H‹E(H‰ßH‰D$H‹E H‰D$èÒûÿIƒýL‹
"#I‰Æ‡nHï[JcªHÐÿàfD»éçýÿÿH‹5Wa%H‰ßèßþúÿL‹
È!#H…ÀtH‰D$IƒîM…öŽõH‹5Òa%H‰ßè²þúÿL‹
›!#H…ÀtH‰D$ IƒîM…öŽÈH‹5Åb%H‰ßè…þúÿL‹
n!#H…ÀtH‰D$(IƒîM…öŽ›H‹5h%H‰ßèXþúÿL‹
A!#H…ÀtH‰D$0IƒîM…ö~rH‹5Ï`%H‰ßè/þúÿL‹
!#H…À„„H‰D$8IƒþuyH‹l$L‹l$H‰ÃH‹L$ L‹D$(L‹t$0é²üÿÿH‹F H‰ßH‰D$èûÿL‹
È #I‰ÆM…öÞþÿÿH‹l$H‹\$8L‹l$H‹L$ L‹D$(L‹t$0é_üÿÿf„H…À~ÏHT$L‰éH‰ßL
NH52%è]£ûÿ…Àx*H‹l$H‹\$8L‹l$H‹L$ L‹D$(L‹t$0L‹
D #éüÿÿH¨I¾IÇel%H‰Rl%ÇPl%IésýÿÿH‰øHƒìH‹?ÿPfïÀÁè	ó*ÀóYpºHƒÄÐf.„H‹GH‹?ÿà€H…ö~3ATL$òUH‰ýSH‰ÓDH‹}HƒÃÿUòCøL9ãuë[]A\ÃfDÀH…ö~CATL$²UH‰ýSH‰ÓDH‹}HƒÃÿUfïÀÁè	ó*ÀóYڹóCüL9ãuØ[]A\ÃÀAUL-·}ATL%®…UH-¦SH‰ûHƒì(H‹;ÿSfïÉH‰ÆHÁèHÁîòH*È@¶ÎòAYÌH‰ÊH9D͇H‹;H‹C@„ö„„ƒêòA\ÍòL$HcÒòADÕò\$ò\Ãò$ÿÐòL$òD$f(áfW%ɺf(Äè üúÿò$òYT$ò\$òL$òXÓf/†MÿÿÿHƒÄ(f(Á[]A\A]Ã@ÿÐò
pò\Èf(ÁèÁþúÿò
á¸HƒÄ([]ò\ÈA\A]f(ÁÃfDH…ö~3ATL$òUH‰ýSH‰ÓDH‰ïHƒÃèýúÿòCøL9ãuê[]A\ÃDÀAVI‰þAUL-RpATL%ItUH-AxSHƒìI‹>AÿVfïɉÆÁè	Ñîó*È@¶ÎóAYŒH‰Ê9D‡ˆI‹>I‹F@„ö„ƒêóA\óL$HcÒóAD•ó\$ó\ÃóD$ÿÐóL$‰Ã(éW-¹Áë	(Åè¶ÿúÿfïÒó\$óL$ó*ÓóYš·óYT$óXÓ/†KÿÿÿHƒÄ(Á[]A\A]A^ÀÿÐfïÉóf·Áè	ó*ÈóY
S·ó\Áèªûÿó
J·HƒÄ[]ó\ÈA\A]A^(ÁÃ@f.„H…ö~3ATL$²UH‰ýSH‰ÓDH‰ïHƒÃè|ûÿóCüL9ãuê[]A\ÃDÀH…ö~KATL$òUH‰ýSH‰ÓDH‹}HƒÃÿUò
nò\Èf(Áè¨üúÿfWP¸òCøL9ãuÎ[]A\ÐÃDf.„H…ö~kATL$²UH‰ýSH‰ÓDH‹}HƒÃÿUfïÀò
¡mÁè	ó*ÀóYB¶óZÀò\Èf(Áè1üúÿòZÀWæ·óCüL9ãu´[]A\ÀÃDf.„AWAVI‰þAUL-ð¥ATL%ç­UH½ÿÿÿÿÿÿSHԝHƒì(éI‹>I‹F…Ò„ЃêòËòL$HcÒòÓò\$ò\Ãò$ÿÐòL$ò%ĵòD$òYáf(ÄòYÁèýøúÿò$òYT$ò\$òL$òXÓf/ÂwAI‹>AÿVfïÉI‰Ç¶ÈIÁï	H‰ÊL‰þH!îòH*ÎòAYLÍöÄtfW
ŶI94̆CÿÿÿHƒÄ(f(Á[]A\A]A^A_ÄI‹>I‹FÿÐò5/lò\ðf(ÆèÒúúÿò
ú´I‹>òYÈò$AÿVò=lò\øf(Çè¥úúÿò$fWH¶f(ÑòXÀòYÑf/Âv–òX
¶´A÷Ç„fÿÿÿfW
¶éYÿÿÿ@H…ö~3ATL$òUH‰ýSH‰ÓDH‰ïHƒÃè\ÿúÿòCøL9ãuê[]A\ÃDÀAVI‰þAUL-”ATL%	˜UH-SHƒì錀I‹>I‹F…Ò„؃êóTHcÒóD•óT$ó\ÂóD$ÿÐò%õ³fïÉóZL$‰ÃòYáÁë	f(ÄòYÁè%÷úÿfïÉóT$ó*ËóY
³óYL$óXÊóZÉf/ÁwCI‹>AÿVfï	öÈÁë	H‰Êó*ÃóAYDóD$öÄt
Wø´óD$A9Œ†8ÿÿÿóD$HƒÄ[]A\A]A^ÃDI‹>I‹FÿÐfïÀó5ÿ²Áè	ó*ÀóYì²ó\ð(Æè@ýúÿóä²I‹>óYÐóT$AÿVfïÉó¿²Áè	ó*ÈóY
¬²ó\ÁèýúÿóT$(ÈW
S´(ÂóYÂóXÉ/ȆoÿÿÿóX‡²óT$€ç„@ÿÿÿW!´óT$é.ÿÿÿfDH…ö~3ATL$²UH‰ýSH‰ÓDH‰ïHƒÃèlüúÿóCüL9ãuê[]A\ÃDÀf.Xi‹Rfïÿf.Ç‹4SH‰ûHƒì0ò=4iòD$f/ø†ä@H‹;ÿSH‰ßòD$èLöúÿò
iòl$òT$ò\Íf/Êr.ò
æhòD$f(Âò^ÍèC÷úÿò\$f/Ør§HƒÄ0[ÐòD$ò²hòL$ ò\Âò^D$èM÷úÿòt$òL$ f(Ðf(ÆòT$òYÂò\Èf(Áò
ohò^ÎèÖöúÿòT$ò\$ò\Úf/Ø‚,ÿÿÿHƒÄ0[ÃfDò|$ò\=*±ò*±òYÇò|$(fïÿf.øòQȇò5hò^ñòt$@H‰ßèÀûúÿfïäf(ÈòD$òYÁòXÖgf/àsØf(ÐòL$H‹;òYÐòYÂòD$ÿSòL$ò¬°ò=œgf(ÙòYÙòYÓòYÓò\úf/øwZòL$ è'öúÿòD$òD$èöúÿòL$ ò=h°òPgò\T$òYùòXÐòYT$(òYÏòXÊf/L$†0ÿÿÿòD$(òYD$HƒÄ0[ÃfD…ÆýÿÿfïÀÃD…¨ýÿÿé5ôúÿòL$è*üúÿòL$éÑþÿÿDf.„.}¯‹‹fïÿ.Ç‹nSH‰ûHƒì ó5V¯óD$ót$ó5F¯/ð†ùf„H‹;ÿSfïÒH‰ßÁè	ó*ÐóYT$óT$è‹øúÿó
¯ól$óT$ó\Í/Êr.ó
ê®óD$(Âó^Íè4øúÿó\$/Ør™HƒÄ [ÃóD$ó¶®óL$ó\Âó^D$èýøúÿót$óL$(Ð(ÆóT$óYÂó\È(Áó
v®ó^ÎèÉ÷úÿóT$ó\$ó\Ú/Ø‚ ÿÿÿHƒÄ [Ãf.„ól$ó\-F®fïöó>®óYÅól$.ðóQȇ2ó=®ó^ùó|$ó=õ­ó|$€H‰ßè øúÿfïä(ÈóD$óYÁóX˭/àsÚ(ÐóL$H‹;óYÐóYÂóD$ÿSóL$fïÀó¯­Áè	ó=Œ­(Ùó*ÀóYÙóYD$óYÓóYÓó\ú/øwYóL$è»÷úÿóD$óD$èª÷úÿóL$ó5\­ó8­ó\T$óYñóXÐóYT$óYÎóXÊ/L$†%ÿÿÿóD$óYD$HƒÄ [Ã…ŒýÿÿfïÀÃD…oýÿÿé]öúÿóL$èòõúÿóL$é¸þÿÿ€H‰øHƒìH‹?ÿPHƒÄHÑèÐf.„H‰øHƒìH‹?ÿPHƒÄÑèÃff.„ë¾@f.„H‹GH‹?ÿà€f.¨cº›ÀE„À…Uf.µ¬›ÂD„À…?USHƒì(ò-¡¬f/èƒÿf(Ð1íf(Êò%UcHÖcò^¬òYÊHPÀò^áò
R¬ëòHƒèòYÌòXËH9ÂuëòD$f(ÂòL$òT$è°ñúÿòT$òL$ò5¬f/t$ò^Êf(Úò\æ«òYØòX
¬òXËò\ÊrFH…í~AHƒÅ»fò\¨bòL$HƒÃf(ÂòT$è?ñúÿòL$H9ëòT$ò\ÈuÊHƒÄ(f(Á[]Àf(ÍfïÒò\ÈòH,éòH*ÕòXÐéèþÿÿf„fïÉf(ÁÀHƒìòL$ò$èìõúÿòL$òYÁòX$HƒÄÄHƒìòD$è1ïúÿòYD$HƒÄÃfDHƒìH‰øH‹?òL$ò$ÿPòL$òYÁòX$HƒÄÃ@HƒìòL$èAîúÿòL$HƒÄòYÁÃfHƒìóL$èAðúÿóL$HƒÄóYÁÃfSH‰ûHƒì ò5`aòD$f/ðòL$rf/ñsBòD$H‰ßèÚíúÿH‰ßò$òD$èÇíúÿò$HƒÄ [òXÁò^Èf(ÁÃfïäf/ÄwnH‹;ÿSH‹;ò$ÿSò$ò
è`ò^L$òD$f(ÃèCïúÿòT$ò
Å`ò^L$ò$f(Âè!ïúÿòX$ò=¤`f/ør˜ëŒ@ò<$HƒÄ [ò^øf(ÇÃDHƒìòY„©èíúÿHƒÄòXÀÃfDSH‰ûHƒìò$òD$èxóúÿò$H‰ßf(ÐòYÑf(Áò$èZóúÿò\$ò$HƒÄ[òYÃò^Ðf(ÂÃf.„SH‰ûHƒìèÃóúÿH‰ßòD$èµóúÿòL$HƒÄ[ò^Èf(ÁÐHƒìòD$èíúÿò^D$èöëúÿò\®_HƒÄÃf„fïÉf.ÁzufïÀÀHƒìòD$è¹ìúÿò
q_ò^L$HƒÄéÒíúÿfHƒìòD$è‘ìúÿfW©©è„ëúÿò
<_f(Ñò^L$HƒÄò\Ðf(Âé‘íúÿSH‰ûHƒìò$òL$ë
fïÒf/ÂwFH‹;ÿSf/¨ræò
¨ò\Èò\Èf(Áè…íúÿòYD$ò$HƒÄ[ò\Øf(ÃÃ@òXÀè_íúÿòYD$òX$HƒÄ[Ã@f.„SH‰ûHƒìò$òL$DH‹;ÿSòj^òb^ò\Ðf/Úf(ÂvÜèÿìúÿfW§¨èòìúÿòYD$ò$$HƒÄ[ò\àf(ÄÃf„SH‰ûHƒìò$òL$DH‹;ÿSfïÒf/Âvðò
ð]ò\Èò^Áè“ìúÿòYD$òX$HƒÄ[ÃfHƒìèçðúÿHƒÄéþéúÿ@f.„HƒìH‰øH‹?ò$ÿPò
–]ò\Èf(Áè9ìúÿòYffïÒf.ÐòQÈwò$HƒÄòYÁÃòL$èšòúÿòL$ëßfSH‰ûHƒì òD$è
ñúÿòL$H‰ßòY
<¦òD$f(ÁòL$è·éúÿòL$fïäf(Øf.áòQÑw"f.ãòL$òYÊòQÓw5f(ÁHƒÄ ò^Â[ÃòD$f(ÁòT$èòúÿfïäò\$òT$ë·f(ÃòT$òL$èáñúÿòT$òL$ë¨UH‰ýSHƒìXf/ǥò$sxò<$f.={\zu1ÛHƒÄXH‰Ø[]Ãò$fW«¦1Ûè„èúÿò
<\òD$ë@HƒÃò$H‹}ÿUò$òYÈf/L$wßHƒÄXH‰Ø[]ÃDf(àòQèfïÀf.Äòl$‡ò$èŠêúÿòD$(òD$òY¥òX¥f(ðòD$òY¥f(Îò\
¥ò\5$f(àò¥ò\%ì¤ò^Áò
¥f(ìòd$0òXìòl$HòXܤòD$8ò֤ò^Æò\ÈòL$@H‹}ÿUH‹}f(Ðò\9¤òT$ÿUòT$ò
"¤òD$f(ÂfT@[ò\ÈòD$Hò^ÁòL$òXD$òYÂòX$òXm¤è€ïúÿòL$f/
b¤òH,Øò\$rò|$@f/ûƒ@þÿÿH…Ûˆ\ÿÿÿò-<¤f/év
f/Ù‡Dÿÿÿf(ÃòL$ è%éúÿòD$òD$8èéúÿòL$ òl$0òD$òD$òYÉò^éòXÅèëèúÿòL$HCòXL$ò\ÈfïÀòH*ÀòL$fïÉòH*ËòYL$(ò\$òL$è©ëúÿòL$ò\Èf/L$‚£þÿÿHƒÄXH‰Ø[]Ãf(Äèïúÿéçýÿÿf.„ò¸YSH‰ûò\Ñò^Ñf(ÊèÓêúÿH‰ß[éúæúÿf.„AVfïÉAUòH*ÎI‰ÕATI‰ôUSH‰ûHìЋòD$x…Àt
H9r„š	òQYòt$xM‰eAÇEf(úòAuò\þòt$Hf/þò|$@†C	ò\$Hòl$@òT$òYËòA]òAm òXÙòL$òA](f(Ãò$è‹íúÿòL$ò$òYL$@òH,èfïÀòT$I‰m0f(áòL$`òQÉf.ć 	òY
G¢ò-ÏXò5G¢f(ÁòL$@òY
-¢ò\Áf(àf(ÈfTåf.ô‡KfïÀò5_¡òH*Åf(þòXÎòt$ òXøf(áòL$òXî¡òAM8f(ïòA}@ò¼$€ò\éòXÏf(ùòL$pòAMPò
½¡òl$0ò^Èò³¡òAmHòXÁòL$HòYÍfD(ÀòD$8òAEXf(Ãò\Åf(ëò\éf(Îò^ÅòYÈòXÊòYÈf(ÇòY|$@ò\Ãf(éòL$Xò^ÇòAM`òYðf(ÎòXÊòYÈfA(ÀòAXÀòXÐfA(Àò^ÅòL$hòAMhòYÔòT$òAUpòD^ÁòXÂf(èòD$PòAExfA(ÀòXÅòD$òA…€@H‹;ÿSòL$H‹;òYÈò$ÿSò$f/L$f(Іˆf/L$‡òt$ò|$8fïÛòH*Ýò\ÎòY×f(Áò^Çf(Êò‹VòXÊòT$(òXD$0ò\ØòX\$ fT©Vò^Þò\Ëf/Êò$‡Zÿÿÿèýêúÿò$òT$(òL,èM‰îI)îL‰òHÁú?H‰ÐL1ðH)ÐHƒø~#òD$`òYD$ fïÛòH*Øò\Âf/ÇæIT$fïÀòd$Hò^d$@òH*ÂòYÄI9í/Œqf/ʇÏþÿÿM)ìòt$xf/t$ MGìHÄÐ[]L‰èA\A]A^ÐfïÀA¾f.ЛÀDDðf/L$Pwkf(ÂòL$(ò$èäúÿò^D$XòXD$0èêúÿòL,èM…íˆXþÿÿE„ö…OþÿÿòL$(ò\L$ò$òYÊò*UòYL$Xéâþÿÿ€f(ÂòL$(ò$è´ãúÿòt$pò^D$hò\ðf(Æè›éúÿòL,èM9ìŒåýÿÿE„öò$òL$(…Ñýÿÿò\L$PòYÊò·TòYL$héoþÿÿ@HUI9ÕŒÊþÿÿIE€fïÛf(øòH*ÚHƒÂò^ûf(ßò\ÜòYÓH9ÂuÚé”þÿÿDIUH9ꏂþÿÿHE€fïÛf(èòH*ÚHƒÂò^ëf(Ýò\Üò^ÓH9ÂuÚéLþÿÿDf(Óò^ìòl$`H‰ÂòXãH÷ÚH¯Âf(ÅòXÅòYÓòXНò^Ýò^ÕòXT$ òYÓfïÛòH*Øò^Øf(ÁòT$(ò$è]âúÿò$òT$(f(èf(Ãò\Âf/ŇÅýÿÿòXÓòl$(f/ꇀüÿÿIEfEïÒfïÉòL*ÐHEfEïäòH*ÈID$fïäH)èòL*àL‰àL)èfE(êòD”$˜f(ÁHƒÀf(ñòŒ$¨òA^ÂòH*àòEYêfE(ôòD¤$òYñòEYôfD(Ìò$$òDYÌòD¬$Èò´$ÀòD´$¸òDŒ$°èkáúÿòD¤$ò„$ˆòD¤$ fA(ìò^,$f(Åè;áúÿòT$@ò4$òD”$˜òYt$Hò„$òAYÒf(Æò^Âèáúÿò%MœòMœL‰àòD1œH)èò´$ÀòŒ$¨f(üòD´$¸òD¬$ÈfA(ÓòDŒ$°òD¤$ ò^ÖòD”$˜òDü›ò\úf(×f(ûò^Öò\úòЛf(êò^þò\ïf(ýf(ìò^þf(÷ò=´›fD(ÿòD\þfïöòH*ðòXt$ òY´$òD^ùòŒ$ˆòYŒ$€òXñfïÉòI*ÎòYÈf(ÆòXÁfA(ËòA^ÎòE^øò\éf(Íf(ëòA^ÎòAXÇò\éf(Íf(êòA^Îò\éf(Íf(ìòA^ÎfD(÷òD\ñfA(ËòA^ÍòE^Ùò\éf(Íf(ëòA^ÍòA\ãòA^áò\éf(Íf(êòA^Íò\ÜòA^Ùò\éf(Íf(ïòA^Íò\ÓòE^ôò\éf(Íòl$(òA^ÊfE(æòE^àòA^ÑòAXÄòA^Èò\úòXÁf(Ïò^$òA^ÈòXÁf/è‡SùÿÿéúÿÿfDò¼$€òD$òYÂò\øf(ÇòXÁèÌäúÿòL,èéKúÿÿfòH,ÀfïäfUèòH*àf(ôòÂðf(ÎfTÊò\áf(ÌfVÍé÷ÿÿ@f(âò|$Hò\çòd$@é¤öÿÿf.BŠ[öÿÿ…Uöÿÿòz8òròb H‹j0ò|$òz@òYÎòt$Hò5Ž˜ò¼$€òzHòd$@ò|$0òzPòYÌòt$ ò|$pòzXò|$8òz`ò|$XòzhòL$`ò|$hòzpò|$òzxò|$Pòº€ò|$éøÿÿf(Äò\$ò$è+äúÿòT$ò\$ò$é6öÿÿDAUI‰ÕATI‰ôUH‰ýSHƒìH‹òD$…Àt
H9r„OòT$ò=™NfïÉM‰eòI*ÌAÇEò\úòAUòA} f(ÇòL$ò|$èÝúÿòL$òYÁòL$ èŠÚúÿòT$òL$ ò\$òD$òYÑòAEfïÀòYÚòAUXòXNf.ÃòQã‡ÜòY%D—òXÔf/ц.òH,ÙI‰]0H‹}ÿUòd$1Àf/Äf(Ìw!ëbf.„H‹}ÿUòL$1Àf/ÁvCHƒÀH9Ã|âL‰âfïÒò\ÁH)ÂHƒÂòH*ÒòYT$òYÊfïÒòH*ÐòYT$ò^Êf/Áw½HƒÄH[]A\A]ÃDf.BЦþÿÿ… þÿÿòZ H‹Z0ò\$òZò\$éCÿÿÿf(ÃòT$8òd$0òL$(ò\$ èGâúÿòd$0òY%A–òT$8òL$(ò\$ òXÔf/чëþÿÿf(ÃòT$ è
âúÿòT$ @òH,ÚéÍþÿÿfDH…ö„fïÉ”Áf.Á›ÀEDÀujòš•fïÉòH*Îf/ÐròYÈò—–f/ÑrIéTáúÿ@òXLSH‰óò\ÐòYÊf(Âòh–f/Ñr"è%áúÿH)ÃH‰Ø[ÃD1ÀÃDéËØúÿèÃØúÿH)ÃH‰Ø[Ðf.„SH‰ûHƒì òD$f(ÁòL$èÓ×úÿ…À…»òL$fïíf.Í‹·ò¿Kòd$f/àv[ò\àH‰ßòL$f(ÄèÍÞúÿH‰ßòD$è_ßúÿòL$fïöf(Ðf.ñòQÙ‡|òXÓf(ÂòYÂòXD$HƒÄ [ÃòY
`”H‰ßf(Áè¤ØúÿfïÀH‰ßHÀòH*ÀòXD$HƒÄ [éUÞúÿDòH•HƒÄ [Ãf…CÿÿÿòD$HƒÄ H‰ß[é'ÞúÿòD$f(Áò\$è"àúÿò\$òT$é^ÿÿÿSH‰ûHƒìò$f(ÊòD$è4Þúÿò$$H‰ßf(ÈòYÌf(Äò$èÆÝúÿò\$ò$HƒÄ[òYÃò^Èf(ÁÃf„f(Øf(ÁSH‰ûòXÁf(ëHƒì ò^èòL$ò\$ò,$èÞúÿò\$òL$òY
b”f(ÓòYÐòYÐòYÊf(ÂòYÂòXÁfïÉf.ÈòQàwUò\ÔòY$ò\$H‹;òXÓò$ÿSò\$ò$f(Ëf(óòXÊò^ñf/ðsòYÛò^Úf(ÓHƒÄ f(Â[Ãò\$òT$òd$èÔÞúÿò\$òT$òd$ë€SH‰ûHƒì@òD$8f(ÁòL$ èSÕúÿ…À…«òƒIf/D$ ‡wò‡“òt$ f/Ɔò'Ifïíòl$òD$ò^ÆòXÆòD$0ë0€f(ùò^øf(ÇèŸ×úÿòXD$òL$ò\Áf/D$syH‹;ÿSòY	“èä×úÿò\$0H‹;f(ËòYÈòXÃòXL$f(áòL$ ò^àò\Üòd$(òYËòL$ÿSòL$òž‘ò\ÑòYÑò\Ðf/T$‚^ÿÿÿH‹;ÿSòD$òD$(è××úÿò
O‘f/L$vfW’òT$8ò
q’òXÐf(ÂfTQHòT$òXC’èîÖúÿòl$òT$ò\*’f/êv.fW<’HƒÄ@[ÃfDH‹;ÿSòXÀò\¾GòYö‘HƒÄ@[ÃòؑHƒÄ@[Ãfò|$ òʑò-ŠGòYÇòl$òYÇfïÿò|$òXÅf.øòQÈwYòXL$òt$f(ÁòXÁf.ðòQÐwNò\Êòt$ f(Áf(ÎòXÎò^Áf(ÈòYÈòXÀòXL$ò^ÈòL$0é4þÿÿòL$è@ÜúÿòL$ë”òL$(òT$è'ÜúÿòL$(òT$ë“f„SH‰ûHƒì0ò5ÀFòD$ ò\ðf(Æè]ÕúÿòD$(H‹;ÿSf/D$ òD$ƒºH‹;ÿSòYD$(è¾ÒúÿòvFòT$ò\Øf(ÃòYÃf/Âr~f(ÂòT$ò\$èùÔúÿò\$òD$f(ÃèäÔúÿòL$ò^Èò"FòXÁèÉÚúÿòH,ÀH…ÀžÁŽaÿÿÿòT$fïöf.Ö›ÂEфÒ…EÿÿÿHƒÄ0[ÃfDf/Ӹré¸ëâ@f.„Hƒìò´EH‰øH‹?òD$ò\Øò$ÿPòL$¸ò$f/Ávf(ÑfòYËHƒÀòXÑf/ÂwîHƒÄÃf„HƒìH‰øH‹?ò$ÿPòFEò\Ðf(ÂèéÓúÿò1Eò\$òD$f(ÃèÍÓúÿòL$ò^Èf(ÁèºÚúÿHƒÄòH,ÀÃf/ðré‘×úÿéûÏúÿf.„SH‰ûHƒì ò\ÐDf(ÈòD$òæè)ÓúÿòD$H‹;ÿSH‹;ò$ÿSò%—Dò\$$òD$ò
|Dò^L$f(ÄèåÒúÿò
­Dò=%Žf(Ðf(ØfTÁf.øv7òH,ÂfïÀò%BDfUËòH*Àf(ðòÂòf(ÖfTÔò\Âf(ÐfVÑf/4D‡^ÿÿÿò=Df/ú‡Lÿÿÿf(ÇòL$ò$ò^ÂòXÇèPÒúÿòL$ò$f(Øò\ÉCòl$òYÊò^ÅòYËf(Ýò\«Cò^Ëf/Á‚íþÿÿHƒÄ òH,Â[Ãff(éf(ÚHƒì8H‰øò\èò\ØH‹?òT$òL$òD$(f(õò\$ò^óòl$ ò4$ÿPò4$ò\$òL$òT$f/ðr3òl$ fïÉòd$(òYÝòYÃf.ÈòQÐwHòXÔHƒÄ8f(ÂÃ@f(úò\ùò
èBò\ÈfïÀòYßòYÙf.ÃòQËw*ò\ÑHƒÄ8f(ÂÃòd$ò$èñ×úÿòd$ò$ë›f(ÃòT$ò$èÐ×úÿòT$ò$ëµ1ÀH…ö„•ATI‰ôIÑìUH‰õI	ôSH‰ûL‰àHÁèI	ÄL‰àHÁèL	àI‰ÄIÁìL	àI‰ÄIÁìI	ÄL‰àHÁè I	ĸÿÿÿÿH9ÆwfDH‹;ÿSD!àH9Årò[]A\ÃDH‹;ÿSL!àH9ÅsèH‹;ÿSL!àH9ÅräëØf.„ÃDf.„AWAVAUATI‰ôUSHƒìH…Òtt¸ÿÿÿÿI‰þI‰ÍH‰ÕH‰óH‹?H9ÂwqI‹F„A‰ÔE„À…âJ‰L$ÿÐD‹l$A‰ÄM¯åE9åv$‰è1Ò÷ÐA÷õA‰×A9ÔsI‹>AÿVA‰ÄM¯åE9çwíIÁì IÜHƒÄL‰à[]A\A]A^A_Ã@I‹FHƒúÿ„¢E„ÀuTLbÿÐI÷äH‰ÆH‰×I9Äv+H÷Õ1ÒH‰èI÷ôI‰ÕH9ÖsfDI‹>AÿVI÷äH‰×I9ÅwîH‰øL$ëDI‹>I‹FÿÐL!èH9ÅrïL$épÿÿÿfDI‹>I‹FÿÐD!èD9àwïL$éPÿÿÿfDÿЉÀIÄé>ÿÿÿ@ÿÐIÄé0ÿÿÿfDAWAVAUATUS‰óHƒì…ÒteI‰þA‰̉ÕA‰õH‹?I‹Fƒúÿ„E„ÀucJ‰L$ÿÐD‹d$‰ÃI¯ÜA9Üv%‰è1Ò÷ÐA÷ôA‰×9ÓsI‹>AÿV‰ÃI¯ÜA9ßwîHÁë DëHƒÄ‰Ø[]A\A]A^A_ÃfDI‹>I‹FÿÐD!à9ÅrðA\ëÒf„ÿÐÃëÃf.„AW‰ðAVAUATUSHƒìH‹l$Pf…Ò„ðL‰ËA‰õI‰üE‹	fƒúÿ„A‰×A‰ÎE„À…¯DrE…É… ‰T$H‹?AÿT$‹T$‰EÇ·ME·þA¯ÏfA9Ά¡÷Ò·™A÷ÿA‰Öf9Ñr(é‹I‹<$AÿT$‰EÇ·MA¯ÏfA9Îvh‹…ÀtÚÁmƒ+ëãf„I‹<$AÿT$‰EÇ·ED!ðfA9ÇsD‹E…ÉtÙÁmƒ+·ED!ðfA9ÇräDèHƒÄ[]A\A]A^A_ÃHƒÄÁé[AD
]A\A]A^A_Ãf„E…Éu;H‹?AÿT$‰EÇ·EHƒÄ[]DèA\A]A^A_Ã@Ámƒ+éíþÿÿ@Ámƒ+ëÍ€AW‰ðAVAUATUSHƒìH‹l$P„Ò„ÞL‰ËA‰ôI‰ýE‹	€úÿ„þA‰×A‰ÎE„À…ŸDzE…É…‰T$H‹?AÿU‹T$‰EÇD‰øöe‰ÁA8dž™÷ÒA¶ÿ¶™÷ÿA‰Ö8Ñr$遐I‹}AÿU‰EÇD‰øöe‰ÁA8Ævb‹…ÀtÜÁmƒ+ëäI‹}AÿU‰EǶED!ðA8ÇsD‹E…ÉtÛÁmƒ+¶ED!ðA8ÇråDàHƒÄ[]A\A]A^A_ÃfDHƒÄfÁé[A]A\A]A^A_Ãf„E…Éu;H‹?AÿU‰EǶEHƒÄ[]DàA\A]A^A_ÃDÁmƒ+éúþÿÿ@Ámƒ+ëÌ€U‰ðSHƒìH‹l$ „ÒtA‹…ÀtÑmAƒ)‹EƒàHƒÄ[]Ã@H‰øL‰ËH‹?ÿP‰EÇëØf„H…Òu#IÉH…ÉŽQfDI‰1IƒÁL9ÈuôÃAW¸ÿÿÿÿI‰ÿAVAUI‰ÕATUH‰õSHƒìH9‡“„ME„À…ìH…É~nIÉDbL‰ËH‰$‰ÐM‰æ÷ЉD$DI‹?AÿW‰ÁI¯ÌD9ñs(‹D$1ÒA÷öA‰Õ9ÑsfDI‹?AÿW‰ÁI¯ÌA9ÍwîHÁé HƒÃHéH‰KøH9$u±HƒÄ[]A\A]A^A_ÃfHƒúÿ„~E„À…ÝH…É~×IÉLbL‰ËI÷ÕH‰$fDI‹?AÿWI÷äI‰ÁI‰ÒL9às%L‰è1ÒI÷ôI‰ÖI9ÑsI‹?AÿWI÷äI‰ÒI9ÆwîL‰ÐHƒÃHèH‰CøH;$u²élÿÿÿÃ@H…ÉŽ^ÿÿÿL‰ËM$É„I‹?HƒÃAÿWHèH‰CøI9Üuéé3ÿÿÿ@H…ÉŽ&ÿÿÿL‰ËM$ÉI‹?HƒÃAÿW‰ÀHèH‰CøI9ÜuçéÿÿÿfI‰ÔIÑìI	ÔL‰àHÁèI	ÄL‰àHÁèI	ÄL‰àHÁèI	ÄL‰àHÁèI	ÄL‰àHÁè I	ÄH…ÉŽ»þÿÿL‰ËM4ÉDI‹?AÿWL!àI9ÅrñHèHƒÃH‰CøL9óuáé‹þÿÿ@I‰ÔIÑìI	ÔL‰àHÁèI	ÄL‰àHÁèI	ÄL‰àHÁèI	ÄL‰àHÁèI	ÄH…ÉŽMþÿÿL‰ËM4É€I‹?AÿWD!àA9ÅrñHèHƒÃH‰CøL9óuáéþÿÿff.„…Òu$I‰H…ÉŽ»€A‰1IƒÁL9ÈuôÃAWI‰ÿAVAUA‰ÕATU‰õSHƒìƒúÿ„‰E„À…¸H…É~hI‰A÷ÕDbL‰ËH‰$M‰æD‰l$I‹?AÿW‰ÁI¯ÌA9Îv(‹D$1ÒA÷öA‰Õ9ÑsfDI‹?AÿW‰ÁI¯ÌA9ÍwîHÁé HƒÃé‰KüH;$u³HƒÄ[]A\A]A^A_ÃÃH…É~èL‰ËM$‰@I‹?HƒÃAÿWè‰CüL9ãuëHƒÄ[]A\A]A^A_Ã@‰ÐI‰ÄIÑìI	ÄL‰àHÁèI	ÄL‰àHÁèI	ÄL‰àHÁèI	ÄL‰àHÁèA	ÄH…ÉŽyÿÿÿL‰ËM4‰DI‹?AÿWD!àA9ÅrñèHƒÃ‰CüI9ÞuãHƒÄ[]A\A]A^A_Ã@AWAVAUATU‰õSHƒìf…Òu+IIH…É~ffA‰)IƒÁL9ÈuóHƒÄ[]A\A]A^A_Ã@I‰ÿfƒúÿ„ÓE„À…H…É~ÒDrII÷ÒE1ÀH‰$·ÂE·æL‰Ë1ÿ‰D$E…À…‰I‹?AÿWA¸‰Ç·ÈA¯ÌfD9ñsJ‹D$™A÷üA‰Õf9Ñs:E…Àt€ÁïE1	ùA¯ÌfA9ÍvI‹?AÿW·ȉÇA¯ÌfA9ÍwØA¸ÁéHƒÃéf‰KþH;$„(ÿÿÿE…À„zÿÿÿÁïE1	ùë‚„H…ÉŽÿÿÿL‰ËM$I1Ò1Àë+f.„I‹?AÿWºLHƒÃf‰KþI9Ü„Ìþÿÿ…ÒtÛÁè1Òëà@·ÂA‰ÖI‰ÄIÑìI	ÄL‰àHÁèI	ÄL‰àHÁèI	ÄL‰àHÁèA	ÄH…ÉއþÿÿM,IL‰Ë1É1À€…Ét@ÁèD‰â1É!ÂfA9ÖsI‹?AÿWD‰â!ÂfA9Ör޹êHƒÃf‰SþI9ÝuÂHƒÄ[]A\A]A^A_Ðf.„AWAVAUA‰õATUSHƒì„Òu+I	H…É~fEˆ)IƒÁI9ÁuôHƒÄ[]A\A]A^A_ÃDI‰þ€úÿ„ôE„À…;H…É~Ò¶ÂL‰ËI,	E1ɉD$Db1ÿE…É…¸fDI‹>AÿVA¹‰ÇD‰à@öç‰ÁA8Ävt¸ÿ+D$E¶ܙA÷ûA‰×8Ñr<ëZf.„I‹>AÿV‰ÇD‰à@öç‰ÁA8džvÁïD‰àA¹@öç‰ÁA8Çv E…ÉtËÁïD‰àAƒé@öç‰ÁA8Çw瀉ÈHƒÃfÁèDèˆCÿH9Ý„ÿÿÿE…É„NÿÿÿÁïAƒééQÿÿÿfH…ÉŽãþÿÿL‰ËI,	1Ò1Àë+f.„I‹>AÿVºALHƒÃˆKÿH9Ý„«þÿÿ…ÒtÛÁèƒêëß¶ÂA‰ÔH‰ÅHÑíH	ÅH‰èHÁèH	ÅH‰èHÁè	ÅH…ÉŽqþÿÿM<	L‰Ë1É1Àë)„I‹>AÿV‰ê!ÂA8ÔsPÁè‰ê¹!ÂA8Ôs…ÉtÛÁè‰êƒé!ÂA8Ôrí@DêHƒÃˆSÿI9ßuÚHƒÄ[]A\A]A^A_Ãf.„DêHƒÃ¹ˆSÿI9ßu­ëÑf.„A¹éµþÿÿDH…É~kAVE1ÀI‰þ1ÀAUA‰ÕATA‰ôUI,	SL‰Ëë!@I‹>AÿVA¸‰CáˆHƒÃH9ÝtD‰áE„ítíE…ÀtÖÑèAƒèëÛfD[]A\A]A^ÀÃDf.„AWI‰÷AVAUATUH‰ÕSHƒì(L‰D$Iƒø~rL‰ÀI‰üI‰ÎM‰ÍHƒè1Ûò
ç2H‰D$ëòL$òA\ÞHƒÃH;\$t?òAÞL‰þL‰êL‰çòL$ò^ÁèûÆúÿI)ÇH‰DÝM…ÿ¾HƒÄ([]A\A]A^A_ÃH…ö~ìH‹D$L‰|ÅøHƒÄ([]A\A]A^A_ÐAWAVAUATUSHƒìXM…ÀA”ÂM…ÉH‹œ$”ÀAÂuH…öu1ÀHƒÄX[]A\A]A^A_ÃfI‰þL‰ÍL‰D$I‰ÕH<õH‰L$HI‰ôH‰T$è(ÄúÿI‰ÇH…À„ÉE1À1ÒM…í„•H‹t$H‹|$H@H‹×H…É~KÇIÈKÇ@H‰HƒÀH9ÈuôHƒÂH9ÖuÓL‰àH‹|$HÁè?LàI‰ýHÑøH‰D$ H9øŒPH‹D$H¯èH‰l$0H…í„ËHÁàH‰\$1íH‰D$(KïH‰D$8ID$ÿH‰D$@fDE1äM…íttH‰,$L‰ýI‰ßH‹\$@f„H‰ÞL‰÷L)æèrÄúÿJ‹tåLàHDÅH‹H‰0J‰LåIƒÄM9åuÑL‰ûH‹L$8I‰ïH‹,$L‰ø€H‹HƒÀHêHƒÓH9ÁuìH‹|$ H9|$8H‹|$(Hl$H|$H;l$0‚^ÿÿÿL‰ÿ膻úÿHƒÄX1À[]A\A]A^A_ÃDH‹t$H…ötØH‹L$H‹|$H1Àf.„H‹ÇH+ÁH‰ÁHƒÀH9Æuëë‘L‰àHÁè?LàHÑøH‰D$ H;D$}’M‰åL+l$é£þÿÿ¸ÿÿÿÿéèýÿÿf„M…ÀA”ÂM…É”ÀAÂ…"H…ö„H‰ðAWI‰÷AVHÁè?M)ÇAUHðATHÑøUSHƒìXL9ÀMMøL¯ÊH‰D$(L‰|$ L‰L$8M…É„ÀH‰ÐH‰ýL‰D$0I‰ÏH<ÕHƒèH‰T$H‹œ$H‰t$HH‰|$@HÇD$H‰D$fDL‹t$ M…öŽ”E1íHƒ|$L‹d$Hwëx„IƒÅL9l$teK‹4ïL‰ñH‰ïI)ôL‰âè ÀúÿI)ÆJ‰ëM…öÔH‹L$0H9L$(|VH‹|$H\$@H|$H‹D$H;D$8r…HƒÄX[]A\A]A^A_ÃfDÀH‹D$L‰tÃøH‹|$0H9|$(}²Hƒ|$tÅH‹L$1ÀI‹ÇH+ÃH‰ÃHƒÀH9Áwë뉐AWAVAUATI‰üUH‰ÍHSH‰óHƒìXHƒý	~
HA÷H9菢I‰ÍI‰ÎI‰ßIÁí?I)îIÍIÑýL9íLNõH9ËœÂH…ÛŸÂu@ëCHƒéL‰çH‰ÎH‰L$è|ÁúÿH‹L$L9øœÀIƒî¶ÀI)ÇL9ù@ŸÆM…ÿŸÀ@„ÆtM…öÀL‰øL)ðI9ÏLDøL)ûL9íLNûHƒÄXL‰ø[]A\A]A^A_ÀI‰ÍH‰ÐfïÀI‰ÖfïÉfïÛfïöI)íI9íòH*ÉLOíH9ÖHNÆHMÖòH*ÀH‰D$H‰ÈòI*ÝL)èf(Ðò^Ñf(ÂòYÃòX€vòD$(fïÀòH*ÀHAÿòYÃòYÂfïÒòH*Òò^ÑfïÉòH*ÈòYÂò^ÁòX?vf.ðòQȇ½f(ÁIEfïÒHƒÁòY‰wòL$òXƒwH‰T$ òD$0fïÀòH*ÀH‹D$HƒÀòH*ÐòYÂfïÒòH*Ñò^ÂèsÁúÿòL,øL‰ÿ趼úÿH‹|$òD$L)ÿ裼úÿòd$L‰îL)þòXàH‰÷òd$腼úÿH‹T$ òXD$L)êI<òD$H‰T$8èc¼úÿH‹|$òd$òL$òY
ÚvòXàI9ýòXL$(H‰øINÅòn,HƒÀòd$@fïäf(ÑòH*àfTÓf(Áòd$ ò%Áuf.â‡Wò\$ ò]Øò\$ €I‹<$AÿT$I‹<$òD$AÿT$òL$fïÛò\ÆtòYD$0òL$ò^ÁòXD$(f/Øwºf/D$ s²è=ÀúÿòL,øL‰ÿ耻úÿH‹|$òD$L)ÿèm»úÿòl$L‰èL)øòXèH‰ÇH‰D$Hòl$èJ»úÿH‹D$8òXD$J<8òD$è0»úÿòXD$òT$@òL$ò\ÐòJuò\ÁòYÁò\âtf/Ðs=f(ÁòT$ò\ÂòYÁf/â*ƒüþÿÿf(Á胹úÿòT$òXÀf/ЂßþÿÿL9óLO|$HL)ûL9íLOûé¾üÿÿ€òH,ÁfïÒò%*fUÙòH*Ðf(úòÂùf(ÇfTÄò\Ðf(ÂfVÃémþÿÿH‰L$ òL$H‰T$菿úÿH‹L$ òL$H‹T$éýÿÿf.„Hƒÿ}HÓtòøÃDfïÉHƒìòH*Ïf(ÁòL$謸úÿòL$òŽxò%æ)òYÑf(Üò^áòYÑò^Úòrxò\ÓòÎròXÙòYÔòX^xHƒÄòYÃò\ÁòXÂÐHƒìHƒÄÃ'bool''complex long double''signed char''unsigned char''short''unsigned short''int''unsigned int''long''unsigned long''long long''unsigned long long''char''float''double'a structPython objecta pointera stringendunparseable format string'complex double''complex float''long double'_generator.pyx__init__.pxdstringsource__pyx_capi__name '%U' is not definedcannot import name %Snumpy/random/_generator.c%s (%s:%d)Expected %.16s, got %.200s'NoneType' is not iterableat leastat mostbetanoncentral_fnoncentral_chisquarestandard_cauchystandard_tvonmisesparetoweibullpowerlaplacegumbellogisticlognormalrayleighwaldnegative_binomialpoissonzipflogseriesexactlyView.MemoryView.Enum.__init__BitGeneratoran integer is requiredView.MemoryView._err_dimtupledefault_rngMissing type objectView.MemoryView._errView.MemoryView._err_extentsDimension %d is not directView.MemoryView._unellipsifyuniformstandard_exponential__cinit__randomstandard_normal__pyx_unpickle_Enumstandard_gammatriangularpermutationnumpy.PyArray_MultiIterNew2numpy.PyArray_MultiIterNew3shapeformatmultinomialnumpy.PyArray_MultiIterNew1dirichletintegersmultivariate_hypergeometricshuffleView.MemoryView.memview_sliceIndex out of bounds (axis %d)memviewsliceobjmultivariate_normalvhubuffer dtypeBuffer not C contiguous.choice%d.%d%sbuiltinscython_runtime__builtins__4294967296type.pxdbool.pxdcomplex.pxdcomplexnumpyflatiterbroadcastndarrayufuncnumpy.random.bit_generatorbit_generator.pxdSeedSequenceSeedlessSequencenumpy.random._commondoubleLEGACY_POISSON_LAM_MAXuint64_tMAXSIZE_rand_uint64_rand_uint32_rand_uint16_rand_uint8_rand_bool_rand_int64_rand_int32_rand_int16_rand_int8check_constraintcheck_array_constraintdouble (double *, npy_intp)kahan_sumdouble_fillfloat_fillcontdisccont_fcont_broadcast_3discrete_broadcast_iiinumpy.core._multiarray_umath_ARRAY_API_ARRAY_API not found_ARRAY_API is NULL pointernumpy.import_arraygetbuffer(obj, view, flags)init numpy.random._generatorbase__reduce_cython____setstate_cython__Tstridessuboffsetsndimitemsizenbytesis_c_contigis_f_contigcopycopy_fortrannumpy.random._generator.Enumnumpy.random._generator.arraymemview__getattr___bit_generator__getstate____setstate____reduce__pûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ`ûÿ°ûÿ°ûÿ ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿûÿ€ûÿ°ûÿ°ûÿpûÿ°ûÿ°ûÿ`ûÿPûÿ@ûÿ°ûÿ°ûÿ0ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ°ûÿ ûÿûÿûÿ°ûÿèûÿÐûÿÀûÿ°ûÿ°ûÿ°ûÿ ûÿ°ûÿ°ûÿ°ûÿûÿ€ûÿ°ûÿûÿpCûÿ Cûÿ CûÿpCûÿ Cûÿ Cûÿ Cûÿ Cûÿ Cûÿ€Cûÿ`Cûÿ Cûÿ CûÿPCûÿ Cûÿ CûÿPCûÿPCûÿPCûÿ Cûÿ Cûÿ Cûÿ Cûÿ Cûÿ Cûÿ Cûÿ Cûÿ Cûÿ Cûÿ Cûÿ Cûÿ Cûÿ Cûÿ Cûÿ CûÿpCûÿpCûÿPCûÿ Cûÿ`CûÿCûÿ€Cûÿ`Cûÿ Cûÿ CûÿPCûÿ Cûÿ Cûÿ CûÿpCûÿPCûÿ CûÿpCûÿîFûÿGûÿGûÿîFûÿGûÿGûÿGûÿGûÿGûÿîFûÿîFûÿGûÿGûÿîFûÿGûÿGûÿDûÿDûÿîFûÿGûÿGûÿGûÿGûÿGûÿGûÿGûÿGûÿGûÿGûÿGûÿGûÿGûÿGûÿGûÿGûÿÚFûÿäFûÿøFûÿGûÿøFûÿøFûÿÚFûÿÚFûÿGûÿGûÿÚFûÿGûÿGûÿGûÿÚFûÿÚFûÿGûÿÚFûÿˆDûÿØEûÿØEûÿˆDûÿØEûÿØEûÿØEûÿØEûÿØEûÿ˜EûÿˆEûÿØEûÿØEûÿˆEûÿØEûÿØEûÿ˜Cûÿ˜Cûÿ˜CûÿØEûÿØEûÿØEûÿØEûÿØEûÿØEûÿØEûÿØEûÿØEûÿØEûÿØEûÿØEûÿØEûÿØEûÿØEûÿØEûÿˆDûÿˆDûÿpEûÿØEûÿXEûÿ¨Eûÿ˜EûÿˆEûÿØEûÿØEûÿˆEûÿØEûÿØEûÿØEûÿˆDûÿ˜CûÿØEûÿˆDûÿ´CûÿEûÿEûÿ´CûÿEûÿEûÿEûÿEûÿEûÿìEûÿÜEûÿEûÿEûÿ´EûÿEûÿEûÿ´Eûÿ´Eûÿ´EûÿEûÿEûÿEûÿEûÿEûÿEûÿEûÿEûÿEûÿEûÿEûÿEûÿEûÿEûÿEûÿEûÿ´Cûÿ´CûÿüEûÿEûÿFûÿÄEûÿìEûÿÜEûÿEûÿEûÿ´EûÿEûÿEûÿEûÿ´Cûÿ´EûÿEûÿ´Cûÿ@HûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿpGûÿˆGûÿˆGûÿpGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿpGûÿ@JûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿ€FûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿpJûÿˆGûÿ0Iûÿ Jûÿ@JûÿHûÿ JûÿˆGûÿHûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿHûÿHûÿˆGûÿˆGûÿHûÿˆGûÿˆGûÿHûÿˆGûÿHûÿˆGûÿˆGûÿxIûÿˆGûÿˆGûÿˆGûÿˆGûÿˆGûÿHIûÿˆGûÿˆGûÿˆGûÿ JûÿˆGûÿˆGûÿˆGûÿHûÿHûÿHûÿˆGûÿHûÿHûÿHûÿHûÿˆGûÿˆGûÿHûÿˆGûÿˆGûÿˆGûÿHûÿHûÿˆGûÿ°GûÿˆGûÿˆGûÿˆGûÿˆGûÿˆHûÿˆGûÿˆGûÿˆGûÿˆGûÿØHûÿX`ûÿØbûÿjaûÿaaûÿXaûÿ”cüÿ¤cüÿ´cüÿüaüÿÄcüÿÀiüÿ iüÿÚfüÿÑfüÿÈfüÿ”™üÿܝüÿþ›üÿõ›üÿì›üÿ8»üÿè»üÿ
¹üÿ¹üÿø¸üÿ„æüÿ¤ðüÿÞéüÿÕéüÿÌéüÿà1ýÿÐ0ýÿË.ýÿÂ.ýÿ¹.ýÿ°.ýÿÓ1ýÿÌ0ýÿí0ýÿ1ýÿE1ýÿü‹ýÿd‹ýÿ„‹ýÿœ‹ýÿ4‰ýÿ´‹ýÿ¬‹ýÿ,–ýÿ	’ýÿÿ‘ýÿõ‘ýÿì‘ýÿŸ‹ýÿ(–ýÿN–ýÿp–ýÿ’–ýÿàÌýÿ`Ìýÿø½ýÿì½ýÿà½ýÿ$Mþÿ¤`þÿhPþÿ\PþÿPPþÿDPþÿMþÿ `þÿÁ`þÿ$aþÿIaþÿ £ÿÿ€¢ÿÿ¢ÿÿx¢ÿÿâ¡ÿÿ١ÿÿСÿÿĢÿÿD¥ÿÿø£ÿÿï£ÿÿæ£ÿÿݣÿÿԣÿÿ³¢ÿÿC¥ÿÿN¤ÿÿ{¤ÿÿ¨¤ÿÿդÿÿUnsupported dtype %r for standard_gammaUnsupported dtype %r for standard_normalFormat string allocated too short.unable to allocate shape and strides.sum(colors) must not exceed the maximum value of a 64 bit signed integer (%d)probabilities are not non-negativenumpy.core.umath failed to importno default __reduce__ due to non-trivial __cinit__negative dimensions are not allowedmethod must be one of {'eigh', 'svd', 'cholesky'}method must be "count" or "marginals".mean and cov must have same lengthgot differing extents in dimension %d (got %d and %d)covariance is not positive-semidefinite.cov must be 2 dimensional and squarecolors must be a one-dimensional sequence of nonnegative integers not exceeding %d.check_valid must equal 'warn', 'raise', or 'ignore'both ngood and nbad must be less than %da must be a positive integer unless nosamples are takena cannot be empty unless no samples aretakenWhen method is "marginals", sum(colors) must be less than 1000000000.Unsupported dtype %r for standard_exponentialUnsupported dtype %r for integersUnable to convert item to objectProviding a dtype with a non-native byteorder is not supported. If you require platform-independent byteorder, call byteswap when required.Out of bounds on buffer access (axis %d)Non-native byte order not supportedInvalid mode, expected 'c' or 'fortran', got %sInvalid bit generator. The bit generator must be instantiated.Insufficient memory for multivariate_hypergeometric with method='count' and sum(colors)=%dIndirect dimensions not supportedIncompatible checksums (%s vs 0xb068931 = (name))Generator.standard_normal (line 868)Generator.standard_gamma (line 1040)Generator.standard_exponential (line 308)Generator.standard_cauchy (line 1523)Generator.noncentral_f (line 1297)Generator.noncentral_chisquare (line 1443)Generator.negative_binomial (line 2839)Generator.multivariate_normal (line 3342)Generator.multivariate_hypergeometric (line 3696)Generator.hypergeometric (line 3118)Format string allocated too short, see comment in numpy.pxdFewer non-zero entries in p than sizeEmpty shape tuple for cython.arrayCannot take a larger sample than population when replace is FalseCannot create writable memory view from read-only memoryviewCannot assign to read-only memoryviewCan only create a buffer that is contiguous in memory.Buffer view does not expose strides
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        continuous probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Zipf distribution is

        .. math:: p(x) = \frac{x^{-a}}{\zeta(a)},

        where :math:`\zeta` is the Riemann Zeta function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 2. # parameter
        >>> s = np.random.default_rng().zipf(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy import special  # doctest: +SKIP

        Truncate s values at 50 so plot is interesting:

        >>> count, bins, ignored = plt.hist(s[s<50],
        ...         50, density=True)
        >>> x = np.arange(1., 50.)
        >>> y = x**(-a) / special.zetac(a)  # doctest: +SKIP
        >>> plt.plot(x, y/max(y), linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> a = 5. # shape
        >>> s = rng.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(rng.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and dispersion (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Dispersion of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the dispersion,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and dispersion
        >>> s = np.random.default_rng().vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        unknown dtype code in numpy.pxd (%d)
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than high.  The default value is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        integers : Discrete uniform distribution, yielding integers.
        random : Floats uniformly distributed over ``[0, 1)``.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.
        If ``high`` < ``low``, the results are officially undefined
        and may eventually raise an error, i.e. do not rely on this
        function to behave when passed arguments satisfying that
        inequality condition.

        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.default_rng().uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.default_rng().triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ?

        We have 10 degrees of freedom, so is the sample mean within 95% of the
        recommended value?

        >>> s = np.random.default_rng().standard_t(10, size=100000)
        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727

        Calculate the t statistic, setting the ddof parameter to the unbiased
        value so the divisor in the standard deviation will be degrees of
        freedom, N-1.

        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(s, bins=100, density=True)

        For a one-sided t-test, how far out in the distribution does the t
        statistic appear?

        >>> np.sum(s<t) / float(len(s))
        0.0090699999999999999  #random

        So the p-value is about 0.009, which says the null hypothesis has a
        probability of about 99% of being true.

        
        standard_normal(size=None, dtype=np.float64, out=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.

        Notes
        -----
        For random samples from :math:`N(\mu, \sigma^2)`, use one of::

            mu + sigma * gen.standard_normal(size=...)
            gen.normal(mu, sigma, size=...)

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.standard_normal()
        2.1923875335537315 #random

        >>> s = rng.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = rng.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from :math:`N(3, 6.25)`:

        >>> 3 + 2.5 * rng.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        shuffle(x, axis=0)

        Modify a sequence in-place by shuffling its contents.

        The order of sub-arrays is changed but their contents remains the same.

        Parameters
        ----------
        x : array_like
            The array or list to be shuffled.
        axis : int, optional
            The axis which `x` is shuffled along. Default is 0.
            It is only supported on `ndarray` objects.

        Returns
        -------
        None

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> arr = np.arange(10)
        >>> rng.shuffle(arr)
        >>> arr
        [1 7 5 2 9 4 3 6 0 8] # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.shuffle(arr, axis=1)
        >>> arr
        array([[2, 0, 1], # random
               [5, 3, 4],
               [8, 6, 7]])
        
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> rng = np.random.default_rng()
        >>> values = hist(rng.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = rng.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        
        random(size=None, dtype=np.float64, out=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` multiply
        the output of `random` by `(b-a)` and add `a`::

          (b - a) * random() + a

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.random()
        0.47108547995356098 # random
        >>> type(rng.random())
        <class 'float'>
        >>> rng.random((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * rng.random((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a < 1.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = rng.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats  # doctest: +SKIP
        >>> rvs = rng.power(5, 1000000)
        >>> rvsp = rng.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + Generator.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        
        permutation(x, axis=0)

        Randomly permute a sequence, or return a permuted range.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.
        axis : int, optional
            The axis which `x` is shuffled along. Default is 0.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> rng.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        >>> rng.permutation("abc")
        Traceback (most recent call last):
            ...
        numpy.AxisError: axis 0 is out of bounds for array of dimension 0

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.permutation(arr, axis=1)
        array([[0, 2, 1], # random
               [3, 5, 4],
               [6, 8, 7]])

        
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.


        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.default_rng().pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        numpy.core.multiarray failed to import
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        :meth:`normal` is more likely to return samples lying close to the
        mean, rather than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.default_rng().normal(mu, sigma, 1000)

        Verify the mean and the variance:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.1  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from N(3, 6.25):

        >>> np.random.default_rng().normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.

            .. versionchanged:: 1.14.0
               Earlier NumPy versions required dfnum > 1.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> rng = np.random.default_rng()
        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = rng.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = rng.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.

            .. versionchanged:: 1.10.0
               Earlier NumPy versions required dfnum > 1.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> rng = np.random.default_rng()
        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(rng.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(rng.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval (0, 1].

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution. Must satisfy 0 < p <= 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.default_rng().negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        
        multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (standard deviation, or "width,"
        squared) of the one-dimensional normal distribution.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.
        method : { 'svd', 'eigh', 'cholesky'}, optional
            The cov input is used to compute a factor matrix A such that
            ``A @ A.T = cov``. This argument is used to select the method
            used to compute the factor matrix A. The default method 'svd' is
            the slowest, while 'cholesky' is the fastest but less robust than
            the slowest method. The method `eigh` uses eigen decomposition to
            compute A and is faster than svd but slower than cholesky.

            .. versionadded:: 1.18.0

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

          - Spherical covariance (`cov` is a multiple of the identity matrix)
          - Diagonal covariance (`cov` has non-negative elements, and only on
            the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.default_rng().multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> rng = np.random.default_rng()
        >>> x = rng.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        We can use a different method other than the default to factorize cov:
        >>> y = rng.multivariate_normal(mean, cov, (3, 3), method='cholesky')
        >>> y.shape
        (3, 3, 2)

        The following is probably true, given that 0.6 is roughly twice the
        standard deviation:

        >>> list((x[0,0,:] - mean) < 0.6)
        [True, True] # random

        
        multivariate_hypergeometric(colors, nsample, size=None,
                                    method='marginals')

        Generate variates from a multivariate hypergeometric distribution.

        The multivariate hypergeometric distribution is a generalization
        of the hypergeometric distribution.

        Choose ``nsample`` items at random without replacement from a
        collection with ``N`` distinct types.  ``N`` is the length of
        ``colors``, and the values in ``colors`` are the number of occurrences
        of that type in the collection.  The total number of items in the
        collection is ``sum(colors)``.  Each random variate generated by this
        function is a vector of length ``N`` holding the counts of the
        different types that occurred in the ``nsample`` items.

        The name ``colors`` comes from a common description of the
        distribution: it is the probability distribution of the number of
        marbles of each color selected without replacement from an urn
        containing marbles of different colors; ``colors[i]`` is the number
        of marbles in the urn with color ``i``.

        Parameters
        ----------
        colors : sequence of integers
            The number of each type of item in the collection from which
            a sample is drawn.  The values in ``colors`` must be nonnegative.
            To avoid loss of precision in the algorithm, ``sum(colors)``
            must be less than ``10**9`` when `method` is "marginals".
        nsample : int
            The number of items selected.  ``nsample`` must not be greater
            than ``sum(colors)``.
        size : int or tuple of ints, optional
            The number of variates to generate, either an integer or a tuple
            holding the shape of the array of variates.  If the given size is,
            e.g., ``(k, m)``, then ``k * m`` variates are drawn, where one
            variate is a vector of length ``len(colors)``, and the return value
            has shape ``(k, m, len(colors))``.  If `size` is an integer, the
            output has shape ``(size, len(colors))``.  Default is None, in
            which case a single variate is returned as an array with shape
            ``(len(colors),)``.
        method : string, optional
            Specify the algorithm that is used to generate the variates.
            Must be 'count' or 'marginals' (the default).  See the Notes
            for a description of the methods.

        Returns
        -------
        variates : ndarray
            Array of variates drawn from the multivariate hypergeometric
            distribution.

        See Also
        --------
        hypergeometric : Draw samples from the (univariate) hypergeometric
            distribution.

        Notes
        -----
        The two methods do not return the same sequence of variates.

        The "count" algorithm is roughly equivalent to the following numpy
        code::

            choices = np.repeat(np.arange(len(colors)), colors)
            selection = np.random.choice(choices, nsample, replace=False)
            variate = np.bincount(selection, minlength=len(colors))

        The "count" algorithm uses a temporary array of integers with length
        ``sum(colors)``.

        The "marginals" algorithm generates a variate by using repeated
        calls to the univariate hypergeometric sampler.  It is roughly
        equivalent to::

            variate = np.zeros(len(colors), dtype=np.int64)
            # `remaining` is the cumulative sum of `colors` from the last
            # element to the first; e.g. if `colors` is [3, 1, 5], then
            # `remaining` is [9, 6, 5].
            remaining = np.cumsum(colors[::-1])[::-1]
            for i in range(len(colors)-1):
                if nsample < 1:
                    break
                variate[i] = hypergeometric(colors[i], remaining[i+1],
                                           nsample)
                nsample -= variate[i]
            variate[-1] = nsample

        The default method is "marginals".  For some cases (e.g. when
        `colors` contains relatively small integers), the "count" method
        can be significantly faster than the "marginals" method.  If
        performance of the algorithm is important, test the two methods
        with typical inputs to decide which works best.

        .. versionadded:: 1.18.0

        Examples
        --------
        >>> colors = [16, 8, 4]
        >>> seed = 4861946401452
        >>> gen = np.random.Generator(np.random.PCG64(seed))
        >>> gen.multivariate_hypergeometric(colors, 6)
        array([5, 0, 1])
        >>> gen.multivariate_hypergeometric(colors, 6, size=3)
        array([[5, 0, 1],
               [2, 2, 2],
               [3, 3, 0]])
        >>> gen.multivariate_hypergeometric(colors, 6, size=(2, 2))
        array([[[3, 2, 1],
                [3, 2, 1]],
               [[4, 1, 1],
                [3, 2, 1]]])
        
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        Parameters
        ----------
        n : int or array-like of ints
            Number of experiments.
        pvals : sequence of floats, length p
            Probabilities of each of the ``p`` different outcomes.  These
            must sum to 1 (however, the last element is always assumed to
            account for the remaining probability, as long as
            ``sum(pvals[:-1]) <= 1)``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        Examples
        --------
        Throw a dice 20 times:

        >>> rng = np.random.default_rng()
        >>> rng.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]])  # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> rng.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3],
               [2, 4, 3, 4, 0, 7]])  # random

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        Now, do one experiment throwing the dice 10 time, and 10 times again,
        and another throwing the dice 20 times, and 20 times again:

        >>> rng.multinomial([[10], [20]], [1/6.]*6, size=2)
        array([[[2, 4, 0, 1, 2, 1],
                [1, 3, 0, 3, 1, 2]],
               [[1, 4, 4, 4, 4, 3],
                [3, 3, 2, 5, 5, 2]]])  # random

        The first array shows the outcomes of throwing the dice 10 times, and
        the second shows the outcomes from throwing the dice 20 times.

        A loaded die is more likely to land on number 6:

        >>> rng.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26])  # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> rng.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62])  # random

        not like:

        >>> rng.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

        
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 < ``p`` < 1.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range (0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability mass function for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.default_rng().logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a) * count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = rng.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> rng = rng
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + rng.standard_normal(100)
        ...    b.append(np.product(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.default_rng().logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

        
        integers(low, high=None, size=None, dtype=np.int64, endpoint=False)

        Return random integers from `low` (inclusive) to `high` (exclusive), or
        if endpoint=True, `low` (inclusive) to `high` (inclusive). Replaces
        `RandomState.randint` (with endpoint=False) and
        `RandomState.random_integers` (with endpoint=True)

        Return random integers from the "discrete uniform" distribution of
        the specified dtype. If `high` is None (the default), then results are
        from 0 to `low`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is 0 and this value is
            used for `high`).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is np.int64.
        endpoint : bool, optional
            If true, sample from the interval [low, high] instead of the
            default [low, high)
            Defaults to False

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        Notes
        -----
        When using broadcasting with uint64 dtypes, the maximum value (2**64)
        cannot be represented as a standard integer type. The high array (or
        low if high is None) must have object dtype, e.g., array([2**64]).

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.integers(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])  # random
        >>> rng.integers(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> rng.integers(5, size=(2, 4))
        array([[4, 0, 2, 1],
               [3, 2, 2, 0]])  # random

        Generate a 1 x 3 array with 3 different upper bounds

        >>> rng.integers(1, [3, 5, 10])
        array([2, 2, 9])  # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> rng.integers([1, 5, 7], 10)
        array([9, 8, 7])  # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7],
               [ 1, 16,  9, 12]], dtype=uint8)  # random

        References
        ----------
        .. [1] Daniel Lemire., "Fast Random Integer Generation in an Interval",
               ACM Transactions on Modeling and Computer Simulation 29 (1), 2019,
               http://arxiv.org/abs/1805.10941.

        
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative and
            less than 10**9.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative and
            less than 10**9.
        nsample : int or array_like of ints
            Number of items sampled.  Must be nonnegative and less than
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        multivariate_hypergeometric : Draw samples from the multivariate
            hypergeometric distribution.
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        The arguments `ngood` and `nbad` each must be less than `10**9`. For
        extremely large arguments, the algorithm that is used to compute the
        samples [4]_ breaks down because of loss of precision in floating point
        calculations.  For such large values, if `nsample` is not also large,
        the distribution can be approximated with the binomial distribution,
        `binomial(n=nsample, p=ngood/(ngood + nbad))`.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution
        .. [4] Stadlober, Ernst, "The ratio of uniforms approach for generating
               discrete random variates", Journal of Computational and Applied
               Mathematics, 31, pp. 181-189 (1990).

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = rng.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = rng.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = rng.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = rng.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.default_rng().geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 #random

        
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.default_rng().gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.default_rng().f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        
        choice(a, size=None, replace=True, p=None, axis=0, shuffle=True)

        Generates a random sample from a given 1-D array

        Parameters
        ----------
        a : {array_like, int}
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated from np.arange(a).
        size : {int, tuple[int]}, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn from the 1-d `a`. If `a` has more
            than one dimension, the `size` shape will be inserted into the
            `axis` dimension, so the output ``ndim`` will be ``a.ndim - 1 +
            len(size)``. Default is None, in which case a single value is
            returned.
        replace : bool, optional
            Whether the sample is with or without replacement
        p : 1-D array_like, optional
            The probabilities associated with each entry in a.
            If not given the sample assumes a uniform distribution over all
            entries in a.
        axis : int, optional
            The axis along which the selection is performed. The default, 0,
            selects by row.
        shuffle : bool, optional
            Whether the sample is shuffled when sampling without replacement.
            Default is True, False provides a speedup.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if p is not 1-dimensional, if
            a is array-like with a size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size.

        See Also
        --------
        integers, shuffle, permutation

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> rng = np.random.default_rng()
        >>> rng.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to rng.integers(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> rng.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> rng.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to rng.permutation(np.arange(5))[:3]

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> rng.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.default_rng().chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random

        
        bytes(length)

        Return random bytes.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : str
            String of length `length`.

        Examples
        --------
        >>> np.random.default_rng().bytes(10)
        ' eh\x85\x022SZ\xbf\xa4' #random

        
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = rng.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(rng.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 38%.

        When method is 'count', sum(colors) must not exceed %dGenerator.permutation (line 4253)Generator.multinomial (line 3546)Axis argument is only supported on ndarray objects
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.default_rng().wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        <strided and direct or indirect>
        standard_gamma(shape, size=None, dtype=np.float64, out=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is
            not None, it must have the same shape as the provided size and
            must match the type of the output values.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.default_rng().standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        standard_exponential(size=None, dtype=np.float64, method='zig', out=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        method : str, optional
            Either 'inv' or 'zig'. 'inv' uses the default inverse CDF method.
            'zig' uses the much faster Ziggurat method of Marsaglia and Tsang.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.default_rng().standard_exponential((3, 8000))

        
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              http://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.default_rng().standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        Parameters
        ----------
        lam : float or array_like of floats
            Expectation of interval, must be >= 0. A sequence of expectation
            intervals must be broadcastable over the requested size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        Notes
        -----
        The Poisson distribution

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> rng = np.random.default_rng()
        >>> s = rng.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = rng.poisson(lam=(100., 500.), size=(100, 2))

        
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.default_rng().laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        -------
        ValueError
            If any value in ``alpha`` is less than or equal to zero

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               http://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.default_rng().dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        Unsupported dtype %r for randomGenerator.triangular (line 2596)Generator.standard_t (line 1588)unable to allocate array data.probabilities do not sum to 1a must an array or an integerGenerator.logseries (line 3261)Generator.lognormal (line 2347)Generator.geometric (line 3067)Generator.dirichlet (line 3912)Generator.chisquare (line 1375)Generator.vonmises (line 1682)Generator.rayleigh (line 2459)Generator.logistic (line 2267)Generator.binomial (line 2696)nsample must be nonnegative.itemsize <= 0 for cython.arraya and p must have same sizeGenerator.weibull (line 1863)Generator.shuffle (line 4111)Generator.poisson (line 2915)Generator.laplace (line 2063)Generator.integers (line 361)nsample must be an integermean must be 1 dimensionalRange exceeds valid boundsGenerator.uniform (line 761)Generator.pareto (line 1765)Generator.gumbel (line 2148)probabilities contain NaNnsample must not exceed %dInvalid shape in axis %d: %d.Generator.random (line 154)Generator.power (line 1962)Generator.normal (line 938)Generator.gamma (line 1131)Generator.choice (line 517)Generator.zipf (line 2987)Generator.wald (line 2528)Generator.bytes (line 488)Cannot index with type '%s'p must be 1-dimensionalnumpy.random._generator<contiguous and indirect><MemoryView of %r at 0x%x><MemoryView of %r object>numpy.core.multiarray<contiguous and direct>Generator.f (line 1209)<strided and indirect>normalize_axis_indexNotImplementedError<strided and direct>nsample > sum(colors)ngood + nbad < nsamplecline_in_traceback__pyx_unpickle_Enumascontiguousarraymay_share_memorysum(pvals[:-1]) > 1.0standard_normal__setstate_cython____pyx_PickleError_poisson_lam_maxdtype_is_objectallocate_bufferView.MemoryView__generator_ctorRuntimeWarning__reduce_cython____pyx_getbuffer_generator.pyxcount_nonzerobit_generatorOverflowErrorstringsourcesearchsortedreturn_index__pyx_checksumRuntimeErrordefault_rngcheck_validPickleErrorMemoryErrorImportError__pyx_vtable____pyx_resultnumpy.dualmode > rightlogical_orless_equalleft == rightissubdtypeempty_likeValueErrorIndexError__reduce_ex____pyx_statemarginalsleft > modeenumerateTypeErrorGeneratorwarningsswapaxessubtract__setstate__reversed__reduce____pyx_typepickleoperatoritemsizeisscalarisnativeisfiniteintegers__getstate__floatingendpointcholeskyallcloseEllipsistobytesstridesshuffle__rmatmul__reshapereplacensamplememviewinteger__imatmul__greaterfortranfloat64float32capsule at 0x{:X}asarrayalpha <= 0updateunpackuniqueuint64uint32uint16structreducerandom_picklenamemethod__matmul____import__ignoreformatencodedoublecumsumcompatcolorsastypearangezerosuint8statestartsigmashapescalerightravelrangeraisepvals_pcg64numpyngoodkappaisnanint64int32int16indexflagsfinfoerrorequal__enter__emptydtypedfnumdfdencount__class__arrayalphaPCG64ASCIIwarn__test__takestopstepsqrtsortsizesideseedrtolprodpacknoncndimnbad__name__modemean__main__longlocklessleftitemintpint8highfull__exit__eigh__dict__copybool_baseaxisatolzigtolsvd__str__outobj__new__maxlowloclamepsdotcovanyalladd<u4npmuiddf)(xpncbaTOBuffer dtype mismatch, expected %s%s%s but got %sBuffer dtype mismatch, expected '%s' but got %s in '%s.%s'Does not understand character buffer dtype format string ('%c')memviewslice is already initialized!Unable to initialize pickling for %s%.200s.%.200s is not a type object%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObject%s.%s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObject%.200s does not export expected C variable %.200sC variable %.200s.%.200s has wrong signature (expected %.500s, got %.500s)%.200s does not export expected C function %.200sC function %.200s.%.200s has wrong signature (expected %.500s, got %.500s)View.MemoryView.memoryview.__str__View.MemoryView.memoryview.size.__get__View.MemoryView.memoryview.nbytes.__get__View.MemoryView.memoryview.itemsize.__get__View.MemoryView.memoryview.ndim.__get__View.MemoryView.memoryview.suboffsets.__get__View.MemoryView.memoryview.shape.__get__View.MemoryView.memoryview.assign_item_from_objectView.MemoryView._memoryviewslice.assign_item_from_objectView.MemoryView.memoryview.setitem_indexedView.MemoryView.array.memview.__get__View.MemoryView.array.__getattr__View.MemoryView.array.__getitem__numpy.random._generator.Generator.__reduce__numpy.random._generator.Generator.__setstate__numpy.random._generator.Generator.__getstate__numpy.random._generator.Generator.__str__Unexpected format string character: '%c'Expected a dimension of size %zu, got %zuExpected %d dimensions, got %dPython does not define a standard format string size for long double ('g')..Buffer dtype mismatch; next field is at offset %zd but %zd expectedBig-endian buffer not supported on little-endian compilerBuffer acquisition: Expected '{' after 'T'Cannot handle repeated arrays in format stringExpected a dimension of size %zu, got %dExpected a comma in format string, got '%c'Expected %d dimension(s), got %dUnexpected end of format string, expected ')'__int__ returned non-int (type %.200s).  The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__%.4s__ returned non-%.4s (type %.200s)%s() got multiple values for keyword argument '%U'%.200s() keywords must be strings%s() got an unexpected keyword argument '%U'%.200s() takes %.8s %zd positional argument%.1s (%zd given)numpy.random._generator.Generator.betanumpy.random._generator.Generator.exponentialnumpy.random._generator.Generator.normalnumpy.random._generator.Generator.gammanumpy.random._generator.Generator.fnumpy.random._generator.Generator.noncentral_fnumpy.random._generator.Generator.chisquarenumpy.random._generator.Generator.noncentral_chisquarenumpy.random._generator.Generator.standard_cauchynumpy.random._generator.Generator.standard_tnumpy.random._generator.Generator.vonmisesnumpy.random._generator.Generator.paretonumpy.random._generator.Generator.weibullnumpy.random._generator.Generator.powernumpy.random._generator.Generator.laplacenumpy.random._generator.Generator.gumbelnumpy.random._generator.Generator.logisticnumpy.random._generator.Generator.lognormalnumpy.random._generator.Generator.rayleighnumpy.random._generator.Generator.waldnumpy.random._generator.Generator.negative_binomialnumpy.random._generator.Generator.poissonnumpy.random._generator.Generator.zipfnumpy.random._generator.Generator.geometricnumpy.random._generator.Generator.logseriescalling %R should have returned an instance of BaseException, not %Rraise: exception class must be a subclass of BaseExceptionnumpy.random._generator.Generator.__init__View.MemoryView.array.__reduce_cython__View.MemoryView.array.__setstate_cython__View.MemoryView.memoryview.__reduce_cython__View.MemoryView.memoryview.__setstate_cython__View.MemoryView.memoryview.strides.__get__View.MemoryView._memoryviewslice.__reduce_cython__View.MemoryView._memoryviewslice.__setstate_cython__PyObject_GetBuffer: view==NULL argument is obsoleteView.MemoryView.array.__getbuffer__View.MemoryView.memoryview.__getbuffer__Acquisition count is %d (line %d)View.MemoryView.array.get_memviewView.MemoryView.memoryview_cwrapperView.MemoryView.memoryview.is_slicetoo many values to unpack (expected %zd)View.MemoryView.array.__setitem__Subscript deletion not supported by %.200sView.MemoryView.memoryview_fromsliceView.MemoryView.memoryview_copy_from_sliceView.MemoryView.memoryview.__repr__numpy.random._generator.Generator.__repr__View.MemoryView.Enum.__reduce_cython__View.MemoryView.memoryview.convert_item_to_objectView.MemoryView._memoryviewslice.convert_item_to_objectvalue too large to convert to intcan't convert negative value to size_t'NoneType' object is not subscriptablehasattr(): attribute name must be stringView.MemoryView.__pyx_unpickle_Enum__set_stateView.MemoryView.Enum.__setstate_cython__numpy.random._generator._check_bit_generatornumpy.random._generator.default_rngView.MemoryView.memoryview.get_item_pointerinteger division or modulo by zerovalue too large to perform divisionView.MemoryView.pybuffer_indexCannot convert %.200s to %.200sView.MemoryView.get_slice_from_memviewView.MemoryView.memoryview.is_f_contigView.MemoryView.memoryview.is_c_contigView.MemoryView.assert_direct_dimensionsView.MemoryView.memoryview.setitem_slice_assign_scalarCannot transpose memoryview with indirect dimensionsView.MemoryView.transpose_memsliceView.MemoryView.memoryview_copyView.MemoryView.memoryview.T.__get__View.MemoryView.copy_data_to_tempView.MemoryView.memoryview_copy_contentsCannot copy memoryview slice with indirect dimensions (axis %d)View.MemoryView.array_cwrapperView.MemoryView.memoryview.copy_fortranView.MemoryView.memoryview.copynumpy.random._generator.Generator.bytesnumpy.random._generator.Generator.uniformView.MemoryView.memoryview.__setitem__need more than %zd value%.1s to unpack'NoneType' object is not iterablenumpy.random._generator.Generator.standard_exponentialView.MemoryView.memoryview.__cinit__numpy.random._generator.Generator.randomnumpy.random._generator.Generator.standard_normalView.MemoryView.__pyx_unpickle_Enumnumpy.random._generator.Generator.standard_gammaView.MemoryView.memoryview.setitem_slice_assignmentnumpy.random._generator.Generator.triangularnumpy.random._generator.Generator.permutationnumpy.random._generator.Generator.hypergeometricnumpy.random._generator.Generator.binomialView.MemoryView.array.__cinit__Argument '%.200s' has incorrect type (expected %.200s, got %.200s)Argument '%.200s' must not be Noneobject of type 'NoneType' has no len()expected bytes, NoneType foundnumpy.random._generator.Generator.multinomialnumpy.random._generator.Generator.dirichletnumpy.random._generator.Generator.integersnumpy.random._generator.Generator.multivariate_hypergeometricnumpy.random._generator.Generator.shuffleAll dimensions preceding dimension %d must be indexed and not slicedView.MemoryView.slice_memviewsliceStep may not be zero (axis %d)local variable '%s' referenced before assignmentView.MemoryView.memoryview.__getitem__numpy.random._generator.Generator.multivariate_normalnumpy.random._generator.Generator.choiceBuffer has wrong number of dimensions (expected %d, got %d)Buffer exposes suboffsets but no stridesBuffer and memoryview are not contiguous in the same dimension.Buffer not compatible with direct access in dimension %d.Item size of buffer (%zu byte%s) does not match size of '%s' (%zu byte%s)compiletime version %s of module '%.100s' does not match runtime version %sinvalid vtable found for imported typenumpy.random._bounded_integersPyObject *(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *)int (double, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)int (PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)PyObject *(void *, bitgen_t *, PyObject *, PyObject *, PyObject *)PyObject *(void *, void *, PyObject *, PyObject *, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *)PyObject *(void *, void *, PyObject *, PyObject *, int, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)PyObject *(void *, bitgen_t *, PyObject *, PyObject *, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *)PyObject *(void *, void *, PyObject *, PyObject *, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)_ARRAY_API is not PyCapsule objectmodule compiled against ABI version 0x%x but this version of numpy is 0x%xmodule compiled against API version 0x%x but this version of numpy is 0x%xFATAL: module compiled as unknown endianFATAL: module compiled as little endian, but detected different endianness at runtimenumpy.random._generator._memoryviewsliceInternal class for passing memoryview slices to Pythonnumpy.random._generator.memoryviewnumpy.random._generator.Generator
    Generator(bit_generator)

    Container for the BitGenerators.

    ``Generator`` exposes a number of methods for generating random
    numbers drawn from a variety of probability distributions. In addition to
    the distribution-specific arguments, each method takes a keyword argument
    `size` that defaults to ``None``. If `size` is ``None``, then a single
    value is generated and returned. If `size` is an integer, then a 1-D
    array filled with generated values is returned. If `size` is a tuple,
    then an array with that shape is filled and returned.

    The function :func:`numpy.random.default_rng` will instantiate
    a `Generator` with numpy's default `BitGenerator`.

    **No Compatibility Guarantee**

    ``Generator`` does not provide a version compatibility guarantee. In
    particular, as better algorithms evolve the bit stream may change.

    Parameters
    ----------
    bit_generator : BitGenerator
        BitGenerator to use as the core generator.

    Notes
    -----
    The Python stdlib module `random` contains pseudo-random number generator
    with a number of methods that are similar to the ones available in
    ``Generator``. It uses Mersenne Twister, and this bit generator can
    be accessed using ``MT19937``. ``Generator``, besides being
    NumPy-aware, has the advantage that it provides a much larger number
    of probability distributions to choose from.

    Examples
    --------
    >>> from numpy.random import Generator, PCG64
    >>> rg = Generator(PCG64())
    >>> rg.standard_normal()
    -0.203  # random

    See Also
    --------
    default_rng : Recommended constructor for `Generator`.
    
        Gets the bit generator instance used by the generator

        Returns
        -------
        bit_generator : BitGenerator
            The bit generator instance used by the generator
        ð¿ð?˜ð?333333ó?àCš™™™™™¹?:Œ0âŽyE>ÿÿÿÿÿÿÿUUUUUUµ?lÁlÁf¿  J?88C¿$ÿ+•K?<™ٰj_¿¤A¤Az?—SˆBž¿…8–þÆ?5gGö¿€?/*p?3…f?(_?xY?յS?¹ôN?Ž¡J?¥F?DïB?Qt??u+<?Û
9?6?Ó?3?n‡0?ëé-?Äd+?Ñõ(?6›&?XS$?Í"?Yö?âÞ?mÕ?Ù?é?Æ?i+?q\?V—?™Û?Æ(
?s~?>Ü	?ÊA?Į?Ü"?ʝ?G?§?ðiþ>l‘û>7Äø>êö>*Jó>œœð>ìøí>Ì^ë>ïÍè>Fæ>çÆã>7Pá>ÁáÞ>K{Ü>Ú>‚Å×>ÇuÕ>;-Ó>±ëÐ>û°Î>ð|Ì>eOÊ>4(È>8Æ>LìÃ>N×Á>ȿ>•¾½>œº»>¼¹>Ú·>Ùε>ô߳>ö±>°>ñ0®>ƒU¬>¹~ª>|¬¨>¸ަ>Y¥>IP£>w¡>Ðҟ>Bž>ºeœ>)µš>~™>©_—>šº•>C”>”{’>€á>øJ>﷍>X(Œ>'œŠ>N‰>͇>x†>bŒ„>xƒ>¬—>õ!€>’^}>;z>Хw>@Òt>wr>b<o>ñyl>½i>²g>ÂSd>3§a>óÿ^>ô]\>&ÁY>z)W>â–T>P	R>·€O>ýL>5~J>3H>õŽE>nC>’²@>VK>>®è;>ŽŠ9>ë07>»Û4>óŠ2>ˆ>0>pö->¢²+>s)>»7'>%>†Í">˜ž >¼s>éL>*>=>Tð>TÙ>4Æ>í¶>y«
>ϣ>éŸ	>>L£>‡ª>lµ>å‡ÿ=+¬û=×÷=0
ô=ØCð=‰„ì=8Ìè=Ûå=hpá=ÓÌÝ=0Ú=šÖ=ê
Ó=n‚Ï=¢Ì=|…È=ôÅ=£Á=œ;¾=¼ں=Z€·=o,´=óް=ߗ­=.Wª=ا=×è£=%» =½“=™rš=´W—=	C”=“4‘=M,Ž=4*‹=D.ˆ=y8…=ÏH‚=†¾~=¥÷x=õ<s=rŽm=ìg=ãUb=ÑË\=ÞMW=
ÜQ=TvL=»G=AÏA=æ<=¬X7=–/2=©-=è(=Yý"==ì=9=£e=…ž
=Ðã=“5=¶'ù<týï<ƒìæ<õÝ<7Õ<8SÌ<C©Ã<»<\¤²<íIª<Ž
¢<‘æ™<Oޑ<+ò‰<"‚<ïßt<ɵe<ÓÇV<SH<·¥9<˜t+<ƅ<OÛ<‘w<ºê;OÑ;ú$¸;¾ԟ;ë9ˆ;œÅb;HÄ6;]£;«]É:X}:âî9e'‹5ìÄ2’µV2­™Œ27©2ˆ„Â2ÆÙ2Æfï2‚ß3ن3À3Hœ3®(&3Åo.3z63oN>3ËòE3lM3F¾T3/í[3ßûb3íi34Ãp3f€w3“&~3·[‚3Bš…3œψ3gü‹37!3“>’3÷T•3Õd˜3—n›3Ÿrž3Fq¡3ãj¤3Ã_§31Pª3r<­3Æ$°3k	³3›êµ3Œȸ3q£»3|{¾3ÛPÁ3¹#Ä3CôÆ3žÂÉ3òŽÌ3dYÏ3"Ò3+éÔ3®×3ürÚ3ö5Ý3Í÷ß3¸â3xå3”7è3ðõê3«³í3àpð3¤-ó3êõ37¦ø31bû3þ3ùl4ðÊ4ù(4‡4hå4áC4’¢4ƒ
4¿`4MÀ47 4…€4?á4nB4¤4L4i4aÌ4T04í”45ú42`4îÆ4p. 4¿–!4åÿ"4èi$4ÑÔ%4¨@'4t­(4>*4Š+4ëù,4ßj.4ðÜ/4'P14Ä24):44±54&)74™¢84c:4™;4$=4+–>4®@4¶˜A4KC4v¡D4B(F4¸°G4à:I4ÆÆJ4rTL4ïãM4GuO4„Q4²R4Ú4T4ÎU4EiW4ŸY4 ¦Z4ÔG\4Çë]4’_4š:a4”åb4ÿ’d4èBf4\õg4jªi4bk4‹m4ºÙn4¾™p4¤\r4}"t4Yëu4H·w4[†y4¥X{46.}4 4¼q€4§a4]S‚4æFƒ4N<„4 3…4å,†4+(‡4{%ˆ4ã$‰4o&Š4,*‹4'0Œ4m84
CŽ4P4•_4›q‘47†’4{“4w·”4>ԕ4àó–4s˜4<™4¶dš4›4­¿œ4$ò4(Ÿ4a 4–ž¡4lߢ4$¤4Ål¥4„¹¦4x
¨4Ä_©4ˆ¹ª4ê¬4{­4 ã®4EP°4©±4{:³4귴4);¶4nķ4îS¹4çéº4–†¼4<*¾4տ4‰‡Á4ÈAÃ4.Å4ÏÆ4עÈ4ÚÊ4ˆfÌ4RWÎ4²RÐ4*YÒ4FkÔ4œ‰Ö4δØ4‹íÚ44Ý4§Šß4²ðá4¢gä4ðæ4kŒé4¤<ì4…ï4“ßñ4yÕô4æ÷4uû4ò_þ4ç5Œ°5Ž5Œ5@5ó
5ø5å]5^é5­Ÿ5‡5q§5v
5»¼!5¾Î%5ÂV*5×s/5;S55‡:<5ÿœD5àNO5ó^5ÉNv5QHqoõMֻaÝnj DotTrùotoùuÓ$w'xîÍx,jyíy7\z׻zô{ÜW{S˜{»Ñ{.|Œ3|Ž]|ȃ|¸¦|ÆÆ|Iä|Œÿ|Í}C0}F}„Z}›m}‚}S}( }¯}-½}‚Ê}"×}ã}|î}Mù}™~i
~Æ~¶~B(~o0~C8~Ä?~öF~ßM~T~âZ~a~ìf~›l~r~]w~v|~`~ †~¶Š~$~m“~“—~•›~wŸ~:£~ަ~fª~ѭ~#±~Z´~y·~€º~q½~KÀ~Ã~ÁÅ~^È~éÊ~aÍ~ÇÏ~Ò~`Ô~”Ö~¹Ø~ÎÚ~ÕÜ~ÎÞ~¸à~–â~fä~*æ~âç~é~-ë~Áì~Jî~Éï~=ñ~§ò~ô~\õ~¨ö~ë÷~$ù~Uú~}û~œü~²ý~Áþ~Çÿ~Å»ª‘pHâ¤`	Â	i
	£6ÂH
È
A´!ˆèB–ä+m¨Ý5XtŠš¤§¤›‹tW3	ØŸ`Ìw·K×\Ø
L
·sÃ


G	{¤ÂÖßÜͲ‹Vÿ~þ~Ãü~dû~öù~xø~êö~Kõ~šó~Öñ~ÿï~î~ì~ýé~Ïç~‰å~)ã~®à~Þ~aÛ~ŒØ~•Õ~{Ò~;Ï~ÓË~AÈ~Ä~‘À~m¼~¸~z³~¤®~ˆ©~"¤~kž~]˜~ï‘~‹~ԃ~|~Ås~áj~Ua~W~÷K~ó?~æ2~¬$~~÷~
ñ}Ü}€Ä}	ª}Œ}ši}ÉA}}—Û|Q˜|øD|¼Ú{3N{˜Šz‡eyÙww7msð?7ˆåEî?ñÿP¦Ðì?'{ë{åë?*æ!ë?çúb¥ºvê?›mU—Þé?9ªUÄ1Té?/ÒÓv£Ôè?¸Åxè]è?&1$-Šîç?~Ô	›n…ç?cK©[»!ç?Æ„IÃÂæ?\Omúgæ?f¯§Áíæ?u¬Li=½å?s‡ڂ˜lå?š‰xºå?¯øQÁfÓä?iàŽûjŠä?%ᨯ™Cä?€‹±+Ëþã?ÑáDܻã?Ùݧ­zã?cE#;ã?^ÚEã#ýâ?$O¶˜Àâ?½2m…â?£PŒ"ŽKâ?È>ºêâ?‰{‡sÛá?%;Ç¥á?îoÎmÎoá?œ3¼‡;á?ÃJ9á?++ØÕà?*ÐTˆ[¤à?};î1¹sà?HeÒëèCà?$ó`±âà?vE!þ=Íß?úſŽ-rß?MBëцß?–K=ÀÞ?QÓ}6EiÞ?ü7áu“Þ?!§ˆ¿Ý?zí¹}ÙkÝ?~é½Ý?’à@ÜÁÈÜ?`ûƒÙÜxÜ?ƒ¥Ð*Ü?µî®8ÜÛ?ˆ™QiÛ?o€T”“CÛ?_ï(4°øÚ?åöýָ®Ú?@£j§eÚ?ô!u vÚ?’7ZiÖÙ?¨{	òÙ?šŸìIÙ?]TŒÙ?9]·çÀØ?Œ?¼„‰}Ø?8aDµé:Ø?Yζiù×?€Ɲҷ×?ãr^sSw×?ꍰ0‚7×?žd>[øÖ?œéä%۹Ö?Ÿ
Əþ{Ö?ä'HBÂ>Ö?vXï#Ö?lî1&ÆÕ?ï©:l°ŠÕ?磽!×OÕ?õ‰ލÕ?ù&×ÛÔ?Óڋ«¢Ô?タ+	jÔ?âAëî1Ô?N¡0ZúÓ?…²«0HÃÓ?ï}±G·ŒÓ?ÝÐü(¥VÓ?5$1Æ!Ó?pB9 õëÒ?b"®FS·Ò?)vEW(ƒÒ?ývG}rOÒ?ÿ~ñ/Ò?Û	{÷^éÑ?Z¼šáý¶Ñ?‚…Ñ?ï‘âބSÑ?ºŸºÌi"Ñ?l¦ÙR¸ñÐ?3SønÁÐ?>éNŒ‘Ð?Ґ]ðbÐ?,|y€õ2Ð?jG“«>Ð?T“ÿLҫÏ?~>–\çOÏ?›àèºôÎ?ò@YHšÎ?§ƒ/֎@Î?9O"HŒçÍ?¸îã>Í?ý1´ ¢7Í?ŸÐö8¶àÌ?ÎOxŠÌ?]æ4Ì?5D9gþßË?¥är|¾‹Ë?>ïܸ$8Ë?[ëB/åÊ?I<ÀKܒÊ?¼\ß*AÊ?ÅäÑðÉ?#>䠟É?¡’æžÆOÉ?y»%d†É?ÕbPŸޱÈ?ùŒÄÍcÈ?æç”PRÈ?®…ÈjÉÇ?þFŸ¹}Ç?9(¹Q1Ç?ê„îcæÆ?(ڦ^w›Æ?¬Ñ0U^QÆ?1j°úÐÆ?¶ÂT	ξÅ?õx.BTvÅ?IŒmb.Å?ú¶<X÷æÄ?–0˜Ø Ä?ÆÌ-ɰYÄ?šj8ÓÄ?©ø…wÎÃ?ÉՔ&‰Ã?¯úßBEÃ?n}¾ªgÃ?4Ï…
¾Â?@™`r*{Â?xè»{Æ8Â?eÊ=¯ÝöÁ?fÖ1 oµÁ?x®ðæytÁ?/qÉ ý3Á? ìï÷óÀ?/¶T{i´À?¾¥·îPuÀ?nz­6À?ê˦üð¿?f…u¿?<îóú¾?̹ŽF¾?ûºaõz¾?˜“­‘½?×M‘‡½?Wý€k[£¼?¯.ô.¼?&qWš¹»?He5TF»?eTe±CӺ?·8Ù=]aº?(ôFÐMð¹?pk3G€¹?¹t刯¹?;SZƒ¢¸?ºÄ;,`4¸?ó¦׀sǷ?<†W[·?¶„Hð¶? ¶0܍…¶?÷ÞÊ\Þ¶?>»‘íû²µ?6ÐY¹åJµ?)ِòšã´?\˜CÓ}´?±%d´?žŸ›™w²³?çÆSN³?э”vöê²?pÎaˆ²?Œ,Q’&²?@£o¨‰ű?’SuFe±?PÊV‡È±?;‡§°?Èõ×I°?v–iºÐׯ?4èD™ô¯?å².¥žg®?X1Iα­?Jyƒý¬?é!d¼J¬?…پz™«?„€j»éª?8ñG;ª?L|{‚ʎ©?mw€n—ã¨?k9:è9¨?ž«´¼‘§?R¯¶yë¦?A &ÇòE¦?ÊÒÅU¢¥?ëŖò<¥?k&«_¤?ÿÿG #?®?~#£?ÀVÉ#‡¢?Ôó_´ì¡?¡³ŸÐS¡?QÖ|z¼ ?îú
Y²& ?˜¯Çö$Ÿ?htQz®ÿ?3Tݜ?pXúP¡¾›?›N’æ梚?H*gŠ™?g™ìS(u˜?–ü‡Ú1c—?w@¢r‹T–?Q«¦=I•?¾ð‡ÎQA”?„]1%Ò<“?2:¹áÉ;’?__rTE>‘?ð	RD?ÎljÞý›Ž?W'n¹¶Œ?-ÉBUú؊?½§hê‰?õtªæ¶4‡?Ëä“n…?boQx°ƒ?qv³íiû?ù×_)òN€?Å]túQW}?6H—Ôé#z? 6ì7Ÿw?ý"ãΗús?C@Wi=q?Ḱ³Xl?ÿþ¡óˆØf?$£á¨k”a?%>Tµ+Y?¹ü÷
²O?KŸ2Ã=?Á]¿”ìdÑ<A]‹X`<+M[I²Öj<º[©5“q<s*Jåæ"u<€zÂûPx<̷yïÑ8{<˜½m·Øì}<<\ÆIð;€<pöÖ$Ûp<3&ڐ˜‚<Ên=þˆ³ƒ<!þÆń<ÃJøͅ<½+§ð@φ<ÐÚÍɇ<o`ÓTY¾ˆ<Ò7"U€­‰<R]¾ȗŠ<ģÝݥ}‹<‰?Œ×{_Œ<6|ñM¢=<ZsñxfŽ<ªO_ÏðŽ<	2h]Òď<XujívK<ü€›GH³<¯õI‡ó‘< ßK댑<çI>é&ä‘<.ÿ8eÒG’<h#ឪ’<KÚ&¥š“<‚mâÒm“< b!ÑSΓ<HgpÊ(.”<ç5_\”<“Íkøë”<Mox)J•<ý¾¸=ާ•<Ï.Ýǘ–<àhm-a–<D©úbS½–<»yy—<sy#nt—<r~|oϗ<™ÕþS*˜<ìá+/w„˜<*ÅÐPˆޘ<D¢ý½S8™<8­Bޑ™<¿ÿu,ë™<Jˆ¾BDš<aҖS%š<É$òDØõš<›—Ly_N›<‰?³¾¦›<™þY“ùþ›<ŸÒpšWœ<ÛZÂ+¯œ<ûæðŽò<kØñ½^<WBju¶<þ1|÷ž<Dσ´ež<bâåA½ž<Ÿ”âÆŸ<µþW+FlŸ<¡©eÂß<Ù<šŸ
 <b±
ö]9 <øvre <rK»㐠<7q­¼ <f/z |è <¬9R¡<¾}po0@¡<ûwál¡<–#=©	˜¡<ƒR=Ýġ<âĩð¡<±Ó'¢<)£³MH¢<ŸÐ;ƒt¢<ª͋tɠ¢<];¥d!͢<!Œù¢<vû|
&£<¡ŠªR£<ð…šF£<üïÏL¬£<m3ÀÝأ<Ä	Oôͤ<ÐlFæ×2¤<§lq”ü_¤<ăÈü<¤<¤kšº¤<êEËôè¤<ûف®¥<øµ,ÄgC¥<'o1¼Aq¥<ùœNk=Ÿ¥<5“Ô[ͥ<&ÏVúû¥<.sã*¦<Œ›\–‘X¦<îëÓE‡¦<ß<~ ¶¦<¦YË$å¦<û©PS§<úa¬C§<0ÑwÑ1s§<
$±v䢧<÷}kÅҧ<wrÎÌÕ¨<*æߺ3¨<çaY‰c¨<T¤Ï.”¨<”`ÌHŨ<þóö¨<ásŽ\'©<Š‚5²ØX©<ô»@9ŽŠ©<]ÇÚ}¼©<QéÝܨî©<-YЊ!ª<ÆV5¶Sª<óÐ2›†ª<zeß9ª<ÿ¬ʝ(íª<µ‹nÖÓ «<B%ÏøÃT«<¶O2{úˆ«<&Ûx½«<…ý-@ò«<-àBNS'¬<¤±ꂲ\¬<û##Ø_’¬<l¥•ó\Ȭ<€q탫þ¬<­ò0AM5­<þ£íCl­<
¥S‘£­<5ÒJ7ۭ<›P&´7®<R¤|”K®<#ôšO„®<xvJk½®<h‘[üèö®<¼ nË0¯<Ð^Q˜k¯<åáï³ƥ¯<Ø	Ý
äà¯<Ôùz7°<9ï4,°<£$’žkJ°<Û&ÏÜh°<­:ω‡°<È3÷s¦°<o”©œŰ<·ÏïPå°<Îïf¯±<J’jœ$±<+:oìÍD±<ÁąEe±<ž®o݆±< x¢§
§±<Z*x¦aȱ<p3›ªê±<¢ôð“ò²<PåOR3.²<º;@æÆP²<¦ÚÇa¯s²<+SBé<QÛE´‡º²<p-–|޲<eY&Yγ<Ч*'³<eÉ;³–L³<V¨Œør³<CQ4œõ—³<ƒ‹zD¾³<ÐޭŒå³<­îõé/´<øB½ÉÒ3´<,É…í[´<2”Әƒ„´<L¡]§˜­´<'±{0״<•¹Oµ<²ª¬qø+µ<Z§ø1Wµ<aDLý‚µ<á8úa¯µ<ž½ˆdܵ<y—
¶<”.{$U8¶<2ôÃ`Og¶<îH—Jý–¶<{š/eǶ<%ô±ø¶<Ò\Î}*·<Ãq½â<]·<ùqkµҐ·<Óv}Gŷ<né£ú·<þÀ,ñ0¸<Bsh9h¸<«[i΅ ¸<•6;‚âٸ<DuóÒZ¹<*ü4ûO¹<؍ñЌ¹<êÙ$:êʹ<xñI>V
º<;LèC%Kº<ꆭÂhº<ÄE؂3Ѻ<
¶»<ê‘P±]»<^Úvґ¦»<wïKÞTñ»<§àÂA>¼<ôÈÈBôŒ¼<©òì޼<Å8'k1½<ì;ìo”‡½<ŸñN¯Pà½<`	nò;¾<Có*¯š¾<JêPgÂü¾<§÷‘—nb¿<åÆöCþ˿<.ìb³âÀ<ïŽõ‹VÀ<N¥ËÍQÀ< H]x1ÐÀ<¦’C¨Á<*DugxVÁ<Ö³¼ŸÁ<|úɠ¼ëÁ<Ÿ‘Y¶+=Â<¥ªI®õ“Â<ðDŠãðÂ<^÷Ì'îTÃ<a¸ÈÇNÁÃ<bäf—7Ä<ÑQGÍ׹Ä<ösÏ<ØJÅ<ÒsázîÅ<r¿KmgªÆ</ÆêÖP‡Ç<íò染È<…{H
ÜéÉ<üqÚQžÃË<ƒ»~)ÙÉÎ<Ɨ$'R~1œ×[}<?Žõn®°2·›|D÷'Ñeˆ•r9\-þ²kÕ[~p,Ý4Éȝ¬ß	6xÔq{3¢·|‹Zlo	B{>®¯
—žðN±õ®Ve´½ÃΙ‡ðöÕˆVn®æÐ6Ênô¤ÔÝvK¶–§ãz÷ñicp%Eò t¨Q®)2U¹±1ÁWQ9Linëâ?úˆ×23F:¿L"3\L‡QÀìÃ	¡V–™	Ùf[ŒÐ‚à_rWDÝdx–…ö	hæ+*Åkôä2=Ko:ñq rÖ	M—ÈuÀ\Çxô?AŸ{ŠŸFS~8â;æ€b‘­=Zƒ¹V`±…bB²‰í‡út“uЬ9=ºŒJÐEÌŽ>ñàXƒ–½‘دG¬w“Úd‹O •’8cx¸–’ˆ–A˜€ºFẙi¼&›zqV…œØÏYםΡagŸÀ6	X 83:뇡üÄko­¢‚Îɣ¢jî_ۤ|	Mªä¥‚gä^å¦Ä¥Üݧt¨æ|Ψî_Γ·©X¸­p™ª2‚X^t«„t£H¬蟿‚­W;ޭlò ®~°$\¯z[°ô߁İúñ¶Pp±:–²ž²J¨ß+º²N!X³¾ɦñ³֬ᆴü“ÇóµªýÅ¥µXþ7(.¶
Ɉ³¶˜µ?5·¨}Üh³·ºÖ.¸öG{¥¸tš•¹rº…й&oyaø¹†âî=cºìA/˺D‘´H0»⤮œ’»žÈ<ò»”)Ò9O¼Ô@ᣩ¼žTнœrÞûV½j֋ª½@?˷ú½ÞdsI¾^iÉ@•¾(±†0߾taÞö&¿⊂žl¿Ä©1°¿°ýºñ¿ˆEA1À²T[ÏnÀ&‹mªÀŠi™#äÀdŠ)ùÁB}õQÁJw†Á´tž}¸ÁBê éÁÞÕîÂþƒ<
EÂÂO†vpÂc/šÂF€é<´ÆҢèÂì"Ae
Üއ0ÃÆ~RÃøfßúqÆ(*QÃú—t­ÃH3DÈÃ@«ÌäáèMŽ÷ùÃ`P¸}Ähýwx%Äƿµè8Ä*ÏJÄèGô+[ÄElÿiIJPIwĸû+	ƒÄöE>Äҙç•İ0ݝÄ2´y‘¢ÄüŽŽ¦ÄŒûëø¨ÄžêΩÄ4úA©Ä (N­¦Ät.Ȱ¢Äâ-æÄô-…̕ÄÀ^&܌Äz#ì;‚ÄæޖæuÄ‚~ÖgÄ6XÄ .pmFĘË3Än
ËÄ��ÄbËH²íÃ<Y>ÄÒô‘޵ÃLa™õ–Ã’EZvÃp“óRÃ(²Á-Èx½_Ãbò˿ÜžŸ¹ӰÂðüŒ‚ÂdñyÚQžӶ¬ÂVgŒñèÁ<»7–°ÁÍ܆uÁ¶Öt®7Á$»ööÀ¤MH³À𯋉lÀdó’ "À¸rqտŽH)݄¿
Æ/Å0¿ÆwپÚ}2€}¾¦K	¾D5zº½&ø¹§R½ Æcæ¼äM,}u¼ª·c¿ÿ»¢æ?ò„»ŒѠÙ»¬p5º¶’¿ó¹ü«Ô.b¹J3ʸT[vv+¸\‰[œ…·”UÕ@ضBiÙ÷"¶à7oLeµÒi¿¿ž´FçÈγ>œSÏô²R(D2²–Z> ±ÂáB0$°¦yÄ1¯ágW®r-¿ެ
@樫(ÿ™óaª¢foe©<P³š§òÑ&¦ê‹Ô{¤”ÀœƢó}ôô 
¾k3Ÿ¼ùy+ñœīD¸š¸/x[U˜x?ЫÕòñΩý’äšÚüø…sž¹Œ–Gì*‰ŽÛùE…š6Ãý€&é9xB|Ì*X£w$ q*5·4‚jfâ¨cÄãOfZrÎNrPÚo\fÇD¢YŠ£å6
4P4&{>æËWú®öˆ¡ŒÓ°-¦¢|&‹ÇaY°¬+öÝÀèäÙMÛ€?V#z?£ºu?øq?}›n?„k?L¢h?ée?öRc?çØ`?Zw^?*+\?ÔñY?RÉW?ø¯U?_¤S?X¥Q?߱O?ÉM?3êK?ŽJ?ŽGH?ª‚F?jÅD?`C?(`A?j·??Ô>?x<?øà:?0O9?†Â7?Å:6?»·4?993?¿1?%I0?C×.?Mi-?!ÿ+? ˜*?«5)?'Ö'?úy&?!%?CË#?Šx"?Ì(!?õÛ?ñ‘?­J??$Ä?¾„?ØG?c
?QÕ?”Ÿ?!l?ë:?å?ß?@´?‹‹
?Üd?)@?i
?’ü?Ý?À?4¥?±‹?îs?å]?I?ä6?¼Kþ>í,ü>Nú>Ôø÷>qãõ>Ñó>ÇÁñ>jµï>ú«í>k¥ë>µ¡é>Πç>¬¢å>F§ã>“®á>Œ¸ß>'ÅÝ>\ÔÛ>#æÙ>uú×>JÖ>š*Ô>_FÒ>’dÐ>+…Î>$¨Ì>wÍÊ>õÈ>Ç>JKÅ>ÅyÃ>|ªÁ>iݿ>…¾>ÍI¼>;ƒº>ʾ¸>tü¶>5<µ>	~³>êq>Ô°>ÂO®>±™¬>œåª>~3©>Tƒ§>ե>Í(¤>g~¢>çՠ>G/Ÿ>„Š>›ç›>‰Fš>J§˜>Ü	—>:n•>bԓ>Q<’>¦>x>ª~>—í‹>>^Š>šЈ>«D‡>lº…>Ü1„>ùª‚>À%>\D>„@|>ó?y>¥Bv>–Hs>ÁQp>#^m>¸mj>|€g>m–d>†¯a>ÄË^>$ë[>£
Y>=3V>ð[S>º‡P>–¶M>ƒèJ>~H>…UE>”B>«Î?>Ç=>åS:>›7>"å4>=22>T‚/>dÕ,>m+*>m„'>cà$>N?">,¡>ý>Àm>tØ>F>­¶>1*>¥ 
>>Y–>š>ʗ>ë>öIý=ù_ø=à{ó=«î=^Åé=úòä=ƒ&à=ü_Û=gŸÖ=ÊäÑ='0Í=„È=åØÃ=P6¿=˙º=\¶=	s±=Ûè¬=Ød¨=
ç£=yoŸ=/þš=6“–=š.’=fЍ=§x‰=i'…=½܀=a1y=ª¶p=xIh=ðé_==˜W=ˆTO=G=Ü÷>=Nß6=’Õ.=èÚ&=–ï=ç=-H=L=Äÿ<אð<̀á<ú”Ò<ŽÎÃ<Ø.µ<X·¦<Äi˜<HŠ<R©x<i$]< B<²\'<‘,
<ç;Gõ´;øP„;úü*;.0¥:ÜIú4_hÜ2z…3Êå+3ç@3aQ3i`3{am3A’y3‘i‚3*¨‡35•Œ3=‘3r©•3þá™3öì3|ϡ3ڍ¥3«+©3¬¬3ް3“^³3•¶3׶¹3iż3-¿3c®Â3%‹Å3uYÈ3<Ë3LÎÍ3gvÐ3;Ó3k¥Õ3‹-Ø3$¬Ú3´!Ý3±Žß3ˆóá3Pä3P¦æ3øôè3é<ë3p~í3չï3^ïñ3Jô3ÖIö3<oø3³ú3m«ü3œÂþ3·j4r4Uw4³z45|4ì{4ëy4Bv4q48j	4õa
4FX49M4Û@
4834]$4U4,4ìð4 Ý4SÉ4´4۝4Æ4Ïn4V4w<4$"44Vë4ëÎ4ޱ45”4÷u4,W 4Ù7!4"4¼÷"4ýÖ#4ҵ$4@”%4Mr&4P'4_-(4p
)47ç)4ºÃ*4 +4|,4éW-4—3.4/4~ê/4ÃÅ04ï 14|24W34244
54è54Ã64"ž74@y84sT94¿/:4*;4¸æ;4nÂ<4Rž=4hz>4´V?4=3@4A4íA4qÊB4¨C4†D4udE4-CF4K"G4ÑH4ÇáH41ÂI4£J4v„K4\fL4ÍHM4Ì+N4aO4‘óO4bØP4ٽQ4ý£R4ԊS4crT4²ZU4ÆCV4§-W4ZX4èY4UðY4ªÝZ4îË[4(»\4_«]4›œ^4åŽ_4C‚`4¿va4alb40cc47[d4~Te4Of4òJg42Hh4ÙFi4ñFj4…Hk4 Kl4MPm4˜Vn4^o48hp4¦sq4å€r4s4
¡t4´u4Év4Càw4”ùx4 z4ù2{40S|4Ùu}4›~4ÎÂ4¢v€4@
4L¥4Ò>‚4àق4vƒ4Ä„4¸´„4lV…4ïù…4RŸ†4¦F‡4ÿï‡4p›ˆ4
I‰4ëø‰4"«Š4Ê_‹4üŒ4ÓЌ4l4åLŽ4`4þԏ4坐4<j‘4-:’4æ
“4˜å“4vT4»¡•4¢†–4np—4g_˜4ÛS™4 Nš4”N›4Uœ4¬c4>yž4ݖŸ4%½ 4Áì¡4r&£4k¤4»¥4(§4û„¨4‹ª4«4.­4Qä®4N³°4tž²4ª´4\۶4H9¹4«̻4p¡¾4ÈÁ4~XÅ4wÉ4p_Î4ä~Ô4úÀÜ4¤Ýé4ì™wõE`¨m´r¯’u\zw8Êxk¿y5zz/
{ԃ{—å{ˆ7|3}|&¹|Hí|}C}‹g}ۇ}ü¤}a¿}g×}]í}ƒ~~4%~5~ÕC~“Q~g^~ij~ªu~>€~2Š~•“~rœ~դ~Ƭ~N´~u»~CÂ~¼È~èÎ~ÌÔ~kÚ~Ëß~ïä~Üé~”î~ó~t÷~ û~£ÿ~6Ê
<ÄÜÚ½‡ :#×%](Ð*.-z/³1Ü3ó5û7ó9Ü;·=„?EAøBŸD:FÊGNIÈJ8LMùNLP•QÕR
T=UdV„WœX¬YµZ¸[³\¨]–^~__`;abàbªcod.eèeœfLgögœh<iÙipjk‘kl l!mžmnŒnünhoÑo5p–pópLq¡qòq?r‰rÏrsPs‹sÃsös'tSt|t¡tÃtàtûtu$u3u?uFuJuKuGu?u4u$uuùtÞt¾tštrtEttßs¥sfs#sÚrr:rãq†q#q»pMpÙo_oßnXnËm7mœlùkOkœjâiiThg¡f¸eÆdÈcÀb«aŠ`]_!^Ø\[ZžXWuUÄSþQ"P/N"LúI¶GSEÏB(@Z=d:A7í3e0¤,¤(_$Îê©ä	Fü~>ô~¨ë~7â~È×~/Ì~7¿~°~
 ~
~w~G]~“>~Y~,ë}6°}b}¹ô|ÒO|06{ÒÒxð?‡ðyÉjDï?©l[T·î?wð'à?î?•Þ§oÓí?ò¼W’pí?Ü¡xIí?ë-§¨3½ì?x©Î^jì?êºîÙì?‚ÜáNëÎë?Rõ:e…ë?Ý4‚:>ë?¢èl?*ùê?%zñþµê?áÉPՋtê?¯õýª4ê?Øeî;öé?$"¹é?ÁzaWF}é?Gz‘Bé?Oq1½ñé?¨
æOUÐè?ߺH­˜è?¬¼7üëaè?nÏV,è?Ëâ Kíöç?XhœwšÂç?հ <ç?VØp\ç?m?ôå)ç?îzêºPøæ?‰ZcžXÇæ?*;Q^÷–æ?#ã’*'gæ?U˜â7æ?e&€˜$	æ?jÿJoèÚå?‰\Ȭ)­å?L&äå?FžðSå?ÕleZµ&å?g¶ èÄúä?ÀNIO?Ïä?xRÜr!¤ä?Pß_hyä?y6IJOä?ã_5Š%ä?‚[X™~ûã?£1¯>Òã?Íb¦U©ã?ÕÚ+Àã?éPõ‹„Xã?5:pɗ0ã?ï8dýúã?î;êU¬áâ?J•תºâ?͓Žò“â?í)„mâ?„ېZ]Gâ?ò÷/©|!â? –’©àûá?i™Tþ‡Öá?Ñ?Wq±á?P<›p›Œá?Ú9†há?œ©^­Cá?81H’á?Y2¢³ûà? BAØà?®Ùp¦´à?]™v‘à?6<ðÌ}nà?.?¦¯¼Kà?*‚‹á1)à?Äʸ…Üà?¡½{ŒwÉß?Ê©§…ß?óz/Ë)Bß?•~qÿÞ?T½ n¼Þ?ÅÃNj#zÞ?…›_ê88Þ?	:vG­öÝ?±V2µÝ?3Þ&d­tÝ?€¡64Ý?m[®´ôÜ?H¨ÀsU´Ü?Ç×»ètÜ?¸,oÒ5Ü?ja|÷Û?‘mq֤¸Û?x‹zÛ?Ê1³bÄ<Û?R…¡žNÿÚ?žZ_:)ÂÚ?€ؤJS…Ú?MÀ êËHÚ?>„F9’Ú?ߓ^¥ÐÙ?ÆÀ„•Ù?“ŸàۮYÙ?Ë3›£Ù?ñ¹üáãØ?ˆ‘Þ?i©Ø?¶Z¬¨8oØ?Ù
ªO5Ø?ٸ­û×?°ô¯PÂ×?ëR’¯9‰×?í±ÇigP×?La©;Ù×?ªL†ŽßÖ?!ވ­†§Ö?âË%ÁoÖ?å{7=8Ö?ÈҀtúÖ?DÂvCøÉÕ?¾îÖ6“Õ?=p³\Õ?í;SÂo&Õ?’m¿ŽjðÔ?¢œW£ºÔ?Ôj­Ÿ…Ô?þ$ÃïÌOÔ?z5ѼÔ?ÛҎÐèåÓ?®Cñ|P±Ó?yhó|Ó?žÑù%ÑHÓ?/öZMéÓ?f!w;áÒ?Ý?–>ǭÒ?±MAŒzÒ?‰ÞŠGÒ?žÌ÷yÀÒ?ö.âÑ?PðÂ9կÑ?èTTí²}Ñ?gî4»ÇKÑ?#$ÏOÑ?Ä	‡Y•èÐ?ÚB²ˆM·Ð?6C;†Ð?ÙéB"_UÐ?~tÇö·$Ð?œ߉‹èÏ?52¸ŒˆÏ?Ҙélþ'Ï?DœɤTÈÎ?Ý<(²iÎ?„qE8
Î?
ÇUīÍ?OQ²ø¶MÍ?Ìo^ŠðÌ?Sßq™͒Ì?Gطð5Ì?¡¾zxÙË?ª1‡zd}Ë?:ÑÌR´!Ë?W¢gÆÊ?~&~kÊ?=~-2÷Ê?ZþҿҶÉ?'|j_]É?iút¿¯É?[’‘°ªÈ?8šŠRÈ?uqbÕùÇ?#£hÓø¡Ç?¦µzœ|JÇ?G–~`óÆ?\ò!>¤œÆ?œñ­¢GFÆ?ùƒøvJðÅ?l󈬚Å?5hȩmEÅ?Á㭍ðÄ?-ÎõlœÄ?ÕuÂéGÄ?®1i‹%ôÃ?î×調 Ã?ˆ«´¸MÃ?e*|„ûÂ?zèÂ?·^ƒ¢ÕVÂ?4<%FÂ?B}u’´Á?c-¨å@cÁ?¹n¢ËÁ?º	R=³ÂÀ?…¿¸KùrÀ?*}T#À?,"kË>©¿?R)ÿ¿?K¥šò{o¾?èvaµӽ?命¹«8½?
t;I_ž¼?hм?3âòxÿk»?3öÊéìӺ?†bê3™<º?[Ü¦¹?« ¤u0¹?R(¿{¸?Öï>Êæ·?vªZ9S·?LJisk6?M…$a.¶?¤ftWµ?®+ú›µ?"@á|´?†š&#ïí³?p>ÙäÅ_³?1›ÏfҲ?‘
ÝDÓE²?}‰—¾º±?òÐ/±?%–,�?—ä0ž—°?5nl+,&¯?Q²GÕ®?bñ­þ.	­?,*(>ý«?p_8óª?cU)ùê©?«µh*àã¨?'¯wûާ?dИ³éۦ?ԭò<²ڥ?]']ۤ?Ëî˜Îòݣ?—ô=è|â¢?¼jŸé¡?€–.˜ñ ?ĥׁøŸ?uŒ‚Ûž?	̓0œ?øë"NŸRš?
Á¶Ñy˜?‚¿ôڥ–?d°ûòê֔?^«8
“?0`4I‘?IÝrO*?¬O'¤‹?x¤
Aˆ?àÏB–ë„?’/•)’¥?7hìø`á|?]¸٨žv?ý±°Šp?g°ÁCŸ_e?÷¹¶¦T?yÙx;IÏ<Æöý㍋<´[,<¯P’<a;D8¹|•<§/èü˜<¼ÐL.#š<÷a8/Mœ<trtZ/¬<ÃÕL-H2Ÿ<­»Ž'2M <C];õ <w6A—¦’¡<õz¢'¢<€Øc8.µ¢<õ‘WÀ?<£</±¢^½£<U›ÿï9¤<§þ=6»±¤<tÓbu%¥<–Χ€•¥<ê~ÙÏ1¦<=|£aÒk¦<p’¢Ҧ<¦øFÓÚ6§<w*³­˜§<CõF­Eø§<w
CSÌU¨<šv{žd±¨<˜ÏN©.©<ê,‚Gc©<FÅ8Žɹ©<,§¤Ü̪<YÍwmgbª<0n­´ª<œlm±«<)zB‡„U«<:ŸRŽ6¤«<2‚¿*Öñ«<óNYùp>¬<a;2¥Ь<‹&rþÉԬ<H·€Ÿ­<ä)g­<ø#ί­<Svñ©:÷­<þíҵë=®<oz3郮<΂ù½:ɮ<&bð„ç
¯<ˆöØTöQ¯<®ׇžm•¯<¬.ú}Sد<ì4BàV
°<š9õ@.°<ü¥žêN°< r[Vo°<ôq†°<a¼„}¯°<ÌKf=ϰ<kKÈî°<î•2 ±<¾1G-±<A‘ŽŸ>L±< Ŀk±<4Úx§‰±<ˆmîQ¨±<Ë*øøfƱ<.ÔӋä±<Ÿ @™Š²<éÆÄre ²<Ãé}>²<ûk©´[²<Óf*y²<×ǁ–²<Ú.¸b»³²<S¸ábØв<Ž©ËèÙí²<×Hn
Á
³<0¹ôáŽ'³<¡^&pDD³<ÕRʺâ`³<jX¾j}³<d²²oݙ³<=¸¿;¶³<àV˜†ҳ<ƒZr޾î³<tžàqå
´<]t¦-û&´<¤0<èC´<]ÇÊs÷^´<6Ãfžßz´</H2º–´<]A��<ܳ¬Iδ<¦8ê´<bU^﫵<Z‹
òM!µ<OfjÕæ<µ<ȲNwXµ<x_Utµ<…Ɓµ<Y$#ýªµ<=s}ÑrƵ<ӌ/{ãáµ<8^ŸÈOýµ<ã`¸¶<¢°¢è4¶<&·O¶<r–ÉWâj¶<71±ƒB†¶<±²P)¢¡¶<»C³è½¶<RÓ(abض<Tøa1Äó¶<ëh‹÷'·<ÆiQŽ*·<ÜîpÜ÷E·<så5ea·<IôïúÖ|·<“½ºÈM˜·<	‹<ʳ·<û"ÛóLϷ<çÞsŒÖê·<ꆤg¸<v†ÈÚ"¸<Ÿ‰΢=¸<½õÑNY¸<Å~zou¸<-÷G_и<CÀ’ެ¸<œ¡«eȸ<'jDQIä¸<µs):¹<Gƒ(Ü8¹<ü
ïF8¹<Š¢ybT¹<îÕp»Žp¹<1*.‰ˌ¹<¿™?“©¹<,ÙՌyŹ<to+ìá¹<JÒú&rþ¹<’6ù9º<[Ȣ!»7º<ˆ»žTº<¤©JrZqº<=1 dLŽº<ñŸ>V«º<ÎõZÍxȺ<6³‹á´åº<¡ÃO»<[˜šð| »<à 
>»<=ÎAµ[»<'‰?¹}y»<<÷åñd—»<n%…Ûkµ»<¢À.k“ӻ<ƒ®›Üñ»< ìlH¼<-zðå×.¼<
nŒM¼<‡ìfl¼<¦ëàf‹¼<«¢6½ª¼<Ö;Çáɼ<7àh0^é¼<n‹2	½< ï7Û(½<GÆ3ÞH½<#ñç–i½<¥û×ôs‰½<pn ™	ª½<IüøÒʽ<7.R•Ñë½<ÒIû
¾<öFêÄt.¾<ˆÑYP¾<%þ—/r¾<
¿*K!”¾<o÷¶¾<:§v#پ<©ìaü¾<!SŠ2¿<mM·¤B¿<hÉ _f¿<‚—‰fŠ¿<¿"q»®¿<…ç/Ò`ӿ<öÁYø¿<u ÓGÔÀ<Gɏ¨!À<«©ƒ©4À<Çõ>NÚGÀ<~³­ö;[À<h&§#ÐnÀ<.c˜‚À<T¢è—–À<ÄÀquͪÀ<HÔîÑ=¿À<0=ª4êÓÀ<“eÏÔèÀ<¶Ÿ¦ïÿýÀ<Ap nÁ<5]»›!)Á<m	Äi?Á<;.`HdUÁ<óî;ùkÁ<aÒt߂Á<¬ëNVšÁ<Ž/w­±Á<”¦q©œÉÁ<9®äûëáÁ<ÙâŸúÁ<Ì¼Â<îÓozG-Â<$œ¬¤EGÂ<àXvǼaÂ<.Y¨ú²|Â<xwÍ.˜Â<R
*S7´Â<—ۖ1ÔÐÂ<õx©±
îÂ<î®VÒìÃ<£¤h^{*Ã<£®ÄIÃ<@¨3zÒiÃ<
AV’³ŠÃ<úˆ®pu¬Ã<¦³'ÏÃ<uô`ªÛòÃ<Ú幜¤Ä<”^T˜=Ä<:§DÎdÄ<¼CœubÄ<'Zks·Ä<‰Í
%ãÄ<A¬éSŸÅ<B~:R@Å<äJ©±qÅ<ٍq‹%Å<þÐ:$ŠÜÅ<L†ÏiÆ<êj{ÎSÆ<Ã埾@•Æ<2â	kÛÆ<4z_ð('Ç<s	V•yÇ<ŒÎÖô-ÔÇ<4ò)9È<|ª¿«È<–Do”à.É<«W@îËÉ<Zw”x܏Ê<±ýx8˜Ë<3­	‚´;Í<jï%€=ó¨Æû˜¾B½úT£
êîÁ~öQ~÷ÓéU²¹Ê~KïªDú
GËÿaí7\%a•FO–£ä¥a¤–SuzpšD(ì²|ÓWcñ†Þ%ƒW¦ÚÐMÇ$—	õÛ©túõ`£øK[Þo¨ÜTÓ`ñ¬¹gû°ÆtSŸ´wþf#ì·å¡éìºí«½Wlÿ`0ÀH¢7‚ÂÑ[âz¦Ä1îz—¢Æ¤–(©zÈ…ÞK^2Ê#éÌËÄ9øMÍ™ìMµÎ0É¿ÐæÄÖMFÑPôâ¨rÒÉðOŽÓx´™šÔS’¸˜Õ왎	Ö2èȩn×è{THØŒ,­‹Ùҭ§ÝÙŒ^p™Ú .À]MÛÐü[\ùÛ}š¹ëÜr;ݐ/4ˆÒÝdŸ6dcÞNQpîÞ.´¦tß@í™eôßò$¼äoàX¢%ÂæàL¸(<Yá™?¼ŒÇáªÛé1â‘څ˜â†AµûâJU3[ã*Й·ã­žéä4wÔFgä\	LӺä$•Үåx¼N÷Yåäȥ剆>ïåxÙo6æxÕÆu{æªf¾æòôåUÿæ§Y>ç9ž>‚{ç¢ppã¶çCBwðçŒðS(è:5û^èd„ܓè¼ÎðAÇèöN}8ù蛇Ì)éêˆÓ	Y颚“û†éfHq¬³éն”&ßé|æ«s	ê¤fñœ2ê,•2«Zêtզêðޗ§ê Ùó…Ìê<æexðêì/vëJ*þ…5ë´b1®Vëú„âôvë æ_–ë|Ïô´ëÐIô¸Òë>.n±ïëè½ãìZ±R'ìӯBì–ñ)ý[ìôîl@uì´Pҍì‘¶¥ìþ'Äð¼ìûT„Óì³Ȉtéì·‘Äþì(…5wíI„'íL/$;ínX­ûMíÝØT`íèOArí‚©äWƒíÈ,¤”í·…+¤í´jtȳíRfAßÂíRn¤qÑíӊ<ß퀙ííÔúíÄK®îZÙÀîàWî$eKs)î¼ä
4î<›¸=>îô‚)îG'QîA@éYî.´(5bîñ—Xjîz>lqî‚{2Xxîº{Ï~î²JH҄îCc¶`ŠîQÈÌzîÚ%~ ”îê)¨Q˜î\HœîôsrUŸî®Ìb'¢î¬Bkƒ¤îq-üh¦îúÖnקî
úΨî;3èK©îd)P©î^À٨îTv‰ç§î$Hx¦îƒž¢Š¤îÚä"¢î$ 5.Ÿî.¯&¼›îäò$ŗî:
<G“îuU@Žîzœ6®ˆîý=Ž‚îˆ¸§Þ{îÿ7ÿ›tî^½©Ãlî~žRdîˆ(£E[î¶WN™QîÏJGîP,áS<îØ*à²0î‚­b$îZ<¸^îG*¢	îÌIã'ûíl!vêëí~"äÛíÓ9ÎËíô,d¹íÉ8éܦíé7r“í6¨8í+9Òií®Sí"¤ÞA<íØ/jç#íDæ/s
í4þÚï츷Ôì´n•·ìÁ0¶˜ìx©
yìþ1õWìbɆf5ì5³´LìÐoŽ”ëë’¶ )ÄëÜîõšëB…Éáoëž­ÓBëK-°ëéYâêW"™®®ê&㎍xêåsýÏ?êöٍLê;V/ÖÅé¤G©;„é(GG?éÖÅv½öèæèÄ]ªèê±zàYè@©öèÀ3‚H«ç¥juLç¢*èæث¶ }æ~08ŸæB÷8s”å€r—påXô6ԋä7ý¿ù㜱î5]ãþä/µâWU™âƒx‚<á°gîÄhàªq+°‚ߪþ~ŇÞý;Æ	uÝ¿)åFÜ‚.øøÚuº²á…ÙÏHïæ×e½­ÖðâIÔ¬Ǵ§¡Ñžvâβ^بË"-ÍnÒÇí"/+Ã:¸e½4TĶt(*X@¬˜E—žü¤Hú‰,0ð÷ÅfJ3KZ4€?ÉNö@SŒ¾¤Ýi@«ªª>Aޓ=?ƒ»~)ÙÉ@Áè lªƒѿ3­	‚´;
@à¿UUUUUUÕ?"@mÅþ²{ò ?à?…8–þÆ?5gGö¿@@´¾dÈñgí?À$@=
ףp=@˜nƒÀÊí?[¶Ö	m™?h‘í|?5®?333333@rŠŽäòò?$—ÿ~ûñ?B>è٬ú@rù鷯í?…ëQ¸…Û?ìQ¸…ë±?9´Èv¾ŸŠ?Âõ(\@ffffff@0Cš™™™™™.@€4@ôýÔxé&Á?@ä?UUUUUUÅ?€a@ÀX@€`@à|@¸Ê@€MA>@ø@-DTû!	@ñh㈵øä>-DTû!@€€˜3?Írû?q¼ÓëÃì?0@ï9úþB.æ? *ú«ü?ù,’|§l	@ÉyD<d&@ÊÏ:'Q@0Ì-óá!@
·ü‚Ž5%@Ï÷§!‰š)@M•u5.@t:?—€1@CÕºü3@Î2;œZ6@B*ßó09@FÓ?¦6æ;@„ÿ«>@:5/?¦À@@RîÕò2B@…96S«C@¾wízõ*E@©r4d¨°F@O¨«O<H@Ej…‹§ÍI@NrdK@çeÍ"vM@”g|q¡N@ïO~¶®#P@@3ñøP@1r‘SsÐQ@åÐY‹ ªR@@Zžýæ…S@„ ”›µcT@JÎ:c|CU@º–HG,%V@Xá·W@Xg²yîW@–=$Á(ÕX@£WR÷ö½Y@˜–Ân¨Z@¢+p\…”[@¡œ†0‚\@î>fq]@Oºîb^@ñœ¦+NT_@ŸݭC÷#`@©¤~{ž`@kbbç¯a@Y¥SȐ•a@Ãn“b@1ëÝIb@5cèa
c@Û“ø‹‹c@ͦ3š˜
d@¯\>Šd@‡ànz
e@sÚ9J‹e@FGGʪf@yyuð™Žf@IJC g@YÜ&ÿ”g@¹oF¦h@¡® ·›h@aÇçQL i@½¤áãa¥i@	F~xö*j@&—P±j@¯×Ùö”7k@!¶ß+›¾k@÷VÌøFl@‘¥Îl@¶·¸„tVm@pZ ÷Nßm@ïk9išhn@HQñOUòn@ƒaÆ,~|o@b4nʼnp@+e‹ÿ	Ip@còÛ¿Žp@)±V¨Ôp@*“øÅq@6GãÇaq@¬á�§q@>m#FJîq@ÕFKæ.5r@b)ÇÿC|r@WÐr‰Ãr@V…]ý
s@r‰ Rs@GIÑýqšs@÷
>6qâs@j£B±*t@A=ðört@fIw|»t@d¯'Í-u@X¦+{
Mu@ìÄ#
–u@ZGDßu@í;# (v@b”‡´%rv@¶iv{Իv@ŸØ¬w@¾÷ç«Ow@\&Áәw@}6û-#äw@h͙.x@þÄk?7yx@–'ûÃx@_Ã*åy@³ÈÑìôYy@Ì1¸*¥y@^TT„ðy@,{»L<z@:I$®¦‡z@À|*&nÓz@µ
dY{@룴hk{@
aö™·{@Íúf¯î|@&"™ùeP|@
4ŠŠÿœ|@ê0h»é|@¸÷“^˜6}@™—ƒ}@¤Þ)ó¶Ð}@L§¹÷~@€v@UUUUUUµ?µ¾dÈñgí?;äû¸;øÿHGøÿ™GøÿD¦[øÿ 	\øÿH_øÿ”ü_øÿèû`øÿ0úaøÿ@D8™øÿ(H™øÿ<X™øÿPx™øÿdhšøÿxȚøÿ”›øÿÌ(›øÿàx›øÿü˜›øÿ	¨›øÿ$	țøÿ8	8œøÿL	¸øÿ`	Ÿøÿ˜	؟øÿÐ	x øÿ
¸ øÿ4
ø øÿP
x¡øÿˆ
è¡øÿ¤
ˆ¢øÿÄ
ø¢øÿÜ
h£øÿ¤¥øÿÈx¥øÿˆ¥øÿئøÿ0(¨øÿ¸è¨øÿ
8ªøÿ|
(«øÿ 
è«øÿè
H¬øÿxX­øÿØȭøÿ®øÿHh®øÿ€¸®øÿ¬¯øÿè8¯øÿˆ¯øÿ$دøÿP¸´øÿàضøÿ$ȸøÿphºøÿ¸غøÿÔH»øÿðø½øÿ@ø¿øÿ|ÈÆøÿÈ˜ÇøÿähÈøÿÈÈøÿ8ÈÉøÿ|ØÉøÿØÊøÿÔˆÏøÿ8ˆÐøÿpˆÑøÿ¨¨ÕøÿäøÕøÿ˜Öøÿ4HÜøÿÌèáøÿLhâøÿpxäøÿØxèøÿ„¸ëøÿ¨ïøÿ´xóøÿPx÷øÿüüøÿ´XÿøÿPXùÿüùÿˆX	ùÿ$X
ùÿИùÿlØùÿ ùÿ¤ ùÿH!øùÿì!è"ùÿ"Ø&ùÿ4#*ùÿÀ#.ùÿl$ø1ùÿ%85ùÿŒ%h8ùÿ&˜;ùÿ¤&È>ùÿ0'h@ùÿ€'˜Aùÿô'¨Eùÿ\(XFùÿ|(Gùÿœ(¸Gùÿ¼(hHùÿÜ(ØJùÿ)ˆKùÿ8)8LùÿX)Oùÿ¨)QùÿØ)ØQùÿü)èQùÿ*èSùÿt*Vùÿä*8[ùÿ +È[ùÿ<+]ùÿ„+è]ùÿ´+(_ùÿì+xfùÿ<,˜gùÿÌ,ˆjùÿ -xkùÿL-hlùÿx-øoùÿè-xuùÿ4.Èxùÿt.¸ùÿÄ.h€ùÿà.(ùÿ/(‚ùÿ(/(ƒùÿT/x‡ùÿ¨/XˆùÿÌ/؎ùÿ(0¨—ùÿt08™ùÿ¸0èšùÿð0øšùÿ1¸œùÿ<1ȜùÿP1H¡ùÿ 1أùÿà1è¤ùÿ,2x§ùÿt2ˆ¼ùÿø28Ãùÿ4xÅùÿh4ˆÅùÿ|4¨ÇùÿÈ4¸ÇùÿÜ4HÐùÿ85øÜùÿ„5(ñùÿ@6¸ùùÿŒ6ˆúÿ47Húÿ 7ˆúÿ¸7¸úÿD8è"úÿÐ8è.úÿ|9¨9úÿ@:ÈFúÿd;¨aúÿl<¨{úÿÈ<è›úÿ =H¾úÿ>Ôúÿ>ÿúÿ?x!ûÿ`?XLûÿ`@hŽûÿô@ÈÃûÿTAèÙûÿ€B8ÞûÿäBX1üÿXCˆ:ýÿ¸Ch?ýÿ€D˜?ýÿ˜D¨?ýÿ¬Dè?ýÿÜD8@ýÿEXAýÿXE˜AýÿˆEØBýÿàECýÿFxCýÿ@FøCýÿpF˜Eýÿ¼FØEýÿìF¨Gýÿ0GèGýÿ`GxJýÿœG8MýÿØGXMýÿðGxMýÿHˆMýÿH˜Mýÿ0HOýÿdHHOýÿ|HhOýÿ”H˜Oýÿ¬H¸OýÿÄHØOýÿÜHÈPýÿIèPýÿ IHQýÿ@IxQýÿ`I¨QýÿxIèQýÿI(Rýÿ¨I¸RýÿÔI(SýÿôIxSýÿJ˜Sýÿ,JøSýÿHJ¸TýÿlJˆWýÿ´J¸WýÿÐJxbýÿK˜dýÿTKHeýÿxKxfýÿ¸KØfýÿØKÈgýÿüKxjýÿ4LˆkýÿXLèkýÿpLHlýÿˆLhlýÿœL¸mýÿÀLÈnýÿäLxoýÿMØpýÿdM˜qýÿ°M(sýÿ,N¨týÿ¨NøtýÿÔN¸wýÿ8O8yýÿÄOH{ýÿ(P¨}ýÿŒP(~ýÿÌPØ~ýÿ0Q(ýÿ˜Q¨‚ýÿøQ‡ýÿHRzRx$°3øÿFJw€?;*3$"D‘øÿX‘øÿ
l‘øÿ€‘øÿí”è‘øÿXD{
A4°,’øÿEBŒD†D ƒd
GBIAABèD’øÿ
ü@’øÿHDi
Ct’øÿ,€’øÿ
@|’øÿTˆ’øÿohä’øÿx4|P”øÿC\ŒA†A ƒGABHÃÆÌF ƒ†Œ4´h•øÿÊA†DƒD }
CAFI
CACHì–øÿ™BEŽB B(ŒA0†A8ƒDPN
8A0A(B BBBG8T–øÿ;lNP|–øÿ7Aƒb
M4l –øÿwA†DƒD K
CAHI
CAC¤è–øÿgAƒ
PÀ<—øÿ‘DX
Ld༗øÿhFa<ø˜øÿiA†KƒD0d
AAJV
AAHDCA$8$<øÿQA†DƒA HAA\`M<øÿ
AƒoQ E(F0F8A@AHAPAXA`NQ B(F0F8A@AHAPAXA`No À¼—øÿ”AƒG0ó
AD4ä8™øÿdA†GƒD0h
AAJV
AAHp™øÿ0l™øÿGƒg„L šøÿGBBŽE E(ŒA0†A8ƒDp`xL€dxApI
8A0A(B BBBHT
8A0A(B BBBBN8K0A(B BBB\Ôh›øÿ¹BEŽE B(ŒD0†A8ƒD`W
8A0A(B BBBHn8A0A(B BBB`4țøÿGBBŽE E(ŒD0†A8ƒD`š
8C0A(B BBBCK
8F0A(B BBBF ˜´œøÿéAƒG0‹
ADD¼€øÿ´BBŽF B(ŒA0†A8ƒD`—8A0A(B BBB4øøÿ[BBŒA †A(ƒH0F(A ABB$<~MøÿcA†IƒC SAAHd¹MøÿBBŽB E(ŒD0†A8ƒD`æ8D0A(B BBBP°uPøÿëBŽEH ŒD(†D0ƒG€xˆHfˆA€Z0D(A BBBDQøÿÿBEŽE L(ŒD0†A8ƒB@Ó8C0A(B BBBDLÃQøÿÿBEŽE L(ŒD0†A8ƒB@Ó8C0A(B BBB\”ȜøÿBŽBE ŒD(†A0ƒO
(D BBBII
(D BBBE{(A EBB4ôxøÿeBŒD†D ƒE
GBHAAB4,°øÿ5BŒD†D ƒY
GBDAAB4d¸øÿQA†DƒD ^
CAEM
CAG(œàøÿMA†GƒD X
DAG8ÈžøÿABŽEE ŒA(†A0ƒe(C BBB	žøÿ.Aƒ\
CI$	(žøÿADR
J(@	\žøÿPA†DƒD Q
DAAŒl	€žøÿ×BBŽE E(ŒA0†C8ƒFp¢
8A0A(B BBBDL
8A0A(B BBBBëxT€AˆBB˜A A¨A°A¸AÀIp@ü	ТøÿA†AƒD0—
AAAv
AAH|
CAHH@
¬¤øÿêBBŽB B(ŒA0†A8ƒDPY
8D0A(B BBBDDŒ
P¦øÿBŒH†D ƒJ
ABEL
ABAW
ABFÔ
¨§øÿdD R
Jð
ü§øÿdD R
JLP¨øÿ§BBŒA †A(ƒG@
(A ABBH¤
(C ABBD8\°ªøÿñBBŒA †A(ƒI@â
(A ABBIH˜t¬øÿÉBEŽB B(ŒF0†A8ƒI@
8D0A(B BBBIäø²øÿÆDj
B4¬³øÿÎA†DƒG u
AAES
CAA8D´øÿ\D O
E@Tˆ´øÿýA†DƒD0r
AACV
AAHB
CAJ˜Dµøÿ@¬@µøÿýA†DƒD0r
AACV
AAHB
CAJ`ðüµøÿ¤BŽBJ ŒA(†A0ƒy
(A BBBHD
(A BBBEw
(A BBBJ4T
HºøÿþA†DƒD C
AABR
CAJ4Œ
»øÿýAƒD v
ADV
AIB
CK8Ä
ػøÿBŒH†D ƒ-
ABBl
ABA4¼¿øÿGBŒD†D ƒQ
ABBYGB8Կøÿ—tb”P\Àøÿ§QBŽB B(ŒA0†A8ƒG`°ÃÆÌÍÎÏH`ƒ†ŒŽ@
8A0A(B BBBFT
8F0A(B BBBE\
8F0A(B BBBA|ètÅøÿ›BBŽE B(ŒA0†K8ƒK`%
8A0A(B BBBG‡
8A0A(B BBBG|
8A0A(B BBBJ h”Êøÿ|Aƒ~
Ae
KdŒðÊøÿBEŽE B(ŒA0†D8ƒH€g
8A0A(B BBBDa
8F0A(B BBBA¨ô˜ÌøÿòBBŽB B(ŒD0†D8ƒDpXxZ€BˆFF˜B F¨A°B¸FÀJpi
8A0A(B BBBAjxD€RxAp^
8A0A(B BBBDÿxW€fxApˆ ìÏøÿ:BŽBB ŒA(†D0ƒDPeXL`GXAP^
0A(A BBBBUX^`BhApAxB€AˆDB˜F JPe
0A(A BBBC , ÒøÿëBŽBB ŒD(†A0ƒD`th_pBxA€AˆBF˜A E¨A°Q`S
0A(A BBBGV
0A(A BBBJshLpGhA`\
0C(A BBBC˜ÐìÕøÿÅBBŽB B(ŒD0†D8ƒDp‚xH€@xAp^
8A0A(B BBBISxZ€BˆFF˜B F¨A°B¸FÀJpe
8A0A(B BBBK¨l ÙøÿòBBŽB B(ŒD0†D8ƒDpXxZ€BˆFF˜B F¨A°B¸FÀJpi
8A0A(B BBBAjxD€RxAp^
8A0A(B BBBDÿxW€fxAp´tÜøÿ–BBŽB B(ŒD0†A8ƒGp\x`€BˆFA˜E F¨A°B¸FÀJpi
8A0A(B BBBFMxD€RxAp^
8A0A(B BBBDxW€fxApixV€gxNp˜Ð\àøÿ>BBŽB B(ŒD0†D8ƒD`Qh^pBxA€AˆBA˜D B¨F°J`i
8A0A(B BBBAAhHp@hA`^
8A0A(B BBBJ¨lãøÿòBBŽB B(ŒD0†D8ƒDpXxZ€BˆFF˜B F¨A°B¸FÀJpi
8A0A(B BBBAjxD€RxAp^
8A0A(B BBBDÿxW€fxApˆTæøÿ²BŽBB ŒA(†D0ƒDPeXH`@XAP^
0A(A BBBEOXe`BhApBxB€AˆBB˜A JPa
0A(A BBBD˜¤ˆèøÿ>BBŽB B(ŒD0†D8ƒD`Qh^pBxA€AˆBA˜D B¨F°J`i
8A0A(B BBBAAhHp@hA`^
8A0A(B BBBJ¨@,ëøÿòBBŽB B(ŒD0†D8ƒDpXxZ€BˆFF˜B F¨A°B¸FÀJpi
8A0A(B BBBAjxD€RxAp^
8A0A(B BBBDÿxW€fxAp˜ì€îøÿ>BBŽB B(ŒD0†D8ƒD`Qh^pBxA€AˆBA˜D B¨F°J`i
8A0A(B BBBAAhHp@hA`^
8A0A(B BBBJ˜ˆ$ñøÿ>BBŽB B(ŒD0†D8ƒD`Qh^pBxA€AˆBA˜D B¨F°J`i
8A0A(B BBBAAhHp@hA`^
8A0A(B BBBJ˜$Èóøÿ>BBŽB B(ŒD0†D8ƒD`Qh^pBxA€AˆBA˜D B¨F°J`i
8A0A(B BBBAAhHp@hA`^
8A0A(B BBBJ ÀlöøÿëBŽBB ŒD(†A0ƒD`th_pBxF€AˆBF˜A E¨F°J`S
0A(A BBBDV
0A(A BBBJshLpGhA`\
0C(A BBBC d¸ùøÿëBŽBB ŒD(†A0ƒD`th_pBxF€AˆBF˜A E¨F°J`S
0A(A BBBDV
0A(A BBBJshLpGhA`\
0C(A BBBC ýøÿëBŽBB ŒD(†A0ƒD`th_pBxF€AˆBF˜A E¨F°J`S
0A(A BBBDV
0A(A BBBJshLpGhA`\
0C(A BBBC ¬PùÿëBŽBB ŒD(†A0ƒD`th_pBxF€AˆBF˜A E¨F°J`S
0A(A BBBDV
0A(A BBBJshLpGhA`\
0C(A BBBCˆPœùÿ:BŽBB ŒA(†D0ƒDPeXL`GXAP^
0A(A BBBBUX^`BhApAxB€AˆDB˜F JPe
0A(A BBBC¨ÜPùÿòBBŽB B(ŒD0†D8ƒDpXxZ€BˆFF˜B F¨A°B¸FÀJpi
8A0A(B BBBAjxD€RxAp^
8A0A(B BBBDÿxW€fxAp˜ˆ¤	ùÿÜBŽBE ŒD(†D0ƒD`\hDpRhA`^
0A(A BBBBYhZpFxF€BˆFA˜E F¨A°J`i
0A(A BBBAïhWpfhA`€$èùÿ2BBŒD †D(ƒDPeXL`GXAP^
(A ABBCSXa`AhApBxA€HˆEF˜A JPe
(A ABBFˆ¨¤ùÿ(BŽBE ŒD(†D0ƒDPkXH`@XAP^
0A(A BBBATXa`AhApBxA€DˆBF˜A QPe
0A(A BBBKˆ4Hùÿ(BŽBE ŒD(†D0ƒDPkXH`@XAP^
0A(A BBBATXa`AhApBxA€DˆBF˜A QPe
0A(A BBBKˆÀìùÿ(BŽBE ŒD(†D0ƒDPkXH`@XAP^
0A(A BBBATXa`AhApBxA€DˆBF˜A QPe
0A(A BBBKLLùÿ›BŽBB ŒA(†D0ƒG@x
0A(A BBBFtHWPFHA@pœàùÿ%BBŒA †A(ƒG0`
(D ABBJm
(D ABBJD
(A ABBFU
(A ABBEd œùÿBŽBB ŒA(†D0ƒGPà
0A(A BBBFd
0A(A BBBDÄXW`FXAPx Dùÿ©Aƒm
B˜ Ôùÿ©Aƒm
B¸ dùÿ©Aƒm
BØ ôùÿ©Aƒm
B8ø „ùÿpBBŒA †A(ƒD@
(A ABBD4!¸!ùÿ©Aƒm
BT!H"ùÿ©Aƒm
BLt!Ø"ùÿÆBBŒA †A(ƒD0¿
(A ABBA×
(F ABBF,Ä!X%ùÿùBŒA†A ƒµ
ABD ô!('ùÿÍAƒG°ÃA"Ô'ùÿ
`,"Ð'ùÿñBBŒI †A(ƒD@q
(A ABBGX
(A ABBBv
(A ABBDl"l)ùÿ!BŽBH ŒD(†A0ƒF@}
0A(A BBBDX
0A(A BBBHn
0A(A BBBB8#,+ùÿA†DƒG`v
AADf
AAH<#0ùÿ‰D W
EDX#„0ùÿ7BŒA†A ƒM
ABDK
ABJF
ABG, #|1ùÿ×BŒA†A ƒn
CBI4Ð#,2ùÿ@A†AƒG@°
AAEQ
AAEL$43ùÿABBŽB B(ŒA0†A8ƒGðû
8D0A(B BBBGŒX$4:ùÿA†DƒG0A8F@FHFPFXF`FhFpFxF€CˆCC˜C C¨C°C¸CÀCÈCÐCØCàCèCðCøB€L0I
AAGPè$Ä:ùÿêBŒD†A ƒD0æ
 AABKc
 CABGf
 AABF(<%`=ùÿèAƒG l
AKV
AI(h%$>ùÿèAƒG l
AKV
AIl”%è>ùÿ…BŽBE ŒA(†A0ƒD@
0A(A BBBE‚
0A(A BBBFV
0C(A BBBHH&BùÿrBBŽB J(ŒA0†A8ƒD@>
8D0A(B BBBG<P&<GùÿOBŽBB ŒD(†D0ƒ8
(F BBBFL&LJùÿæBDŽB B(ŒD0†A8ƒI€ 
8D0A(B BBBKà&ìPùÿ¦DZ
B ü&€Qùÿ¼YƒG g
AA  'RùÿüAƒG ^
AI(D'øRùÿúAƒG h
DLa
AFPp'ÌSùÿEBŽBB ŒA(†A0ƒX
(A BBBID
(C BBBC Ä'ÈWùÿÜAƒq
FR
FXè'„XùÿzBBŒA †A(ƒDP_XH`@XAP^
(D ABBGi
(D ABBFHD(¨^ùÿÄBBŽB B(ŒA0†D8ƒG`
8D0A(B BBBG@(,gùÿˆA†DƒG x
DAGL
DAGj
DAI4Ô(xhùÿ«AƒJÀ5
AGR
AEIA)ðiùÿ4 )ìiùÿ»AƒJÀE
AGR
AEIAX)tkùÿLl)pkùÿtBBŽE B(ŒD0†G8ƒGàŸ
8A0A(B BBBJ<¼) oùÿ‡BŽBB ŒD(†A0ƒa
(F BBBHHü)ðqùÿBŽBB ŒA(†A0ƒã
(C BBBDA(F BBBDH*´rùÿA†AƒN€³
AAKY
AAEv
CAF€*ütùÿBEŽB B(ŒA0†A8ƒM *
8A0A(B BBBBe¨A°f¨A ¨E°^¨A x¨A°u¨B  +ˆ‰ùÿ¦BDŽJ B(ŒD0†A8ƒJÀÀ
8A0A(B BBBAÀÈMÐGØGàGèGðGøG€GˆGG˜G G¨G°G¸GÀGÈGÐGØGàGèGðGøG€GˆGF˜F F¨F°F¸FÀFÈFÐFØFàCèCðCøC€CˆCC˜C C¨C°C¸CÀCÈCÐCØBàSÀH8,ùÿ9A†HƒJ†˜H K˜A
AAKF
CAA„,‘ùÿH˜,‘ùÿA†HƒJÀ†ÈKÐKÈAÀè
AAFF
CAAä,ؒùÿXø,ԒùÿBŽBB ŒD(†A0ƒD@u
0A(A BBBDd
0C(A BBBBHT-›ùÿ£BBŽB B(ŒD0†A8ƒDp~
8D0A(B BBBD¸ -l§ùÿ*BBŽB B(ŒA0†A8ƒDÔ˜r B¨A°F¸BÀAÈBÐBØAàOw˜L G˜A^
8D0A(B BBBFº˜F O¨A°J¸BÀAÈAÐBØAàTH\.àºùÿ„BBŽB B(ŒD0†A8ƒDPŠ
8C0A(B BBBI¤¨.$ÃùÿÂBEŽB E(ŒA0†A8ƒDpÛ
8A0A(B BBBGÔ
8A0A(B BBBBsxL€GxAp\
8C0A(B BBBA„
8C0A(B BBBHhP/LÎùÿµBBŽE E(ŒA0†A8ƒDp¥xE€RxAp9
8D0A(B BBBIÜxW€fxAp¼/ Öùÿ;DvˆÔ/ÈÖùÿ(
BBŽB B(ŒA0†A8ƒDp¯
8A0A(B BBBICxL€GxAp\
8C0A(B BBBA’
8A0A(B BBBDˆ`0làùÿ(
BBŽB B(ŒA0†A8ƒDp¯
8A0A(B BBBICxL€GxAp\
8C0A(B BBBA’
8A0A(B BBBD¨ì0êùÿúBBŽB B(ŒA0†A8ƒGpF
8A0A(B BBBA×
8A0A(B BBBETxV€FxAp}
8A0A(B BBBH;xW€fxApixV€gxNpÀ˜1dõùÿ¸
BEŽB B(ŒA0†A8ƒDp}xp€BˆAA˜B A¨D°B¸FÀOpc
8A0A(B BBBC°
8A0A(B BBBF–xH€@xAp\
8C0A(B BBBIãxB€LxAp \2`ÿùÿ
BBŽB B(ŒD0†D8ƒG€ˆGG˜G G¨G°G¸GÀGÈGÐDØDàDèDðDøD€DˆDD˜D D¨D°D¸DÀDÈDÐGØGàGèGðGøG€GˆGG˜G D¨D°D¸DÀDÈDÐDØDàDèDðDøD€DˆDD˜C L€W
8A0A(B BBBD€3\úÿÓBBŽB B(ŒA0†A8ƒGq˜f B¨B°B¸BÀAÈBÐOk˜D R˜A^
8A0A(B BBBDD˜S S¨A°B¸BÀAÈBÐBØAàTp
8A0A(B BBBE¦
8A0A(B BBBH˜W f˜Aø˜V g˜NXˆ44%úÿ÷BBŽB B(ŒA0†D8ƒDppxH€@xAp^
8D0A(B BBBKÔä4Ø>úÿ8 BBŽB B(ŒA0†A8ƒGŒ˜D R˜A^
8D0A(B BBBAO˜H S¨E°B¸FÀBÈGÐFØBàTR˜e F¨B°B¸FÀAÈBÐO
˜W f˜AÛ˜V g˜Nl¼5@^úÿS"BBŽB E(ŒA0†A8ƒGÀéÈEÐRÈAÀb
8D0A(B BBBDFÈVÐgÈNÀ|,60€úÿÌBBŽE B(ŒA0†D8ƒD ¸¨E°s¨M |
8D0A(B BBBFJ¨W°f¨M ¹¨V°h¨S l¬6€•úÿî*BBŽB B(ŒD0†A8ƒGðYøD€RøAðm
8A0A(B BBBE	øV€gøNð\7Àúÿf"BBŽB B(ŒA0†D8ƒGðÁøH€@øAða
8D0A(B BBBDü|7âúÿÜ*BBŽB B(ŒD0†A8ƒDô˜Y Q˜Ba
8D0A(B BBBAјH @˜AD˜Y Q˜A˜Y T˜A˜Y R˜D3˜E R˜Bí˜D Q˜A:˜B T˜A¡˜E R˜B˜˜D Q˜A|8ðûÿBBBŽB E(ŒA0†A8ƒGÐ}ØDàSØAÐb
8D0A(B BBBHjØGàjØBÐoØWàfØMÐÇØGàfØBÐ\9lMûÿV5BEŽB B(ŒD0†A8ƒGÀkÈHÐ@ÈAÀb
8D0A(B BBBF(p9l‚ûÿBIŽE E(ŒA0†A8ƒGÐGØGàGèGðGøG€GˆGG˜G G¨G°G¸GÀGÈGÐGØGàGèGðGøG€GˆGG˜G SÐ%
8D0A(B BBBGWØKàGèGðGøG€GˆGG˜G G¨G°G¸GÀGÈGÐGØGàGèGðGøG€GˆGG˜G SÐ`œ:`—ûÿJIŽBB ŒA(†A0ƒî
(A BBBDK
(A BBBFL
(A BBBEp;L›ûÿSBBŽE B(ŒA0†A8ƒGàÐ
8D0A(B BBBGUèEðSèAàÌ%èWðfèAà\t;øíûÿ'	BDŽE B(ŒA0†A8ƒJàû
8D0A(B BBBGÈÏèHðRèAà„Ô;ÈöüÿÝBEŽB B(ŒA0†D8ƒG€æˆJIˆA€D
8A0A(B BBBAæˆI@ˆA€\
8C0A(B BBBH<\<²øÿ`6ROŒM †A(ƒG°K
(A ABBAœ<àúüÿ%G]´<øúüÿ	,È<ôúüÿ9GŒE†D ƒ^ABGÃÆÌ,ø<ûüÿIGŒE†D ƒqABDÃÆÌH(=$ûüÿBIŒH †H(ƒGP·
(E ABBEc(A AFB,t=øûüÿ9GŒE†D ƒ_ABFÃÆÌT¤=üüÿ2BŽEI ŒH(†H0ƒD@¹
0D(A BBBHr0A(A FBB,ü=ðüüÿ9GŒE†D ƒ_ABFÃÆÌ,,>ýüÿQGŒE†D ƒ{ABBÃÆÌ,\>0ýüÿqGŒE†D ƒUABHÃÆÌHŒ>€ýüÿœBBŽE I(ŒH0†K8ƒK`É
8E0A(B BBBI,Ø>Ôþüÿ9GŒE†D ƒ_ABFÃÆÌ@?äþüÿÊBŽEI ŒH(†H0ƒD@Þ
0A(A BBBF,L?pýÿ9GŒE†D ƒ_ABFÃÆÌ8|?€ýÿ]ƒG@y
ABx
AG(AGÃ[@ƒ8¸?Ôýÿ¹[ƒG0™
ADt
AKCADÃ[0ƒô?XýÿGJ@`ýÿGJ$@hýÿ8@dýÿ	0L@`ýÿyr†AƒD@
EAHhÃÆ€@¬ýÿ(D c˜@ÄýÿD U°@Ìýÿ,D gÈ@äýÿD Uà@ìýÿD U(ø@ôýÿëAƒG0J
AMA$A¸ýÿDQ<AÀýÿSAƒG }A\Aýÿ/AƒG ]A|Aýÿ'D b”A(ýÿ>\ ]¬APýÿ?D n(ÄAxýÿ‚AƒG R
AMXAðAÜýÿgAƒG UAB,	ýÿNAƒG DA0B\	ýÿDIHBd	ýÿ^D B
E dB¨	ýÿ½AƒG0e
EADˆBD
ýÿÅA†DƒDpf
DADM
DAF!
DAAÐBÌýÿ&IƒXDìBàýÿ»
BŽFJ ŒD(†A0ƒJ€Â
0A(A EBBB84CXýÿBEŒD †D(ƒDpY
(A ABBF pC<ýÿ¥YƒiFÃPƒL<”CÈýÿ/AƒG0›
ADm
AJL
ACP
DEÔC¸ýÿWAƒG AA ôCøýÿðIƒO0§
EA4DÄýÿ§AƒGP 
AG^
AAL
AC PD<ýÿAƒG@à
AGtD(ýÿWD RŒDpýÿ`D V¤D¸ýÿ ¸DÄýÿNAƒG0?F ÜDð ýÿ
L@ƒ
Ir
E0EÜ!ýÿ¡MŒG†G ƒT
ABFhÃÆÌH4EX"ýÿZBBŽB B(ŒD0†A8ƒDP}
8D0A(B BBBEH€El#ýÿ¶BBŽB B(ŒA0†A8ƒFPm
8C0A(B BBBGxÌEà#ýÿ‰BDŽB B(ŒA0†A8ƒDP
8A0A(B BBBDD
8D0F(B BBBJ^
8A0A(E BBBExHFô$ýÿyBDŽB B(ŒA0†A8ƒDPï
8A0A(B BBBGD
8E0E(B BBBJ]
8A0A(E BBBF(ÄFø%ýÿGA†CƒD a
AAE`ðF&ýÿ´jJŽB E(ŒA0†D8ƒDP
8A0A(B BBBCƒÃÆÌÍÎÏEPƒ†ŒŽˆTGx(ýÿ|jEŽB E(ŒA0†C8ƒDPƒ8A0A(B BBBAÃÆÌÍÎÏDPƒ†ŒŽi
8A0A(B BBBEi8A0A(B BBB`àGl)ýÿBBŽB B(ŒA0†C8ƒDPa
8A0A(B BBBEº8A0A(B BBB`DH+ýÿ[BBŽB E(ŒA0†A8ƒDP_
8A0A(B BBBFÛ
8A0A(B BBBK<¨H-ýÿqGŽJE ŒD(†E0ƒB(A BBBHÃÆÌÍÎ`èHT-ýÿ¯BEŽB B(ŒA0†D8ƒD`r
8A0A(B BBBAS8A0A(B BBBdLI -ýÿGBBŽB B(ŒA0†A8ƒDe
8A0A(B BBBCŽ
8C0A(B BBBF\´Iˆ/ýÿdEŽI E(ŒD0†A8ƒDç8A0A(B BBBGÃÆÌÍÎÏHƒ†ŒŽLJ¨0ýÿfBBŽB B(ŒD0†H8ƒG 
8D0A(B BBBHdJÈ4ýÿ“` fPÈÛ( 0¼
¸Û(ÀÛ(õþÿoðè€
^à(@Ȫ¨4 v	þÿÿoh4ÿÿÿoðÿÿoF2ùÿÿo¢ÐÛ(6¼F¼V¼f¼v¼†¼–¼¦¼¶¼Ƽּæ¼ö¼½½&½6½F½V½f½v½†½–½¦½¶½ƽֽæ½ö½¾¾&¾6¾F¾V¾f¾v¾†¾–¾¦¾¶¾ƾ־æ¾ö¾¿¿&¿6¿F¿V¿f¿v¿†¿–¿¦¿¶¿ƿֿæ¿ö¿ÀÀ&À6ÀFÀVÀfÀvÀ†À–À¦À¶ÀÆÀÖÀæÀöÀÁÁ&Á6ÁFÁVÁfÁvÁ†Á–Á¦Á¶ÁÆÁÖÁæÁöÁÂÂ&Â6ÂFÂVÂfÂvÂ†Â–Â¦Â¶ÂÆÂÖÂæÂöÂÃÃ&Ã6ÃFÃVÃfÃvÃ†Ã–Ã¦Ã¶ÃÆÃÖÃæÃöÃÄÄ&Ä6ÄFÄVÄfÄvĆĖĦĶįÄÖÄæÄöÄÅÅ&Å6ÅFÅVÅfÅvņŖŦŶůÅÖÅæÅöÅÆÆ&Æ6ÆFÆVÆfÆvÆ†Æ–Æ¦Æ¶ÆÆÆÖÆæÆöÆÇÇ&Ç6ÇFÇVÇfÇvdžǖǦÇConstruct a new Generator with the default BitGenerator (PCG64).

    Parameters
    ----------
    seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
        A seed to initialize the `BitGenerator`. If None, then fresh,
        unpredictable entropy will be pulled from the OS. If an ``int`` or
        ``array_like[ints]`` is passed, then it will be passed to
        `SeedSequence` to derive the initial `BitGenerator` state. One may also
        pass in a`SeedSequence` instance
        Additionally, when passed a `BitGenerator`, it will be wrapped by
        `Generator`. If passed a `Generator`, it will be returned unaltered.

    Returns
    -------
    Generator
        The initialized generator object.

    Notes
    -----
    If ``seed`` is not a `BitGenerator` or a `Generator`, a new `BitGenerator`
    is instantiated. This function does not manage a default global instance.
    
        permutation(x, axis=0)

        Randomly permute a sequence, or return a permuted range.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.
        axis : int, optional
            The axis which `x` is shuffled along. Default is 0.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> rng.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        >>> rng.permutation("abc")
        Traceback (most recent call last):
            ...
        numpy.AxisError: axis 0 is out of bounds for array of dimension 0

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.permutation(arr, axis=1)
        array([[0, 2, 1], # random
               [3, 5, 4],
               [6, 8, 7]])

        
        shuffle(x, axis=0)

        Modify a sequence in-place by shuffling its contents.

        The order of sub-arrays is changed but their contents remains the same.

        Parameters
        ----------
        x : array_like
            The array or list to be shuffled.
        axis : int, optional
            The axis which `x` is shuffled along. Default is 0.
            It is only supported on `ndarray` objects.

        Returns
        -------
        None

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> arr = np.arange(10)
        >>> rng.shuffle(arr)
        >>> arr
        [1 7 5 2 9 4 3 6 0 8] # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.shuffle(arr, axis=1)
        >>> arr
        array([[2, 0, 1], # random
               [5, 3, 4],
               [8, 6, 7]])
        
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        -------
        ValueError
            If any value in ``alpha`` is less than or equal to zero

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               http://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.default_rng().dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        
        multivariate_hypergeometric(colors, nsample, size=None,
                                    method='marginals')

        Generate variates from a multivariate hypergeometric distribution.

        The multivariate hypergeometric distribution is a generalization
        of the hypergeometric distribution.

        Choose ``nsample`` items at random without replacement from a
        collection with ``N`` distinct types.  ``N`` is the length of
        ``colors``, and the values in ``colors`` are the number of occurrences
        of that type in the collection.  The total number of items in the
        collection is ``sum(colors)``.  Each random variate generated by this
        function is a vector of length ``N`` holding the counts of the
        different types that occurred in the ``nsample`` items.

        The name ``colors`` comes from a common description of the
        distribution: it is the probability distribution of the number of
        marbles of each color selected without replacement from an urn
        containing marbles of different colors; ``colors[i]`` is the number
        of marbles in the urn with color ``i``.

        Parameters
        ----------
        colors : sequence of integers
            The number of each type of item in the collection from which
            a sample is drawn.  The values in ``colors`` must be nonnegative.
            To avoid loss of precision in the algorithm, ``sum(colors)``
            must be less than ``10**9`` when `method` is "marginals".
        nsample : int
            The number of items selected.  ``nsample`` must not be greater
            than ``sum(colors)``.
        size : int or tuple of ints, optional
            The number of variates to generate, either an integer or a tuple
            holding the shape of the array of variates.  If the given size is,
            e.g., ``(k, m)``, then ``k * m`` variates are drawn, where one
            variate is a vector of length ``len(colors)``, and the return value
            has shape ``(k, m, len(colors))``.  If `size` is an integer, the
            output has shape ``(size, len(colors))``.  Default is None, in
            which case a single variate is returned as an array with shape
            ``(len(colors),)``.
        method : string, optional
            Specify the algorithm that is used to generate the variates.
            Must be 'count' or 'marginals' (the default).  See the Notes
            for a description of the methods.

        Returns
        -------
        variates : ndarray
            Array of variates drawn from the multivariate hypergeometric
            distribution.

        See Also
        --------
        hypergeometric : Draw samples from the (univariate) hypergeometric
            distribution.

        Notes
        -----
        The two methods do not return the same sequence of variates.

        The "count" algorithm is roughly equivalent to the following numpy
        code::

            choices = np.repeat(np.arange(len(colors)), colors)
            selection = np.random.choice(choices, nsample, replace=False)
            variate = np.bincount(selection, minlength=len(colors))

        The "count" algorithm uses a temporary array of integers with length
        ``sum(colors)``.

        The "marginals" algorithm generates a variate by using repeated
        calls to the univariate hypergeometric sampler.  It is roughly
        equivalent to::

            variate = np.zeros(len(colors), dtype=np.int64)
            # `remaining` is the cumulative sum of `colors` from the last
            # element to the first; e.g. if `colors` is [3, 1, 5], then
            # `remaining` is [9, 6, 5].
            remaining = np.cumsum(colors[::-1])[::-1]
            for i in range(len(colors)-1):
                if nsample < 1:
                    break
                variate[i] = hypergeometric(colors[i], remaining[i+1],
                                           nsample)
                nsample -= variate[i]
            variate[-1] = nsample

        The default method is "marginals".  For some cases (e.g. when
        `colors` contains relatively small integers), the "count" method
        can be significantly faster than the "marginals" method.  If
        performance of the algorithm is important, test the two methods
        with typical inputs to decide which works best.

        .. versionadded:: 1.18.0

        Examples
        --------
        >>> colors = [16, 8, 4]
        >>> seed = 4861946401452
        >>> gen = np.random.Generator(np.random.PCG64(seed))
        >>> gen.multivariate_hypergeometric(colors, 6)
        array([5, 0, 1])
        >>> gen.multivariate_hypergeometric(colors, 6, size=3)
        array([[5, 0, 1],
               [2, 2, 2],
               [3, 3, 0]])
        >>> gen.multivariate_hypergeometric(colors, 6, size=(2, 2))
        array([[[3, 2, 1],
                [3, 2, 1]],
               [[4, 1, 1],
                [3, 2, 1]]])
        
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        Parameters
        ----------
        n : int or array-like of ints
            Number of experiments.
        pvals : sequence of floats, length p
            Probabilities of each of the ``p`` different outcomes.  These
            must sum to 1 (however, the last element is always assumed to
            account for the remaining probability, as long as
            ``sum(pvals[:-1]) <= 1)``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        Examples
        --------
        Throw a dice 20 times:

        >>> rng = np.random.default_rng()
        >>> rng.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]])  # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> rng.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3],
               [2, 4, 3, 4, 0, 7]])  # random

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        Now, do one experiment throwing the dice 10 time, and 10 times again,
        and another throwing the dice 20 times, and 20 times again:

        >>> rng.multinomial([[10], [20]], [1/6.]*6, size=2)
        array([[[2, 4, 0, 1, 2, 1],
                [1, 3, 0, 3, 1, 2]],
               [[1, 4, 4, 4, 4, 3],
                [3, 3, 2, 5, 5, 2]]])  # random

        The first array shows the outcomes of throwing the dice 10 times, and
        the second shows the outcomes from throwing the dice 20 times.

        A loaded die is more likely to land on number 6:

        >>> rng.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26])  # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> rng.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62])  # random

        not like:

        >>> rng.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

        
        multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (standard deviation, or "width,"
        squared) of the one-dimensional normal distribution.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.
        method : { 'svd', 'eigh', 'cholesky'}, optional
            The cov input is used to compute a factor matrix A such that
            ``A @ A.T = cov``. This argument is used to select the method
            used to compute the factor matrix A. The default method 'svd' is
            the slowest, while 'cholesky' is the fastest but less robust than
            the slowest method. The method `eigh` uses eigen decomposition to
            compute A and is faster than svd but slower than cholesky.

            .. versionadded:: 1.18.0

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

          - Spherical covariance (`cov` is a multiple of the identity matrix)
          - Diagonal covariance (`cov` has non-negative elements, and only on
            the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.default_rng().multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> rng = np.random.default_rng()
        >>> x = rng.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        We can use a different method other than the default to factorize cov:
        >>> y = rng.multivariate_normal(mean, cov, (3, 3), method='cholesky')
        >>> y.shape
        (3, 3, 2)

        The following is probably true, given that 0.6 is roughly twice the
        standard deviation:

        >>> list((x[0,0,:] - mean) < 0.6)
        [True, True] # random

        
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 < ``p`` < 1.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range (0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability mass function for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.default_rng().logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a) * count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative and
            less than 10**9.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative and
            less than 10**9.
        nsample : int or array_like of ints
            Number of items sampled.  Must be nonnegative and less than
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        multivariate_hypergeometric : Draw samples from the multivariate
            hypergeometric distribution.
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        The arguments `ngood` and `nbad` each must be less than `10**9`. For
        extremely large arguments, the algorithm that is used to compute the
        samples [4]_ breaks down because of loss of precision in floating point
        calculations.  For such large values, if `nsample` is not also large,
        the distribution can be approximated with the binomial distribution,
        `binomial(n=nsample, p=ngood/(ngood + nbad))`.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution
        .. [4] Stadlober, Ernst, "The ratio of uniforms approach for generating
               discrete random variates", Journal of Computational and Applied
               Mathematics, 31, pp. 181-189 (1990).

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = rng.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = rng.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.default_rng().geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 #random

        
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        continuous probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Zipf distribution is

        .. math:: p(x) = \frac{x^{-a}}{\zeta(a)},

        where :math:`\zeta` is the Riemann Zeta function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 2. # parameter
        >>> s = np.random.default_rng().zipf(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy import special  # doctest: +SKIP

        Truncate s values at 50 so plot is interesting:

        >>> count, bins, ignored = plt.hist(s[s<50],
        ...         50, density=True)
        >>> x = np.arange(1., 50.)
        >>> y = x**(-a) / special.zetac(a)  # doctest: +SKIP
        >>> plt.plot(x, y/max(y), linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        Parameters
        ----------
        lam : float or array_like of floats
            Expectation of interval, must be >= 0. A sequence of expectation
            intervals must be broadcastable over the requested size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        Notes
        -----
        The Poisson distribution

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> rng = np.random.default_rng()
        >>> s = rng.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = rng.poisson(lam=(100., 500.), size=(100, 2))

        
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval (0, 1].

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution. Must satisfy 0 < p <= 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.default_rng().negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = rng.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(rng.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 38%.

        
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.default_rng().triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.default_rng().wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> rng = np.random.default_rng()
        >>> values = hist(rng.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = rng.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = rng.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> rng = rng
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + rng.standard_normal(100)
        ...    b.append(np.product(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.default_rng().logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

        
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = rng.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = rng.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.default_rng().laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a < 1.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = rng.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats  # doctest: +SKIP
        >>> rvs = rng.power(5, 1000000)
        >>> rvsp = rng.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + Generator.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> a = 5. # shape
        >>> s = rng.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(rng.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.


        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.default_rng().pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and dispersion (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Dispersion of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the dispersion,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and dispersion
        >>> s = np.random.default_rng().vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ?

        We have 10 degrees of freedom, so is the sample mean within 95% of the
        recommended value?

        >>> s = np.random.default_rng().standard_t(10, size=100000)
        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727

        Calculate the t statistic, setting the ddof parameter to the unbiased
        value so the divisor in the standard deviation will be degrees of
        freedom, N-1.

        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(s, bins=100, density=True)

        For a one-sided t-test, how far out in the distribution does the t
        statistic appear?

        >>> np.sum(s<t) / float(len(s))
        0.0090699999999999999  #random

        So the p-value is about 0.009, which says the null hypothesis has a
        probability of about 99% of being true.

        
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              http://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.default_rng().standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.

            .. versionchanged:: 1.10.0
               Earlier NumPy versions required dfnum > 1.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> rng = np.random.default_rng()
        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(rng.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(rng.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.default_rng().chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random

        
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.

            .. versionchanged:: 1.14.0
               Earlier NumPy versions required dfnum > 1.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> rng = np.random.default_rng()
        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = rng.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = rng.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.default_rng().f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.default_rng().gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        standard_gamma(shape, size=None, dtype=np.float64, out=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is
            not None, it must have the same shape as the provided size and
            must match the type of the output values.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.default_rng().standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        :meth:`normal` is more likely to return samples lying close to the
        mean, rather than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.default_rng().normal(mu, sigma, 1000)

        Verify the mean and the variance:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.1  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from N(3, 6.25):

        >>> np.random.default_rng().normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        standard_normal(size=None, dtype=np.float64, out=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.

        Notes
        -----
        For random samples from :math:`N(\mu, \sigma^2)`, use one of::

            mu + sigma * gen.standard_normal(size=...)
            gen.normal(mu, sigma, size=...)

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.standard_normal()
        2.1923875335537315 #random

        >>> s = rng.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = rng.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from :math:`N(3, 6.25)`:

        >>> 3 + 2.5 * rng.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than high.  The default value is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        integers : Discrete uniform distribution, yielding integers.
        random : Floats uniformly distributed over ``[0, 1)``.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.
        If ``high`` < ``low``, the results are officially undefined
        and may eventually raise an error, i.e. do not rely on this
        function to behave when passed arguments satisfying that
        inequality condition.

        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.default_rng().uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        
        choice(a, size=None, replace=True, p=None, axis=0, shuffle=True)

        Generates a random sample from a given 1-D array

        Parameters
        ----------
        a : {array_like, int}
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated from np.arange(a).
        size : {int, tuple[int]}, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn from the 1-d `a`. If `a` has more
            than one dimension, the `size` shape will be inserted into the
            `axis` dimension, so the output ``ndim`` will be ``a.ndim - 1 +
            len(size)``. Default is None, in which case a single value is
            returned.
        replace : bool, optional
            Whether the sample is with or without replacement
        p : 1-D array_like, optional
            The probabilities associated with each entry in a.
            If not given the sample assumes a uniform distribution over all
            entries in a.
        axis : int, optional
            The axis along which the selection is performed. The default, 0,
            selects by row.
        shuffle : bool, optional
            Whether the sample is shuffled when sampling without replacement.
            Default is True, False provides a speedup.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if p is not 1-dimensional, if
            a is array-like with a size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size.

        See Also
        --------
        integers, shuffle, permutation

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> rng = np.random.default_rng()
        >>> rng.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to rng.integers(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> rng.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> rng.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to rng.permutation(np.arange(5))[:3]

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> rng.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        
        bytes(length)

        Return random bytes.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : str
            String of length `length`.

        Examples
        --------
        >>> np.random.default_rng().bytes(10)
        ' eh\x85\x022SZ\xbf\xa4' #random

        
        integers(low, high=None, size=None, dtype=np.int64, endpoint=False)

        Return random integers from `low` (inclusive) to `high` (exclusive), or
        if endpoint=True, `low` (inclusive) to `high` (inclusive). Replaces
        `RandomState.randint` (with endpoint=False) and
        `RandomState.random_integers` (with endpoint=True)

        Return random integers from the "discrete uniform" distribution of
        the specified dtype. If `high` is None (the default), then results are
        from 0 to `low`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is 0 and this value is
            used for `high`).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is np.int64.
        endpoint : bool, optional
            If true, sample from the interval [low, high] instead of the
            default [low, high)
            Defaults to False

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        Notes
        -----
        When using broadcasting with uint64 dtypes, the maximum value (2**64)
        cannot be represented as a standard integer type. The high array (or
        low if high is None) must have object dtype, e.g., array([2**64]).

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.integers(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])  # random
        >>> rng.integers(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> rng.integers(5, size=(2, 4))
        array([[4, 0, 2, 1],
               [3, 2, 2, 0]])  # random

        Generate a 1 x 3 array with 3 different upper bounds

        >>> rng.integers(1, [3, 5, 10])
        array([2, 2, 9])  # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> rng.integers([1, 5, 7], 10)
        array([9, 8, 7])  # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7],
               [ 1, 16,  9, 12]], dtype=uint8)  # random

        References
        ----------
        .. [1] Daniel Lemire., "Fast Random Integer Generation in an Interval",
               ACM Transactions on Modeling and Computer Simulation 29 (1), 2019,
               http://arxiv.org/abs/1805.10941.

        
        standard_exponential(size=None, dtype=np.float64, method='zig', out=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        method : str, optional
            Either 'inv' or 'zig'. 'inv' uses the default inverse CDF method.
            'zig' uses the much faster Ziggurat method of Marsaglia and Tsang.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.default_rng().standard_exponential((3, 8000))

        
        exponential(scale=1.0, size=None)

        Draw samples from an exponential distribution.

        Its probability density function is

        .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),

        for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter,
        which is the inverse of the rate parameter :math:`\lambda = 1/\beta`.
        The rate parameter is an alternative, widely used parameterization
        of the exponential distribution [3]_.

        The exponential distribution is a continuous analogue of the
        geometric distribution.  It describes many common situations, such as
        the size of raindrops measured over many rainstorms [1]_, or the time
        between page requests to Wikipedia [2]_.

        Parameters
        ----------
        scale : float or array_like of floats
            The scale parameter, :math:`\beta = 1/\lambda`. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized exponential distribution.

        References
        ----------
        .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and
               Random Signal Principles", 4th ed, 2001, p. 57.
        .. [2] Wikipedia, "Poisson process",
               https://en.wikipedia.org/wiki/Poisson_process
        .. [3] Wikipedia, "Exponential distribution",
               https://en.wikipedia.org/wiki/Exponential_distribution

        
        beta(a, b, size=None)

        Draw samples from a Beta distribution.

        The Beta distribution is a special case of the Dirichlet distribution,
        and is related to the Gamma distribution.  It has the probability
        distribution function

        .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1}
                                                         (1 - x)^{\beta - 1},

        where the normalization, B, is the beta function,

        .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1}
                                     (1 - t)^{\beta - 1} dt.

        It is often seen in Bayesian inference and order statistics.

        Parameters
        ----------
        a : float or array_like of floats
            Alpha, positive (>0).
        b : float or array_like of floats
            Beta, positive (>0).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` and ``b`` are both scalars.
            Otherwise, ``np.broadcast(a, b).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized beta distribution.

        
        random(size=None, dtype=np.float64, out=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` multiply
        the output of `random` by `(b-a)` and add `a`::

          (b - a) * random() + a

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.random()
        0.47108547995356098 # random
        >>> type(rng.random())
        <class 'float'>
        >>> rng.random((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * rng.random((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        `+8%+0!+@'+˜&+`+È+`+`+8%+˜"+0!+ð"+8$+`+8%+%+@'+`+ +(!+ &+ˆ+ð"+8$+`+`+8%+0!+0#+È+`+˜+`+8%+0!+˜+È+`+h%+x%+`+h%+x%+Ø!+`+ˆ%+`+ˆ%+Ø!+`+`+ˆ%+`+p"+€#+`+@'+`+@'+`+@'+`+0#+È+`+0#+È+`+0#+È+`+À"+p+`+È+`+À"+È+`+X#+€"+è+`+H"+(!+`+H"+(!+`+p#+`+@'+`+(!+`+ø!+("+ !+`+(!+`+À"+°%+`+0&+x+˜"+H"+¨ +`+ð%+ !+`+˜"+ð&+`+Ø+ &+Ø+ &+x&+˜+#+˜$+€"+ø&+0"+@!+¸$+0%+°+p + +x +*+*+,3*+@'$*+'7ø)+À&&ð)+€&=è)+ øà)+ &BØ)+Èþ	Ð)+à%#È)+ %&À)+`%<¸)+€#°)+ý
¨)+àô )+ø˜)+`ô )+ ÷ˆ)+@ô €)+ ùx)+€÷p)+ ô h)+ ö`)+ %%X)+àõP)+ÀõH)+Àô@)+ô 8)+àó 0)+€¬"()+à$2 )+ $*)+`$()+ $+)+à##)+`÷ø(+€öð(+@¬"è(+ õà(+@÷Ø(+ ÷Ð(+ ôÈ(+€õÀ(+ #&¸(+`#*°(+ #%¨(+à"% (+@ó!˜(+ó!(+`öˆ(+€ô€(+à÷x(+`õp(+À÷h(+pü`(+ "2X(+ ýP(+`""H(+"[@(+À!?8(+€!00(+÷((+`ü (+ ø(+Àø(+@!$(+€ù(+kø'+!)ð'+Ðûè'+à'+PüØ'+` ŒÐ'+@öÈ'+ ü
À'+Xû¸'+i°'+€ý
¨'+  ! '+à"˜'+àò '+ .ˆ'+@)€'+(x'+ýp'+0ûh'+¬7`'+@FX'+[P'+YH'+X@'+g8'+g0'+@õ('+- '+°ó'+À8'+D'+@'+¸þ	ø&+ ûð&+è&+xÿà&+<Ø&+3Ð&+
È&+pÿÀ&+@ú¸&+,°&+`ÿ¨&+ö &+ñ˜&+e&+eˆ&+ì€&+àx&+Àûp&+Àûh&+æ`&+€)X&+`œsP&+cH&+c@&+Xÿ8&+Xÿ0&+@ü(&+@4 &+@”&+q&+¨þ	&+¨þ	&+
ø%+úð%+%è%+àTà%+Ø%+ùÐ%+€øÈ%+áÀ%+ú¸%+°û°%+8¨%+ % %+`)˜%+%+0üˆ%+U€%+Ux%+ôp%+ôh%+î`%+îX%+Ø	P%+ ç1H%+4@%+8%+è0%+û(%+Ñ %+Ñ%+â%+ý%+	%+˜þ	ø$+Ø
ð$+pý
è$+0à$+ËØ$+ÅÐ$+È	È$+ z
À$+¿¸$+¹°$+Pÿ¨$+Hÿ $+ˆþ	˜$+$+@ÿˆ$+@ÿ€$+Áx$+€o	p$+@ûh$+ û`$+ iJX$+xþ
P$+ 6H$+8ÿ@$+àV)8$+¼0$+@DŸ($+R $+ûÿ$+(ÿ$+ðÿ$+³$+­ø#+§ð#+¡è#+·à#+ ÿØ#+hþ	Ð#+`7ÔÈ#+²À#+Xþ	¸#+›°#+Hþ	¨#+8þ	 #+ðü˜#+­#+(þ	ˆ#+ õ€#+•x#+•p#+,h#+,`#+àÚ¥X#+¨P#+`ýH#+àü@#+£8#+Ðü0#+((#+( #+ž#+Àü#+à+d#+àé#+àï
ø"+™ð"+$è"+	à"+Pý
Ø"+àÿÐ"+ È"+`úÀ"+†¸"+†°"+à#¨"+ ö "+ÿ˜"+Õÿ"+ 'ˆ"+`2€"+x"+°ü
p"+Oh"+O`"+ 7
X"+ïP"+`Û‰H"+a@"+a8"+x	0"+Ðÿ("+r "+r"+m"+ÏB"+ $"+ø!+ð!+è!+àùà!+à3Ø!+hÐ!+hÈ!+@IJ
À!+¸=¸!+@©¤°!+`ù¨!+L !+ÿ˜!+ÿ!+öˆ!+õ€!+àöx!+Àùp!+‰h!+àø`!+©'X!+ "P!+ üH!+`ø@!+8!+þ	0!+(!+_ !+_!+@ø!+c!+šð!+‚ø +à”ð +Èÿè +þà +ÒÊØ +ðúÐ +ˆÇÈ +`#À +Àö¸ +ó° +^¨ +|  +|˜ +Ðú +üˆ +û€ +ü
x +@ýp +þh + ú` +€üX +vP +»ÿH +#@ +p8 +j0 + w	( +´ÿ  +ðý +pû +0ý +ÿ +ÿø+ü
ð+àý	è+dà+dØ+ðþÐ+YÈ+^À+^¸+ðû
°+T¨+Ðý
 +°ú˜+X+Xˆ+èþ€+€sx+Op+Rh+R`+JX+EP+@H+Éø@+€Ãt8+ ·Â0+ ú(+Àj¦ +à]Ö+L+F+;+6ø+ð+ ùè+`·!à+@ùØ+àþÐ+àû
È+­ÿÀ+Àý	¸+N°+€ú¨+ +˜+°ý	+1ˆ+(	€+Øþx+ÿp+€TY	h+H`+¦ÿX+ŸÿP+˜ÿH+@@+pó8+À&0+ JÙ	(+‘ÿ +`J%+Šÿ+ƒÿ+`>÷+­D
ø+"ð+"è+ ý	à+`1ôØ+]Ð+:È+ûÀ+€'Ð	4ÿÿÿÿÿÿÿÿ +˜)XPÞè 5DÈ)0.pÝ@+à+°Ž?D@ËVðË*pÐ#è€	+P	+ 5@	+DÀ-p€+à	+ð…pÏÀPZqÀà%jP%?}`>lÐÈt°;@;„Ð:09ˆ@7”  P¬H±àEDpÇV Ⱦ  !°Dàà +0¿D`ðVàÛx *@++V++ +°> Ì @J0Ü p%ùÐH0JHDÆVÀÆ(*àà!ÐìðQDP*0`! + +ÂЀØ0
@Òp.ðP)ðO6@KôðŽ€¸*!
àd@³*Þàh¬*Õ z€¦*¼à¡ ™*Ž H ˜*t
𺠋*Í`]*û ™y* l@j*P¯`^*(p@S*1
às F*&
àwà9*>
€|À1*3
À'*H
*X
۠ *c
	 *l

 ö)s
‘ é){
@”@Ü)
€—€Ï)‰
p›@½)
`Ÿ1)™
P£ )£
@§ —)¬
€ª@).0Çàƒ)º
PÀu)±
€®`i)Ã
`²€`)Ë
 µ V)×и@P)Òü =)Ð
¼ 2)5
 ^)Š€TÀ)ÅÀÌ þ(²pàò(áÐÀî(9â é(P£CÀàå(UGCC: (GNU) 4.4.7 20120313 (Red Hat 4.4.7-23)GCC: (GNU) 8.3.1 20190311 (Red Hat 8.3.1-3)Èð€èF2h4¨4Ȫ	¼
 ¼°Ç
 h€Pˆ¸Û(ÀÛ(ÈÛ(ÐÛ(°Ý(à(àå( +ñÿÄ*ñÿ7 K°
fÀàíšÐXÍ,+(,+0EK€
ސH à·
Û0o x< COpÊi@ ™”à ;¨ !7¾`!wóà!g*P"‘Eð"h_`#iy°ÇQ•8"+¤È
¾@(+ê0+÷,+,+,+!Ø'+M(+\h+q˜+} +Œ '+µ+Å'+ñ+('+-+=!+`ø+p0'+—ð+§À +Ìè+ÜÈ +à+¸ +AØ+Qà)+}Ð+"+¹È+ÉÈ)+õÀ+¸+°+%Ð'+K¨+[P#+p +€x"+–˜+¦H#+¼+Ìè!+êˆ+úˆ"+&€+6¨"+\x+l¨%+˜p+¨°"+Ôh+ä+ô(&+ 	`+0	H*+M	 %+y	X+‰	P+™	°+´	H+Ä	"+ð	@+
!+&
8+6
ˆ!+]
0+m
`'+™
(+©
x!+Ç
 +×
è&+ê
+ú
+
*+5+EÀ)+q(+¸)+Ë`!+ö+X!+2Ð)+^ø+nˆ#+•ð+¥8+Ñè+á@+

à+
*+F
Ø+V
à!+‚
Ð+’
È+¢
ø)+Î
À+Þ
¨'+
¸+ð)+F°+V*+‚¨+’ +¢`+²˜++ÒP(+þˆ+€+x+.°+= ,+O%+eh$+~è+¨p+¸ð+Öh+æà+`+Ø%+7X+GÐ%+jP+z€ +˜ +©x +½ +Ôp +çh +Ð+Ð#”7À*+Z€*+@xp%dŒà%¥ð%G½@'G֐(¹üP)G *é&+´bP,[žÜc®` +ÃqÜÖX$+é +ý  + +(¨+; +Uyßëfdàÿzcáÿ°,œH,+¤À-eÁ0.5äp.Q(Ð.M=8,+E /Aop/.Š@,+’ /A£ð/P´@0×Çà++Ø0,+íø%+
 5#ˆ&+2&+B(+d@7ꈐ+”09º`+ÉÐ:dñ@;d°;§?`>ñd`@ɍÈ+ž!+­0GÆÛHÎüÐH\0Iý] "+o0J‡@JýŸ@K¤Üp$+õð +x&++.p&+FðOþ„ðPýÂðQûX'+	P'+VG/`V—]W§{°\›”Pb|ÉÐbòàdò)H'+7¸+G&+S8'+_8++„@'+˜&+œà¿* ³àh:ñ¨+À+À*(È+8 lëq0#+ Á* –pÅΐ+Þ˜+î€Á* àsò9p%+I`%+Yh%+ix%+y Á* àw–ÏÐ!+ÞÀÁ*(õØ!+€|>@€%+Mˆ%+ZðÁ*qÀò¸ Â* ϲ@Â*(€†>ePÂ*|	ò·x#+Çh"+Ôp"+á€#+ñ€Â* 
>A Â*X‘>’ÀÂ*©@”>áàÂ*ø€—ë2 (#+@ Ã* W p›ë  Ã* § `Ÿëâ @Ã* ù P£ë5!h+E!¸"+T!À"+c!p+s!`Ã* Š!@§:Å!€Ã*Ü!€ªò" Ã* *"€®Ün" !+z"@"+†"0++«"H"+·"(!+Ã" Ä* Ú"`²2#h#+"#@Ä*9#p#+G# µ(~#`Ä*•#и(Ñ#€Ä*è#¼($$ÐÄ*;$0¿›V$0"+g$0Æ*~$ÐÀ%—$ÂÑ$@&+ã$ #+ò$h*+%ðÅ*"%Æ©J%X*+b%ÀÆ©Œ%pÇ©¹% È©è%ÐÈp&@Ë©A&ðË©u& ÌÆ‹&H&+—&ˆ$+©&pÏùÄ&pÑÍâ&@Ò
&'PÒñ>'ø*+T'PÔ!i'€Öƒ' Û‰ '0Ü7½'pÝ×Ý'PÞ@ÿ'ßA(ð*+5(àæ](èêw(`*+ˆ( (+«(ðêèÊ(àëèí(Ðì…')ø+5)˜$+F)°&+Y)`ðr‡)X%+–)x+ª)àõOÃ)0ùæë)+ü)Ø$+* ¦9*мM*ü`*úv*E•*+¦*àÜÖ*Àz+8&++++L+è'+\+`Æ*s+@Ä•+ø'+Á+ *+Ú+ˆ, «P,Pm,`»¸, Õ,0t-°!‡-@$0-P%Q-à'p-P$+œ-@*+¶-ð<¦×-++è- C94.àER.ðE–.H¬. Hä.Ø#+÷.¨!+/X+/8%+%/¸&+6/h+D/€+V/°P£c/(*+z/è)+ž/`]*Ø/P,+ä/À+÷/'+0À#+0ð"+&08$+50P*+Q0àÀ* h0q„Š0 zÂÑ0P+Ü0È+ê0Ø++1¨$+1H++A1°$+S1@++~10!+Œ1˜"+1'+É1 À*(à1ð…µø1ø++2@!+2¸$+/20%+I2@Æ* `2°Ž;~2ð++2ðŽ(
Ö2X+á2˜'+3?* "3 ™(
d3@+p3ˆ'+ž3Á* µ3P£úé3"+÷3++4à'+$4è +74`(+c4€Æ* z4P¯¸
»48+Ç4(++î4€'+5@Á*(35º
]5"+l50ÇÓ©5à&+·5H$+É5à$+Ù5 ++
6ÀÃ*(!6X#+06€"+?6è+O6â÷6à#+Ÿ6Ø&+°6ˆ+Â6È&+Ô6°!+ó6È#+7Ø+7È"+)7Ð&+97ÐÅ*P7 &+_7ü8  7p+µ7`&+á7ø!+ñ7˜!+8 "+8ð!+"8 Ä*(98@#+H8'+V8++8("+œ8 !+®8PS"é8`++9%+*9ð#+:9Ð$+I9ø$+Y9X++9Ð++­9Ä* Ä9°>Ì×9,+ë9P&+÷9$+	:(+:%+&:*+6:0(+[:#+n:ø&+ˆ:Æ*0Ÿ:8(+Ë:€Tî*	;  +;P++C;8!+V;$+f;Ð+v;è#+…;¨ +•;@Å* ¬;pf"è;8#+ý;Ð"+<°+<%+0<ð&+@<Å*W<È++r<à¡Ü*­<H+¸<ø#+È<++ÿ<˜++6=à%+G=ø"+V=%+i=$+y=ˆ++°=`À*0Ç=€++ý=P+>À++F>¸++~>`+>°++Ç>H+×>¨++?h&+? ++S?°#+f? '+’?ÀÌBà?à"+ô?À%+@À&+ @¨#+3@ð%+D@è%+p@€!+•@ #+ª@`Å*(Á@¸+í@h'+AH(+DAÐV5~AØ+A˜+£A°Å*ºA8*+ÜA0DðA+B+B+BPZJ;B ^SBð+B +žB +²B %+ÁB&+ÔB0+îB +C@%+C¨+CP!+4C $+ECX +UC'+hCH%+vC¸'+‚CÐ+‘C¨&+ C°%+®C0&+ÄCx+ÒCÅ*8éC(%+øC&+DP+Dè+-Dø+<D1'	uDÈ%+„D˜#+“DÀ$+£Dè$+±D¸#+ÁD#+ÖD( +çD° +öD˜%+EP +E¸+/Eà+?Ex+NE $+aE¸%+yE8 +‰E(+šEø+±EX+ÀE+ÏEˆ+ÜE€$+ëE +hF€+FðºÝLF +^F À*8uFÀ+p…F Æ*>–Fè"+¥F@ +µFx'+ÊF($+×F°'+ëFð'+GÀ'+G((+2Gð+EG(+cGÈ'+zGh(+G0*+ªGð$+¾GØ)+ÑGX(+æG€+ Hè*+Îà*+yØ*+(HÐ*+HÈ*+3H@+fH°)+zH8+H`+ ¤H`+ ÁH+8ÙH + õHÀ+8I@+ 4Ix++eIp++Ih++ÆIp!+ÖIh!+öI!+JØ + JH!+BJ€+ vJH +¡JØ(+ÆJ@+ðJ¸(+KÐ#+GKX)+nKX&+™K )+½K&+èK)+
L0+8L(+^L(+‰L¨(+µL¸!+àL)+M8+/M°(+[Mx$+†Mx)+«MÈ$+ÖM€)+÷MÀ!+"N)+NN &+yN˜)+¢NÈ!+ÍN)+ùNH+#OÀ(+OO +zO (+¤O+ÏOˆ(+÷O!+"Pø(+HPà+sPx(+šPÐ +ÅPà(+êP`#+QP)+;Q@$+fQh)+ŒQ#+·QH)+ßQ#+
R@)+3R0 +^RÐ(+†R+°R€(+ÔRp+ÿR˜(+)S€&+TS¨)+|S"+§S)+ÓSà +ýSè(+$TÀ+OTp(+sT`$+žTp)+ÇT0$+òT`)+U#+IU8)+rUP"+U )+ÉU`"+ôU0)+VX"+JV()+vVP%+ Vˆ)+ÉV€+ôVÈ(+Wø +FWð(+qWˆ+€Wˆ +˜W`+@¨Wp'+ÂW`+ øW
X
,3.X
@'$WX
'7€X
À&&©X
€&=ÒX
 øóX
 &BY
Èþ	-Y
à%#VY
 %&Y
`%<¨Y
€#ÓY
ý
åY
àô
Z
ø+Z
`ô QZ
 ÷sZ
@ô ™Z
 ù·Z
€÷ÙZ
 ô ÿZ
 ö"[
 %%K[
àõo[
Àõ“[
Àô¸[
ô Þ[
àó \
€¬",\
à$2U\
 $*~\
`$(§\
 $+Ð\
à##ù\
`÷]
€ö>]
@¬"f]
 õŠ]
@÷¬]
 ÷Î]
 ôó]
€õ^
 #&@^
`#*i^
 #%’^
à"%»^
@ó!â^
ó!	_
`ö,_
€ôQ_
à÷r_
`õ–_
À÷·_
püË_
 "2ô_
 ý`
`""0`
"[Y`
À!?‚`
€!0«`
÷Í`
`üá`
 øa
Àø a
@!$Ia
€ùea
koa
!)˜a
Ðû®a
¼a
PüÐa
` Νa
@öb
 ü
1b
XûHb
iRb
€ý
db
  !b
à"¶b
àò Ýb
 .c
@)1c
(\c
ýoc
0û‡c
¬7¯c
@FØc
[ãc
Yîc
Xùc
gd
@õ'd
-Pd
°óvd
À8Ÿd
D«d
@·d
¸þ	Èd
 ûàd
îd
xÿþd
<
e
3e

'e
pÿ7e
@úQe
,`e
`ÿpe
ö}e
ñŠe
e”e
ì¡e
àÉe
Àûße
æìe
€)f
`œs=f
cGf
XÿWf
@ükf
@4”f
@”¼f
qäf
¨þ	õf

g
úg
%-g
àTVg
eg
ùƒg
€ø£g
á°g
ú¾g
°ûÔg
8àg
 %	h
`)2h
Ah
0üUh
U`h
ônh
î|h
Ø	‰h
 ç1°h
4¼h
Ëh
èÙh
ûñh
Ñþh
âi
ýi
	.i
˜þ	?i
Ø
Mi
pý
_i
0ki
Ëyi
Ňi
È	”i
 z
¼i
¿Êi
¹Øi
Pÿèi
Hÿøi
ˆþ		j
j
@ÿ(j
Á5j
€o	]j
@ûtj
 ûŠj
 iJ²j
xþ
Ãj
 6ìj
8ÿüj
àV)$k
¼1k
@DŸYk
Rdk
ûÿsk$+…k
(ÿ•k$+¦k
ðÿµk
³Ãk
­Ñk
§ßk
¡ík
·úk
 ÿ
l
hþ	l
`7ÔCl
²Pl
Xþ	al
›ol
Hþ	€l
8þ	‘l
ðü¤l
­±l
(þ	Âl
 õæl
•ôl
,m
àÚ¥'m
¨4m
`ýFm
àüYm
£fm
Ðüym
(…m
ž’m
Àü¥m
à+dÍm
àéõm
àï
n
™*n
$6n
	Cn
Pý
UnØ"+fn
àÿun
 n
`úšn
†§n
à#Ðn
 öón
ÿo
Õÿo
 ';o
`2do
qo
°ü
„o
Oo
 7
·o
ïßo
`Û‰p
ap
x	p
Ðÿ-p
r:p
mGp
ÏBop
 $˜p
¤p
²p
àùÍp
à3öp
hq
@IJ
+q
¸=Sq
@©¤{q
`ù˜q
L£q
ÿ³q
öÖq
õúq
àör
Àù7r
‰Er
àøcr
©'‹r
 "´r
 üÇr
`øçr
ór
þ	s
s
_s
@ø:s
cGs
šðos
‚}s
à”¥s
Èÿ´s
þÅs
ÒÊìs
ðút
ˆÇ,t
`#Ut
Àöwt
ót
^ªt
|¸t
ÐúÐt
üåt
ûût
ü
u
@ý u
þ1u
 úKu
۟^u
vlu
»ÿ{u
#£u
p±u
j¿u
 w	çu
´ÿöu
ðýv
pûv
0ý/v
ÿ?v
ÿOv
ü
dv
àý	uv
dƒvØ+•v
ðþ¥v
Y²v
^Àv
ðû
Õv
Tâv
Ðý
óv
°úw
Xw
èþ)w
€sQw
O^w
Rlw
Jyw
E†w
@“w
Éøºw
€Ãtáw
 ·Âx
 ú x
Àj¦Hx
à]Öpx
L~x
FŒx
;™x
6¦x
²x
 ùÍx
`·!ôx
@ùy
àþ!y
àû
6y
­ÿEy
Àý	Vy
Ny
€ú—y
£y
°ý	´y
1Áy
(	Îy
ØþÞy
ÿêy
€TY	z
Hz
¦ÿ,z
Ÿÿ;z
˜ÿJz
@Xz
pó~z
À&§z
 JÙ	Ïz
‘ÿÞz +	{
`J%1{
Šÿ@{
ƒÿO{
`>÷w{
­D
ž{
"«{
 ý	¼{
`1ôä{
]î{
:ü{
û|
€'Ð	0| + >|@+`]|à+P||€	+Pœ|P	+»|@	+Ù|€+àò|à	+}+`}@+P9}+S}+l}+€€} +P”} +ÀÈ} +xü}€¸*#6~@³*@n~¬*5­~€¦*tõ~ ™*Ô1 ˜*sj ‹*q¤*Ù	ßy*¦"€@j*¤\€`^*ž€@S*	׀ F*
à9*=LÀ1*‰'*²
с*ø‚ *ÖR‚ *÷Ž‚ ö)ðȂ é)ôƒ@Ü)Ç<ƒ€Ï)¥wƒ@½))±ƒ1)díƒ )é*„ —)	f„@)D
ž„àƒ)Y	܄Àu)…`i)B]…€`)ʘ… V)Ð	Ѕ@P)J
† =)ŸO† 2)ï
Œ†)‰ӆÀ)7
‡ þ(a‡àò(1ž‡Àî(ه é(ˆàå(¥JˆñÿUˆàWˆjˆP€ˆ +ˆÀÛ(¶ˆˆ¸Û(áˆñÿñˆ
`>ûˆ
`F‰
`N‰
`2‰
`6!‰
`:*‰
`j4‰
`r>‰
`bH‰
`ZQ‰
`^Z‰
`Vc‰ Í‡‰
2Pމñÿ¢‰ñÿº‰ñÿ҉ñÿá‰
`|ðJˆñÿé‰ÈÒñÿ÷‰ÈÛ(ŠÐÛ(
Šh€ Š+,Šà(BŠWŠmŠ}Š Š°ŠÒ‚¿ŠԊèŠúŠ‹õG)‹A‹R‹Pì`m‹ƒ‹•‹§‹Ò>¶‹NjPÑSЋ 싌Œ)Œ7Œ@ÿG`Œ|Œ‘ŒŸŒ®ŒŌތð×&÷Œ°Ñ/#<Pm|“¤¼΍@Ã9ñŽŽ-ŽPȁCŽ+JŽ Ø»
_ŽvސާŽ@+֎àêçŽúŽ.Ô^>Riy À•¯ÐÏ,¾ ÕÅ͏ӏçû`õ´+:Ocv‰ ù¤¼Րãõþ¯‘‘+‘ÓN;‘J‘X‘m‘PÀIŒ‘¥‘àïZ»‘ȑّí‘àÍ’’%’6’àʹN’ î
`’q’@ñ¶’£’º’̒ê’PÒ?÷’“°û[ԓ%“3“F“àæWZ“àÃq“‘“¡“±“Óӓå“ù“”#”2”?”M”b”t”Š”óy¨”€“µ”Ĕؔô”••@Ðë!•6•J•\•w•ˆ• —•°Ïª•¼•˕ٕì•f––%–8–ÐE–U–o–‡–п%¡–±–іä–Îyò–bâ`6——/—B—W—k— Ðz—ÐìN†—˜—ª—¾—Â2ܗì—˜àÑ'˜˜X,+!˜4˜ ÍJ˜b˜u˜ðëW˜¡˜`Ô½³˜Ęۘ혙™0è§!™ ø|<™@ÆÊU™ÀÍk™À	ƒ™¡™³™+¿™͙ߙ€Ï(í™0Ñþ™š#šÀÁ9Dš0ï¡Tš@çð`šwšŠš°å/¦š¸š˚ۚêš`Äœ››!›7›R›€ÃQw›‹›™›àÓª›ò‰ɛܛ뛜奜ðÍ	œ Óg,œ;œVœÀ9sœ„œ—œ¬œÈ9ʜݜñœþq':àâT n‚•֝蝞ž(ž8žNž°ì_žvžˆžž¯žž۞õžŸ""Ÿ	¼(ŸÆ9DŸSŸ/usr/lib/../lib64/crti.ocall_gmon_start_generator.c__pyx_array___len____pyx_MemviewEnum___repr____pyx_memoryview___len____pyx_get_best_slice_order__pyx_tp_new_5numpy_6random_10_generator_Generator__pyx_vtabptr_5numpy_6random_10_generator_Generator__pyx_empty_tuple__pyx_tp_traverse_5numpy_6random_10_generator_Generator__pyx_getprop_5numpy_6random_10_generator_9Generator_bit_generator__pyx_tp_new_Enum__pyx_tp_traverse_Enum__pyx_getprop___pyx_memoryview_base__pyx_getprop___pyx_memoryviewslice_base__pyx_bisect_code_objects__Pyx_BufFmt_DescribeTypeChar__pyx_typeinfo_cmp__pyx_tp_clear_memoryview__pyx_memoryview_refcount_objects_in_slice__pyx_tp_clear_Enum__pyx_tp_dealloc_Enum__pyx_tp_clear_5numpy_6random_10_generator_Generator__pyx_tp_dealloc_5numpy_6random_10_generator_Generator__Pyx_BufFmt_RaiseExpected__Pyx_BufFmt_ExpectNumber__Pyx_PyObject_CallOneArg__Pyx_setup_reduce_is_named__pyx_n_s_name__Pyx_InitCachedConstants__pyx_kp_u_Invalid_bit_generator_The_bit_ge__pyx_tuple___pyx_lineno__pyx_filename__pyx_clineno__pyx_kp_u_Providing_a_dtype_with_a_non_nat__pyx_tuple__8__pyx_int_4294967296__pyx_int_0__pyx_tuple__9__pyx_kp_u_a_must_an_array_or_an_integer__pyx_tuple__10__pyx_kp_u_a_must_be_a_positive_integer_unl__pyx_tuple__11__pyx_kp_u_a_cannot_be_empty_unless_no_samp__pyx_tuple__12__pyx_kp_u_p_must_be_1_dimensional__pyx_tuple__13__pyx_kp_u_a_and_p_must_have_same_size__pyx_tuple__14__pyx_kp_u_probabilities_contain_NaN__pyx_tuple__15__pyx_kp_u_probabilities_are_not_non_negati__pyx_tuple__16__pyx_kp_u_probabilities_do_not_sum_to_1__pyx_tuple__17__pyx_kp_u_Cannot_take_a_larger_sample_than__pyx_tuple__18__pyx_kp_u_negative_dimensions_are_not_allo__pyx_tuple__19__pyx_kp_u_Fewer_non_zero_entries_in_p_than__pyx_tuple__20__pyx_tuple__21__pyx_tuple__22__pyx_kp_u_Range_exceeds_valid_bounds__pyx_tuple__23__pyx_kp_u_left_mode__pyx_tuple__26__pyx_kp_u_mode_right__pyx_tuple__27__pyx_kp_u_left_right__pyx_tuple__28__pyx_kp_u_ngood_nbad_nsample__pyx_tuple__29__pyx_kp_u_method_must_be_one_of_eigh_svd_c__pyx_tuple__30__pyx_kp_u_mean_must_be_1_dimensional__pyx_tuple__31__pyx_kp_u_cov_must_be_2_dimensional_and_sq__pyx_tuple__32__pyx_kp_u_mean_and_cov_must_have_same_leng__pyx_tuple__33__pyx_slice__34__pyx_kp_u_check_valid_must_equal_warn_rais__pyx_tuple__35__pyx_builtin_RuntimeWarning__pyx_kp_u_covariance_is_not_positive_semid__pyx_tuple__36__pyx_tuple__37__pyx_kp_u_sum_pvals_1_1_0__pyx_tuple__38__pyx_kp_u_method_must_be_count_or_marginal__pyx_tuple__39__pyx_kp_u_nsample_must_be_an_integer__pyx_tuple__40__pyx_kp_u_nsample_must_be_nonnegative__pyx_tuple__41__pyx_kp_u_When_method_is_marginals_sum_col__pyx_tuple__42__pyx_kp_u_nsample_sum_colors__pyx_tuple__43__pyx_kp_u_alpha_0__pyx_tuple__44__pyx_tuple__45__pyx_kp_u_Axis_argument_is_only_supported__pyx_tuple__46__pyx_kp_u_Format_string_allocated_too_shor__pyx_kp_u_Non_native_byte_order_not_suppor__pyx_kp_u_Format_string_allocated_too_shor_2__pyx_kp_u_numpy_core_multiarray_failed_to__pyx_tuple__50__pyx_kp_u_numpy_core_umath_failed_to_impor__pyx_kp_s_Empty_shape_tuple_for_cython_arr__pyx_tuple__52__pyx_kp_s_itemsize_0_for_cython_array__pyx_tuple__53__pyx_kp_s_unable_to_allocate_shape_and_str__pyx_tuple__54__pyx_kp_s_unable_to_allocate_array_data__pyx_tuple__55__pyx_kp_s_Can_only_create_a_buffer_that_is__pyx_tuple__56__pyx_kp_s_no_default___reduce___due_to_non__pyx_tuple__57__pyx_tuple__58__pyx_kp_s_Cannot_assign_to_read_only_memor__pyx_tuple__59__pyx_kp_s_Unable_to_convert_item_to_object__pyx_tuple__60__pyx_kp_s_Cannot_create_writable_memory_vi__pyx_tuple__61__pyx_kp_s_Buffer_view_does_not_expose_stri__pyx_tuple__62__pyx_tuple__63__pyx_int_neg_1__pyx_tuple__64__pyx_tuple__65__pyx_kp_s_Indirect_dimensions_not_supporte__pyx_tuple__66__pyx_tuple__67__pyx_tuple__68__pyx_n_s_seed__pyx_empty_bytes__pyx_n_s_default_rng__pyx_kp_s_generator_pyx__pyx_kp_s_strided_and_direct_or_indirect__pyx_tuple__71__pyx_kp_s_strided_and_direct__pyx_tuple__72__pyx_kp_s_strided_and_indirect__pyx_tuple__73__pyx_kp_s_contiguous_and_direct__pyx_tuple__74__pyx_kp_s_contiguous_and_indirect__pyx_tuple__75__pyx_n_s_pyx_result__pyx_n_s_pyx_PickleError__pyx_n_s_pyx_state__pyx_n_s_pyx_checksum__pyx_n_s_pyx_type__pyx_n_s_pyx_unpickle_Enum__pyx_kp_s_stringsource__pyx_tp_dealloc_memoryview__pyx_memoryview_thread_locks_used__pyx_memoryview_thread_locks__pyx_sq_item_array__pyx_sq_item_memoryview__Pyx_init_memviewslice_copy_strided_to_strided__pyx_memoryview__slice_assign_scalar__Pyx_GetException__pyx_tp_dealloc_array__pyx_f_5numpy_6random_10_generator_9Generator__shuffle_raw__pyx_f_5numpy_6random_10_generator_9Generator__shuffle_int__Pyx_SetVtable__pyx_n_s_pyx_vtable__Pyx_setup_reduce__pyx_n_s_getstate__pyx_n_s_reduce_ex__pyx_n_s_reduce_2__pyx_n_s_reduce_cython__pyx_n_s_setstate__pyx_n_s_setstate_cython__Pyx_ImportType__Pyx_ImportVoidPtr__Pyx_ImportFunction__Pyx_Import__pyx_m__pyx_tp_traverse_memoryview__pyx_tp_traverse__memoryviewslice__pyx_setprop_5numpy_6random_10_generator_9Generator__bit_generator__Pyx_GetBuiltinName__pyx_b__pyx_memoryview_refcount_copying.part.22__Pyx__GetModuleGlobalName__pyx_d__Pyx_IterFinish__Pyx_ImportFrom__Pyx_AddTraceback__pyx_code_cache__pyx_cython_runtime__pyx_n_s_cline_in_traceback__pyx_memoryview___str____pyx_n_s_base__pyx_n_s_class__pyx_kp_s_MemoryView_of_r_object__pyx_getprop___pyx_memoryview_size__pyx_int_1__pyx_getprop___pyx_memoryview_nbytes__pyx_n_s_size__pyx_getprop___pyx_memoryview_itemsize__pyx_getprop___pyx_memoryview_ndim__pyx_getprop___pyx_memoryview_suboffsets__pyx_getprop___pyx_memoryview_shape__pyx_memoryview_assign_item_from_object__pyx_n_s_struct__pyx_n_s_pack__pyx_memoryviewslice_assign_item_from_object__pyx_memoryview_setitem_indexed__pyx_getprop___pyx_array_memview__pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getattr____pyx_n_s_memview__pyx_array___getattr____pyx_array___getitem____pyx_pw_5numpy_6random_10_generator_9Generator_11__reduce____pyx_n_s_generator_ctor__pyx_n_s_pickle__pyx_n_s_bit_generator__pyx_n_s_state__pyx_n_u_bit_generator__pyx_pw_5numpy_6random_10_generator_9Generator_9__setstate____pyx_pw_5numpy_6random_10_generator_9Generator_7__getstate____pyx_pw_5numpy_6random_10_generator_9Generator_5__str____pyx_kp_u__2__pyx_kp_u__3__pyx_tp_getattro_array__Pyx_BufFmt_TypeCharToAlignment.constprop.69__Pyx_BufFmt_ProcessTypeChunk__Pyx_BufFmt_CheckString__Pyx_PyNumber_IntOrLongWrongResultType.constprop.72__Pyx_ParseOptionalKeywords.constprop.73__pyx_pw_5numpy_6random_10_generator_9Generator_15beta__pyx_kp_u__5__pyx_float_0_0__pyx_n_u_b__pyx_n_u_a__pyx_f_5numpy_6random_7_common_cont__pyx_n_s_a__pyx_n_s_b__pyx_pyargnames.13623__pyx_pw_5numpy_6random_10_generator_9Generator_17exponential__pyx_float_1_0__pyx_n_u_scale__pyx_pyargnames.13675__pyx_n_s_scale__pyx_pw_5numpy_6random_10_generator_9Generator_31normal__pyx_n_s_loc__pyx_pyargnames.14828__pyx_pw_5numpy_6random_10_generator_9Generator_35gamma__pyx_n_u_shape__pyx_n_s_shape__pyx_pyargnames.14961__pyx_pw_5numpy_6random_10_generator_9Generator_37f__pyx_n_u_dfden__pyx_n_u_dfnum__pyx_n_s_dfnum__pyx_n_s_dfden__pyx_pyargnames.15016__pyx_pw_5numpy_6random_10_generator_9Generator_39noncentral_f__pyx_n_u_nonc__pyx_pyargnames.15070__pyx_n_s_nonc__pyx_pw_5numpy_6random_10_generator_9Generator_41chisquare__pyx_n_u_df__pyx_n_s_df__pyx_pyargnames.15125__pyx_pw_5numpy_6random_10_generator_9Generator_43noncentral_chisquare__pyx_pyargnames.15175__pyx_pw_5numpy_6random_10_generator_9Generator_45standard_cauchy__pyx_pyargnames.15226__pyx_pw_5numpy_6random_10_generator_9Generator_47standard_t__pyx_pyargnames.15272__pyx_pw_5numpy_6random_10_generator_9Generator_49vonmises__pyx_n_u_kappa__pyx_n_u_mu__pyx_n_s_mu__pyx_n_s_kappa__pyx_pyargnames.15322__pyx_pw_5numpy_6random_10_generator_9Generator_51pareto__pyx_pyargnames.15374__pyx_pw_5numpy_6random_10_generator_9Generator_53weibull__pyx_pyargnames.15423__pyx_pw_5numpy_6random_10_generator_9Generator_55power__pyx_pyargnames.15472__pyx_pw_5numpy_6random_10_generator_9Generator_57laplace__pyx_n_u_loc__pyx_pyargnames.15522__pyx_pw_5numpy_6random_10_generator_9Generator_59gumbel__pyx_pyargnames.15579__pyx_pw_5numpy_6random_10_generator_9Generator_61logistic__pyx_pyargnames.15636__pyx_pw_5numpy_6random_10_generator_9Generator_63lognormal__pyx_n_u_sigma__pyx_n_u_mean__pyx_n_s_mean__pyx_n_s_sigma__pyx_pyargnames.15693__pyx_pw_5numpy_6random_10_generator_9Generator_65rayleigh__pyx_pyargnames.15749__pyx_pw_5numpy_6random_10_generator_9Generator_67wald__pyx_pyargnames.15801__pyx_pw_5numpy_6random_10_generator_9Generator_73negative_binomial__pyx_n_u_p__pyx_n_u_n__pyx_f_5numpy_6random_7_common_disc__pyx_n_s_n__pyx_n_s_p__pyx_pyargnames.16256__pyx_pw_5numpy_6random_10_generator_9Generator_75poisson__pyx_n_u_lam__pyx_pyargnames.16308__pyx_n_s_lam__pyx_pw_5numpy_6random_10_generator_9Generator_77zipf__pyx_pyargnames.16359__pyx_pw_5numpy_6random_10_generator_9Generator_79geometric__pyx_pyargnames.16408__pyx_pw_5numpy_6random_10_generator_9Generator_83logseries__pyx_pyargnames.16627__pyx_MemviewEnum___init____pyx_n_s_name_2__pyx_pyargnames.18917__Pyx_Raise.constprop.74__pyx_pw_5numpy_6random_10_generator_9Generator_1__init____pyx_n_s_capsule__pyx_n_s_lock__pyx_builtin_ValueError__pyx_pyargnames.13342__pyx_pw___pyx_array_1__reduce_cython____pyx_builtin_TypeError__pyx_pw___pyx_array_3__setstate_cython____pyx_pw___pyx_memoryview_1__reduce_cython____pyx_pw___pyx_memoryview_3__setstate_cython____pyx_getprop___pyx_memoryview_strides__pyx_pw___pyx_memoryviewslice_1__reduce_cython____pyx_pw___pyx_memoryviewslice_3__setstate_cython____pyx_array_getbuffer__pyx_n_u_c__pyx_n_u_fortran__pyx_memoryview_getbuffer__pyx_fatalerror.constprop.80__pyx_getprop_5numpy_6random_10_generator_9Generator__bit_generator__pyx_array_get_memview__pyx_memoryview_type__pyx_memoryview_new__pyx_memoryview_is_slice__Pyx_IternextUnpackEndCheck__pyx_mp_ass_subscript_array__pyx_tp_clear__memoryviewslice__pyx_tp_dealloc__memoryviewslice__pyx_memoryview_fromslice__pyx_memoryviewslice_type__pyx_memoryview_copy_object_from_slice__pyx_memoryview___repr____pyx_builtin_id__pyx_kp_s_MemoryView_of_r_at_0x_x__Pyx_PyInt_As_int64_t.part.14__Pyx_PyInt_As_Py_intptr_t.part.13__pyx_pw_5numpy_6random_10_generator_9Generator_3__repr____pyx_n_s_str__pyx_n_s_format__pyx_kp_u_at_0x_X__pyx_pw___pyx_MemviewEnum_1__reduce_cython____pyx_n_s_dict__pyx_int_184977713__pyx_memoryview_err_dim__pyx_memoryview_convert_item_to_object__pyx_n_s_unpack__pyx_n_s_error__pyx_memoryviewslice_convert_item_to_object__Pyx_PyInt_As_long__Pyx_PyInt_As_int__Pyx_PyInt_As_size_t__pyx_unpickle_Enum__set_state__pyx_n_s_update__pyx_pw___pyx_MemviewEnum_3__setstate_cython____pyx_pw_5numpy_6random_10_generator_1default_rng__pyx_n_u_capsule__pyx_ptype_5numpy_6random_10_generator_Generator__pyx_n_s_PCG64__pyx_pyargnames.18202__pyx_memoryview_get_item_pointer__pyx_kp_s_Out_of_bounds_on_buffer_access_a__pyx_builtin_IndexError__pyx_memoryview_get_slice_from_memoryview__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig__pyx_memoryview_is_f_contig__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig__pyx_memoryview_is_c_contig__pyx_memoryview_setitem_slice_assign_scalar__pyx_memoryview_err__pyx_memslice_transpose__pyx_getprop___pyx_memoryview_T__pyx_memoryview_copy_contents__pyx_kp_s_got_differing_extents_in_dimensi__pyx_builtin_MemoryError__pyx_memoryview_copy_new_contig__pyx_array_type__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran__pyx_memoryview_copy_fortran__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy__pyx_memoryview_copy__pyx_pw_5numpy_6random_10_generator_9Generator_23bytes__pyx_n_s_integers__pyx_n_s_np__pyx_n_s_uint32__pyx_n_s_dtype__pyx_n_s_astype__pyx_kp_u_u4__pyx_n_s_tobytes_unellipsify__pyx_builtin_Ellipsis__pyx_kp_s_Cannot_index_with_type_s__pyx_pw_5numpy_6random_10_generator_9Generator_27uniformPyArray_API__pyx_n_s_subtract__pyx_n_s_all__pyx_n_s_isfinite__pyx_n_s_low__pyx_n_s_high__pyx_builtin_OverflowError__pyx_pyargnames.14614__pyx_mp_ass_subscript_memoryview__pyx_pw_5numpy_6random_10_generator_9Generator_19standard_exponential__pyx_k__6__pyx_n_u_zig__pyx_ptype_5numpy_dtype__pyx_n_s_float64__pyx_f_5numpy_6random_7_common_double_fill__pyx_n_s_float32__pyx_f_5numpy_6random_7_common_float_fill__pyx_n_s_out__pyx_n_s_method__pyx_kp_u_Unsupported_dtype_r_for_standard__pyx_pyargnames.13728__pyx_tp_new_memoryview__pyx_vtabptr_memoryview__pyx_n_s_obj__pyx_n_s_flags__pyx_n_s_dtype_is_object__pyx_pyargnames.19029__pyx_tp_new__memoryviewslice__pyx_vtabptr__memoryviewslice__pyx_pw_5numpy_6random_10_generator_9Generator_13random__pyx_k__4__pyx_kp_u_Unsupported_dtype_r_for_random__pyx_pyargnames.13551__pyx_pw_5numpy_6random_10_generator_9Generator_29standard_normal__pyx_k__24__pyx_kp_u_Unsupported_dtype_r_for_standard_2__pyx_pyargnames.14756__pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum__pyx_n_s_new__pyx_MemviewEnum_type__pyx_n_s_PickleError__pyx_n_s_pickle_2__pyx_kp_s_Incompatible_checksums_s_vs_0xb0__pyx_pyargnames.20723__pyx_pw_5numpy_6random_10_generator_9Generator_33standard_gamma__pyx_k__25__pyx_f_5numpy_6random_7_common_cont_f__pyx_kp_u_Unsupported_dtype_r_for_standard_3__pyx_pyargnames.14886__pyx_memoryview_setitem_slice_assignment__pyx_n_s_ndim__pyx_pw_5numpy_6random_10_generator_9Generator_69triangular__pyx_n_s_any__pyx_n_s_greater__pyx_n_s_equal__pyx_f_5numpy_6random_7_common_cont_broadcast_3__pyx_pyargnames.15855__pyx_n_s_left__pyx_n_s_mode__pyx_n_s_right__pyx_pw_5numpy_6random_10_generator_9Generator_95permutation__pyx_n_s_integer__pyx_n_s_arange__pyx_n_s_shuffle__pyx_n_s_asarray__pyx_n_s_normalize_axis_index__pyx_n_s_intp__pyx_n_s_x__pyx_n_s_may_share_memory__pyx_n_s_array__pyx_pyargnames.18014__pyx_n_s_axis__pyx_pw_5numpy_6random_10_generator_9Generator_81hypergeometric__pyx_int_1000000000__pyx_kp_u_both_ngood_and_nbad_must_be_less__pyx_n_s_ngood__pyx_n_u_nsample__pyx_n_u_nbad__pyx_n_u_ngood__pyx_pyargnames.16459__pyx_n_s_less__pyx_n_s_add__pyx_f_5numpy_6random_7_common_discrete_broadcast_iii__pyx_n_s_nbad__pyx_n_s_nsample__pyx_pw_5numpy_6random_10_generator_9Generator_71binomial__pyx_f_5numpy_6random_7_common_check_constraint__pyx_n_s_empty__pyx_n_s_int64__pyx_n_s_exit__pyx_n_s_enter__pyx_f_5numpy_6random_7_common_check_array_constraint__pyx_ptype_5numpy_broadcast__pyx_pyargnames.16022__pyx_tp_new_array__pyx_vtabptr_array__pyx_n_s_c__pyx_n_s_fortran__pyx_n_b_O__pyx_n_s_encode__pyx_n_s_ASCII__pyx_kp_s_Invalid_shape_in_axis_d_d__pyx_n_s_itemsize__pyx_n_s_allocate_buffer__pyx_pyargnames.18579__pyx_kp_s_Invalid_mode_expected_c_or_fortr__pyx_pw_5numpy_6random_10_generator_9Generator_87multinomial__pyx_n_u_pvals__pyx_f_5numpy_6random_7_common_kahan_sum__pyx_n_s_operator__pyx_n_s_index__pyx_n_s_zeros__pyx_n_s_int8__pyx_n_s_pvals__pyx_pyargnames.16971__pyx_pw_5numpy_6random_10_generator_9Generator_91dirichlet__pyx_n_s_less_equal__pyx_n_s_max__pyx_float_0_1__pyx_n_s_empty_like__pyx_n_s_alpha__pyx_pyargnames.17475__pyx_ptype_5numpy_ndarray__pyx_pw_5numpy_6random_10_generator_9Generator_21integers__pyx_k__7__pyx_n_s_int32__pyx_f_5numpy_6random_17_bounded_integers__rand_int32__pyx_f_5numpy_6random_17_bounded_integers__rand_int64__pyx_n_s_compat__pyx_n_s_long__pyx_n_s_endpoint__pyx_n_s_int16__pyx_f_5numpy_6random_17_bounded_integers__rand_int16__pyx_pyargnames.13813__pyx_f_5numpy_6random_17_bounded_integers__rand_int8__pyx_n_s_uint64__pyx_f_5numpy_6random_17_bounded_integers__rand_uint64__pyx_f_5numpy_6random_17_bounded_integers__rand_uint32__pyx_n_s_uint16__pyx_f_5numpy_6random_17_bounded_integers__rand_uint16__pyx_n_s_uint8__pyx_f_5numpy_6random_17_bounded_integers__rand_uint8__pyx_n_s_bool__pyx_f_5numpy_6random_17_bounded_integers__rand_bool__pyx_n_s_isnative__pyx_kp_u_Unsupported_dtype_r_for_integers__pyx_pw_5numpy_6random_10_generator_9Generator_89multivariate_hypergeometric__pyx_n_u_marginals__pyx_n_u_count__pyx_n_s_ascontiguousarray__pyx_n_s_isscalar__pyx_n_s_colors__pyx_kp_u_colors_must_be_a_one_dimensional__pyx_kp_u_nsample_must_not_exceed_d__pyx_n_s_issubdtype__pyx_pyargnames.17204__pyx_kp_u_sum_colors_must_not_exceed_the_m__pyx_kp_u_When_method_is_count_sum_colors__pyx_kp_u_Insufficient_memory_for_multivar__pyx_pw_5numpy_6random_10_generator_9Generator_93shuffle__pyx_n_s_strides__pyx_n_s_swapaxes__pyx_pyargnames.17711__pyx_builtin_NotImplementedError__pyx_memview_slice__pyx_n_s_start__pyx_n_s_stop__pyx_n_s_step__pyx_memoryview___getitem____pyx_pw_5numpy_6random_10_generator_9Generator_85multivariate_normal__pyx_n_u_warn__pyx_n_u_svd__pyx_float_1eneg_8__pyx_n_u_eigh__pyx_n_u_cholesky__pyx_n_s_standard_normal__pyx_n_s_reshape__pyx_n_s_double__pyx_n_s_svd__pyx_n_s_numpy_dual__pyx_n_u_ignore__pyx_n_u_raise__pyx_n_s_allclose__pyx_n_s_dot__pyx_n_s_T__pyx_n_s_rtol__pyx_n_s_atol__pyx_n_s_cov__pyx_n_s_check_valid__pyx_n_s_tol__pyx_pyargnames.16680__pyx_n_s_eigh__pyx_n_s_cholesky__pyx_n_s_sqrt__pyx_n_s_warnings__pyx_n_s_warn__pyx_pf_5numpy_6random_10_generator_9Generator_24choice__pyx_n_s_copy__pyx_n_s_item__pyx_n_s_finfo__pyx_n_s_eps__pyx_n_s_isnan__pyx_n_s_logical_or__pyx_n_s_reduce__pyx_n_s_prod__pyx_n_s_cumsum__pyx_n_s_random__pyx_n_s_searchsorted__pyx_n_u_right__pyx_n_s_side__pyx_n_s_floating__pyx_n_s_count_nonzero__pyx_n_s_ravel__pyx_n_s_unique__pyx_n_s_return_index__pyx_n_s_sort__pyx_n_s_take__pyx_int_20__pyx_n_s_full__Pyx_TypeInfo_nn_uint64_t__pyx_int_50__pyx_pw_5numpy_6random_10_generator_9Generator_25choice__pyx_n_s_replace__pyx_pyargnames.14029__pyx_moduledef__pyx_string_tab__pyx_n_s_main__pyx_n_s_range__pyx_n_s_ValueError__pyx_n_s_id__pyx_n_s_TypeError__pyx_n_s_OverflowError__pyx_n_s_RuntimeWarning__pyx_n_s_MemoryError__pyx_n_s_reversed__pyx_n_s_NotImplementedError__pyx_n_s_RuntimeError__pyx_n_s_ImportError__pyx_builtin_ImportError__pyx_n_s_enumerate__pyx_n_s_Ellipsis__pyx_n_s_IndexError__pyx_type_5numpy_6random_10_generator_Generatorgenericindirect_contiguous__pyx_vtable_5numpy_6random_10_generator_Generator__pyx_n_s_Generator__pyx_vtable_array__pyx_type___pyx_array__pyx_type___pyx_MemviewEnum__pyx_vtable_memoryview__pyx_type___pyx_memoryview__pyx_vtable__memoryviewslice__pyx_type___pyx_memoryviewslice__pyx_vp_5numpy_6random_7_common_POISSON_LAM_MAX__pyx_vp_5numpy_6random_7_common_LEGACY_POISSON_LAM_MAX__pyx_vp_5numpy_6random_7_common_MAXSIZE__pyx_n_s_numpy__pyx_n_s_numpy_core_multiarray__pyx_n_s_pcg64__pyx_n_s_poisson_lam_max__pyx_n_s_numpy_random__generator__pyx_mdef_5numpy_6random_10_generator_1default_rng__pyx_kp_u_random_size_None_dtype_np_float__pyx_kp_u_Generator_random_line_154__pyx_kp_u_standard_exponential_size_None__pyx_kp_u_Generator_standard_exponential_l__pyx_kp_u_integers_low_high_None_size_Non__pyx_kp_u_Generator_integers_line_361__pyx_kp_u_bytes_length_Return_random_byte__pyx_kp_u_Generator_bytes_line_488__pyx_kp_u_choice_a_size_None_replace_True__pyx_kp_u_Generator_choice_line_517__pyx_kp_u_uniform_low_0_0_high_1_0_size_N__pyx_kp_u_Generator_uniform_line_761__pyx_kp_u_standard_normal_size_None_dtype__pyx_kp_u_Generator_standard_normal_line_8__pyx_kp_u_normal_loc_0_0_scale_1_0_size_N__pyx_kp_u_Generator_normal_line_938__pyx_kp_u_standard_gamma_shape_size_None__pyx_kp_u_Generator_standard_gamma_line_10__pyx_kp_u_gamma_shape_scale_1_0_size_None__pyx_kp_u_Generator_gamma_line_1131__pyx_kp_u_f_dfnum_dfden_size_None_Draw_sa__pyx_kp_u_Generator_f_line_1209__pyx_kp_u_noncentral_f_dfnum_dfden_nonc_s__pyx_kp_u_Generator_noncentral_f_line_1297__pyx_kp_u_chisquare_df_size_None_Draw_sam__pyx_kp_u_Generator_chisquare_line_1375__pyx_kp_u_noncentral_chisquare_df_nonc_si__pyx_kp_u_Generator_noncentral_chisquare_l__pyx_kp_u_standard_cauchy_size_None_Draw__pyx_kp_u_Generator_standard_cauchy_line_1__pyx_kp_u_standard_t_df_size_None_Draw_sa__pyx_kp_u_Generator_standard_t_line_1588__pyx_kp_u_vonmises_mu_kappa_size_None_Dra__pyx_kp_u_Generator_vonmises_line_1682__pyx_kp_u_pareto_a_size_None_Draw_samples__pyx_kp_u_Generator_pareto_line_1765__pyx_kp_u_weibull_a_size_None_Draw_sample__pyx_kp_u_Generator_weibull_line_1863__pyx_kp_u_power_a_size_None_Draws_samples__pyx_kp_u_Generator_power_line_1962__pyx_kp_u_laplace_loc_0_0_scale_1_0_size__pyx_kp_u_Generator_laplace_line_2063__pyx_kp_u_gumbel_loc_0_0_scale_1_0_size_N__pyx_kp_u_Generator_gumbel_line_2148__pyx_kp_u_logistic_loc_0_0_scale_1_0_size__pyx_kp_u_Generator_logistic_line_2267__pyx_kp_u_lognormal_mean_0_0_sigma_1_0_si__pyx_kp_u_Generator_lognormal_line_2347__pyx_kp_u_rayleigh_scale_1_0_size_None_Dr__pyx_kp_u_Generator_rayleigh_line_2459__pyx_kp_u_wald_mean_scale_size_None_Draw__pyx_kp_u_Generator_wald_line_2528__pyx_kp_u_triangular_left_mode_right_size__pyx_kp_u_Generator_triangular_line_2596__pyx_kp_u_binomial_n_p_size_None_Draw_sam__pyx_kp_u_Generator_binomial_line_2696__pyx_kp_u_negative_binomial_n_p_size_None__pyx_kp_u_Generator_negative_binomial_line__pyx_kp_u_poisson_lam_1_0_size_None_Draw__pyx_kp_u_Generator_poisson_line_2915__pyx_kp_u_zipf_a_size_None_Draw_samples_f__pyx_kp_u_Generator_zipf_line_2987__pyx_kp_u_geometric_p_size_None_Draw_samp__pyx_kp_u_Generator_geometric_line_3067__pyx_kp_u_hypergeometric_ngood_nbad_nsamp__pyx_kp_u_Generator_hypergeometric_line_31__pyx_kp_u_logseries_p_size_None_Draw_samp__pyx_kp_u_Generator_logseries_line_3261__pyx_kp_u_multivariate_normal_mean_cov_si__pyx_kp_u_Generator_multivariate_normal_li__pyx_kp_u_multinomial_n_pvals_size_None_D__pyx_kp_u_Generator_multinomial_line_3546__pyx_kp_u_multivariate_hypergeometric_col__pyx_kp_u_Generator_multivariate_hypergeom__pyx_kp_u_dirichlet_alpha_size_None_Draw__pyx_kp_u_Generator_dirichlet_line_3912__pyx_kp_u_shuffle_x_axis_0_Modify_a_seque__pyx_kp_u_Generator_shuffle_line_4111__pyx_kp_u_permutation_x_axis_0_Randomly_p__pyx_kp_u_Generator_permutation_line_4253__pyx_n_s_test__pyx_n_s_pyx_getbuffer__pyx_t_4.21219__pyx_n_s_View_MemoryView__pyx_mdef_15View_dot_MemoryView_1__pyx_unpickle_Enum__pyx_k_ASCII__pyx_k_Axis_argument_is_only_supported__pyx_k_Buffer_view_does_not_expose_stri__pyx_k_Can_only_create_a_buffer_that_is__pyx_k_Cannot_assign_to_read_only_memor__pyx_k_Cannot_create_writable_memory_vi__pyx_k_Cannot_index_with_type_s__pyx_k_Cannot_take_a_larger_sample_than__pyx_k_Ellipsis__pyx_k_Empty_shape_tuple_for_cython_arr__pyx_k_Fewer_non_zero_entries_in_p_than__pyx_k_Format_string_allocated_too_shor__pyx_k_Format_string_allocated_too_shor_2__pyx_k_Generator__pyx_k_Generator_binomial_line_2696__pyx_k_Generator_bytes_line_488__pyx_k_Generator_chisquare_line_1375__pyx_k_Generator_choice_line_517__pyx_k_Generator_dirichlet_line_3912__pyx_k_Generator_f_line_1209__pyx_k_Generator_gamma_line_1131__pyx_k_Generator_geometric_line_3067__pyx_k_Generator_gumbel_line_2148__pyx_k_Generator_hypergeometric_line_31__pyx_k_Generator_integers_line_361__pyx_k_Generator_laplace_line_2063__pyx_k_Generator_logistic_line_2267__pyx_k_Generator_lognormal_line_2347__pyx_k_Generator_logseries_line_3261__pyx_k_Generator_multinomial_line_3546__pyx_k_Generator_multivariate_hypergeom__pyx_k_Generator_multivariate_normal_li__pyx_k_Generator_negative_binomial_line__pyx_k_Generator_noncentral_chisquare_l__pyx_k_Generator_noncentral_f_line_1297__pyx_k_Generator_normal_line_938__pyx_k_Generator_pareto_line_1765__pyx_k_Generator_permutation_line_4253__pyx_k_Generator_poisson_line_2915__pyx_k_Generator_power_line_1962__pyx_k_Generator_random_line_154__pyx_k_Generator_rayleigh_line_2459__pyx_k_Generator_shuffle_line_4111__pyx_k_Generator_standard_cauchy_line_1__pyx_k_Generator_standard_exponential_l__pyx_k_Generator_standard_gamma_line_10__pyx_k_Generator_standard_normal_line_8__pyx_k_Generator_standard_t_line_1588__pyx_k_Generator_triangular_line_2596__pyx_k_Generator_uniform_line_761__pyx_k_Generator_vonmises_line_1682__pyx_k_Generator_wald_line_2528__pyx_k_Generator_weibull_line_1863__pyx_k_Generator_zipf_line_2987__pyx_k_ImportError__pyx_k_Incompatible_checksums_s_vs_0xb0__pyx_k_IndexError__pyx_k_Indirect_dimensions_not_supporte__pyx_k_Insufficient_memory_for_multivar__pyx_k_Invalid_bit_generator_The_bit_ge__pyx_k_Invalid_mode_expected_c_or_fortr__pyx_k_Invalid_shape_in_axis_d_d__pyx_k_MemoryError__pyx_k_MemoryView_of_r_at_0x_x__pyx_k_MemoryView_of_r_object__pyx_k_Non_native_byte_order_not_suppor__pyx_k_NotImplementedError__pyx_k_O__pyx_k_Out_of_bounds_on_buffer_access_a__pyx_k_OverflowError__pyx_k_PCG64__pyx_k_PickleError__pyx_k_Providing_a_dtype_with_a_non_nat__pyx_k_Range_exceeds_valid_bounds__pyx_k_RuntimeError__pyx_k_RuntimeWarning__pyx_k_T__pyx_k_TypeError__pyx_k_Unable_to_convert_item_to_object__pyx_k_Unsupported_dtype_r_for_integers__pyx_k_Unsupported_dtype_r_for_random__pyx_k_Unsupported_dtype_r_for_standard__pyx_k_Unsupported_dtype_r_for_standard_2__pyx_k_Unsupported_dtype_r_for_standard_3__pyx_k_ValueError__pyx_k_View_MemoryView__pyx_k_When_method_is_count_sum_colors__pyx_k_When_method_is_marginals_sum_col__pyx_k__2__pyx_k__3__pyx_k__5__pyx_k_a__pyx_k_a_and_p_must_have_same_size__pyx_k_a_cannot_be_empty_unless_no_samp__pyx_k_a_must_an_array_or_an_integer__pyx_k_a_must_be_a_positive_integer_unl__pyx_k_add__pyx_k_all__pyx_k_allclose__pyx_k_allocate_buffer__pyx_k_alpha__pyx_k_alpha_0__pyx_k_any__pyx_k_arange__pyx_k_array__pyx_k_asarray__pyx_k_ascontiguousarray__pyx_k_astype__pyx_k_at_0x_X__pyx_k_atol__pyx_k_axis__pyx_k_b__pyx_k_base__pyx_k_binomial_n_p_size_None_Draw_sam__pyx_k_bit_generator__pyx_k_bool__pyx_k_both_ngood_and_nbad_must_be_less__pyx_k_bytes_length_Return_random_byte__pyx_k_c__pyx_k_capsule__pyx_k_check_valid__pyx_k_check_valid_must_equal_warn_rais__pyx_k_chisquare_df_size_None_Draw_sam__pyx_k_choice_a_size_None_replace_True__pyx_k_cholesky__pyx_k_class__pyx_k_cline_in_traceback__pyx_k_colors__pyx_k_colors_must_be_a_one_dimensional__pyx_k_compat__pyx_k_contiguous_and_direct__pyx_k_contiguous_and_indirect__pyx_k_copy__pyx_k_count__pyx_k_count_nonzero__pyx_k_cov__pyx_k_cov_must_be_2_dimensional_and_sq__pyx_k_covariance_is_not_positive_semid__pyx_k_cumsum__pyx_k_default_rng__pyx_k_df__pyx_k_dfden__pyx_k_dfnum__pyx_k_dict__pyx_k_dirichlet_alpha_size_None_Draw__pyx_k_dot__pyx_k_double__pyx_k_dtype__pyx_k_dtype_is_object__pyx_k_eigh__pyx_k_empty__pyx_k_empty_like__pyx_k_encode__pyx_k_endpoint__pyx_k_enter__pyx_k_enumerate__pyx_k_eps__pyx_k_equal__pyx_k_error__pyx_k_exit__pyx_k_f_dfnum_dfden_size_None_Draw_sa__pyx_k_finfo__pyx_k_flags__pyx_k_float32__pyx_k_float64__pyx_k_floating__pyx_k_format__pyx_k_fortran__pyx_k_full__pyx_k_gamma_shape_scale_1_0_size_None__pyx_k_generator_ctor__pyx_k_generator_pyx__pyx_k_geometric_p_size_None_Draw_samp__pyx_k_getstate__pyx_k_got_differing_extents_in_dimensi__pyx_k_greater__pyx_k_gumbel_loc_0_0_scale_1_0_size_N__pyx_k_high__pyx_k_hypergeometric_ngood_nbad_nsamp__pyx_k_id__pyx_k_ignore__pyx_n_s_imatmul__pyx_k_imatmul__pyx_n_s_import__pyx_k_import__pyx_k_index__pyx_k_int16__pyx_k_int32__pyx_k_int64__pyx_k_int8__pyx_k_integer__pyx_k_integers__pyx_k_integers_low_high_None_size_Non__pyx_k_intp__pyx_k_isfinite__pyx_k_isnan__pyx_k_isnative__pyx_k_isscalar__pyx_k_issubdtype__pyx_k_item__pyx_k_itemsize__pyx_k_itemsize_0_for_cython_array__pyx_k_kappa__pyx_k_lam__pyx_k_laplace_loc_0_0_scale_1_0_size__pyx_k_left__pyx_k_left_mode__pyx_k_left_right__pyx_k_less__pyx_k_less_equal__pyx_k_loc__pyx_k_lock__pyx_k_logical_or__pyx_k_logistic_loc_0_0_scale_1_0_size__pyx_k_lognormal_mean_0_0_sigma_1_0_si__pyx_k_logseries_p_size_None_Draw_samp__pyx_k_long__pyx_k_low__pyx_k_main__pyx_k_marginals__pyx_n_s_matmul__pyx_k_matmul__pyx_k_max__pyx_k_may_share_memory__pyx_k_mean__pyx_k_mean_and_cov_must_have_same_leng__pyx_k_mean_must_be_1_dimensional__pyx_k_memview__pyx_k_method__pyx_k_method_must_be_count_or_marginal__pyx_k_method_must_be_one_of_eigh_svd_c__pyx_k_mode__pyx_k_mode_right__pyx_k_mu__pyx_k_multinomial_n_pvals_size_None_D__pyx_k_multivariate_hypergeometric_col__pyx_k_multivariate_normal_mean_cov_si__pyx_k_n__pyx_k_name__pyx_k_name_2__pyx_k_nbad__pyx_k_ndim__pyx_k_negative_binomial_n_p_size_None__pyx_k_negative_dimensions_are_not_allo__pyx_k_new__pyx_k_ngood__pyx_k_ngood_nbad_nsample__pyx_k_no_default___reduce___due_to_non__pyx_k_nonc__pyx_k_noncentral_chisquare_df_nonc_si__pyx_k_noncentral_f_dfnum_dfden_nonc_s__pyx_k_normal_loc_0_0_scale_1_0_size_N__pyx_k_normalize_axis_index__pyx_k_np__pyx_k_nsample__pyx_k_nsample_must_be_an_integer__pyx_k_nsample_must_be_nonnegative__pyx_k_nsample_must_not_exceed_d__pyx_k_nsample_sum_colors__pyx_k_numpy__pyx_k_numpy_core_multiarray__pyx_k_numpy_core_multiarray_failed_to__pyx_k_numpy_core_umath_failed_to_impor__pyx_k_numpy_dual__pyx_k_numpy_random__generator__pyx_k_obj__pyx_k_operator__pyx_k_out__pyx_k_p__pyx_k_p_must_be_1_dimensional__pyx_k_pack__pyx_k_pareto_a_size_None_Draw_samples__pyx_k_pcg64__pyx_k_permutation_x_axis_0_Randomly_p__pyx_k_pickle__pyx_k_pickle_2__pyx_k_poisson_lam_1_0_size_None_Draw__pyx_k_poisson_lam_max__pyx_k_power_a_size_None_Draws_samples__pyx_k_probabilities_are_not_non_negati__pyx_k_probabilities_contain_NaN__pyx_k_probabilities_do_not_sum_to_1__pyx_k_prod__pyx_k_pvals__pyx_k_pyx_PickleError__pyx_k_pyx_checksum__pyx_k_pyx_getbuffer__pyx_k_pyx_result__pyx_k_pyx_state__pyx_k_pyx_type__pyx_k_pyx_unpickle_Enum__pyx_k_pyx_vtable__pyx_k_raise__pyx_k_random__pyx_k_random_size_None_dtype_np_float__pyx_k_range__pyx_k_ravel__pyx_k_rayleigh_scale_1_0_size_None_Dr__pyx_k_reduce__pyx_k_reduce_2__pyx_k_reduce_cython__pyx_k_reduce_ex__pyx_k_replace__pyx_k_reshape__pyx_k_return_index__pyx_k_reversed__pyx_k_right__pyx_n_s_rmatmul__pyx_k_rmatmul__pyx_k_rtol__pyx_k_scale__pyx_k_searchsorted__pyx_k_seed__pyx_k_setstate__pyx_k_setstate_cython__pyx_k_shape__pyx_k_shuffle__pyx_k_shuffle_x_axis_0_Modify_a_seque__pyx_k_side__pyx_k_sigma__pyx_k_size__pyx_k_sort__pyx_k_sqrt__pyx_k_standard_cauchy_size_None_Draw__pyx_k_standard_exponential_size_None__pyx_k_standard_gamma_shape_size_None__pyx_k_standard_normal__pyx_k_standard_normal_size_None_dtype__pyx_k_standard_t_df_size_None_Draw_sa__pyx_k_start__pyx_k_state__pyx_k_step__pyx_k_stop__pyx_k_str__pyx_k_strided_and_direct__pyx_k_strided_and_direct_or_indirect__pyx_k_strided_and_indirect__pyx_k_strides__pyx_k_stringsource__pyx_k_struct__pyx_k_subtract__pyx_k_sum_colors_must_not_exceed_the_m__pyx_k_sum_pvals_1_1_0__pyx_k_svd__pyx_k_swapaxes__pyx_k_take__pyx_k_test__pyx_k_tobytes__pyx_k_tol__pyx_k_triangular_left_mode_right_size__pyx_k_u4__pyx_k_uint16__pyx_k_uint32__pyx_k_uint64__pyx_k_uint8__pyx_k_unable_to_allocate_array_data__pyx_k_unable_to_allocate_shape_and_str__pyx_k_uniform_low_0_0_high_1_0_size_N__pyx_k_unique__pyx_kp_u_unknown_dtype_code_in_numpy_pxd__pyx_k_unknown_dtype_code_in_numpy_pxd__pyx_k_unpack__pyx_k_update__pyx_k_vonmises_mu_kappa_size_None_Dra__pyx_k_wald_mean_scale_size_None_Draw__pyx_k_warn__pyx_k_warnings__pyx_k_weibull_a_size_None_Draw_sample__pyx_k_x__pyx_k_zeros__pyx_k_zig__pyx_k_zipf_a_size_None_Draw_samples_f__pyx_methods__pyx_methods__memoryviewslice__pyx_getsets__memoryviewslice__pyx_tp_as_sequence_memoryview__pyx_tp_as_mapping_memoryview__pyx_tp_as_buffer_memoryview__pyx_methods_memoryview__pyx_getsets_memoryview__pyx_methods_Enum__pyx_tp_as_sequence_array__pyx_tp_as_mapping_array__pyx_tp_as_buffer_array__pyx_methods_array__pyx_getsets_array__pyx_methods_5numpy_6random_10_generator_Generator__pyx_getsets_5numpy_6random_10_generator_Generator__pyx_doc_5numpy_6random_10_generator_9Generator_12random__pyx_doc_5numpy_6random_10_generator_9Generator_14beta__pyx_doc_5numpy_6random_10_generator_9Generator_16exponential__pyx_doc_5numpy_6random_10_generator_9Generator_18standard_exponential__pyx_doc_5numpy_6random_10_generator_9Generator_20integers__pyx_doc_5numpy_6random_10_generator_9Generator_22bytes__pyx_doc_5numpy_6random_10_generator_9Generator_24choice__pyx_doc_5numpy_6random_10_generator_9Generator_26uniform__pyx_doc_5numpy_6random_10_generator_9Generator_28standard_normal__pyx_doc_5numpy_6random_10_generator_9Generator_30normal__pyx_doc_5numpy_6random_10_generator_9Generator_32standard_gamma__pyx_doc_5numpy_6random_10_generator_9Generator_34gamma__pyx_doc_5numpy_6random_10_generator_9Generator_36f__pyx_doc_5numpy_6random_10_generator_9Generator_38noncentral_f__pyx_doc_5numpy_6random_10_generator_9Generator_40chisquare__pyx_doc_5numpy_6random_10_generator_9Generator_42noncentral_chisquare__pyx_doc_5numpy_6random_10_generator_9Generator_44standard_cauchy__pyx_doc_5numpy_6random_10_generator_9Generator_46standard_t__pyx_doc_5numpy_6random_10_generator_9Generator_48vonmises__pyx_doc_5numpy_6random_10_generator_9Generator_50pareto__pyx_doc_5numpy_6random_10_generator_9Generator_52weibull__pyx_doc_5numpy_6random_10_generator_9Generator_54power__pyx_doc_5numpy_6random_10_generator_9Generator_56laplace__pyx_doc_5numpy_6random_10_generator_9Generator_58gumbel__pyx_doc_5numpy_6random_10_generator_9Generator_60logistic__pyx_doc_5numpy_6random_10_generator_9Generator_62lognormal__pyx_doc_5numpy_6random_10_generator_9Generator_64rayleigh__pyx_doc_5numpy_6random_10_generator_9Generator_66wald__pyx_doc_5numpy_6random_10_generator_9Generator_68triangular__pyx_doc_5numpy_6random_10_generator_9Generator_70binomial__pyx_doc_5numpy_6random_10_generator_9Generator_72negative_binomial__pyx_doc_5numpy_6random_10_generator_9Generator_74poisson__pyx_doc_5numpy_6random_10_generator_9Generator_76zipf__pyx_doc_5numpy_6random_10_generator_9Generator_78geometric__pyx_doc_5numpy_6random_10_generator_9Generator_80hypergeometric__pyx_doc_5numpy_6random_10_generator_9Generator_82logseries__pyx_doc_5numpy_6random_10_generator_9Generator_84multivariate_normal__pyx_doc_5numpy_6random_10_generator_9Generator_86multinomial__pyx_doc_5numpy_6random_10_generator_9Generator_88multivariate_hypergeometric__pyx_doc_5numpy_6random_10_generator_9Generator_90dirichlet__pyx_doc_5numpy_6random_10_generator_9Generator_92shuffle__pyx_doc_5numpy_6random_10_generator_9Generator_94permutation__pyx_doc_5numpy_6random_10_generator_default_rngcrtstuff.cderegister_tm_clones__do_global_dtors_auxcompleted.7182__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entrydistributions.cfe_doublewe_doubleke_doublefe_floatwe_floatke_floatwi_doubleki_doublefi_doublewi_floatki_floatfi_floatrandom_positive_int64.localalias.11a.9939random_mvhg_count.crandom_mvhg_marginals.crandom_hypergeometric.clogfactorial.clogfact__FRAME_END____dso_handle_DYNAMIC__GNU_EH_FRAME_HDR__TMC_END___GLOBAL_OFFSET_TABLE_PyPyFloat_FromDoublePyPyObject_IsSubclassPyPyIndex_CheckPyPyImport_ImportModuleLevelObjectPyPyOS_snprintfrandom_laplace_PyPy_EllipsisObjectPyPyLong_FromSize_tPyPyExc_TypeErrorfree@@GLIBC_2.2.5random_buffered_bounded_boolPyPyUnicode_FromUnicodePyPyDict_SetItemrandom_geometric_inversionPyPyExc_BaseExceptionPyPySequence_ListPyPyErr_SetObjectrandom_weibullPyPyDict_GetItemrandom_f_ITM_deregisterTMCloneTablePyPyNumber_MatrixMultiplyPyPyLong_AsLongPyPyModule_GetDict_PyPy_Deallocrandom_multivariate_hypergeometric_countPyPyExc_NotImplementedErrorPyPySequence_GetItemPyPyNumber_OrPyPyMem_MallocPyPyDict_GetItemStringPyPyObject_SetAttrStringrandom_negative_binomialrandom_standard_cauchy__isnan@@GLIBC_2.2.5PyPyThread_allocate_lockPyPyNumber_SubtractPyPyNumber_InPlaceTrueDividePyPyFloat_Typevsnprintf@@GLIBC_2.2.5exp@@GLIBC_2.2.5PyPyImport_ImportModulePyPyLong_FromLongrandom_standard_exponential_fill_fPyPyErr_NormalizeExceptionPyPyFloat_AsDoublePyPyDict_Nextrandom_standard_gamma_edatarandom_binomial_btpePyPyNumber_FloorDividePyPyExc_ZeroDivisionErrorPyPyUnicode_FromFormat__pyx_module_is_main_numpy__random___generatorrandom_logseriesPyPyObject_GetItemPyPyUnicode_InternFromStringPyPyUnicode_FromStringrandom_rayleighPyPyFloat_AS_DOUBLEPyPyDict_SetItemStringPyPyCapsule_Newrandom_standard_exponentialPyPyObject_GenericGetAttrrandom_uniformrandom_poisson_finistrlen@@GLIBC_2.2.5PyPyUnicode_ComparePyPyThread_free_lockrandom_bounded_uint64_fillPyPyTuple_TypePyPyNumber_RemainderPyPyGILState_EnsurePyPyUnicode_DecodePyPyExc_ValueErrorrandom_bounded_uint16_fillPyPyLong_AsUnsignedLongPyPyObject_GetAttrStringPyPyDict_SizePyPyList_SetSlicerandom_multinomialPyPyObject_IsTruePyPyCapsule_Typerandom_logisticPyPyBytes_TypePyPyErr_ClearPyPyExc_RuntimeErrorrandom_standard_uniform_fill_fPyPyErr_ExceptionMatchesrandom_bounded_uint64PyPyDict_Newpow@@GLIBC_2.2.5PyPyLong_FromStringrandom_positive_intPyPyBytes_AS_STRINGPyPyObject_Hashlog@@GLIBC_2.2.5random_standard_gamma_frandom_triangularPyPyDict_DelItemrandom_buffered_bounded_uint32PyPyErr_WarnFormatPyPyExc_AttributeErrorfmod@@GLIBC_2.2.5PyPyErr_GivenExceptionMatchesrandom_powerPyPyCapsule_IsValidrandom_bounded_uint8_fillPyPyLong_TypePyPyLong_AsSsize_trandom_noncentral_frandom_standard_exponential_inv_fill_fPyPyNumber_LongPyPyObject_SizePyPyErr_RestorePyPyObject_MallocPyPyErr_SetNoneacos@@GLIBC_2.2.5PyPyExc_BufferErrorPyPyBuffer_ReleasePyPyEval_RestoreThreadPyPyType_ReadyPyPyMem_FreePyPyList_TypePyPyObject_GetBufferPyPyErr_SetStringPyPyExc_OverflowErrorrandom_buffered_bounded_uint8logfactorialPyPyBytes_Sizememcpy@@GLIBC_2.2.5PyPyBytes_FromStringAndSizePyPyEval_SaveThreadPyPyCode_Newrandom_betaPyPyImport_AddModulePyPyCapsule_GetNamePyPyUnicode_CheckPyPyExc_DeprecationWarningPyPyList_AsTuple__gmon_start__random_exponentialexpf@@GLIBC_2.2.5PyPyObject_NotPyPyErr_FetchPyPyErr_GetExcInforandom_hypergeometricPyPyList_SET_ITEMPyPyErr_NoMemoryPyPyObject_HasAttrrandom_gammaPyPyList_AppendPyPyLong_FromUnsignedLongPyPyErr_WriteUnraisablerandom_standard_uniform_fPyPyObject_CallPyPyNumber_AddPyPyNumber_IndexPyPyErr_SetExcInforandom_loggamPyInit__generatorPyPyExc_StopIterationPyPyGILState_Releasesqrtf@@GLIBC_2.2.5PyPySequence_SetItemPyPyThreadState_Getrandom_gamma_frandom_zipfPyPySequence_Sizepowf@@GLIBC_2.2.5malloc@@GLIBC_2.2.5random_standard_exponential_fPyPyMem_ReallocPyPyNumber_Absoluterandom_paretoPyPyTuple_New_endPyPyObject_SetAttrrandom_positive_int64PyPyUnicode_DecodeASCIIPyPyModule_GetNamerandom_geometric_searchPyPyNumber_Negativerandom_standard_t_PyPy_NoneStructPyPyCapsule_GetPointer_PyPy_FalseStructPyPyNumber_MultiplyPyPyObject_Freerandom_vonmisesrandom_bounded_uint32_fillrandom_standard_normal_frandom_positive_int32random_standard_uniformPyPyUnicode_FromStringAndSizePyPyExc_NameError__bss_startPyPyBool_Typelogf@@GLIBC_2.2.5random_normalrandom_chisquarePyPyExc_ExceptionPyPyObject_GetIterrandom_standard_exponential_fillrandom_intervalrandom_waldPyPyUnicode_CheckExactPyPySequence_Checkrandom_noncentral_chisquarePyPyType_ModifiedPyPyModule_Create2PyPyErr_PrintExPyPyTuple_Packrandom_standard_normalPyPySequence_ITEMPyPySlice_NewPyPyNumber_InPlaceAddPyPyObject_RichCompareBoolrandom_standard_exponential_inv_fillPyPyBaseObject_TypePyPyFrame_Newrandom_lognormalrandom_buffered_bounded_uint16PyPyObject_SetItemPyPyErr_FormatPyPyExc_AssertionErrorrandom_binomialrandom_uintrandom_gumbelPyPyErr_WarnExPyPyNumber_InPlaceMultiplyrandom_standard_uniform_fillPyPyErr_OccurredPyPyTraceBack_HerePyPyLong_FromSsize_trandom_standard_normal_fill_ffloor@@GLIBC_2.2.5PyPyExc_SystemErrorPyPy_FatalErrorPyPyList_Newrandom_bounded_bool_fillPyPyType_IsSubtyperandom_binomial_inversion_ITM_registerTMCloneTablePyPyExc_ImportErrorPyPySequence_Tuplerandom_multivariate_hypergeometric_marginalsPyPyCFunction_NewExPyPy_OptimizeFlagPyPyException_SetTracebacksqrt@@GLIBC_2.2.5PyPyObject_DelItemPyPy_GetVersionPyPyObject_IsInstancerandom_geometricPyPyObject_RichComparePyPyList_GET_SIZEPyPyBytes_FromStringceil@@GLIBC_2.2.5PyPyUnicode_FormatPyPyImport_GetModuleDictPyPyExc_UnboundLocalError_PyPy_TrueStruct__cxa_finalize@@GLIBC_2.2.5_initrandom_standard_normal_fillPyPySlice_TypePyPyObject_GetAttr.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.data.rel.ro.dynamic.got.got.plt.data.bss.commentÈÈ$.öÿÿoðð8€€h@èè^HÿÿÿoF2F2Uþÿÿoh4h4@d¨4¨4 vnBȪȪ@x¼¼s ¼ ¼~°Ç°Çd@„	Š  Hx ’h€h€ä PˆPˆ|Jª¸Û(¸Û¶ÀÛ(ÀÛÂÈÛ(ÈÛÏÐÛ(ÐÛàØ°Ý(°ÝPÝà(àØæàå(àå(4 ì +8 ñ0Yhó	€ªfŸæIú