Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
numpy / random / mtrand.pypy36-pp73-x86_64-linux-gnu.so
Size: Mime:
ELF>@·@h}
@8@   ' 'Ypi 88'8'ààÈÈÈ$$PåtdðÚðÚðÚ´´QåtdRåtd  ' 'ààGNUž“ éڥ¿²9¯z•I@8Dèæúa”
M A@04"@ƒAVD(6!€¤Q@Ð!PÐQ  "™T@ ((#Da@	@‚0DÐ
1’"”–—™šž¡¢£¤¦¨¬®±²³´¶¸º»½¾ÀÁÄÆÉÊËÎÐÒÓÔ×ÚÛÜÝßàáâäåçèéêëìîðòõölá«ïßP	­X§Âk/º}ê+ñ*²P{Þ`n…s‰–ù`cD\~\
„ãç?{·K€Å„F'3}0ýSÆüµSâï(瞊}˜ˆ¥dFܽڃ1<\Ñ=§¡‘tkÂß	ŸsžÞ(²y¬=øó	ºa«÷ÑçÒqғšáÇàmR³Ìg#†…­ƒÏt±êÍ#CEÕìºSNDƒ`GÆùCYdàh”“ó.G/á«ï6ÖÇ$a	µæ¨þ¡·ØÍ讋øˆRÐmÑù£(MáìœÝFZÕêÓïÌH)¹ñ0wËçÈ°Ç}‰’v‘ؔÎÙqXºã’|†Š¯iå9jâåQØf™¢¡“cÞ;
	e䞓’e$ѳŀ#A•t¥÷mdA	ö9¯påPeßÒ75/q3`%gl Ž•ñHÊkΑÒ3ÙùÃ"Œ´9±ç¢{é‰O”j~3^UL±JݼãëŽWa³×Íڟ“¡X´mó7;±	KÛ!ø	M Ÿ†L	Ìž~ì×
º
Ž	èeHÁ1’—n	/U_;¥
´l2?‚’¯£}Ç.ä×ÇÛŒàXÜTåÕ+^S¼F
_+”…iðMq`
 ã
,³Óì

£±ùÆ	÷(
ô¼þ©µa;L
8~„
è
£q
¾9	µV”:
û-rZ]Üæ#
	^	8 ÈJÇíßë
w	’
MR"a	k«_¶p-Ep=éÀ#(
@ €ð>ÁàBÅ• ]ZÐkq–pZÜP(]€-7
-%ôð#w@-pS/)
À;y7@=(Ð&S~ X` '
àE»
ˆ
`.i
.I4Ê\ 2œXÀ=÷°‰ì B½ÐÐ$&Û AÛ	Ð'iÐbG€;í
19upi[± ?'ÿ`;Ì u)ÀA^äPAN¿Ð?>t>ë#`"WÊÀ_‰ÇP@‚éP'}¡0%ŸéPayeà=3 TW5 1qH0!&« >{$½mô P	 ­À€/ºÐ ?§`-Ü 8¹ðÀR¥Ó u)ߐ…)d%/sÀ39ë@u)Æ6®ZN¤
€/9sÐ-9+°;	Î@??àe|­0'uZ`Å
À/2ºP-ðU§	=,Z`g@1QdPl¯þ
)ºChQ
À-	ð\¡šp?/¨ ;]°YWþ°E&¨Ð597!$ c´‘?S'	à[
Öà@gGUðÀ"ö__gmon_start___init_fini_ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_PyPy_NoneStructPyPyBaseObject_Type_PyPy_DeallocPyPyTuple_PackPyPyObject_CallPyPyErr_FetchPyPyErr_NormalizeExceptionPyPyErr_OccurredPyPyException_SetTracebackPyPyErr_SetExcInforandom_intervalmemcpyPyPyObject_GetAttrStringPyPyExc_TypeErrorPyPyErr_FormatPyPyExc_ValueErrorPyPyOS_snprintfPyPyErr_WarnExPyPyDict_GetItemStringPyPyModule_GetNamePyPyExc_ImportErrorPyPyCapsule_IsValidPyPyCapsule_GetNamePyPyCapsule_GetPointerPyPyModule_GetDictPyPyDict_NewPyPyImport_ImportModuleLevelObjectPyPyList_NewPyPyObject_GetAttrPyPyExc_NameErrorPyPyObject_GetItemPyPyErr_ClearPyPyExc_StopIterationPyPyErr_ExceptionMatchesPyPyExc_AttributeErrorPyPyThreadState_GetPyPyFrame_NewPyPyTraceBack_HerePyPyObject_Not_PyPy_FalseStruct_PyPy_TrueStructPyPyErr_RestorePyPyUnicode_FromStringPyPyCode_NewPyPyUnicode_FromFormatPyPyObject_SetAttrPyPyMem_ReallocPyPyMem_MallocPyPyDict_SetItemPyPyList_SET_ITEMPyPyTuple_NewPyPyNumber_AddPyPyNumber_InPlaceAddPyPyDict_NextPyPyDict_SizePyPyUnicode_CheckPyPyUnicode_Comparerandom_standard_uniform_fillPyPyDict_GetItemlegacy_betalegacy_exponentiallegacy_standard_exponentiallegacy_gausslegacy_normallegacy_standard_gammalegacy_gammalegacy_flegacy_noncentral_flegacy_chisquarelegacy_noncentral_chisquarelegacy_standard_cauchylegacy_standard_trandom_vonmiseslegacy_paretolegacy_weibulllegacy_powerrandom_laplacerandom_gumbelrandom_logisticlegacy_lognormalrandom_rayleighlegacy_waldPyPyExc_BaseExceptionPyPyObject_IsSubclassPyPyErr_SetObjectPyPyErr_SetStringPyPyExc_DeprecationWarningPyPyErr_WarnFormatPyPyLong_AsLongPyPyBytes_TypePyPyUnicode_CheckExactPyPyNumber_LongPyPyLong_TypePyPyDict_CopyPyPyObject_IsInstancePyPyExc_OverflowErrorPyPyObject_RichCompareBoolPyPyLong_FromLongPyPyObject_SetItemPyPyFloat_FromDoublePyPyObject_IsTruePyPyEval_SaveThreadrandom_positive_intPyPyEval_RestoreThreadPyPyErr_GetExcInfoPyPyLong_FromSsize_tPyPySlice_Newrandom_uniformPyPyFloat_AsDoublePyPyObject_SizePyPyTuple_TypePyPySequence_Tuplelegacy_random_multinomiallegacy_random_logserieslegacy_random_geometriclegacy_random_zipflegacy_random_poissonlegacy_negative_binomiallegacy_random_binomialPyPyType_IsSubtypePyPyExc_SystemErrorrandom_triangularPyPySequence_CheckPyPySequence_GetItemPyPySequence_ContainsPyPyObject_RichComparePyPyFloat_TypePyPyFloat_AS_DOUBLE_PyPy_EllipsisObjectPyPySequence_SetItemlegacy_random_hypergeometricPyPySequence_ListPyPyList_AppendPyPyList_TypePyPySequence_SizePyPySequence_ITEMPyPyNumber_MultiplyPyPyList_AsTuplePyPyObject_GetIterPyPyBool_TypePyPyUnicode_FormatPyPyNumber_RemainderPyPyNumber_InPlaceTrueDividePyPyNumber_SubtractPyPyObject_DelItemPyInit_mtrandPyPy_GetVersionPyPyBytes_FromStringAndSizePyPyUnicode_FromStringAndSizePyPyModule_Create2PyPyImport_AddModulePyPyObject_SetAttrStringPyPyUnicode_InternFromStringPyPyUnicode_DecodePyPyObject_HashPyPyLong_FromString__pyx_module_is_main_numpy__random__mtrandPyPyImport_GetModuleDictPyPyDict_SetItemStringPyPyType_ReadyPyPyCapsule_NewPyPyImport_ImportModulePyPyExc_RuntimeErrorPyPyCapsule_TypePyPyExc_ExceptionPyPyType_ModifiedPyPyCFunction_NewExlogsqrtpowexp__isnanrandom_binomial_inversionrandom_binomial_btpefloorrandom_loggamrandom_standard_uniform_frandom_standard_uniformrandom_standard_uniform_fill_frandom_standard_exponentialrandom_standard_exponential_fillrandom_standard_exponential_fexpflogfrandom_standard_exponential_fill_frandom_standard_exponential_inv_fillrandom_standard_exponential_inv_fill_frandom_standard_normalrandom_standard_normal_fillrandom_standard_normal_frandom_standard_normal_fill_frandom_standard_gammarandom_standard_gamma_fpowfsqrtfrandom_positive_int64random_positive_int32random_uintrandom_normalrandom_exponentialrandom_gammarandom_gamma_frandom_betarandom_chisquarerandom_frandom_standard_cauchyrandom_paretorandom_weibullrandom_powerrandom_lognormalrandom_standard_trandom_negative_binomialrandom_noncentral_chisquarerandom_noncentral_frandom_waldacosfmodrandom_geometric_searchrandom_geometric_inversionceilrandom_bounded_uint64random_buffered_bounded_uint32random_buffered_bounded_uint16random_buffered_bounded_uint8random_buffered_bounded_boolrandom_bounded_uint64_fillrandom_bounded_uint32_fillrandom_bounded_uint16_fillrandom_bounded_uint8_fillrandom_bounded_bool_filllibm.so.6libpthread.so.0libc.so.6_edata__bss_start_endGLIBC_2.2.5¨ ui	äÂui	ä '@#('#0'0' $)ˆy)°$)À})À$)y)Ð$)y)à$)؁)è$)0)ð$)y)%) y)%)y) %)y)0%)y)@%)0})H%)Ð~)P%)y)X%)Ð)€%)؁)ˆ%)y)%)èy)˜%){)À%)0})È%)Ð~)Ð%)y)à%)0})è%)Ð~)ð%)y)&)y) &) })(&) y)0&)y)@&)Xy)H&)y)`&)Xy)h&) y)p&)y)€&)€)ˆ&)€)&)y) &)€)¨&)€)°&)0|)¸&)y)Ð&)(€)Ø&)y)')(€)')0|)')y) ')y)0')(€)8')y)`')Ø|)h')(~)p')y)€')؁)ˆ')y) ')؁)¨')y)À')؁)È')y)à') })è') y)ð')y)() })() y)()y) () })(() y)0()y)@()})H()(y)P()y)`() y)h()y)€()})ˆ() y)()y) ()Ø})¨()ø|)°()Èy)¸()y)à()˜|)è(){)ð()y)))˜|))){)))y) ))~)())y)@))؁)H))y)`)){)h))y)€))H|)ˆ))€|)))Ð{)˜))y)°)){)¸))y)à))})è))H€)ð))y)ø))°€)*)(x) *)˜|)(*)àz)0*)y)@*)€)H*)y)`*)ˆy)€*) „)ˆ*)›¨*)„)°*)@ˆÐ*)„)Ø*)ø*)„)+)€š +)„)(+)€’H+)øƒ)P+)PŠp+)ðƒ)x+) ‹˜+)èƒ) +)@šÀ+)àƒ)È+)pè+)؃)ð+)Ћ,)Ѓ),)Ћ8,)ȃ)@,)š`,))h,)ˆ,)¸ƒ),) ‰°,)°ƒ)¸,)à˜Ø,)¨ƒ)à,)@Š-) ƒ)-)@Š(-)˜ƒ)0-)P-)ƒ)X-)x-)ˆƒ)€-)  -)€ƒ)¨-)†È-)xƒ)Ð-)`ð-)pƒ)ø-)`‡.)hƒ) .)à…@.)`ƒ)H.) h.)Xƒ)p.)`….)Pƒ)˜.)à¸.)Hƒ)À.)à„à.)@ƒ)è.)€ƒ/)8ƒ)/) 0/)0ƒ)8/)`X/)(ƒ)`/) ˜€/) ƒ)ˆ/) ¨/)ƒ)°/)`˜Ð/)ƒ)Ø/) ˜ø/)ƒ)0)à— 0)ƒ)(0)@…H0)ø‚)P0) …p0)ð‚)x0) —˜0)è‚) 0)À0)à‚)È0)è0)؂)ð0) †1)Ђ)1)…81)Ȃ)@1) …`1))h1)`—ˆ1)¸‚)1) —°1)°‚)¸1)@ƒØ1)¨‚)à1)‡2) ‚)2) „(2)˜‚)02)à–P2)‚)X2) –x2)ˆ‚)€2)à 2)€‚)¨2)`–È2)x‚)Ð2) –ð2)p‚)ø2)€„3)h‚) 3)à•@3)`‚)H3)`„h3)X‚)p3)ƒ3)P‚)˜3)€†¸3)H‚)À3)@„à3)@‚)è3)`†4)8‚)4)@†04)0‚)84)ð‰X4)(‚)`4)`‰€4) ‚)ˆ4)I¨4)‚)°4)€•Ð4)‚)Ø4) ’ø4)‚)5) 5)‚)(5) H5)ø)P5)‹p5)ð)x5)(˜5)è) 5);À5)à)È5)9è5)؁)ð5)G6)Ё)6)G86)ȁ)@6)€…`6))h6)`ˆ6)¸)6)@‡°6)°)¸6)@•Ø6)¨)à6) 7) )7)$(7)˜)07) P7))X7)x7)ˆ)€7)¨Œ 7)€)¨7)þŽÈ7)x)Ð7)`ð7)p)ø7)8)h) 8)#Ž@8)`)H8)ޏh8)X)p8)øŽ8)P)˜8)X¸8)H)À8)Žà8)@)è8)H9)8)9)ُ09)0)89)EX9)()`9)E€9) )ˆ9)ԏ¨9))°9)ԏÐ9))Ø9)˜Œø9)):)˜Œ :))(:)@H:)ø€)P:)‰p:)ð€)x:)Ώ˜:)è€) :)òŽÀ:)à€)È:)òŽè:)؀)ð:)à;)Ѐ);)•8;)Ȁ)@;)@`;))h;)@ˆ;)¸€);)8°;)°€)¸;)0ŠØ;)¨€)à;)<) €)<)°‹(<)˜€)0<)°‹P<)€)X<)àùx<)ˆ€)€<)Ž <)€€)¨<)ŽÈ<)x€)Ð<) íð<)p€)ø<)èŽ=)h€) =) ˆ@=)`€)H=)Žh=)X€)p=)ɏ=)P€)˜=)€‰¸=)H€)À=)à=)@€)è=)€”>)8€)>)@”0>)0€)8>)ŽX>)(€)`>)6€>) €)ˆ>)6¨>)€)°>)܎Ð>)€)Ø>)܎ø>)€)?)֎ ?)€)(?)֎H?)ø)P?) ‹p?)ð)x?) ‹˜?)è) ?)ÀvÀ?)à)È?)è?)Ø)ð?)Ž@)Ð)@)Ў8@)È)@@)ʎ`@)À)h@)‹ˆ@)¸)@)°@)°)¸@)Ø@)¨)à@)ºŽA) )A)(A)˜)0A) ŠPA))XA) ŠxA)ˆ)€A)C A)€)¨A)CÈA)x)ÐA)ÀßðA)p)øA)´ŽB)h) B)0@B)`)HB)ˆŒhB)X)pB)ùB)P)˜B)®Ž¸B)H)ÀB)®ŽàB)@)èB)àÓC)8)C)¨Ž0C)0)8C)‹XC)()`C)‹€C) )ˆC) Ì¨C))°C)ÐC))ØC)€‹øC))D)€‹ D))(D)HD)ø~)PD)(pD)ð~)xD)ò˜D)è~) D)òÀD)à~)ÈD)9èD)Ø~)ðD)p‹E)Ð~)E)´8E)È~)@E)P‰`E)À~)hE)P‰ˆE)¸~)E)€©°E)°~)¸E)3ØE)¨~)àE)ëF) ~)F)à(F)˜~)0F)¢ŽPF)~)XF)œŽxF)ˆ~)€F)–Ž F)€~)¨F)ŽÈF)x~)ÐF)¯ðF)p~)øF) G)h~) G)ª@G)`~)HG)xŒhG)X~)pG)ŠŽG)P~)˜G)hŒ¸G)H~)ÀG)XŒàG)@~)èG)ðŠH)8~)H)¥0H)0~)8H)HŒXH)(~)`H)„Ž€H) ~)ˆH)„ލH)~)°H)ÐH)~)ØH)ՍøH)~)I)A I)~)(I)HI)ø})PI)pI)ð})xI)˜I)è}) I)ÀI)à})ÈI) ièI)Ø})ðI) J)Ð})J)`‹8J)È})@J)àŠ`J)À})hJ)΍ˆJ)¸})J)@‰°J)°})¸J)›ØJ)¨})àJ)ЊK) })K)(K)˜})0K)PK)})XK)–xK)ˆ})€K)
 K)€})¨K)8ŒÈK)x})ÐK)8ŒðK)p})øK)@L)h}) L)P‹@L)`})HL)P‹hL)X})pL) ‹L)P})˜L)@‹¸L)H})ÀL)@‹àL)@})èL)àM)8})M)‘0M)0})8M)üXM)(})`M)ˆ€M) })ˆM) ˆ¨M)})°M)~ÐM)})ØM)~øM)})N)€“ N)})(N) †HN)ø|)PN)ypN)ð|)xN)°Š˜N)è|) N)ÀN)à|)ÈN) ŠèN)Ø|)ðN)0O)Ð|)O)08O)È|)@O)Š`O)À|)hO)ŠˆO)¸|)O)Às°O)°|)¸O)à‡ØO)¨|)àO)à‡P) |)P) b(P)˜|)0P)?PP)|)XP)?xP)ˆ|)€P)p P)€|)¨P)eÈP)x|)ÐP)eðP)p|)øP)`Q)h|) Q)`ˆ@Q)`|)HQ)`ˆhQ)X|)pQ)àTQ)P|)˜Q)à‰¸Q)H|)ÀQ)~ŽàQ)@|)èQ)~ŽR)8|)R)ˆ0R)0|)8R)[XR)(|)`R)[€R) |)ˆR) ‡¨R)|)°R) ‡ÐR)|)ØR) IøR)|)S)Љ S)|)(S)ЉHS)ø{)PS)à;pS)ð{)xS)Ǎ˜S)è{) S)ǍÀS)à{)ÈS)€,èS)Ø{)ðS)-T)Ð{)T)8T)È{)@T)`T)À{)hT)xŽˆT)¸{)T)@,°T)°{)¸T)@“ØT)¨{)àT)ŠU) {)U)(U)˜{)0U)(ŒPU){)XU)=xU)ˆ{)€U)= U)€{)¨U) ‡ÈU)x{)ÐU)
ðU)p{)øU)
V)h{) V)€@V)`{)HV)ŠhV)X{)pV)АV)P{)˜V)`d¸V)H{)ÀV)¸àV)@{)èV)øŒW)8{)W)øŒ0W)0{)8W) ZXW)({)`W)‰€W) {)ˆW)ø¨W){)°W)rŽÐW){)ØW)rŽøW){)X)À X){)(X)“HX)øz)PX)à†pX)ðz)xX)„˜X)èz) X)VÀX)àz)ÈX)lŽèX)Øz)ðX)lŽY)Ðz)Y)€Š8Y)Èz)@Y)fŽ`Y)Àz)hY)QˆY)¸z)Y)Q°Y)°z)¸Y)±ØY)¨z)àY) VZ) z)Z)ðŒ(Z)˜z)0Z)ðŒPZ)z)XZ)€xZ)ˆz)€Z)`Ž Z)€z)¨Z)`ŽÈZ)xz)ÐZ) MðZ)pz)øZ)ª[)hz) [)ª@[)`z)H[)‰h[)Xz)p[)‰[)Pz)˜[)`ø¸[)Hz)À[)p‰à[)@z)è[)p‰\)8z)\) G0\)0z)8\)€ˆX\)(z)`\)L€\) z)ˆ\)L¨\)z)°\)ZŽÐ\)z)Ø\)TŽø\)z)])Œ ])z)(])ŒH])øy)P])€îp])ðy)x])£˜])èy) ])èŒÀ])ày)È])àŒè])Øy)ð])	^)Ðy)^)Œ8^)Èy)@^)NŽ`^)Ày)h^)NŽˆ^)¸y)^)G°^)°y)¸^)œØ^)¨y)à^)œ_) y)_)HŽ(_)˜y)0_)HŽP_)y)X_)°‰x_)ˆy)€_)B _)€y)¨_)BÈ_)xy)Ð_)ìð_)py)ø_)0‹`)hy) `)0‹@`)`y)H`)Àëh`)Xy)p`)Bސ`)Py)˜`)Bޏ`)Hy)À`)،à`)@y)è`)،a)8y)a)ÀB0a)0y)8a)=Xa)(y)`a)<Ž€a) y)ˆa)<ލa)y)°a)8Ða)y)Øa)3øa)y)b). b)y)(b)ðˆHb)øx)Pb)ðˆpb)ðx)xb)À8˜b)èx) b)€‡Àb)àx)Èb)€‡èb)Øx)ðb)À4c)Ðx)c)(‰8c)Èx)@c)(‰`c)Àx)hc)à)ˆc)¸x)c)àˆ°c)°x)¸c)àˆØc)¨x)àc) "d) x)d)pŠ(d)˜x)0d)pŠPd)x)Xd)àÝxd)ˆx)€d)6Ž d)€x)¨d)6ŽÈd)xx)Ðd)ðƒðd)px)ød) Ýe)hx) e)ð@e)`x)He)Ќhe)Xx)pe)ø‹e)Px)˜e)¸e)Hx)Àe)çàe)@x)èe))f)8x)f) 0f)0x)8f)ȌXf)(x)`f)㏀f) x)ˆf)@بf)x)°f)`ŠÐf)x)Øf)`Šøf)x)g)àÍ g)x)(g))Hg)øw)Pg)•pg)ðw)xg)Ž˜g)èw) g)‡Àg)àw)Èg)0Žèg)Øw)ðg)h)Ðw)h)8h)Èw)@h)ÀÀ`h)Àw)hh)€ˆh)¸w)h)€À°h)°w)¸h)yØh)¨w)àh)è‹i) w)i)è‹(i)˜w)0i) ³Pi)w)Xi)xi)ˆw)€i) i)€w)¨i)àÈi)xw)Ði)ði)pw)øi)j)hw) j)؋@j)`w)Hj)¸Œhj)Xw)pj)¸Œj)Pw)˜j)ॸj)Hw)Àj)àj)@w)èj)*Žk)8w)k)0k)0w)8k)Xk)(w)`k)`›ðk)‘l)`u)`l)°‚xl) % l)P¡Ðl)@6øl)Ђm)Ð#m) $0m)@n)@m)àm)pm)P°€m)p#àm)&‘èm) $ðm))@n)5‘Hn)P4`n)B‘hn) €n)O‘ˆn)p/ n)s¨n)੸n) ")Àn)ŽÈn)°¹Øn) )àn)Z‘èn)àøn)€)o)OŒo)Co)) o)]Œ(o)°E8o)@)@o)dŒHo)`IXo)	)`o)rŒho)`Mxo)À)€o)iŒˆo) P˜o)Àü( o)˜¨o)°Ä¸o)`÷(Ào)ŽÈo)@-Øo) ì(ào)d‘èo)àáøo)Àé(p)‡Žp)pTp)€Ý( p)±(p)pê8p)`Ð(@p)!‘Hp)€:Xp)àË(`p)8Œhp)À=xp)`Ã(€p)¡ˆp)ÐÓ˜p)@¸( p)~Œ¨p)pS¸p)€°(Àp)‡ŒÈp)@VØp) ¡(àp)ŽŒèp)0Zøp)@–(q)—Œq)p]q)`Š( q)¨Œ(q)@a8q)€|(@q)ŒHq)@eXq)@o(`q)µŒhq)àixq)@f(€q)ªŒˆq) m˜q)€Z( q)¿Œ¨q) q¸q)€P(Àq)όÈq)àsØq) B(àq)ڌèq) wøq)À5(r)ãŒr) {r)&( r)êŒ(r)`~8r)@(@r)òŒHr) Xr)€
(`r)øŒhr)à„xr)àü'€r)ˆr)Ј˜r)ê' r)¨r)¸r)ÀÝ'Àr)Èr)°Ør) Ì'àr)èr) ”ør)@Â's)#s)à—s)·' s)QŽ(s)g8s) ¬'@s)ïHs)pFXs)'`s)æhs)0Bxs)€'€s)ލˆs)°>˜s)' s)ٍ¨s) ;¸s)@|'Às)aŽÈs)7Øs)u'às)\Žès)Òøs)Àd't)ύt)4t)Y' t)kŽ(t)õ8t)`G'@t)ÍHt)0Xt)@;'`t)¹ht) þxt)/'€t)j‘ˆt)¨˜t) *' t)r‘¨t) “¸t)à%'àt)nèt)§øt)à$'u)Su)à¤u)`%''Á '('0'Ð8'	@'¦H'
P'¨X'`'×h'ðp'žx'—€'»ˆ'ä''˜'* 'Ψ'.°'¼¸'¢À'/È'±Ð'1Ø'óà'9è'=ð'Dø'ö'F'N'P'â 'Z('É0'¯8'd@'fH'ãP'iX'j`'Ïh'ßp'Õx'l€'˜ˆ'Ð'¿˜'w '³¨'ô°'Û¸'ÊÀ'•È'€Ð'ƒØ'„à'Èè'ð'‘ø'¡ '  '( '0 '8 '@ 'H 'àP '
X '` 'h 'p 'x '€ 'ˆ ' '˜ '  '¨ '° '¸ 'À 'È 'Ð 'ðØ 'à 'è 'ð 'žø 'Ø!'©!'!'§!'  !'—(!'!0!'"8!'#@!'$H!'%P!'ªX!'š`!'&h!'Âp!'(x!')€!'Ÿˆ!'+!',˜!'ç !'Ψ!'-°!'0¸!'2À!'3È!'4Ð!'5Ø!'ìà!'6è!'7ð!'Ñø!'8"':"';"'<"'> "'?("'@0"'A8"'B@"'CH"'EP"'GX"'H`"'Ih"'Jp"'Kx"'L€"'Mˆ"'O"'Q˜"'R "'S¨"'T°"'U¸"'®À"'VÈ"'WÐ"'XØ"'Yà"'¤è"'[ð"'\ø"']#'Ù#'^#'_#'á #'`(#'a0#'b8#'c@#'¯H#'íP#'eX#'g`#'¬h#'hp#'kx#'¥€#'™ˆ#'m#'˜˜#'ê #'n¨#'o°#'£¸#'pÀ#'qÈ#'rÐ#'­Ø#'sà#'tè#'uð#'vø#'x$'y$'z$'Ò$'{ $'|($'}0$'~8$'@$'H$'‚P$'ÌX$'…`$'Èh$'†p$'‡x$'ˆ€$'‰ˆ$'А$'‹˜$' $'Œ¨$'°$'ޏ$'À$'‘È$'’Ð$'“HƒìèÃtHƒÄÃÿ5Rr&ÿ%Tr&@ÿ%Rr&héàÿÿÿÿ%Jr&héÐÿÿÿÿ%Br&héÀÿÿÿÿ%:r&hé°ÿÿÿÿ%2r&hé ÿÿÿÿ%*r&héÿÿÿÿ%"r&hé€ÿÿÿÿ%r&hépÿÿÿÿ%r&hé`ÿÿÿÿ%
r&h	éPÿÿÿÿ%r&h
é@ÿÿÿÿ%úq&hé0ÿÿÿÿ%òq&hé ÿÿÿÿ%êq&h
éÿÿÿÿ%âq&héÿÿÿÿ%Úq&héðþÿÿÿ%Òq&héàþÿÿÿ%Êq&héÐþÿÿÿ%Âq&héÀþÿÿÿ%ºq&hé°þÿÿÿ%²q&hé þÿÿÿ%ªq&héþÿÿÿ%¢q&hé€þÿÿÿ%šq&hépþÿÿÿ%’q&hé`þÿÿÿ%Šq&héPþÿÿÿ%‚q&hé@þÿÿÿ%zq&hé0þÿÿÿ%rq&hé þÿÿÿ%jq&héþÿÿÿ%bq&héþÿÿÿ%Zq&héðýÿÿÿ%Rq&h éàýÿÿÿ%Jq&h!éÐýÿÿÿ%Bq&h"éÀýÿÿÿ%:q&h#é°ýÿÿÿ%2q&h$é ýÿÿÿ%*q&h%éýÿÿÿ%"q&h&é€ýÿÿÿ%q&h'épýÿÿÿ%q&h(é`ýÿÿÿ%
q&h)éPýÿÿÿ%q&h*é@ýÿÿÿ%úp&h+é0ýÿÿÿ%òp&h,é ýÿÿÿ%êp&h-éýÿÿÿ%âp&h.éýÿÿÿ%Úp&h/éðüÿÿÿ%Òp&h0éàüÿÿÿ%Êp&h1éÐüÿÿÿ%Âp&h2éÀüÿÿÿ%ºp&h3é°üÿÿÿ%²p&h4é üÿÿÿ%ªp&h5éüÿÿÿ%¢p&h6é€üÿÿÿ%šp&h7épüÿÿÿ%’p&h8é`üÿÿÿ%Šp&h9éPüÿÿÿ%‚p&h:é@üÿÿÿ%zp&h;é0üÿÿÿ%rp&h<é üÿÿÿ%jp&h=éüÿÿÿ%bp&h>éüÿÿÿ%Zp&h?éðûÿÿÿ%Rp&h@éàûÿÿÿ%Jp&hAéÐûÿÿÿ%Bp&hBéÀûÿÿÿ%:p&hCé°ûÿÿÿ%2p&hDé ûÿÿÿ%*p&hEéûÿÿÿ%"p&hFé€ûÿÿÿ%p&hGépûÿÿÿ%p&hHé`ûÿÿÿ%
p&hIéPûÿÿÿ%p&hJé@ûÿÿÿ%úo&hKé0ûÿÿÿ%òo&hLé ûÿÿÿ%êo&hMéûÿÿÿ%âo&hNéûÿÿÿ%Úo&hOéðúÿÿÿ%Òo&hPéàúÿÿÿ%Êo&hQéÐúÿÿÿ%Âo&hRéÀúÿÿÿ%ºo&hSé°úÿÿÿ%²o&hTé úÿÿÿ%ªo&hUéúÿÿÿ%¢o&hVé€úÿÿÿ%šo&hWépúÿÿÿ%’o&hXé`úÿÿÿ%Šo&hYéPúÿÿÿ%‚o&hZé@úÿÿÿ%zo&h[é0úÿÿÿ%ro&h\é úÿÿÿ%jo&h]éúÿÿÿ%bo&h^éúÿÿÿ%Zo&h_éðùÿÿÿ%Ro&h`éàùÿÿÿ%Jo&haéÐùÿÿÿ%Bo&hbéÀùÿÿÿ%:o&hcé°ùÿÿÿ%2o&hdé ùÿÿÿ%*o&heéùÿÿÿ%"o&hfé€ùÿÿÿ%o&hgépùÿÿÿ%o&hhé`ùÿÿÿ%
o&hiéPùÿÿÿ%o&hjé@ùÿÿÿ%ún&hké0ùÿÿÿ%òn&hlé ùÿÿÿ%ên&hméùÿÿÿ%ân&hnéùÿÿÿ%Ún&hoéðøÿÿÿ%Òn&hpéàøÿÿÿ%Ên&hqéÐøÿÿÿ%Ân&hréÀøÿÿÿ%ºn&hsé°øÿÿÿ%²n&hté øÿÿÿ%ªn&hu鐸ÿÿÿ%¢n&hv逸ÿÿÿ%šn&hwépøÿÿÿ%’n&hxé`øÿÿÿ%Šn&hyéPøÿÿÿ%‚n&hzé@øÿÿÿ%zn&h{é0øÿÿÿ%rn&h|é øÿÿÿ%jn&h}éøÿÿÿ%bn&h~éøÿÿÿ%Zn&héð÷ÿÿÿ%Rn&h€éà÷ÿÿÿ%Jn&héÐ÷ÿÿÿ%Bn&h‚éÀ÷ÿÿÿ%:n&hƒé°÷ÿÿÿ%2n&h„é ÷ÿÿÿ%*n&h…é÷ÿÿÿ%"n&h†é€÷ÿÿÿ%n&h‡ép÷ÿÿÿ%n&hˆé`÷ÿÿÿ%
n&h‰éP÷ÿÿÿ%n&hŠé@÷ÿÿÿ%úm&h‹é0÷ÿÿÿ%òm&hŒé ÷ÿÿÿ%êm&hé÷ÿÿÿ%âm&hŽé÷ÿÿÿ%Úm&héðöÿÿÿ%Òm&héàöÿÿÿ%Êm&h‘éÐöÿÿÿ%Âm&h’éÀöÿÿÿ%ºm&h“é°öÿÿÿ%²m&h”é öÿÿÿ%ªm&h•éöÿÿÿ%¢m&h–é€öÿÿÿ%šm&h—épöÿÿAVE‰ÆAUI‰õH‰ÖATI‰ÌUH‰ÕSHìÐè=ùÿÿH…À„ªH‰ÃH‹@ö€³€u H‹¥f&H‰éL‰êH5µH‹81ÀèþÿÿëmL‹K(M9ás#H‹ìf&M‰àH‰éL‰êH5ŒµH‹81ÀèÚýÿÿëAAÿÎuKM9ávFI‰æPL‰éI‰èAQH۵M‰áL‰÷¾È1Àè	öÿÿ1ÒL‰ö1ÿè½ýÿÿZY…ÀyHÿuH‰ßèjöÿÿ1ÛHÄÐH‰Ø[]A\A]A^ÃAWI‰×AVI‰þAUI‰õH5ÓATI‰ÌUSAPèQøÿÿH…À„ÁL‰îH‰ÇH‰ÃèJöÿÿH‰ÅH…Àu(L‰÷èŠûÿÿL‰éH5°µH‰ÂH‹Ng&H‹81ÀèýÿÿëvL‰æH‰Çèÿøÿÿ…Àu9H‰ïèÓùÿÿL‰÷H‰ÅèHûÿÿI‰éM‰àL‰éH‰ÂH‹]e&H5–µH‹81ÀèÄüÿÿë.L‰æH‰ïèGûÿÿI‰H…ÀtH‹1íHPÿH‰H…ÒuH‰ßèvõÿÿëHÿuH‰ßègõÿÿƒÍÿZ‰è[]A\A]A^A_ÃAWI‰×AVI‰þAUI‰õH5ÒATI‰ÌUSAPèR÷ÿÿH…À„ÁL‰îH‰ÇH‰ÃèKõÿÿH‰ÅH…Àu(L‰÷è‹úÿÿL‰éH59µH‰ÂH‹Of&H‹81Àè
üÿÿëvL‰æH‰Çèøÿÿ…Àu9H‰ïèÔøÿÿL‰÷H‰ÅèIúÿÿI‰éM‰àL‰éH‰ÂH‹^d&H5µH‹81ÀèÅûÿÿë.L‰æH‰ïèHúÿÿI‰H…ÀtH‹1íHPÿH‰H…ÒuH‰ßèwôÿÿëHÿuH‰ßèhôÿÿƒÍÿZ‰è[]A\A]A^A_ÃH‹PË(H…ÀtHÿÃAUA¸¹1ÀATH=Ô¾USHìHl$ Ld$(H‰ïèóÿÿè*üÿÿHÔ¾L‰çH‰Á1ÀèqóÿÿŠD$(8D$ u
ŠD$*8D$"tbH\$0¾È1ÀM‰áHoÁH‰ßLOÖH‰éè5óÿÿ1ÿºH‰Þèæúÿÿ…Ày'HHÑÇeÊ(H‰RÊ(ÇPÊ(†[éœ1ÿèÔøÿÿH‰MÊ(H…Àu'HÑÇ+Ê(H‰Ê(ÇÊ(Š[éb1öH=äÐèóöÿÿH‰Ê(H…Àu'HÍÐÇêÉ(H‰×É(ÇÕÉ(‹[é!1öH=£ÐèÒøÿÿH…Àu'H“ÐǰÉ(H‰É(Ç›É(Œ[éç¾õH=ú¯(èEùÿÿH‰®É(H…Àu'HOÐÇlÉ(H‰YÉ(ÇWÉ(°[éùH‰ÇèjòÿÿH‰kÉ(H…Àu'HÐÇ1É(H‰É(ÇÉ(²[éhHÿH=TÒè(öÿÿH‰!É(H…Àu'HÒÏÇïÈ(H‰ÜÈ(ÇÚÈ(´[é&HÿH=ÒèæõÿÿH‰×È(H…Àu'HÏÇ­È(H‰šÈ(ǘÈ(¶[éäHÿH‹©È(H5áÑH‹=«È(èæñÿÿ…Ày'HHÏÇeÈ(H‰RÈ(ÇPÈ(¸[éœHtm(H‹+H…ít}ŠC 
C!H‹{t:€{"tèµòÿÿH‰Eë:H‹CH‹SHpÿH…Òt
1Éè7óÿÿH‰Eëè÷ÿÿH‰EëH‹CHpÿèÙôÿÿH‰EH‹H‹8H…ÿ„²èÑóÿÿHÿÀ„¤HƒÃ(é{ÿÿÿWÀè'ðÿÿH‰€¹(H…À„ƒò¯Òè
ðÿÿH‰[¹(H…À„fò¢ÒèíïÿÿH‰6¹(H…À„I1ÿè6ñÿÿH‰¹(H…À„2¿èñÿÿH‰õ¸(H…À„1Ò1öH=ÐèóÿÿH‰͸(H…À„øHƒÏÿèãðÿÿH‰¬¸(H…À„ßH‹`&ƒ8„öH‹ľ(H‹5¾(H‹=Ç(èyõÿÿ…À‰ÔH§ÍÇÄÆ(H‰±Æ(ǯÆ(¿[Hƒ=ׯ(tLHƒ=ÅÆ(tH‹
ŒÆ(‹’Æ(H=DÒ‹5Æ(è¼kH‹=¥Æ(H…ÿt7HÿHÇ’Æ(u'è‹ïÿÿë èÔöÿÿH…ÀuH‹Ð`&H5þÑH‹8è	óÿÿH‹bÆ(HÄ[]A\A]ÃHúÌÇÆ(H‰Æ(ÇÆ(º[éNÿÿÿè¨÷ÿÿH‰ÃH…Àu'HÆÌÇãÅ(H‰ÐÅ(ÇÎÅ(Ã[éÿÿÿH5„ÑH‰ÇèïÿÿH…ÀuAH‹ÞÅ(H5iÑH‰ßè_ðÿÿ…Ày'HqÌÇŽÅ(H‰{Å(ÇyÅ(Å[éÅþÿÿH‹=Â(èˆiH‰qÄ(H…Àu'H2ÌÇOÅ(¾H‰<Å(Ç:Å('Xé†þÿÿH‹=޾(èIiH‰*Ä(H…Àu'HóËÇÅ(ÆH‰ýÄ(ÇûÄ((XéGþÿÿH‹=§Á(è
iH‰ãÃ(H…Àu'H´ËÇÑÄ(òH‰¾Ä(ǼÄ()XéþÿÿH‹=ˆÁ(èËhH‰œÃ(H…Àu'HuËÇ’Ä(!H‰Ä(Ç}Ä(*XéÉýÿÿH‹=9¹(èŒhH…Àu'H=ËÇZÄ(~H‰GÄ(ÇEÄ(+Xé‘ýÿÿH‹=Ã(èThH‰Ã(H…Àu'HþÊÇÄ(ÜH‰Ä(ÇÄ(,XéRýÿÿH‹=bÂ(èhH‰ÖÂ(H…Àu'H¿ÊÇÜÃ(QH‰ÉÃ(ÇÇÃ(-XéýÿÿH‹=;¸(èÖgH…Àu'H‡ÊǤÃ(iH‰‘Ã(ǏÃ(.XéÛüÿÿH‹=#Â(èžgH‰WÂ(H…Àu'HHÊÇeÃ(´H‰RÃ(ÇPÃ(/XéœüÿÿH‹=$À(è_gH…Àu'HÛËÇ-Ã(	H‰Ã(ÇÃ(0XédüÿÿH‹=´Á(è'gH‰ØÁ(H…Àu'HœËÇîÂ(¿H‰ÛÂ(ÇÙÂ(1Xé%üÿÿH‹5…»(¿1Àè‘òÿÿH‰J´(H…Àu'H‹ÉǨÂ(rH‰•Â(Ç“Â(BXéßûÿÿH‹5Á(¿1ÀèKòÿÿH‰ü³(H…Àu'HEÉÇbÂ(¾H‰OÂ(ÇMÂ(MXé™ûÿÿH‹5}(¿1ÀèòÿÿH‰®³(H…Àu'HÿÈÇÂ(òH‰	Â(ÇÂ(XXéSûÿÿH‹óÀ(H‹5¤»(¿1Àè¸ñÿÿH‰Y³(H…Àu'H²ÈÇÏÁ(H‰¼Á(ǺÁ(cXéûÿÿH‹5ִ(¿1ÀèrñÿÿH‰³(H…Àu'HlÈljÁ(`H‰vÁ(ÇtÁ(nXéÀúÿÿH‹5ˆ´(¿1Àè,ñÿÿH‰½²(H…Àu'H&ÈÇCÁ(dH‰0Á(Ç.Á(yXézúÿÿH‹52µ(¿1ÀèæðÿÿH‰o²(H…Àu'HàÇÇýÀ(fH‰êÀ(ÇèÀ(„Xé4úÿÿH‹¬²(H‹5½º(¿1Àè™ðÿÿH‰²(H…Àu'H“ÇǰÀ(oH‰À(Ç›À(XéçùÿÿH‹G²(H‹5º(¿1ÀèLðÿÿH‰½±(H…Àu'HFÇÇcÀ(pH‰PÀ(ÇNÀ(šXéšùÿÿH‹*Z&¿1ÀH‰ÙH‰ÚH‰ÞèýïÿÿH‰f±(H…Àu'H÷ÆÇÀ(wH‰À(Çÿ¿(¥XéKùÿÿH‹ã¾(H‹5L¾(¿1Àè°ïÿÿH‰±(H…Àu'HªÆÇǿ(ØH‰´¿(Dz¿(°XéþøÿÿH‹N±(H‹5W±(¿1ÀècïÿÿH‰¼°(H…Àu'H]ÆÇz¿( H‰g¿(Çe¿(»Xé±øÿÿH‹5¹»(¿1ÀèïÿÿH‰n°(H…Àu'HÆÇ4¿(ƒH‰!¿(Ç¿(ÆXékøÿÿH‹5k»(¿1Àè×îÿÿH‰ °(H…Àu'HÑÅÇî¾(…H‰۾(Çپ(ÑXé%øÿÿH‹55»(¿1Àè‘îÿÿH‰ү(H…Àu'H‹ÅǨ¾(‡H‰•¾(Ç“¾(ÜXéß÷ÿÿH‹5÷º(¿1ÀèKîÿÿH‰„¯(H…Àu'HEÅÇb¾(‹H‰O¾(ÇM¾(çXé™÷ÿÿH‹5q´(¿1ÀèîÿÿH‰6¯(H…Àu'HÿÄǾ(šH‰	¾(Ǿ(òXéS÷ÿÿH‹5sº(¿1Àè¿íÿÿH‰è®(H…Àu'H¹ÄÇֽ(œH‰ý(Ç}(ýXé
÷ÿÿH‹5]³(¿1ÀèyíÿÿH‰š®(H…Àu'HsÄǐ½(ŸH‰}½(Ç{½(YéÇöÿÿH‹5³(¿1Àè3íÿÿH‰L®(H…Àu'H-ÄÇJ½(¡H‰7½(Ç5½(YéöÿÿH‹5ɲ(¿1ÀèíìÿÿH‰þ­(H…Àu'HçÃǽ(£H‰ñ¼(Çï¼(Yé;öÿÿH‹5³»(¿1Àè§ìÿÿH‰°­(H…Àu'H¡ÃǾ¼(¹H‰«¼(Ç©¼()YéõõÿÿH‹5»(¿1ÀèaìÿÿH‰b­(H…Àu'H[ÃÇx¼(¼H‰e¼(Çc¼(4Yé¯õÿÿH‹5»(¿1ÀèìÿÿH‰­(H…Àu'HÃÇ2¼(ÀH‰¼(Ǽ(?YéiõÿÿH‹5!¼(¿1ÀèÕëÿÿH‰Ƭ(H…Àu'HÏÂÇì»(åH‰ٻ(Ç׻(JYé#õÿÿH‹5³¸(¿1ÀèëÿÿH‰x¬(H…Àu'H‰ÂǦ»(QH‰“»(Ç‘»(UYéÝôÿÿH‹5´(¿1ÀèIëÿÿH‰*¬(H…Àu'HCÂÇ`»(¢H‰M»(ÇK»(`Yé—ôÿÿH‹5߲(¿1ÀèëÿÿH‰ܫ(H…Àu'HýÁÇ»(¤H‰»(Ç»(kYéQôÿÿH‹5q³(¿1Àè½êÿÿH‰Ž«(H…Àu'H·ÁÇԺ(¦H‰z(Ç¿º(vYéôÿÿH‹5›±(¿1ÀèwêÿÿH‰@«(H…Àu'HqÁÇŽº(ùH‰{º(Çyº(YéÅóÿÿH‹5²(¿1Àè1êÿÿH‰òª(H…Àu'H+ÁÇHº(áH‰5º(Ç3º(ŒYéóÿÿH‹5µ(¿1ÀèëéÿÿH‰¤ª(H…Àu'HåÀǺ(ãH‰ï¹(Çí¹(—Yé9óÿÿH‹5™±(¿1Àè¥éÿÿH‰Vª(H…Àu'HŸÀǼ¹(åH‰©¹(ǧ¹(¢YéóòÿÿH‰ÚH‰ÞH‰ßè”éÿÿH‰åª(H…Àu'H^ÀÇ{¹(ëH‰h¹(Çf¹(­Yé²òÿÿH‹5²´(¿1ÀèéÿÿH‰ǩ(H…Àu'HÀÇ5¹(H‰"¹(Ç ¹(¸YélòÿÿH‹¸(H‹5õ³(¿1ÀèÑèÿÿH‰r©(H…Àu'H˿Çè¸(	H‰ո(ÇӸ(ÃYéòÿÿH‹5¯³(¿1Àè‹èÿÿH‰$©(H…Àu'H…¿Ç¢¸(H‰¸(Ǎ¸(ÎYéÙñÿÿH‹5٩(H‰ڿ1ÀèBèÿÿH‰Ө(H…Àu'H<¿ÇY¸(H‰F¸(ÇD¸(ÙYéñÿÿH‹58«(¿1ÀèüçÿÿH‰…¨(H…Àu'Hö¾Ç¸(tH‰¸(Çþ·(äYéJñÿÿH‹5´(¿1Àè¶çÿÿH‰7¨(H…Àu'H°¾Çͷ(H‰º·(Ǹ·(ïYéñÿÿH‹|P&H‹5]©(¿1ÀèiçÿÿH‰â§(H…Àu'Hc¾Ç€·(gH‰m·(Çk·(úYé·ðÿÿH‹5W©(¿1Àè#çÿÿH‰”§(H…Àu'H¾Ç:·(´H‰'·(Ç%·(ZéqðÿÿH‹5ѵ(1?èÝæÿÿH…Àu'H©¿Çû¶(	H‰è¶(Çæ¶(Zé2ðÿÿH‹5Jµ(1?èžæÿÿH…Àu'Hj¿Ç¼¶(
H‰©¶(ǧ¶(ZéóïÿÿH‹5Kµ(1?è_æÿÿH…Àu'H+¿Ç}¶(!H‰j¶(Çh¶(&Zé´ïÿÿH‹5Ĭ(¿1Àè æÿÿH‰‰¦(H…Àu'Hå¾Ç7¶(¿H‰$¶(Ç"¶(1ZénïÿÿH‹5v¬(1?èÚåÿÿH…Àu'H¦¾Çøµ(ÅH‰åµ(Çãµ(<Zé/ïÿÿH‹—®(H‹5à±(1?è”åÿÿH…Àu'H•¼Ç²µ(÷H‰Ÿµ(ǝµ(GZééîÿÿH‹¡µ(L‹
’µ(VA¸1É1ö1ÿAQh÷ÿ5Щ(ÿ5ú¬(RRPRRºèkâÿÿHƒÄPH…Àu'H(¼ÇEµ(÷H‰2µ(Ç0µ(JZé|îÿÿH‹ä­(H‹5-±(1?èáäÿÿH…Àu'Hâ»Çÿ´(þH‰ì´(Çê´(SZé6îÿÿH‹î´(L‹
ߴ(QA¸1É1ö1ÿAQhþÿ5•©(ÿ5G¬(RRPRRºè¸áÿÿHƒÄPH…Àu'Hu»Ç’´(þH‰´(Ç}´(VZéÉíÿÿH¡¤(H=Z›(H‰S´(H\RH‰…¤(HNVH‰¤(èáÿÿ…Ày'H»Ç1´(uH‰´(Ç´(“ZéhíÿÿH‹=´(1Ò1öHÇ1›(L‹%ú›(èÅÞÿÿH‰ÃH…Àt;H‹5f©(H‰ÂL‰çè›Üÿÿ…ÀH‹xHÿÈH‰uAH‰ßèôÜÿÿë7HÿÈH‰uH‰ßèâÜÿÿHˆºÇ¥³(uH‰’³(ǐ³(šZéÜìÿÿH‹5ܱ(H‹=­³(Hfš(èâÿÿ…Ày'HCºÇ`³(uH‰M³(ÇK³(›Zé—ìÿÿH/š(H=¼H‰I²(èìÜÿÿH‰ÃH…Àu'H”¼Ç³(	H‰³(dz(©ZéNìÿÿA¸¹hH‰ÇHŒ¼H5(¼èÌäÿÿH…Àu'HG¼Çʲ(	H‰·²(ǵ²(²Zé.OHÿuH‰ßèÓÛÿÿH=ã»èWÜÿÿH‰ÃH…Àu'H¼Ç‚²(H‰o²(Çm²(´Zé¹ëÿÿA¸¹H‰ÇHå¼H5“»è7äÿÿH…Àu'H»»Ç5²(H‰"²(Ç ²(·Zé™NHÿuH‰ßè>ÛÿÿH=N»èÂÛÿÿH‰ÃH…Àu'H|»Çí±(H‰ڱ(Çر(¹Zé$ëÿÿA¸¹(H‰ÇHS»H5þºè¢ãÿÿH…Àu'H/»Ç ±(H‰±(Ç‹±(¼ZéNHÿuH‰ßè©ÚÿÿH=»è-ÛÿÿH‰ÃH…Àu'HºÇX±(ÏH‰E±(ÇC±(¾ZéêÿÿA¸¹hH‰ÇH̺H5¿ºè
ãÿÿH‰æ°(H…Àu'H²¹Ç±(ÏH‰ñ°(Çï°(ÁZéhMA¸¹P
H‰ßH~ºH5kºè¹âÿÿH…Àu'He¹Ç·°(æH‰¤°(Ç¢°(ÃZéMA¸¹8H‰ßH:ºH5ºèlâÿÿH‰=°(H…Àu'H¹Çc°(êH‰P°(ÇN°(ÅZéÇLA¸¹XH‰ßHð¹H5ʹèâÿÿH‰á¯(H…Àu'H½¸Ç°(öH‰ü¯(Çú¯(ÇZésLA¸¹àH‰ßH¤¹H5v¹èÄáÿÿH…Àu'Hp¸Ç¯(GH‰¯¯(Ç­¯(ÉZé&LHÿuH‰ßèËØÿÿH=^¹èOÙÿÿH‰ÃH…Àu'He¹Çz¯(H‰g¯(Çe¯(ËZé±èÿÿA¸¹hH‰ÇH|·H5¹è/áÿÿH…Àu'H¹Ç-¯(H‰¯(ǯ(ÎZé‘KA¸¹HH‰ßHõ¸H5xèâàÿÿH…Àu'H˸Çà®(H‰ͮ(Çˮ(ÐZéDKH‹¸H‹58¤(è#ÙÿÿI‰ÄH…Àu'H‰¸Çž®(H‰‹®(lj®(ÑZéK1öH‰ÇèZÝÿÿI‰ÅH…Àu èíÞÿÿH…ÀuH‹áG&H5‚¥H‹8è"ÛÿÿIÿ$uL‰çèt×ÿÿM…ít”A¸¹H‰ßH.¸H5í·èàÿÿH…Àu'H÷·Ç®("H‰ù­(Ç÷­(ÓZépJHÿuH‰ßè×ÿÿH=ó·è™×ÿÿH‰ÃH…Àu'H§´Çĭ(H‰±­(ǯ­(âZéûæÿÿH
ͷH­(H‰ÇH5ʷèhàÿÿ…Ày'H_´Ç|­(H‰i­(Çg­(ãZéöIH
…·H¼¬(H‰ßH5{·è àÿÿ…Ày'H´Ç4­(H‰!­(Ç­(äZé®IH
[·Hl¬(H‰ßH5S·èØßÿÿ…Ày'HϳÇì¬(H‰٬(Ç׬(åZéfIHÿuH‰ßèõÕÿÿH=¤èyÖÿÿH‰ÃH…Àu'H‡³Ç¤¬(H‰‘¬(Ǐ¬(õZéÛåÿÿH
ó£H4¬(H‰ÇH5˶èGàÿÿ…Ày'H?³Ç\¬(H‰I¬(ÇG¬(öZéìHH
«£Hä«(H‰ßH5¶èÿßÿÿ…Ày'H÷²Ç¬(H‰¬(Çÿ«(÷Zé¤HH
c£H”«(H‰ßH5U¶è·ßÿÿ…Ày'H¯²Ç̫(H‰¹«(Ç·«(øZé\HH
£HD«(H‰ßH5¶èoßÿÿ…Ày'Hg²Ç„«(H‰q«(Ço«(ùZéHH
ӢHôª(H‰ßH5޵è'ßÿÿ…Ày'H²Ç<«(H‰)«(Ç'«(úZéÌGH
‹¢H¤ª(H‰ßH5¡µèßÞÿÿ…Ày'HױÇôª(H‰áª(Çߪ(ûZé„GH
C¢HTª(H‰ßH5eµè—Þÿÿ…Ày'H±Ç¬ª(H‰™ª(Ç—ª(üZé<GH
û¡Hª(H‰ßH5)µèOÞÿÿ…Ày'HG±Çdª(H‰Qª(ÇOª(ýZéôFH
³¡H´©(H‰ßH5í´èÞÿÿ…Ày'Hÿ°Çª(H‰	ª(Ǫ(þZé¬FHÿuH‰ßè%ÓÿÿH=´è©ÓÿÿH‰ÃH…Àu'H·°Çԩ(H‰i(Ç¿©([éãÿÿH
{¡H©(H‰ÇH5h´èwÝÿÿ…Ày'Ho°ÇŒ©(H‰y©(Çw©([é2FH
ƒ¡H´¨(H‰ßH51´è/Ýÿÿ…Ày'H'°ÇD©(H‰1©(Ç/©([éêEH
´Hd¨(H‰ßH5´èçÜÿÿ…Ày'H߯Çü¨(H‰é¨(Çç¨([é¢EH
K¡H¨(H‰ßH5޳èŸÜÿÿ…Ày'H—¯Ç´¨(H‰¡¨(ÇŸ¨([éZEH
K¡Hħ(H‰ßH5¢³èWÜÿÿ…Ày'HO¯Çl¨(H‰Y¨(ÇW¨([éEH
#¢Ht§(H‰ßH5_³èÜÿÿ…Ày'H¯Ç$¨(H‰¨(Ǩ([éÊDH
ó¢H$§(H‰ßH5³èÇÛÿÿ…Ày'H¿®Çܧ(H‰ɧ(Çǧ([é‚DH
«¢HԦ(H‰ßH5å²èÛÿÿ…Ày'Hw®Ç”§(H‰§(ǧ([é:DHÿuH‰ßèÐÿÿH‹=®(1Ò1öè
JH‰ÃH…Àu'H+®ÇH§(H‰5§(Ç3§(á[éàÿÿH‹5o(H‹=H§(H‰ÂèØÏÿÿ…Ày'Hê­Ç§(H‰ô¦(Çò¦(ã[é>CHÿuH‰ßèÐÿÿH‹=ñ˜(1Ò1öè€IH‰ÃH…Àu'Hž­Ç»¦(H‰¨¦(Ǧ¦(í[éòßÿÿH‹5²˜(H‹=»¦(H‰ÂèKÏÿÿ…Ày'H]­Çz¦(H‰g¦(Çe¦(ï[é±BHÿuH‰ßèƒÏÿÿH‹=¼œ(1Ò1öèóHH‰ÃH…Àu'H­Ç.¦(H‰¦(Ǧ(ù[éeßÿÿH‹5•œ(H‹=.¦(H‰Âè¾Îÿÿ…Ày'HЬÇí¥(H‰ڥ(Çإ(û[é$BHÿuH‰ßèöÎÿÿ¿è|ÖÿÿH‰ÃH…Àu'HЬǧ¥(H‰”¥(Ç’¥(\éÞÞÿÿH‹¤(1öH‰ßHÿH‹ÿ£(èÓÿÿH‹=(ºH‰ÞèHI‰ÄH…Àu)H,¬1íÇG¥(H‰4¥(Ç2¥(
\é~AHÿuH‰ßèPÎÿÿH‹5¡£(L‰çèJH‰ÃH…Àu*H߫L‰åÇù¤(H‰æ¤(Çä¤(
\éFAH‹5h£(H‹=ù¤(H‰Âè‰Íÿÿ…Ày*H›«L‰åǵ¤(H‰¢¤(Ç ¤(\éì@HÿuH‰ßè¾ÍÿÿIÿ$uL‰çè°ÍÿÿHT$Ht$HÇD$HÇD$H|$HÇD$HÇD$ HÇD$(HÇD$0èÆÑÿÿH=¯èêÍÿÿI‰ÄH…À„{H5†¯H‰Çè_ÏÿÿIÿ$H‰ÃuL‰çè.ÍÿÿH…ÛuH‹‚=&H5e¯H‹8è³Ðÿÿé;H‹/=&H9Ct,H‹J=&H5ӟH‹8è‹ÐÿÿHÿ…H‰ßèÚÌÿÿé1öH‰ßè{ÒÿÿHÿH‰ɣ(uH‰ßè·ÌÿÿH‹¸£(H…ÀuH‹ô<&H5ü®H‹8è5Ðÿÿé½ÿ=	H‹Š£(t&ÿº	H5zŸ‰ÁH‹¹<&H‹81ÀèÓÿÿé‡ÿ˜ƒøH‹R£(w'ÿ˜º
H5ŽŸ‰ÁH‹}<&H‹81ÀèCÓÿÿëNÿ…ÀuH‹`<&H5±ŸH‹81ÀèÓÿÿë*ÿÈtH‹B<&H5ßH‹81ÀèÓÿÿëH‹|$H…ÿu?ëGH‹Ä<&H-=«Ç¢(½H‰-|¢(I‰ìÇw¢(¶SH‹8èÎÿÿ…ÀuVéHÿuèŒËÿÿHÇD$H‹|$H…ÿt
HÿuèoËÿÿHÇD$H‹|$H…ÿ„.Hÿ…%èJËÿÿé‹¢(‹5	¢(H=¬­H‹
ó¡(è6GHT$0Ht$(H|$ è’B…ÀyH‰-ϡ(Çѡ(¾Çá(ÐSëjH‹5ú‘(H‹=‹ (1Òè|ÏÿÿH‰ÃH…ÀuH‰-•¡(Ç—¡(¿Ç‰¡(ÜSë0H‰Çè¸HÿuH‰ßè¢ÊÿÿL‰%c¡(Çe¡(¿ÇW¡(àSH‹|$H‹T$H‹t$è3ÏÿÿH‹|$ H…ÿt
Hÿuè_ÊÿÿH‹|$(H…ÿt
HÿuèKÊÿÿH‹|$0H…ÿ„ã=Hÿ…Ú=è/ÊÿÿéÐ=H‹c (òèZÉÿÿH‰ÃH…Àu'H¸§Çՠ(¯H‰ (Ç (#\éÚÿÿH‹̟(H‹5…–(H‰ÚH‹¸è^Éÿÿ…Ày*Hp§H‰ÝÇŠ (¯H‰w (Çu (%\é×<HÿuH‰ßè“ÉÿÿH‹=tŸ(èÐÿÿH‹è9&H‹5Y (1ÒH‹=XŸ(HÿH‰Α(èÎÿÿH‰ÃH…Àu'Hÿ¦Ç (ÃH‰	 (Ç (;\éSÙÿÿH‹5[•(H‹= (H‰Âè¬Èÿÿ…Ày*H¾¦H‰ÝÇ؟(ÃH‰ş(Çß(=\é%<HÿuH‰ßèáÈÿÿH‹=
•(èDI‰ÄH…Àu'Hs¦ÇŸ(ÅH‰}Ÿ(Ç{Ÿ(G\éÇØÿÿH‹5?›(H‰ÇèGÑÿÿH‰ÃH…Àu*H5¦L‰åÇOŸ(ÅH‰<Ÿ(Ç:Ÿ(I\éœ;Iÿ$uL‰çèWÈÿÿH‹5ðš(H‹=AŸ(H‰ÚèÑÇÿÿ…Ày'Hã¥ÇŸ(ÅH‰íž(Çëž(L\é7;HÿuH‰ßè	ÈÿÿH‹=2”(è=CH‰ÃH…Àu'H›¥Ç¸ž(ÆH‰¥ž(Ç£ž(V\éï×ÿÿH‹5Wš(H‰ÇèoÐÿÿI‰ÄH…Àu)H]¥1íÇxž(ÆH‰ež(Çcž(X\é¯:HÿuH‰ßèÇÿÿH‹5
š(H‹=kž(L‰âèûÆÿÿ…Ày*H
¥L‰åÇ'ž(ÆH‰ž(Çž([\ét:Iÿ$uL‰çè/ÇÿÿH‹=X“(ècBI‰ÄH…Àu'HdÇޝ(ÇH‰˝(Çɝ(e\é×ÿÿH‹5U™(H‰Çè•ÏÿÿH‰ÃH…Àu*Hƒ¤L‰åǝ(ÇH‰Š(Lj(g\éê9Iÿ$uL‰çè¥ÆÿÿH‹5™(H‹=(H‰ÚèÆÿÿ…Ày'H1¤ÇN(ÇH‰;(Ç9(j\é…9HÿuH‰ßèWÆÿÿH‹=€’(è‹AH‰ÃH…Àu'Hé£Ç(ÈH‰óœ(Çñœ(t\é=ÖÿÿH‹55˜(H‰Çè½ÎÿÿI‰ÄH…Àu)H«£1íÇƜ(ÈH‰³œ(DZœ(v\éý8HÿuH‰ßèÏÅÿÿH‹5è—(H‹=¹œ(L‰âèIÅÿÿ…Ày*H[£L‰åÇuœ(ÈH‰bœ(Ç`œ(y\éÂ8Iÿ$uL‰çè}ÅÿÿH‹=¦‘(è±@I‰ÄH…Àu'H£Ç,œ(ÉH‰œ(Çœ(ƒ\écÕÿÿH‹5C—(H‰ÇèãÍÿÿH‰ÃH…Àu*HѢL‰åÇë›(ÉH‰؛(Ç֛(…\é88Iÿ$uL‰çèóÄÿÿH‹5ô–(H‹=ݛ(H‰ÚèmÄÿÿ…Ày'H¢Çœ›(ÉH‰‰›(LJ›(ˆ\éÓ7HÿuH‰ßè¥ÄÿÿH‹=ΐ(èÙ?H‰ÃH…Àu'H7¢ÇT›(ÊH‰A›(Ç?›(’\é‹ÔÿÿH‹5ە(H‰ÇèÍÿÿI‰ÄH…Àu)Hù¡1íÇ›(ÊH‰›(Çÿš(”\éK7HÿuH‰ßèÄÿÿH‹5Ž•(H‹=›(L‰âè—Ãÿÿ…Ày*H©¡L‰åÇÚ(ÊH‰°š(Ç®š(—\é7Iÿ$uL‰çèËÃÿÿH‹=ô(èÿ>I‰ÄH…Àu'H]¡Çzš(ËH‰gš(Çeš(¡\é±ÓÿÿH‹5¡”(H‰Çè1ÌÿÿH‰ÃH…Àu*H¡L‰åÇ9š(ËH‰&š(Ç$š(£\é†6Iÿ$uL‰çèAÃÿÿH‹5R”(H‹=+š(H‰Úè»Âÿÿ…Ày'H͠Çê™(ËH‰י(Çՙ(¦\é!6HÿuH‰ßèóÂÿÿH‹=(è'>H‰ÃH…Àu'H… Ç¢™(ÌH‰™(Ǎ™(°\éÙÒÿÿH‹5¹“(H‰ÇèYËÿÿI‰ÄH…Àu)HG 1íÇb™(ÌH‰O™(ÇM™(²\é™5HÿuH‰ßèkÂÿÿH‹5l“(H‹=U™(L‰âèåÁÿÿ…Ày*H÷ŸL‰åÇ™(ÌH‰þ˜(Çü˜(µ\é^5Iÿ$uL‰çèÂÿÿH‹=BŽ(èM=I‰ÄH…Àu'H«ŸÇȘ(ÍH‰µ˜(dz˜(¿\éÿÑÿÿH‹5§’(H‰ÇèÊÿÿH‰ÃH…Àu*HmŸL‰åLJ˜(ÍH‰t˜(Çr˜(Á\éÔ4Iÿ$uL‰çèÁÿÿH‹5X’(H‹=y˜(H‰Úè	Áÿÿ…Ày'HŸÇ8˜(ÍH‰%˜(Ç#˜(Ä\éo4HÿuH‰ßèAÁÿÿH‹=j(èu<H‰ÃH…Àu'HӞÇð—(ÎH‰ݗ(Çۗ(Î\é'ÑÿÿH‹5‘(H‰Çè§ÉÿÿI‰ÄH…Àu)H•ž1íǰ—(ÎH‰—(Ç›—(Ð\éç3HÿuH‰ßè¹ÀÿÿH‹5B‘(H‹=£—(L‰âè3Àÿÿ…Ày*HEžL‰åÇ_—(ÎH‰L—(ÇJ—(Ó\é¬3Iÿ$uL‰çègÀÿÿH‹=Œ(è›;I‰ÄH…Àu'HùÇ—(ÏH‰—(Ç—(Ý\éMÐÿÿH‹5Ր(H‰ÇèÍÈÿÿH‰ÃH…Àu*H»L‰åÇՖ(ÏH‰–(Ç(ß\é"3Iÿ$uL‰çèݿÿÿH‹5†(H‹=ǖ(H‰ÚèW¿ÿÿ…Ày'HiÇ†–(ÏH‰s–(Çq–(â\é½2HÿuH‰ß菿ÿÿH‹=¸‹(èÃ:H‰ÃH…Àu'H!Ç>–(ÐH‰+–(Ç)–(ì\éuÏÿÿH‹5½(H‰ÇèõÇÿÿI‰ÄH…Àu)Hãœ1íÇþ•(ÐH‰ë•(Çé•(î\é52HÿuH‰ßè¿ÿÿH‹5p(H‹=ñ•(L‰â聾ÿÿ…Ày*H“œL‰åÇ­•(ÐH‰š•(ǘ•(ñ\éú1Iÿ$uL‰ç赾ÿÿH‹=ފ(èé9I‰ÄH…Àu'HGœÇd•(ÑH‰Q•(ÇO•(û\é›ÎÿÿH‹5»Ž(H‰ÇèÇÿÿH‰ÃH…Àu*H	œL‰åÇ#•(ÑH‰•(Ç•(ý\ép1Iÿ$uL‰çè+¾ÿÿH‹5lŽ(H‹=•(H‰Ú襽ÿÿ…Ày'H·›ÇԔ(ÑH‰T(Ç¿”(]é1HÿuH‰ßèݽÿÿH‹=Š(è9H‰ÃH…Àu'Ho›ÇŒ”(ÒH‰y”(Çw”(
]éÃÍÿÿH‹5(H‰ÇèCÆÿÿI‰ÄH…Àu)H1›1íÇL”(ÒH‰9”(Ç7”(]éƒ0HÿuH‰ßèU½ÿÿH‹5¾Œ(H‹=?”(L‰âèϼÿÿ…Ày*HášL‰åÇû“(ÒH‰è“(Çæ“(]éH0Iÿ$uL‰çè½ÿÿH‹=,‰(è78I‰ÄH…Àu'H•šÇ²“(ÓH‰Ÿ“(ǝ“(]ééÌÿÿH‹5K(H‰ÇèiÅÿÿH‰ÃH…Àu*HWšL‰åÇq“(ÓH‰^“(Ç\“(]é¾/Iÿ$uL‰çèy¼ÿÿH‹5r‹(H‹=c“(H‰Úèó»ÿÿ…Ày'HšÇ"“(ÓH‰“(Ç
“(]éY/HÿuH‰ßè+¼ÿÿH‹=Tˆ(è_7H‰ÃH…Àu'H½™Çڒ(ÔH‰ǒ(ÇŒ((]éÌÿÿH‹5ъ(H‰Çè‘ÄÿÿI‰ÄH…Àu)H™1íÇš’(ÔH‰‡’(Ç…’(*]éÑ.HÿuH‰ß裻ÿÿH‹5„Š(H‹=’(L‰âè»ÿÿ…Ày*H/™L‰åÇI’(ÔH‰6’(Ç4’(-]é–.Iÿ$uL‰çèQ»ÿÿH‹=z‡(è…6I‰ÄH…Àu'Hã˜Ç’(ÕH‰í‘(Çë‘(7]é7ËÿÿH‹5߉(H‰Çè·ÃÿÿH‰ÃH…Àu*H¥˜L‰åÇ¿‘(ÕH‰¬‘(Ǫ‘(9]é.Iÿ$uL‰çèǺÿÿH‹5‰(H‹=±‘(H‰ÚèAºÿÿ…Ày'HS˜Çp‘(ÕH‰]‘(Ç[‘(<]é§-HÿuH‰ßèyºÿÿH‹=¢†(è­5H‰ÃH…Àu'H˜Ç(‘(ÖH‰‘(Ç‘(F]é_ÊÿÿH‹5ˆ(H‰ÇèßÂÿÿI‰ÄH…Àu)H͗1íÇè(ÖH‰Ր(ÇӐ(H]é-HÿuH‰ßèñ¹ÿÿH‹52ˆ(H‹=ې(L‰âèk¹ÿÿ…Ày*H}—L‰åÇ—(ÖH‰„(Ç‚(K]éä,Iÿ$uL‰ç蟹ÿÿH‹=ȅ(èÓ4I‰ÄH…Àu'H1—ÇN(×H‰;(Ç9(U]é…ÉÿÿH‹5‡(H‰ÇèÂÿÿH‰ÃH…Àu*Hó–L‰åÇ
(×H‰ú(Çø(W]éZ,Iÿ$uL‰çè¹ÿÿH‹5>‡(H‹=ÿ(H‰Ú菸ÿÿ…Ày'H¡–Ǿ(×H‰«(Ç©(Z]éõ+HÿuH‰ßèǸÿÿH‹=ð„(èû3H‰ÃH…Àu'HY–Çv(ØH‰c(Ça(d]é­ÈÿÿH‹5m†(H‰Çè-ÁÿÿI‰ÄH…Àu)H–1íÇ6(ØH‰#(Ç!(f]ém+HÿuH‰ßè?¸ÿÿH‹5 †(H‹=)(L‰â蹷ÿÿ…Ày*H˕L‰åÇåŽ(ØH‰Ҏ(ÇЎ(i]é2+Iÿ$uL‰çèí·ÿÿH‹=„(è!3I‰ÄH…Àu'H•ÇœŽ(ÙH‰‰Ž(LJŽ(s]éÓÇÿÿH‹5K…(H‰ÇèSÀÿÿH‰ÃH…Àu*HA•L‰åÇ[Ž(ÙH‰HŽ(ÇFŽ(u]é¨*Iÿ$uL‰çèc·ÿÿH‹5ü„(H‹=MŽ(H‰Úèݶÿÿ…Ày'Hï”ÇŽ(ÙH‰ù(Ç÷(x]éC*HÿuH‰ßè·ÿÿH‹=>ƒ(èI2H‰ÃH…Àu'H§”Çč(ÚH‰±(ǯ(‚]éûÆÿÿH‹5[„(H‰Çè{¿ÿÿI‰ÄH…Àu)Hi”1íÇ„(ÚH‰q(Ço(„]é»)HÿuH‰ß荶ÿÿH‹5„(H‹=w(L‰âè¶ÿÿ…Ày*H”L‰åÇ3(ÚH‰ (Ǎ(‡]é€)Iÿ$uL‰çè;¶ÿÿH‹=d‚(èo1I‰ÄH…Àu'H͓ÇêŒ(ÛH‰׌(ÇՌ(‘]é!ÆÿÿH‹5iƒ(H‰Ç衾ÿÿH‰ÃH…Àu*H“L‰åÇ©Œ(ÛH‰–Œ(Ç”Œ(“]éö(Iÿ$uL‰ç豵ÿÿH‹5ƒ(H‹=›Œ(H‰Úè+µÿÿ…Ày'H=“ÇZŒ(ÛH‰GŒ(ÇEŒ(–]é‘(HÿuH‰ßècµÿÿH‹=Œ(è—0H‰ÃH…Àu'Hõ’ÇŒ(ÜH‰ÿ‹(Çý‹( ]éIÅÿÿH‹5‚(H‰ÇèɽÿÿI‰ÄH…Àu)H·’1íÇҋ(ÜH‰¿‹(ǽ‹(¢]é	(HÿuH‰ßè۴ÿÿH‹5́(H‹=ŋ(L‰âèU´ÿÿ…Ày*Hg’L‰åǁ‹(ÜH‰n‹(Çl‹(¥]éÎ'Iÿ$uL‰ç艴ÿÿH‹=²€(è½/I‰ÄH…Àu'H’Ç8‹(ÝH‰%‹(Ç#‹(¯]éoÄÿÿH‹5'(H‰Çèï¼ÿÿH‰ÃH…Àu*HݑL‰åÇ÷Š(ÝH‰äŠ(ÇâŠ(±]éD'Iÿ$uL‰çèÿ³ÿÿH‹5؀(H‹=éŠ(H‰Úèy³ÿÿ…Ày'H‹‘ǨŠ(ÝH‰•Š(Ç“Š(´]éß&HÿuH‰ß豳ÿÿH‹=Ú(èå.H‰ÃH…Àu'HC‘Ç`Š(ÞH‰MŠ(ÇKŠ(¾]é—ÃÿÿH‹5/€(H‰Çè¼ÿÿI‰ÄH…Àu)H‘1íÇ Š(ÞH‰
Š(ÇŠ(À]éW&HÿuH‰ßè)³ÿÿH‹5â(H‹=Š(L‰â裲ÿÿ…Ày*HµL‰åÇω(ÞH‰¼‰(Ǻ‰(Ã]é&Iÿ$uL‰çèײÿÿH‹=(è.I‰ÄH…Àu'HiÇ†‰(ßH‰s‰(Çq‰(Í]é½ÂÿÿH‹5-(H‰Çè=»ÿÿH‰ÃH…Àu*H+L‰åÇE‰(ßH‰2‰(Ç0‰(Ï]é’%Iÿ$uL‰çèM²ÿÿH‹5Þ~(H‹=7‰(H‰ÚèDZÿÿ…Ày'HُÇöˆ(ßH‰ãˆ(Çáˆ(Ò]é-%HÿuH‰ßèÿ±ÿÿH‹=(~(è3-H‰ÃH…Àu'H‘Ç®ˆ(àH‰›ˆ(Ç™ˆ(Ü]éåÁÿÿH‹5ý}(H‰ÇèeºÿÿI‰ÄH…Àu)HS1íÇnˆ(àH‰[ˆ(ÇYˆ(Þ]é¥$HÿuH‰ßèw±ÿÿH‹5°}(H‹=aˆ(L‰âèñ°ÿÿ…Ày*HL‰åLj(àH‰
ˆ(Lj(á]éj$Iÿ$uL‰çè%±ÿÿH‹=N}(èY,I‰ÄH…Àu'H·ŽÇԇ(áH‰G(Ç¿‡(ë]éÁÿÿH‹5}(H‰Ç苹ÿÿH‰ÃH…Àu*HyŽL‰åÇ“‡(áH‰€‡(Ç~‡(í]éà#Iÿ$uL‰ç蛰ÿÿH‹5´|(H‹=…‡(H‰Úè°ÿÿ…Ày'H'ŽÇD‡(áH‰1‡(Ç/‡(ð]é{#HÿuH‰ßèM°ÿÿH‹=v|(è+H‰ÃH…Àu'HߍÇü†(âH‰é†(Çç†(ú]é3ÀÿÿH‹5|(H‰Ç賸ÿÿI‰ÄH…Àu)H¡1íǼ†(âH‰©†(ǧ†(ü]éó"HÿuH‰ßèůÿÿH‹5Æ{(H‹=¯†(L‰âè?¯ÿÿ…Ày*HQL‰åÇk†(âH‰X†(ÇV†(ÿ]é¸"Iÿ$uL‰çès¯ÿÿH‹=œ{(è§*I‰ÄH…Àu'HÇ"†(ãH‰†(Ç
†(	^éY¿ÿÿH‹5!{(H‰ÇèٷÿÿH‰ÃH…Àu*HnjL‰åÇá…(ãH‰΅(Ç̅(^é."Iÿ$uL‰çèé®ÿÿH‹5Òz(H‹=Ӆ(H‰Úèc®ÿÿ…Ày'HuŒÇ’…(ãH‰…(Ç}…(^éÉ!HÿuH‰ß蛮ÿÿH‹=Äz(èÏ)H‰ÃH…Àu'H-ŒÇJ…(äH‰7…(Ç5…(^遾ÿÿH‹59z(H‰Çè·ÿÿI‰ÄH…Àu)Hï‹1íÇ
…(äH‰÷„(Çõ„(^éA!HÿuH‰ßè®ÿÿH‹5ìy(H‹=ý„(L‰â荭ÿÿ…Ày*HŸ‹L‰åǹ„(äH‰¦„(Ǥ„(^é!Iÿ$uL‰çèmÿÿH‹=êy(èõ(I‰ÄH…Àu'HS‹Çp„(åH‰]„(Ç[„('^駽ÿÿH‹5Gy(H‰Çè'¶ÿÿH‰ÃH…Àu*H‹L‰åÇ/„(åH‰„(Ç„()^é| Iÿ$uL‰çè7­ÿÿH‹5øx(H‹=!„(H‰Ú豬ÿÿ…Ày'HÊÇàƒ(åH‰̓(Ç˃(,^é HÿuH‰ßèé¬ÿÿH‹=y(è(H‰ÃH…Àu'H{ŠÇ˜ƒ(æH‰…ƒ(ǃƒ(6^éϼÿÿH‹5/x(H‰ÇèOµÿÿI‰ÄH…Àu)H=Š1íÇXƒ(æH‰Eƒ(ÇCƒ(8^éHÿuH‰ßèa¬ÿÿH‹5âw(H‹=Kƒ(L‰âè۫ÿÿ…Ày*Hí‰L‰åǃ(æH‰ô‚(Çò‚(;^éTIÿ$uL‰çè¬ÿÿH‹=8x(èC'I‰ÄH…Àu'H¡‰Ç¾‚(çH‰«‚(Ç©‚(E^éõ»ÿÿH‹5Õv(H‰Çèu´ÿÿH‰ÃH…Àu*Hc‰L‰åÇ}‚(çH‰j‚(Çh‚(G^éÊIÿ$uL‰ç腫ÿÿH‹5†v(H‹=o‚(H‰Úèÿªÿÿ…Ày'H‰Ç.‚(çH‰‚(Ç‚(J^éeHÿuH‰ßè7«ÿÿH‹=`w(èk&H‰ÃH…Àu'HɈÇæ(èH‰Ӂ(Çс(T^é»ÿÿH‹5åu(H‰Ç蝳ÿÿI‰ÄH…Àu)H‹ˆ1íǦ(èH‰“(Ç‘(V^éÝHÿuH‰ß诪ÿÿH‹5˜u(H‹=™(L‰âè)ªÿÿ…Ày*H;ˆL‰åÇU(èH‰B(Ç@(Y^é¢Iÿ$uL‰çè]ªÿÿH‹=†v(è‘%I‰ÄH…Àu'Hï‡Ç(éH‰ù€(Ç÷€(c^éCºÿÿH‹5ãt(H‰ÇèòÿÿH‰ÃH…Àu*H±‡L‰åÇˀ(éH‰¸€(Ƕ€(e^éIÿ$uL‰çèөÿÿH‹5”t(H‹=½€(H‰ÚèM©ÿÿ…Ày'H_‡Ç|€(éH‰i€(Çg€(h^é³HÿuH‰ß腩ÿÿH‹=®u(è¹$H‰ÃH…Àu'H‡Ç4€(êH‰!€(Ç€(r^ék¹ÿÿH‹5Ãs(H‰Çèë±ÿÿI‰ÄH…Àu)Hن1íÇô(êH‰á(Çß(t^é+HÿuH‰ßèý¨ÿÿH‹5vs(H‹=ç(L‰âèw¨ÿÿ…Ày*H‰†L‰åÇ£(êH‰(ÇŽ(w^éðIÿ$uL‰ç諨ÿÿH‹=Ôt(èß#I‰ÄH…Àu'H=†ÇZ(ëH‰G(ÇE(^鑸ÿÿH‹5Ñr(H‰Çè±ÿÿH‰ÃH…Àu*Hÿ…L‰åÇ(ëH‰(Ç(ƒ^éfIÿ$uL‰çè!¨ÿÿH‹5‚r(H‹=(H‰Ú蛧ÿÿ…Ày'H­…ÇÊ~(ëH‰·~(ǵ~(†^éHÿuH‰ßèӧÿÿH‹=üs(è#H‰ÃH…Àu'He…Ç‚~(ìH‰o~(Çm~(^鹷ÿÿH‹5áq(H‰Çè9°ÿÿI‰ÄH…Àu)H'…1íÇB~(ìH‰/~(Ç-~(’^éyHÿuH‰ßèK§ÿÿH‹5”q(H‹=5~(L‰âèŦÿÿ…Ày*HׄL‰åÇñ}(ìH‰Þ}(ÇÜ}(•^é>Iÿ$uL‰çèù¦ÿÿH‹="s(è-"I‰ÄH…Àu'H‹„Ǩ}(íH‰•}(Ç“}(Ÿ^é߶ÿÿH‹5ïp(H‰Çè_¯ÿÿH‰ÃH…Àu*HM„L‰åÇg}(íH‰T}(ÇR}(¡^é´Iÿ$uL‰çèo¦ÿÿH‹5 p(H‹=Y}(H‰Úèé¥ÿÿ…Ày'HûƒÇ}(íH‰}(Ç}(¤^éOHÿuH‰ßè!¦ÿÿH‹=Jr(èU!H‰ÃH…Àu'H³ƒÇÐ|(îH‰½|(Ç»|(®^é¶ÿÿH‹5ÿo(H‰Ç臮ÿÿI‰ÄH…Àu)Huƒ1íǐ|(îH‰}|(Ç{|(°^éÇHÿuH‰ß虥ÿÿH‹5²o(H‹=ƒ|(L‰âè¥ÿÿ…Ày*H%ƒL‰åÇ?|(îH‰,|(Ç*|(³^éŒIÿ$uL‰çèG¥ÿÿH‹=pq(è{ I‰ÄH…Àu'HقÇö{(ïH‰ã{(Çá{(½^é-µÿÿH‹5n(H‰Ç譭ÿÿH‰ÃH…Àu*H›‚L‰åǵ{(ïH‰¢{(Ç {(¿^éIÿ$uL‰ç轤ÿÿH‹5Nn(H‹=§{(H‰Úè7¤ÿÿ…Ày'HI‚Çf{(ïH‰S{(ÇQ{(Â^éHÿuH‰ßèo¤ÿÿH‹=˜p(è£H‰ÃH…Àu'H‚Ç{(ðH‰{(Ç	{(Ì^éU´ÿÿH‹5…m(H‰ÇèլÿÿI‰ÄH…Àu)HÁ1íÇÞz(ðH‰Ëz(ÇÉz(Î^éHÿuH‰ßèç£ÿÿH‹58m(H‹=Ñz(L‰âèa£ÿÿ…Ày*HsL‰åǍz(ðH‰zz(Çxz(Ñ^éÚIÿ$uL‰ç蕣ÿÿH‹=¾o(èÉI‰ÄH…Àu'H'ÇDz(ñH‰1z(Ç/z(Û^é{³ÿÿH‹5{l(H‰Çèû«ÿÿH‰ÃH…Àu*Hé€L‰åÇz(ñH‰ðy(Çîy(Ý^éPIÿ$uL‰çè£ÿÿH‹5,l(H‹=õy(H‰Ú腢ÿÿ…Ày'H—€Ç´y(ñH‰¡y(ÇŸy(à^éëHÿuH‰ß轢ÿÿH‹=æn(èñH‰ÃH…Àu'HO€Çly(òH‰Yy(ÇWy(ê^飲ÿÿH‹5‹k(H‰Çè#«ÿÿI‰ÄH…Àu)H€1íÇ,y(òH‰y(Çy(ì^écHÿuH‰ßè5¢ÿÿH‹5>k(H‹=y(L‰â诡ÿÿ…Ày*HÁL‰åÇÛx(òH‰Èx(ÇÆx(ï^é(Iÿ$uL‰çèã¡ÿÿH‹=n(èI‰ÄH…Àu'HuÇ’x(óH‰x(Ç}x(ù^éɱÿÿH‹5j(H‰ÇèIªÿÿH‰ÃH…Àu*H7L‰åÇQx(óH‰>x(Ç<x(û^éžIÿ$uL‰çèY¡ÿÿH‹52j(H‹=Cx(H‰ÚèӠÿÿ…Ày'Hå~Çx(óH‰ïw(Çíw(þ^é9HÿuH‰ßè¡ÿÿH‹=4m(è?H‰ÃH…Àu'H~Ǻw(ôH‰§w(Ç¥w(_éñ°ÿÿH‹5i(H‰Çèq©ÿÿH‰ÅH…Àu'H_~Ç|w(ôH‰iw(Çgw(
_é³HÿuH‰ß腠ÿÿH‹56i(H‹=ow(H‰êèÿŸÿÿ…Ày'H~Ç.w(ôH‰w(Çw(
_é{HÿMuH‰ïè6 ÿÿH‹Om(1öH=¦f(è¨ÿÿH‰ÅH…Àu'H¿}ÇÜv(÷H‰Év(ÇÇv(_é°ÿÿH‹5k(H‹=Üv(H‰ÂèlŸÿÿ…Ày'H~}Ç›v(÷H‰ˆv(džv(_éèHÿMuH‰ï裟ÿÿH‹¼l(1öH=óe(èn§ÿÿH‰ÅH…Àu'H,}ÇIv(þH‰6v(Ç4v(#_逯ÿÿH‹5k(H‹=Iv(H‰Âèٞÿÿ…Ày'Hë|Çv(þH‰õu(Çóu(%_éUHÿMuH‰ïèŸÿÿ¿3薦ÿÿH‰ÅH…Àu'H¤|ÇÁu(H‰®u(Ǭu(/_éø®ÿÿH‹hq(1öH‰ïHÿH‹Yq(è,£ÿÿH‹=q(¾H‰ïHÿH‹+q(è£ÿÿH‹÷p(¾H‰ïHÿH‹åp(èð¢ÿÿH‹‘p(¾H‰ïHÿH‹p(èҢÿÿH‹[p(¾H‰ïHÿH‹Ip(财ÿÿH‹­o(¾H‰ïHÿH‹›o(薢ÿÿH‹/o(¾H‰ïHÿH‹o(èx¢ÿÿH‹o(¾H‰ïHÿH‹ïn(èZ¢ÿÿH‹«n(¾H‰ïHÿH‹™n(è<¢ÿÿH‹mn(¾	H‰ïHÿH‹[n(è¢ÿÿH‹/n(¾
H‰ïHÿH‹n(è¢ÿÿH‹ñm(¾H‰ïHÿH‹ßm(èâ¡ÿÿH‹«m(¾H‰ïHÿH‹™m(èġÿÿH‹µl(¾
H‰ïHÿH‹£l(覡ÿÿH‹'l(¾H‰ïHÿH‹l(舡ÿÿH‹ñk(¾H‰ïHÿH‹ßk(èj¡ÿÿH‹»k(¾H‰ïHÿH‹©k(èL¡ÿÿH‹k(¾H‰ïHÿH‹k(è.¡ÿÿH‹ßj(¾H‰ïHÿH‹Íj(è¡ÿÿH‹yj(¾H‰ïHÿH‹gj(èò ÿÿH‹j(¾H‰ïHÿH‹j(èԠÿÿH‹Ýi(¾H‰ïHÿH‹Ëi(趠ÿÿH‹§i(¾H‰ïHÿH‹•i(蘠ÿÿH‹i(¾H‰ïHÿH‹ÿh(èz ÿÿH‹Ûh(¾H‰ïHÿH‹Éh(è\ ÿÿH‹h(¾H‰ïHÿH‹‹h(è> ÿÿH‹Wh(¾H‰ïHÿH‹Eh(è  ÿÿH‹ág(¾H‰ïHÿH‹Ïg(è ÿÿH‹£g(¾H‰ïHÿH‹‘g(èäŸÿÿH‹mg(¾H‰ïHÿH‹[g(èƟÿÿH‹7g(¾H‰ïHÿH‹%g(訟ÿÿH‹	g(¾H‰ïHÿH‹÷f(芟ÿÿH‹Óf(¾ H‰ïHÿH‹Áf(èlŸÿÿH‹•f(¾!H‰ïHÿH‹ƒf(èNŸÿÿH‹Wf(¾"H‰ïHÿH‹Ef(è0ŸÿÿH‹áe(¾#H‰ïHÿH‹Ïe(èŸÿÿH‹›e(¾$H‰ïHÿH‹‰e(èôžÿÿH‹ee(¾%H‰ïHÿH‹Se(è֞ÿÿH‹e(¾&H‰ïHÿH‹
e(踞ÿÿH‹¹d(¾'H‰ïHÿH‹§d(蚞ÿÿH‹ƒd(¾(H‰ïHÿH‹qd(è|žÿÿH‹Md(¾)H‰ïHÿH‹;d(è^žÿÿH‹d(¾*H‰ïHÿH‹d(è@žÿÿH‹ác(¾+H‰ïHÿH‹Ïc(è"žÿÿH‹;c(¾,H‰ïHÿH‹)c(èžÿÿH‹Ýb(¾-H‰ïHÿH‹Ëb(èæÿÿH‹b(¾.H‰ïHÿH‹}b(èȝÿÿH‹Yb(¾/H‰ïHÿH‹Gb(誝ÿÿH‹b(¾0H‰ïHÿH‹ùa(茝ÿÿH‹Åa(¾1H‰ïHÿH‹³a(ènÿÿH‹n(¾2H‰ïHÿH‹n(èPÿÿH‹5ék(H‹=Êo(H‰êèZ˜ÿÿ…Ày'Hlvljo(H‰vo(Çto(Ê_éÖHÿMuH‰ï葘ÿÿè›ÿÿH‰ÅH…Àu'H*vÇGo(H‰4o(Ç2o(Ò_é~¨ÿÿH‹Nc(H‹5wl(H‰Çèחÿÿ…Ày'HéuÇo(H‰ón(Çñn(Ô_éSH‹Íc(H‹5Fl(H‰ï薗ÿÿ…Ày'H¨uÇÅn(H‰²n(ǰn(Õ_éH‹,b(H‹5Ýk(H‰ïèU—ÿÿ…Ày'HguÇ„n(H‰qn(Çon(Ö_éÑ
H‹3a(H‹5|k(H‰ïè—ÿÿ…Ày'H&uÇCn(H‰0n(Ç.n(×_é
H‹bc(H‹5›k(H‰ïèӖÿÿ…Ày'HåtÇn(H‰ïm(Çím(Ø_éO
H‹ii(H‹5l(H‰ï蒖ÿÿ…Ày'H¤tÇÁm(H‰®m(Ǭm(Ù_é
H‹Èh(H‹5Ék(H‰ïèQ–ÿÿ…Ày'HctÇ€m(H‰mm(Çkm(Ú_éÍ	H‹×_(H‹5hj(H‰ïè–ÿÿ…Ày'H"tÇ?m(H‰,m(Ç*m(Û_éŒ	H‹vb(H‹5Ÿj(H‰ïèϕÿÿ…Ày'HásÇþl(H‰ël(Çél(Ü_éK	H‹b(H‹5Nj(H‰ï莕ÿÿ…Ày'H sǽl(H‰ªl(Ǩl(Ý_é
	H‹œa(H‹5j(H‰ïèM•ÿÿ…Ày'H_sÇ|l(H‰il(Çgl(Þ_éÉH‹³_(H‹5„i(H‰ïè•ÿÿ…Ày'HsÇ;l(H‰(l(Ç&l(ß_éˆH‹ªb(H‹5Ãi(H‰ïè˔ÿÿ…Ày'HÝrÇúk(H‰çk(Çåk(à_éGH‹I_(H‹5
i(H‰ï芔ÿÿ…Ày'Hœrǹk(H‰¦k(Ǥk(á_éH‹ˆe(H‹5©i(H‰ïèI”ÿÿ…Ày'H[rÇxk(H‰ek(Çck(â_éÅH‹e(H‹5pi(H‰ïè”ÿÿ…Ày'HrÇ7k(H‰$k(Ç"k(ã_é„H‹¾a(H‹5Çh(H‰ïèǓÿÿ…Ày'HÙqÇöj(H‰ãj(Çáj(ä_éCH‹f(H‹5i(H‰ï膓ÿÿ…Ày'H˜qǵj(H‰¢j(Ç j(å_éH‹Ta(H‹5Mh(H‰ïèE“ÿÿ…Ày'HWqÇtj(H‰aj(Ç_j(æ_éÁH‹ó](H‹5”g(H‰ïè“ÿÿ…Ày'HqÇ3j(H‰ j(Çj(ç_é€H‹R](H‹53g(H‰ïèÒÿÿ…Ày'HÕpÇòi(H‰ßi(ÇÝi(è_é?H‹\(H‹5Òf(H‰ï肒ÿÿ…Ày'H”pDZi(H‰ži(Çœi(é_éþH‹¨_(H‹51g(H‰ïèA’ÿÿ…Ày'HSpÇpi(H‰]i(Ç[i(ê_é½H‹O[(H‹5@f(H‰ïè’ÿÿ…Ày'HpÇ/i(H‰i(Çi(ë_é|H‹Æ^(H‹5—f(H‰ï近ÿÿ…Ày'HÑoÇîh(H‰Ûh(ÇÙh(ì_é;H‹]a(H‹5¾f(H‰ïè~‘ÿÿ…Ày'HoÇ­h(H‰šh(ǘh(í_éúH‹b(H‹5f(H‰ïè=‘ÿÿ…Ày'HOoÇlh(H‰Yh(ÇWh(î_é¹H‹k`(H‹54f(H‰ïèüÿÿ…Ày'HoÇ+h(H‰h(Çh(ï_éxH‹`(H‹5ëe(H‰ï軐ÿÿ…Ày'HÍnÇêg(H‰×g(ÇÕg(ð_é7H‹q\(H‹5"e(H‰ïèzÿÿ…Ày'HŒnÇ©g(H‰–g(Ç”g(ñ_éöH‹¸Y(H‹5d(H‰ïè9ÿÿ…Ày'HKnÇhg(H‰Ug(ÇSg(ò_éµH‹ÿY(H‹5Xd(H‰ïèøÿÿ…Ày'H
nÇ'g(H‰g(Çg(ó_étH‹¶b(H‹5Ge(H‰ï跏ÿÿ…Ày'HÉmÇæf(H‰Óf(ÇÑf(ô_é3H‹Í](H‹5†d(H‰ïèvÿÿ…Ày'HˆmÇ¥f(H‰’f(ǐf(õ_éòH‹d\(H‹5d(H‰ïè5ÿÿ…Ày'HGmÇdf(H‰Qf(ÇOf(ö_é±H‹X(H‹5,c(H‰ïèôŽÿÿ…Ày'HmÇ#f(H‰f(Çf(÷_épH‹Ò_(H‹5d(H‰ï賎ÿÿ…Ày'HÅlÇâe(H‰Ïe(ÇÍe(ø_é/H‹)_(H‹5ºc(H‰ïèrŽÿÿ…Ày'H„lÇ¡e(H‰Že(ÇŒe(ù_éîH‹p](H‹5Yc(H‰ïè1Žÿÿ…Ày'HClÇ`e(H‰Me(ÇKe(ú_é­H‹\(H‹5c(H‰ïèðÿÿ…Ày'HlÇe(H‰e(Ç
e(û_élH‹f\(H‹5Ïb(H‰ï词ÿÿ…Ày'HÁkÇÞd(H‰Ëd(ÇÉd(ü_é+H‹U_(H‹5Þb(H‰ïènÿÿ…Ày'H€kǝd(H‰Šd(Ljd(ý_éêH‹dX(H‹5Åa(H‰ïè-ÿÿ…Ày'H?kÇ\d(H‰Id(ÇGd(þ_é©H‹;Z(H‹5Ôa(H‰ïèìŒÿÿ…Ày$HþjÇd(H‰d(Çd(ÿ_ëkH‹5åV(H‹=d(H‰ê讌ÿÿ…Ày$HÀjÇÝc(H‰Êc(ÇÈc(`ë-HÿM…ƒÿÿH‰ïèäŒÿÿévÿÿHÿuH‰ßèҌÿÿH…í„êœÿÿHÿM…àœÿÿH‰ï跌ÿÿéӜÿÿHÿ…ʜÿÿH‰ß行ÿÿ齜ÿÿHÿ…´œÿÿH‰ß苌ÿÿ駜ÿÿHÿ…žœÿÿH‰ßèuŒÿÿ鑜ÿÿHÿ…ˆœÿÿH‰ßè_Œÿÿé{œÿÿH‹
c(‹!c(H=Àn‹5c(èKHáiÇþb(fH‰ëb(Çéb(\é5œÿÿHƒìH‹™ü%H…ÀtÿÐHƒÄÃf.„H=‰R(H‚R(H9øtH‹žû%H…Àt	ÿà€Ã€H=YR(H5RR(H)þHÁþH‰ðHÁè?HÆHÑþtH‹åü%H…ÀtÿàfDÀ€=R(u/UHƒ=Þü%H‰åtH=ù%èí“ÿÿèhÿÿÿÆñQ(]ÀÀé{ÿÿÿf.„H‹áû%ÇGXHÇG`HƒÃDHƒìö‡²u31öÿ—8H…Àt!H‹¯a(H‰PH‹œû%HƒH‰P H‰ðHƒÄÃH‹áû%1ÒH‹5 a(ÿ@뽄ATI‰ÔUH‰õSH‰ûH‹ H…ÿt	H‰ÖÿՅÀu!H‹»ð1ÀH…ÿt[L‰æH‰è]A\ÿà€[]A\Ðf.„H‹G HƒH‹G ÃA‰ðAƒèx_IcȉðHÁá9T|HE…À~K1öë€}2pA9ð~ D‰À)ðÑøðHcÈHÁá‹L9Ñ~ÞA‰ÀA9ðà9ʟ¶ÒÐÃÀ‹O1ÀëãUH‰ýSHƒìH‹ˆú%H‹ H‹H‰] HƒÀH‰H…ÿt	Hƒ/tCH‹H‹½ðHƒÀH‰ðH‰H…ÿtHƒ/tHƒÄ1À[]Àè{‰ÿÿHƒÄ1À[]Ãfèk‰ÿÿë¶f„SH‰ûH‹ H…ÿtHÇC Hƒ/tEH‹»ðH…ÿtHǃðHƒ/tH‹CH‰ß[H‹€Hÿà€è‰ÿÿëáf„èûˆÿÿë´f„U1ÀH‰ý¿SHƒìè{ÿÿH…ÀtFH‰Ã1ÒH‰ÆH‰ïèfÿÿHƒ+tHƒÄ[]Ãf„H‰ßH‰D$裈ÿÿH‹D$HƒÄ[]ÀHƒÄ1À[]ÀAWAVI‰þAUI‰õATI‰ÔUSHƒì(L|$Hl$H\$L‰úH‰îH‰ß蜌ÿÿL‰úH‰îH‰ßèþˆÿÿ艏ÿÿH…ÀutH‹t$H…ötH‹|$èÿÿ…Àx\H‹D$H…ÀtHƒH‹D$H…ÀtHƒH‹t$H…öt	HƒH‹t$H‹|$H‹T$I‰>I‰uI‰$蓌ÿÿHƒÄ(1À[]A\A]A^A_ÃfH‹|$IÇIÇEIÇ$H…ÿtHƒ/tYH‹|$H…ÿtHƒ/t9H‹|$H…ÿtHƒ/tHƒÄ(¸ÿÿÿÿ[]A\A]A^A_ÃDè[‡ÿÿëàf„èK‡ÿÿëÀf„è;‡ÿÿë f„AWAVLvÿAUATUSHƒìM…ö~uL‰óHG(L‰D$M‰ÍH¯ÙH‰$I‰ÌH‰ÕLÃf„H‹<$L‰öè$ÿÿH‹L$H‰êL‰ïI¯ÄL<L‰þèyŠÿÿH‰ÞH‰êL‰ÿèkŠÿÿH‰ßH‰êL‰îè]ŠÿÿL)ãIƒîu´H‹U÷%HƒHƒÄ[]A\A]A^A_Ãf.„AVAUA‰ÕATI‰üUSH…ötuH‹=f](H‰õèN†ÿÿI‰ÆH…À„Ñè݈ÿÿH‰ÃH…À„ÀL‰çE‰èH‰éH‰ÂL‰ö蝅ÿÿI‰ÄHƒ+t[L‰à]A\A]A^ÄH‰ßè†ÿÿ[L‰à]A\A]A^Ã@1ÿ聍ÿÿH‰ÅH…ÀthH‹=â\(èͅÿÿI‰ÆH…ÀtEè`ˆÿÿH‰ÃH…Àt8L‰çE‰èH‰éH‰ÂL‰öè$…ÿÿHƒmI‰Äu€H‰ï袅ÿÿHƒ+…tÿÿÿë†fDHƒmuH‰ï聅ÿÿE1ä[]L‰àA\A]A^ÃfUH‰ýSHƒìH…öt:H‰óHƒH‹} Hƒ/tH‰] HƒÄ1À[]Ã@è;…ÿÿH‰] HƒÄ1À[]ÃfDH‹Ùõ%ëÀDf.„UH‰þH‰ýSHƒìH‹=í[(訍ÿÿH‰ÃH…ÀtHƒÄH‰Ø[]ÃfDH‹©õ%H‰êH5,bH‹81Àèå‹ÿÿëÓSH‰þH‰ûH‹=ª[(èí…ÿÿH…ÀtHƒ[Ãfè‡ÿÿH‰ß[ë…DHƒìè׋ÿÿ1ÒH…Àu‰ÐHƒÄÃf„H‹	õ%H‹8èá†ÿÿºÿÿÿÿ…ÀtØèÆÿÿ1ÒëÏDf.„UH‰õSHƒìèâŒÿÿH‰ÃH…Àt
HƒÄH‰Ø[]ÃH‹yô%H‹8葆ÿÿ…ÀtãH‹^õ%H‰êH5raH‹81Àè‹ÿÿëÆAWAVI‰þAUI‰ÍATU‰ÕS‰óHƒì8èӈÿÿI‰ąÛ…ÐA‰ï1ÛE…ÿ„ZL‹
kZ(M…É„JD‹SZ(D‰úL‰ÏD‰ÖèEùÿÿA9ÂŽ,H˜HÁàIÁE;y…I‹HƒH‹cZ(L‰ç1ÉH‰Þè^ŠÿÿI‰ÄH…À„"‰h0H‰Ç觊ÿÿHƒ+t1Iƒ,$tHƒÄ8[]A\A]A^A_ÃL‰çè ƒÿÿHƒÄ8[]A\A]A^A_ÐH‰ßèƒÿÿIƒ,$uÇë×€Hƒ=ØY(t{HT$(Ht$ H|$è*‡ÿÿH‹5»T(H‹=´Y(èw‹ÿÿI‰ÇH…À„H‰Çèó†ÿÿ…ÀI‹…ÀHƒèI‰„H‹Tó%H9õó%„¬H‹T$(H‹t$ H‹|$èӅÿÿA‰ßA÷ßE…ÿ…ªþÿÿ@L‰ïèȃÿÿI‰ÅH…À„ÿÿÿ…Û…4L‰÷謃ÿÿI‰ÆM…ö„pH‹	Y(HƒìE1À1ÉL‹
ñX(1Ò1ö1ÿAQUAVAUPPPPPèâ…ÿÿHƒÄPH‰ÃI‹EHƒèI‰EH…À„öIƒ.„ÜH…Û„™þÿÿL‹„X(E…ÿ„QþÿÿM…Ò„:D‹
cX(D‰úL‰×D‰ÎèU÷ÿÿLcèE9éŽ9IcÍHÁáLÑD;y„RD;
2X(„%IcÁD‰ÊHÁàLÐóo@ðƒêHƒè@A9Õ|ëAƒÁD‰yH‰D‰
ñW(HƒéÆýÿÿ„Hƒ+…ìýÿÿH‰ßèÿÿéßýÿÿf„L‰ö‰ÙH^1ÀH=^è‚ÿÿI‰ÆéµþÿÿfDHƒèI‰„ûH‹T$(H‹t$ H‹|$è'„ÿÿéúüÿÿfIƒm…{ýÿÿL‰ï譀ÿÿénýÿÿ„èƒÿÿH‹Tñ%H‹5uR(H‹=nW(èñ…ÿÿH‹T$(H‹t$ H‹|$è̓ÿÿé üÿÿ„D9

W(…Eq@L‰×IcöHÁæ萅ÿÿI‰ÂH…À„ÂüÿÿIcÍD‹
ÚV(H‰ÛV(HÁáD‰5ÌV(HÁE9ÍŒ”þÿÿé´þÿÿ€L‰÷èøÿÿéþÿÿL‰ïèèÿÿéýýÿÿH‹™ð%H‰ÐL‰ÿH‰T$H‰$èÅÿÿH‹$H‹T$H9ЄØþÿÿH;ñ%„ýÿÿH‰Çèރÿÿ…À…»þÿÿé
ýÿÿH‹ñð%H‹Bð%몿è–ÿÿH…À„ûûÿÿH¹@H‰V(H‰
V(D‰xH‰HƒéÓûÿÿDIÁåK*éàýÿÿH‹9H‰Hƒ/…±ûÿÿèÿÿé§ûÿÿf„AUATUSHƒìH‹5O(誇ÿÿH…À„H‰ÅèyÿÿH‰ÃH…À„%H‹–ï%H‹5N(H‰ÇèW~ÿÿ…ÀˆÿH‹5˜U(H‰ÚH‰ïèMƒÿÿI‰ÄH…À„AHƒm„¾Hƒ+„¤¿è†ÿÿH‰ÃH…À„FH‹J(1öH‰ßHƒH‹J(èʂÿÿH‹=K(ºH‰ÞèÆ÷ÿÿH‰ÅH…À„ÚHƒ+„H‹5ÙI(H‰ïèáùÿÿH‰ÃH…À„Hƒ8„ûHƒm„àH‹5qP(L‰çè1ÿÿH‰ÅH…À„-¿è;ƒÿÿI‰ÅH…À„OH‰h ¿è!ƒÿÿH‰ÅH…À„]HƒH‰X L‰h(Iƒ$L‰`0Iƒ,$„’Hƒ+tHƒÄH‰è[]A\A]ÐH‰ßèx}ÿÿHƒÄH‰è[]A\A]Ãf.„H[I‰Ý1ÛÇT(ÖH‰T(Ç	T(‘Iƒm„ÞH‹
ïS(‹õS(‹5ëS(H=Ô=½èùÿÿIƒ,$uL‰çèû|ÿÿH…Û…]ÿÿÿé^ÿÿÿDH‰ßèà|ÿÿéOþÿÿH‰ïèÐ|ÿÿHƒ+…:þÿÿëÜ@HfZǃS(ÕH‰pS(ÇnS(}Hƒm„“Hƒ+uH‰ßè…|ÿÿH‹
FS(‹LS(‹5BS(H=+=1íètøÿÿHƒÄH‰è[]A\A]ÃfDL‰ïèH|ÿÿH‹
	S(‹S(‹5S(éÿÿÿH‰ßè(|ÿÿéóýÿÿH‰ïè|ÿÿéþÿÿH‰Çè|ÿÿéøýÿÿH‰ïèø{ÿÿé`ÿÿÿH
–YºÕ¾yÇ©R(ÕH‰
–R(Ç”R(yéMÿÿÿ€HƒmºÕH
TY¾{H‰
cR(ÇeR(ÕÇWR({…ÿÿÿH‰ïèy{ÿÿ‹5CR(‹AR(H‹
.R(éïþÿÿHYÇ#R(ÕH‰R(ÇR(~é›þÿÿf„H
ÖX¾ŒºÖÇéQ(ÖH‰
ÖQ(ÇÔQ(Œéäýÿÿ€HžXÇ»Q(ÖH‰¨Q(ǦQ(”Hƒm…ýÿÿH‰ïèÃzÿÿéýÿÿfDH
^X¾£º×ÇqQ(×H‰
^Q(Ç\Q(£élýÿÿ€H&XÇCQ(×H‰0Q(Ç.Q(¥ë†@HþWÇQ(×H‰Q(ÇQ(ªéøüÿÿUSHƒìH‹5³J(è΂ÿÿH…À„H‰Åè|ÿÿH‰ÃH…À„1H‹ºê%H‹53I(H‰Çè{yÿÿ…ÀxwH‹5ÀP(H‰ÚH‰ïèu~ÿÿH…À„\Hƒmt5Hƒ+tHƒÄ[]ÄH‰ßH‰D$è£yÿÿH‹D$HƒÄ[]ÀH‰ïH‰D$èƒyÿÿHƒ+H‹D$u¹ëÆfDHWÇ3P(ÏH‰ P(ÇP(çHƒmuH‰ïè?yÿÿHƒ+t)H‹
úO(‹P(‹5öO(H=:è*õÿÿHƒÄ1À[]ÐH‰ßèyÿÿëÍfDH
¦V¾ãºÏǹO(ÏH‰
¦O(ǤO(ãë¬fHƒm¾åH
lVºÏH‰
{O(Ç}O(ÏÇoO(å…sÿÿÿH‰ïè‘xÿÿH‹
RO(‹XO(‹5NO(éSÿÿÿf„HVÇ3O(ÏH‰ O(ÇO(èéûþÿÿf„ATH‹5'J(UH‰ýSè݀ÿÿH…À„ÜH‹5%F(H‰ÇH‰Ãè€ÿÿI‰ÄH…À„Hƒ+„ìH‹} H‹5áI(蜀ÿÿH‰ÅH…À„0H‹5áE(H‰Ç聀ÿÿH‰ÃH…À„eHƒm„šH‹=K(H‰Þè[|ÿÿH‰ÅH…À„ŸHƒ+„¥H‹5îJ(H‰ïè6|ÿÿH‰ÃH…À„ªHƒm„H‰ÞL‰çèD~ÿÿH‰ÅH…À„ˆHƒ+„öIƒ,$„ÛH‹EI‰ìHPH‰UH‰EH…Àt+L‰à[]A\ÃH‰ïèwÿÿéYÿÿÿH‰ßèwÿÿéÿÿÿH‰ïèøvÿÿL‰à[]A\ÃH‰ßèèvÿÿéNÿÿÿH‰ïèØvÿÿédÿÿÿHvTÇ“M(ÊH‰€M(Ç~M(—Hƒ+…ûH‰ßèœvÿÿH‹
]M(‹cM(H=¨7‹5RM(èòÿÿM…ä…êL‰à[]A\Ã@L‰çè`vÿÿéÿÿÿH‰ßèPvÿÿéýþÿÿH
îSºÉ¾}E1äH=M7H‰
îL(ÇðL(ÉÇâL(}èòÿÿéÝþÿÿ„Hƒ+H
¢SH‰
¶L(ǸL(ÉǪL(„0ÿÿÿºÉ¾H=ã6èÎñÿÿéŽþÿÿf„H
VSºÊ¾ŒÇiL(ÊH‰
VL(ÇTL(Œ@H=™6L‰åèñÿÿI‹$E1äHƒèé-þÿÿHSÇ#L(ÊH‰L(ÇL(ŽHƒmt‹5L(‹ÿK(H‹
ìK(ë¢fH‰ïèuÿÿ‹5âK(‹àK(H‹
ÍK(ëƒH¦RÇÃK(ÊH‰°K(Ç®K(‘é+þÿÿf„HvRÇ“K(ÊH‰€K(Ç~K(”ékÿÿÿH‹
jK(‹pK(H=µ5‹5_K(èšðÿÿI‹$L‰åE1äHƒèéCýÿÿ€S1ÉH‰óHƒìH‰âHt$HÇ$HÇD$è(uÿÿº…ÀuHƒÄ‰Ð[ÀH‹Ñã%H‹$H‰ÚH5c5H‹81Àè1{ÿÿ1ÒëÎf.„AUATUH‰ýSH‰óHƒìH…Ò…H‹CHƒHƒøÿ„EH‹5–?(H‰ïH…ÀuVèq|ÿÿH‰ÅH…À„H‹5ŽJ(1ÒH‰ÇèDxÿÿI‰ÄH…À„ Hƒm„­Hƒ+„‹HƒÄL‰à[]A\A]ÃDè|ÿÿI‰ÅH…À„wèêuÿÿH‰ÅH…À„þH‹5ß=(H‰ÚH‰ÇèÌrÿÿ…ÀˆäH‹5
J(H‰êL‰ïèÂwÿÿI‰ÄH…À„&Iƒm…sÿÿÿL‰ïèsÿÿéfÿÿÿfDH‰ßèðrÿÿHƒÄL‰à[]A\A]ÃfH‰ïèØrÿÿéFÿÿÿH‰×H‰T$èótÿÿH‹T$H…ÀŽÎþÿÿH5OUH‰×è6þÿÿ…À…·þÿÿE1äéÿÿÿfDH
6P¾	&ºÇII(H‰
6I(Ç4I(	&H=Õ3E1äèeîÿÿéÃþÿÿHöOÇI(H‰I(ÇþH(@&Iƒmt/HƒmtH‹
áH(‹çH(‹5ÝH(ë§H‰ïèrÿÿëÞfDL‰ïèðqÿÿëÇfDH
ŽO¾<&ºÇ¡H(H‰
ŽH(ÇŒH(<&éSÿÿÿ€H
VO¾&ºŽÇiH(ŽH‰
VH(ÇTH(&éÿÿÿ€HOÇ;H(ŽH‰(H(Ç&H(#&é*ÿÿÿIƒm¾>&H
ìNºH‰
ûG(ÇýG(ÇïG(>&…µþÿÿL‰ïèqÿÿH‹
ÒG(‹ØG(‹5ÎG(é•þÿÿf„H–NdzG(H‰ G(ÇžG(A&é›þÿÿf„AUATUH‰ýSH‰óHƒìH…Ò…H‹CHƒHƒøÿ„EH‹5Æ:(H‰ïH…ÀuVè1yÿÿH‰ÅH…À„H‹5NG(1ÒH‰ÇèuÿÿI‰ÄH…À„ Hƒm„­Hƒ+„‹HƒÄL‰à[]A\A]ÃDèÛxÿÿI‰ÅH…À„wèªrÿÿH‰ÅH…À„þH‹5Ÿ:(H‰ÚH‰ÇèŒoÿÿ…ÀˆäH‹5ÍF(H‰êL‰ïè‚tÿÿI‰ÄH…À„&Iƒm…sÿÿÿL‰ïèÃoÿÿéfÿÿÿfDH‰ßè°oÿÿHƒÄL‰à[]A\A]ÃfH‰ïè˜oÿÿéFÿÿÿH‰×H‰T$è³qÿÿH‹T$H…ÀŽÎþÿÿH5&MH‰×èöúÿÿ…À…·þÿÿE1äéÿÿÿfDH
öL¾‹&ºÍÇ	F(ÍH‰
öE(ÇôE(‹&H=½0E1äè%ëÿÿéÃþÿÿH¶LÇÓE(ÐH‰ÀE(ǾE(Â&Iƒmt/HƒmtH‹
¡E(‹§E(‹5E(ë§H‰ïèÀnÿÿëÞfDL‰ïè°nÿÿëÇfDH
NL¾¾&ºÐÇaE(ÐH‰
NE(ÇLE(¾&éSÿÿÿ€H
L¾—&ºÎÇ)E(ÎH‰
E(ÇE(—&éÿÿÿ€HÞKÇûD(ÎH‰èD(ÇæD(¥&é*ÿÿÿIƒm¾À&H
¬KºÐH‰
»D(ǽD(ÐǯD(À&…µþÿÿL‰ïèÑmÿÿH‹
’D(‹˜D(‹5ŽD(é•þÿÿf„HVKÇsD(ÐH‰`D(Ç^D(Ã&é›þÿÿf„AWI‰×AVI‰þAUATUH‰õSHÎHƒìHHD$(L‰D$Ll$0H‰D$HD$8HÇD$(HÇD$0HÇD$8H‰D$@H‹T$H‹t$L‰éL‰÷èómÿÿ…À„	H‹H‹|$(H…Òt.H‰Øëf„HƒÀH‹H…ÒtH9:uïH‹T$0H)èI‰멐èÛpÿÿ…À„H‹H‹t$(H…ÀtVH‹8I‰ÜH9þt,èsnÿÿ…Àˆ«tIƒÄI‹$H‹t$(H…Àt'H‹8H9÷u×L‰àH‹L$0H)èI‰Iƒ<$…=ÿÿÿH‹t$(H9Ýu(éŽfDènÿÿ…Àxg„ÂHƒÅH‹t$(H9ëtkH‹EH‹8H9÷u×H‹T$H‰ñH5à-H‹¹Û%H‹81Àè'sÿÿ¸ÿÿÿÿHƒÄH[]A\A]A^A_Ãè;sÿÿH…À„IÿÿÿëÙè+sÿÿH…ÀuÏHƒÅH‹t$(H9ëu•H‰ñH‹T$H5-럀H‹QÛ%H‹T$H5-H‹81Àè³rÿÿHƒÄH¸ÿÿÿÿ[]A\A]A^A_ÃH‹t$(éNÿÿÿDAVAUATUH‰ýSHƒì L‹-Ü%H‹^L‰l$H…Ò… H…Û„Hƒû„­H…ÛHòHH
âHHIÈH‰ØHÂHHÁø?L
 KH…ÛLIÊL@HƒìH‹Ú%SH¼HH5>-H‹81ÀèüqÿÿH‚H¾gÇšA(sÇŒA(gH‰}A(XZH
YHºsH=È,è«æÿÿ1ÀHƒÄ []A\A]A^Ã@H‹V H‹ðHu(M‰èH‹=ŸÛ%HƒH‰Ùÿr@(H…ÀtuHƒ+u¾H‰ßH‰D$èJjÿÿH‹D$HƒÄ []A\A]A^ÄL‰êë§I‰ÔH…Û„Hƒû…ÝþÿÿH‹F H‰×H‰D$è1lÿÿH…À‡H‹T$éjÿÿÿfDHƒ+¾…H
…Gº¦H‰
”@(Ç–@(¦Çˆ@(…tH=×+H‰D$èµåÿÿH‹D$éÿÿÿH‰ßH‰D$è‹iÿÿ‹Y@(‹5O@(H‹
@@(H‹D$ë»HT$H‰ÙL‰çL.GH5˜ß'èÓûÿÿ…À‰SÿÿÿHñF¾YÇ	@(sH‰ö?(Çô?(Yélþÿÿ€H‰×è@kÿÿI‰ÆH…ÀŽÿÿÿH‹5•3(L‰çèÅhÿÿH…À„{ÿÿÿH‰D$IFÿéÝþÿÿ@f.„AUATI‰üUH‰ÕSHƒì(H‹qÙ%H‹^H‰T$H…í…ïH…Û„NHƒû…œH‹^ H‹5Q4(L‰çè1qÿÿI‰ÄH…À„èkÿÿH‰ÅH…À„,H‹5õ2(H‰ÚH‰Çèâgÿÿ…Àˆ*H‹5#?(H‰êL‰çèØlÿÿH…À„§Iƒ,$„äHƒm…½H‰ïH‰D$èhÿÿH‹D$HƒÄ([]A\A]Ã@H…ÛHµEH
¥EHIÈH‰ØH…EHÁø?L
ãGH…ÛLIÊL@HƒìH‹`×%SHEH5*H‹81Àè¿nÿÿHEE¾ÔÇ]>(¨ÇO>(ÔH‰@>(XZH
Eº¨H=û)ènãÿÿ1ÀHƒÄ([]A\A]ÐH‰Óé¸þÿÿ„L‰çH‰D$è3gÿÿH‹D$éÿÿÿf„HÆDÇã=(¯H‰Ð=(ÇÎ=(õIƒ,$uL‰çèïfÿÿHƒmthH‹
©=(‹¯=(‹5¥=(H=f)èÙâÿÿHƒÄ(1À[]A\A]Ã@H…Û„OHƒû…­þÿÿH‹F H‰ïH‰D$èÄhÿÿH…ÀªH‹\$éñýÿÿH‰ïèxfÿÿëŽfDH
D¾ñº¯Ç)=(¯H‰
=(Ç=(ñéjÿÿÿ€Iƒ,$¾óH
ÔCº¯H‰
ã<(Çå<(¯Ç×<(ó…,ÿÿÿL‰çèùeÿÿH‹
º<(‹À<(‹5¶<(éÿÿÿHT$H‰ÙH‰ïL¬CH5Ü'èCøÿÿ…À‰0ÿÿÿHaC¾ÆÇy<(¨H‰f<(Çd<(Æéþÿÿ€H.CÇK<(¯H‰8<(Ç6<(öécþÿÿH‰ïèˆgÿÿI‰ÅH…ÀŽÁþÿÿH‹5Ý/(H‰ïè
eÿÿH…À„SÿÿÿH‰D$IEÿé’þÿÿfDAWAVAUATI‰ôUH‰ýSHƒì8L‹5½Õ%H‹^HÇD$HÇD$L‰t$ H…Ò…aHƒû„GHƒû…H‹V0I‹D$(M‹L$ H‹ðHƒìHuPA¸H‹=«Õ%HƒH‰ÙAVjÿ58(ÿ5,-(jÿ5,7(Pjÿ5Ë7(ÿ}:(HƒÄPH…À„èHƒ+…¼H‰ßH‰D$èQdÿÿH‹D$HƒÄ8[]A\A]A^A_ÃI‹\$„HƒûHìAH
ÜAHMȝÀHƒì¶ÀSHìAL@H‹¥Ó%H5N&L
DH‹81ÀèkÿÿH‹A¾[Ç£:(±Ç•:([H‰†:(XZH
bAº±H=i&è´ßÿÿ1ÀHƒÄ8[]A\A]A^A_ÃL‰òé¿þÿÿ„I‰ÕHƒû„s~iHƒûtHƒû…1ÿÿÿH‹F0H‰D$ I‹D$(L‰ïH‰D$I‹D$ H‰D$èleÿÿI‰ÇHƒût`Hƒût{H…Ût4M…ÿ8L‹L$H‹D$H‹T$ éLþÿÿH…Û…ÏþÿÿH‰×è'eÿÿI‰ÇH‹5E6(L‰ïIƒïè±bÿÿH‰D$H…À„–þÿÿH‹5|5(L‰ïè”bÿÿH‰D$H…À„!IƒïM…ÿ~ŽH‹5>-(L‰ïènbÿÿH…À„®H‰D$ Iƒïé_ÿÿÿ€Hƒ+¾H
@ºÞH‰
,9(Ç.9(ÞÇ 9(tH=%H‰D$èMÞÿÿH‹D$é‘þÿÿH‰ßH‰D$è#bÿÿ‹ñ8(‹5ç8(H‹
Ø8(H‹D$ë»f„H‹F H‰×H‰D$èdÿÿI‰ÇéÿÿÿHT$H‰ÙL‰ïL¹?H5.Ø'èIôÿÿ…À‰¢þÿÿHg?¾IÇ8(±H‰l8(Çj8(IéÙýÿÿHƒìH‹2Ñ%H
A?H5Ô#jL
ˆAA¸HJ?H‹81Àè|hÿÿH?Y^H‰8(¾?Ç8(±Ç8(?érýÿÿ@f.„AVAUATUH‰ýSHƒì L‹
¢)(L‹%»Ñ%H‹^L‰L$L‰d$H…Ò…THƒû„BHƒû„(H…Û„ŸH…ÛHŒ>I‰ØH
y>H¦>HIÈHƒìH‹MÐ%IÁø?SI÷ÐH5î"H‹8L
¡@Aƒà1Àè¡gÿÿH'>¾ÝÇ?7(ãÇ17(ÝH‰"7(XZH
þ=ºãH=-#èPÜÿÿ1ÀHƒÄ []A\A]A^ÐL‰âH‹ðH‹¿((HƒìHuPA¸H‹=òÐ%HƒH‹
o3(ATjQPjQH‰ÙPjÿ5+(ÿì5(HƒÄPH…À„‡Hƒ+u“H‰ßH‰D$èÄ_ÿÿH‹D$HƒÄ []A\A]A^ÃfH‹V(L‹N évÿÿÿL‰âëïI‰ÕHƒû„Hƒû„‰H…Û…©þÿÿH‰×è aÿÿI‰ÆH…À\@L‹L$H‹T$é$ÿÿÿHƒ+¾H
í<ºH‰
ü5(Çþ5(Çð5(„âH=û!H‰D$èÛÿÿH‹D$éÁþÿÿ€H‹F(H‰×H‰D$H‹F H‰D$èaÿÿH…ÀŽuÿÿÿHT$H‰ÙL‰ïLµ<H5<Õ'è7ñÿÿ…À‰OÿÿÿHU<¾ÌÇm5(ãH‰Z5(ÇX5(Ìé+þÿÿH‹F H‰×H‰D$èŸ`ÿÿI‰ÆM…öŽÿÿÿH‹5ô((L‰ïè$^ÿÿH…À„vÿÿÿH‰D$IFÿé_ÿÿÿDH‰ßH‰D$è+^ÿÿ‹ù4(‹5ï4(H‹
à4(H‹D$éôþÿÿfDH‹5!)(L‰ïèÉ]ÿÿH…Àt‘H‰D$IƒîézÿÿÿfDAUATUH‰ýSHƒì(L‹
„Î%H‹^L‰L$H…Ò…2H…Û„!Hƒû„§H…ÛHd;H
T;HIÈH‰ØH4;HÁø?L
’=H…ÛLIÊL@HƒìH‹Í%SHH;H5°H‹81ÀèndÿÿHô:¾RÇ4(Çþ3(RH‰ï3(XZH
Ë:ºH=* èÙÿÿ1ÀHƒÄ([]A\A]ÃH‹V H‹ðHƒìHuPE1ÀH‹=Í%HƒH‰ÙAQjAQAQjAQAQjAQÿÌ2(HƒÄPH…Àt{Hƒ+uªH‰ßH‰D$è¨\ÿÿH‹D$HƒÄ([]A\A]ÄL‰ÊëI‰ÔH…Û„¼Hƒû…ËþÿÿH‹F H‰×H‰D$è‘^ÿÿL‹
Í%H…ÀÕH‹T$éKÿÿÿ€Hƒ+¾xH
Ý9ºCH‰
ì2(Çî2(CÇà2(xtH=H‰D$è
ØÿÿH‹D$éèþÿÿH‰ßH‰D$èã[ÿÿ‹±2(‹5§2(H‹
˜2(H‹D$ë»f„H‰×èè]ÿÿL‹
iÌ%H…ÀI‰ÅŽTÿÿÿH‹56&(L‰çèf[ÿÿL‹
GÌ%H…ÀtH‰D$IEÿé"ÿÿÿHT$H‰ÙL‰çLS9H5Ò'èÞíÿÿ…ÀxH‹T$L‹
Ì%éMþÿÿHï8¾DÇ2(H‰ô1(Çò1(Déøýÿÿf.„AUATUH‰ýSHƒì(L‹
´Ë%H‹^L‰L$H…Ò…2H…Û„!Hƒû„§H…ÛH”8H
„8HIÈH‰ØHd8HÁø?L
Â:H…ÛLIÊL@HƒìH‹?Ê%SH8H5àH‹81ÀèžaÿÿH$8¾‘(Ç<1(2Ç.1(‘(H‰1(XZH
û7º2H=’èMÖÿÿ1ÀHƒÄ([]A\A]ÃH‹V H‹ðHƒìHuPE1ÀH‹=Ê%HƒH‰ÙAQjAQAQjAQAQjAQÿü/(HƒÄPH…Àt{Hƒ+uªH‰ßH‰D$èØYÿÿH‹D$HƒÄ([]A\A]ÄL‰ÊëI‰ÔH…Û„¼Hƒû…ËþÿÿH‹F H‰×H‰D$èÁ[ÿÿL‹
BÊ%H…ÀÕH‹T$éKÿÿÿ€Hƒ+¾·(H

7ºmH‰
0(Ç0(mÇ0(·(tH=‡H‰D$è=ÕÿÿH‹D$éèþÿÿH‰ßH‰D$èYÿÿ‹á/(‹5×/(H‹
È/(H‹D$ë»f„H‰×è[ÿÿL‹
™É%H…ÀI‰ÅŽTÿÿÿH‹5f#(L‰çè–XÿÿL‹
wÉ%H…ÀtH‰D$IEÿé"ÿÿÿHT$H‰ÙL‰çL˜6H5Ð'èëÿÿ…ÀxH‹T$L‹
6É%éMþÿÿH6¾ƒ(Ç7/(2H‰$/(Ç"/(ƒ(éøýÿÿf.„AVAUATI‰üUSHƒì0H‹Ê (H‹
» (H‹-ÔÈ%H‹^H‰D$H‰L$H‰l$ H…Ò…Hƒû„v~$Hƒû„ºHƒû…ÀH‹V0H‹N(L‹N ëfI‰ÁH‰êH…Û…¡HƒìI‹œ$ðIt$PA¸HƒH‹=+(UjWPjÿ5ª"(QH‰ÙjWH‹=|Ç%ÿ†-(HƒÄPH…À„Hƒ+tHƒÄ0[]A\A]A^ÃfDH‰ßH‰D$èKWÿÿH‹D$HƒÄ0[]A\A]A^Ãf„H‰êéLÿÿÿ„H…ÛHÝ4I‰ØH
Ê4H5HIÈHƒìH‹žÆ%IÁø?SI÷ÐH5?H‹8L
ò6Aƒà1Àèò]ÿÿHx4¾ )ǐ-(sÇ‚-( )H‰s-(XZH
O4ºsH=è¡ÒÿÿHƒÄ01À[]A\A]A^ÃfH‰êé þÿÿ„I‰ÕHƒû„£ŽHƒûtHƒû…-ÿÿÿH‹F0H‰D$ H‹F(L‰ïH‰D$H‹F H‰D$èZXÿÿI‰ÆHƒû„“Hƒû…M…ö~*H‹5Ÿ (L‰ïèÏUÿÿH…À„OH‰D$ IƒîM…ö=L‹L$H‹L$H‹T$ H‹n(éþÿÿf„H…Û…—þÿÿH‰×èßWÿÿI‰ÆM…ö~ÃH‹5À$(L‰ïèhUÿÿH…ÀtH‰D$IƒîM…ö~¡H‹5ž (L‰ïèFUÿÿH…À„_ÿÿÿH‰D$IƒîéLÿÿÿ€Hƒ+¾F)H
õ2ºØH‰
,(Ç,(ØÇø+(F)t6H=ŸH‰D$è%ÑÿÿH‹D$é ýÿÿH…Û…ÿÿÿéNÿÿÿf.„H‰ßH‰D$èãTÿÿ‹±+(‹5§+(H‹
˜+(H‹D$ë£f„H‹F H‰×H‰D$èßVÿÿI‰ÆéÿÿÿHT$H‰ÙL‰ïLœ2H5.Ì'è	çÿÿ…À‰þÿÿH'2¾)Ç?+(sH‰,+(Ç*+()é¬ýÿÿDAWAVAUATI‰ôUH‰ýSHƒì(L‹5íÄ%H‹^HÇD$L‰t$H…Ò…jHƒû„PHƒû…–H‹V(M‹L$ H‹ðH‹(HƒìHuPA¸H‹=ŠÄ%HƒH‹
?'(AVjQPjQH‰ÙPjÿ5Š(ÿ¼)(HƒÄPH…À„_Hƒ+…ÅH‰ßH‰D$èSÿÿH‹D$HƒÄ([]A\A]A^A_ÃI‹\$€H…ÛH-1H
1HOÈŸÀHf3¶ÀL
ó0LOÊL@HƒìH‹ÜÂ%SH:1H5}H‹81Àè;ZÿÿHÁ0¾ž)ÇÙ)(ÞÇË)(ž)H‰¼)(XZH
˜0ºÞH=‡èêÎÿÿ1ÀHƒÄ([]A\A]A^A_Ãf„L‰òé¶þÿÿ„I‰ÕHƒû„KHƒû„ÉH…Û… ÿÿÿH‰×è¸TÿÿH‹5Y(L‰ïI‰ÇèFRÿÿIƒïH‰D$H…À„èþÿÿM…ÿ#L‹L$H‹T$éOþÿÿ@Hƒ+¾Ä)H
å/º(H‰
ô((Çö(((Çè((Ä)tH=·H‰D$èÎÿÿH‹D$é#ÿÿÿH‰ßH‰D$èëQÿÿ‹¹((‹5¯((H‹
 ((H‹D$뻐H‹F(H‰×H‰D$H‹F H‰D$èæSÿÿH…ÀŽRÿÿÿHT$H‰ÙL‰ïL©/H5TÉ'èäÿÿ…À‰,ÿÿÿH-/¾Ž)ÇE((ÞH‰2((Ç0((Ž)éiþÿÿH‹F H‰×H‰D$èwSÿÿI‰ÇéÛþÿÿ€H‹5É(L‰ïèùPÿÿH…À„sÿÿÿH‰D$IGÿé\ÿÿÿfAWAVAUATI‰ôUH‰ýSHƒì8H‹(L‹5¦Á%HÇD$H‹^H‰D$L‰t$ H…Ò…vHƒû„dHƒû„JHƒû„°H…ÛHm.H
].HOÈŸÀH¦0¶ÀL
3.LOÊLDHƒìH‹À%SH‚.H5¼H‹81ÀèzWÿÿH.¾)*Ç'(.Ç
'()*H‰û&(XZH
×-º.H=öè)Ìÿÿ1ÀHƒÄ8[]A\A]A^A_ÄL‰òM‹L$ H‹ðHƒìHuPA¸H‹=ÜÀ%HƒH‰ÙAVjÿ5;#(ÿ5e(jÿ5Õ(Pjÿ5„(ÿ¶%(HƒÄPH…À„QHƒ+u„H‰ßH‰D$èŽOÿÿH‹D$HƒÄ8[]A\A]A^A_Ãf.„H‹V0I‹D$(éeÿÿÿfL‰òëïI‰ÕHƒû„‹Ž•HƒûtHƒû……þÿÿH‹F0H‰D$ I‹D$(L‰ïH‰D$I‹D$ H‰D$è@QÿÿI‰ÇHƒû„ˆHƒû…ùM…ÿ~*H‹5…(L‰ïèµNÿÿH…À„5H‰D$ IƒïM…ÿ#L‹L$H‹D$H‹T$ é¾þÿÿfDH…Û…÷ýÿÿH‰×èÏPÿÿI‰ÇH‹5m(L‰ïIƒïèYNÿÿH‰D$H…À„&M…ÿ~¬H‹5(L‰ïè7NÿÿH…À„jÿÿÿH‰D$IƒïéWÿÿÿHƒ+¾O*H
í+º|H‰
ü$(Çþ$(|Çð$(O*t.H=ïH‰D$èÊÿÿH‹D$éìýÿÿH…Û…$ÿÿÿéVÿÿÿfH‰ßH‰D$èãMÿÿ‹±$(‹5§$(H‹
˜$(H‹D$ë«f„H‹F H‰×H‰D$èßOÿÿI‰Çé,ÿÿÿHT$H‰ÙL‰ïL¬+H5nÅ'è	àÿÿ…À‰·þÿÿH'+¾*Ç?$(.H‰,$(Ç*$(*é$ýÿÿI‹\$é›üÿÿf.„AWAVAUATI‰ôUH‰ýSHƒì8L‹5ݽ%H‹^HÇD$HÇD$L‰t$ H…Ò…aHƒû„GHƒû…H‹V0I‹D$(M‹L$ H‹ðHƒìHuPA¸H‹=ƒ¼%HƒH‰ÙAVjÿ5" (ÿ5L(jÿ54(Pjÿ5(ÿ"(HƒÄPH…À„èHƒ+…¼H‰ßH‰D$èqLÿÿH‹D$HƒÄ8[]A\A]A^A_ÃI‹\$„HƒûH*H
ü)HMȝÀHƒì¶ÀSHP*L@H‹Ż%H5nL
$,H‹81Àè%SÿÿH«)¾²*ÇÃ"(Çµ"(²*H‰¦"(XZH
‚)ºH=ÉèÔÇÿÿ1ÀHƒÄ8[]A\A]A^A_ÃL‰òé¿þÿÿ„I‰ÕHƒû„s~iHƒûtHƒû…1ÿÿÿH‹F0H‰D$ I‹D$(L‰ïH‰D$I‹D$ H‰D$èŒMÿÿI‰ÇHƒût`Hƒût{H…Ût4M…ÿ8L‹L$H‹D$H‹T$ éLþÿÿH…Û…ÏþÿÿH‰×èGMÿÿI‰ÇH‹5•(L‰ïIƒïèÑJÿÿH‰D$H…À„–þÿÿH‹5„(L‰ïè´JÿÿH‰D$H…À„!IƒïM…ÿ~ŽH‹5^(L‰ïèŽJÿÿH…À„®H‰D$ Iƒïé_ÿÿÿ€Hƒ+¾Ø*H
=(ºÙH‰
L!(ÇN!(ÙÇ@!(Ø*tH=gH‰D$èmÆÿÿH‹D$é‘þÿÿH‰ßH‰D$èCJÿÿ‹!(‹5!(H‹
ø (H‹D$ë»f„H‹F H‰×H‰D$è?LÿÿI‰ÇéÿÿÿHT$H‰ÙL‰ïL(H5îÁ'èiÜÿÿ…À‰¢þÿÿH‡'¾ *ÇŸ (H‰Œ (ÇŠ ( *éÙýÿÿHƒìH‹R¹%H
a'H5ôjL
¨)A¸H®'H‹81ÀèœPÿÿH"'Y^H‰4 (¾–*Ç1 (Ç# (–*érýÿÿ@f.„AWAVAUATI‰üUSH‰óHƒì8L‹5ݹ%H‹nHÇD$HÇD$HÇD$ L‰t$(H…Ò…ˆHƒý„nHƒý…ÄH‹V8H‹K0H‹C(L‹K HƒìI‹œ$ðIt$PA¸H‹=ƹ%HƒAVjÿ5P(QH‰Ùjÿ5,(Pjÿ5(ÿ•(HƒÄPH…À„Hƒ+…äH‰ßH‰D$èiHÿÿH‹D$HƒÄ8[]A\A]A^A_ÃDL‰ïèxJÿÿI‰ÇH‹5Æ(L‰ïIƒïèHÿÿH‰D$H…À…hH‹kHƒýHÜ%H
Ì%HMȝÀHƒì¶ÀUH&L@H‹•·%H5>
L
ô'H‹81ÀèõNÿÿH{%¾F+Ç“(ÞÇ…(F+H‰v(XZH
R%ºÞH=Áè¤Ãÿÿ1ÀHƒÄ8[]A\A]A^A_ÃL‰òé˜þÿÿ„Hƒý‡FÿÿÿI‰ÕH\*HcªHÐÿàH‹F8H‰D$(H‹C0H‰D$ H‹C(L‰ïH‰D$H‹C H‰D$èTIÿÿI‰ÇHƒý„[~2Hƒý„pHƒýu+M…ÿÌL‹L$H‹D$H‹L$ H‹T$(éþÿÿH…í„•þÿÿM…ÿ~ÙHT$H‰éL‰ïLà$H5ܾ'è7Ùÿÿ…Ày·HY$¾2+Çq(ÞH‰^(Ç\(2+éÛþÿÿ€Hƒ+¾l+H
$º.H‰
,(Ç.(.Ç (l+tNH=o
H‰D$èMÂÿÿH‹D$é¡þÿÿH‹5Á(L‰ïèñEÿÿH…À„CÿÿÿH‰D$(Iƒïé0ÿÿÿf.„H‰ßH‰D$èóEÿÿ‹Á(‹5·(H‹
¨(H‹D$ë‹f„H‹F L‰ïH‰D$èïGÿÿI‰ÇH‹5M(L‰ïè}EÿÿH‰D$H…À„IƒïH‹5D(L‰ïè\EÿÿH‰D$ H…Àt	IƒïétþÿÿHƒìH‹µ%H
%#H5¸jL
l%A¸Hg#H‹81Àè`LÿÿHæ"Y^H‰ø(¾(+Çõ(ÞÇç((+éfýÿÿHƒìH‹¯´%A¸H5RjL
%H
¨"H‹8Hý"1ÀèùKÿÿH"_¾"+H‰(AXǍ(ÞÇ("+éþüÿÿf.„AWAVAUATI‰ôUH‰ýSHƒì(L‹5=µ%H‹^HÇD$L‰t$H…Ò…jHƒû„PHƒû…–H‹V(M‹L$ H‹ðH‹ß(HƒìHuPA¸H‹=´%HƒH‹
(AVjQPjQH‰ÙPjÿ5ª(ÿ(HƒÄPH…À„_Hƒ+…ÅH‰ßH‰D$èàCÿÿH‹D$HƒÄ([]A\A]A^A_ÃI‹\$€H…ÛH}!H
m!HOÈŸÀH¶#¶ÀL
C!LOÊL@HƒìH‹,³%SH±!H5ÍH‹81Àè‹JÿÿH!¾Ä+Ç)(3Ç(Ä+H‰(XZH
è º3H=‡è:¿ÿÿ1ÀHƒÄ([]A\A]A^A_Ãf„L‰òé¶þÿÿ„I‰ÕHƒû„KHƒû„ÉH…Û… ÿÿÿH‰×èEÿÿH‹5y(L‰ïI‰Çè–BÿÿIƒïH‰D$H…À„èþÿÿM…ÿ#L‹L$H‹T$éOþÿÿ@Hƒ+¾ê+H
5 ºyH‰
D(ÇF(yÇ8(ê+tH=·H‰D$èe¾ÿÿH‹D$é#ÿÿÿH‰ßH‰D$è;Bÿÿ‹	(‹5ÿ(H‹
ð(H‹D$뻐H‹F(H‰×H‰D$H‹F H‰D$è6DÿÿH…ÀŽRÿÿÿHT$H‰ÙL‰ïL  H54º'è_Ôÿÿ…À‰,ÿÿÿH}¾´+Ç•(3H‰‚(Ç€(´+éiþÿÿH‹F H‰×H‰D$èÇCÿÿI‰ÇéÛþÿÿ€H‹5(L‰ïèIAÿÿH…À„sÿÿÿH‰D$IGÿé\ÿÿÿfAWAVAUATI‰ôUH‰ýSHƒì8L‹5ý±%H‹^HÇD$HÇD$L‰t$ H…Ò…aHƒû„GHƒû…H‹V0I‹D$(M‹L$ H‹ðHƒìHuPA¸H‹=C²%HƒH‰ÙAVjÿ5B(ÿ5l	(jÿ5l(Pjÿ5[(ÿ½(HƒÄPH…À„èHƒ+…¼H‰ßH‰D$è‘@ÿÿH‹D$HƒÄ8[]A\A]A^A_ÃI‹\$„HƒûH,H
HMȝÀHƒì¶ÀSHrL@H‹å¯%H5ŽL
D H‹81ÀèEGÿÿHË¾M,Çã(~ÇÕ(M,H‰Æ(XZH
¢º~H=qèô»ÿÿ1ÀHƒÄ8[]A\A]A^A_ÃL‰òé¿þÿÿ„I‰ÕHƒû„s~iHƒûtHƒû…1ÿÿÿH‹F0H‰D$ I‹D$(L‰ïH‰D$I‹D$ H‰D$è¬AÿÿI‰ÇHƒût`Hƒût{H…Ût4M…ÿ8L‹L$H‹D$H‹T$ éLþÿÿH…Û…ÏþÿÿH‰×ègAÿÿI‰ÇH‹5Õ(L‰ïIƒïèñ>ÿÿH‰D$H…À„–þÿÿH‹5¼(L‰ïèÔ>ÿÿH‰D$H…À„!IƒïM…ÿ~ŽH‹5~	(L‰ïè®>ÿÿH…À„®H‰D$ Iƒïé_ÿÿÿ€Hƒ+¾s,H
]ºÐH‰
l(Çn(ÐÇ`(s,tH=H‰D$荺ÿÿH‹D$é‘þÿÿH‰ßH‰D$èc>ÿÿ‹1(‹5'(H‹
(H‹D$ë»f„H‹F H‰×H‰D$è_@ÿÿI‰ÇéÿÿÿHT$H‰ÙL‰ïL?H5޶'è‰Ðÿÿ…À‰¢þÿÿH§¾;,Ç¿(~H‰¬(Ǫ(;,éÙýÿÿHƒìH‹r­%H
H5jL
ÈA¸HÐH‹81Àè¼DÿÿHBY^H‰T(¾1,ÇQ(~ÇC(1,érýÿÿ@f.„AVAUATUH‰ýSHƒì L‹%®%H‹^L‰d$H…Ò…@H…Û„/Hƒû„­H…ÛHâH
ÒHIÈH‰ØH²HÁø?L
H…ÛLIÊL@HƒìH‹¬%SHH5.ÿH‹81ÀèìCÿÿHr¾Â,ÇŠ(ÕÇ|(Â,H‰m(XZH
IºÕH=P蛸ÿÿ1ÀHƒÄ []A\A]A^Ã@H‹V H‹ðHƒìHuPE1ÀL‹
û(H‹=D­%HƒH‹¹(H‰ÙATjPAQjPAQjPÿ9(HƒÄPH…ÀtpHƒ+u™H‰ßH‰D$è<ÿÿH‹D$HƒÄ []A\A]A^ÃL‰âë‡I‰ÕH…Û„Hƒû…½þÿÿH‹F H‰×H‰D$è>ÿÿH…À‡H‹T$éJÿÿÿfDHƒ+¾è,H
UºH‰
d(Çf(ÇX(è,tH=?H‰D$腷ÿÿH‹D$éâþÿÿH‰ßH‰D$è[;ÿÿ‹)(‹5(H‹
(H‹D$ë»HT$H‰ÙL‰ïLnH5ȳ'è£Íÿÿ…À‰SÿÿÿHÁ¾´,ÇÙ(ÕH‰Æ(ÇÄ(´,éLþÿÿ€H‰×è=ÿÿI‰ÆH…ÀŽÿÿÿH‹5e(L‰ïè•:ÿÿH…À„{ÿÿÿH‰D$IFÿéÝþÿÿ@f.„AWAVAUATI‰ôUH‰ýSHƒì(L‹5=«%H‹^HÇD$L‰t$H…Ò…jHƒû„PHƒû…–H‹V(M‹L$ H‹ðH‹Ç(HƒìHuPA¸H‹=b«%HƒH‹

(AVjQPjQH‰ÙPjÿ5ª(ÿ(HƒÄPH…À„_Hƒ+…ÅH‰ßH‰D$èà9ÿÿH‹D$HƒÄ([]A\A]A^A_ÃI‹\$€H…ÛH}H
mHOÈŸÀH¶¶ÀL
CLOÊL@HƒìH‹,©%SHËH5ÍûH‹81Àè‹@ÿÿH¾@-Ç)(Ç(@-H‰(XZH
èºH=þè:µÿÿ1ÀHƒÄ([]A\A]A^A_Ãf„L‰òé¶þÿÿ„I‰ÕHƒû„KHƒû„ÉH…Û… ÿÿÿH‰×è;ÿÿH‹5y
(L‰ïI‰Çè–8ÿÿIƒïH‰D$H…À„èþÿÿM…ÿ#L‹L$H‹T$éOþÿÿ@Hƒ+¾f-H
5º~H‰
D(ÇF(~Ç8(f-tH=OýH‰D$èe´ÿÿH‹D$é#ÿÿÿH‰ßH‰D$è;8ÿÿ‹	(‹5ÿ(H‹
ð(H‹D$뻐H‹F(H‰×H‰D$H‹F H‰D$è6:ÿÿH…ÀŽRÿÿÿHT$H‰ÙL‰ïL:H5”°'è_Êÿÿ…À‰,ÿÿÿH}¾0-Ç•(H‰‚(Ç€(0-éiþÿÿH‹F H‰×H‰D$èÇ9ÿÿI‰ÇéÛþÿÿ€H‹5(L‰ïèI7ÿÿH…À„sÿÿÿH‰D$IGÿé\ÿÿÿfAWAVAUATI‰ôUH‰ýSHƒì8L‹5ý§%H‹^HÇD$HÇD$L‰t$ H…Ò…aHƒû„GHƒû…H‹V0I‹D$(M‹L$ H‹ðHƒìHu(A¸H‹=«§%HƒH‰ÙAVjÿ5B
(ÿ5lÿ'jÿ5d(Pjÿ5(ÿ½(HƒÄPH…À„èHƒ+…¼H‰ßH‰D$è‘6ÿÿH‹D$HƒÄ8[]A\A]A^A_ÃI‹\$„HƒûH,H
HMȝÀHƒì¶ÀSH¢L@H‹å¥%H5ŽøL
DH‹81ÀèE=ÿÿHË¾É-Çã(„ÇÕ(É-H‰Æ(XZH
¢º„H=	ûèô±ÿÿ1ÀHƒÄ8[]A\A]A^A_ÃL‰òé¿þÿÿ„I‰ÕHƒû„s~iHƒûtHƒû…1ÿÿÿH‹F0H‰D$ I‹D$(L‰ïH‰D$I‹D$ H‰D$è¬7ÿÿI‰ÇHƒût`Hƒût{H…Ût4M…ÿ8L‹L$H‹D$H‹T$ éLþÿÿH…Û…ÏþÿÿH‰×èg7ÿÿI‰ÇH‹5…(L‰ïIƒïèñ4ÿÿH‰D$H…À„–þÿÿH‹5´(L‰ïèÔ4ÿÿH‰D$H…À„!IƒïM…ÿ~ŽH‹5~ÿ'L‰ïè®4ÿÿH…À„®H‰D$ Iƒïé_ÿÿÿ€Hƒ+¾ï-H
]º×H‰
l(Çn(×Ç`(ï-tH=§ùH‰D$荰ÿÿH‹D$é‘þÿÿH‰ßH‰D$èc4ÿÿ‹1(‹5'(H‹
(H‹D$ë»f„H‹F H‰×H‰D$è_6ÿÿI‰ÇéÿÿÿHT$H‰ÙL‰ïLoH5î¬'è‰Æÿÿ…À‰¢þÿÿH§¾·-Ç¿
(„H‰¬
(Ǫ
(·-éÙýÿÿHƒìH‹r£%H
H5öjL
ÈA¸HH‹81Àè¼:ÿÿHBY^H‰T
(¾­-ÇQ
(„ÇC
(­-érýÿÿ@f.„AWAVAUATI‰ôUH‰ýSHƒì(L‹5ý£%H‹^HÇD$L‰t$H…Ò…jHƒû„PHƒû…–H‹V(M‹L$ H‹ðH‹Ÿû'HƒìHuPA¸H‹=º¢%HƒH‹
O(AVjQPjQH‰ÙPjÿ5(ÿÌ(HƒÄPH…À„_Hƒ+…ÅH‰ßH‰D$è 2ÿÿH‹D$HƒÄ([]A\A]A^A_ÃI‹\$€H…ÛH=H
-HOÈŸÀHv¶ÀL
LOÊL@HƒìH‹ì¡%SHŸH5ôH‹81ÀèK9ÿÿHÑ¾G.Çé(ÜÇÛ(G.H‰Ì(XZH
¨ºÜH=?÷èú­ÿÿ1ÀHƒÄ([]A\A]A^A_Ãf„L‰òé¶þÿÿ„I‰ÕHƒû„KHƒû„ÉH…Û… ÿÿÿH‰×èÈ3ÿÿH‹5é(L‰ïI‰ÇèV1ÿÿIƒïH‰D$H…À„èþÿÿM…ÿ#L‹L$H‹T$éOþÿÿ@Hƒ+¾m.H
õº=	H‰
(Ç(=	Çø(m.tH=oöH‰D$è%­ÿÿH‹D$é#ÿÿÿH‰ßH‰D$èû0ÿÿ‹É(‹5¿(H‹
°(H‹D$뻐H‹F(H‰×H‰D$H‹F H‰D$èö2ÿÿH…ÀŽRÿÿÿHT$H‰ÙL‰ïLH5¤©'èÃÿÿ…À‰,ÿÿÿH=¾7.ÇU(ÜH‰B(Ç@(7.éiþÿÿH‹F H‰×H‰D$è‡2ÿÿI‰ÇéÛþÿÿ€H‹5Ùú'L‰ïè	0ÿÿH…À„sÿÿÿH‰D$IGÿé\ÿÿÿfAWAVAUATI‰ôUH‰ýSHƒì(L‹5½ %H‹^HÇD$L‰t$H…Ò…jHƒû„PHƒû…–H‹V(M‹L$ H‹ðH‹_ø'HƒìHuPA¸H‹=R %HƒH‹
(AVjQPjQH‰ÙPjÿ5Ú(ÿŒ(HƒÄPH…À„_Hƒ+…ÅH‰ßH‰D$è`/ÿÿH‹D$HƒÄ([]A\A]A^A_ÃI‹\$€H…ÛHýH
íHOÈŸÀH6¶ÀL
ÃLOÊL@HƒìH‹¬ž%SHf
H5MñH‹81Àè6ÿÿH‘¾Å.Ç©(B	Ç›(Å.H‰Œ(XZH
hºB	H='ô躪ÿÿ1ÀHƒÄ([]A\A]A^A_Ãf„L‰òé¶þÿÿ„I‰ÕHƒû„KHƒû„ÉH…Û… ÿÿÿH‰×èˆ0ÿÿH‹5©(L‰ïI‰Çè.ÿÿIƒïH‰D$H…À„èþÿÿM…ÿ#L‹L$H‹T$éOþÿÿ@Hƒ+¾ë.H
µº¤	H‰
Ä(ÇÆ(¤	Ǹ(ë.tH=WóH‰D$èå©ÿÿH‹D$é#ÿÿÿH‰ßH‰D$è»-ÿÿ‹‰(‹5(H‹
p(H‹D$뻐H‹F(H‰×H‰D$H‹F H‰D$è¶/ÿÿH…ÀŽRÿÿÿHT$H‰ÙL‰ïLÕH5„¦'è߿ÿÿ…À‰,ÿÿÿHý
¾µ.Ç(B	H‰(Ç(µ.éiþÿÿH‹F H‰×H‰D$èG/ÿÿI‰ÇéÛþÿÿ€H‹5™÷'L‰ïèÉ,ÿÿH…À„sÿÿÿH‰D$IGÿé\ÿÿÿfAWAVAUATI‰ôUH‰ýSHƒì(L‹5}%H‹^HÇD$L‰t$H…Ò…jHƒû„PHƒû…–H‹V(M‹L$ H‹ðH‹õ'HƒìHuPA¸H‹=J%HƒH‹
Ïÿ'AVjQPjQH‰ÙPjÿ5šÿ'ÿL(HƒÄPH…À„_Hƒ+…ÅH‰ßH‰D$è ,ÿÿH‹D$HƒÄ([]A\A]A^A_ÃI‹\$€H…ÛH½	H
­	HOÈŸÀHö¶ÀL
ƒ	LOÊL@HƒìH‹l›%SH.
H5
îH‹81ÀèË2ÿÿHQ	¾C/Çi(©	Ç[(C/H‰L(XZH
(	º©	H=ñèz§ÿÿ1ÀHƒÄ([]A\A]A^A_Ãf„L‰òé¶þÿÿ„I‰ÕHƒû„KHƒû„ÉH…Û… ÿÿÿH‰×èH-ÿÿH‹5iþ'L‰ïI‰ÇèÖ*ÿÿIƒïH‰D$H…À„èþÿÿM…ÿ#L‹L$H‹T$éOþÿÿ@Hƒ+¾i/H
uº
H‰
„(dž(
Çx(i/tH=?ðH‰D$襦ÿÿH‹D$é#ÿÿÿH‰ßH‰D$è{*ÿÿ‹I(‹5?(H‹
0(H‹D$뻐H‹F(H‰×H‰D$H‹F H‰D$èv,ÿÿH…ÀŽRÿÿÿHT$H‰ÙL‰ïLH5d£'蟼ÿÿ…À‰,ÿÿÿH½¾3/ÇÕ(©	H‰Â(ÇÀ(3/éiþÿÿH‹F H‰×H‰D$è,ÿÿI‰ÇéÛþÿÿ€H‹5Yô'L‰ïè‰)ÿÿH…À„sÿÿÿH‰D$IGÿé\ÿÿÿfAVAUATI‰üUSHƒì0H‹*ò'H‹
ò'H‹-4š%H‹^H‰D$H‰L$H‰l$ H…Ò…Hƒû„v~$Hƒû„ºHƒû…ÀH‹V0H‹N(L‹N ëfI‰ÁH‰êH…Û…¡HƒìI‹œ$ðIt$(A¸H‹=›˜%HƒUjÿ5fü'Pjÿ5ô'QH‰Ùjÿ5ù÷'ÿãþ'HƒÄPH…À„Hƒ+tHƒÄ0[]A\A]A^ÃH‰ßH‰D$è«(ÿÿH‹D$HƒÄ0[]A\A]A^Ãf„H‰êéLÿÿÿ„H…ÛH=I‰ØH
*HÝHIÈHƒìH‹þ—%IÁø?SI÷ÐH5ŸêH‹8L
RAƒà1ÀèR/ÿÿHØ¾Ò/Çðþ'
Çâþ'Ò/H‰Óþ'XZH
¯º
H=¾íè¤ÿÿHƒÄ01À[]A\A]A^ÃfH‰êé þÿÿ„I‰ÕHƒû„£ŽHƒûtHƒû…-ÿÿÿH‹F0H‰D$ H‹F(L‰ïH‰D$H‹F H‰D$èº)ÿÿI‰ÆHƒû„“Hƒû…M…ö~*H‹5ÿñ'L‰ïè/'ÿÿH…À„OH‰D$ IƒîM…ö=L‹L$H‹L$H‹T$ H‹Îï'éþÿÿf„H…Û…—þÿÿH‰×è?)ÿÿI‰ÆM…ö~ÃH‹5 ö'L‰ïèÈ&ÿÿH…ÀtH‰D$IƒîM…ö~¡H‹5þñ'L‰ïè¦&ÿÿH…À„_ÿÿÿH‰D$IƒîéLÿÿÿ€Hƒ+¾ø/H
Uºm
H‰
dý'Çfý'm
ÇXý'ø/t6H=GìH‰D$腢ÿÿH‹D$é£ýÿÿH…Û…ÿÿÿéNÿÿÿf.„H‰ßH‰D$èC&ÿÿ‹ý'‹5ý'H‹
øü'H‹D$ë£f„H‹F H‰×H‰D$è?(ÿÿI‰ÆéÿÿÿHT$H‰ÙL‰ïLmH5NŸ'èi¸ÿÿ…À‰þÿÿH‡¾¾/ÇŸü'
H‰Œü'ÇŠü'¾/é¬ýÿÿDAVAUATI‰üUSHƒì0H‹:î'H‹
+î'H‹-D–%H‹^H‰D$H‰L$H‰l$ H…Ò…Hƒû„v~$Hƒû„ºHƒû…ÀH‹V0H‹N(L‹N ëfI‰ÁH‰êH…Û…¡HƒìI‹œ$ðIt$(A¸H‹=;–%HƒUjÿ5vø'Pjÿ5ð'QH‰Ùjÿ5	ô'ÿóú'HƒÄPH…À„Hƒ+tHƒÄ0[]A\A]A^ÃH‰ßH‰D$è»$ÿÿH‹D$HƒÄ0[]A\A]A^Ãf„H‰êéLÿÿÿ„H…ÛHMI‰ØH
:HõHIÈHƒìH‹”%IÁø?SI÷ÐH5¯æH‹8L
bAƒà1Àèb+ÿÿHè¾a0Çû'r
Çòú'a0H‰ãú'XZH
¿ºr
H=öéè ÿÿHƒÄ01À[]A\A]A^ÃfH‰êé þÿÿ„I‰ÕHƒû„£ŽHƒûtHƒû…-ÿÿÿH‹F0H‰D$ H‹F(L‰ïH‰D$H‹F H‰D$èÊ%ÿÿI‰ÆHƒû„“Hƒû…M…ö~*H‹5î'L‰ïè?#ÿÿH…À„OH‰D$ IƒîM…ö=L‹L$H‹L$H‹T$ H‹Þë'éþÿÿf„H…Û…—þÿÿH‰×èO%ÿÿI‰ÆM…ö~ÃH‹50ò'L‰ïèØ"ÿÿH…ÀtH‰D$IƒîM…ö~¡H‹5î'L‰ïè¶"ÿÿH…À„_ÿÿÿH‰D$IƒîéLÿÿÿ€Hƒ+¾‡0H
eºè
H‰
tù'Çvù'è
Çhù'‡0t6H=èH‰D$蕞ÿÿH‹D$é£ýÿÿH…Û…ÿÿÿéNÿÿÿf.„H‰ßH‰D$èS"ÿÿ‹!ù'‹5ù'H‹
ù'H‹D$ë£f„H‹F H‰×H‰D$èO$ÿÿI‰ÆéÿÿÿHT$H‰ÙL‰ïL…H5~›'èy´ÿÿ…À‰þÿÿH—ÿ¾M0ǯø'r
H‰œø'Çšø'M0é¬ýÿÿDAVAUATI‰üUSHƒì0H‹Jê'H‹
;ê'H‹-T’%H‹^H‰D$H‰L$H‰l$ H…Ò…Hƒû„v~$Hƒû„ºHƒû…ÀH‹V0H‹N(L‹N ëfI‰ÁH‰êH…Û…¡HƒìI‹œ$ðIt$(A¸H‹=S‘%HƒUjÿ5†ô'Pjÿ5%ì'QH‰Ùjÿ5ð'ÿ÷'HƒÄPH…À„Hƒ+tHƒÄ0[]A\A]A^ÃH‰ßH‰D$èË ÿÿH‹D$HƒÄ0[]A\A]A^Ãf„H‰êéLÿÿÿ„H…ÛH]þI‰ØH
JþHÿHIÈHƒìH‹%IÁø?SI÷ÐH5¿âH‹8L
rAƒà1Àèr'ÿÿHøý¾ð0Ç÷'í
Ç÷'ð0H‰óö'XZH
Ïýºí
H=.æè!œÿÿHƒÄ01À[]A\A]A^ÃfH‰êé þÿÿ„I‰ÕHƒû„£ŽHƒûtHƒû…-ÿÿÿH‹F0H‰D$ H‹F(L‰ïH‰D$H‹F H‰D$èÚ!ÿÿI‰ÆHƒû„“Hƒû…M…ö~*H‹5ê'L‰ïèOÿÿH…À„OH‰D$ IƒîM…ö=L‹L$H‹L$H‹T$ H‹îç'éþÿÿf„H…Û…—þÿÿH‰×è_!ÿÿI‰ÆM…ö~ÃH‹5@î'L‰ïèèÿÿH…ÀtH‰D$IƒîM…ö~¡H‹5ê'L‰ïèÆÿÿH…À„_ÿÿÿH‰D$IƒîéLÿÿÿ€Hƒ+¾1H
uüº=H‰
„õ'džõ'=Çxõ'1t6H=·äH‰D$襚ÿÿH‹D$é£ýÿÿH…Û…ÿÿÿéNÿÿÿf.„H‰ßH‰D$ècÿÿ‹1õ'‹5'õ'H‹
õ'H‹D$ë£f„H‹F H‰×H‰D$è_ ÿÿI‰ÆéÿÿÿHT$H‰ÙL‰ïLœüH5®—'艰ÿÿ…À‰þÿÿH§û¾Ü0Ç¿ô'í
H‰¬ô'Ǫô'Ü0é¬ýÿÿDAVAUATI‰üUSHƒì0H‹Zæ'H‹
Kæ'H‹-dŽ%H‹^H‰D$H‰L$H‰l$ H…Ò…Hƒû„v~$Hƒû„ºHƒû…ÀH‹V0H‹N(L‹N ëfI‰ÁH‰êH…Û…¡HƒìI‹œ$ðIt$PA¸H‹=«Ž%HƒUjÿ5–ð'Pjÿ5½ç'QH‰Ùjÿ5¡ë'ÿó'HƒÄPH…À„Hƒ+tHƒÄ0[]A\A]A^ÃH‰ßH‰D$èÛÿÿH‹D$HƒÄ0[]A\A]A^Ãf„H‰êéLÿÿÿ„H…ÛHmúI‰ØH
ZúH%ûHIÈHƒìH‹.Œ%IÁø?SI÷ÐH5ÏÞH‹8L
‚üAƒà1Àè‚#ÿÿHú¾1Ç ó'BÇó'1H‰ó'XZH
ßùºBH=nâè1˜ÿÿHƒÄ01À[]A\A]A^ÃfH‰êé þÿÿ„I‰ÕHƒû„£ŽHƒûtHƒû…-ÿÿÿH‹F0H‰D$ H‹F(L‰ïH‰D$H‹F H‰D$èêÿÿI‰ÆHƒû„“Hƒû…M…ö~*H‹5/æ'L‰ïè_ÿÿH…À„OH‰D$ IƒîM…ö=L‹L$H‹L$H‹T$ H‹þã'éþÿÿf„H…Û…—þÿÿH‰×èoÿÿI‰ÆM…ö~ÃH‹5Èé'L‰ïèøÿÿH…ÀtH‰D$IƒîM…ö~¡H‹5¶å'L‰ïèÖÿÿH…À„_ÿÿÿH‰D$IƒîéLÿÿÿ€Hƒ+¾¥1H
…øº°H‰
”ñ'Ç–ñ'°Çˆñ'¥1t6H=÷àH‰D$赖ÿÿH‹D$é£ýÿÿH…Û…ÿÿÿéNÿÿÿf.„H‰ßH‰D$èsÿÿ‹Añ'‹57ñ'H‹
(ñ'H‹D$ë£f„H‹F H‰×H‰D$èoÿÿI‰ÆéÿÿÿHT$H‰ÙL‰ïLµøH5ޓ'虬ÿÿ…À‰þÿÿH·÷¾k1ÇÏð'BH‰¼ð'Ǻð'k1é¬ýÿÿDAVAUATUH‰ýSHƒì L‹
bâ'L‹%{Š%H‹^L‰L$L‰d$H…Ò…THƒû„BHƒû„(H…Û„ŸH…ÛHL÷I‰ØH
9÷HøHIÈHƒìH‹
‰%IÁø?SI÷ÐH5®ÛH‹8L
aùAƒà1Àèa ÿÿHçö¾2Çÿï'µÇñï'2H‰âï'XZH
¾öºµH=}ßè•ÿÿ1ÀHƒÄ []A\A]A^ÐL‰âH‹ðH‹á'HƒìHu(A¸H‹=ʈ%HƒH‹
/ì'ATjQPjQH‰ÙPjÿ5Âã'ÿ¬î'HƒÄPH…À„‡Hƒ+u“H‰ßH‰D$è„ÿÿH‹D$HƒÄ []A\A]A^ÃfH‹V(L‹N évÿÿÿL‰âëïI‰ÕHƒû„Hƒû„‰H…Û…©þÿÿH‰×è`ÿÿI‰ÆH…À\@L‹L$H‹T$é$ÿÿÿHƒ+¾'2H
­õºüH‰
¼î'Ǿî'üǰî''2„âH=KÞH‰D$èٓÿÿH‹D$éÁþÿÿ€H‹F(H‰×H‰D$H‹F H‰D$èÎÿÿH…ÀŽuÿÿÿHT$H‰ÙL‰ïLöH5\‘'è÷©ÿÿ…À‰OÿÿÿHõ¾ð1Ç-î'µH‰î'Çî'ð1é+þÿÿH‹F H‰×H‰D$è_ÿÿI‰ÆM…öŽÿÿÿH‹5´á'L‰ïèäÿÿH…À„vÿÿÿH‰D$IFÿé_ÿÿÿDH‰ßH‰D$èëÿÿ‹¹í'‹5¯í'H‹
 í'H‹D$éôþÿÿfDH‹5áá'L‰ïè‰ÿÿH…Àt‘H‰D$IƒîézÿÿÿfDAWAVAUATI‰ôUH‰ýSHƒì8L‹5=‡%H‹^HÇD$HÇD$L‰t$ H…Ò…aHƒû„GHƒû…H‹V0I‹D$(M‹L$ H‹ðHƒìHuPA¸H‹=›†%HƒH‰ÙAVjÿ5‚é'ÿ5¬Þ'jÿ5á'Pjÿ5‹ä'ÿýë'HƒÄPH…À„èHƒ+…¼H‰ßH‰D$èÑÿÿH‹D$HƒÄ8[]A\A]A^A_ÃI‹\$„HƒûHlóH
\óHMȝÀHƒì¶ÀSH+ôL@H‹%…%H5Î×L
„õH‹81Àè…ÿÿHó¾Š2Ç#ì'Çì'Š2H‰ì'XZH
âòºH=ÑÛè4‘ÿÿ1ÀHƒÄ8[]A\A]A^A_ÃL‰òé¿þÿÿ„I‰ÕHƒû„s~iHƒûtHƒû…1ÿÿÿH‹F0H‰D$ I‹D$(L‰ïH‰D$I‹D$ H‰D$èìÿÿI‰ÇHƒût`Hƒût{H…Ût4M…ÿ8L‹L$H‹D$H‹T$ éLþÿÿH…Û…ÏþÿÿH‰×è§ÿÿI‰ÇH‹5ã'L‰ïIƒïè1ÿÿH‰D$H…À„–þÿÿH‹5lß'L‰ïèÿÿH‰D$H…À„!IƒïM…ÿ~ŽH‹5¾Þ'L‰ïèîÿÿH…À„®H‰D$ Iƒïé_ÿÿÿ€Hƒ+¾°2H
ñºHH‰
¬ê'Ç®ê'HÇ ê'°2tH=oÚH‰D$è͏ÿÿH‹D$é‘þÿÿH‰ßH‰D$è£ÿÿ‹qê'‹5gê'H‹
Xê'H‹D$ë»f„H‹F H‰×H‰D$èŸÿÿI‰ÇéÿÿÿHT$H‰ÙL‰ïLøñH5N'èɥÿÿ…À‰¢þÿÿHçð¾x2Çÿé'H‰ìé'Çêé'x2éÙýÿÿHƒìH‹²‚%H
ÁðH5TÕjL
óA¸H‰ñH‹81ÀèüÿÿH‚ðY^H‰”é'¾n2Ç‘é'ǃé'n2érýÿÿ@f.„AUATUSH‰ûHƒìH‹-D‚%H‹H‹uèßÿÿ…ÀtH‹{HƒÄH‰Þ[]A\A]é%ÿÿDH‹Cö€³€„öƒ³@tv1ÿèŸÿÿI‰ÅH…ÀtW1ÒH‰ÆH‰ßèÊÿÿIƒmI‰ÄtpM…ät;I‹|$H‹uèmÿÿ…ÀtiL‰æH‰ßè¾ÿÿIƒ,$uHƒÄL‰ç[]A\A]éåÿÿDHƒÄ[]A\A]ÃDH‹q%H5ÚØH‹8HƒÄ[]A\A]éPÿÿL‰ïè¨ÿÿë†fDH‹A%I‹L$H‰ÚH5ZØH‹81Àè ÿÿé}ÿÿÿf.„SH‹GH‰ûL‹@ ö€³t+H‹܁%H¥ØL‰~H‹81Àè;ÿÿ‰ÂH‰؅Òu[ÃH‹р%1É1ÒH5ÙH‹81Àè4ÿÿHƒ+t1À[Ãf.„H‰ßèøÿÿ1Àëè@HƒìH…ÿuè2ÿÿ1ÒH…Àu;‰ÐHƒÄÃ@Hƒ/tRH‹ۀ%H‰òH5éØH‹81ÀèÏÿÿºÿÿÿÿëÍ„H‹9%H‹8èÿÿºÿÿÿÿ…Àt­èóÿÿ1Ò뤀H‰t$ènÿÿH‹t$띀SH‰ûHƒìH‹Gö€³tKHƒH‰ßö€³tcèÿÿHƒ+tHƒÄ[Ãf.„H‰ßH‰D$èÿÿH‹D$HƒÄ[ÄH;9€%t	èBÿÿ…Àtè9ÿÿH…ÀtTHÇÀÿÿÿÿë«èsÿÿÿ뛐H‰ßèÿÿH‰ÃH…ÀtÒH‹@H;€%„hÿÿÿH‰ßè7þÿÿH‰ÃH…Àt»H‹@éOÿÿÿfDH‹1%H5*îH‹8èÿÿ딄SH‰ûHƒìH‹Gö€³tKHƒH‰ßö€³tcè&ÿÿHƒ+tHƒÄ[Ãf.„H‰ßH‰D$è#ÿÿH‹D$HƒÄ[ÄH;I%t	èRÿÿ…ÀtèIÿÿH…ÀtTHÇÀÿÿÿÿë«èsÿÿÿ뛐H‰ßèÿÿH‰ÃH…ÀtÒH‹@H;-%„hÿÿÿH‰ßèGýÿÿH‰ÃH…Àt»H‹@éOÿÿÿfDH‹A~%H5:íH‹8è*ÿÿ딄ATUH‰õH‹5cÙ'SèÿÿH…À„äH‰îH‰ÿ1ÀèòÿÿH‰ÅH…Àtz1ÒH‰ÆH‰ßèÝÿÿHƒmI‰Ät3H‹HPÿM…ät^H‰H…Òt?Iƒ,$t(H‹É~%Hƒ[]A\ÄH‰ïèø
ÿÿëÃfDL‰çèè
ÿÿëÎfDH‰ßèØ
ÿÿë·fDH‹HPÿH
oëH‰H‰
€ä'Ç‚ä'ÒÇtä'7H…ÒtO¾7ºÒH=îÕ虉ÿÿ[1À]A\ÃfH
&ë¾)ºÒÇ9ä'ÒH‰
&ä'Ç$ä')ë½fH‰ßèH
ÿÿH‹
	ä'‹ä'‹5ä'ëžAVAUI‰ýATUSHƒìH‹5×'èÅÿÿH…À„H‹5åã'1ÒH‰ÇH‰Ãè˜ÿÿH‰ÅH…À„tHƒ+„òH‹5³Ý'H‹=”ß'èÿÿI‰ÄH…À„sL‰î¿1ÀL‹5Šâ'èMÿÿH‰ÃH…À„á1ÒH‰ÆL‰÷è4ÿÿHƒ+I‰Å„‡M…턾L‰î¿1ÀèÿÿI‰ÆH…À„[1ÒH‰ÆL‰çèöÿÿIƒ.H‰Ãt}Iƒm„…H…Û„@Iƒ,$tRH‰ÞH‰ïè×ÿÿH…À„®HƒmtgHƒ+t}HƒÄ[]A\A]A^Ã@H‰ßèøÿÿélÿÿÿH‰ßèèÿÿéÿÿÿL‰çèØÿÿë¤fDL‰÷èÈÿÿIƒm…{ÿÿÿL‰ïèµÿÿénÿÿÿH‰ïH‰D$è£ÿÿHƒ+H‹D$…ƒÿÿÿH‰ßH‰D$è‡ÿÿH‹D$HƒÄ[]A\A]A^ÃDHƒmHéH‰%â'Ç'â'ÆÇâ':„‹Hƒ+t5H‹
þá'‹â'‹5úá'H=³Óè.‡ÿÿHƒÄ1À[]A\A]A^ÀH‰ßèÿÿëÁfDH
žè¾ºÆÇ±á'ÆH‰
žá'Çœá'ë f.„HƒmHaèH‰uá'Çwá'ÆÇiá'(„ÇIƒ,$…KÿÿÿL‰çè€
ÿÿé>ÿÿÿHèÇ;á'ÆH‰(á'Ç&á'#éÿÿÿHƒm¾&H
ìçºÆH‰
ûà'Çýà'ÆÇïà'&…ïþÿÿH‰ïè
ÿÿéÏþÿÿ@IƒmuL‰ïèù	ÿÿHƒmHšçH‰®à'ǰà'ÆÇ¢à'7…9ÿÿÿH‰ïèÄ	ÿÿé,ÿÿÿ€H‰ïè°	ÿÿéhþÿÿf.„AUATI‰ÔUH‰õSHƒìH…Ò…wHƒEL‹-«Õ'H‹=là'L‰îè¬
ÿÿH‰ÃH…À„pHƒH‹5Õ'H‰ßèýÿÿI‰ÅH…À„áHƒ+t{L‰âH‰îL‰ïèÍ
ÿÿH‰ÃH…ÀtuIƒmt&Hƒmt.M…ätIƒ,$t3HƒÄH‰Ø[]A\A]ÃDL‰ïèðÿÿHƒmuÒH‰ïèáÿÿëÈ€L‰çèÐÿÿHƒÄH‰Ø[]A\A]ÃfH‰ßè¸ÿÿéxÿÿÿIƒm¾‚NH
LæºüH‰
[ß'Ç]ß'üÇOß'‚N„ÙH=1ç1Ûè{„ÿÿéHÿÿÿfDHƒ+¾NH
ýåºüH‰
ß'Çß'üÇß'NuµH‰ßè&ÿÿH‹
çÞ'‹íÞ'‹5ãÞ'또H‰×èXÿÿI‰ÄH…À…uþÿÿ1ÛéêþÿÿDè[
ÿÿL‰ïèӂÿÿH‰ÃH…À…{þÿÿH
}å¾}NºüǐÞ'üH‰
}Þ'Ç{Þ'}Né-ÿÿÿfDL‰ïè˜ÿÿH‹
YÞ'‹_Þ'‹5UÞ'éÿÿÿAUATI‰ÔUH‰õSHƒìH…Ò…wHƒEL‹-‹Ó'H‹=LÞ'L‰îèŒÿÿH‰ÃH…À„pHƒH‹5ýÒ'H‰ßèÝÿÿI‰ÅH…À„áHƒ+t{L‰âH‰îL‰ïè­ÿÿH‰ÃH…ÀtuIƒmt&Hƒmt.M…ätIƒ,$t3HƒÄH‰Ø[]A\A]ÃDL‰ïèÐÿÿHƒmuÒH‰ïèÁÿÿëÈ€L‰çè°ÿÿHƒÄH‰Ø[]A\A]ÃfH‰ßè˜ÿÿéxÿÿÿIƒm¾ÕNH
,äºH‰
;Ý'Ç=Ý'Ç/Ý'ÕN„ÙH=,å1Ûè[‚ÿÿéHÿÿÿfDHƒ+¾ÒNH
ÝãºH‰
ìÜ'ÇîÜ'ÇàÜ'ÒNuµH‰ßèÿÿH‹
ÇÜ'‹ÍÜ'‹5ÃÜ'또H‰×è8ÿÿI‰ÄH…À…uþÿÿ1ÛéêþÿÿDè;ÿÿL‰ï賀ÿÿH‰ÃH…À…{þÿÿH
]ã¾ÐNºÇpÜ'H‰
]Ü'Ç[Ü'ÐNé-ÿÿÿfDL‰ïèxÿÿH‹
9Ü'‹?Ü'‹55Ü'éÿÿÿH‹Gö€³té.ÿÿfDSH‰ûHƒìH;yu%t	è‚ÿÿ…ÀtèyÿÿH…ÀthHÇÀÿÿÿÿHƒÄ[ÃH‰ßèOÿÿH‰ÃH…ÀtÙH‹hu%H9Cu,f.„H‰ßèˆÿÿÿHƒ+uÅH‰ßH‰D$èÕÿÿH‹D$ë±H‰ßèVóÿÿH‰ÃH…ÀuÎë˜H‹]t%H5VãH‹8èFÿÿë€@AWAVAUI‰ýATUSHƒìH‹-@u%H‹^H‰l$H…Ò…FH…Û„ÍHƒû…L‹v I‹] H‹=LÛ'HƒL‹=©Ù'L‰þèÿÿI‰ÄH…À„EHƒL‰æH‰ßèVÿÿA‰ǃøÿ„šHƒ+„€Iƒ,$„ˆE…ÿ„ÔI‹} H‹5)Ó'èœÿÿH‰ÃH…À„ L‰ö¿1Àèq
ÿÿI‰ÄH…À„½1ÒH‰ÆH‰ßèXÿÿIƒ,$I‰Æ„ZH‹HPÿM…ö„™H‰H…Ò„.Iƒ.„I‹EL‰ïÿH…À„¢Hƒ(„(HƒEHƒÄH‰è[]A\A]A^A_ÐH…ÛH
áH
ýàHIÈH‰ØHÝàHÁø?L
;ãH…ÛLIÊL@HƒìH‹¸r%SHûáH5YÅH‹81Àè
ÿÿHà¾2ǵÙ'ÝǧÙ'2H‰˜Ù'XZH
tàºÝH={ËèÆ~ÿÿHƒÄ1À[]A\A]A^A_ÃDI‰îé9þÿÿ„H‰ßèˆÿÿIƒ,$…xþÿÿL‰çèuÿÿékþÿÿL‰÷èhÿÿéßþÿÿH‰ßèXÿÿéÅþÿÿL‰çèHÿÿé™þÿÿH‰Çè8ÿÿéËþÿÿI‰ÔH…Û„ŒHƒû…ÊþÿÿH‹F H‰×H‰D$è9ÿÿH…ÀiL‹t$é—ýÿÿfDè[ÿÿL‰ÿèÓ|ÿÿI‰ÄH…À…¦ýÿÿH}ßÇšØ'ñH‰‡Ø'H‹Ç‚Ø'RHPÿH‰H…ÒuaH‰ßèžÿÿH‹
_Ø'‹eØ'‹5[Ø'éÄþÿÿfDHƒ+H"ßH‰6Ø'Ç8Ø'ñÇ*Ø'T„	Iƒ,$uL‰çèEÿÿH‹
Ø'‹Ø'‹5Ø'ékþÿÿDH‹5qÉ'H‹=êÖ'1Òè³ÿÿH‰ÃH…ÀtCH‰ÇècîÿÿHƒ+„¡H
ŸÞ¾eºòDz×'òH‰
Ÿ×'ǝ×'eéþÿÿH
nÞ¾aºòǁ×'òH‰
n×'Çl×'aéÕýÿÿHT$H‰ÙL‰çLxßH5žv'èù’ÿÿ…À‰qþÿÿHÞ¾$Ç/×'ÝH‰×'Ç×'$éwýÿÿDH
æÝ¾wºóÇùÖ'óH‰
æÖ'ÇäÖ'wéMýÿÿ€H‹HPÿH§ÝÇÄÖ'óH‰±Ö'ǯÖ'…é,þÿÿf.„H
vݾ‘ºôljÖ'ôH‰
vÖ'ÇtÖ'‘éÝüÿÿ€H‰×èÀÿÿI‰ÆH…ÀŽ„ýÿÿH‹5…Ê'L‰çèEÿþÿH…À„ÕþÿÿH‰D$IFÿéUýÿÿfDH‰ßèPÿþÿéRþÿÿH‰ßèCÿþÿéêýÿÿ@f.„SH‰ûHƒìH‹Gö€³tCèöþþÿHcÈH9ÁuHƒÄ[ÄHƒøÿtEH‹so%H5ÔÇH‹8è„ÿÿ¸ÿÿÿÿëÏDH;o%t	èÿÿ…ÀtèÿÿH…Àtm¸ÿÿÿÿë§èÿÿH…Àt±ëíH‰ßèáÿÿH‰ÃH…ÀtÓH‹ún%H9Cu+@H‰ßèPÿÿÿHƒ+…hÿÿÿH‰߉D$èjþþÿ‹D$éSÿÿÿH‰ßèéìÿÿH‰ÃH…ÀuÉë“H‹ðm%H5éÜH‹8èÙÿÿéxÿÿÿ@AVAUATUH‰ýSHƒìL‹%Òn%H‹^L‰d$H…Ò…ˆH…Û„Hƒû…]H‹^ L9ã„L‹%!Ð'L‰çèéÿÿ…À„ÑL‰æH‰ßèvÿÿH…À„ÍHƒ(„H‹HƒÀH‰HƒÀH‰H‹} Hƒ/„H‰] H‹5ÑÏ'H‰ßè1ÿÿI‰ÄH…À„
H5oÜH‰Çè†ÿÿ…À„ÎH5XÜL‰çèÿÿÿI‰ÅH…À„£óAoEH‰ïE(óAoMM8I‹E H‰EHHE(H‰EPH‹EÿH…À„­Hƒ(„SH‹5Ì'H‰ßè¤ÿÿI‰ÅH…À„ÀH‹½ðHƒ/„GL‰­ð½Hƒ+„±Iƒ,$…½L‰çè®üþÿHƒÄ‰è[]A\A]A^ÀH…ÛHUÚH
EÚHIÈH‰ØH%ÚHÁø?L
ƒÜH…ÛLIÊL@HƒìH‹l%SHHÛH5¡¾H‹81Àè_ÿÿHåÙ¾ÅÇýÒ'±ÇïÒ'ÅH‰àÒ'XZH
¼Ùº±½ÿÿÿÿH=>Åè	xÿÿHƒÄ‰è[]A\A]A^Ãf.„L‰ãL9ã…ìýÿÿH‹-Ñ'H‹=¾Ò'H‰ÞèþüþÿI‰ÄH…À„BHƒH‹5‡Ò'1ÒL‰çè=ÿÿH‰ÃH…À„qIƒ,$„–H‹éÕýÿÿfDèsûþÿéÚýÿÿfDHÙ¾{
º»Ç!Ò'»H‰Ò'ÇÒ'{
H
âØH=nĽÿÿÿÿè4wÿÿHƒ+…!ÿÿÿE1ä€H‰ßèûþÿM…ä…>þÿÿéÿÿÿf.„è[ýþÿL‹-DÐ'H‹=ÕÑ'L‰îèüþÿI‰ÄH…À„HƒH‹5žÑ'1ÒL‰çèTÿþÿI‰ÅH…À„@Iƒ,$„­H‹5ÎÉ'L‰ïè>ÿÿI‰ÄH…À„BH‰޿1ÀèÿÿH‰ÃH…ÀtK1ÒH‰ÆL‰çèþþþÿHƒ+I‰Æ„ÑI‹$HPÿM…öt,I‰$H…Ò„§Iƒ.„I‹EL‰ëéxüÿÿI‹$HPÿH
¾×I‰$H‰
ÎÐ'ÇÐÐ'¶ÇÂÐ'K
H…Ò„±º¶¾K
H=ÃèãuÿÿIƒm½ÿÿÿÿ…ÊýÿÿL‰ïè»ùþÿé½ýÿÿfDH‰Çè¨ùþÿé üÿÿH‰Çè˜ùþÿéàûÿÿè‹ùþÿé¯üÿÿfDI‰ÕH…Û„”Hƒû…ÒüÿÿH‹F H‰×H‰D$è‰ûþÿH…ÀqH‹\$éYûÿÿf.„E1íDL‰çè0ùþÿH‹
ñÏ'‹÷Ï'H=\‹5æÏ'è!uÿÿM…í…5ÿÿÿHƒÄ½ÿÿÿÿ[‰è]A\A]A^Ã@L‰çèèøþÿé]ýÿÿHT$H‰ÙL‰ïLÉ×H5ªt'èE‹ÿÿ…À‰iÿÿÿHcÖ¾·Ç{Ï'±H‰hÏ'ÇfÏ'·é{üÿÿH‹5áÀ'H‹=bÎ'1ÒèýþÿH‰ÅH…À„cH‰ÇèÇåÿÿHƒm„”HÖ¾ž
º¾ÇÏ'¾H‰Ï'ÇÏ'ž
H
ÖÕH=bÁ½ÿÿÿÿè(tÿÿHƒ+…Mûÿÿéùüÿÿf„H‹¡g%H5ÁH‹8èŠûþÿ¾
º´H†ÕH‰šÎ'ÇœÎ'´ÇŽÎ'
H
dÕH=ðÀè»sÿÿéžþÿÿfDèëþþÿH…À„OúÿÿH8Õ¾°
ºÀÇKÎ'ÀH‰8Î'Ç6Î'°
é1ÿÿÿHÕ¾Ã
ºÂÇÎ'ÂH‰Î'ÇÎ'Ã
éÿþÿÿ€HÎÔ¾Î
ºÃÇáÍ'ÃH‰ÎÍ'ÇÌÍ'Î
éÇþÿÿ€L‰çèèöþÿéFüÿÿH‰×èùþÿI‰ÆH…ÀŽxýÿÿH‹5ÍÁ'L‰ïèöþÿH…À„ÑýÿÿH‰D$IFÿéMýÿÿfDL‰÷è˜öþÿéfüÿÿL‰çèˆöþÿéLüÿÿH‰ßèxöþÿé"üÿÿèÛøþÿH‰ßèSqÿÿI‰ÄH…À…©úÿÿHýÓ¾òº³ÇÍ'³H‰ýÌ'ÇûÌ'òéhþÿÿfDHÆÓÇãÌ'³H‰ÐÌ'ÇÎÌ'
Iƒ,$„³üÿÿH‹
´Ì'‹ºÌ'H=¿‹5©Ì'èäqÿÿéÇüÿÿ€H‰ïèÀõþÿé_ýÿÿè#øþÿL‰ïè›pÿÿI‰ÄH…À…ÚúÿÿHEÓ¾"
ºµÇXÌ'µH‰EÌ'ÇCÌ'"
é°ýÿÿfDHÓÇ+Ì'µH‰Ì'ÇÌ'0
éCÿÿÿHæÒL‰ë¾=
º¶H‰íË'ÇïË'¶ÇáË'=
éÐùÿÿH²Ò¾š
º¾ÇÅË'¾H‰²Ë'ǰË'š
é«üÿÿf.„AWAVAUI‰ýATUSHƒì(H‹ f%H‹^H‰D$H…Ò…ÖH…Û„íHƒû…+H‹^ HƒI‹} H‹5ˆ¾'è+ýþÿH‰ÅH…À„ßH‹5àÆ'H‰Çè õþÿI‰ÄH…À„4H‹5É'ºH‰Çè0ûþÿA‰ƅÀˆ…Iƒ,$„"E…ö„ÁL‹5Úd%H;{e%”ÀL9ó”ÂÂu
H;·d%…Y¶À„ŽL‹=ϼ'H‹=ØÊ'L‰þèõþÿI‰ÄH…À„|HƒH‹5¹¼'L‰çèiüþÿI‰ÇH…À„]Iƒ,$„rH‹5ã»'1ÒL‰ÿè1øþÿH‰ÂH…À„Iƒ/„‹Hƒ*„±IƒHƒ+„“L‰óIc}Xè÷óþÿI‰ÄH…À„³H‹5œÃ'H‰ÂH‰ïèIúþÿ…ÀˆÉIƒ,$„FòAE`è[òþÿI‰ÄH…À„H‹5ÀÃ'H‰ÂH‰ïè
úþÿ…Àˆ-Iƒ,$„ÒH;Kd%”ÀH;™c%”ÂÂ…nH;c%„aH‰ßèõþÿ…Àˆ1…À„TH‹5Å'H‰ïèÚóþÿI‰ÄH…À„†H‹5‡¼'H‰ïè¿óþÿI‰ÅH…À„›H‹5Â'H‰Çè¤óþÿH‰ÂH…À„©Iƒm„µH‹5F¼'H‰ïH‰T$èyóþÿH‹T$H…ÀI‰Ç„©H‹5~'H‰ÇH‰T$èTóþÿH‹T$H…ÀI‰Å„®Iƒ/„‰H‹5JÂ'H‰ïH‰T$è%óþÿH‹T$H…ÀI‰Ç„©H‹5…Â'H‰ïH‰T$èóþÿH‹T$H…ÀI‰Æ„«¿H‰T$è÷þÿH‹T$H…ÀI‰À„kL‰` H‰P(L‰h0L‰x8L‰p@H‹EHƒèé(fDH…ÛH%ÏH
ÏHIÈH‰ØHõÎHÁø?L
SÑH…ÛLIÊL@HƒìH‹Ð`%SH.ÐH5q³H‹81Àè/øþÿHµÎ¾àÇÍÇ'öÇ¿Ç'àH‰°Ç'XZH
ŒÎºöH=CºèÞlÿÿE1ÀHƒÄ(L‰À[]A\A]A^A_Ãf„H‹b%éüÿÿ@H‰ßèøòþÿ…À‰šüÿÿH6ÎÇSÇ'H‰@Ç'Ç>Ç'é?f„¶À…¬ýÿÿH‹EI‰èHPH‰UH‰EH…ÀtEHƒ+…hÿÿÿH‰ßL‰D$è&ðþÿL‹D$éQÿÿÿ@L‰çèðþÿé!ýÿÿL‰çèðþÿéÑûÿÿH‰ïL‰D$èëïþÿL‹D$ë§@L‰çèØïþÿé­üÿÿH‰ÕH…Û„ŒHƒû…RþÿÿH‹F H‰×H‰D$èÙñþÿH…À°H‹\$éûÿÿfDH6ÍE1ÀÇPÆ'H‰=Æ'Ç;Æ'H‹
,Æ'‹2Æ'H=ǸL‰D$‹5Æ'èWkÿÿL‹D$M…À„üþÿÿL‰Åé&L‰çè(ïþÿéûÿÿHÆÌI‰èÇàÅ'H‰ÍÅ'ÇËÅ'ëŽf„L‰ÿH‰D$èãîþÿH‹T$é^ûÿÿf„H‰ßL‰óèÅîþÿé`ûÿÿH‰×è¸îþÿéBûÿÿHVÌE1í1ÒÇnÅ'H‰[Å'ÇYÅ'I‹$E1öHƒèI‰$u$E1ÿL‰çH‰T$èhîþÿM…ÿH‹T$t
Iƒ/„¤H…Òt
Hƒ*„µM…ítIƒm„µM…ötIƒ.t2H‹
ëÄ'‹ñÄ'H=†·‹5àÄ'èjÿÿH‹EE1ÀHƒèéµýÿÿL‰÷èðíþÿëÄfDIƒ/HŠËH‰žÄ'Ç Ä'Ç’Ä'1u–E1öE1íf.„L‰ÿH‰T$è£íþÿH‹T$éEÿÿÿf„H‰×èˆíþÿé>ÿÿÿL‰ïèxíþÿé>ÿÿÿL‰ÿH‰T$ècíþÿH‹T$é`ûÿÿf„HöÊE1í1ÒÇÄ'H‰ûÃ'ÇùÃ'&é›þÿÿHÊÊÇçÃ'&H‰ÔÃ'ÇÒÃ'“fIƒ,$…—þÿÿé{þÿÿHT$H‰ÙH‰ïLìËH5c'èRÿÿ…À‰*ýÿÿHpʾÒLjÃ'öH‰uÃ'ÇsÃ'Òé¸ûÿÿfDH>ÊI‰èÇXÃ'#H‰EÃ'ÇCÃ'PéýÿÿfDHÊE1í1ÒÇ&Ã'#H‰Ã'ÇÃ'Ré³ýÿÿ@H‰×è`îþÿI‰ÆH…ÀŽ„üÿÿH‹5]»'H‰ïèåëþÿH…À„ÿÿÿH‰D$IFÿéUüÿÿfDHžÉI‰èǸÂ'$H‰¥Â'Ç£Â'\écüÿÿfDHnÉE1í1ÒdžÂ'$H‰sÂ'ÇqÂ'^éýÿÿ@L‰ïH‰D$è‹ëþÿH‹T$é4ùÿÿH&ÉÇCÂ'%H‰0Â'Ç.Â'hé/ýÿÿf„è»íþÿL‰ÿè3fÿÿI‰ÄH…À…o÷ÿÿHÝÈI‰èÇ÷Á'H‰äÁ'ÇâÁ'$é¢ûÿÿDH®ÈI‰èÇÈÁ'&H‰µÁ'dzÁ'sésûÿÿfDH~È1ÒÇ™Á'&H‰†Á'Ç„Á'ué&üÿÿHUÈM‰ïE1öÇlÁ'&H‰YÁ'E1íÇTÁ'wéýÿÿH%ÈE1íÇ?Á'&H‰,Á'Ç*Á'zéÌûÿÿHûÇE1öÇÁ'&H‰Á'ÇÁ'|é+ýÿÿHÑÇÇîÀ''H‰ÛÀ'ÇÙÀ'‡é{ûÿÿHªÇÇÇÀ''H‰´À'DzÀ'‰éÝüÿÿf.„AWAVAUATUSH‰ûHƒìHL‹%pZ%H‹nL‰d$8H…Ò…æH…í„íHƒý…3H‹n HÇD$HÇD$HÇD$ HÇD$(HÇD$0HÇD$8L9å„°L‹%¡¶'H‹=:À'L‰æèzêþÿI‰ÆH…À„ÖHƒH‰D$ H‹5fº'L‰÷èÆñþÿI‰ÇH‰D$H…À„5H‹|$ Hƒ/„¶HÇD$ ¿èCîþÿI‰ÆH‰D$ H…À„jHƒEH‰h èTëþÿI‰ÇH‰D$H…À„‹H‹-¶'H‹=¿'H‰îèÝéþÿI‰ÇH…À„ÙHƒH‹5†¸'L‰ÿè.ñþÿI‰ÄH…À„	Iƒ/„ÈH‹5±¹'H‹|$L‰âèäçþÿ…Àˆ¼Iƒ,$„ñH‹T$H‹t$ H‹|$èÍìþÿI‰ÆH…À„q	H‹|$Hƒ/„ÒHÇD$H‹|$ Hƒ/„ÚHÇD$ H‹|$Hƒ/„²L‰t$Iƒ>„ÃI‹FA‹v HÇD$I‹~(H‰$H‹»¾'ÿðI‰ÅH…ÀŽ&HC(1íH‰D$H‹»ðH‹5¨¸'è3ðþÿI‰ÇH…À„ïH‹»ðH‹5¡¸'èðþÿI‰ÄH…À„PH‹51¾'H‰Ç1ÒHÇD$ èÞëþÿH‹|$ H‰D$H…ÿtHƒ/„¥H‹D$HÇD$ H…À„~Iƒ,$„3H‹|$Hƒ/„HÇD$è¶êþÿH‹|$I‰Äè™éþÿH‹$L‰çH‰éèIêþÿH‹5Ү'1ÒL‰ÿèXëþÿH‰D$(Iƒ/„9L‹|$(M…ÿ„‹Iƒ/„1HÇD$(HƒÅI9í…åþÿÿI‹HBI‰L‰ðé•f„H…íHÄH

ÄHIÈH‰èHíÃHÁø?L
KÆH…íLIÊL@HƒìH‹ÈU%UH0ÅH5i¨H‹81Àè'íþÿH­Ã¾ÇÇż'IÇ·¼'ÇH‰¨¼'XZH
„úIH=k¯èÖaÿÿ1ÀHƒÄH[]A\A]A^A_ÃDL‰åéüÿÿ„L‰ÿè˜åþÿé+ýÿÿH6ÃE1ÿE1öÇM¼'zH‰:¼'Ç8¼'«„H‹|$H…ÿt
Hƒ/„H‹|$H…ÿt
Hƒ/„H‹|$ H…ÿt
Hƒ/„M…ÿt
Iƒ/„M…ätIƒ,$„H‹
ƻ'‹̻'H=‘®‹5»»'èö`ÿÿ1ÀM…ö„ÿÿÿI‹HSÿI‰H…Ò…ÿÿÿL‰÷H‰$è¼äþÿH‹$HƒÄH[]A\A]A^A_Ãf„H‹»ðH‹5²µ'è=íþÿI‰ÆH…À„¡H‹»ðH‹5«µ'èíþÿH‰D$H…À„àH‹59»'H‰Ç1ÒHÇD$ èæèþÿH‹|$ H‰D$H…ÿtHƒ/„õH‹D$HÇD$ H…À„ÖH‹|$Hƒ/„oHÇD$H‹|$Hƒ/„GHT$8Ht$0HÇD$H|$(è2èþÿH{(è‰æþÿH‰ÇèaäþÿI‰ÇH‰D$H…À„˜H‹T$8H‹t$0HÇD$H‹|$(èSèþÿ1ÒL‰÷L‰|$8H‹5’«'èèþÿH‰D$0Iƒ.„þL‹t$0M…ö„ÖIƒ.„6H‹D$8HƒÄH[]A\A]A^A_Ãfè;ãþÿé@úÿÿfDè+ãþÿéÚýÿÿfDèãþÿéÞýÿÿfDèãþÿéâýÿÿfDL‰ÿèøâþÿéÞýÿÿL‰çèèâþÿéÞýÿÿèÛâþÿéâûÿÿfDL‰çèÈâþÿéÀûÿÿI‰ÕH…턼Hƒý…JüÿÿH‹F H‰×H‰D$8èÉäþÿH…À’H‹l$8é÷øÿÿfDè{âþÿéQûÿÿfDL‰ÿèhâþÿéºûÿÿL‰ÿèXâþÿéÂûÿÿL‰çèHâþÿéúÿÿè;âþÿé$úÿÿfDè+âþÿéDúÿÿfDèâþÿéúÿÿfDL‰÷èâþÿL‹t$é+úÿÿHT$8H‰éL‰ïLÁH5•X'è`tÿÿ…À‰HÿÿÿH~¿¾¹Ç–¸'IH‰ƒ¸'ǁ¸'¹éÎûÿÿ@è£áþÿé¯ýÿÿfDè“áþÿé‡ýÿÿfDH.¿E1äÇH¸'H‰5¸'Ç3¸'ÞéþûÿÿfDèÃãþÿL‰çè;\ÿÿI‰ÆH‰D$ H…À…øÿÿHà¾E1äE1ÿÇ÷·'zH‰ä·'Çâ·'šé­ûÿÿDH®¾Ç˷'H‰¸·'Ƕ·'àIƒ/„¬E1ÿétûÿÿ@H‹|$E1öE1äHk¾H‰·'ǁ·'zÇs·'œH…ÿ…DûÿÿM‰÷éZûÿÿfH6¾ÇS·'H‰@·'Ç>·'îë†@H¾E1äE1ÿÇ%·'zH‰·'Ç·'ŸéÛúÿÿè3àþÿéüÿÿfDHνE1öE1äÇå¶'zH‰Ҷ'Çж'¤é¯úÿÿH‰×è âþÿI‰ÆH…ÀŽTýÿÿH‹5uª'L‰ïè¥ßþÿH…À„ÎýÿÿH‰D$8IFÿé%ýÿÿfDè#âþÿH‰ïè›ZÿÿI‰ÆH…À…âHE½E1äM‰÷Ç\¶'zH‰I¶'ÇG¶'¦éúÿÿfL‰÷èhßþÿéõûÿÿH½E1öÇ ¶'zH‰
¶'Ƕ'¨éÖùÿÿfDL‰ÿE1ÿè%ßþÿéÀùÿÿL‰÷èßþÿé½ûÿÿH¶¼E1äÇе'H‰½µ'Ç»µ'"é†ùÿÿfDH†¼E1äE1ÿǝµ'wH‰е'Ljµ'ÿéSùÿÿHV¼E1äE1ÿÇmµ'zH‰Zµ'ÇXµ'­é#ùÿÿH&¼ÇCµ'wH‰0µ'Ç.µ'Iƒ.„´E1äE1ÿE1öéæøÿÿfDHæ»Çµ'wH‰ð´'Çî´'ë¾@H‹|$L-¹»Çִ'xL‰-ô'Çt'%H…ÿt
Hƒ/„9HÇD$H‹|$ H…ÿt
Hƒ/„&‹“´'‹5‰´'H=R§HÇD$ H‹
j´'è­YÿÿHT$ Ht$H|$è	Uÿÿ…Àˆ$H‹L$ H‹T$1?H‹t$èäþÿH…À„B1ÒH‰ÆL‰÷H‰$èìáþÿIƒ.H‹$H‰Æ„»Hƒ)„œH…ö„KH;5‰N%”ÀH;5×M%”ÂÂ…HL9æ„?H‰÷H‰4$èWßþÿH‹4$A‰ÄHƒ.„0E…䉠L‰-ž³'Ç ³'wÇ’³'FfH‹T$8H‹t$0E1äE1öH‹|$(èfáþÿéA÷ÿÿL‰÷E1äE1ÿE1öèÜþÿé*÷ÿÿH0ºE1äE1ÿÇG³'wH‰4³'Ç2³'yéýöÿÿL‰-³'Ç ³'wdz'9é}ÿÿÿH‹|$E…ä„ÊH…ÿt
Hƒ/„/HÇD$H‹|$H…ÿt
Hƒ/„HÇD$H‹|$ H…ÿt
Hƒ/„ÿH‹T$8H‹t$0HÇD$ H‹|$(è‰àþÿétòÿÿHƒ.D¶à…yÿÿÿH‰÷è®ÛþÿéÃþÿÿè¤Ûþÿé½ýÿÿèšÛþÿéÐýÿÿH‰ÏH‰4$è‰ÛþÿH‹4$éOþÿÿL‰÷H‰D$èsÛþÿH‹t$H‹$é*þÿÿH‹T$ H‹t$è¶ÞþÿL‰-²'HÇD$HÇD$HÇD$ Çþ±'wÇð±'Né[þÿÿL‰-ܱ'Çޱ'wÇб'=é;þÿÿèöÚþÿéîþÿÿèìÚþÿéÇþÿÿèâÚþÿé÷þÿÿL‰-ž±'Ç ±'wÇ’±'BéýýÿÿI‰Çé(òÿÿDAWAVAUATI‰ôUSHƒìHH‹PK%H‹^H‰|$HÇD$ H‰D$(H‰D$0H…Ò…»Hƒû„Hƒû„ßHƒû„µH…ÛH¸H
¸HOÈŸÀHKº¶ÀL
طLOÊLDHƒìH‹ÀI%SH1¹H5aœH‹81ÀèáþÿH¥·¾+'ǽ°'Òǯ°'+'H‰ °'XZH
|·ºÒH=“£E1íèËUÿÿHƒÄHL‰è[]A\A]A^A_Ãf„H‹QJ%H‰D$H‰ÅM‹d$ Iƒ$H‹=x°'HƒEH;-,J%„~L‹-O¢'L‰îèŸÚþÿH‰ÃH…À„cHƒH‹5@¢'H‰ßèðáþÿI‰ÆH…À„Hƒ+„bH‹5û©'H‹=¬¬'èÇáþÿH‰ÃH…À„+è–ÛþÿI‰ÅH…À„ZH‹5£§'L‰âH‰ÇèxØþÿ…Àˆ@H‹5)©'H‰êL‰ïè^Øþÿ…ÀˆŽH‹5Ÿ¯'L‰êH‰ßèTÝþÿI‰ÇH…À„(Hƒ+„VIƒm„;¿èéÝþÿH‰ÃH…À„­	L‰x H‹2®'1ÒH‰ÞL‰÷HƒH‰C(èýÜþÿI‰ÅH…À„
Hƒ+„Iƒ.„ýIƒm„âH‹5K¤'H‹|$èÑàþÿI‰ÇH…À„µH‹vH%H9E„TH‰ïè<ÛþÿI‰ÆH…À„HH‹5i 'L‰÷è‘ÜþÿH‰ÃH…À„…Iƒ.„Ë¿è!ÝþÿI‰ÆH…À„M	Iƒ$H‰X(L‰` è3ÚþÿH‰ÃH…À„·	H‹T$H‹5#¢'H‰Çè×þÿ…Àˆ[H‹ü¦'H‹5½¨'H‰ßèõÖþÿ…ÀˆÍH‰ÚL‰öL‰ÿèïÛþÿI‰ÅH…À„
Iƒ/„©Iƒ.„Hƒ+„uIƒ,$„af.„Hƒm…JýÿÿH‰ïèýÖþÿé=ýÿÿ„H‹џ'H‰Þè!ØþÿI‰ÆH…À„¥HƒH‹5Ÿ'L‰÷èrßþÿH‰ÃH…À„ŽIƒ.„œH‹5}§'H‹=6ª'èIßþÿI‰ÆH…À„õèÙþÿI‰ÇH…À„lH‹5%¥'L‰âH‰ÇèúÕþÿ…ÀˆH‹5;­'L‰úL‰÷èðÚþÿI‰ÅH…À„”Iƒ.„ÚIƒ/„À¿è†ÛþÿI‰ÆH…À„šL‰h H‹ϫ'1ÒL‰öH‰ßHƒI‰F(èšÚþÿI‰ÅH…À„•Iƒ.„DHƒ+„*Iƒm„H‹€F%Iƒ$H‹
tF%H‹H‰D$HƒèH‰„×H‹ ž'HƒIƒ,$„©L‰åI‰ÜéTýÿÿfDH‹F0H‰D$I‹l$(éÜûÿÿDH‹F%H‰D$ëãf.„Iƒ/Hò²H‰¬'Ǭ'/Çú«',(„¬Iƒ.„*H…Ût/E1íE1ÿHƒ+„½M…ÿt
Iƒ/„M…ítIƒm„®H‹
§«'‹­«'E1íH=Ÿž‹5™«'èÔPÿÿIƒ,$…©ýÿÿL‰çè±Ôþÿéœýÿÿ@HN²1ÛÇi«'/H‰V«'ÇT«'*(Iƒ/uE1öL‰ÿèpÔþÿM…ö…CÿÿÿH…Û„xÿÿÿE1íHƒ+…XÿÿÿE1ÿH‰ßè@Ôþÿé6ÿÿÿL‰ïè0ÔþÿéEÿÿÿHαÇëª'#H‰ت'Ç֪'['Iƒ.…ÿÿÿE1ÿL‰÷èñÓþÿM…ÿ„ÿÿÿIƒ/…øþÿÿE1íL‰ÿèÐÓþÿéÕþÿÿH‰ßèÀÓþÿé‘úÿÿH‰ÕHƒû„»Ž•HƒûtHƒû…@ùÿÿH‹F0H‰D$0I‹D$(H‰ïH‰D$(I‹D$ H‰D$ è ÕþÿI‰ÇHƒû„ˆHƒû…©M…ÿ~*H‹5å'H‰ïèÓþÿH…À„1H‰D$0IƒïM…ÿH‹D$0L‹d$ H‹l$(H‰D$é…ùÿÿH…Û…²øÿÿH‰×è/ÕþÿI‰ÇH‹5¥¡'H‰ïIƒïè¹ÒþÿH‰D$ H…À„"M…ÿ~¬H‹5£'H‰ïè—ÒþÿH…À„jÿÿÿH‰D$(IƒïéWÿÿÿHƒEI‰îé³úÿÿHF°E1ÿÇ`©',H‰M©'ÇK©'ß'Iƒ.…býÿÿL‰÷èiÒþÿH…Û…QýÿÿéVýÿÿL‰ïèPÒþÿé¸ùÿÿH‰ßè@ÒþÿéùÿÿHޯE1ÿÇø¨',H‰å¨'Çã¨'à'떐L‰÷èÒþÿéWûÿÿL‰÷èøÑþÿé(úÿÿè[ÔþÿL‰ïèÓLÿÿH‰ÃH…À…ˆøÿÿH}¯Çš¨'*H‰‡¨'Ç…¨'Î'éÊüÿÿH‰ßè¨Ñþÿé~úÿÿL‰÷è˜ÑþÿédúÿÿL‰ÿèˆÑþÿéJúÿÿH&¯ÇC¨',H‰0¨'Ç.¨'á'éÞþÿÿf„L‰ïèHÑþÿéùÿÿL‰÷è8ÑþÿéöøÿÿH‰ßè(ÑþÿéÜøÿÿHƮE1íÇà§'*H‰ͧ'Ç˧'Ð'éžüÿÿfDE1íE1ÿétþÿÿDH†®Ç£§',H‰§'Çާ'Û'é³üÿÿf„H…Û…týÿÿé¦ýÿÿfHF®E1ÿÇ`§',H‰M§'ÇK§'Ý'éûýÿÿfDL‰ÿèhÐþÿé3úÿÿL‰÷èXÐþÿéúÿÿHö­E1íǧ'$H‰ý¦'Çû¦'j'é«ýÿÿfDHƭÇã¦'/H‰Ц'ÇΦ'9(Iƒ/…Ðúÿÿéwûÿÿ€L‰çL‰åI‰ÜèÚÏþÿé£÷ÿÿDH‰ÏèÈÏþÿéúÿÿL‰ïè¸ÏþÿéäùÿÿH‰ßè¨ÏþÿéÉùÿÿL‰÷è˜Ïþÿé¯ùÿÿH6­ÇS¦'/H‰@¦'Ç>¦':(ékÿÿÿf„H­Ç#¦'/H‰¦'Ǧ'((éSúÿÿf„è›ÑþÿH‰ßèJÿÿI‰ÆH…À…FøÿÿH½¬Çڥ'#H‰ǥ'Çť'Y'é
úÿÿH‹F H‰×H‰D$ èÑþÿI‰Çéüûÿÿ€Iƒ.Hr¬H‰†¥'Lj¥'*Çz¥'(…¼úÿÿé¦úÿÿ€H>¬E1íÇX¥'$H‰E¥'ÇC¥'f'éúÿÿfDH¬Ç+¥'/H‰¥'Ç¥'/(é½ùÿÿHæ«Ç¥'*H‰ð¤'Çî¤'(éõøÿÿf„H¶«E1íÇФ'$H‰½¤'Ç»¤'h'ékûÿÿfDH†«Ç£¤'/H‰¤'Çޤ'7(é»ýÿÿf„HV«Çs¤'$H‰`¤'Ç^¤'k'éûÿÿf„H&«ÇC¤'#H‰0¤'Ç.¤'–'éùÿÿHÿªÇ¤'#H‰	¤'Ǥ'¡'éøÿÿHتÇõ£'/H‰â£'Çà£';(é
ýÿÿHT$ H‰ÙH‰ïL¬H5RD'èm_ÿÿ…À‰»ùÿÿH‹ª¾'Ç££'ÒH‰£'ÇŽ£''éãòÿÿI‹\$éZòÿÿDf.„AVAUATI‰üUSHƒìH‹Fö€³„8H‰÷èXÌþÿH‰ÅHƒýÿ„›H‰èH]HƒèHIØHÁûHƒÃH‹5m˜'L‰çèõÔþÿI‰ÆH…À„ÉèÄÎþÿI‰ÄH…À„H‰ßèÓþÿH‰ÃH…À„TH‹5¥–'H‰ÂL‰çè’Ëþÿ…ÀˆºHƒ+„àL‹-A™'H‹=ڢ'L‰îèÍþÿH‰ÃH…À„>HƒH‹53•'H‰ßèkÔþÿI‰ÅH…À„gHƒ+„=H‹5îœ'L‰êL‰çè#Ëþÿ…Àˆ›Iƒm„H‹5y“'L‰âL‰÷èÐþÿH‰ÃH…À„BIƒ.„Iƒ,$„õH‹5ž'H‰ßèîÓþÿI‰ÄH…À„BHƒ+„ðH‹5¡”'¿1ÀèµÑþÿI‰ÅH…À„I1ÒH‰ÆL‰çèœÏþÿIƒmH‰Ã„ÆI‹$HƒèH…Û„%I‰$H…À„¸H‹5y”'H‰ßèqÓþÿI‰ÄH…À„Hƒ+„SH‹5„¡'1ÒL‰çè:ÏþÿH‰ÃH…À„Iƒ,$„;H‰ïèëÑþÿH‰ÅH…ÀtsH‹=$;%H‰ÆH‰úè1ÑþÿHƒmI‰Ä„3M…ätNL‰æH‰ßèƒËþÿIƒ,$„(H‹HJÿH…Àt/H‰H…É„èHƒÄ[]A\A]A^ÃH‰ßèÊþÿéþÿÿH‹H£§Ç '!H‰­ 'HBÿǧ '9H‰H…ÀtWH‹
 '‹– 'H=»“‹5… 'èÀEÿÿHƒÄ1À[]A\A]A^ÐHƒ+HB§H‰V 'ÇX '!ÇJ ''u©H‰ßèpÉþÿëŸfDH‰ßè`Éþÿé¶ýÿÿH‰ßèPÉþÿé þÿÿL‰çè@Éþÿé¸þÿÿH‰ßH‰D$è+ÉþÿH‹D$éÿÿÿH‰ïèÉþÿéÀþÿÿL‰çH‰D$èÉþÿH‹D$éÁþÿÿf„H–¦1ÛDZŸ' H‰žŸ'ÇœŸ'ÿ@Iƒ.„îIƒ,$t?H…ÛtHƒ+t$M…í„ÔþÿÿIƒm…ÉþÿÿL‰ïèÈþÿé¼þÿÿH‰ßè€ÈþÿëÒfDL‰çèpÈþÿë·fDL‰ïè`ÈþÿéÛüÿÿL‰çèPÈþÿéþüÿÿL‰÷è@ÈþÿéãüÿÿH‰ßè0ÈþÿéýÿÿL‰ïè Èþÿé-ýÿÿL‰çèÈþÿé;ýÿÿH;D8%tH‰ßèJÎþÿ…À„[è=ÏþÿH…À„¶Hƒ+uH‰ßèÖÇþÿfDèÏþÿ»HÇÅÿÿÿÿH…À„bûÿÿH
\¥º¾®Çož'H=”‘H‰
Už'ÇSž'®èŽCÿÿ1ÀéWýÿÿ€H¥Ç3ž' H‰ ž'Çž'âézýÿÿf„Hæ¤E1íÇž' H‰í'Çë'ðéNþÿÿfDIƒ.H²¤H‰Ɲ'Çȝ' Ǻ'ì…ýÿÿL‰÷èÜÆþÿéýÿÿ€L‰÷èÈÆþÿéþÿÿHf¤E1íÇ€' H‰m'Çk'îéÎýÿÿfDèûÈþÿL‰ïèsAÿÿH‰ÃH…À…­úÿÿH¤E1íÇ7'!H‰$'Ç"'úé…ýÿÿDHî£Ç'!H‰øœ'Çöœ'üéYýÿÿHƣE1íÇàœ' H‰͜'ǘ'	é.ýÿÿfDH–£I‰Ýǰœ'!H‰œ'Ç›œ'é#ýÿÿfDI‹$HƒèH
^£Ç{œ'!H‰
hœ'Çfœ'$I‰$H…À…ºûÿÿL‰çèÅþÿé­ûÿÿ@H£Ç;œ'!H‰(œ'I‹$Ç"œ'6Hƒèë¶@H;5%tH‰÷H‰t$è‚ËþÿH‹t$…Àt)ètÌþÿH…À…KýÿÿH‹¼4%H5µ£H‹8è¥Èþÿé0ýÿÿH‰÷è8ÈþÿH‰ÃH…ÀtÇH‹@H;M5%u2ö€³„ÈüÿÿH‰ßè«ÄþÿH‰ÅHƒ+…IøÿÿH‰ßè¶Äþÿé<øÿÿH‰ßè9³ÿÿH‰ÃH…À„ÍüÿÿH‹@ë·H‰ßèÏÇþÿI‰ÅH…À„‘üÿÿH‹ä4%I9Eu)I‹EL‰ïö€³t.èAÄþÿH‰ÅIƒmuL‰ïèOÄþÿë…L‰ïèղÿÿI‰ÅH…ÀuÇéTüÿÿèôÿÿH‰ÅëÐH‹Ï3%H5ȢH‹8è¸Çþÿé/üÿÿAWAVAUATUSHƒìXH‹-›Œ'L‹%ŒŒ'H‹¥4%H‹^H‰|$H‰l$0L‰d$8H‰D$@H…Ò…\
Hƒû„
~(Hƒû„Hƒû…$L‹~0L‹f(H‹n ëfDL‹=I4%H…Û…H‹‰š'¿H‹˜(ÿhE1É1É1ÒA¸H‰ÆH‰ïÿÓH‰ÃH…À„æ
Hƒ8„”H‹Eš'¿L‹¨(ÿhE1É1É1ÒA¸H‰ÆL‰çAÿÕI‰ÅH…À„Ù
Hƒ8„GA‹E ;C „RL‹%C'H‹=ܙ'L‰æèÄþÿH‰ÅH…À„X
HƒH‹5Œ'H‰ïèmËþÿI‰ÄH…À„Ù
Hƒm„Æ¿èüÇþÿH…À„IƒE1ÒH‰ÆL‰çL‰h HƒH‰X(H‰D$èÇþÿL‹T$H…ÀI‰Æ„WIƒ*„õIƒ,$„úH‹K™'IƒL‰÷ÿ0I‰ÄH…À„º
Hƒ8„ 
H‹-q'H‹=
™'H‰îèJÃþÿH‰ÂH…À„ŽHƒH‹5•'H‰×H‰T$è–ÊþÿH‹T$H…ÀI‰Â„õHƒ*„ë	H‹'H‹=µ˜'L‰T$H‰ÆH‰D$èëÂþÿL‹T$H…ÀH‰Å„:HƒH‹5o‘'H‰ïL‰T$è2ÊþÿL‹T$H…ÀI‰Ã„	Hƒm„&
1ÀL‰æ¿L‰T$L‰\$èíÇþÿL‹\$L‹T$H…ÀH‰Å„§1ÒL‰ßH‰ÆL‰T$L‰\$èÀÅþÿHƒmL‹\$H‰ÁL‹T$„`
H…É„oIƒ+„%
H‰Î1?L‰T$H‰L$è|ÇþÿH‹L$L‹T$H…ÀH‰Å„&1ÒL‰×H‰ÆH‰L$L‰T$èOÅþÿHƒmL‹T$I‰ÃH‹L$„¯
Hƒ)„í
I‹HƒèM…Û„õI‰H…À„¹
L;Ò1%”ÀL; 1%”ÂÂu
L;
1%…Œ¶èIƒ+„W…í„ÜH‹L$HƒìL‰úI‰ÙA¸H‹=#0%L‹™ðHq(IƒH‹u“'L‰Ùÿ5´0%jPÿ5“ˆ'jPATjPL‰\$Xÿè•'HƒÄPL‹\$H…ÀI‰Ç„ËIƒ+…L‰ß蹿þÿé
@H‰Ç訿þÿé_üÿÿ…À…¦üÿÿH‰ïè`Àþÿf.`¡òD$‹üL‰çèDÀþÿf.D¡‹.	ò\D$L‹%±Œ'H‹=J–'L‰æòD$è„ÀþÿH‰ÅH…À„
HƒH‹5
'H‰ïèÕÇþÿI‰ÃH…À„q
Hƒm„>òD$L‰\$ è>¾þÿL‹\$ H…ÀI‰Ä„­
H‰ƿ1ÀL‰\$ èyÅþÿL‹\$ H…ÀH‰Å„ø
1ÒL‰ßH‰Æè[ÃþÿHƒmL‹\$ I‰Â„Iƒ,$„]I‹HPÿM…Ò„Ï
I‰H…Ò„‰L;â/%”ÀL;0/%”ÂÂ…µL;/%„¨L‰×L‰T$ è«ÀþÿL‹T$ …	ʼnHâ›E1ÿE1ÛE1öH‰í”'E1äÇì”'PÇޔ'·$fDIƒ*…Ó1íL‰×L‰\$èï½þÿH…íL‹\$„¶Hƒm…«H‰ïL‰\$èɽþÿL‹\$销H‰Ç谽þÿA‹E ;C …±úÿÿéþýÿÿfDL‹=I.%éäùÿÿ@H…ÛHE›I‰ØH
2›HžœHIÈHƒìH‹-%IÁø?SI÷ÐH5§H‹8L
ZAƒà1ÀèZÄþÿHàš¾#$Çø“'ëÇê“'#$H‰ۓ'XZH
·šºëH=&‡1Ûè9ÿÿHƒÄXH‰Ø[]A\A]A^A_ÃDH‰ïèؼþÿé-úÿÿH‰ïH‰D$ èüþÿL‹\$ é«ýÿÿf„¶èIƒ*„³…í„k	H‹D$òD$L‹ðIƒL‰T$ 軻þÿL‹T$ H…ÀI‰Ã„š	òD$L‰T$ H‰D$蕻þÿL‹\$L‹T$ H…ÀH‰Å„/
H‹¨'M‰ÙL‰ÑL‰úH‹t$Hƒìÿ5Ø,%A¸H‹=,%jPHƒÆ(ÿ5¦„'jPUjPL‰\$`L‰T$Xÿ÷‘'HƒÄPL‹T$L‹\$H…ÀI‰Ç„õ	Iƒ*„ÓIƒ+„¹HƒmA¾A¼„’Hƒ+„ËIƒmL‰û„fM…ätIƒ,$„ÀM…ö„€þÿÿIƒ.…vþÿÿL‰÷èe»þÿéiþÿÿL‰×èX»þÿéþøÿÿL‰çèH»þÿéùøÿÿL‰çL‰T$(L‰\$ è.»þÿL‹T$(L‹\$ é‚üÿÿ€H‰ïH‰D$(è»þÿL‹T$(L‹\$ éTüÿÿ@L‰ßL‰T$ èëºþÿL‹T$ é`üÿÿHƒ*H‚˜H‰–‘'ǘ‘'^ÇŠ‘'g%„$H‹
u‘'‹{‘'H=Ȅ‹5j‘'è¥6ÿÿH…Û…£M…í„óþÿÿIƒm…èþÿÿL‰ïèpºþÿéÛþÿÿIƒ*H
˜H‰‘'Ç ‘'^Ç‘'l%„œE1ÿE1ÛHƒm„UüÿÿM…ÛtI‹HPÿI‰H…Ò„“M…ÿtIƒ/thH‹
ɐ'‹ϐ'H=„‹5¾'èù5ÿÿHƒ+t1ÛéPÿÿÿ@E1ÿH‰ßL‰ûèʹþÿé9ÿÿÿDL‰ç踹þÿé3þÿÿL‹=a*%éöÿÿ@L‰ÿ蘹þÿëŽfDH‰×船þÿéÏþÿÿL‰ßèx¹þÿé`ÿÿÿI‰ÕHƒû„ÓŽHƒûtHƒû…ÅûÿÿH‹F0H‰D$@H‹F(L‰ïH‰D$8H‹F H‰D$0èZ»þÿH‰ÅHƒû„ƒHƒû…3H…í~*H‹5Ÿƒ'L‰ïèϸþÿH…À„$H‰D$@HƒíH…íH‹l$0L‹d$8L‹|$@éHõÿÿH…Û…?ûÿÿH‰×èïºþÿH‰ÅH…í~ÓH‹5`‡'L‰ïèx¸þÿH…ÀtH‰D$0HƒíH…í~±H‹5ވ'L‰ïèV¸þÿH…À„oÿÿÿH‰D$8Hƒíé\ÿÿÿ€H–E1íE1äE1öH‰'Ǐ'IÇ
'V$é„ýÿÿ„H֕E1äE1öÇíŽ'JH‰ڎ'Ç؎'e$éOýÿÿH‰Çèø·þÿéÓõÿÿL‰×èè·þÿé@ûÿÿH‰×L‰T$èӷþÿL‹T$éþõÿÿf„L‰ßL‰\$èºþÿL‹\$…	ʼn[÷ÿÿHJ•ÇgŽ'^H‰TŽ'ÇRŽ'Ž%I‹HPÿE1ÿéQýÿÿH•Ç3Ž']H‰ Ž'ÇŽ'V%é•üÿÿf„H‰ïL‰T$H‰D$è.·þÿL‹T$L‹\$é¹õÿÿ€H‰ïè·þÿéaûÿÿL‰ßè·þÿé:ûÿÿL‰×L‰\$èë¶þÿL‹\$éûÿÿH…Û…êýÿÿéþÿÿfL‰ßH‰L$L‰T$辶þÿH‹L$L‹T$éºõÿÿ€H‰ïH‰D$ 蛶þÿH‹L$ L‹T$L‹\$éõÿÿ€…þöÿÿèŽþÿH…À„ðöÿÿH”E1äE1öÇ)'MH‰'Ǎ'ƒ$é‹ûÿÿ€…ÌöÿÿòD$èw½þÿòD$H…À„²öÿÿH¾“E1äE1öÇՌ'NH‰Œ'Ç'$é7ûÿÿH‰ïH‰L$ L‰T$H‰D$èѵþÿH‹L$ L‹T$L‹\$é&õÿÿDL‰×L‰\$諵þÿL‹\$é0õÿÿH‰ÏL‰T$L‰\$莵þÿL‹T$L‹\$éòôÿÿ€èã·þÿL‰çè[0ÿÿI‰ÆH…À…iH“E1äÇŒ'YH‰Œ'Ç
Œ'%éúÿÿD蛷þÿL‰çè0ÿÿI‰ÆH…À…)H½’E1äÇ׋'PH‰ċ'Ç‹' $é9úÿÿDL‰ßèà´þÿéœôÿÿH~’E1öǘ‹'YH‰…‹'ǃ‹'%érúÿÿfDHN’E1öE1äÇe‹'PH‰R‹'ÇP‹'¢$é?úÿÿH’M‰ãE1öÇ5‹'YH‰"‹'I‹$E1äÇ‹'3%HPÿéÈüÿÿHæ‘E1öÇ‹'PH‰íŠ'I‹ÇèŠ'¥$HPÿé—üÿÿ€H®‘M‰ãE1ÿÇŊ'YH‰²Š'E1äÇ­Š'>%éÐõÿÿ„Iƒ,$„EI‹HPÿHd‘E1öE1äÇ{Š'PH‰hŠ'ÇfŠ'´$éüÿÿH‹F H‰×H‰D$0诵þÿH‰ÅéÝúÿÿ€è۵þÿH‰ïèS.ÿÿH‰ÂH…À…]ñÿÿHýÇŠ'^H‰Š'ÇŠ'e%é|øÿÿH‹5¹z'H‹=ڈ'1Ò軷þÿI‰ÆH…À„ÀH‰Çèg ÿÿIƒ.„”H£E1äE1öǺ‰'QH‰§‰'Ç¥‰'Ç$éøÿÿHvE1ÿE1öE1äH‰‰'ǃ‰'TÇu‰'ä$é˜ôÿÿE1ÿéœôÿÿ„H6M‰ßE1ÛÇM‰'^H‰:‰'Ç8‰'{%é[ôÿÿL‰T$èƴþÿH‹|$è<-ÿÿL‹T$H…ÀI‰Ã…=HáE1ÿÇûˆ'^H‰èˆ'Çæˆ'j%é	ôÿÿH¶E1ÿE1öE1äH‰H'ÇÈ'Uǵˆ'î$éØóÿÿIƒ*A¾H|A¼H‰Šˆ'ÇŒˆ'SÇ~ˆ'ø$…r÷ÿÿé§óÿÿHƒ)uH‰ÏL‰T$荱þÿL‹T$H.E1ÿE1ÛÇEˆ'^H‰2ˆ'Ç0ˆ'‹%éSóÿÿH‹5äx'H‹=‡'1ÒèæµþÿH‰ÅH…À„H‰Ç蒞ÿÿHƒm„ËH͎Çê‡'_H‰ׇ'ÇՇ'ž%éLöÿÿH¦ŽÇÇ'`H‰°‡'Ç®‡'»%I‹HPÿéZùÿÿHT$0H‰ÙL‰ïLñH5ù''è4Cÿÿ…À‰È÷ÿÿHR޾$Çj‡'ëH‰W‡'ÇU‡'$éoóÿÿL‰çL‰\$ès°þÿL‹\$é¤üÿÿL‰÷èa°þÿé_ýÿÿH‰ïèT°þÿé(ÿÿÿHõE1äLJ'QH‰ü†'Çú†'Ã$éqõÿÿHˍÇè†'_H‰Ն'Çӆ'š%éJõÿÿH‰Åé`îÿÿH‰Åé"íÿÿH‰Åé²ðÿÿfDAWAVAUATUH‰õSHì¨L‹-} %H‹^H‰|$HDŽ$L‰¬$˜H…Ò…
Hƒû„	Hƒû…[H‹F(H‰D$H‹] HÇD$hH‰ßHÇD$pHÇD$xHDŽ$€HDŽ$ˆHDŽ$臲þÿI‰ÄHƒøÿ„2
H‹+†'¿H‹¨(ÿhH‰ßE1ÉA¸¹ºH‰ÆÿÕH‰ÃH‰D$hH…À„ÝH‰D$pHƒH‹|$hHƒ/„
	L‹=|'H‹=·…'HÇD$hH‹\$pHÇD$pL‰þèà¯þÿH‰ÅH…À„ÔHƒH‰D$hH‹5t'H‰ïè,·þÿI‰ÆH‰D$xH…À„KH‹|$hHƒ/„¼H‹-­{'H‹=F…'HÇD$hH‰îè}¯þÿH‰ÁH…À„YHƒH‹5N}'H‰ÏH‰L$èɶþÿH‹L$H…ÀI‰Ç„pHƒ)„n¿èT³þÿI‰ÆH…À„°Hƒ1ÒL‰öL‰ÿH‰X H‹Yv'HƒI‰F(èd²þÿH‰ÅH‰D$hH…À„ÓIƒ.„YIƒ/„?H‹t$h¿1ÀH‹l$xè)´þÿI‰ÇH…À„í1ÒH‰ïH‰Æè²þÿIƒ/H‰Å„CH‹|$hH‰l$pHƒ/„ßHÇD$hH‹L$pH…É„¸H‹|$xHƒ/„ùHÇD$xH‹|$pH;=|%”ÀH;=Ê%”ÂÂ…¿L9ï„¶èQ¯þÿ‰ŅÀˆ¯H‹|$pHƒ/„ÐHÇD$p…í…g
H‹CH‰D$(L9l$„S	H´$ˆH¼$€H”$èö°þÿH‹-§y'H‹=€ƒ'H‰îè-þÿH…À„oHƒH‰D$pH‹5|'H‰ÇèµþÿH‰D$hH…À„±H‹|$pHƒ/„â
H‹t$¿1ÀHÇD$pH‹l$hèòþÿI‰ÅH…À„ß1ÒH‰ïH‰Æ誰þÿIƒmH‰Å„ü
H‹|$pH‰l$xH…ÿtHƒ/„›H‹l$xHÇD$pH‹|$hH…í„«Hƒ/„Í
HÇD$hL‰çèL¬þÿH‰D$hH…À„¿èô°þÿH‰ÅH‰D$pH…À„SH‹D$xH‹¼$€HÇD$xHÇD$pH‰E H‹D$hHÇD$hH‰E(H…ÿt
Hƒ/„	H‹¼$ˆHDŽ$€H…ÿt
Hƒ/„ÜH‹¼$HDŽ$ˆH…ÿt
Hƒ/„©HDŽ$L‹->x'H‹=ׁ'L‰îè¬þÿI‰ÇH…À„+HƒH‰D$hH‹5{s'L‰ÿèc³þÿH‰D$pH…À„UH‹|$hHƒ/„®L‹-çw'H‹=€'HÇD$hL‰î跫þÿI‰ÇH…À„KHƒH‰D$hH‹5C{'L‰ÿè³þÿI‰ÁH…À„×H‹|$hHƒ/„è¿L‰L$HÇD$h耯þÿL‹L$H…ÀH‰Á„OH‹D$hH…Àt
H‰A HÇD$hHƒEH‹|$p1ÒH‰ÎH‰i L‰I(H‰L$èw®þÿH‹L$H…ÀI‰ÆH‰D$x„aHƒ)„	H‹|$pHƒ/„øHÇD$pL‹l$xIƒEL‹t$xHÇD$xI‹FA‹v I‹~(H‰D$ H‹w€'ÿðH‹5‚z'H‰D$0H‹D$H‹¸ðèü±þÿH‰ÁH‰„$H…À„4H‹D$H‹5dz'H‹¸ðèбþÿH‰D$pH…À„;H‹5ë'1ÒH‰Ç衭þÿH‰D$xH…À„èH‹|$pHƒ/„tHÇD$pH‹|$xHƒ/„lHÇD$xE1ÿ苬þÿHƒ|$0H‰D$8H‹D$(JàH‰D$ŽÓH‰l$@L‰t$HL‰l$PH‰\$X„M…äޝH‹D$H‹l$(fïÉHXPH‹D$ N4øM‰õf„òEH‰ßHƒÅIƒÅòL$èŭþÿòL$òAEøòXÈH9l$uÎòö‰H‹D$ Mçò^ÑJøf(ÊfòAIƒÆòYÁòAFøI9ÖuèL9|$0]ÿÿÿH‹l$@L‹t$HL‹l$PH‹\$XH‹|$8è?«þÿH‹¼$H…ÿtFH‹5»o'1ÒèD¬þÿH‹¼$H‰ÁHƒ/„o	HDŽ$H…É„iHƒ)uH‰Ïèl§þÿIƒEM‰ìHƒ+„MIƒ.L‰ë…_DL‰÷è@§þÿéHH‹]€H…ÛHí„H
݄HOÈŸÀH&‡¶ÀL
³„LOÊL@HƒìH‹œ%SH%†H5=iH‹81Àèû­þÿH„¾âEÇ™}'ŒÇ‹}'âEH‰|}'XZH
X„ºŒH=ïp1Ûè¨"ÿÿHĨH‰Ø[]A\A]A^A_ÃL‰l$éôöÿÿfDèk¦þÿéùÿÿfDL‰ÿèX¦þÿé´øÿÿL‰÷èH¦þÿ隸ÿÿ¶èéVùÿÿ„è+¦þÿéýøÿÿfDL‰ÿè¦þÿé°øÿÿE1äH‰ßL‰ãè¦þÿM…öt
Iƒ.„«þÿÿH…ítHƒmt7M…í„FÿÿÿIƒm…;ÿÿÿL‰ïè˥þÿé.ÿÿÿfD軥þÿééöÿÿfDH‰ï訥þÿë¿fD蛥þÿé:÷ÿÿfDH‰Ï舥þÿé…÷ÿÿI‰ÔHƒû„óHƒû„iH…Û…0þÿÿH‰×舧þÿH‹5Qx'L‰çI‰Æè¥þÿIƒîH‰„$H…À„öýÿÿM…öXH‹„$˜H‹œ$H‰D$éõÿÿfDè¥þÿé&øÿÿfDHž‚E1ÉE1ÿ1ÉH‰ª{'E1í1íE1öǤ{'û1ÛÇ”{'F@H‹|$hH…ÿt
Hƒ/„œH‹|$pH…ÿt
Hƒ/„°H‹|$xH…ÿt
Hƒ/„ÄH…Ét
Hƒ)„ÕM…ÿt
Iƒ/„æM…ÉtIƒ)t;H‹
{'‹"{'H=—n‹5{'èL ÿÿH…Û„1þÿÿHƒ+„þÿÿ1Ûé þÿÿfL‰Ïè¤þÿë»fDH‰L$L‰L$è¤þÿH‹|$pH‹L$L‹L$éFÿÿÿDH‰L$L‰L$è٣þÿH‹L$L‹L$é2ÿÿÿf.„H‰L$L‰L$豣þÿH‹L$L‹L$éÿÿÿfH‰ÏL‰L$蓣þÿL‹L$éÿÿÿf„L‰ÿL‰L$ès£þÿL‹L$éÿÿÿf„L‰çèø£þÿH‰ÅH‰D$pH…À„m
¿蝨þÿH‰ÅH‰D$xH…À„y
HÇD$xH‹D$pHÇD$pH‰E éøÿÿ@H®€E1ÉE1ÿ1íH‰ºy'H‹|$pÇ·y'üÇ©y'"FE1íE1ö1Éé%þÿÿ@MçéØúÿÿè+¥þÿL‰ÿè£ÿÿH‰ÅH‰D$hH…À…ôÿÿHH€H‹|$pE1ÉE1ÿH‰Qy'ÇSy'ÿÇEy'1Fëšèk¢þÿé‚ùÿÿfDè[¢þÿéŠùÿÿfDèK¢þÿéM÷ÿÿfDè;¢þÿé÷ÿÿfDè+¢þÿéçöÿÿfDHÆÇãx'ÿH‰Ðx'ÇÎx'3FE1ÉE1ÿ1ÉE1í1íé,ýÿÿ@èã¡þÿéH÷ÿÿfDèC¤þÿH‰ïè»ÿÿI‰ÆH…À…O
HeÇ‚x'ÿH‰ox'Çmx'6FëH>E1ÉE1í1íH‰Jx'E1öÇIx'ÿÇ;x'8Fé¦üÿÿfDè[¡þÿéõÿÿfDH‰D$èF¡þÿL‹L$é÷ÿÿ@HÞ~E1É1ÉE1íH‰êw'1íÇêw'ÿÇÜw'XFéGüÿÿ€L‰ïèø þÿé÷ôÿÿèë þÿé)õÿÿfDH†~H‹|$pM‰ñÇ›w'ÿH‰ˆw'džw'cFéØýÿÿ諠þÿéþöÿÿfDH‰Ï蘠þÿéÜöÿÿ1íé&óÿÿf„H&~E1í1íE1öH‰2w'E1ÉE1ÿÇ.w'ÿÇ w'uFé³ûÿÿèC þÿé[ôÿÿfDHÞ}E1ÉE1ÿ1ÉH‰êv'E1í1íE1öÇäv'ÿÇÖv'xFéAûÿÿH‹F(H‰×H‰„$˜H‹F H‰„$è¢þÿH…ÀޝúÿÿH”$H‰ÙL‰çLû~H5{'è62ÿÿ…À‰†úÿÿHT}¾ÒEÇlv'ŒH‰Yv'ÇWv'ÒEéÐøÿÿfH‹F H‰×H‰„$蜡þÿI‰Æé3úÿÿ@H‹5f'H‹=2u'1Òèë£þÿH‰ÅH‰D$pH…À„£H‰Ç蒌ÿÿH‹|$pHƒ/„?HÉ|1íHÇD$pH‰Òu'ÇÔu'ÇÆu'‡FH‹|$hE1íE1öE1ÉE1ÿ1ÉH…ÿ…$úÿÿé=úÿÿDH‹5ai'L‰ç葞þÿH…À„áþÿÿH‰„$˜IFÿéÇþÿÿ€è¡þÿL‰ïèƒÿÿI‰ÇH‰D$hH…À…ÀóÿÿH(|H‹|$pE1ÉÇ=u'H‰*u'Ç(u'VGézûÿÿHö{Çu'H‰u'Çþt'XGé3ÿÿÿf„H‰D$èžþÿH‹L$é}öÿÿ@ès þÿH‰ïèëÿÿH‰D$pH…À…ñÿÿL-“{H‹|$hÇ«t'L‰-˜t'Ç–t'ÙFH…ÿt
Hƒ/„HÇD$hH‹|$pH…ÿt
Hƒ/„ÊHÇD$pH‹|$xH…ÿt
Hƒ/„½‹Kt'‹5At'H=ºgHÇD$xH‹
"t'èeÿÿHT$xHt$hH|$pèÁÿÿ…ÀˆÍH‹D$H‹5=
%H9p…¥HƒL‰ç距þÿI‰ÁH…À„Ó¿H‰D$è\¢þÿL‹L$H…ÀH‰Á„L‰H H‹|$H‰ÆH‰D$腡þÿH‹L$H…ÀH‰Å„H‹t$H‹H‰D$HƒèH‰„ÊHƒ)„°H‹|$pH…ÿt
Hƒ/„HÇD$pH‹|$hH…ÿt
Hƒ/„åHÇD$hH‹|$xH…ÿt
Hƒ/„ÜH‹”$H‹´$ˆHÇD$xH‹¼$€èì þÿé:ñÿÿ€苞þÿL‰ïèÿÿI‰ÇH‰D$hH…À… ñÿÿH¨yH‹|$pE1Éǽr'H‰ªr'Ǩr'[Géúøÿÿè˛þÿé,þÿÿfD軛þÿé9þÿÿfD諛þÿéïýÿÿfDL-FyÇcr'L‰-Pr'ÇNr'ÛFéÂýÿÿf„HyE1ÿ1ÉE1íH‰"r'E1öÇ!r'Çr']Gé~öÿÿfDHÇD$xH‹|$pH…ÿ…4ïÿÿH‹|$hL-ÂxÇßq'L‰-Ìq'ÇÊq'êFé/ýÿÿDH‰ÏèèšþÿéCþÿÿH‰÷H‰L$èӚþÿH‹L$éþÿÿf„HfxE1ÿE1íE1öH‰qq'Çsq'Çeq'GéÐõÿÿL-6xÇSq'L‰-@q'Ç>q'íFé²üÿÿf„HxE1ÉE1ÿE1íH‰q'Çq'Çq'ŠGépõÿÿL-ÖwH‹|$hÇîp'L‰-Ûp'ÇÙp'ïFé>üÿÿHªwE1ÉE1ÿÇÁp'H‰®p'Ǭp'ÁGéõÿÿH}wÇšp'H‰‡p'Ç…p'ÃGH‹¼$Hƒ/„aE1ÉE1ÿ1ÉHDŽ$éÊôÿÿ腙þÿéýÿÿè{™þÿéêüÿÿèq™þÿéýÿÿL‰--p'E1ÉE1ÿ1ÉÇ'p'Çp'GH‰L$E1í1íE1öH‹”$H‹´$ˆL‰L$H‹¼$€èڝþÿL‹L$H‹L$éKôÿÿH±vÇÎo'H‰»o'ǹo'ÑGé/ÿÿÿèߘþÿé·ùÿÿH€vǝo'H‰Šo'Ljo'­Fé½ùÿÿHYvE1ÉE1ÿ1ÉH‰eo'E1íE1öÇao'ÇSo'¯Fé¾óÿÿH‹|$è4 þÿH‰ÁH…À…L‰-)o'E1ÉE1ÿÇ%o'	Ço'#Géùþÿÿè=˜þÿé•þÿÿL‰-ùn'L‹|$1ÉÇôn'	Çæn'%GéÈþÿÿH·uE1ÉE1ÿÇÎn'H‰»n'ǹn'XHé$óÿÿL‰-¥n'L‹|$Ç¢n'	Ç”n''GévþÿÿL‰-€n'E1ÉL‹|$Çzn'	Çln',GéNþÿÿH=uÇZn'H‰Gn'ÇEn'ƒFézøÿÿH‰Áé;éÿÿH‰D$é?úÿÿ@f.„AWI‰ÿAVAUATI‰ôUSHì˜H‹-ê%H‹^HÇD$pHÇD$xH‰¬$€H…Ò…›	Hƒû„½Hƒû„§HƒûH³tH
£tHMȝÀHƒì¶ÀSHvL@H‹l%H5YL
ËvH‹81Àè̝þÿHRt¾CÇjm'Ç\m'CH‰Mm'XZH
)tºH=ð`1ÛèyÿÿHĘH‰Ø[]A\A]A^A_Ã@H‹F0H‰„$€I‹D$(I‹\$ H‰D$xH‰\$pH‹Cö€³„OH‰ßè÷•þÿH‰D$Hƒ|$ÿ„Ö	H‹\$xL‹¬$€HÇD$HHÇD$PHÇD$XH‰ßHÇD$`HÇD$hHÇD$pè™þÿI‰ÆHƒøÿ„Æ	H‹¯l'¿L‹ (ÿhH‰ßE1ÉA¸¹ºH‰ÆAÿÔH‰ÃH‰D$HH…À„¸	H‰D$PHƒH‹|$HHƒ/„@H‹\$PºHÇD$HHÇD$PH‹5…a'H‹CH‰ßH‰D$ÿ;k'ƒøÿ„BIvÿH‹|$ÿk'f/ãv‡ÅI9í„\Ht$`H|$XHT$hè8™þÿH‹-éa'H‹=Âk'H‰îè–þÿH…À„éHƒH‰D$PH‹5Ád'H‰ÇèQþÿH‰D$pH…À„s
H‹|$PHƒ/„„L‰î¿1ÀH‹l$pHÇD$Pè›þÿI‰ÄH…À„«
1ÒH‰ïH‰Æèî˜þÿIƒ,$H‰Å„PH‹|$PH‰l$HH…ÿtHƒ/„¯H‹l$HHÇD$PH‹|$pH…í„w
Hƒ/„!HÇD$pL‰÷萔þÿH‰D$pH…À„¢
¿è8™þÿI‰ÄH‰D$PH…À„çH‹D$HH‹|$XHÇD$HHÇD$PI‰D$ H‹D$pI‰D$(HÇD$pH…ÿt
Hƒ/„HÇD$XH‹|$`H…ÿt
Hƒ/„×
HÇD$`H‹|$hH…ÿt
Hƒ/„ª
HÇD$hH‹-’`'H‹=+j'H‰îèk”þÿH…À„²
HƒH‰D$HH‹5Ò['H‰Ç躛þÿH‰ÅH‰D$pH…À„ñ
H‹|$HHƒ/„rHÇD$H¿è7˜þÿH‰D$HH…À„IIƒ$H‹D$HL‰` èF•þÿH‰D$PH…À„ÈH‹	%H‹5êc'H‰Çè"’þÿ…ÀˆRH‹T$PH‹t$HH‹|$pè—þÿH‰ÅH…À„zH‹|$pHƒ/„HÇD$pH‹|$HHƒ/„ëHÇD$HH‹|$PHƒ/„ÃH‹E‹u HÇD$PH‹}(HƒEH‰D$ H‹i'ÿðfï>H‹=`'H‰D$òH*D$ÿh'ƒøÿ„EI‹¿ðH‹5çb'èršþÿI‰ÅH‰D$hH…À„©I‹¿ðH‹5Ûb'èNšþÿH‰D$PH…À„ÈH‹5ih'H‰Ç1ÒHÇD$Hè–þÿH‹|$HI‰ÅH…ÿt
Hƒ/„o
HÇD$HM…í„ýH‹|$PHƒ/„&	HÇD$PIƒm„	èõ”þÿH‰D$(H‹D$H™I÷þH‰ÆH…À~vIW(L‹l$ IGhE1ÿH‰T$JõL‰d$ I‰ÄH‰l$0L‰ýI‰÷H‰\$8L‰ëI‰ÍH‹L$H‹t$H‰ÚM‰áH‹|$M‰ðHƒÅLë輒þÿI9ïu×L‹d$ H‹l$0H‹\$8H‹|$(è”þÿH‹|$hH…ÿt=H‹5X'1Òè•þÿH‹|$hI‰ÅHƒ/„dHÇD$hM…í„úIƒm„WHƒEI‰íHƒ+„HƒmH‰ë…2€H‰ïèþÿéèþÿé¶úÿÿfDèûþÿérûÿÿfDL‰çèèþÿé£ûÿÿèۏþÿéÕûÿÿfDHvm1ÉE1ÀE1íH‰‚f'E1ä1íÇf'rÇqf'äCH‹|$HH…ÿt
Hƒ/„¬H‹|$PH…ÿt
Hƒ/„¸H‹|$pH…ÿt
Hƒ/„ÄM…ítIƒm„M…Àt
Iƒ(„5H…Ét
Hƒ)„FH‹
÷e'‹ýe'H=¢Y‹5ìe'è'ÿÿH…ÛtHƒ+td1ÛH…ít5Hƒm„ÚþÿÿM…ätIƒ,$„jHƒm…vøÿÿH‰ïè׎þÿéiøÿÿfM…ä„^øÿÿIƒ,$…SøÿÿL‰ç贎þÿéFøÿÿ€E1íH‰ßL‰ë蚎þÿ뎄L‰÷è(þÿI‰ÄH‰D$PH…À„÷	¿è͓þÿI‰ÄH‰D$HH…À„4
HÇD$HH‹D$PHÇD$PI‰D$ éúúÿÿL‰ïL‰D$H‰L$è&ŽþÿL‹D$H‹L$éÃþÿÿ€L‰ÇH‰L$èŽþÿH‹L$é´þÿÿf„H‰Ïèèþÿé­þÿÿL‰D$H‰L$èэþÿL‹D$H‹L$é6þÿÿfL‰D$H‰L$豍þÿL‹D$H‹L$é*þÿÿfL‰D$H‰L$葍þÿL‹D$H‹L$éþÿÿfL‰çèxþÿé‰þÿÿI‰ÕHƒû„S~aHƒûtHƒû…ZöÿÿH‹F0H‰„$€I‹D$(L‰ïH‰D$xI‹D$ H‰D$pèYþÿI‰ÆHƒûtUHƒûtpH…Ût)M…öà	H‹\$péÒöÿÿfH…Û…öÿÿH‰×èþÿI‰ÆH‹5ýZ'L‰ïIƒî詌þÿH‰D$pH…À„Ñ
H‹5$Y'L‰ï茌þÿH‰D$xH…À„M
IƒîM…ö~™H‹56W'L‰ïèfŒþÿH…À„a	H‰„$€Iƒîégÿÿÿ@èsŒþÿé„ùÿÿH;§ü$tH‰ß譒þÿ…À„Ø
蠓þÿH…À„1Hƒ+uH‰ßè9Œþÿf„è{“þÿHÇD$ÿÿÿÿH…À„öÿÿH¿i¾‡CÇ×b'H‰Äb'ÇÂb'‡CéjõÿÿDHŽi1ÉE1ÀE1íH‰šb'E1ä1í1ÛÇ•b'nLJb'ÂCéüÿÿfHViE1äÇpb'oH‰]b'Ç[b'ÌC1í1ÉE1ÀE1íéðûÿÿ@ès‹þÿéG÷ÿÿfDèc‹þÿé3ùÿÿfDèS‹þÿéùÿÿfDèC‹þÿéãøÿÿfDHÞh1ÉE1ÀE1íH‰êa'1íÇêa'~ÇÜa'ÊDégûÿÿ€èûŠþÿé’úÿÿfDL‰ïèèŠþÿéœúÿÿH-†hH‹|$pÇža'zH‰-‹a'lja'ZDH…ÿt
Hƒ/„ZHÇD$pH‹|$HH…ÿt
Hƒ/„MHÇD$HH‹|$PH…ÿt
Hƒ/„@‹>a'‹54a'H=ÝTHÇD$PH‹
a'èXÿÿHT$HHt$pH|$Pè´ÿÿ…ÀˆÌH‹5ú$I9E…IƒEL‰÷變þÿI‰ÀH…À„;¿H‰D$èSþÿL‹D$H…ÀH‰Á„=L‰@ H‰ÆL‰ïH‰D$è~ŽþÿH‹L$H…ÀI‰Ä„BIƒm„ZHƒ)„@H‹|$PH…ÿt
Hƒ/„ôHÇD$PH‹|$pH…ÿt
Hƒ/„·HÇD$pH‹|$HH…ÿt
Hƒ/„ªH‹T$hH‹t$`HÇD$HH‹|$Xèýþÿé÷õÿÿ„H‹5YP'H‹=_'1Ò軍þÿI‰ÄH‰D$PH…À„‚H‰ÇèbvÿÿH‹|$PHƒ/„H™fE1äHÇD$PH‰¡_'Ç£_'tÇ•_'ûCH‹|$H1í1ÉE1ÀE1íH…ÿ…ùÿÿé0ùÿÿ„蛈þÿéLõÿÿfD苈þÿéõÿÿfDè{ˆþÿéòôÿÿfDèۊþÿH‰ïèSÿÿH‰D$HH…À…<õÿÿHûeÇ_'~H‰_'Ç_'¾Dé£üÿÿfDL‰ïè ˆþÿéñöÿÿèˆþÿéÐöÿÿfDH®e1ÉE1ÀE1íH‰º^'Ǽ^'~Ç®^'ÀDé9øÿÿf„è;ŠþÿH‰ïè³ÿÿH‰D$PH…À…óÿÿH-[eH‹|$pÇs^'zH‰-`^'Ç^^'DDéÐüÿÿf„H&eÇC^'~H‰0^'Ç.^'ÃDéÎûÿÿf„èK‡þÿéœüÿÿfDè;‡þÿé©üÿÿfDè+‡þÿé¶üÿÿfDH-ÆdÇã]'zH‰-Ð]'ÇÎ]'FDéOüÿÿf„èë†þÿé‡õÿÿfDH†dÇ£]'~H‰]'ÇŽ]'ÈDéôýÿÿf„HÇD$HH‹|$PH…ÿ…hòÿÿH‹|$pH-:dÇW]'zH‰-D]'ÇB]'UDé´ûÿÿDH‰Ïè`†þÿé³üÿÿL‰ïH‰L$èK†þÿH‹L$éüÿÿH-æcÇ]'zH‰-ð\'Çî\'XDéoûÿÿf„H‹F H‰×H‰D$pè/ˆþÿI‰Æé,ùÿÿ€H–c1ÉE1ÀE1íH‰¢\'Ǥ\'~Ç–\'ËDé!öÿÿ軅þÿé?üÿÿfD諅þÿéLüÿÿfD蛅þÿéüÿÿfDH6c1ÉE1ÀE1íH‰B\'ÇD\'ƒÇ6\'EéÁõÿÿH‰-!\'1ÉE1ÀE1íÇ\'{Ç
\'DH‹T$hH‹t$`E1ä1íH‹|$XL‰D$H‰L$èډþÿH‹L$L‹D$ékõÿÿH®b1ÉE1ÀÇÆ['…H‰³['DZ['Eé<õÿÿ@èӄþÿéÛûÿÿfDHnbÇ‹['…H‰x['Çv['EH‹|$hHƒ/„HÇD$h1ÉE1ÀE1íéáôÿÿH&bÇC['wH‰0['Ç.['Dé”ûÿÿf„HöaÇ['…H‰['ÇþZ'$Eë†@HÎaÇëZ'wH‰ØZ'ÇÖZ'DévøÿÿL‰ï踋þÿI‰ÅH…À…ÖùÿÿH‰-­Z'1ÉE1ÀǪZ'|ÇœZ'‹DéŠþÿÿH‰-ˆZ'1ÉLjZ'|ÇzZ'DéhþÿÿH‰-fZ'ÇhZ'|ÇZZ'DéHþÿÿ考þÿéäþÿÿH‰-<Z'E1ÀÇ;Z'|Ç-Z'”DéþÿÿHþ`1ÉE1ÀÇZ'…H‰Z'ÇZ'nEéŒóÿÿHT$pH‰ÙL‰ïL]bH5³þ&èŽÿÿ…À‰úõÿÿH¬`¾{CÇÄY'H‰±Y'ǯY'{CéWìÿÿf.„H;	ó$tH‰ßè‰þÿ…À„ÇèŠþÿH…À…yöÿÿH‹Jò$H5CaH‹8è3†þÿé^öÿÿfDH.`ÇKY'tH‰8Y'Ç6Y'÷CéœùÿÿHƒìH‹þñ$H

`H5 DjL
TbA¸HuaH‹81ÀèH‰þÿHÎ_Y^H‰àX'¾qCÇÝX'ÇÏX'qCéwëÿÿI‹\$éùêÿÿH‰ßè(…þÿH‰ÃH…À„%ÿÿÿH‹@L‹-9ò$L9èu5@ö€³„MõÿÿH‰ß蓁þÿH‰D$Hƒ+…’ëÿÿH‰ß蜁þÿé…ëÿÿH‰ßèpÿÿH‰ÃH…À„SõÿÿH‹@ëµH‰ß资þÿI‰ÄH…À„õÿÿL9hu,I‹D$L‰çö€³t0è-þÿH‰D$Iƒ,$u“L‰çè9þÿë‰H‰Çè¿oÿÿI‰ÄH…ÀuÄéÛôÿÿè­qÿÿH‰D$ëÎH‹·ð$H5°_H‹8蠄þÿé´ôÿÿf.„AUI‰ýATUSHƒìH‹-4N'H‹=ÍW'H‰îè
‚þÿH…À„üHƒH‰ÃH‹5~P'H‰ßè^‰þÿH‰ÅH…À„JHƒ+„0L‰î¿1Àè)‡þÿI‰ÄH…À„]1ÒH‰ÆH‰ïè…þÿIƒ,$H‰Ã„úH‹EHƒèH…Û„1H‰EH…À„ÌH;¥ñ$”ÀH;óð$”ÂÂu\H;Ýð$tSH‰ßè{‚þÿ‰ŅÀyHHƒ+¾CH
²]ºoH‰
ÁV'ÇÃV'oǵV'C…½H‰ßè×þÿéÛf¶èHƒ+„k…í„»I‹Eö€³„âL‰ïè‚þÿHƒøÿ„H‰Çè0€þÿH…À„GHƒÄ[]A\A]Ã@H‰ïèpþÿé'ÿÿÿL‰çè`þÿéùþÿÿHƒ+¾1H
õ\ºoH‰
V'ÇV'oÇøU'1„ÚH=ËIè&ûþÿHƒÄ1À[]A\A]Ãf„H‹5ÁQ'L‰ï衇þÿH‰ÃH…À„íèpþÿH‰ÅH…À„ÌH‹ýG'H‹5þP'H‰ÇèN~þÿ…ÀˆVH‹5G'H‰êH‰ßèDƒþÿH…À„{Hƒ+„Hƒm…ÿþÿÿH‰ïH‰D$èy~þÿH‹D$éèþÿÿ€H‰ßè`~þÿéÃýÿÿH‰ßèP~þÿéˆþÿÿH‰ßè@~þÿH‹
U'‹U'‹5ýT'éÿÿÿ„HÆ[ÇãT'oH‰ÐT'ÇÎT'@HƒmtH‹
¸T'‹¾T'‹5´T'é½þÿÿ€H‰ïèÐ}þÿë×fDè3€þÿH‰ïè«øþÿH‰ÃH…À…òüÿÿH
U[¾/ºoÇhT'oH‰
UT'ÇST'/é\þÿÿfDH‰ßH‰D$èk}þÿH‹D$éÐþÿÿH[Ç#T'rH‰T'ÇT'tHƒ+…6ÿÿÿH‰ßè,}þÿé)ÿÿÿ€HÆZÇãS'rH‰ÐS'ÇÎS'uë¾@H
žZ¾pºrDZS'rH‰
žS'ÇœS'pé¥ýÿÿH9ètH‰ßè
ƒþÿ…À„¢èýƒþÿH…À„ýHƒ+uH‰ßè–|þÿfDèۃþÿH‰ÂHÇÀÿÿÿÿH…Ò„àüÿÿH
Z¾NºpÇ1S'pH‰
S'ÇS'Né%ýÿÿ€H
æY¾YºqÇùR'qH‰
æR'ÇäR'Yéíüÿÿ€Hƒ+¾rH
¥YºrH‰
´R'ǶR'rǨR'r…°üÿÿéîûÿÿDH‹-ì$H9ètL‰ïè‚þÿ…Àt)èû‚þÿH…À…ÿÿÿH‹Cë$H5<ZH‹8è,þÿé÷þÿÿL‰ïè¿~þÿH‰ÃH…ÀtÇH‹@L‹%Ôë$L9àu=€ö€³„ŒþÿÿH‰ßè+{þÿHƒ+…ŸûÿÿH‰ßH‰D$è4{þÿH‹D$éˆûÿÿH‰ßè²iÿÿH‰ÃH…À„†þÿÿH‹@ë°H‰ßèH~þÿH‰ÅH…À„JþÿÿL9`u3H‹EH‰ïö€³t8èÁzþÿHƒmuH‰ïH‰D$èÍzþÿH‹D$éxÿÿÿH‰ÇèKiÿÿH‰ÅH…Àu½é
þÿÿèIjÿÿëÆH‹Hê$H5AYH‹8è1~þÿéèýÿÿff.„AVAUI‰ÕATI‰ôUH‰ýSHƒì H‹ë$H‹^HÇD$H‰T$M…í…qHƒû„³Hƒû„¥H…ÛHòWH
âWHOÈŸÀH+Z¶ÀL
¸WLOÊL@HƒìH‹¡é$SH@YH5B<H‹81ÀèþÿH†W¾Ä>ÇžP'ǐP'Ä>H‰P'XZH
]WºH=|Dè¯õþÿ1ÀHƒÄ []A\A]A^ÃH‹V(I‹|$ H‹ðHƒìHu(E1ÉH‹B'A¸HƒH‹
ÍL'jQPjQH‰ÙPjÿ5RF'WH‹=zé$ÿ<O'H‰ÅHƒÄPH…À„¼Hƒ+t>H‰ïè.øÿÿH…À„íHƒm…mÿÿÿH‰ïH‰D$èýxþÿH‹D$HƒÄ []A\A]A^ÃH‰ßèàxþÿë¸fDHƒû„†Hƒû„H…Û…†þÿÿL‰ïèãzþÿH‹5¼E'L‰ïI‰ÆèqxþÿIƒîH‰D$H…À„M…ö^H‹|$H‹T$éðþÿÿ€Hƒ+¾ê>H

Vº^H‰
O'ÇO'^ÇO'ê>t^H=CèBôþÿ1ÀéŽþÿÿºcH
ÉU¾ø>H‰D$H=ãBH‰
ÌN'ÇÎN'cÇÀN'ø>èûóþÿH‹D$éÌþÿÿH‰ßèØwþÿ‹¦N'H‹
“N'‹5•N'ë…H‹F(L‰ïH‰D$H‹F H‰D$èÖyþÿH…ÀŽÿÿÿHT$H‰ÙL‰ïLÚVH5´ò&èÿ	ÿÿ…À‰ñþÿÿHU¾´>Ç5N'H‰"N'Ç N'´>é”ýÿÿH‹F L‰ïH‰D$ègyþÿI‰Æé þÿÿ€H‹5¹A'L‰ïèévþÿH…À„sÿÿÿH‰D$IFÿé\ÿÿÿI‹\$éÃüÿÿ„AVAUI‰ÕATI‰ôUH‰ýSHƒì H‹Œç$H‹^HÇD$H‰T$M…í…qHƒû„³Hƒû„¥H…ÛHbTH
RTHOÈŸÀH›V¶ÀL
(TLOÊL@HƒìH‹æ$SHBVH5²8H‹81Àèp}þÿHöS¾£;ÇM'LÇM'£;H‰ñL'XZH
ÍSºLH=Aèòþÿ1ÀHƒÄ []A\A]A^ÃH‹V(I‹|$ H‹ðHƒìHu(E1ÉH‹~>'A¸HƒH‹
=I'jQPjQH‰ÙPjÿ5ÂB'WH‹=òæ$ÿ¬K'H‰ÅHƒÄPH…À„¼Hƒ+t>H‰ïèžôÿÿH…À„íHƒm…mÿÿÿH‰ïH‰D$èmuþÿH‹D$HƒÄ []A\A]A^ÃH‰ßèPuþÿë¸fDHƒû„†Hƒû„H…Û…†þÿÿL‰ïèSwþÿH‹5,B'L‰ïI‰ÆèátþÿIƒîH‰D$H…À„M…ö^H‹|$H‹T$éðþÿÿ€Hƒ+¾É;H
}Rº‚H‰
ŒK'ÇŽK'‚Ç€K'É;t^H=¯?è²ðþÿ1ÀéŽþÿÿº‡H
9R¾×;H‰D$H=ƒ?H‰
<K'Ç>K'‡Ç0K'×;èkðþÿH‹D$éÌþÿÿH‰ßèHtþÿ‹K'H‹
K'‹5K'é‚ÿÿÿH‹F(L‰ïH‰D$H‹F H‰D$èFvþÿH…ÀŽÿÿÿHT$H‰ÙL‰ïLÜSH5Ôî&èoÿÿ…À‰ñþÿÿHQ¾“;Ç¥J'LH‰’J'ǐJ'“;é”ýÿÿH‹F L‰ïH‰D$è×uþÿI‰Æé þÿÿ€H‹5)>'L‰ïèYsþÿH…À„sÿÿÿH‰D$IFÿé\ÿÿÿI‹\$éÃüÿÿ„AVAUI‰ÕATI‰ôUH‰ýSHƒì H‹üã$H‹^HÇD$H‰T$M…í…qHƒû„³Hƒû„¥H…ÛHÒPH
ÂPHOÈŸÀHS¶ÀL
˜PLOÊL@HƒìH‹â$SH*RH5"5H‹81ÀèàyþÿHfP¾;Ç~I'ö
ÇpI';H‰aI'XZH
=Pºö
H=¼=èîþÿ1ÀHƒÄ []A\A]A^ÃH‹V(I‹|$ H‹ðHƒìHu(E1ÉH‹î:'A¸HƒH‹
­E'jQPjQH‰ÙPjÿ5zE'WH‹=Òá$ÿH'H‰ÅHƒÄPH…À„¼Hƒ+t>H‰ïèñÿÿH…À„íHƒm…mÿÿÿH‰ïH‰D$èÝqþÿH‹D$HƒÄ []A\A]A^ÃH‰ßèÀqþÿë¸fDHƒû„†Hƒû„H…Û…†þÿÿL‰ïèÃsþÿH‹5äD'L‰ïI‰ÆèQqþÿIƒîH‰D$H…À„M…ö^H‹|$H‹T$éðþÿÿ€Hƒ+¾=;H
íNºEH‰
üG'ÇþG'EÇðG'=;t^H=O<è"íþÿ1ÀéŽþÿÿºJH
©N¾K;H‰D$H=#<H‰
¬G'Ç®G'JÇ G'K;èÛìþÿH‹D$éÌþÿÿH‰ßè¸pþÿ‹†G'H‹
sG'‹5uG'é‚ÿÿÿH‹F(L‰ïH‰D$H‹F H‰D$è¶rþÿH…ÀŽÿÿÿHT$H‰ÙL‰ïLÄOH5$ë&èßÿÿ…À‰ñþÿÿHýM¾;ÇG'ö
H‰G'ÇG';é”ýÿÿH‹F L‰ïH‰D$èGrþÿI‰Æé þÿÿ€H‹5™:'L‰ïèÉoþÿH…À„sÿÿÿH‰D$IFÿé\ÿÿÿI‹\$éÃüÿÿ„AUATI‰ÔUH‰ýSHƒì(H‹Q8'H‹jà$H‹^H‰D$H‰T$M…ä…»Hƒû„¥Hƒû„—H…Û„æH…ÛH;MI‰ØH
(MHÁNHIÈHƒìH‹üÞ$IÁø?SI÷ÐH51H‹8L
POAƒà1ÀèPvþÿHÖL¾‹:ÇîE'¥
ÇàE'‹:H‰ÑE'XZH
­Lº¥
H=T:èÿêþÿ1ÀHƒÄ([]A\A]ÃfHƒû„Hƒû„œH…Û…EÿÿÿL‰çèëpþÿI‰ÅH…À?€H‹D$H‹T$fDH‹ðHƒìHu(E1ÉH‹
7'A¸HƒH‹=ÞA'jWQjWH‹=øÞ$QH‰Ùj
ÿ5Ì='PÿMD'H‰ÅHƒÄPH…ÀtaHƒ+t;H‰ïèCíÿÿH…À„’Hƒm…2ÿÿÿH‰ïH‰D$ènþÿH‹D$HƒÄ([]A\A]ÃfH‰ßèømþÿë»fDH‹V(H‹F éKÿÿÿHƒ+ºï
H
}K¾±:H‰
ŒD'ÇŽD'ï
Ç€D'±:t^H=9è²éþÿ1Àé®þÿÿºô
H
9K¾¿:H‰D$H=Û8H‰
<D'Ç>D'ô
Ç0D'¿:èkéþÿH‹D$é'ÿÿÿH‰ßèHmþÿ‹5D'H‹
D'‹	D'é‚ÿÿÿH‹F(L‰çH‰D$H‹F H‰D$èFoþÿH…ÀŽeþÿÿHT$H‰ÙL‰çLYLH5”ç&èoÿþÿ…À‰?þÿÿHJ¾z:Ç¥C'¥
H‰’C'ǐC'z:é´ýÿÿH‹F L‰çH‰D$è×nþÿI‰ÅM…íŽóýÿÿH‹5,7'L‰çè\lþÿH…À„vÿÿÿH‰D$IEÿé_ÿÿÿDH‹5é;'L‰çè1lþÿH…ÀtÁH‰D$Iƒí뭐AVAUI‰ÕATI‰ôUH‰ýSHƒì0H‹ìÜ$H‹^HÇD$HÇD$H‰T$ M…í…pHƒû„ªHƒû„œHƒûH¸IH
¨IHMȝÀHƒì¶ÀSH:KL@H‹qÛ$H5.L
ÐKH‹81ÀèÑrþÿHWI¾û9ÇoB'O
ÇaB'û9H‰RB'XZH
.IºO
H=ý6è€çþÿ1ÀHƒÄ0[]A\A]A^ÐH‹V0I‹L$(I‹D$ H‹ðHƒìHuPE1ÉA¸H‹={Û$Hƒjÿ5—>'ÿ5Á3'jÿ5!8'QH‰Ùjÿ59'PÿA'H‰ÅHƒÄPH…À„VHƒ+t@H‰ïèøéÿÿH…À„‡Hƒm…fÿÿÿH‰ïH‰D$èÇjþÿH‹D$HƒÄ0[]A\A]A^ÃDH‰ßè¨jþÿë¶fDHƒû„¦~lHƒûtHƒû…ˆþÿÿH‹F0H‰D$ I‹D$(L‰ïH‰D$I‹D$ H‰D$èlþÿI‰ÆHƒûtcHƒût~H…Ût7M…ökH‹D$H‹L$H‹T$ éÜþÿÿfDH…Û…#þÿÿL‰ïèGlþÿI‰ÆH‹5%8'L‰ïIƒîèÑiþÿH‰D$H…À„ÕH‹5ü6'L‰ïè´iþÿH‰D$H…À„QIƒîM…ö~‹H‹5^4'L‰ïèŽiþÿH…À„ÞH‰D$ Iƒîé\ÿÿÿ€Hƒ+ºž
H
=G¾!:H‰
L@'ÇN@'ž
Ç@@'!:t^H=ï4èråþÿ1Àéíýÿÿº£
H
ùF¾/:H‰D$H=Ã4H‰
ü?'Çþ?'£
Çð?'/:è+åþÿH‹D$é2þÿÿH‰ßèiþÿ‹5Ò?'‹Ð?'H‹
½?'é‚ÿÿÿH‹F L‰ïH‰D$èkþÿI‰ÆéäþÿÿHT$H‰ÙL‰ïL+HH5>ã&è9ûþÿ…À‰oþÿÿHWF¾é9Ço?'O
H‰\?'ÇZ?'é9éýüÿÿHƒìH‹"Ø$H
1FH5Ä*jL
xHA¸H¼GH‹81ÀèloþÿHòEY^H‰?'¾ß9Ç?'O
Çó>'ß9é–üÿÿI‹\$éüÿÿ@AWAVAUI‰õATUSHìˆH‹­Ø$L‹fH‰<$HÇD$`HÇD$hH‰D$pH…Ò…¥Iƒü„S	Iƒü…9L‹f0M‹u(M‹m H‹®>'¿HÇD$`HÇD$8HÇD$@L‹¸(HÇD$HHÇD$PHÇD$XÿhE1É1É1ÒA¸H‰ÆL‰÷Aÿ×H‰ÅH…À„l
Hƒ8„š
H‹3>'¿D‹} H‹˜(ÿhE1É1É1ÒA¸H‰ÆL‰ïÿÓH‰ÃH…À„T
Hƒ8„b
E…ÿ…	‹s …ö…þL‰÷èžgþÿf.žHòD$‹
I‹Eö€³„	L‰ïèfþÿH‰D$Hƒ|$ÿ„à¾H‹=Œ3'òD$ÿ <'ƒøÿ„fï>H‹=o4'òH*D$ÿz<'ƒøÿ„ÉL;%úÖ$„L‹53'H‹=&='L‰öèfgþÿI‰ÅH…À„âHƒH‰D$8H‹5R7'L‰ïè²nþÿI‰ÇH‰D$@H…À„H‹|$8Hƒ/„êHÇD$8¿è/kþÿI‰ÇH…À„rH‹D$8H…Àt
I‰G HÇD$8H‹
Ö$Iƒ$1ÒL‰þM‰g H‹|$@HƒI‰G(è%jþÿI‰ÅH‰D$HH…À„Iƒ/„:H‹|$@Hƒ/„H‹D$HH‰D$@HƒH‹|$HHƒ/„îL‹|$@H‹:<'HÇD$HHÇD$@A‹w I‹(ÿðH‹5+6'M‹wI‰ÄH‹$H‹¸ðè¤mþÿI‰ÅH…À„FH‹$H‹56'H‹¸ðèmþÿH‰D$HH…À„H‹5œ;'1ÒH‰ÇèRiþÿH‰D$@H…À„×H‹|$HHƒ/„HÇD$HH‹|$@Hƒ/„ÝHÇD$@è?hþÿH‰D$M…ä~dH‹$O$æL‰l$(M‰õM‰æL‹d$H‰,$HphHƒÀ(H‰\$ H‰õH‰ÃfDòD$H‰êL‰æH‰ßIƒÅèøeþÿI‰EøM9îußH‹,$H‹\$ L‹l$(H‹|$èwgþÿH‹5,'1ÒL‰ïè†hþÿH‰D$`Iƒm„nL‹l$`M…í„æIƒm„ÊHÇD$`Iƒ?„ºHƒm…€H‰ïècþÿéûM‹e€IƒüH<AH
,AHMȝÀHƒì¶ÀATHÆBL@H‹ôÒ$H5%L
SCH‹81ÀèTjþÿHÚ@¾6Çò9'¹Çä9'6H‰Õ9'XZH
±@º¹H=Ø.E1ÿèßþÿHĈL‰ø[]A\A]A^A_úH‹5Ô/'H‰ïÿã8'ƒøÿ„RºH‹5¾0'H‰ßÿÅ8'ƒøÿ„dL;%MÓ$„gL‹-à/'H‹=y9'L‰îè¹cþÿI‰ÆH…À„]	HƒH‹5ª3'L‰÷è
kþÿI‰ÇH‰D$8H…À„ñIƒ.„Ï¿è•gþÿI‰ÇH‰D$@H…À„ì
Iƒ$H‹|$81ÒL‰þL‰` H‹rÒ$HƒI‰G(èfþÿI‰ÄH…À„ÑH‹|$@Hƒ/„ª	HÇD$@H‹|$8Hƒ/„‚	L‰d$8Iƒ<$„Z	HÇD$8HÇD$H‹©8'A‹t$ I‹|$(ÿðH‰ÙH‰êL‰æL‹‰8'H‰D$¿1ÀAÿI‰ÅH…À„úH;Ò$H‰D$@…H
H‹T$H…ÒtH‹H‰D$HƒèH‰„¹
H‹$H‹5F2'HÇD$@H‹¸ðèÁiþÿH‰D$H…À„3
H‹$H‹502'H‹¸ðèœiþÿH‰D$8H…À„þ
H‹5·7'H‰Ç1ÒHÇD$HèdeþÿH‹|$HH‰D$@H…ÿtHƒ/„£
H‹D$@HÇD$HH…À„H‹|$8Hƒ/„ý	HÇD$8H‹|$@Hƒ/„Õ	HÇD$@E1ÿè,dþÿH‰D$H‹$HphHƒÀ(Hƒ|$H‰òŽL‹t$H‰,$L‰ýI‰ÇH‰\$ H‰ÓL‰d$(M‰ìDI‹„$8H‰ÚL‰ÿL‹¨8I‹„$HH‹°8I‹„$@H‹€8H‹6òè¹aþÿI”$8E1ÒI‰EA‹L$IƒD$(…É0ërf„H‹ˆ0Hˆ8H‹Hƒ@0AƒÂHƒÂE;T$}DH‹Hƒ@ H‹‹H…Étɀ¸@„H‹ˆ0AƒÂHƒÂH‹I@HcI(Hˆ8E;T$|¼HƒÅI9î…"ÿÿÿM‰åH‹,$H‹\$ L‹d$(H‹|$èŸbþÿL‹t$H‹5#''1ÒL‰÷è©cþÿH‰D$`I‹H‰$HƒèI‰„	H‹|$`H…ÿ„»
Hƒ/„xHÇD$`I‹$M‰çHPI‰$I‰$H…À„M…ítIƒm„(H…ítHƒm„øúÿÿH…Û„—ûÿÿHƒ+…ûÿÿH‰ßèu^þÿé€ûÿÿL‹%!Ï$é¯öÿÿ@ƒùu3H‹H8H;ˆ8ÂHƒÁH‰H8H‹H‹ˆ8Hˆ8é’þÿÿ@…Ɉ†þÿÿHcñLðI‹x0I9¸0aIÇ@0H‹ƒéH‹´ð0H)°8ë+DIÇ@0H‹ƒéH‹´ð0H)°8ƒùÿ„(þÿÿH‹HcñLðI‹x0I;¸0}ÃHƒÇH‰|ð0H‹H‹Œð0Hˆ8éñýÿÿHÇ@8H‹Hƒ@0H‹H‹ˆ0H+ˆ8Hˆ8éÁýÿÿIƒ.A½Hô:H‰4'Ç
4'&
Çü3'»6„¾H‹|$8H…ÿt
Hƒ/„ºH‹|$@H…ÿt
Hƒ/„¶H‹|$HH…ÿt
Hƒ/„²H‹
«3'‹±3'H=¶(‹5 3'èÛØþÿM…ÿ„þÿÿI‹M‰üE1ÿHƒèI‰$H…À…øýÿÿL‰çè \þÿéëýÿÿH‰Çè\þÿéYõÿÿH‰Çè€\þÿé‘õÿÿL‰ïèp\þÿéËýÿÿL‰÷è`\þÿé5ÿÿÿèS\þÿé<ÿÿÿfDèC\þÿé@ÿÿÿfDè3\þÿéDÿÿÿfDI‰ÖIƒü„K~iIƒütIƒü…‰øÿÿH‹F0H‰D$pI‹E(L‰÷H‰D$hI‹E H‰D$`è^þÿI‰ÇIƒütbIƒüt}M…ät6M…ÿ©L‹l$`L‹t$hL‹d$péôÿÿDM…ä…'øÿÿH‰×èÏ]þÿI‰ÇH‹5­)'L‰÷IƒïèY[þÿH‰D$`H…À„ð÷ÿÿH‹5„('L‰÷è<[þÿH‰D$hH…À„ÝIƒïM…ÿ~ŒH‹5æ%'L‰÷è[þÿH…À„H‰D$pIƒïé]ÿÿÿ€H‹
)2'H‰ÚH‰î1?ÿ‘H‰D$H…À„D	H‹D$H‰D$8L9à…ð	L‹%>('H‹=×1'HÇD$8L‰æè\þÿI‰ÇH…À„
HƒH‹5ÿ+'L‰ÿè_cþÿH‰D$@H…À„Ó
Iƒ/„wH‹5h%'H‹|$è6cþÿI‰ÇH…À„ÿ
¿èÐ_þÿH‰D$HH…À„GH‹ÃÊ$H‹|$@L‰x H‰ÆHƒH‰P(1Òèà^þÿH‰D$8H…À„šH‹|$HHƒ/„ãHÇD$HH‹|$@Hƒ/„»H‹D$8H‰D$@HƒH‹|$8Hƒ/„¾HÇD$8L‹d$@HÇD$@é*øÿÿfHv71ÛE1íE1ÿH‰‚0'Ç„0'
Çv0'P6é{üÿÿHF7E1íE1ÿÇ]0'
H‰J0'ÇH0'q6éMüÿÿL‰÷èhYþÿé$÷ÿÿè[Yþÿé~úÿÿfDèKYþÿéôÿÿfDè;YþÿéÛóÿÿfDL‰ÿè(Yþÿé¹óÿÿL‰ÿèYþÿé|þÿÿè{[þÿL‰ïèóÓþÿI‰ÇH…À…QH6E1íÇ·/'&
H‰¤/'Ç¢/'¹6é§ûÿÿHs6ǐ/'H
H‰}/'Ç{/'<9Iƒm„‡
E1íérûÿÿH>6L‹l$ÇV/')
H‰C/'ÇA/'A7E1ÿéWûÿÿf„L‰çèXXþÿL‹d$8é”öÿÿfDèCXþÿétöÿÿfDè3XþÿéLöÿÿfDH‹$H‹5=)'H‹¸ðèÁ`þÿI‰ÇH…À„#	H‹$H‹52)'H‹¸ðèž`þÿH‰D$8H…À„(	H‹5¹.'H‰Ç1ÒHÇD$Hèf\þÿH‹|$HH‰D$@H…ÿtHƒ/„õH‹D$@HÇD$HH…À„	H‹|$8Hƒ/„?HÇD$8H‹|$@Hƒ/„HT$PHt$XHÇD$@H|$`è²[þÿH‹$H‹t$òD$HPhHx(èYþÿH‰ÇèÎWþÿI‰ÅH‰D$@H…À„b	H‹T$PH‹t$XHÇD$@H‹|$`èÀ[þÿ1ÒL‰ÿL‰l$PH‹5ÿ'èŠ[þÿH‰D$XIƒ/„ŒL‹|$XM…ÿ„þ
Iƒ/„ÔHÇD$XL‹|$PHÇD$PHƒm…øÿÿéóÿÿ@è“Vþÿé!öÿÿfDèƒVþÿéùõÿÿfDH‰×èpVþÿé:õÿÿH4E1íE1ÿÇ%-'#
H‰-'Ç-'œ6éùÿÿHÞ3E1íE1ÿÇõ,'$
H‰â,'Çà,'¥6éåøÿÿèVþÿéSõÿÿfDèóUþÿéðÿÿfDH‹|$èÞUþÿééöÿÿf„H‹F H‰×H‰D$`èïWþÿI‰Çé<úÿÿ€…ðîÿÿèõ\þÿH…À„âîÿÿHB3E1íE1ÿÇY,':
H‰F,'ÇD,'8éIøÿÿ€H
Ù4ºí¾dOM‰çH=5H‰
,'Ç,'íÇ,'dOè=ÑþÿHÓ2L‹l$HÇD$@H‰Ù+'ÇÛ+'-
ÇÍ+'^7H‹|$8H…ÿ…Ó÷ÿÿéì÷ÿÿL9øtL‰ïè-[þÿ…À„7è \þÿH…À„)
IƒmuL‰ïè¸Tþÿ„èû[þÿHÇD$ÿÿÿÿH…À„	îÿÿH?2E1íE1ÿÇV+';
H‰C+'ÇA+'
8éF÷ÿÿ@H2E1íE1ÿÇ%+'<
H‰+'Ç+'8é÷ÿÿHÞ1E1íÇø*'&
H‰å*'Çã*'Û6éÿÿÿfDL‹5™*'M…ö„ H‹xI9þ„›òÿÿL‰öèƒ[þÿ…À„L‹l$@éòÿÿHv1M‰çǐ*'.
H‰}*'Ç{*'l7é€öÿÿfDè›SþÿéïÿÿfDè‹SþÿéñîÿÿfDH&1E1íE1ÿÇ=*'=
H‰**'Ç(*' 8é-öÿÿèKSþÿé;ùÿÿfDè;SþÿéùÿÿfDè+Sþÿé8ùÿÿfDHÆ0E1íE1ÿÇÝ)'&
H‰Ê)'ÇÈ)'æ6éÍõÿÿL‰ÿèèRþÿé9ïÿÿH†0Ç£)'.
H‰)'ÇŽ)'n7H‹T$M‰çH‹H‰$HƒèH‰…|õÿÿH‰×èšRþÿéoõÿÿDH60ÇS)'.
H‰@)'Ç>)'|7ë®@L‰ïè`Rþÿé…îÿÿèSRþÿéßúÿÿfDèCRþÿé·úÿÿfDè£TþÿL‰÷èÍþÿI‰ÅH‰D$8H…À…	ìÿÿHÀ/ÇÝ('D
H‰Ê('ÇÈ('Ú8é‚ùÿÿL‰ïèëQþÿé)îÿÿHŒ/E1íǦ('D
H‰“('Ç‘('Ü8é¿üÿÿH
-1ºê¾5OE1íH=&1H‰
b('Çd('êÇV('5Oè‘ÍþÿH'/HÇD$8H‰2('Ç4('(
Ç&('7éàøÿÿH÷.E1íÇ('D
H‰þ''Çü''ü8éôÿÿHÍ.M‰çÇç''.
H‰Ô''ÇÒ''Ø7é×óÿÿL‹%Ž''M…ä„õH‹D$H‹xI9ü„îõÿÿL‰æèsXþÿ…À„ÕH‹D$8H‰D$éÏõÿÿ@è³PþÿéùÿÿèSþÿL‰çè‘ËþÿI‰ÇH…À…×õÿÿH;.L‹l$ÇS'')
H‰@''Ç>''7éCóÿÿH.Ç,''D
H‰''Ç''9Iƒ/tE1ÿéóÿÿf„L‰ÿE1ÿè%PþÿéúòÿÿHT$`L‰áL‰÷L}/H5gÊ&è‚âþÿ…À‰1ôÿÿH -¾î5Ǹ&'¹H‰¥&'Ç£&'î5éÃìÿÿHt-L‹l$ÇŒ&')
H‰y&'Çw&'7é[ÿÿÿHH-Çe&'H
H‰R&'ÇP&',9éUòÿÿH!-L‹l$Ç9&')
H‰&&'Ç$&'7é)òÿÿL‰ÿèGOþÿégøÿÿHè,Ç&'H
H‰ò%'Çð%'.9épöÿÿHÁ,L‹l$ÇÙ%')
H‰Æ%'ÇÄ%'67é¨þÿÿL‰ÿèçNþÿéøÿÿHˆ,E1íÇ¢%'@
H‰%'Ǎ%'58é’ñÿÿH^,Ç{%'@
H‰h%'Çf%'78Iƒ/„ªE1íE1ÿé[ñÿÿHƒìH‹¾$A¸H5ÁjL
u.H
,H‹8H¾-1ÀèhUþÿHî+_¾ä5H‰ü$'AXÇü$'¹Çî$'ä5éëÿÿL‰ïE1íèNþÿéãðÿÿH¯+ÇÌ$'@
H‰¹$'Ç·$'E8éLÿÿÿHˆ+Ç¥$'H
H‰’$'ǐ$'}9é•ðÿÿH‹|$8L5\+Çy$'A
L‰5f$'Çd$'c8H…ÿt
Hƒ/„çHÇD$8H‹|$@H…ÿt
Hƒ/„ÔHÇD$@H‹|$HH…ÿt
Hƒ/„Á‹$'‹5$'H=HÇD$HH‹
ð#'è3ÉþÿHT$HHt$8H|$@èÄþÿ…Àˆ£H‹L$HH‹T$81?H‹t$@èŒSþÿH…À„­1ÒH‰ÆL‰ÿH‰D$èqQþÿIƒ/H‹L$H‰Æ„?Hƒ)„H…ö„–H;5
¾$”ÀH;5[½$”ÂÂ…}H;5A½$„pH‰÷H‰t$èÖNþÿH‹t$A‰ÇHƒ.„_E…ÿˆH‹|$@E…ÿ„™H…ÿt
Hƒ/„HÇD$@H‹|$8H…ÿt
Hƒ/„·HÇD$8H‹|$HH…ÿt
Hƒ/„¤H‹T$PH‹t$XHÇD$HH‹|$`è§Pþÿé¦åÿÿL‰ÿE1íE1ÿèÔKþÿé©îÿÿHu)E1íǏ"'@
H‰|"'Çz"'¹8éîÿÿDL‹=ٻ$L9øtL‰ïèÜQþÿ…À„aèÏRþÿH…À…ÆöÿÿH‹»$H5*H‹8èOþÿé«öÿÿH‹™¼$H5ë*H‹8èâNþÿHè(L‹l$M‰çÇý!'-
H‰ê!'Çè!'`7éííÿÿHƒ.D¶ø…ªþÿÿH‰÷èýJþÿé”þÿÿH‹9¼$H5‹*H‹8è‚NþÿHˆ(E1íE1ÿÇŸ!'(
H‰Œ!'ÇŠ!'7éíÿÿH‰ÏH‰t$è¨JþÿH‹t$ééýÿÿè™JþÿéýÿÿèJþÿé"ýÿÿè…Jþÿé5ýÿÿL‰ÿH‰D$ èsJþÿH‹t$ H‹L$é¥ýÿÿL‰5%!'Ç'!'@
Ç!'y8H‹T$PH‹t$XE1ÿH‹|$`èòNþÿéíÿÿè(JþÿéåýÿÿL‰ïè[MþÿI‰ÅH…À„‹þÿÿH‹@H;lº$u4fö€³„	õÿÿL‰ïèËIþÿH‰D$Iƒm…?ãÿÿL‰ïèÓIþÿé2ãÿÿL‰ïèV8ÿÿI‰ÅH…À„
õÿÿH‹@ë´H‹T$HH‹t$8èMþÿL‰5f 'HÇD$@HÇD$8HÇD$HÇM '@
Ç? 'Ž8é!ÿÿÿèeIþÿé?ýÿÿè[IþÿéRýÿÿL‰5 'Ç '@
Ç '†8éíþÿÿL‰5÷'Çù'@
Çë'}8éÍþÿÿL‰5×'ÇÙ'@
ÇË'‚8é­þÿÿH‹D$I‹L$ H5¥H‹@H‹P H‹~¸$H‹81ÀèìOþÿéåýÿÿI‹EI‹N H5xH‹P H‹U¸$H‹81ÀèÃOþÿé\ýÿÿL‰ïèÖKþÿI‰ÆH…À„µóÿÿH‹ë¸$I9Fu1I‹Fö€³t9L‰÷èHHþÿH‰D$Iƒ.…sþÿÿL‰÷èQHþÿéfþÿÿL‰÷èÔ6ÿÿI‰ÆH…Àu¿épóÿÿL9øtL‰÷èzNþÿ…ÀtèqOþÿH…Àt^HÇD$ÿÿÿÿë®L‰÷èIKþÿI‰ÇH…ÀtÛH‹b¸$I9Gu$L‰ÿèŒBÿÿIƒ/H‰D$…zÿÿÿL‰ÿèÕGþÿémÿÿÿL‰ÿèX6ÿÿI‰ÇH…ÀuÌë¢H‹_·$H5X&H‹8èHKþÿëŠI‰Æé5åÿÿH‹?·$H58&H‹8è(Kþÿé¼òÿÿAWAVAUATUSH‰óHƒìXH‹ ¸$H‹nH‰|$HÇD$0HÇD$8HÇD$@H‰D$HH…Ò…&
Hƒý„\Hƒý…²H‹F8H‰D$L‹{0L‹s(L‹k H‹'¿H‹˜(ÿhE1É1É1ÒA¸H‰ÆL‰ïÿÓH‰ÅH…À„³
Hƒ8„H‹Ê'¿H‹˜(ÿhE1É1É1ÒA¸H‰ÆL‰÷ÿÓH‰ÃH…À„×Hƒ8„ÝH‹†'¿L‹ (ÿhE1É1É1ÒA¸H‰ÆL‰ÿAÿÔI‰ÄH…À„z
Hƒ8„x‹C ;E „œL‹5…'H‹='L‰öè^GþÿI‰ÅH…À„‚HƒH‹5÷'L‰ïè¯NþÿI‰ÆH…À„Ó
Iƒm„
L‹-9'H‹=Ò'L‰îèGþÿI‰ÂH…À„žHƒH‹53'L‰×L‰T$è^NþÿL‹T$H…ÀI‰Ç„íIƒ*„ó	¿èéJþÿH‰ÁH…À„uHƒE1ÒH‰ÆL‰ÿH‰h HƒH‰X(H‰D$èúIþÿH‹L$H…ÀI‰À„ñHƒ)„¯Iƒ/„ÅL‰Æ1?L‰D$èÁKþÿL‹D$H…ÀI‰Ç„ 1ÒH‰ÆL‰÷è£IþÿIƒ/L‹D$I‰Å„áIƒ(„ÇI‹HƒèM…í„øI‰H…À„›L;-,¶$”ÀL;-zµ$”ÂÂu
L;-dµ$…	D¶ðIƒm„ÿE…ö…L‹-ß'H‹=x'L‰îè¸EþÿI‰ÆH…À„dHƒH‹5Q'L‰÷è	MþÿH‰ÁH…À„…Iƒ.„“L‹-”'H‹=-'H‰L$L‰îèhEþÿH‹L$H…ÀI‰Ç„”HƒH‹5„'L‰ÿH‰L$è¯LþÿH‹L$H…ÀI‰Æ„ÂIƒ/„	¿H‰L$è5IþÿH‹L$H…À„øHƒ1ÒH‰ÆL‰÷H‰X Iƒ$L‰`(H‰L$ H‰D$è?HþÿL‹T$H‹L$ H…ÀI‰Ç„Iƒ*„_	Iƒ.„=	1ÀL‰þ¿H‰L$èJþÿH‹L$H…ÀI‰Æ„i	1ÒH‰ÏH‰ÆèãGþÿIƒ.H‹L$I‰Å„ÁIƒ/„—M…í„A	Hƒ)„tL;-u´$”ÀL;-ó$”ÂÂ…p
L;-©³$„c
L‰ïèCEþÿA‰ƅÀˆ¡Iƒm„ÍE…ö…(L‹5'H‹=®'L‰öèîCþÿI‰ÅH…À„aHƒH‹5‡'L‰ïè?KþÿI‰ÆH…À„‚Iƒm„cL‹-É'H‹=b'L‰îè¢CþÿH‰ÁH…À„ñHƒH‹5s'H‰ÏH‰L$èîJþÿH‹L$H…ÀI‰Â„Hƒ)„‰¿L‰T$ètGþÿL‹T$H…ÀI‰Å„HƒE1ÒL‰×H‰ÆH‰h Iƒ$L‰`(L‰T$èFþÿL‹T$H…ÀI‰Ç„.Iƒm„ÐIƒ*„¹1ÀL‰þ¿èJHþÿH…À„U1ÒH‰ÆL‰÷H‰D$è/FþÿH‹L$I‰ÅHƒ)„ÕIƒ/„åI‹HPÿM…í„$I‰H…Ò„¼L;-¸²$”ÀL;-²$”ÂÂ…»
L;-ì±$„®
L‰ïè†CþÿA‰ƅÀˆ0Iƒm„ÌE…ö…ZH‹D$HƒìI‰èH‹=L±$L‹¨ðHp(IƒEL‹
M'L‰éjAQATjAQSjH‹T$Xÿº'HƒÄ@H…À…šH[Çx'³H‰e'Çc'–5Iƒm…õL‰ïè}@þÿéèH‹k@HƒýH,H
HMȝÀHƒì¶ÀUH L@H‹å¯$H5ŽL
D H‹81ÀèEGþÿHË¾3Çã'MÇÕ'3H‰Æ'XZH
¢ºMH=ùèô»þÿ1ÀHƒÄX[]A\A]A^A_ÃH‹°$H‰D$馸ÿÿ€H‰Çè°?þÿéâøÿÿH‰Çè ?þÿéùÿÿA;D$ …Yùÿÿ…À…QùÿÿL‰ïèM@þÿf.M!òD$‹ñL‰ÿè1@þÿf.1!òD$ ‹L‰÷è@þÿf.!f(È‹;òd$f/á‡Óf/L$ ‡'òt$f.t$ ‹uH‹D$òD$òL$(L‹¸ðIƒè$>þÿòL$(H…À„	f(ÁH‰D$è>þÿL‹T$H…ÀI‰Æ„Ö	òD$ L‰T$èæ=þÿL‹T$H…ÀI‰Å„e
H‹t$HƒìM‰ÑL‰ùH‹ï'ÿ51¯$A¸HƒÆ(H‹=.$jPAUjPAVjPH‹T$hL‰T$XÿS'HƒÄPL‹T$H…À„‰
Iƒ/„oIƒ*„EIƒ.„#Iƒm„ÀHƒm„§Hƒ+„ºIƒ,$…þÿÿL‰çH‰D$èà=þÿH‹D$HƒÄX[]A\A]A^A_Ã@H‰ÇèÀ=þÿé{÷ÿÿH^E1äÇx'™H‰e'Çc'a3‹^'H‹
K'H=Œ	‹5F'聹þÿH‹EHPÿ1ÀH‰UH…ÒuH‰ïH‰D$èQ=þÿH‹D$H…ÛtHƒ+uH‰ßH‰D$è4=þÿH‹D$M…ä….ÿÿÿHƒÄX[]A\A]A^A_ÀHƒý‡–üÿÿI‰ÔH HcªHÐÿàH‹F8H‰D$HH‹C0H‰D$@H‹C(L‰çH‰D$8H‹C H‰D$0èô>þÿI‰ÅHƒý„3~7Hƒý„HHƒýu0M…íLH‹D$HL‹l$0L‹t$8L‹|$@H‰D$éqõÿÿH…í„ÐM…í~ÔHT$0H‰éL‰çL/H5w¶&èÒÎþÿ…Ày²Hô¾
3Ç'MH‰ù'Ç÷'
3é&üÿÿfH
ƺ˜¾R3ÇÙ'˜H=H‰
¿'ǽ'R3èø·þÿ1ÀéÿûÿÿL‰ïèØ;þÿéëõÿÿHvÇ“'šH‰€'Ç~'p3éþÿÿf„L‰×è˜;þÿéöÿÿL‰ïèè=þÿA‰ƅÀ‰ÛöÿÿH#Ç@'¬H‰-'Ç+'š4éÆúÿÿfDH‹5á'L‰çè;þÿH…À„ÈþÿÿH‰D$HIƒíéµþÿÿf.„HÆÇã'¬H‰Ð'ÇÎ'U41É@Iƒm„EH…É„TýÿÿHƒ)…JýÿÿH‰ÏèÒ:þÿé=ýÿÿDL‰ÿH‰L$è»:þÿH‹L$éÍöÿÿL‰çèØ<þÿI‰ÅH‹5ö	'L‰çIƒíèb:þÿH‰D$0H…À„úÿÿH‹5õ'L‰çèE:þÿH‰D$8H…À„
IƒíH‹5¤'L‰çè$:þÿH‰D$@H…À„6	Iƒíé˜ýÿÿDL‰÷H‰L$è+:þÿH‹L$é¬öÿÿL‰×H‰L$è:þÿH‹L$éŠöÿÿf„H‹F L‰çH‰D$0è<þÿI‰ÅécÿÿÿIƒ/„HƒE1öǝ'®H‰Š'Lj'ÿ4I‰ÍL‰ñéµþÿÿDL‰ïH‰L$è›9þÿH‹L$é¤þÿÿH‰ÏH‰D$èƒ9þÿL‹D$é:ôÿÿf„L‰ÿL‰D$èc9þÿL‹D$é$ôÿÿf„L‰ïH‰D$èC9þÿH‹D$é)ûÿÿf„L‰÷è(9þÿéXôÿÿL‰Çè9þÿé,ôÿÿL‰ÿè9þÿL‹D$é
ôÿÿfDL‰÷H‰D$èë8þÿH‹D$éÆúÿÿL‰×H‰D$èÓ8þÿH‹D$é¤úÿÿf„L‰ÿH‰D$L‰T$è®8þÿH‹D$L‹T$épúÿÿ€L‰ïè8þÿéôóÿÿD¶ðé§õÿÿ€…	ùÿÿè½?þÿH…À„ûøÿÿH
Ç''H‰'Ç'’3é­úÿÿD…åøÿÿè}?þÿH…À„×øÿÿHÊÇç'žH‰Ô'ÇÒ'œ3émúÿÿD…¿øÿÿòD$(è7?þÿòL$(H…À„¥øÿÿH~Ç›'ŸH‰ˆ'dž'¦3é!úÿÿL‰÷H‰L$è£7þÿH‹L$éVóÿÿf„èû9þÿL‰÷ès²þÿI‰ÅH…À…iñÿÿHÇ:'¬H‰''Ç%'S4éÀùÿÿH‹5Ñþ&H‹="
'1ÒèÛ;þÿI‰ÅH…À„hH‰Çè‡$ÿÿIƒm„ãHÂÇß
'¢H‰Ì
'ÇÊ
'¾3éeùÿÿDH‹5iþ&H‹=Â'1Òè{;þÿI‰ÅH…À„\H‰Çè'$ÿÿIƒm„àHbÇ
'¤H‰l
'Çj
'Þ3éùÿÿD……÷ÿÿH‹5ûý&H‹=\'1Òè;þÿI‰ÅH…À„WH‰ÇèÁ#ÿÿIƒm„ÕHüÇ
'¦H‰
'Ç
'þ3韸ÿÿ€è“8þÿL‰ïè±þÿH‰ÁH…À…R	HµÇÒ'¬H‰¿'ǽ'X4I‹HƒèI‰H…À…íúÿÿE1íL‰÷H‰L$èÊ5þÿH‹L$M…í…ÄúÿÿéÊúÿÿ€HV1ÉE1íÇn'¬H‰['ÇY'Z4Iƒ*u E1ÿL‰×H‰L$ès5þÿM…ÿH‹L$tIƒ/tM…öt™Iƒ.u“é|ÿÿÿL‰ÿH‰L$èC5þÿH‹L$ëÙ@HÞ1ÉE1öÇö'¨H‰ã'Çá'4E1íë£@H®ÇË'¬H‰¸'Ƕ'z4ëÓ@H†E1íÇ '©H‰'Ç‹'%4Iƒ*¹…Cÿÿÿé'ÿÿÿ€H‰Ïè˜4þÿéñÿÿL‰ÿH‰L$èƒ4þÿH‹L$éRñÿÿf„L‰÷èh4þÿH‹L$é-ñÿÿfDHþÇ'¬H‰'Ç'…4é ÿÿÿHÖÇó
'ªH‰à
'ÇÞ
'/4éNÿÿÿf„L‰ïèø3þÿé&ñÿÿIƒ(„=I‹HƒèH
…Ç¢
'¬H‰

'1ÉÇ‹
'—4éÐýÿÿfDHVÇs
'§H‰`
'Ç^
'94éÎþÿÿf„D¶ðé\òÿÿ€H‹5ñú&H‹=B	'1Òèû7þÿI‰ÅH…À„H‰Çè§ ÿÿIƒm„ÊHâÇÿ	'­H‰ì	'Çê	'©4é…õÿÿL‰ïè
3þÿéðÿÿès5þÿL‰ïèë­þÿI‰ÆH…À…‡îÿÿH•Dz	'®H‰Ÿ	'ǝ	'»4é8õÿÿHnÇ‹	'®H‰x	'Çv	'½4I‹Hƒèé´üÿÿH‰ÏH‰D$è2þÿL‹T$é`ðÿÿH‰L$èé4þÿL‰ïèa­þÿH‹L$H…ÀI‰Æ…«HÇ#	'®H‰	'Ç	'À4選ÿÿL‰ïè12þÿéûÿÿHÒI‰Í1ÉÇê'®H‰×'ÇÕ'Â4é—üÿÿL‰×èø1þÿé:ðÿÿL‰ïL‰T$èæ1þÿL‹T$éðÿÿL‰ïèÔ1þÿéûÿÿHuÇ’'®H‰'Ç}'â4éð÷ÿÿH‰Ïè 1þÿéðÿÿL‰÷è“1þÿé7ðÿÿL‰ÿè†1þÿéðÿÿL‰ïèy1þÿéûÿÿHI‰ÍL‰ñÇ1'®H‰'E1öÇ'í4é»ûÿÿL‰ïè<1þÿé'ðÿÿHÝÇú'®H‰ç'Çå'5é€ðÿÿHƒìH‹­ $H
¼H5OójL
A¸H²H‹81Àè÷7þÿH}Y^H‰'¾3ÇŒ'MÇ~'3é­ðÿÿL‰Çè¡0þÿé¶üÿÿH‹5ø&H‹=n'1Òè'5þÿI‰ÅH…À„pH‰ÇèÓÿÿIƒm„HÇ+'¯H‰'Ç'5é±òÿÿè¬2þÿL‰÷è$«þÿI‰ÅH…À…ŠíÿÿHÎ
Çë'°H‰Ø'ÇÖ'#5éqòÿÿH§
ÇÄ'°H‰±'ǯ'%5éÜôÿÿHƒìH‹wŸ$A¸H5òjL
ÎH
p
H‹8Hy1ÀèÁ6þÿHG
_¾ú2H‰U'AXÇU'MÇG'ú2évïÿÿL‰ïèj/þÿé)üÿÿèÐ1þÿL‰ïèHªþÿH‰ÁH…À…úìÿÿHòÇ'°H‰ü'Çú'(5I‹Hƒèé8ùÿÿHÄÇá'°H‰Î'ÇÌ'*5I‹Hƒèé
ùÿÿH–1ÉDZ'°H‰ž'Çœ'J5é>ùÿÿHmÇŠ'¢H‰w'Çu'º3éñÿÿHFM‰ïE1íÇ]'°H‰J'ÇH'U5é¸ùÿÿHÇ6'¤H‰#'Ç!'Ú3é¼ðÿÿIƒ/„ I‹H
åHƒèÇþ'°H‰
ë'1ÉÇç'g5é,øÿÿH¸ÇÕ'¦H‰Â'ÇÀ'ú3é[ðÿÿH‘Ç®'°H‰›'Ç™'j5é4íÿÿL‰ÿH‰L$è·-þÿH‹L$éÐóÿÿH‹5õ&H‹='1Òè82þÿI‰ÅH…À„¨H‰ÇèäÿÿIƒmthH#Ç@'±H‰-'Ç+'y5éÆïÿÿL‰ïèN-þÿéáüÿÿHï
Ç'­H‰ù'Ç÷'¥4é’ïÿÿL‰ÿè-þÿéÓþÿÿL‰ïè
-þÿëŽH±
ÇÎ'¯H‰»'ǹ'
5éTïÿÿHŠ
ǧ'±H‰”'Ç’'u5é-ïÿÿI‰ÂéóæÿÿI‰Çéšèÿÿf.„AWAVI‰þAUATUSH‰óHƒìH‹FH‹€°© …©u©„$H‰ßè¼2þÿ…À„¤1öH‰ßèZ,þÿH‰ÅH…í„þH‹5‡'ºH‰ïè3þÿA‰ąÀˆ'Hƒm„E…ä…ûè–.þÿH‰ÅH…À„ªH‰ßèR2þÿ…À„ª1öH‰ßèð+þÿI‰ÄM…䄼H‹5Eþ&L‰âH‰ïèR+þÿ…ÀˆIƒ,$„ÿè:.þÿI‰ÄH…À„î	H‰ßèö1þÿ…À„¾H‰ßè‘+þÿI‰ÇM…ÿ„-
H‹5û&L‰úL‰çèó*þÿ…Àˆs	Iƒ/„H‰ßè©1þÿ…À„Q¾H‰ßèD+þÿI‰ÇM…ÿ„è
H‹5Á÷&L‰úL‰çè¦*þÿ…Àˆö	Iƒ/„üH‹5ýô&L‰âH‰ïè‚*þÿ…Àˆz
Iƒ,$„¿H‰ßè'.þÿHƒøÿ„HƒøÃH‰ëE1íéô„1ÿè2þÿI‰ÄH…À„]H‰ÆH‰ßèÒ+þÿIƒ,$H‰Å…=þÿÿL‰çè|*þÿé0þÿÿ€H‹5áü&H‰ßè3þÿ…Àˆ9uoH‹5ò&H‹=)'1Òèâ.þÿH…À„YH‰ÇH‰$èÿÿH‹$Hƒ(„ìHÅ¾'º`ÇØ'`H‰Å'ÇÃ''é
fDH‹5áó&H‰ßèy2þÿ…Àˆi
„tÿÿÿHƒE1íH‹5Uú&H‰ßèe2þÿH‰ÅH…À„ÁH‹5Âñ&1ÒH‰Çè8.þÿI‰ÄH…À„ÜHƒm„áL‰çèI*þÿf.I‹ëIƒ,$„ÐH‹5ñù&òAF`H‰ßèû1þÿI‰ÄH…À„¿H‹5Pñ&1ÒH‰ÇèÎ-þÿI‰ÇH…À„âIƒ,$„§I‹Gö€³„L‰ÿèÞ(þÿH‰ÂA‰ÄH˜H9Â…ÝAƒüÿ„3Iƒ/„yE‰fXI‹~ H‰ÚH‹5Ïò&è2.þÿ…Àˆ*L‹%k™$Iƒ$Hƒ+„TM…ítIƒm„ÔHƒÄL‰à[]A\A]A^A_Ãf¿èæ/þÿI‰ÅH…À„"H‰ÆH‰ßèŸ)þÿIƒmI‰Ç…ÓüÿÿL‰ïèI(þÿéÆüÿÿ@H‹5qð&H‹=þ&1ÒèË,þÿH‰ÃH…À„	H‰ÇèwÿÿHƒ+„ÍH³¾gºdÇÆþ&dH‰³þ&DZþ&gH
‡H=ôE1äèۣþÿé2ÿÿÿfDL‰ïè¸'þÿéÿÿÿHVºj¾ÀÇiþ&jH‰Vþ&ÇTþ&ÀH
*H=¶óA¼è{£þÿHƒm…ÌþÿÿH‰ëE1íf.„H‰ßèH'þÿéŸþÿÿ1ÿè©.þÿI‰ÅH…À„H‰ÆH‰ßèb(þÿIƒmI‰Ä…7ûÿÿL‰ïè'þÿé*ûÿÿ€H‰ïèø&þÿéßúÿÿ¿èV.þÿI‰ÅH…À„šH‰ÆH‰ßè(þÿIƒmI‰Ç…ûÿÿL‰ïè¹&þÿéƒûÿÿ@L‰çè¨&þÿéôúÿÿH‰ïè˜&þÿéýÿÿL‰çò$èƒ&þÿò$éýÿÿf„L‰çèh&þÿéLýÿÿL‰ÿèX&þÿézýÿÿL‰ÿèH&þÿéòúÿÿHæ¾yºeÇùü&eH‰æü&Çäü&yé.þÿÿ€L‰ÿè&þÿé÷úÿÿHžE1í1ÛǶü&eH‰£ü&Ç¡ü&{HƒmuH‰ïèÂ%þÿH‹
ƒü&‹‰ü&E1äH=ëñ‹5uü&谡þÿH…Û…éüÿÿéîüÿÿfH6¾ºqÇIü&qH‰6ü&Ç4ü&H
H=–ñE1äè^¡þÿé›üÿÿf„H‰ßè8%þÿé&ýÿÿH‰Çè+%þÿéûÿÿfDL‰çè%þÿé4úÿÿH‹59í&H‹=âú&1Òè›)þÿH‰ÃH…À„H‰ÇèGÿÿHƒ+„­Hƒ¾ŠºfÇ–û&fH‰ƒû&ǁû&ŠéËüÿÿ@HNE1ÿÇhû&hH‰Uû&ÇSû& Hƒm„·Iƒ,$A½»tVM…ÿ„›þÿÿIƒ/…‘þÿÿL‰ÿèK$þÿé„þÿÿfDIƒ,$HáH‰õú&Ç÷ú&pÇéú&
…QþÿÿL‰çè$þÿë fDH‰ßèX*þÿ…À„¾H‰ßèó#þÿI‰ÄM…ä„3H‹5(ô&L‰âH‰ïèÕ*þÿ…ÀˆJIƒ,$„’H‰ßè
*þÿ…À„ú¾H‰ßè¥#þÿI‰ÄM…ä„FH‹5:ô&L‰âH‰ïè‡*þÿ…Àˆ]Iƒ,$„QHƒEI‰íH‰ëéùÿÿ@Hö¾œºhÇ	ú&hH‰öù&Çôù&œé>ûÿÿ€H¾E1í1ÛÇÖù&hH‰Ãù&ÇÁù&žéýÿÿ@HŽ¾øºoÇ¡ù&oH‰Žù&ÇŒù&øéSýÿÿ€HVÇsù&oH‰`ù&Ç^ù&úé¸üÿÿf„…ùÿÿò$èÀ)þÿò$H…À„÷øÿÿIƒ,$HH‰ù&Çù&oÇù&ý…ŠL‰çè-"þÿéfüÿÿ„HÆÿ¾º_ÇÙø&_H‰Æø&ÇÄø&éúÿÿ€HŽÿÇ«ø&iH‰˜ø&Ç–ø&®é>ýÿÿH‰ïè¹!þÿé<ýÿÿ@HVÿE1í1ÛÇnø&iH‰[ø&ÇYø&ªé³ûÿÿ@H&ÿ¾ºpÇ9ø&pH‰&ø&Ç$ø&éëûÿÿ€HîþE1ÿÇø&iH‰õ÷&Çó÷&¬é›üÿÿfDH¾þÇÛ÷&iH‰È÷&ÇÆ÷&²énüÿÿH;)‘$tL‰ÿè/'þÿ…À„;è"(þÿH…ÀuH‹n$H5gÿH‹8èW$þÿ€èû'þÿA¼ÿÿÿÿH…À„¹÷ÿÿHBþL‰ýÇ\÷&pH‰I÷&ÇG÷&
é¡úÿÿfHþE1ÿÇ0÷&hH‰÷&Ç÷&´éÃûÿÿfDHæýE1ÿÇ÷&iH‰íö&Çëö&°é“ûÿÿfDHƒúÿ„WH‹$H5àèH‹8è#þÿé;ÿÿÿ¿èN'þÿI‰ÅH…À„.H‰ÆH‰ßè!þÿIƒmI‰Ä…ÙûÿÿL‰ïè±þÿéÌûÿÿ@¿è'þÿI‰ÅH…À„OH‰ÆH‰ßèÇ þÿIƒmI‰Ä…çûÿÿL‰ïèqþÿéÚûÿÿ@Hý¾º_Ç!ö&_H‰ö&Çö&éV÷ÿÿ€H‰ßè(þÿéFúÿÿL‰çèþÿéaûÿÿL‰çèþÿé¢ûÿÿH¬ü¾cºdÇ¿õ&dH‰¬õ&Ǫõ&céôöÿÿH{ü¾†ºfÇŽõ&fH‰{õ&Çyõ&†éÃöÿÿHJüºk¾ËÇ]õ&kH‰Jõ&ÇHõ&ËéïöÿÿHüH‰ëE1íÇ0õ&kH‰õ&L‰åÇõ&ÍérøÿÿHéûºl¾×Çüô&lH‰éô&Ççô&×éŽöÿÿH¸ûH‰ëE1íÇÏô&lH‰¼ô&L‰åÇ·ô&ÙéøÿÿfH†û¾#º`Ç™ô&`H‰†ô&Ç„ô&#éÎõÿÿèú$þÿH…À„›ýÿÿéìüÿÿL‰ÿèÔ þÿH‰ÅH…À„±üÿÿH‹@L‹%å$L9àu<„ö€³tyH‰ïè?þÿHcÈA‰ÄH9Èu2Hƒm…\ôÿÿH‰ïèAþÿéOôÿÿH‰ïèÄÿÿH‰ÅH…À„xüÿÿH‹@ë²HƒøÿteH‹•$H5öåH‹8è¦ þÿHƒm…KüÿÿH‰ïèóþÿé>üÿÿH;'$tH‰ïè-#þÿ…Àt=è$$þÿH…ÀuÉH‹pŒ$H5iûH‹8èY þÿë±è$þÿH…Àt‘륾ýºoé8÷ÿÿH‰ïèÔþÿH‰$H…Àt²L9`uGH‹<$H‹Gö€³tnèOþÿHcÈA‰ÄH9Èu<H‹$H‹H‰D$HƒèH‰…÷þÿÿH‰ÏèCþÿéêþÿÿH‰ÇèÆ
ÿÿH‰$H…Àu¨é"ÿÿÿHƒÀtEH‹›Œ$H5üäAƒÌÿH‹8è¨þÿë¢H;?Œ$t
H‹<$èD"þÿ…Àtè;#þÿH…ÀtjAƒÌÿéyÿÿÿè(#þÿH…Àt±ëëH‹<$èþÿH‰ÁH…ÀtÐL9`u,H‰ÏH‰L$è}ÿÿH‹L$A‰ÄHƒ)…7ÿÿÿH‰Ïè“þÿé*ÿÿÿH‰Çè
ÿÿH‰ÁH…ÀuÄë–H‹‹$H5úH‹8èþÿé{ÿÿÿAWAVAUATUH‰õSHƒìH‹ è&H‰<$H‹=5ò&H‰ÞèuþÿH…À„¬HƒI‰ÄH‹5ë&L‰çèÆ#þÿH‰ÃH…À„*Iƒ,$„ŸH‹Eö€³„VHƒ+A½„ŽH‹/è&H‹=Èñ&H‰ÞèþÿI‰ÄH…À„ŒHƒH‹5™í&L‰çèY#þÿI‰ÇH…À„­Iƒ,$„H‰î¿1Àè#!þÿH‰ÅH…À„¿1ÒH‰ÆL‰ÿè
þÿHƒmH‰Ã„LI‹HPÿH…Û„›I‰H…Ò„H‹5å&H‹<$èà"þÿI‰ÆH…À„H‰޿1Àèµ þÿH‰ÅH…À„)1ÒH‰ÆL‰÷èœþÿHƒmI‰Ä„I‹HPÿM…ä„I‰H…Ò„òIƒ,$„H‹HPH‰H‰H…À„±HƒÄH‰Ø[]A\A]A^A_ÀH‰ÞH‰ïE1íèº!þÿ…ÀA•ÅHƒ+„*H‹Ëæ&H‹=dð&E…í…“þÿÿH‰Þè›þÿI‰ÇH…À„×	HƒH‹5ì&L‰ÿèì!þÿI‰ÄH…À„	Iƒ/„†H‰î¿1Àè·þÿI‰ÅH…À„‹
1ÒH‰ÆL‰çèžþÿIƒmH‰Ã„ÐI‹$HƒèH…Û„g
I‰$H…À„¢H‹5»æ&H‰ßès!þÿI‰ÆH…À„w
H‹50á&1ÒH‰Çèö þÿI‰ÄH…À„ú
Iƒ.„ÐL‹-ñ‰$M9ì”ÀL;%<‰$”ÂÂ…L;%"‰$„tL‰çè¼þÿA‰DžÀˆIIƒ,$„®E…ÿ…mH‹5&æ&H‰ßèÞ þÿI‰ÄH…À„²H‹5›à&H9ð„’H‹ã‡$I9D$„HºL‰çèC þÿI‰ÆH…À„§I‹$M9îA”ÇHPÿA¶ÇI‰$H…Ò„eL;5€ˆ$”ÁL;5nˆ$”ÂÑuE„ÿuL‰÷èþÿ…Àˆ²Iƒ.„ÀL‹=áä&H‹=zî&L‰þ…À„ïè²þÿI‰ÄH…À„ñHƒH‹5ûå&L‰çè þÿI‰ÇH…À„RIƒ,$„4¿è’þÿI‰ÄH…À„óHƒ1ÒH‰ÆL‰ÿH‰X HƒEH‰h(è¨þÿI‰ÆH…À„…Iƒ,$„Iƒ/„×
M9î”ÀL;5š‡$”ÂÂ…‡L;5€‡$„zL‰÷èþÿ‰ŅÀˆ[
Iƒ.„Æ
…턬H‹-ïã&H‹=ˆí&H‰îèÈþÿI‰ÇH…À„HƒH‹5Ié&L‰ÿèþÿI‰ÄH…À„?Iƒ/„QH‰޿1ÀèäþÿH‰ÅH…À„³1ÒH‰ÆL‰çèËþÿHƒmI‰Å„ŠI‹$HPÿM…턇I‰$H…Ò„_Hƒ+„EL‰ëH‹5³à&H‹<$è’þÿI‰ÄH…À„~
H‰޿1ÀègþÿH‰ÅH…À„·1ÒH‰ÆL‰çèNþÿHƒmI‰Å„ê	I‹$HPÿM…í„‹I‰$H…Ò„¿	Iƒm…°ûÿÿL‰ïèoþÿé£ûÿÿf.„L‰çèXþÿéTúÿÿH‰ßèHþÿéÉûÿÿL‰ÿè8þÿéóúÿÿL‰çè(þÿéQüÿÿL‰ïèþÿé#üÿÿH‰ïèþÿé§úÿÿH‰ßèøþÿéBûÿÿD¶øé–üÿÿ€L‰÷èØþÿéûÿÿH‰ïèÈþÿéÕúÿÿL‰÷è¸þÿé#üÿÿL‰çè¨þÿéÜúÿÿL‰ÿè˜þÿémûÿÿL‰çèˆþÿéñùÿÿèëþÿH‰ßècþÿH‰ÃH…À…Ö
H
òÇ*ë&­H‰ë&Çë&<LE1öfH‹
ë&‹ë&H=œà‹5öê&è1þÿH…ÛtHƒ+t&1ÛM…ö„ZúÿÿIƒ.…PúÿÿL‰÷èùþÿéCúÿÿ@1íH‰ßH‰ëèãþÿë͐H†ñÇ£ê&­H‰ê&ÇŽê&>LI‹$HƒèI‰$H…À…dÿÿÿL‰çè¡þÿéWÿÿÿ@L‰çèþÿéEûÿÿèÃþÿI‰ÆH…À„BHƒH‹5Tæ&L‰÷èþÿI‰ÄH…À„’Iƒ.„VH‹5Þ&H‰ßèïþÿI‰ÆH…À„ÈH‰Çè‹þÿ…À„Û1öL‰÷è)þÿI‰ÇI‹HƒèM…ÿ„	I‰H…À„ú¿èPþÿH‰ÅH…À„^	L‰x èkþÿI‰ÇH…À„¡	L‹- à&H‹=¹é&L‰îèùþÿI‰ÆH…À„
HƒH‹5Šâ&L‰÷èJþÿI‰ÅH…À„7Iƒ.„´H‹5Íã&L‰êL‰ÿèþÿ…Àˆ	Iƒm„¶L‰úH‰îL‰çèñþÿI‰ÆH…À„
Iƒ,$„«Hƒm„“Iƒ/„£H‹5æÜ&H‹<$èÅþÿI‰ÇH…À„6
L‰ö¿1ÀèšþÿH‰ÅH…À„ê	1ÒH‰ÆL‰ÿèþÿHƒmI‰Ä„4I‹HBÿM…ä„Â	I‰H…À„2Iƒ,$„L‰öH‰ßèáþÿH‰ÅH…À„ž
Hƒ+„ýÿÿH‰ëéxýÿÿIƒEA¿¸M‰îIƒ,$…ÈùÿÿL‰ç‰D$èVþÿ‹D$é†ùÿÿD1ÿè±þÿH‰ÅH…À„@H‰ÆL‰÷èjþÿHƒmI‰Ç…þÿÿH‰ïèþÿéùýÿÿ€L‰çèþÿé¿ùÿÿL‰÷èðþÿéýÿÿHŽîÇ«ç&·H‰˜ç&Ç–ç&ìLIƒ.…ì	E1äL‰÷è±þÿM…ä„cüÿÿE1öE1íIƒ,$toM…í„OüÿÿIƒm…DüÿÿL‰ïè|þÿé7üÿÿHîÇ:ç&¹H‰'ç&I‹Ç"ç&$MHPÿfDE1íDI‰H…ÒtXM…ät›Iƒ,$u”L‰çè$þÿëŠfHÆí1ÛÇáæ&²H‰Îæ&ÇÌæ&¦LIƒ/…­ûÿÿE1äE1íE1öf„L‰ÿèØþÿëžfDL‰÷‰D$èÄþÿ‹D$é+øÿÿL‰çè0þÿf.ˆñz„ þÿÿH‹Y€$L‹5R€$HƒL9èA”ÇA¶ÇéþÿÿfDèãþÿH‰ßè[ŠþÿH‰ÃH…À…¾HíE1öÇæ&²H‰æ&Ç
æ&¤LéõúÿÿDè›þÿH‰ßèŠþÿH‰ÃH…À…~H½ìÇÚå&®H‰Çå&ÇÅå&WLé«úÿÿH–ì1ÛDZå&®H‰žå&I‹$ǘå&YLHƒèé	ûÿÿ€I‹HPÿHWìE1ö1ÛE1äH‰cå&Çeå&®ÇWå&hLé:þÿÿfI‹$HƒèH
ì1ÛÇ9å&²H‰
&å&Ç$å&µLé™úÿÿ€¶èé÷ÿÿHæëÇå&³H‰ðä&Çîä&ÂLéÙùÿÿf„H¶ëÇÓä&¯H‰Àä&Ǿä&uLé©ùÿÿf„I‹HPÿHëM‰÷E1äÇ–ä&¯H‰ƒä&E1öÇ~ä&ƒLéaýÿÿf„HFëE1ÿÇ`ä&³H‰Mä&ÇKä&ÄLIƒ.A½tWM…ÿ„½I‹E1öHPÿéýÿÿIƒ.HùêH‰
ä&Çä&¿Çä&MuL‰÷è'
þÿHƒmuºI‰îDL‰÷è
þÿëŸfDH®êÇËã&³H‰¸ã&Ƕã&ÆLI‹$Hƒèé#ùÿÿf„H‹5áÓ&H‹=râ&1Òè[þÿH‰ÅH…À„H‰ÇèúþÿHƒm„$HBêE1öÇ\ã&´H‰Iã&ÇGã&ÕLé2øÿÿfHêÇ3ã&·H‰ ã&Çã&çLéøÿÿf„HæéÇã&·H‰ðâ&Çîâ&éLI‹$Hƒèé[øÿÿL‰ÿèþÿéõÿÿL‰÷èøþÿéùøÿÿL‰çèèþÿéòôÿÿL‰÷èØþÿé-õÿÿL‰÷èÈþÿé?ùÿÿL‰çè»þÿé4öÿÿH‰ïè®þÿé	öÿÿL‰ïè¡þÿé=ùÿÿH‰ïè”þÿé`ùÿÿL‰çè‡þÿéHùÿÿL‰ÿèzþÿéPùÿÿèà
þÿL‰ÿèX†þÿI‰ÄH…À…úóÿÿHéÇâ&¹H‰â&Ç
â&÷Léðöÿÿè 
þÿL‰ÿè†þÿI‰ÆH…À…©÷ÿÿHÂèÇßá&¿H‰Ìá&ÇÊá&ŠMéµöÿÿH›èǸá&¹H‰¥á&Ç£á&ùLI‹$Hƒèé÷ÿÿHlèljá&¿H‰vá&Çtá&ŒMéÙùÿÿH‰ïè—
þÿé¿øÿÿL‰çèŠ
þÿéÙøÿÿL‰ÿè}
þÿéÁøÿÿH‰ïèp
þÿéÏýÿÿHèÇ.á&¿H‰á&Çá&MIƒ,$…nE1öE1íéúÿÿHÙçE1öÇóà&¹H‰àà&ÇÞà&MI‹HPÿéºùÿÿL‰ÿèú	þÿé¢óÿÿH›çǸà&¿H‰¥à&Ç£à&‘MIƒ.„ùÿÿIƒ,$A¾…xõÿÿE1íé„ùÿÿH‰ßL‰ëè¥	þÿé®óÿÿL‰çè˜	þÿé”óÿÿH‰ïè‹	þÿéióÿÿH,çE1öÇFà&¿H‰3à&Ç1à&”MI‹HPÿé
ùÿÿHûæÇà&¹H‰à&Çà&)MéhøÿÿHÔæI‰îÇîß&¿H‰Ûß&ÇÙß&™Mé1ÿÿÿHªæÇÇß&»H‰´ß&Dzß&iMé”þÿÿHƒæÇ ß&¿H‰ß&Ç‹ß& MHƒm„ûÿÿIƒ/A¾…þ÷ÿÿ黸ÿÿèþÿL‰ïè~ƒþÿI‰ÆH…À…ÙõÿÿH(æI‰îÇBß&¿H‰/ß&Ç-ß&›MéÝúÿÿHþåE1öÇß&»H‰ß&Çß&[MéîóÿÿHÔåE1íÇîÞ&¿H‰ÛÞ&ÇÙÞ&¢MéIÿÿÿI‹H§åHƒêE1äǽÞ&ÀH‰ªÞ&ǨÞ&¿Mé‹÷ÿÿHyåÇ–Þ&ÀH‰ƒÞ&ǁÞ&±MélóÿÿHRåÇoÞ&´H‰\Þ&ÇZÞ&ÑLé@óÿÿH+åÇHÞ&ºH‰5Þ&Ç3Þ&EMéýÿÿèÉ	þÿH‰ïèA‚þÿI‰ÆH…À…¼HëäÇÞ&ºH‰õÝ&ÇóÝ&4MéÞòÿÿHÄäÇáÝ&ºH‰ÎÝ&ÇÌÝ&6MéûöÿÿHäǺÝ&ÁH‰§Ý&Ç¥Ý&ÌMéòÿÿH‹
‘Ý&‹—Ý&E1öH=)Ó‹5ƒÝ&辂þÿéòÿÿE1öéiöÿÿI‰ÇéNíÿÿI‰ÄéÙëÿÿI‰ÄédëÿÿI‰Çé	ðÿÿAWAVI‰þH‰÷AUATUH‰õSHƒìhHÇD$0HÇD$8HÇD$@HÇD$HHÇD$PHÇD$Xè~	þÿHƒøÿ„TH‹}H‹5©Ü&I‰ÅH9÷„Õè¨
þÿ…À„ðH‹5éÓ&H‰ïè¡þÿH‰ÇH‰D$8H…À„@L‹=Aw$H‹
’v$L9øH‰L$”ÀH9Ï”ÂÂ…9H;=jv$„,èþÿ‰ÅÀˆÍH‹|$8Hƒ/„žHÇD$8…Û„mH‹5Ð&H‰ïèþÿH‰ÇH‰D$8H…À„!L9ø”ÀH;|$”ÂÂu
H;=üu$…ž¶ØHƒ/„qHÇD$8…Û„H‹qÒ&H‹=
Ü&H‰ÞèJþÿH…À„QHƒH‰D$0H‹51Ö&H‰Çè™
þÿH‰ÃH‰D$@H…À„@H‹|$0Hƒ/„‘H‹5âË&H‰ïHÇD$0èñþÿH‰D$0H…À„ÃH‰ƿ1ÀH‹\$@è/þÿI‰ÄH…À„s 1ÒH‰ßH‰Æè	þÿIƒ,$H‰Ã„hH‹|$0H‰\$8Hƒ/„ÄHÇD$0Hƒ|$8„OH‹|$@Hƒ/„ I‹¾ðH‹5BÕ&HÇD$@L‹d$8HÇD$8è¶þÿH‰ÃH…À„º I‹¾ðH‹5$Õ&è—þÿH‰D$@H…À„”!H‹5²Ú&H‰Ç1ÒHÇD$0è_þÿH‹|$0H‰D$8H…ÿtHƒ/„þH‹D$8HÇD$0H…À„5"H‹|$@Hƒ/„pHÇD$@H‹|$8Hƒ/„HHT$HHt$PIƒíHÇD$8H|$Xè§þÿM…íŽ~IF(H‰D$H‹|$L‰îèh	þÿI‰ÆL9è„RH‰ïèt	þÿ…À„Ä
L‰öH‰ïèþÿH‰D$8H…À„lH‹5Œr$H‰ÂL‰çèñ	þÿ…ÀˆyH‹|$8Hƒ/„‚HÇD$8H‰ïè	þÿ…À„L‰îH‰ïè¶þÿH‰ÂH‰T$8H…Ò„^H‰ïH‰T$èèþÿH‹T$…ÀtH‹Eö€³ „L‰÷H‰T$èÑ	þÿH‹T$H…ÀI‰Æ„àH‰ÆH‰ïèU	þÿIƒ.„#…ÀˆÃH‹|$8Hƒ/„ÄHÇD$8H‰ïèsþÿ…ÀtH‹Eö€³ „fL‰ïèf	þÿI‰ÆH…À„L‰âH‰ÆH‰ïèìþÿIƒ.„’…ÀˆúIƒí…‹þÿÿH‹|$XH…ÿt
Hƒ/„#HÇD$XH‹|$PH…ÿt
Hƒ/„ß"HÇD$PH‹|$HH…ÿt
Hƒ/„Ì"H‹5{É&1ÒH‰ßHÇD$HèøþÿH‰D$HHƒ+„·"H‹\$HH…Û„ý#Hƒ+„¬"HÇD$HH‹Ùq$H‰D$ éŽ	€I‹¾ðH‹5"Ò&è­	þÿH‰ÃH…À„I‹¾ðH‹5Ò&èŽ	þÿH‰D$@H…À„HH‹5©×&H‰Ç1ÒHÇD$8èVþÿH‹|$8H‰D$0H…ÿtHƒ/„=H‹D$0HÇD$8H…À„ÖH‹|$@Hƒ/„HÇD$@H‹|$0Hƒ/„ßHT$XHt$PHÇD$0IƒíH|$HèžþÿIF(H‰D$M…íŽQH‹|$L‰îè_þÿH‰ïI‰Äètþÿ…À„ÄL‰æH‰ïèþÿH‰D$0H…À„,H‰ïèKþÿ…À„«L‰îH‰ïèèÿýÿH‰D$@H…À„¢H‰ïL‹|$0èþÿ…ÀtH‹Eö€³ „xL‰ïèþÿI‰ÆH…À„DL‰úH‰ÆH‰ïè–þÿIƒ.A‰Ç„)E…ÿˆ H‹|$0Hƒ/„
H‰ïL‹|$@HÇD$0è«þÿ…ÀtH‹Eö€³ „vL‰çèžþÿI‰ÄH…À„¾L‰úH‰ÆH‰ïè$þÿIƒ,$A‰Ç„ö
H‹|$@E…ÿˆ Hƒ/„.
HÇD$@Iƒí…¯þÿÿH‹|$HH…ÿt
Hƒ/„ßHÇD$HH‹|$PH…ÿt
Hƒ/„ÌHÇD$PH‹|$XH…ÿt
Hƒ/„¹H‹5–Æ&1ÒH‰ßHÇD$XèþÿH‰D$XHƒ+„šH‹\$XH…Û„o Hƒ+„H‹ýn$Hƒé@H‹5!Ì&H‰ïèÙþÿH‰ÃH…À„H‹5–Æ&H9ð„H‹Þm$H9C„ü	ºH‰ßè?þÿH‰D$0H…À„QH‹šn$L‹=;o$H‰D$Hƒ+„ôH‹|$0L9ÿ”ÀH;|$”ÂÂ…©H;=Zn$„œè÷ÿýÿ‰ÅÀˆ­
H‹|$0醶Øéà÷ÿÿ„L‹=Ñn$H‹
"n$IƒL‰øH‰L$H‰D$0끀L‰çè°þÿI‰ÇH…À„d
H‰ÆH‰ïèiþýÿIƒ/…ýÿÿL‰ÿH‰D$èýýÿH‹D$éýÿÿ„¶ØHƒ/„³HÇD$0…Û„jH‹5sÇ&H‰ïèƒþÿH‰D$0H…À„ëL9ø”ÃH;D$”ÂÚu
H;dm$…&	¶ÛHƒ(„ùHÇD$0…Û„H‹9m$H‰D$ H9Å…[
H‹EH‹5HÆ&H‰ïH‰D$èþÿH‰ÃH‰D$0H…À„ZH‰Çè¢þÿ…À„Â1öH‰ßè@üýÿI‰ÄH‹|$0M…ä„Ï
Hƒ/„%HÇD$0I‹D$ö€³„rL‰çèÒûýÿI‰ÇIƒÿÿ„eIƒ,$„úH‹5#Í&H‰ïè{þÿH‰ÃH…À„¿H‹5hË&H‰Çè`þÿH‰D$0H…À„¢Hƒ+„@H‹l$0H‹Eö€³„JH‰ïèZûýÿH‰ÅHƒýÿ„}H‹|$0Hƒ/„^H‹¯È&H‹=HÒ&HÇD$0H‰ÞèüýÿH…À„–HƒH‰D$0H‹5nÌ&H‰ÇèÎþÿI‰ÄH…À„âH‹|$0Hƒ/„£HÇD$0H‰ïè’ûýÿH‰ÃH‰D$0H…À„á¿è7þÿH‰ÃH‰D$8H…À„H‹D$0HÇD$0H‰C è?ýýÿH‰ÃH‰D$0H…À„H‹ïÇ&H‹=ˆÑ&H‰ÆH‰D$èÃûýÿH‰ÃH…À„wHƒH‹5dÊ&H‰ßèþÿH‰D$@H…À„FHƒ+„$H‹T$@H‹5Ë&H‹|$0èÆùýÿ…ÀˆþH‹|$@Hƒ/„ÿH‹T$0H‹t$8L‰çHÇD$@è¤þýÿH‰ÃH‰D$@H…À„‹Iƒ,$„8H‹|$8Hƒ/„HÇD$8H‹|$0Hƒ/„ñHÇD$0L‹d$@HÇD$@L;d$ …ÙI‹D$I‹¾ðH‹5¬Ê&H‰D$è2þÿH‰ÃH…À„pI‹¾ðH‹5 Ê&èþÿH‰D$0H…À„ÔH‹5.Ð&H‰Ç1ÒHÇD$8èÛýýÿH‹|$8H‰D$@H…ÿtHƒ/„ŠH‹D$@HÇD$8H…À„)H‹|$0Hƒ/„HÇD$0H‹|$@Hƒ/„äHT$XHt$PHÇD$@IƒíH|$Hè#ýýÿHƒý„YM…í~vIF(M‰îH‰D$(M¯÷Lt$€H‹|$(L‰îèËþýÿH‹L$H‹|$H‰êI¯ÇHÁH‰ÎH‰L$èüýÿH‹L$L‰öH‰êH‰ÏèüýÿH‹t$L‰÷H‰êM)þèôûýÿIƒíu¦H‹D$ Hƒ8H‰D$@„ZHÇD$@H‹|$HH…ÿt
Hƒ/„UHÇD$HH‹|$PH…ÿt
Hƒ/„HÇD$PH‹|$XH…ÿt
Hƒ/„+H‹5ܿ&1ÒH‰ßHÇD$XèYüýÿH‰D$XHƒ+„ZH‹\$XH…Û„ÉHƒ+„HÇD$XH‹D$ Hƒé>1ÿèáþýÿH‹|$0I‰ÇH…À„H‰ÆH‰ßè•øýÿIƒ/I‰Ä…ûÿÿL‰ÿè@÷ýÿéûÿÿL‰ïè þýÿI‰ÇH…À„ü	H‰ÆH‰ïèYøýÿIƒ/…7÷ÿÿL‰ÿH‰D$è÷ýÿH‹D$é ÷ÿÿ„èëöýÿéÑúÿÿfDL‰çèØöýÿéùúÿÿHvÔH‹|$0E1ä1ÛH‰€Í&Ç‚Í&MÇtÍ&ÈH@H…ÿt
Hƒ/„	H‹|$8H…ÿt
Hƒ/„ÕH…Ût
Hƒ+„ÖH‹|$@H…ÿtHƒ/tfH‹
Í&‹%Í&H=ê‹5Í&èOrþÿ1ÀM…ätIƒ,$tHƒÄh[]A\A]A^A_ÃfL‰çH‰D$èöýÿH‹D$HƒÄh[]A\A]A^A_Àèóõýÿ듐H–ÓH‹|$8Ç®Ì&VH‰›Ì&Ç™Ì&þHH…ÿ„òHƒ/A¼…Bÿÿÿ1ÛfDè£õýÿé!ÿÿÿfDH‰ßèõýÿéÿÿÿèƒõýÿéíþÿÿfDH‹}H‹5ýË&H9÷„dïÿÿéRïÿÿ€H‰ßèPõýÿé³ùÿÿL‰÷è°üýÿH…À„§H‰ÆH‰ïH‰D$ègöýÿH‹T$Hƒ*…òÿÿH‰×H‰D$èõýÿH‹D$éòÿÿèûôýÿé˜ùÿÿfDèëôýÿéXïÿÿfDèÛôýÿéuõÿÿfDH‰ßèÈôýÿéÿöÿÿè»ôýÿéÈõÿÿfDL‰ïèüýÿH…À„_H‰ÆH‰ïH‰D$èÏõýÿH‹L$H‰ÂHƒ)…ÚñÿÿH‰ÏH‰D$èpôýÿH‹T$éÃñÿÿfDè[ôýÿéSùÿÿfDL‰÷èHôýÿéÊôÿÿè;ôýÿéC÷ÿÿfDL‰úL‰îH‰ïèùýÿA‰Çé¡ôÿÿf.„L‰çèôýÿéýôÿÿH‰ßèxõýÿf.ÐÕz„xöÿÿ„H‹™d$L‹=:e$H‰D$Hƒénöÿÿ@L‰úL‰æH‰ïè¢øýÿA‰Çé¤ôÿÿf.„èûõýÿ‰ÅÀˆñH‹|$8éLîÿÿ€H‰ÇèØõýÿ‰ÅÀˆ[H‹D$0éÁöÿÿ@M…íŽûÿÿL‰íIƒÆ(I¯ïHl$€L‰îL‰÷èuùýÿH‹L$I¯ÇHD$H‹H‰H‹UH‰H‹H‰EL)ýIƒíuÊéÇúÿÿDèûòýÿéúÿÿfDèëòýÿéêùÿÿfDH†ÐH‹|$0E1ä1ÛH‰É&Ç’É&QÇ„É&ÞHéüÿÿ€è£òýÿéøîÿÿfDè“òýÿélùÿÿfDH.ÐÇKÉ&rH‰8É&Ç6É&KHƒ+„®H‹|$0E1ä1Ûé­ûÿÿDèCòýÿétïÿÿfDè3òýÿéeíÿÿfDH‰ßè òýÿéÏ÷ÿÿH‹¡È&H…Û„aH‹}H9û„ˆõÿÿH‰Þè“ùýÿ…À…xõÿÿH‹EH‹K H5œ½H‹P H‹ya$H‹81ÀèçøýÿHmÏH‹|$0E1ä1ÛH‰wÈ&ÇyÈ&UÇkÈ&ôHéöúÿÿfDè‹ñýÿé2íÿÿfDè{ñýÿéñÿÿfDèkñýÿéïðÿÿfDè[ñýÿé2ïÿÿfDHöÎE1ä1ÛÇÈ&VH‰ûÇ&ÇùÇ&Ié„úÿÿ@èñýÿé÷öÿÿfDèñýÿéÖìÿÿfDL‰çèøðýÿé‹ìÿÿH–ÎdzÇ&gH‰ Ç&ÇžÇ&.JE1äéXúÿÿfDè»ðýÿé…ëÿÿH;D$tH‰ßè÷öýÿ…À„èê÷ýÿH…À„ûHƒ+uH‰ßèƒðýÿèË÷ýÿIÇÇÿÿÿÿH…À„†ôÿÿHÎ1ÛÇ,Ç&VH‰Ç&ÇÇ&I€Iƒ,$tH‹|$0E1äéŒùÿÿ@L‰çè ðýÿëåfDL‰÷‰D$èðýÿ‹D$éÈíÿÿH¦ÍH‹|$0E1äÇ»Æ&WH‰¨Æ&ǦÆ&Ié1ùÿÿHÇD$0H-mÍH‹|$@Ç…Æ&uH‰-rÆ&ÇpÆ&IKH…ÿt
Hƒ/„QHÇD$@H‹|$0H…ÿt
Hƒ/„DHÇD$0H‹|$8H…ÿt
Hƒ/„‹%Æ&‹5Æ&H=ä»HÇD$8H‹
üÅ&è?kþÿHT$8Ht$0H|$@è›fþÿ…Àˆ3H‹L$8H‹T$0¿1ÀH‹t$@è˜õýÿI‰ÅH…À„¹
1ÒH‰ÆH‰ßèóýÿHƒ+I‰Ä„âIƒm„ÇM…ä„L;%`$”ÀL;%m_$”ÂÂ…²L;%S_$„¥L‰çèíðýÿIƒ,$‰Ã„ž…Ûˆ×H‹|$@…Û„[H…ÿt
Hƒ/„l
HÇD$@H‹|$0H…ÿt
Hƒ/„_
HÇD$0H‹|$8H…ÿt
Hƒ/„"
H‹T$XH‹t$PHÇD$8H‹|$HèÅòýÿH‹¶^$HƒéÄ÷ÿÿDIƒ,$¶Ø…jÿÿÿL‰çèÚíýÿéUÿÿÿDèËíýÿéôÿÿfDè»íýÿéÝóÿÿfDL‰çè¨íýÿé»óÿÿHFËÇcÄ&fH‰PÄ&ÇNÄ&JH‹|$0E1ä1ÛH…ÿ…ÐöÿÿéøöÿÿfDè[íýÿé¹ìÿÿfDL‰öH‰ïè5òýÿéëÿÿL‰÷‰D$è4íýÿ‹D$éYëÿÿH-ÎÊÇëÃ&uH‰-ØÃ&ÇÖÃ&KKépýÿÿH¦ÊI‰Ü1ÛǾÃ&WH‰«Ã&Ç©Ã&Ié”üÿÿ@HvÊH‹|$0E1ä1ÛH‰€Ã&Ç‚Ã&fÇtÃ&Jéÿõÿÿ€L‰âL‰îH‰ïèzñýÿé³êÿÿDH&ÊH‹|$0E1äÇ;Ã&QH‰(Ã&Ç&Ã&ÙHé±õÿÿH-öÉH‹|$@ÇÃ&uH‰-ûÂ&ÇùÂ&MKé„üÿÿH;D$tL‰çèeòýÿ…À„’èXóýÿH…À„ñIƒ,$uL‰çèðëýÿè;óýÿHÇÅÿÿÿÿH…À„nðÿÿHÉH‹|$0E1ä1ÛH‰‹Â&ǍÂ&WÇÂ&Ié
õÿÿf.„èîýÿH‰ßèƒfþÿH‰D$0H…À…XðÿÿH+ÉH‹|$8ÇCÂ&\H‰0Â&Ç.Â&Iéõÿÿf„èKëýÿéïûÿÿfDè;ëýÿé¥ûÿÿfDè+ëýÿé²ûÿÿfDèëýÿé®çÿÿfDèëýÿé†çÿÿfDL‰ïèøêýÿé,üÿÿH‰ßèèêýÿéüÿÿH‰-¡Á&Ç£Á&rÇ•Á&gKH‹|$HH‹T$XE1ä1ÛH‹t$PèlïýÿH‹|$0éôÿÿfH‰Çè˜êýÿéúíÿÿH6ÈI‰Ü1ÛÇNÁ&QH‰;Á&Ç9Á&ÛHé$úÿÿH‹|$@€H-þÇÇÁ&uH‰-Á&ÇÁ&OKé‘úÿÿHÖÇH‹|$01ÛÇìÀ&\H‰ÙÀ&Ç×À& IébóÿÿfH¦ÇÇÃÀ&\H‰°À&Ç®À&#Ié™ùÿÿf„H‹|$ èÆéýÿé—ñÿÿHfÇǃÀ&\H‰pÀ&ÇnÀ&%IéYùÿÿf„HÇD$8H--ÇÇJÀ&mH‰-7À&Ç5À&JH‹|$@H…ÿt
Hƒ/„HÇD$@H‹|$0H…ÿt
Hƒ/„ÄHÇD$0H‹|$8H…ÿt
Hƒ/„·‹å¿&‹5ۿ&H=¤µHÇD$8H‹
¼¿&èÿdþÿHT$0Ht$@H|$8è[`þÿ…Àˆ“H‹L$0H‹T$@¿1ÀH‹t$8èXïýÿI‰ÆH…À„™1ÒH‰ÆH‰ßè?íýÿHƒ+I‰Å„¢Iƒ.„ˆM…턌M9ý”ÀL;l$”ÂÂ…±L;-Y$„¤L‰ïè´êýÿIƒm‰Ã„…ÛˆH‹|$8…Û„µH…ÿt
Hƒ/„ˆHÇD$8H‹|$@H…ÿt
Hƒ/„uHÇD$@H‹|$0H…ÿt
Hƒ/„bH‹T$HH‹t$PHÇD$0H‹|$XèŒìýÿH‹}X$H‰D$ é2ðÿÿIƒm¶Ø…kÿÿÿL‰ïè¢çýÿéVÿÿÿDH>ÅÇ[¾&\H‰H¾&ÇF¾&*Ié1÷ÿÿèkçýÿé2þÿÿfDè[çýÿé?þÿÿfDèKçýÿéõýÿÿfDH‰-¾&Ǿ&hÇõ½&ÀJH‹|$XH‹T$H1ÛH‹t$PèÏëýÿH‹|$0éeðÿÿDL‰÷èøæýÿékþÿÿH‰ßèèæýÿéQþÿÿH†ÄH‹|$0E1äÇ›½&rH‰ˆ½&dž½&KéðÿÿèéýÿH‰ßè“aþÿH‰D$0H…À…áÿÿH;ÄH‹|$8ÇS½&gH‰@½&Ç>½&Jé ðÿÿf„H-ÄÇ#½&mH‰-½&ǽ&’JéÔüÿÿf„HÖÃ1ÛÇñ¼&\H‰޼&Çܼ&1IéÇõÿÿ€èkèýÿH‹|$èá`þÿH‰ÃH…À…rëÿÿH‹ÃǨ¼&\H‰•¼&Ç“¼&,Ié~õÿÿfDè³åýÿé¡íÿÿfDè£åýÿéËíÿÿfDH>ÃH‹|$0E1äÇS¼&gH‰@¼&Ç>¼&JéÉîÿÿf„è[åýÿéfíÿÿfDH‰ßèHåýÿé™íÿÿHÇD$8H-ÝÂÇú»&nH‰-ç»&Çå»&œJé«ûÿÿH¶ÂÇӻ&\H‰;&Ǿ»&.Ié©ôÿÿf„H†ÂH‹|$8Çž»&gH‰‹»&lj»&Jéëîÿÿ@HVÂÇs»&rH‰`»&Ç^»&!Ké#òÿÿf„H‰ßèxäýÿéáìÿÿH-ÂÇ3»&nH‰- »&Ç»&žJéäúÿÿf„HæÁÇ»&fH‰ðº&Çîº&Jé›öÿÿf„1Ûé¡ßÿÿf„èûãýÿéÔõÿÿfDèëãýÿéŠõÿÿfDèÛãýÿé—õÿÿfDH-vÁÇ“º&oH‰-€º&Ç~º&¨JéDúÿÿf„HFÁH‹|$0E1ä1ÛH‰Pº&ÇRº&fÇDº&
JéÏìÿÿ€HÁÇ+º&\H‰º&Ǻ&3IéóÿÿHæÀH‹|$0Çþ¹&hH‰ë¹&Çé¹&<Jétìÿÿ@H‹T$8H‹t$0èaæýÿH‰-¹&HÇD$@HÇD$0HÇD$8Ç©¹&rÇ›¹&|KéøÿÿH‹O¹&H…Û„>I‹|$H9û„	éÿÿH‰Þè@êýÿ…À…ùèÿÿI‹D$H‹K H5H®H‹P H‹%R$H‹81Àè“éýÿHÀH‹|$01ÛÇ/¹&]H‰¹&ǹ&BIé¥ëÿÿHë¿Ç¹&hH‰õ¸&Çó¸&>JHƒ+t
H‹|$01ÛéqëÿÿH‰ßèâýÿëéH¬¿H‹|$0Çĸ&^H‰±¸&ǯ¸&MIé:ëÿÿH€¿H‹|$8ǘ¸&QH‰…¸&ǃ¸&åHéåëÿÿH‰ßè¦áýÿéEïÿÿH‰-b¸&Çd¸&rÇV¸&tKé¼öÿÿH'¿ÇD¸&^H‰1¸&Ç/¸&OIé7ÿÿÿH¿Ç¸&hH‰
¸&Ǹ&LJéÿÿÿH‰-ô·&Çö·&rÇè·&kKéNöÿÿH¹¾H‹|$0E1ä1ÛH‰÷&Çŷ&QÇ··&çHéBêÿÿHˆ¾Ç¥·&^H‰’·&ǐ·&]Ié˜þÿÿH‰-|·&Ç~·&rÇp·&pKéÖõÿÿè–àýÿénøÿÿèŒàýÿ選ÿÿè‚àýÿ锸ÿÿH‹T$0H‹t$@èÎãýÿH‰-/·&HÇD$8HÇD$@HÇD$0Ç·&hÇ·&ÕJéùÿÿH‰-ô¶&Çö¶&hÇè¶&ÍJéîøÿÿH‰-Զ&Çֶ&hÇȶ&ÄJéÎøÿÿH‰-´¶&Ƕ¶&hǨ¶&ÉJ鮸ÿÿHy½H‹|$0Ç‘¶&^H‰~¶&Ç|¶&ÛIééÿÿH‹èP$H5:¿H‹8è1ãýÿéÅíÿÿ@H‹
ÁO$H‰L$H9ÈtL‰çè¿åýÿ…À„
è²æýÿH…À…ÙîÿÿH‹úN$H5ó½H‹8èãâýÿé¾îÿÿfDH‹
qO$H‰L$H9ÈtH‰ïèoåýÿ…À„_èbæýÿH…À…óÿÿH‹ªN$H5£½H‹8è“âýÿéþòÿÿfDèãÞýÿéàÿÿèÙÞýÿé*àÿÿèÏÞýÿé=àÿÿH‰ßèÂÞýÿéYàÿÿH‰ßèµÞýÿédàÿÿè«ÞýÿéÝÿÿè¡Þýÿé*Ýÿÿè—ÞýÿéæÜÿÿH‰ßèŠÞýÿé<ÝÿÿH‰ßè}ÞýÿéGÝÿÿH‹¹O$H5¾H‹8èâýÿéêûÿÿL‰çè•áýÿH‰ÃH…À„âþÿÿH‹
ªN$H‹@H‰L$H9Èu3@ö€³„míÿÿH‰ßèûÝýÿI‰ÇHƒ+…âÿÿH‰ßèÞýÿéâÿÿH‰ßè‰ÌþÿH‰ÃH…À„míÿÿH‹@ë·H»H‹|$0E1äÇ¢´&rH‰´&Ǎ´&–KéçÿÿH‰ïèðàýÿI‰ÄH…À„þÿÿH‹
N$H‹@H‰L$H9Èu7€ö€³„WñÿÿL‰çèSÝýÿH‰ÅIƒ,$…îáÿÿL‰çè]ÝýÿéááÿÿL‰çèàËþÿI‰ÄH…À„TñÿÿH‹@ë¶HäºH‹|$0Çü³&hH‰é³&Çç³&ïJéræÿÿH‰ßèJàýÿH‰ÂH…À„_ìÿÿH‹D$H9Bu9H‹BH‰×H‰T$ö€³t9è¹ÜýÿH‹T$I‰ÇHƒ*…¯þÿÿH‰×è¿Üýÿé¢þÿÿH‰×èBËþÿH‰ÂH…Àu·éìÿÿè0ÍþÿH‹T$I‰ÇëÅH‹7L$H50»H‹8è àýÿéêëÿÿL‰çè³ßýÿH‰ÃH…À„ZðÿÿH‹D$H9Cu/H‹CH‰ßö€³t4è'ÜýÿH‰ÅHƒ+…ÊþÿÿH‰ßè2Üýÿé½þÿÿH‰ßèµÊþÿH‰ÃH…ÀuÁéðÿÿè£ÌþÿH‰ÅëÊH‹¯K$H5¨ºH‹8è˜ßýÿéôïÿÿAWAVAUATUSH‰óHƒìXH‹L$H‹nH‰|$HÇD$0HÇD$8HÇD$@H‰D$HH…Ò…ö	Hƒý„|Hƒý…ÒH‹F8H‰D$L‹{0L‹s(H‹k H‹~²&¿H‹˜(ÿhE1É1É1ÒA¸H‰ÆH‰ïÿÓH‰ÃH…À„ƒ
Hƒ8„1H‹:²&¿L‹ (ÿhE1É1É1ÒA¸H‰ÆL‰÷AÿÔI‰ÄH…À„þHƒ8„üH‹õ±&¿L‹¨(ÿhE1É1É1ÒA¸H‰ÆL‰ÿAÿÕI‰ÅH…À„ùHƒ8„¯A‹D$ ;C „¹L‹5ò§&H‹=‹±&L‰öèËÛýÿH‰ÅH…À„‡HƒH‹5d­&H‰ïèãýÿI‰ÆH…À„€Hƒm„EH‹-¦§&H‹=?±&H‰îèÛýÿI‰ÂH…À„3HƒH‹5X©&L‰×L‰T$èËâýÿL‹T$H…ÀI‰Ç„šIƒ*„€H‹-Q§&H‹=ê°&H‰îè*ÛýÿI‰ÂH…À„þHƒH‹5ó¬&L‰×L‰T$èvâýÿL‹T$H…ÀI‰À„UIƒ*„Û¿L‰D$èüÞýÿL‹D$H…ÀH‰Á„ËHƒ1ÒL‰ÇH‰ÆH‰X Iƒ$L‰`(L‰D$H‰D$ èÞýÿL‹D$H‹L$ H…ÀI‰Â„½Hƒ)„³Iƒ(„‰¿L‰T$èŠÞýÿL‹T$H…ÀH‰Å„¹L‰P 1ÒH‰ÆL‰ÿIƒEL‰h(èŸÝýÿI‰ÂH…À„ÇHƒm„˜Iƒ/„vL‰Ö1?L‰T$èjßýÿL‹T$H…ÀH‰Å„î1ÒH‰ÆL‰÷èLÝýÿHƒmL‹T$I‰Ç„‰Iƒ*„oM…ÿ„ÉIƒ.„LL;=ÝI$”ÀL;=+I$”ÂÂu
L;=I$…ç	¶èIƒ/„Z
…í…ÇH‹5«&H‰ßèãàýÿI‰ÆH…À„%L‹=x¥&H‹=¯&L‰þèQÙýÿH‰ÅH…À„_HƒH‹5ú§&H‰ïè¢àýÿI‰ÇH…À„™
Hƒm„kL‰þ¿1ÀèlÞýÿH‰ÅH…À„ç1ÒH‰ÆL‰÷èSÜýÿHƒmH‰D$„³Iƒ/„™Hƒ|$„ÂIƒ.„£H‹D$H;/H$…ÛHƒ+„—H‹5(ª&L‰çèàýÿI‰ÆH…À„KH‹¤&H‹=6®&H‰ÞèvØýÿI‰ÇH…À„cHƒH‹5§&L‰ÿèÇßýÿH‰ÅH…À„•Iƒ/„ÈH‰î¿1Àè’ÝýÿH‰ÃH…À„1ÒH‰ÆL‰÷èyÛýÿHƒ+H‰D$ „ØHƒm„ÀHƒ|$ „äIƒ.„ÄH‹D$ H;UG$…Iƒ,$„´H‹5M©&L‰ïè-ßýÿI‰ÆH…À„vH‹£&H‹=[­&H‰Þè›×ýÿH‰ÅH…À„çHƒH‹5D¦&H‰ïèìÞýÿI‰ÇH…À„öHƒm„L‰þ¿1Àè¶ÜýÿH‰ÃH…À„1ÒH‰ÆL‰÷èÚýÿHƒ+H‰D$(„;Iƒ/„$Hƒ|$(„ïIƒ.„H‹D$(H;zF$…MIƒm„WH‹D$HƒìH‹=ÁF$L‹¸ðHp(IƒL‰ùL‹
H£&jÿ5Ȣ&ÿt$@jÿ5l£&ÿt$PjL‹D$PH‹T$XÿN«&H‰D$HHƒÄ@H…À„¢Iƒ/„õH‹|$èHTÿÿL‹l$(L‹d$ H‰ÅH‹\$H…À…ÒHòE1ÿE1öÇګ&H‰ǫ&Çū&c>épL‰çè×ýÿI‰ÅH‹5¦¢&L‰çIƒíè¢ÔýÿH‰D$0H…À…0H‹kHƒýH|²H
l²HMȝÀHƒì¶ÀUHt´L@H‹5D$H5ޖL
”´H‹81Àè•ÛýÿH²¾E<Ç3«&‰Ç%«&E<H‰«&XZH
ò±º‰H=¡1ÛèBPþÿHƒÄXH‰Ø[]A\A]A^A_ÃH‹ÑD$H‰D$醸ÿÿ€H‰ÇèÔýÿéÂøÿÿH‰ÇèðÓýÿé÷øÿÿA;E …=ùÿÿ…À…5ùÿÿH‹Eö€³„
H‰ïèÓýÿH‰ÅHƒýÿ„PI‹Fö€³„L‰÷èwÓýÿI‰ÆIƒþÿ„ÂI‹Gö€³„¹L‰ÿèQÓýÿH‰D$Hƒ|$ÿ„ 	JD5H;D$Œ`	H‹D$H‰ïL‹¸ðIƒèØÓýÿI‰ÂH…À„¬	L‰÷H‰D$ è¿ÓýÿL‹T$ H…ÀI‰Æ„^
H‹|$L‰T$ èŸÓýÿL‹T$ H…ÀH‰Å„Þ
H‹t$HƒìE1ÀL‰ùjA¹H‹=ðC$ÿ5 &HƒÆ(Pjÿ5µ &AVjÿ5s &ARH‹T$hL‰T$`ÿ¡¨&H‰D$XHƒÄPH…ÀL‹T$„ò
Iƒ/„˜Iƒ*„~Iƒ.„dHƒm„IH‹|$ègQÿÿH‰ÅH…À„Hƒ+tgIƒ,$H‰ëttIƒmtAH‹T$H…Ò„ñýÿÿH‹H‰D$HƒèH‰…ÜýÿÿH‰×èÒýÿéÏýÿÿH‰ÇèøÑýÿéD÷ÿÿL‰ïèèÑýÿëµfD1íH‰ßH‰ëèÓÑýÿM…ätIƒ,$uL‰çè¿ÑýÿM…íu‚뇄Hƒý‡æüÿÿI‰ÔHĴHcªHÐÿàH‹F8H‰D$HH‹C0H‰D$@H‹C(L‰çH‰D$8H‹C H‰D$0è”ÓýÿI‰ÅHƒý„Ã~7Hƒý„ØHƒýu0M…íH‹D$HH‹l$0L‹t$8L‹|$@H‰D$é¡õÿÿH…í„0üÿÿM…í~ÔHT$0H‰éL‰çLڰH5÷K&èrcþÿ…Ày²H”®¾1<Ǭ§&‰H‰™§&Ç—§&1<évüÿÿfHf®E1íE1äE1ÿH‰q§&1íE1öÇn§&îÇ`§&|<HÇD$€1ÉE1ÀE1ÒM…öt
Iƒ.„ÉH…ítHƒm„éM…ÿt
Iƒ/„
M…ÒtIƒ*t_M…ÀtIƒ(t|H…ÉtHƒ)t9H‹
ê¦&‹ð¦&H=ݜ‹5ߦ&èLþÿH…Û„.þÿÿHƒ+„þÿÿ1ÛéþÿÿH‰ÏèèÏýÿë½fDL‰×H‰L$L‰D$èÎÏýÿH‹L$L‹D$é€ÿÿÿ€L‰ÇH‰L$è«ÏýÿH‹L$émÿÿÿL‰÷H‰L$ L‰D$L‰T$è‰ÏýÿH‹L$ L‹D$L‹T$éÿÿÿDH‰ïH‰L$ L‰D$L‰T$èYÏýÿH‹L$ L‹D$L‹T$éìþÿÿDL‰ÿH‰L$ L‰D$L‰T$è)ÏýÿH‹L$ L‹D$L‹T$éËþÿÿDH‰ïèÏýÿé®ôÿÿH¦¬E1íE1ÿ1íH‰²¥&E1öDZ¥&ïÇ£¥&‹<HÇD$éEþÿÿDHf¬E1ÿ1íE1öH‰r¥&Çt¥&ðÇf¥&š<HÇD$éþÿÿ„L‰×èxÎýÿésôÿÿL‰ÿèÈÐýÿ‰ŅÀ‰
öÿÿH¬1íE1öÇ¥&H‰	¥&Ç¥&Ä=HÇD$é©ýÿÿf„H‹5±˜&L‰çèáÍýÿH…À„øüÿÿH‰D$HIƒíéåüÿÿf.„L‰ÿèèÍýÿé™õÿÿH†«E1ÿÇ ¤&H‰¤&Ç‹¤&K=HÇD$é-ýÿÿDH‹F L‰çH‰D$0èÇÏýÿI‰ÅH‹5›&L‰çèUÍýÿH‰D$8H…À„5IƒíH‹5¼š&L‰çè4ÍýÿH‰D$@H…À„	IƒíéüÿÿHÇD$HêªH‰þ£&Ǥ&Çò£&é=éüÿÿDH‰ïèÍýÿéªúÿÿL‰÷èÍýÿéúÿÿL‰×èðÌýÿéuúÿÿL‰ÿL‰T$èÛÌýÿL‹T$éQúÿÿL‰×H‰D$èÃÌýÿL‹D$éóÿÿf„L‰ÇL‰T$è£ÌýÿL‹T$é`óÿÿf„H‰ÏL‰D$ H‰D$è~ÌýÿL‹D$ L‹T$é,óÿÿ€L‰ÿL‰T$è[ÌýÿL‹T$ésóÿÿH‰ïH‰D$èCÌýÿL‹T$éQóÿÿf„L‰÷è(Ìýÿé§óÿÿL‰×èÌýÿé„óÿÿH‰ïèÌýÿL‹T$éeóÿÿfDècÎýÿL‰÷èÛFþÿH‰ÅH…À…dñÿÿH…©E1ÿE1öÇœ¢&H‰‰¢&LJ¢&I=HÇD$é)ûÿÿH;D$tH‰×H‰T$èåÑýÿH‹T$…À„ÑH‰T$èÎÒýÿH‹T$H…À„XHƒ*u
H‰×èbËýÿfè«ÒýÿHÇÅÿÿÿÿH…À„›÷ÿÿHñ¨E1ÿ1íE1öH‰ý¡&Çÿ¡&ôÇñ¡&¼<HÇD$é“úÿÿH;D$tH‰×H‰T$èOÑýÿH‹T$…À„ÀH‰T$è8ÒýÿH‹T$H…À„Hƒ*uH‰×èÌÊýÿ@èÒýÿIÇÆÿÿÿÿH…À„)÷ÿÿHY¨E1ÿ1íE1öH‰e¡&Çg¡&õÇY¡&Æ<HÇD$éûùÿÿH;D$tL‰ÿè¼Ðýÿ…À„²è¯ÑýÿH…À„ÃIƒ/uL‰ÿèHÊýÿ„è‹ÑýÿHÇD$ÿÿÿÿH…À„ÉöÿÿHϧE1ÿ1íE1öH‰۠&Çݠ&öÇϠ&Ð<HÇD$éqùÿÿH‹5Y‘&H‹=Ÿ&1Òè{ÎýÿH‰ÅH…À„_
H‰Çè'·þÿHƒm„4Hb§E1ÿ1íE1öH‰n &Çp &ùÇb &è<HÇD$éùÿÿ@H&§1ÉE1ÀE1öH‰2 &Ç4 &ûÇ& &=1íIƒ/tHÇD$E1ÿéÅøÿÿDL‰ÿH‰L$ E1ÿL‰D$L‰T$èÉýÿL‹T$L‹D$HÇD$H‹L$ 鉸ÿÿèkËýÿH‰ïèãCþÿH‰ÅH…À…-H¦E1ÿǧŸ&H‰”Ÿ&Ç’Ÿ&N=HÇD$é4øÿÿ@HV¦1íÇqŸ&üH‰^Ÿ&Ç\Ÿ&=Iƒ*tJ1ÉE1ÀE1Òé%ÿÿÿf„H¦1íÇ1Ÿ&H‰Ÿ&I‹ÇŸ&P=HƒèI‰…D
L‰×è4ÈýÿM…ÿu©HÇD$1ÉE1ÀE1Òé¡÷ÿÿf„H¶¥ÇӞ&ýH‰&Ǿž&=é]ÿÿÿf„èKÊýÿH‰ïèÃBþÿI‰ÂH…À…ííÿÿHm¥1ÉE1ÀÇ…ž&H‰rž&Çpž&S=éEþÿÿH>¥Ç[ž&úH‰Hž&ÇFž&"=éåþÿÿH‰ïèhÇýÿéˆïÿÿH¥1ÉÇ!ž&H‰ž&Çž&U=éáýÿÿ€H֤E1ÿE1öÇí&ÿH‰ڝ&Ç؝&3=éƒöÿÿL‰ÿèøÆýÿéZïÿÿH‰ïèèÆýÿé@ïÿÿL‰÷èØÆýÿéPïÿÿH‰ßèÈÆýÿé\ïÿÿHf¤E1ÒÇ€&H‰m&Çk&u=é@ýÿÿfDH6¤ÇS&H‰@&Ç>&€=éýÿÿf„H¤Ç#&H‰&ǝ&¤=é­ýÿÿL‰ÿè1Æýÿé+ïÿÿHңH‰éE1ÀÇéœ&H‰֜&ÇԜ&¯=é©üÿÿH‰ïè÷Åýÿé3ïÿÿH‰ßèêÅýÿéïÿÿL‰÷èÝÅýÿé/ïÿÿL‰çèÐÅýÿé?ïÿÿIƒ*uL‰×è½ÅýÿHc£E1ÿ1íÇ{œ&H‰hœ&Çfœ&Á=HÇD$éõÿÿH‰ïè€Åýÿé¿ûÿÿH‹5äŒ&H‹=M›&1ÒèÊýÿH‰ÅH…À„—H‰Ç貲þÿHƒm„GHí¢E1ÿ1íE1öH‰ù›&Çû›&Çí›&Ó=HÇD$éôÿÿH‰ïèÅýÿéÝîÿÿH¨¢E1ÿ1íÇ&H‰­›&Ç«›&å=HÇD$éMôÿÿL‰÷èÅÄýÿéòîÿÿL‰ÿè¸ÄýÿéÏîÿÿH‰ßè«Äýÿé¸îÿÿèÇýÿL‰ÿè‰?þÿH‰ÅH…À…ŒìÿÿH3¢E1ÿÇM›&H‰:›&Ç8›&ç=HÇD$éÚóÿÿL‰ïèRÄýÿéœîÿÿL‰ÿèEÄýÿéþîÿÿHƒìH‹Ý3$H
ì¡H5†jL
3¤A¸Hí£H‹81Àè'ËýÿH­¡Y^H‰¿š&¾'<Ǽš&‰Ç®š&'<éïÿÿIƒ/uL‰ÿèËÃýÿHq¡E1ÿ1íljš&H‰vš&Çtš&ù=HÇD$éóÿÿH‹-š&H…í„H‹D$H‹xH9ý„ìÿÿH‰îèËýÿ…À…óëÿÿH‹D$H‹M H5H‹@H‹P H‹í2$H‹81Àè[ÊýÿHá L‹|$1íE1öH‰ë™&Çí™&Çߙ&ü=HÇD$éòÿÿH§ H‹\$E1ÿ1íH‰±™&dz™&Ç¥™&>HÇD$éGòÿÿè2ÅýÿH‰ßèª=þÿH‰ÅH…À…ÌHT H‹\$I‰ïÇi™&H‰V™&ÇT™&	>HÇD$éöñÿÿH 1ÉE1ÀE1ÒH‰(™&H‹\$Ç%™&Ç™&>éîøÿÿHƒìH‹ß1$A¸H5‚„jL
6¢H
؟H‹8Hì¡1Àè)ÉýÿH¯Ÿ_¾!<H‰½˜&AXǽ˜&‰Ç¯˜&!<éŽíÿÿHƒm„ÿHuŸH‹\$E1ÿ1íH‰˜&ǁ˜&Çs˜&>HÇD$éñÿÿH‹˜&H…Û„˜H‹D$ H‹xH9û„ÜêÿÿH‰ÞèÉýÿ…À…ÌêÿÿH‹D$ H‹K H5H‹@H‹P H‹ì0$H‹81ÀèZÈýÿH‹\$L‹|$ 1íE1öHÇD$HȞH‰ܗ&Çޗ&ÇЗ&>é{ðÿÿH¡žL‹d$ E1ÿ1íH‰«—&H‹\$Ǩ—&Çš—&)>HÇD$é<ðÿÿ@H‹5ñ0$H‰t$H9ðtH‰ïèïÆýÿ…À„èâÇýÿH…À…)õÿÿH‹*0$H5#ŸH‹8èÄýÿéõÿÿfDèÓÂýÿH‰ßèK;þÿH‰ÅH…À…êÿÿHõL‹d$ E1ÿÇ
—&H‰÷–&H‹\$Çð–&+>HÇD$é’ïÿÿfH‹5I0$H‰t$H9ðtL‰÷èGÆýÿ…À„…è:ÇýÿH…À…õÿÿH‹‚/$H5{žH‹8èkÃýÿéþôÿÿfDH‹5ù/$H‰t$H9ðtL‰ÿè÷Åýÿ…À„¢èêÆýÿH…À…QõÿÿH‹2/$H5+žH‹8èÃýÿé6õÿÿfDHE1ÿE1öÇ-–&ùH‰–&Ç–&ä<HÇD$éºîÿÿHàœL‹d$ Çø•&H‰å•&H‹\$Çޕ&->HÇD$é€îÿÿH‰ïèø¾ýÿé¬ùÿÿIƒ/„\L‹d$ H‹\$E1ÿ1íHÇD$HwœH‰‹•&Ǎ•&Ç•&=>é*îÿÿL‹l$(L‹d$ 1íE1öHAœH‹\$ÇY•&H‰F•&ÇD•&U>éïíÿÿH‹ø”&H…Û„H‹D$(H‹xH9û„‘èÿÿH‰ÞèåÅýÿ…À…èÿÿH‹D$(H‹K H5í‰H‹@H‹P H‹Æ-$H‹81Àè4ÅýÿL‹d$ H‹\$1íE1öH«›L‹|$(ÇÔ&H‰°”&Ç®”&@>HÇD$éPíÿÿH‰ïèȽýÿéôûÿÿHi›E1ÿE1öÇ€”&H‰m”&Çk”&Ï=HÇD$é
íÿÿL‰ÿ腽ýÿé—þÿÿH‰ïè¸ÀýÿH‰ÂH…À„ÕüÿÿH‹5Í-$H‹@H‰t$ H9ðu@€ö€³„šñÿÿH‰×H‰T$è½ýÿH‹T$H‰ÅHƒ*…jéÿÿH‰×è½ýÿé]éÿÿH‰×蟫þÿH‰ÂH…À„£ñÿÿH‹@ë­L‰ÿè5ÀýÿI‰ÇH…À„JýÿÿH‹5J-$H‹@H‰t$ H9ðu5@ö€³„HòÿÿL‰ÿ蛼ýÿH‰D$Iƒ/…@éÿÿL‰ÿ褼ýÿé3éÿÿL‰ÿè'«þÿI‰ÇH…À„KòÿÿH‹@ëµH‹Æ-$H5œH‹8èÀýÿé/ùÿÿL‰÷袿ýÿH‰ÂH…À„güÿÿH‹5·,$H‹@H‰t$ H9ðu:ö€³„ ñÿÿH‰×H‰T$è¼ýÿH‹T$I‰ÆHƒ*…€èÿÿH‰×è¼ýÿésèÿÿH‰×菪þÿH‰ÂH…À„+ñÿÿH‹@ë­H‹.-$H5€›H‹8èw¿ýÿé˜úÿÿH‹-$H5e›H‹8è\¿ýÿé£ýÿÿH‰×èï¾ýÿH‹T$H…ÀH‰Á„ðÿÿH‹D$ H9AuMH‹AH‰T$ H‰ÏH‰L$ö€³tMèT»ýÿH‹L$H‹T$ H‰ÅHƒ)…/þÿÿH‰ÏH‰T$èP»ýÿH‹T$éþÿÿH‰ÏèΩþÿH‹T$H…ÀH‰Áužé¼ïÿÿèǪþÿH‹T$ H‹L$H‰Åë±H‹¹*$H5²™H‹8袾ýÿH‹T$éˆïÿÿE1ÒE1À1ÉHÇD$éoêÿÿI‰Çé´ãÿÿH‹{*$H5t™H‹8èd¾ýÿH‹T$éàïÿÿI‰ÂéƒàÿÿL‰ÿèê½ýÿH‰ÁH…À„:ðÿÿH‹D$ H9Au;H‹AH‰ÏH‰L$ ö€³t;èYºýÿH‹L$ H‰D$Hƒ)…¯ýÿÿH‰Ïè]ºýÿé¢ýÿÿH‰Ïèà¨þÿH‰ÁH…ÀuµéíïÿÿèީþÿH‹L$ H‰D$ëÃH‰×èj½ýÿH‹T$H…ÀH‰Á„'ïÿÿH‹D$ H9AuMH‹AH‰T$ H‰ÏH‰L$ö€³tMèϹýÿH‹L$H‹T$ I‰ÆHƒ)…ºýÿÿH‰ÏH‰T$è˹ýÿH‹T$é£ýÿÿH‰ÏèI¨þÿH‹T$H…ÀH‰ÁužéÍîÿÿèB©þÿH‹T$ H‹L$I‰Æë±H‹4)$H5-˜H‹8è½ýÿé"ïÿÿ„AWAVAUATI‰ôUSHì˜H‹
*$H‹nH‰|$ H‰D$pH‹0‚&HÇD$`H‰D$@H‰D$xH‹¶&HÇD$hH‰D$HH‰„$€H…Ò…	Hƒýt%~/HƒýtHƒý…?H‹F@H‰D$HI‹D$8H‰D$@I‹\$0ëDH‹)$Hƒý…I‹l$(M‹t$ Iƒ¿HƒEè2ÀýÿI‰ÄH…À„Ö	H‹W‚&1öL‰çHƒH‹G‚&èê¼ýÿH‹=›…&1ÒL‰æèé1þÿI‰ÁH…À„
Iƒ,$„RH‹5‚&L‰ÏL‰L$èþ3þÿL‹L$H…ÀH‰D$„c
H‹D$Hƒ8„<Iƒ)„NL‹-c…&H‹=üŽ&L‰îè<¹ýÿI‰ÄH…À„HƒH‹5½Š&L‰çèÀýÿI‰ÇH…À„!Iƒ,$„FL‰ö¿1ÀèW¾ýÿI‰ÅH…À„S
1ÒH‰ÆL‰ÿè>¼ýÿIƒmH‰D$„>Hƒ|$„*
Iƒ/„Iƒ.„þL‹-¿„&H‹=XŽ&L‰î蘸ýÿI‰ÇH…À„lHƒH‹5Š&L‰ÿèé¿ýÿI‰ÄH…À„Iƒ/„ãH‰î¿1À贽ýÿI‰ÅH…À„¸1ÒH‰ÆL‰ç蛻ýÿIƒmI‰Æ„½M…ö„”Iƒ,$„ÉHƒm„®H;'$„AH‹-„&H‹=«&H‰îèë·ýÿI‰ÁH…À„?
HƒH‹5„†&L‰ÏL‰L$è7¿ýÿL‹L$H…ÀI‰Å„nIƒ)„ü	H‹Cö€³…[L‰îH‰ß耾ýÿIƒm‰Å„c…í…JHƒH‹5&H‹|$è־ýÿI‰ÄH…À„JH‰Çèb¹ýÿH‰D$8Hƒøÿ„ƒIƒ,$„ Hƒ|$8…TH‹5½€&L‰÷荾ýÿI‰ÄH…À„‰H‰Çè¹ýÿH‰ÅHƒøÿ„ôIƒ,$„AHƒý„‡H‹5}&H‹=y‹&1Òè2ºýÿH‰D$H…À„ý
L‹|$L‰ÿèעþÿI‹H‰D$ HƒèI‰„À H“Ç%Œ&ãH‰Œ&ÇŒ&¥@L‰õE1ÛE1Ò1ÒHÇD$8E1íHÇD$ HÇD$(HÇD$0HÇD$éâL‰çH‰D$èó´ýÿL‹L$é—üÿÿf„H‰ÇL‰L$èӴýÿL‹L$Iƒ)…²üÿÿL‰Ï輴ýÿé¥üÿÿ€HV’L‰t$1Ò1ÛH‰a‹&E1ÛE1ÒE1ÉÇZ‹&×E1íÇI‹&½?HÇD$8HÇD$ HÇD$(HÇD$0HÇD$M…ätIƒ,$„ÌM…Ét
Iƒ)„õM…ÿt
Iƒ/„H…Òt
Hƒ*„7M…Òt
Iƒ*„PM…Ût
Iƒ+„aH‹
²Š&‹¸Š&E1öH=ú€‹5¤Š&èß/þÿHƒ|$tH‹|$H‹H‰D$@HƒèH‰„õH…Ût
Hƒ+„öH‹L$H…ÉtH‹H‰D$HƒèH‰„‡H‹\$0H…ÛtH‹H‰D$HƒèH‰„xH‹L$(H…ÉtH‹H‰D$HƒèH‰„iH‹T$ H…ÒtH‹H‰D$HƒèH‰„ZH‹t$8H…ötH‹H‰D$HƒèH‰„ëM…ítIƒm„ëH‹\$H‹H‰D$HƒèH‰„QHƒm„6HĘL‰ð[]A\A]A^A_ÃI‹l$@HƒýHlH
\HMȝÀHƒì¶ÀUHs’LD@H‹$"$H5ÍtL
ƒ’H‹81À脹ýÿH
¾u?Ç"‰&flj&u?H‰‰&XZH
ᏺfH=HE1öè0.þÿéMÿÿÿH‰÷è²ýÿéÿÿÿL‰ïè²ýÿéÿÿÿH‰Ïèð±ýÿélþÿÿH‰ßèà±ýÿé{þÿÿH‰ÏèбýÿéŠþÿÿH‰×è1ýÿé™þÿÿ賱ýÿéþÿÿfDH‰ß蠱ýÿéýýÿÿH‰ï萱ýÿé½þÿÿH‹|$è~±ýÿé þÿÿf„L‰çH‰T$XL‰\$PL‰T$HL‰L$@èT±ýÿH‹T$XL‹\$PL‹T$HL‹L$@éÿüÿÿL‰ÏH‰T$PL‰\$HL‰T$@è!±ýÿH‹T$PL‹\$HL‹T$@éàüÿÿDL‰ÿH‰T$PL‰\$HL‰T$@èñ°ýÿH‹T$PL‹\$HL‹T$@é¿üÿÿDH‰×L‰\$HL‰T$@èưýÿL‹\$HL‹T$@é¨üÿÿ€L‰×L‰\$@裰ýÿL‹\$@é™üÿÿf„L‰ß舰ýÿé’üÿÿL‰çèx°ýÿé­øÿÿL‰÷èh°ýÿéõøÿÿL‰ÿèX°ýÿéÛøÿÿL‰ïèH°ýÿéµøÿÿL‰ÿè8°ýÿéùÿÿL‰ïè(°ýÿé6ùÿÿH‰ïè°ýÿéEùÿÿL‰çè°ýÿé*ùÿÿHƒý‡FýÿÿH‰ÓH(“HcªHÐÿàH‹F@H‰„$€I‹D$8H‰D$xI‹D$0H‰D$pI‹D$(H‰ßH‰D$hI‹D$ H‰D$`èԱýÿI‰ÅHƒý‡›Hä’HcªHÐÿà€1ÿè	·ýÿH‰ÃH…À…6ùÿÿHÇ0†&ÚH‰†&dž&@E1ÛE1Ò1ÒE1íHÇD$8L‰õHÇD$ HÇD$(HÇD$0HÇD$éêúÿÿ„IƒmuL‰ïèñ®ýÿ¿èw¶ýÿI‰ÅH…À„oHƒH‰Ú1öH‰ÇL‰ëè7³ýÿ鋸ÿÿfHfŒE1ÛE1Ò1ÒH‰r…&E1í1ÛÇo…&ÔÇa…&¥?HÇD$8HÇD$ HÇD$(HÇD$0HÇD$HÇD$L‰t$é3úÿÿHö‹E1ÛE1Ò1ÒH‰…&E1ÿE1í1ÛÇü„&ÔÇî„&ª?HÇD$8HÇD$ HÇD$(HÇD$0HÇD$HÇD$L‰t$é’ùÿÿfDL‰çèЭýÿéÓ÷ÿÿHn‹E1ÛE1Ò1ÒH‰z„&E1ÿE1í1ÛÇt„&ÔÇf„&­?HÇD$8HÇD$ HÇD$(HÇD$0HÇD$L‰t$é#ùÿÿ€HþŠL‰t$H‰
„&Ç„&×Ç„&Ì?E1ÛE1Ò1ÒE1íHÇD$81ÛHÇD$ HÇD$(HÇD$0HÇD$éÅøÿÿfè[¯ýÿL‰ïèÓ'þÿI‰ÅH…À…Û*H}ŠE1ÛE1Ò1ÒH‰‰ƒ&1Ûljƒ&×Ç{ƒ&»?HÇD$8HÇD$ HÇD$(HÇD$0HÇD$L‰t$éVøÿÿ@L‰Ïèh¬ýÿé÷õÿÿèˮýÿH‰ïèC'þÿI‰ÅH…À…l(Hí‰Ç
ƒ&ÛH‰÷‚&Çõ‚&@E1ÛE1Ò1Ò1ÛHÇD$8L‰õHÇD$ HÇD$(HÇD$0HÇD$éÈ÷ÿÿfDH‰ßè®ýÿI‰ÅH‹5fz&H‰ßIƒí蒫ýÿH‰D$`H…À„ûøÿÿH‹5u}&H‰ßèu«ýÿH‰D$hH…À„ÉIƒíM…í.H‹D$xL‹t$`H‹l$hH‹\$pH‰D$@H‹„$€H‰D$Hé®òÿÿH‹5ñu&H‰ßè!«ýÿH…ÀtH‰D$pIƒíM…í~°H‹5g}&H‰ßèÿªýÿH…ÀtH‰D$xIƒíM…í~ŽH‹5½t&H‰ßèݪýÿH…ÀtH‰„$€IƒíM…íŽeÿÿÿHT$`H‰éH‰ßL̊H5:&&èU=þÿ…À‰?ÿÿÿHsˆ¾]?Ç‹&fH‰x&Çv&]?éføÿÿH‹F H‰ßH‰D$`迬ýÿI‰ÅéÓþÿÿH-ˆÇJ&ãH‰7&Ç5&¡@DE1ÛE1Ò1ÒE1íHÇD$8L‰õHÇD$ HÇD$(HÇD$0éöÿÿf„H‹5ñt&L‰÷èrýÿI‰ÄH…À„`H‰Çè]°ýÿ…À„1öL‰çèû©ýÿI‰ÁM…É„aIƒ,$„DH‹5¥t&L‰÷L‰L$èp²ýÿL‹L$H…ÀI‰Ä„H‰ÇL‰L$è°ýÿL‹L$…À„u¾L‰ç蘩ýÿL‹L$I‰ÇM…ÿ„©Iƒ,$„<L‰ϺL‰þL‰L$觱ýÿL‹L$H…ÀI‰Ä„áIƒ)„ÌIƒ/„µL;%“$@”ÅL;%à$”À@è…ü
L;%Å$„ï
L‰çè_«ýÿ‰ŅÀˆøIƒ,$„é…í…;óÿÿH‹5³s&H‹|$聱ýÿI‰ÄH…À„eH‰Çè¯ýÿ…À„
1öL‰ç軨ýÿI‰ÇM…ÿ„ûIƒ,$„¤H‹5es&L‰÷è5±ýÿI‰ÄH…À„H‰ÇèѮýÿ…À„	1öL‰çèo¨ýÿI‰ÁM…É„Iƒ,$„¨L‰κL‰ÿL‰L$胰ýÿL‹L$H…ÀI‰Ä„›Iƒ/„Iƒ)„þL;%o$”ÀL;%½$”ÂÂ…’	L;%£$„…	L‰çè=ªýÿ‰ŅÀˆ®Iƒ,$„ …í…èH‹5áo&H‰ßèñ¨ýÿI‰ÄH…À„`H‰ÇèM§ýÿH‰D$H…À„‹Iƒ,$„ä
H‹5Ur&H‹|$è#°ýÿH…À„H‰ÇH‰D$(轭ýÿL‹L$(…À„°L‰Ï1öèV§ýÿL‹L$(I‰ÄM…ä„7Iƒ)„»
H‹|$L‰æ讫ýÿƒøÿ„Iƒ,$„ú
H‹5;q&H‹|$ 詯ýÿI‰ÇH…À„¯H‹t$¿1Àè|­ýÿH‰ÅH…À„©1ÒH‰ÆL‰ÿèc«ýÿHƒmI‰Á„ÁM…É„…Iƒ/„ÅH‹5ûq&L‰ÏL‰L$ è>¯ýÿL‹L$ H…ÀI‰Ç„Iƒ)„ßH‹5Dq&H‹|$è¯ýÿH…À„KH‰ÇH‰D$ 謬ýÿL‹L$ …À„?
L‰Ï1öèE¦ýÿL‹L$ H‰ÂH…Ò„–Iƒ)„¿H‰T$ èk«ýÿH‹T$ H…ÀI‰Â„žH‹cn&L‰ÖL‰ÿL‰T$ HƒI‰R(1ÒI‰B èuªýÿL‹T$ H…ÀH‰D$0„¬Iƒ*„§Iƒ/„H‹5ox&L‰÷èO®ýÿI‰ÇH…À„ÊH‹-är&H‹=}|&H‰î车ýÿI‰ÂH…À„øHƒH‹5¾v&L‰×L‰T$ è	®ýÿL‹T$ H…ÀI‰Å„ƒIƒ*„«L‰î¿1ÀèϫýÿI‰ÄH…À„¨1ÒH‰ÆL‰ÿ趩ýÿIƒ,$H‰Å„‰Iƒm„qH…턈Iƒ/„QIƒ.„nH‹D$H‰î¿Hƒ1Àèh«ýÿI‰ÅH…À„¥H‹|$1ÒH‰ÆèM©ýÿIƒmI‰Ä„•M…ä„H‹L$H‹H‰D$ HƒèH‰„eI‹D$H;€$L‰çt
H;Ô$…Pèy©ýÿHƒø…
1öL‰çè«ýÿH‰D$(H…À„„¾L‰çèêªýÿH‰D$ H…À„À¾L‰çèϪýÿH‰D$8H…À„ñIƒ,$„ÄH‹5t&H‹|$@ºèЪýÿ…Àˆ„üH‹5»l&H‹|$@º謪ýÿ…ÀˆIt$H‹5óo&H‹|$@º茪ýÿ…Àˆ…æL‹-ßp&H‹=xz&L‰î踤ýÿI‰ÄH…À„ôHƒH‹5iv&L‰çè	¬ýÿI‰ÂH…À„ Iƒ,$„çL‹-“p&H‹=,z&L‰T$PL‰îèg¤ýÿL‹T$PH…ÀI‰Ä„KHƒH‹5kt&L‰çL‰T$P讫ýÿL‹T$PH…ÀI‰Ç„:Iƒ,$„žH‹5{v&H‹|$8L‰T$Pè|«ýÿL‹T$PH…ÀH‰Â„‰H‹t$ H‰ÇL‰T$XH‰D$Pèd¨ýÿH‹T$PL‹T$XH…ÀI‰Á„/Hƒ*„~¿L‰T$XL‰L$PèЧýÿL‹L$PL‹T$XH…ÀI‰Ã„L‰H H‹D$81ÒL‰ÞL‰ÿL‰T$XHƒI‰C(L‰\$PèҦýÿL‹\$PL‹T$XH…ÀI‰Ä„ôIƒ+„Iƒ/„¿L‰T$PèY§ýÿL‹T$PH…ÀI‰Ç„ìL‰` HƒEH‰h(L‰T$Pèa¤ýÿL‹T$PH…ÀI‰Ä„iH‹T$HH‹5ìl&H‰ÇL‰T$Pè7¡ýÿL‹T$P…ÀˆŒH‹T$HH‹5Ft&L‰çL‰T$Pè¡ýÿL‹T$P…ÀˆZL‰×L‰âL‰þL‰T$Hè¦ýÿL‹T$HH…ÀI‰Å„¬Iƒ*„^Iƒ/„Iƒ,$„EL;-’$”ÀL;-à$”ÂÂ…9L;-Æ$„,L‰ïè`£ýÿ…Àˆ%…À„L‹5An&H‹=Úw&L‰öè¢ýÿI‰ÄH…À„HƒH‹5#r&L‰çèk©ýÿI‰ÇH…À„ÊIƒ,$„;L‹5õm&H‹=Žw&L‰öèΡýÿI‰ÄH…À„@HƒH‹5ÿj&L‰çè©ýÿI‰ÁH…À„Iƒ,$„H‹t$ 1?L‰L$@èâ¦ýÿL‹L$@H…ÀI‰Æ„¸1ÒL‰ÏH‰ÆL‰L$@迤ýÿIƒ.L‹L$@I‰Ä„²M…ä„‹Iƒ)„’H‹5+g&L‰çè+¡ýÿI‰ÁH…À„åIƒ,$„¢H‹t$8L‰ÏL‰L$@肥ýÿL‹L$@H…ÀI‰Ä„ÕIƒ)„Œ¿èý¤ýÿI‰ÂH…À„dH‹D$01ÒL‰ÖL‰ÿL‰T$@HƒM‰b(I‰B è¤ýÿL‹T$@H…ÀI‰Ä„ÚIƒ*„&Iƒ/„6H‹L$0H‹H‰D$@HƒèH‰„H‹t$L‰çè¦ýÿH‰D$0H…À„Iƒ,$„òH‹|$è£ýÿI‰ÃH…À„H‹5Äi&H‹|$0H‰ÂH‰D$@èJ¤ýÿL‹\$@…ÀˆùIƒ+„¨H‹D$0HƒI‰Æéëêÿÿf1ÿè¦ýÿH‰ÅH…À„ùH‰ÆL‰çèҟýÿHƒmI‰Ç…ÜõÿÿH‰ïè|žýÿéÏõÿÿ€L‰çèhžýÿé²èÿÿ¶èé…öÿÿ„Hö{E1ÛE1Ò1ÒH‰u&E1ÿE1ÉE1íÇût&Ø1ÛÇët&ê?HÇD$8HÇD$ HÇD$(HÇD$0HÇD$ééÿÿf„èK ýÿL‰ïèÃþÿI‰ÅH…À…ÃHm{E1ÛE1Ò1ÒH‰yt&1ÛÇyt&ØÇkt&Ù?HÇD$8HÇD$ HÇD$(HÇD$0HÇD$éKéÿÿf„1ÿèɤýÿH‰ÅH…À„‡H‰ÆL‰ç肞ýÿHƒmI‰Á…ØôÿÿH‰ïH‰D$è'ýÿL‹L$éÁôÿÿDH¾zÇÛs&ØH‰Ès&ÇÆs&Û?éÀïÿÿL‰çèèœýÿéOôÿÿL‰ïè؜ýÿ鐿ÿÿHvzÇ“s&àH‰€s&Ç~s&Y@éaíÿÿf„L‰çL‰L$蓜ýÿL‹L$éAôÿÿf„H&zÇCs&àH‰0s&Ç.s&[@L‰õE1ÛE1Ò1ÒE1ÿE1ÉHÇD$8E1íHÇD$ HÇD$(HÇD$0HÇD$éÌçÿÿ„L‰ÏèœýÿéõóÿÿL‰ÿL‰L$èó›ýÿL‹L$éÑóÿÿf„1ÿèI£ýÿH‰ÅH…À„OH‰ÆL‰çèýÿHƒmI‰Á…ÌñÿÿH‰ïH‰D$觛ýÿL‹L$éµñÿÿDH‹5ùb&H‹=jq&1Òè# ýÿH‰D$H…À„À	L‹|$L‰ÿèȈþÿI‹H‰D$ HƒèI‰„lHùxÇr&áH‰r&Çr&k@éìåÿÿ@L‰çè ›ýÿéSóÿÿ@¶íéòÿÿ€H®xE1ÛE1Ò1ÒH‰ºq&E1ÿ1ÛL‰õÇ´q&ÛǦq&@HÇD$8HÇD$ HÇD$(HÇD$0HÇD$éhæÿÿ@1ÿL‰L$(è¢ýÿL‹L$(H…ÀH‰Å„…L‰ÏH‰ÆL‰L$(賛ýÿHƒmL‹L$(I‰Ä…"óÿÿH‰ïèXšýÿL‹L$(éóÿÿfDHîwÇq&âH‰øp&Çöp&}@éÙêÿÿ¿L‰L$聡ýÿL‹L$H…ÀH‰Å„2H‰ÆL‰çL‰L$è0›ýÿHƒmL‹L$I‰Ç…]ðÿÿH‰ïèՙýÿL‹L$éKðÿÿHnwÇ‹p&âH‰xp&Çvp&@éCýÿÿL‰ç蘙ýÿéòÿÿL‰çL‰L$胙ýÿL‹L$é¥ïÿÿf„L‰Ïèh™ýÿé8òÿÿHwÇ#p&äH‰p&Çp&·@éñéÿÿf„L‰çL‰L$è#™ýÿL‹L$é­ïÿÿf„L‰çè™ýÿéùñÿÿ1ÿL‰L$ èd ýÿL‹L$ H…ÀH‰Å„UL‰ÏH‰ÆL‰L$ èšýÿHƒmL‹L$ H‰Â…“òÿÿH‰ïH‰D$(賘ýÿH‹T$(L‹L$ éwòÿÿHJvÇgo&äH‰To&ÇRo&¹@éüÿÿL‰ÿèu˜ýÿé>ïÿÿL‰Ïèh˜ýÿé'ïÿÿH	vE1ÛE1Ò1ÒH‰o&E1íL‰õÇo&äÇo&¼@HÇD$8HÇD$ HÇD$(HÇD$0HÇD$éÔãÿÿL‰çèù—ýÿé
ïÿÿH‰ïH‰D$ èç—ýÿL‹L$ é(ñÿÿL‰ÿL‰L$ èЗýÿL‹L$ é$ñÿÿHluL‰õE1ÛE1ÒH‰wn&1ÒÇwn&äÇin&¾@éDûÿÿL‰Ï茗ýÿéñÿÿH-uÇJn&äH‰7n&Ç5n&Á@E1ÛE1Ò1ÒHÇD$8E1íL‰õHÇD$ HÇD$(HÇD$0HÇD$ééâÿÿHËtÇèm&äH‰Õm&ÇÓm&Ä@é úÿÿL‰ÏH‰T$ èñ–ýÿH‹T$ éÍðÿÿH‹|$èݖýÿé…ûÿÿH‹5)^&H‹=ªl&1Òèc›ýÿH‰D$H…À„&	L‹|$L‰ÿè„þÿI‹H‰D$ HƒèI‰„nH9tÇVm&åH‰Cm&ÇAm&Ó@é,áÿÿHtÇ/m&ÜH‰m&Çm&3@é êÿÿHësÇm&ëH‰õl&Çól&å@éÖæÿÿL‰ÿè–ýÿécðÿÿL‰×è	–ýÿéLðÿÿHªsE1ÛE1Ò1ÒH‰¶l&E1ÿE1ÉE1íǯl&ëL‰õÇžl&ç@HÇD$8HÇD$ HÇD$(HÇD$0éYáÿÿHKsÇhl&âH‰Ul&ÇSl&‡@é6æÿÿH$sÇAl&âH‰.l&Ç,l&‰@éùøÿÿHýrÇl&ìH‰l&Çl&ô@éÐêÿÿHÖrE1ÛE1Ò1ÒH‰âk&E1ÿÇák&âÇÓk&Œ@é¡ýÿÿH¤rL‰õE1ÛE1ÒH‰¯k&1ÒE1ÿǬk&ìÇžk&ö@HÇD$8E1íHÇD$ HÇD$(HÇD$0éfàÿÿH‹|$蘔ýÿé1ßÿÿL‰×苔ýÿéHïÿÿH,rL‰õE1ÛE1ÒH‰7k&1ÒE1ÿE1ÉÇ1k&ìE1íÇ k&ù@HÇD$8HÇD$ HÇD$(HÇD$0éÛßÿÿHÍqL‰õE1ÛE1ÒH‰Øj&1ÒE1íÇÕj&íÇÇj&AHÇD$8HÇD$ HÇD$(HÇD$0é¡ßÿÿHtqL‰õE1ÛE1ÒH‰j&1ÒE1ÿÇ|j&âÇnj&Ž@éL÷ÿÿL‰ÿ葓ýÿé¢îÿÿL‰ï脓ýÿé‚îÿÿL‰çèw“ýÿéjîÿÿL‰÷èj“ýÿé…îÿÿHqÇ(j&âH‰j&Çj&‘@éÙûÿÿHäpÇj&íH‰îi&Çìi&Aé·èÿÿH‰Ïè“ýÿéŽîÿÿL‰ïè“ýÿé^îÿÿH£pÇÀi&âH‰­i&Ç«i&”@éxöÿÿE1íéÞñÿÿHƒìH‹k$H
zpH5
UjL
ÁrA¸HŠrH‹81À赙ýÿH;pY^H‰Mi&¾G?ÇJi&fÇ<i&G?é,àÿÿH
pE1ÛE1Ò1ÒH‰i&E1íL‰õÇi&íÇi&AHÇD$8HÇD$ HÇD$(HÇD$0éÒÝÿÿH´oE1ÛE1Ò1ÒH‰Àh&ÇÂh&íÇ´h&AHÇD$8E1íL‰õHÇD$ HÇD$(HÇD$0éˆÝÿÿH[oÇxh&áH‰eh&Çch&g@é.çÿÿH4oL‰õE1ÛE1ÒH‰?h&1ÒÇ?h&íÇ1h&AéŽüÿÿHoE1ÛÇh&íH‰	h&Çh&;AéNÿÿÿL‰çè*‘ýÿé/íÿÿH‹|$è‘ýÿéƒúÿÿH¼nE1Û1ÒE1íH‰Èg&L‰õÇÇg&íǹg&FAHÇD$8HÇD$ HÇD$(éœÜÿÿHonE1ÛE1Ò1ÒH‰{g&E1íL‰õÇwg&þÇig&UAHÇD$8HÇD$ HÇD$(é[Üÿÿèä’ýÿH‰ïè\þÿI‰ÂH‰D$(H…À…™HnE1Û1ÒE1íH‰
g&L‰õÇg&þÇþf&WAHÇD$8HÇD$ éêÛÿÿH½mL‹|$ÇÕf&ÿH‰Âf&ÇÀf&ƒAE1ÛE1Ò1ÒE1íHÇD$8HÇD$ HÇD$(é˜ÛÿÿHkmE1Û1ÒL‰õH‰wf&Çyf&þÇkf&YAHÇD$8HÇD$ HÇD$(éNÛÿÿIƒmuL‰ïèlýÿHmL‰õÇ,f&þH‰f&Çf&iAéRÿÿÿH…Àx1HƒøHAoH
ÑlHEÊH‰ÂH‹/ÿ#H5\H‹81Àè&–ýÿH¬lE1ÛE1Ò1ÒH‰¸e&E1ÿE1ÉE1íDZe&ÿÇ£e&ŒAHÇD$8HÇD$ HÇD$(égÚÿÿHYlE1ÛE1Ò1ÒH‰ee&E1ÿE1ÉE1íÇ^e&ÿÇPe&œAHÇD$8HÇD$ éÚÿÿL‰çèaŽýÿé¸íÿÿHlE1ÛE1Ò1ÒL‹|$(E1ÉE1íH‰e&Çe&ÿÇ÷d&žAHÇD$8HÇD$(éÄÙÿÿH¶kE1ÛE1ÒE1ÉH‹T$ L‹|$(E1íH‰´d&Ƕd&ÿǨd& AHÇD$ HÇD$(éuÙÿÿHgkE1ÛE1Ò1ÒH‰sd&E1íÇrd&Çdd&ÉAéqÙÿÿH5kÇRd&åH‰?d&Ç=d&Ï@éãÿÿL‰Ïè`ýÿéaíÿÿL‰÷èSýÿL‹L$@é<íÿÿL‰çH‰D$@è<ýÿL‹L$@éÚìÿÿL‰çH‰D$@è%ýÿL‹L$@éGíÿÿL‰Ïèýÿégíÿÿè)“ýÿI‰ÁH…À„RIƒ,$„ïI‹AL‰ÏL‰L$ L‹¨èAÿÕL‹L$ H…ÀH‰D$(„nL‰ÏL‰L$PAÿÕL‹L$PH…ÀH‰D$ „
L‰ÏAÿÕL‹L$PH…ÀH‰D$8„ëL‰ÏAÿվH‰Çè{þÿL‹L$P…ÀˆtIƒ)…rèÿÿL‰Ïè`ŒýÿéeèÿÿL‰çH‰D$PèNŒýÿL‹T$PééÿÿL‰çL‰T$Pè7ŒýÿL‹T$PéKéÿÿL‰×è%ŒýÿéÍìÿÿH‰ÏèŒýÿéäìÿÿL‰ÿèŒýÿé½ìÿÿH‰×L‰T$XH‰D$Pèô‹ýÿL‹T$XL‹L$PéaéÿÿH‹iE1ÛE1Ò1ÒH‰—b&E1ÉÇ–b&Ljb&°Bég×ÿÿèŽýÿL‰÷è–þÿI‰ÄH…À…ÐêÿÿH@iE1ÛE1Ò1ÒH‰Lb&ÇNb&Ç@b&®BéM×ÿÿHiE1ÛE1Ò1ÒH‰b&E1íÇb&Çb&ÓAé×ÿÿH‹Jû#ºH5VSH‹81Àè<’ýÿéüÿÿL‰çè‹ýÿéìÿÿL‰ßL‰T$PèýŠýÿL‹T$PéáèÿÿL‰ÿL‰T$PèæŠýÿL‹T$PéÔèÿÿ¶ÀéÜéÿÿHzhE1Ò1ÒÇ’a&H‰a&Ç}a&CéŠÖÿÿH‹5ñQ&H‹=z`&1Òè3ýÿI‰ÄH…À„“H‰ÇèßwþÿIƒ,$„ÖHhE1ÛE1Ò1ÒH‰&a&E1íÇ%a&Ça&éAé$Öÿÿ譌ýÿL‰÷è%þÿI‰ÄH…À…«éÿÿHÏgE1ÛE1Ò1ÒH‰Û`&ÇÝ`&ÇÏ`&³BéÍÕÿÿH gE1ÛE1Ò1ÒH‰¬`&Ç®`&Ç `&ÇBéÕÿÿL‰T$Pè1ŒýÿL‰ïè©þÿL‹T$PH…ÀI‰Ä…–æÿÿHNgE1Û1ÒE1íH‰Z`&Ç\`&ÇN`&Bé[ÕÿÿHgE1ÛE1Ò1ÒH‰+`&Ç-`&Ç`&ÄBéÕÿÿHðfE1ÛM‰â1ÒH‰ü_&Çþ_&Çð_&µBéîÔÿÿL‰ßè‰ýÿéKêÿÿH´fE1Û1ÒE1ÉH‰À_&E1íÇ¿_&DZ_&CBéÔÿÿH‚fE1ÛE1Ò1ÒH‰Ž_&ǐ_&Ç‚_&ÊBéqÔÿÿHSfE1Û1ÒE1ÿH‰__&E1ÉE1íÇ[_&ÇM_&ýAé,ÔÿÿèãŠýÿL‰ïè[þÿI‰ÄH…À…÷äÿÿHfE1ÛE1Ò1ÒH‰_&E1íÇ_&Ç_&ûAéÔÿÿHÓeE1Û1ÒE1ÉH‰ß^&Çá^&ÇÓ^&ìBé²ÓÿÿL‹T$8H‹T$ E1ÛE1íH”eL‹|$(Ǭ^&ÿH‰™^&Ç—^&°AHÇD$8HÇD$ HÇD$(ékÓÿÿHÇD$8Iƒ)„Üèÿþÿ…Àu3H‹T$8H”gH
$eH5iTHƒúHEÈH‹z÷#H‹81ÀèxŽýÿHþdE1ÛE1ÒE1íH‹T$ L‹|$(H‰ÿ]&Ç^&ÿÇó]&¸AHÇD$8HÇD$ HÇD$(éÖÒÿÿL‰çH‰D$ èö†ýÿL‹L$ éúùÿÿL‰çèä†ýÿé®åÿÿH…dE1Ò1Òǝ]&H‰Š]&Lj]&Cé•ÒÿÿHYdE1ÛL‰âE1íH‰d]&Çf]&ÇX]&BéeÒÿÿH)dE1Û1ÒÇA]&H‰.]&Ç,]&÷Bé*ÒÿÿHýcE1Û1ÒE1íH‰	]&Ç]&Çý\&ABéûÑÿÿHÎc1ÒE1íÇæ\&H‰Ó\&ÇÑ\&4BéÏÑÿÿH¢cE1Û1ÒE1ÉH‰®\&E1íÇ­\&ÇŸ\&9Bé~ÑÿÿHpc1ÒE1íLj\&H‰u\&Çs\&)BébÑÿÿL‰ç薅ýÿéûÿÿH7cE1ÛE1Ò1ÒH‰C\&E1íÇB\&Ç4\&ÙAéAÑÿÿHcE1ÛE1íÇ\&H‰	\&Ç\&BéÑÿÿHØbE1ÛE1íÇï[&H‰Ü[&ÇÚ[&BéØÐÿÿH«bE1ÛE1Ò1ÒH‰·[&ǹ[&Ç«[&CL‰d$0é³ÐÿÿH‹5ºM&H‹|$@º請ýÿ…ÀˆG„æH‹=ŽM&èáÿýÿI‰ÃH…À„¢H‹5†M&H‰ÇH‰D$@è1ýÿL‹\$@H…ÀI‰Ä„QIƒ+„:H‹5§K&1ÒL‰çèõˆýÿI‰ÁH…À„ëIƒ,$„ÉIƒ)…DãÿÿL‰Ïè,„ýÿé7ãÿÿL‰ÿè„ýÿéÞâÿÿHÀaE1Û1ÒE1ÉH‰ÌZ&E1íÇËZ&ǽZ&DBéœÏÿÿL‰×èàƒýÿé•âÿÿI‰Áé8ÍÿÿHyaE1ÛE1Ò1ÒH‰…Z&LJZ&ÇyZ&TBé†ÏÿÿHJaE1Û1ÒE1ÉH‰VZ&ÇXZ&ÇJZ&EBé)ÏÿÿL‰çH‰D$@èhƒýÿL‹L$@é ÿÿÿHaE1ÛE1Ò1ÒH‰Z&E1ÿÇZ&	ÇZ&vBéàÎÿÿL‰ßè$ƒýÿé¹þÿÿHÅ`E1Ò1ÒÇÝY&	H‰ÊY&ÇÈY&kBéÕÎÿÿH™`E1Ò1ÒDZY&	H‰žY&ÇœY&iBé©ÎÿÿH‹5J&H‹=™X&1ÒèR‡ýÿI‰ÄH…ÀtwH‰ÇèpþÿIƒ,$t^HA`E1ÛE1Ò1ÒH‰MY&ÇOY&ÇAY&‘BéNÎÿÿH`E1ÛE1Ò1ÒH‰Y&Ç Y&ÇY&_BéÎÿÿL‰çè5‚ýÿë˜HÙ_E1ÛE1Ò1ÒH‰åX&ÇçX&ÇÙX&BéæÍÿÿI‰Çé´ÊÿÿI‰ÄéÊÿÿHš_E1ÛE1Ò1ÒH‰¦X&E1íÇ¥X&Ç—X&åAé¤ÍÿÿL‹T$(éKÜÿÿL‰Ï谁ýÿéúÿÿHQ_E1ÛE1Ò1ÒH‰]X&E1ÿE1íÇYX&ÿÇKX&¦AHÇD$8HÇD$ HÇD$(éÍÿÿHÇD$ HÇD$8é¦ùÿÿ@AWAVAUI‰õATUSHƒìHH‹àñ#L‹5‰I&H‰|$L‹fHÇD$ H‰\$(H‰\$0L‰t$8H…Ò…gIƒü„Ý~+IƒütIƒü…L‹v8I‹E0H‰D$I‹m(ë„H‰\$H‰ÝIƒü…îM‹e Iƒ$HƒEH9Ý„ÇL‰ö¿1ÀL‹-&W&è!‡ýÿI‰ÇH…À„­1ÒL‰ïH‰Æè…ýÿIƒ/I‰Å„+M…턊H‹5P&L‰ïèóˆýÿI‰ÂH…À„·H;˜ñ#”ÀL;æð#”ÂÂ…ûI9Ú„òL‰×L‰T$èe‚ýÿL‹T$…ÀA‰Ç‰ÙH›]E1ÿǵV&ÖH‰¢V&Ç V&Iƒ*u#1ÒL‰×H‰T$è»ýÿH‹T$H…Òt
Hƒ*„ŸH‹
hV&‹nV&‹5dV&H=åL»è“ûýÿIƒm„`M…ÿ„wIƒ/…mL‰ÿè]ýÿIƒ,$…eL‰çèJýÿHƒm…]H‰ïè7ýÿéPfL‰ÿè(ýÿéÈþÿÿD¶øIƒ*„òH‹=V&E…ÿ…ÚL‹=ãG&L‰þè3€ýÿI‰ÂH…À„/
HƒH‹5ÔG&L‰×L‰T$è‡ýÿL‹T$H…ÀI‰Ç„Ž
Iƒ*„ŒH‹5µF&1ÒL‰ÿèCƒýÿH…À„Ú
Iƒ/„ˆHƒ(„nH‹5OL&L‰ïè'‡ýÿH…À„ž
H‹5GU&1ÒH‰ÇH‰D$èø‚ýÿL‹\$H…ÀI‰Ç„WIƒ+„=
Iƒm„"
H‹=#U&M‰ýL‹=yK&L‰þèYýÿI‰ÂH…À„mHƒH‹5
N&L‰×L‰T$襆ýÿL‹T$H…ÀI‰Ç„”Iƒ*„âºL‰þL‰ïè†ýÿI‰ÂH…À„ÎIƒ/„ÌL;ï#”ÀL;cî#”ÂÂu	I9Ú…óD¶øIƒ*„åE…ÿ„¬H‹D$HƒìE1ÀL‰ç¹H‰îL‹ðLH(IƒARH‹T$L‰T$ ÿœS&_AXH…ÀI‰ÇL‹T$„ 	Iƒ*„	H9\$„IƒL‰ûIƒm„ñIƒ/„šýÿÿ€Iƒ,$„›ýÿÿHƒm„£ýÿÿHƒÄHH‰Ø[]A\A]A^A_ÃIƒ$Hƒ+tuL‹-FE&IƒEIƒ,$trL‰åM‰ìéüÿÿ€L‰×L‰T$èó~ýÿL‹T$…ÀA‰Ç‰ôþÿÿH)ZE1ÿÇCS&æH‰0S&Ç.S&jé‰üÿÿf„H‰ßèH|ýÿëfDL‰çL‰åM‰ìè2|ýÿé–ûÿÿDL‰×è |ýÿégýÿÿH‰Çè|ýÿé…ýÿÿL‰ÿH‰D$èû{ýÿH‹D$éaýÿÿH‰ïè~ýÿI‰ÆH‹5ŽJ&H‰ïIƒîè¢{ýÿH‰D$ H…À…xM‹eM…äH}YH
mYHOÈŸÀH¶[¶ÀL
CYLOÊLD@HƒìH‹+ë#ATHy[H5Ë=H‹81À艂ýÿHY¾­Ç'R&ƒÇR&­H‰
R&XZH
æXºƒH=…H1Ûè6÷ýÿé?þÿÿL‰×è{ýÿéüÿÿH‰\$é8úÿÿfDIƒH‹5Íë#ºL‰÷è8ƒýÿI‰ÃH…À„¸H;=ì#”ÀL;‹ë#”ÂÂ…(L;\$„L‰ßL‰\$è}ýÿL‹\$…	ÁˆŸIƒ+„Ï…É…wH‹5èê#ºL‰÷èÂýÿI‰ÃH…À„íH;Èë#”ÂH;ë#”ÀÐ…³I9Û„ªL‰ßL‰\$è•|ýÿL‹\$…	ÁˆíIƒ+„µ
…É…H‹eG&H‹=þP&H‰ÆH‰D$è9{ýÿI‰ÃH…À„HƒH‹5ÂK&L‰ßL‰\$腂ýÿL‹\$H…ÀH‰Â„ÔIƒ+„)H‹5kH&H‰×H‰T$èV‚ýÿH‹T$H…ÀI‰Ã„=Hƒ*„;ºL‰ÞL‰÷L‰\$èƁýÿL‹\$H…ÀH‰Â„AIƒ+„IH;¼ê#”ÁH;
ê#”ÀÈ…ò
H9Ú„é
H‰×H‰T$è‰{ýÿH‹T$…	ÁˆHƒ*„gIƒ.„…É„ãûÿÿH‹OF&H‹=èO&H‰ÆH‰D$è#zýÿH‰ÂH…À„W
HƒH‹5¤K&H‰×H‰T$èoýÿH‹T$H…ÀI‰Ã„Ê
Hƒ*„<1ÀL‰þ¿L‰\$è0ýÿL‹\$H…À„Å
1ÒL‰ßH‰ÆL‰\$H‰D$è}ýÿH‹L$L‹\$I‰ÂHƒ)„TI‹HƒèM…Ò„Ž
I‰H…À„`H‹5	C&L‰×L‰T$èԀýÿL‹T$H…ÀI‰Ã„^Iƒ*„H‹5âN&L‰ߺL‰\$è@€ýÿL‹\$H…ÀI‰Â„Iƒ+„ÅL;6é#”ÀL;„è#”ÂÂ…™I9Ú„L‰×L‰T$èzýÿL‹T$…	ÈìIƒ*„â…Û„gúÿÿIƒ1ÀL‰þ¿è~ýÿH…À„¤
1ÒH‰ÆL‰÷H‰D$èô{ýÿH‹L$H‰ÃHƒ)„€
I‹HBÿH…Û„s
I‰H…À„W
Iƒm…úÿÿL‰ïèwýÿé“÷ÿÿH‰×èwýÿéT÷ÿÿL‰×èðvýÿéùÿÿL‰ÿH‰D$èÛvýÿL‹T$éùÿÿH‹!D&H‹=ºM&H‰ÆH‰D$èõwýÿI‰ÇH…À„yHƒH‹5žF&L‰ÿèFýÿI‰ÂH…À„ûIƒ/„0L‰ֺL‰ïL‰T$è»~ýÿL‹T$H…ÀI‰Ç„d	Iƒ*„pL;=±ç#”ÀL;=ÿæ#”ÂÂ…DI9ß„;L‰ÿèƒxýÿ…Àˆ	Iƒ/„é…À„™H‹D$HƒìE1ÀH‰î¹L‰çL‹˜ðLH(IƒASH‹T$L‰\$ ÿ1L&Y^H…ÀI‰ÇL‹\$„ÎIƒ+…ŽøÿÿL‰ßè¬uýÿ選ÿÿ€L‰×è˜uýÿéøÿÿIƒü‡ÆùÿÿH‰ÕHäXJc¢HÐÿàH‹F8H‰D$8I‹E0H‰D$0I‹E(H‰ïH‰D$(I‹E H‰D$ ètwýÿI‰ÆIƒü„ë~]Iƒü„Iƒüu&M…ö~*H‹5iF&H‰ïèátýÿH…À„ÀH‰D$8IƒîM…ö®H‹D$0L‹d$ H‹l$(L‹t$8H‰D$é.ôÿÿM…äuÔééøÿÿfDH
nRºÔ¾ú1ÛH=BH‰
oK&ÇqK&ÔÇcK&úèžðýÿé‘÷ÿÿf„H&RºÖ¾Ç9K&ÖH‰&K&Ç$K&H
úQH=žA»èLðýÿIƒm…9÷ÿÿL‰ïè)týÿé,÷ÿÿ@L‰×ètýÿéíöÿÿL‰ïètýÿéÑõÿÿL‰ßèøsýÿé¶õÿÿ¶ÀéÍýÿÿ„L‰×èØsýÿéƒýÿÿHvQºÝ¾-ljJ&ÝH‰vJ&ÇtJ&-éKÿÿÿ€¶Èé÷øÿÿH6QÇSJ&çH‰@J&Ç>J&wé™óÿÿf„H‹F H‰ïH‰D$ èuýÿI‰ÆM…öŽMþÿÿH‹5ŒC&H‰ïèsýÿH…ÀtH‰D$(IƒîM…öŽ'þÿÿH‹5®=&H‰ïèÞrýÿH…À„åýÿÿH‰D$0IƒîéÒýÿÿ€Iƒ.H’PH‰¦I&ǨI&ûÇšI&„öI‹HƒèI‰H…À…
óÿÿL‰ßè©rýÿéýòÿÿ@èuýÿL‰ÿèƒíýÿI‰ÇH…À…ØH
-P¾cºæÇ@I&æH‰
-I&Ç+I&céÂòÿÿfDHöOÇI&æH‰I&ÇþH&eéYòÿÿf„¶Øé„úÿÿ„Iƒ.…ùÿÿL‰÷‰L$èúqýÿ‹L$éëøÿÿH–OM‰ûǰH&æH‰H&Ç›H&hI‹E1ÿHƒèéÿþÿÿ@è#týÿL‰ÿè›ìýÿI‰ÂH…À…¼òÿÿHEOºØ¾ÇXH&ØH‰EH&ÇCH&éýÿÿfDH‰×H‰D$è[qýÿL‹\$é­øÿÿL‰ÿL‰T$èCqýÿL‹T$é¹úÿÿf„HÖNÇóG&ØH‰àG&ÇÞG&é9ñÿÿf„H‰ÏL‰\$H‰D$èîpýÿL‹\$L‹T$鋸ÿÿ€L‰ßL‰T$èËpýÿL‹T$鉸ÿÿHfNM‰ûÇ€G&ØH‰mG&ÇkG&!I‹E1ÿHƒèéÏýÿÿ@L‰×H‰D$è{pýÿL‹\$éhøÿÿL‹=Á=&H‹=ZG&L‰þèšqýÿI‰ÂH…À„[HƒH‹5S@&L‰×L‰T$èæxýÿL‹T$H…ÀI‰Ç„‘Iƒ*„šºL‰þL‰ïè[xýÿI‰ÂH…À„’Iƒ/„‘L;Vá#”ÀL;¤à#”ÂÂ…II9Ú„@L‰×L‰T$è#rýÿL‹T$…ÀA‰ÇˆzIƒ*„dE…ÿ„hH‹D$HƒìE1ÀH‰î¹L‰çL‹ðLH(IƒARH‹T$L‰T$ ÿ¸E&I‰ÇXZM…ÿL‹T$…%òÿÿHûLÇF&ëH‰F&ÇF&Íé^ïÿÿfDL‰ÿ‰D$èoýÿ‹D$éùÿÿL‰ßH‰D$èoýÿL‹T$é$÷ÿÿf„H–LdzE&ÝH‰ E&ÇžE&;I‹HƒèéüÿÿfL‰߉L$è´nýÿ‹L$éôÿÿL‰×è nýÿé÷ÿÿ¶ÊéjôÿÿD¶øéÔþÿÿ€èëpýÿH‹|$èaéýÿH‰ÂH…À…’õÿÿH
L¾-ºüÇE&üH‰
E&Ç	E&-é îÿÿ@è›pýÿH‹|$èéýÿI‰ÇH…À…p÷ÿÿH
»K¾ŽºèÇÎD&èH‰
»D&ǹD&ŽéPîÿÿHŠKǧD&üH‰”D&Ç’D&/éîÿÿI‹HƒèH
\KÇyD&üH‰
fD&ÇdD&>éÒúÿÿH5KÇRD&èH‰?D&Ç=D&Iƒ/„ïH‹
$D&‹*D&E1ÿ‹5D&é´íÿÿHT$ L‰áH‰ïL5MH5ïã%èªÿýÿ…À‰,øÿÿHÈJ¾—ÇàC&ƒH‰ÍC&ÇËC&—é¶ñÿÿHœJǹC&èH‰¦C&ǤC&“éÿìÿÿL‰÷èÇlýÿéœõÿÿH‰ÏèºlýÿésõÿÿH[JÇxC&üH‰eC&ÇcC&Aé¾ìÿÿH4JÇQC&èH‰>C&Ç<C&•éúþÿÿL‰߉L$è[lýÿ‹L$é6òÿÿHøIÇC&üH‰C&ÇC&DI‹HƒèégùÿÿHÊIM‰òÇäB&ûH‰ÑB&ÇÏB&é*ìÿÿH IǽB&ûH‰ªB&ǨB&Iƒ.…
ùÿÿL‰÷L‰\$èÁkýÿL‹\$M…Û…ïøÿÿéìÿÿfDHNIÇkB&üH‰XB&ÇVB&Fé±ëÿÿL‰×èykýÿéYûÿÿL‰ÿE1ÿèikýÿé½ëÿÿL‰ÿH‰D$èWkýÿL‹T$éXûÿÿ¶Éé+òÿÿL‰×è=kýÿéûÿÿH‹‰8&H‹="B&H‰ÆH‰D$è]lýÿI‰ÇH…À„8HƒH‹5þ:&L‰ÿè®sýÿI‰ÂH…À„”Iƒ/„ÙL‰ֺL‰ïL‰T$è#sýÿL‹T$H…ÀI‰Ç„=Iƒ*„ÀL;=Ü#”ÀL;=gÛ#”ÂÂ…¡I9ß„˜L‰ÿèëlýÿ…ÀˆLIƒ/„Ó…À„àH‹D$HƒìE1ÀH‰î¹L‰çL‹˜ðLH(IƒASH‹T$L‰\$ ÿ@&A[I‰ÇXL‹\$M…ÿ…gôÿÿHËGÇè@&íH‰Õ@&ÇÓ@&øI‹Hƒèé:÷ÿÿ€H–Gdz@&éH‰ @&Çž@&¢I‹Hƒèé÷ÿÿI‹HeGM‰óÇ@&ýH‰l@&HBÿÇf@&_éÔöÿÿL‰ßH‰D$è„iýÿH‹T$éÀïÿÿH GM‰òÇ:@&ûH‰'@&Ç%@&
é€éÿÿH‰×H‰D$èCiýÿL‹\$é®ïÿÿHßFÇü?&ûH‰é?&Çç?&é:ýÿÿL‰ßH‰D$èiýÿH‹T$é ïÿÿ¶Àépþÿÿè^kýÿL‰ÿèÖãýÿI‰ÇH…À…üH
€F¾¹ºêÇ“?&êH‰
€?&Ç~?&¹ééÿÿH‰׉L$èhýÿ‹L$é„ïÿÿH:FÇW?&êH‰D?&ÇB?&»éèÿÿHFM‰ûÇ-?&êH‰?&Ç?&¾I‹E1ÿHƒèé|õÿÿHßEE1ÿÇù>&êH‰æ>&Çä>&Àé?èÿÿL‰ÿL‰T$èhýÿL‹T$éýÿÿL‰×èðgýÿé3ýÿÿèVjýÿH‹|$èÌâýÿI‰ÃH…À…çíÿÿHvEM‰òǐ>&ûH‰}>&Ç{>&éÖçÿÿL‰ÿ‰D$èšgýÿ‹D$éýÿÿH‹â4&H‹={>&H‰ÆH‰D$è¶hýÿI‰ÇH…À„HƒH‹5Ç0&L‰ÿèpýÿI‰ÃH…À„ÒIƒ/„1L‰޺L‰ïL‰\$è|oýÿL‹\$H…ÀI‰Ç„Iƒ+„-L;=rØ#”ÀL;=À×#”ÂÂ…hI9ß„_L‰ÿèDiýÿ…Àˆ6Iƒ/„Ù…À„óH‹D$¹H‰îL‰çL‹ðLH(IƒAPE1ÀARH‹T$L‰T$ ÿ=&AYAZH…ÀI‰ÇL‹T$…OéÿÿH%DÇB=&ïH‰/=&Ç-=&#鈿ÿÿHþCÇ=&ûH‰=&Ç=&Iƒ.…{æÿÿM‰òé\æÿÿHÊCÇç<&ûH‰Ô<&ÇÒ<&é%úÿÿH£CÇÀ<&ûH‰­<&Ç«<&ë£èDhýÿH‹|$èºàýÿI‰ÇH…À…±úÿÿH
dC¾äºìÇw<&ìH‰
d<&Çb<&äéùåÿÿ¶Àé©þÿÿH+CÇH<&ìH‰5<&Ç3<&ééŽåÿÿHCÇ!<&ìH‰<&Ç<&æéÊ÷ÿÿHÝBÇú;&ìH‰ç;&Çå;&ëé£÷ÿÿL‰ÿH‰D$èeýÿL‹\$é¸ýÿÿL‰ÿ‰D$èídýÿ‹D$éþÿÿL‰ßèÜdýÿéÆýÿÿH‹=(2&èàýÿH…À„°H‹5+.&H‰ÇH‰D$è^mýÿL‹\$H…ÀI‰Â„ZIƒ+„ÖL‰ֺL‰ïL‰T$èÎlýÿL‹T$H…ÀI‰Ç„ÇIƒ*„™L;=ÄÕ#”ÀL;=Õ#”ÂÂ…uI9ß„lL‰ÿè–fýÿ…ÀˆÄIƒ/„¥…À„FH‹D$E1ÀH‰îL‰çL‹˜ðLH(IƒQ¹ASH‹T$L‰\$ ÿg:&^_H…ÀI‰ÇL‹\$…îÿÿHzAÇ—:&ñH‰„:&Ç‚:&NI‹HƒèééðÿÿHLAM‰úE1ÿÇc:&îH‰P:&ÇN:&é©ãÿÿHAM‰úE1ÿÇ6:&îH‰#:&Ç!:&é|ãÿÿè·eýÿH‹|$è-ÞýÿI‰ÇH…À…ËûÿÿH
×@¾ºîÇê9&îH‰
×9&ÇÕ9&élãÿÿH¦@ÇÃ9&îH‰°9&Ç®9&I‹Hƒèéðÿÿ¶ÀéœþÿÿL‰×èÂbýÿéZþÿÿL‰ßH‰D$è°býÿL‹T$éþÿÿHL@Çi9&ðH‰V9&ÇT9&?é¯âÿÿL‰ÿ‰D$èsbýÿ‹D$éFþÿÿH@Ç-9&ðH‰9&Ç9&AéÖôÿÿHé?E1ÿÇ9&ðH‰ð8&Çî8&<I‹HƒèéUïÿÿH
¸?E1ÿ¾:ºðH‰
¿8&ÇÁ8&ðdz8&:éJâÿÿI‰ÂéŒñÿÿH‹='/&è
ÝýÿH…À„ÒH‹52+&H‰ÇH‰D$è]jýÿL‹T$H…ÀI‰Ã„ƒIƒ*„bL‰޺L‰ïL‰\$èÍiýÿL‹\$H…ÀI‰Ç„Iƒ+„¯L;=ÃÒ#”ÀL;=Ò#”ÂÂ…‹I9ß„‚L‰ÿè•cýÿ…Àˆ‡Iƒ/„°…ÀtxH‹D$E19H‰îL‰çL‹ðLH(IƒASARH‹T$L‰T$ ÿa7&I‰ÇXZM…ÿL‹T$…¦ãÿÿH|>Ç™7&óH‰†7&Ç„7&yéßàÿÿI‰ÂéžâÿÿH‹=ø-&èÛÛýÿH…À„ÇH‹5ë)&H‰ÇH‰D$è.iýÿL‹\$H…ÀI‰Â„qIƒ+„PL‰ֺL‰ïL‰T$èžhýÿL‹T$H…ÀI‰Ç„Iƒ*„¤L;=”Ñ#”ÀL;=âÐ#”ÂÂ…€I9ß„wL‰ÿèfbýÿ…Àˆ|Iƒ/„¥…À„sH‹D$¹H‰îL‰çL‹˜ðLH(IƒAPE1ÀASH‹T$L‰\$ ÿ&6&AYAZH…ÀI‰ÇL‹\$…ãéÿÿHG=Çd6&õH‰Q6&ÇO6&¤I‹Hƒèé¶ìÿÿL‰ÿ‰D$èg_ýÿ‹D$é;þÿÿH=Ç!6&òH‰6&Ç6&jI‹HƒèésìÿÿL‰×H‰D$è#_ýÿL‹\$é‡ýÿÿH¿<E1ÿÇÙ5&òH‰Æ5&ÇÄ5&géßÿÿH
•<E1ÿ¾eºòH‰
œ5&Çž5&òǐ5&eé'ßÿÿ¶Àé†ýÿÿL‰ßè«^ýÿéDýÿÿHL<M‰úE1ÿÇc5&òH‰P5&ÇN5&lé©ÞÿÿH‹=Ê+&è­ÙýÿH…À„gH‹5Í0&H‰ÇH‰D$ègýÿL‹T$H…ÀI‰Ã„Iƒ*„÷L‰޺L‰ïL‰\$èpfýÿL‹\$H…ÀI‰Ç„£Iƒ+„DL;=fÏ#”ÀL;=´Î#”ÂÂ… I9ß„L‰ÿè8`ýÿ…Àˆ7Iƒ/„…À„cH‹D$E1ÀH‰îL‰çL‹ðLH(IƒQ¹ARH‹T$L‰T$ ÿñ3&^_H…ÀI‰ÇL‹T$…FàÿÿH;Ç94&÷H‰&4&Ç$4&ÏéÝÿÿL‰ÿ‰D$èC]ýÿ‹D$éFýÿÿHà:Çý3&ôH‰ê3&Çè3&•éCÝÿÿL‰ßH‰D$è]ýÿL‹T$é™üÿÿH¢:E1ÿǼ3&ôH‰©3&ǧ3&’I‹HƒèéêÿÿH
q:E1ÿ¾ºôH‰
x3&Çz3&ôÇl3&éÝÿÿ¶Àé‘üÿÿL‰×è‡\ýÿéOüÿÿH(:ÇE3&ôH‰23&Ç03&—éîîÿÿH9Ô/&„&L‰ïèV`ýÿ…À…H‹=·/&L‰îèŸdýÿI‰ÃM…Û„·H‹=ì1&L‰ÞL‰\$èÓýÿL‹\$H…ÀI‰Ç„dIƒ+„ML‰ÿèLIþÿIƒ/„.H
ˆ9¾îºùE1ÿH‰
2&Ç‘2&ùǃ2&îéÜÿÿL‰ÿ‰D$è¢[ýÿ‹D$éÓýÿÿH?9M‰úE1ÿÇV2&öH‰C2&ÇA2&ÂéœÛÿÿH9Ç/2&öH‰2&Ç2&ÀI‹HƒèéèÿÿL‰×H‰D$è1[ýÿL‹\$éòüÿÿHÍ8E1ÿÇç1&öH‰Ô1&ÇÒ1&½é-ÛÿÿH
£8E1ÿ¾»ºöH‰
ª1&Ǭ1&öÇž1&»é5Ûÿÿ¶ÀéñüÿÿL‰ßè¹Zýÿé¯üÿÿL‰ÿè¬ZýÿéÅþÿÿL‰ßèŸZýÿé¦þÿÿH@8Ç]1&ùH‰J1&ÇH1&éI‹Hƒèé¯çÿÿH
8E1ÿ¾çºùH‰
1&Ç1&ùÇ
1&çé¤ÚÿÿL‰ïè€`ýÿ…À…êýÿÿH‹=¡-&L‰îè	\ýÿI‰ÃéåýÿÿAWAVAUATI‰ôUSHìØH‹­Ê#H‹^H‰|$0H‰„$¸H‹EË#HDŽ$°H‰„$ÀH‹zÊ#H‰„$ÈH…Ò…™%Hƒû„!~%Hƒû„ûHƒû…H‹n8M‹l$0M‹|$(ëHƒû…fH‹-'Ê#L‹-ÐÊ#I‰ïM‹t$ HDŽ$ˆH‹=E0&HDŽ$HDŽ$˜HDŽ$ HDŽ$¨HDŽ$°IƒIƒHƒEH‹U&&H‰Þè5ZýÿH…À„Ô%HƒH‰„$ˆH‹5±+&H‰ÇèaýÿH‰ÃH…À„m&H‹¼$ˆHƒ/„¿HDŽ$ˆèý]ýÿH‰„$ˆH…À„Ü&IƒL‰p è[ýÿH‰ÁH‰„$H…À„{'H‹$É#H‹55*&H‰ÇèåWýÿ…Àˆ½H‹”$H‹´$ˆH‰ßèÕ\ýÿI‰ÄH‰„$˜H…À„!)Hƒ+„ï#H‹¼$ˆHƒ/„Í#H‹¼$HDŽ$ˆHƒ/„Ÿ#H‹„$˜HDŽ$Iƒ.H‰D$h„l#H‹5­%&H‹|$hHDŽ$˜èW`ýÿH‰ÃH‰„$˜H…À„;)H‹5 &H9ð„s&H‹TÇ#H9C„òºH‰ßèµ_ýÿH‹´$˜I‰ÄH‰„$H…À„Á)Hƒ.„$H‹¼$H;=˜È#HDŽ$˜”ÀH;=ÚÇ#”ÂÂ…ŸH;=ÀÇ#„’è]Yýÿ‰ÅÀˆ+*H‹¼$Hƒ/„¹#HDŽ$…Û„UH´$¨H¼$ H”$°è[ýÿH‹Á#&H‹=š-&H‰ÞèÚWýÿH…À„A,HƒH‰„$˜H‹5–&&H‰Çè&_ýÿH‰„$ˆH…À„¥4H‹¼$˜Hƒ/„«(H‹5&&H‹|$hHDŽ$˜èæ^ýÿH‰ÃH…À„j5H‹5-&1ÒH‰Çè¹ZýÿH‰„$˜H…À„CHƒ+„*H‹´$˜¿1ÀH‹œ$ˆè‚\ýÿI‰ÄH…À„mD1ÒH‰ßH‰ÆèiZýÿIƒ,$H‰Ã„û)H‹¼$˜H‰œ$Hƒ/„Ñ)Hƒ¼$H‹¼$ˆHDŽ$˜„îCHƒ/„Ä)H‹¼$ L‹¤$HDŽ$ˆHDŽ$H…ÿt
Hƒ/„&H‹¼$¨HDŽ$ H…ÿt
Hƒ/„â%H‹¼$°HDŽ$¨H…ÿt
Hƒ/„¯%H‹5x&L‰çºHDŽ$°è']ýÿH‰D$H‰„$˜H…À„—DH‹\$H;Æ#”ÀH;kÅ#”ÂÂ…Ð$H;QÅ#„Ã$H‰ßèëVýÿ‰ÅÀˆñEH‹„$˜H‰D$H‹t$H‹H‰D$HƒèH‰„)HDŽ$˜…Û„ÖH‹—!&H‹=0+&H‰ÞèpUýÿH…À„•OHƒH‰„$ˆH‹5| &H‰Çè¼\ýÿH‰ÃH‰„$H…À„öPH‹¼$ˆHƒ/„]CL‰þ1?HDŽ$ˆH‹œ$ècZýÿI‰ÆH…À„õR1ÒH‰ßH‰ÆèJXýÿIƒ.H‰Ã„öDH‹¼$ˆH‰œ$˜H…ÿtHƒ/„KGH‹œ$˜HDŽ$ˆH…Û„¼RH‹¼$Hƒ/„µDH‹5Ð&H‹¼$˜HDŽ$H9þ„ÿJH‹üÂ#H9G„ñFºè`[ýÿH‹¼$˜H‰D$H‰„$H…À„USHƒ/„&EH‹¼$H;=AÄ#HDŽ$˜”ÀH;=ƒÃ#”ÂÂ…¨'H;=iÃ#„›'èUýÿ‰ÅÀˆ
WH‹¼$Hƒ/„éDHDŽ$…Û…‡GfDH;-!Ã#„K#H‰ïè«UýÿI‰ÆHƒøÿ„­FH‹Ÿ&H‹=8)&H‰ÞèxSýÿH‰D$H…À„OHHƒH‰„$H‹5Ÿ&H‹|$è½ZýÿH‰ÃH‰„$˜H…À„IH‹¼$Hƒ/„—)H‹8&H‹=Ñ(&HDŽ$H‰ÆH‰D$èSýÿH‰ÃH…À„˜IHƒH‹5™"&H‰ßèQZýÿH‰ÁH…À„ JHƒ+„û0H‹Ü&H‹=u(&H‰L$H‰ÆH‰D$è«RýÿH‹L$H…ÀH‰Ã„êKHƒH‹57"&H‰ßH‰L$èòYýÿH‹L$H…ÀH‰D$„MHƒ+„n@H‹t$1?H‰L$è¯WýÿH‹L$H…ÀH‰Ã„5P1ÒH‰ÏH‰Æè‘UýÿHƒ+H‹L$„BH‹\$H‰„$H‹H‰D$HƒèH‰„ @H‹„$H‰D$H…À„’NHƒ)„ÐAH‹5É!&H‹¼$è<YýÿH‰D$H…À„‚QH‹¼$Hƒ/„“BH‹t$1?HDŽ$H‹œ$˜èçVýÿH…À„IS1ÒH‰ßH‰ÆH‰D$èÌTýÿH‹L$H‰ÃHƒ)„bBH‹¼$H‰œ$ˆH…ÿt
Hƒ/„	FH‹\$HDŽ$H‹H‰D$HƒèH‰„ïAHƒ¼$ˆ„ªRH‹¼$˜Hƒ/„	BH‹„$ˆH‹}HDŽ$˜H‹5%&&HDŽ$ˆH‰D$H9÷„['èWýÿ…À…N'H‹o&&¿H‹˜(ÿhE1É1É1ÒA¸H‰ÆH‰ïÿÓH‰„$ˆH…À„>_H‰„$˜HƒH‹¼$ˆHƒ/„uJH‹„$˜HDŽ$ˆHƒmH‰D$p„DJH‹D$pH;™¿#HDŽ$˜…¼cH‹|$pH‹5³&H‹_èjWýÿH‰D$H‰„$˜H…À„aH‹5&H9t$„FXH‹D$H‹=^¾#H9x„(QH‹|$ºè½VýÿH‹´$˜H‰„$ˆH…À„–fHƒ.„%LH‹¼$ˆH;=£¿#HDŽ$˜”ÀH;=å¾#”ÂÂ…#CH;=˾#„CèhPýÿ‰ŅÀˆéfH‹¼$ˆHƒ/„ENHDŽ$ˆ…í…ÔlH‹5i&H‹|$pèwVýÿH‰„$ˆH…À„pºL‰æH‰ÇèöUýÿH‰D$H‰„$˜H…À„pH‹¼$ˆHƒ/„ÃUH‹¼$˜H;=׾#HDŽ$ˆ”ÀH;=¾#”ÂÂ… GH;=ÿ½#„GèœOýÿ‰ŅÀˆÞsH‹¼$˜Hƒ/„¡WHDŽ$˜…í…^tH‰ßL‰öÿ#&H‹Q&H‹=ê#&òD$H‰Þè$NýÿH…À„‡vHƒH‰„$ˆH‹5 &H‰ÇèpUýÿH‰ÃH…À„¼uH‹¼$ˆHƒ/„w]òD$HDŽ$ˆèËKýÿH‰„$ˆH…À„œ~H‰ƿ1ÀèSýÿH‰ÅH…À„û|1ÒH‰ÆH‰ßèòPýÿHƒmI‰Æ„"eH‹¼$ˆL‰´$˜Hƒ/„;]Hƒ¼$˜HDŽ$ˆ„³|Hƒ+„2dH‹¼$˜H;=^½#”ÃH;=¬¼#”ÀØ…RH;=’¼#„Rè/Nýÿ‰ÅÀˆ~H‹¼$˜Hƒ/„DeHDŽ$˜…Û…R…H‹-ð&H‹=‰"&H‰îèÉLýÿH‰ÃH…À„s„HƒH‹5z&H‰ßèTýÿH‰D$H‰„$ˆH…À„ €Hƒ+„\kH‹5³&H‹¼$ˆèæSýÿH‰ÃH…À„"H‹¼$ˆHƒ/„epH‹5™&1ÒH‹|$pHDŽ$ˆèISýÿH‰„$ˆH…À„`‰H‰ƿ1ÀèyQýÿH‰ÅH…À„•1ÒH‰ÆH‰ßè`OýÿHƒmI‰Æ„yuH‹¼$ˆL‰´$˜Hƒ/„ÛoHƒ¼$˜HDŽ$ˆ„ù•Hƒ+„GuH‹¼$˜H;=̻#”ÃH;=»#”ÀØ…‰bH;=»#„|bèLýÿ‰ÅÀˆUŒH‹¼$˜Hƒ/„LvHDŽ$˜…Û…óòD$ò\ß+fT÷+è2IýÿH‰D$H‰„$˜H…À„GH‹t$H‹|$ºèRýÿH‰ÃH…À„ƒH‹¼$˜Hƒ/„Â}H;»#HDŽ$˜”ÂH;Mº#”ÀÐ…ãmH;3º#„ÖmH‰ßèÍKýÿA‰ƅÀˆ•Hƒ+„˜xH‹l$pE…ö…™f.„IƒL;=í¹#„ŸL‹5€&H‹= &L‰öèYJýÿH‰ÃH…À„”GHƒH‹5j&H‰ßèªQýÿH‰D$ H‰„$˜H…À„«HHƒ+„;¿è0NýÿH‰ÃH…À„ÖKIƒL‰x èGKýÿH‰ÁH‰„$ˆH…À„ÕML‹5ô&H‹=&L‰öèÍIýÿH‰ÁH…À„€OHƒH‹5^&H‰ÏH‰L$èQýÿH‹L$H…ÀI‰À„RHƒ)„Q?H‹5—&H‹¼$ˆL‰ÂL‰D$èÂGýÿL‹D$…ÀˆÒOIƒ(„Ð@H‹”$ˆH‹¼$˜H‰Þè£LýÿH‰D$H…À„?UH‹¼$˜Hƒ/„”AHDŽ$˜Hƒ+„’AH‹¼$ˆHƒ/„vAHDŽ$ˆIƒ/„/L;-¹#”ÀL;-T¸#”ÂÂ…)L;-:¸#„L‰ïèÔIýÿ…ÀˆFA…À„ë&H;-¸#„À9H‹5&H‰ïèøOýÿH‰D$ H‰„$ˆH…À„çQH‹5&H‹|$ 1Òè¿KýÿH‰D$ H…À„SH‹¼$ˆHƒ/„@H‹\$ HDŽ$ˆH‰ßèFMýÿ…À„ô:HÇÆÿÿÿÿH‰ßèßFýÿI‰ÀM…À„9VH‹|$ L‰ÆL‰D$è!GýÿL‹D$H…ÀH‰D$(H‰„$ˆ„[Iƒ(„ÅBH‹\$ L‹´$ˆH‹H‰D$HƒèH‰„–BH‹5+&H‹|$0HDŽ$ˆèýNýÿI‰ÀH…À„;\H‰D$L‰þ1?èÍLýÿL‹D$H…ÀH‰Ã„S`1ÒL‰ÇH‰ÆL‰D$èªJýÿHƒ+L‹D$I‰Å„‡EL‰¬$ˆM…í„*`Iƒ(„_EH‹„$ˆH‹5Þ&L‰÷HDŽ$ˆH‰D$(èeNýÿI‰ÅH‰„$ˆH…À„vc¿è÷JýÿI‰ÀH…À„ÎbH‹D$(L‰D$HƒI‰@ èHýÿL‹D$H…ÀH‰Ã„0gH‹œ&H‹5&H‰ÇL‰D$èØDýÿL‹D$…ÀˆSH‹¼$ˆL‰ÆH‰ÚL‰D$èÃIýÿL‹D$H…ÀI‰ÅH‰„$˜„DoH‹¼$ˆHƒ/„‹SHDŽ$ˆIƒ(„hSHƒ+„QSH‹)&H‹=Â&L‹¬$˜HDŽ$˜H‰ÞèîEýÿH‰D$PH…À„épHƒH‰„$˜H‹5e&H‹|$Pè3MýÿH‰ÃH…À„¢qH‹¼$˜Hƒ/„UZ¿HDŽ$˜è¯IýÿH‰D$PH‰„$˜H…À„—wIƒEH‹„$˜L‰h è³FýÿI‰ÀH…À„WuH‹д#H‹5á&H‰ÇH‰D$èŒCýÿL‹D$…Àˆ‘hH‹´$˜L‰ÂH‰ßL‰D$èwHýÿL‹D$H…ÀH‰D$PH‰„$ˆ„ã{Hƒ+„=hH‹¼$˜Hƒ/„hHDŽ$˜Iƒ(„ôgH‹5K&H‹¼$ˆè&LýÿI‰ÀH…À„'xH‹¼$ˆHƒ/„‡h¿L‰D$HDŽ$ˆèHýÿL‹D$H…ÀH‰D$PH‰„$ˆ„€wH‹ƒ³#H‹\$PL‰D$HƒH‰C è”EýÿL‹D$H…ÀH‰D$PH‰„$˜„
H‹&H‹|$PL‰D$H‹5	&è\BýÿL‹D$…ÀˆÓpH‹”$˜H‹´$ˆL‰ÇL‰D$èBGýÿL‹D$H…ÀH‰D$P„…Iƒ(„ŒpH‹¼$ˆHƒ/„ppH‹¼$˜HDŽ$ˆHƒ/„HpHDŽ$˜Iƒm„$pL‹l$PL‰t$ HÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PL;=¦²#„áCH‹5Ñ&H‹|$hè‡JýÿI‰ÀH…À„«mH‹5L
&H9ð„bPH‹Œ±#I9@„‰RL‰ǺL‰D$èèIýÿL‹D$H…ÀH‰ÃH‰„$˜„pkIƒ(„áOH‹¼$˜H;=β#”ÀH;=²#”ÂÂ…ò@H;=²#„å@èŸCýÿ‰ÅÀˆlH‹¼$˜Hƒ/„îQHDŽ$˜…Û…µQL;=1#„ùXH‹5ë&L‰ïè£IýÿH‰ÃH‰„$˜H…À„µ‚H‹5`	&H9ð„lH‹ °#H9C„ynH‰ߺèIýÿH‰ÃH…À„O‹H‹¼$˜Hƒ/„ÂkH;ô±#HDŽ$˜”ÂH;6±#”ÀÐ…BlH;±#„5lH‰ßè¶BýÿA‰ƅÀˆb•Hƒ+„lE…ö„/XL‹5‰
&H‹="&L‰öèbAýÿH‰ÃH…À„5ŽHƒH‹5S&H‰ßè³HýÿH‰ÁH‰„$˜H…À„TƒHƒ+„r}èpBýÿI‰ÀH…À„H‹5&H‹|$hH‰D$ènHýÿL‹D$H…ÀH‰Ã„–ŒH‹5ö&L‰ÇH‰ÂL‰D$è&?ýÿL‹D$…Àˆ”Hƒ+„sH‹5&H‹¼$˜L‰ÂL‰D$èDýÿL‹D$H…ÀH‰Á„@‚H‹¼$˜Hƒ/„‚HDŽ$˜Iƒ(„x‚H‹|$hL‰îH‰L$èX@ýÿH‹L$H…ÀH‰Ã„
œH‹5à&H‰ÏH‰ÂH‰L$èFýÿH‹L$…ÀˆڢHƒ+„‚L‰|$H‰ËL‹|$HƒL‹t$hH‰L$é\f„è«>ýÿéóåÿÿfDH‹-Q¯#éåÿÿ@H6E1À1ÉE1íÇK&}E1äÇ:&÷HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$H‰¿&H‹„$ˆ€H…Àt
Hƒ(„¹H…Ût
Hƒ+„ÒH‹¼$H…ÿt
Hƒ/„ãH‹¼$˜H…ÿt
Hƒ/„ìH…Ét
Hƒ)„=M…Àt
Iƒ(„NH‹
?&‹E&H=ê
1ۋ52&èm¹ýÿM…ätIƒ,$„H‹T$H…ÒtH‹H‰D$hHƒèH‰„ŽH‹L$H…ÉtH‹H‰D$HƒèH‰„H‹t$ H…ötH‹H‰D$HƒèH‰„pH‹T$(H…ÒtH‹H‰D$HƒèH‰„aM…ítIƒm„aH‹L$8H…ÉtH‹H‰D$HƒèH‰„bH‹t$PH…ötH‹H‰D$HƒèH‰„SH‹T$`H…ÒtH‹H‰D$HƒèH‰„DH‹L$XH…ÉtH‹H‰D$HƒèH‰„5H‹t$0H…ötH‹H‰D$HƒèH‰„&H‹T$HH…ÒtH‹H‰D$HƒèH‰„H‹|$@H…ÿtH‹H‰D$HƒèH‰„H‹L$H…ÉtH‹H‰D$HƒèH‰„ùM…öt
Iƒ.„ZM…ÿt
Iƒ/„[H…ítHƒm„ÛHÄØH‰Ø[]A\A]A^A_ÃfDH‰ßèø<ýÿf.@Š"…H‹Ŭ#HƒH‹´$˜éG
@H‰ïèp=ýÿI‰ÅH‹5Ž&H‰ïIƒíèú:ýÿH‰„$°H…À…pI‹\$@H…ÛHÍH
½HOÈŸÀH¶ÀL
“LOÊLD@HƒìH‹{ª#SHÒH5ýH‹81ÀèÚAýÿH`¾¯Çx&$Çj&¯H‰[&XZH
7º$H=þ1Û臶ýÿé×þÿÿf¶Øé}ãÿÿ„L‰÷èX:ýÿé™þÿÿL‰ÿèH:ýÿé˜þÿÿH‰Ïè8:ýÿé‘ýÿÿH‰÷è(:ýÿé ýÿÿH‰×è:ýÿé¯ýÿÿH‰Ïè:ýÿé¾ýÿÿH‰÷èø9ýÿéÍýÿÿH‰×èè9ýÿéÜýÿÿèÛ9ýÿéîýÿÿfDH‰ÏèÈ9ýÿéúýÿÿH‰ïè¸9ýÿéþÿÿL‰çè¨9ýÿéVüÿÿH‰×è˜9ýÿéeüÿÿH‰Ïèˆ9ýÿétüÿÿH‰÷èx9ýÿéƒüÿÿH‰×èh9ýÿé’üÿÿL‰ïèX9ýÿé’üÿÿH‰ÏL‰D$hèC9ýÿL‹D$hé¬ûÿÿf„L‰Çè(9ýÿé¥ûÿÿH‰ÇL‰D$pH‰L$hè9ýÿL‹D$pH‹L$hé&ûÿÿ€H‰ßL‰D$pH‰L$hèæ8ýÿL‹D$pH‹L$hé
ûÿÿ€L‰D$pH‰L$hèÁ8ýÿL‹D$pH‹L$héÿúÿÿfL‰D$pH‰L$hè¡8ýÿL‹D$pH‹L$héöúÿÿfH‹-A©#L‹-ê©#éõÞÿÿDH‹5a&H‹|$hèAýÿH‰ÃH‰„$H…À„S
H‹5Ì&H9ð„óH‹¨#H9C„ºH‰ßèu@ýÿH‹´$I‰ÄH‰„$˜H…À„™Hƒ.„g
H‹¼$˜H;=X©#HDŽ$”ÀH;=š¨#”ÂÂu
H;=„¨#…Ö¶ØHƒ/„á
HDŽ$˜…Û…%H‹5v&H‹|$hèD@ýÿH‰ÃH‰„$˜H…À„&H‰ÇèØ=ýÿ…À„@1öH‰ßèv7ýÿH‰„$H…À„Ø'H‹¼$˜Hƒ/„£L‹¤$L;%¼ÿ%HDŽ$˜HDŽ$…¦äÿÿH‹g&H‹=&H‰Þè@8ýÿH‰D$H…À„Ÿ:HƒH‰„$˜H‹5G&H‹|$è…?ýÿH‰„$ˆH…À„µ<H‹¼$˜Hƒ/„¾*L‰þ1?HDŽ$˜H‹œ$ˆè/=ýÿI‰ÆH…À„»<1ÒH‰ßH‰Æè;ýÿIƒ.H‰Ã„,H‹¼$˜H‰œ$H…ÿtHƒ/„/H‹œ$HDŽ$˜H‹„$ˆH…Û„‚<Hƒ(„-H‹5œþ%H‹¼$HDŽ$ˆH9þ„µ3H‹ȥ#H9G„².ºè,>ýÿH‹¼$H‰„$ˆH…À„@Hƒ/„Ó,H‹¼$ˆH;=§#HDŽ$”ÀH;=T¦#”ÂÂ…ñ#H;=:¦#„ä#è×7ýÿ‰ÅÀˆ¹@H‹¼$ˆHƒ/„þ-HDŽ$ˆ…Û„×âÿÿH‹5 ý%H‹=&1ÒèÒ9ýÿH‰„$ˆH…À„àUH‰Çèy"þÿH‹¼$ˆHƒ/„ä:H­HDŽ$ˆH‰µ&Ç·&‹Ç©&IL‹t$hE1À1ÉE1íHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$é‘öÿÿL‰÷èP4ýÿé‡ÜÿÿèC4ýÿéWÜÿÿfDè34ýÿé)ÜÿÿfDH‰ßè 4ýÿéÜÿÿHƒû‡þøÿÿH‰ÕH€HcšHÐÿàH‹F8H‰„$ÈI‹D$0H‰„$ÀI‹D$(H‰ïH‰„$¸I‹D$ H‰„$°èí5ýÿI‰ÅHƒû„~gHƒû„$Hƒûu)M…í~-H‹5¢&H‰ïèZ3ýÿH…À„#H‰„$ÈIƒíM…íí"L‹´$°L‹¼$¸L‹¬$ÀH‹¬$ÈéçÙÿÿH…ÛuÍéøÿÿDH‰÷è03ýÿéìÛÿÿè#3ýÿé=ÜÿÿfDèƒ5ýÿH‰ßèû­ýÿH‰„$ˆH…À…ÚÿÿH E1À1ÉE1íH‰¬	&E1äÇ«	&}ǝ	&ëHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$é’ôÿÿ@HþE1À1ÉE1íH‰
	&E1äH‹„$ˆÇ	&}Çó&íHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$éÊóÿÿfHVE1À1ÉE1íH‰b&E1äÇa&}ÇS&ðHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$é9óÿÿfH‹q¢#HƒH‰„$é¯Ùÿÿ„H–E1ÀE1íE1äH‰¡&H‹„$ˆÇ›&}Ǎ&õHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$édòÿÿ@H‹¡#HƒH‹´$˜é+ÿÿÿ1ÿè™7ýÿI‰ÄH…À„” H‰ÆH‰ßèR1ýÿIƒ,$…¡øÿÿL‰çH‰D$èú/ýÿH‹D$銸ÿÿèK2ýÿ‰ÅÀˆqH‹¼$˜éøÿÿ@¶ØéTÛÿÿ„H‹F H‰ïH‰„$°èÜ1ýÿI‰ÅM…íŽ4üÿÿH‹51ú%H‰ïèa/ýÿH…ÀtH‰„$¸IƒíM…íŽüÿÿH‹5Øú%H‰ïè8/ýÿH…À„ÆûÿÿH‰„$ÀIƒíé°ûÿÿfDèC/ýÿéGÚÿÿfDè3/ýÿéÚÿÿfDè#/ýÿéáÙÿÿfDHÇD$éÊåÿÿf.„H¦E1À1ÉE1íH‰²&H‹„$ˆÇ¬&}Çž&øHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$éuðÿÿDHþE1À1ÉE1íH‰
&E1äH‹„$ˆÇ&~L‹t$hÇî&HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$éÅïÿÿDè£-ýÿéK×ÿÿfDH‰÷è-ýÿéŒõÿÿH.E1À1É1ÛH‰;&E1íH‹„$ˆÇ2&~L‹t$hÇ&	HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$éöîÿÿfDèÓ,ýÿéõÿÿfDHn
L‹t$h1É1ÛH‰y&E1ÀE1íE1äÇr&~H‹„$ˆÇ\&HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$é3îÿÿH‰ßè-ýÿf.è
z„ÐH‹a#HƒH‹´$H‰„$˜é×óÿÿH‰ßèØ+ýÿéÕÕÿÿèË+ýÿé%ÖÿÿfDL‰çè¸+ýÿéøÕÿÿè«+ýÿé2ÖÿÿfDè›+ýÿéSôÿÿfDH‹	ô%H‰D$HƒIƒ/…ÑãÿÿL‰ÿèn+ýÿéÄãÿÿf„¶Àéìãÿÿ„H‹	œ#HƒéSÿÿÿH‰÷è8+ýÿéÙÖÿÿH‹é›#HƒH‹´$é+ÿÿÿ„¶ØétØÿÿ„H¦E1À1ÉE1íH‰²&E1äH‹„$ˆÇ©&†L‹t$hÇ–&äHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$émìÿÿDè»,ýÿH‰ßè3¥ýÿH‰„$˜H…À…­ÓÿÿL%ØH‹¼$ˆÇí&L‰%Ú&ÇØ&'H…ÿtHƒ/…I&èô)ýÿHDŽ$ˆH‹¼$H…ÿt
Hƒ/„‘H‹¼$˜HDŽ$H…ÿt
Hƒ/„~H‹=wÿ%HDŽ$˜è,ýÿ…À„’‹\&‹5R&H=ûöH‹
<&è¥ýÿH”$˜H´$ˆH¼$èҠýÿ…ÀˆºH‹5;ñ%H‹=ÿ%1ÒèÕ-ýÿH‰ÃH…À„¾3H‰ÇèþÿHƒ+„
 L‰%Øÿ%ÇÚÿ%ƒÇÌÿ%}H‹”$°1ÛE1íE1äH‹´$¨H‹¼$ è—-ýÿL‹t$hE1À1ÉH‹„$ˆHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$élêÿÿ@èK(ýÿé_ÖÿÿfDè;(ýÿéeþÿÿfDè+(ýÿéxþÿÿfDH‹qõ%H‹=
ÿ%H‰ÞèJ)ýÿH‰D$H…À„‹4H‹D$HƒH‰„$˜H‹5¤÷%H‹|$èŠ0ýÿH‰ÁH…À„6H‹¼$˜Hƒ/„8"H‹5ù%H‰ïH‰L$HDŽ$˜èL0ýÿH‹L$H…ÀH‰ÃH‰„$˜„ž8H‹Ôô%H‹=mþ%H‰L$H‰Þè¨(ýÿH‹L$H…ÀH‰D$„ê=HƒH‰„$H‹5"ø%H‹|$H‰L$èã/ýÿH‹L$H…ÀI‰À„½@H‹¼$Hƒ/„¹&¿L‰D$H‰L$HDŽ$èP,ýÿH‹L$L‹D$H…ÀH‰Ã„ƒCHƒ¼$tHDŽ$H‹„$˜1ÒH‰ÏH‰ÞL‰C(H‰C H‰L$HDŽ$˜è5+ýÿH‹L$H…ÀH‰„$ˆ„“BHƒ+„+Hƒ)„.,H‹¼$ˆH;=ė#”ÀH;=—#”ÂÂ…ôH;=ø–#„çè•(ýÿ‰ÅÀˆLIH‹¼$ˆHƒ/„,HDŽ$ˆ…Û„—ÖÿÿH‹Vó%H‹=ïü%H‰Þè/'ýÿH‰D$H…À„"eHƒH‹5^ð%H‹|$è|.ýÿH‰ÃH…À„_dH‹t$H‹H‰D$HƒèH‰„ýJH‹÷ò%H‹=ü%H‰ÆH‰D$èË&ýÿH‰D$H…À„NnHƒH‹5bö%H‹|$è.ýÿH‰D$ H‰„$˜H…À„‹mH‹t$H‹H‰D$HƒèH‰„3NH‹5ö%H‰ïèÙ-ýÿH‰D$H…À„[fH‹„$˜H‹t$¿HDŽ$H‰D$1Àè‘+ýÿH…À„!fH‹|$1ÒH‰ÆH‰D$ èt)ýÿL‹D$ H‰ÁIƒ(„óWH‹¼$H…ÿt
Hƒ/„cH‹t$HDŽ$H‹H‰D$HƒèH‰„ŸWH…É„lH‹¼$˜Hƒ/„pWH‹5“õ%H‰ÏH‰L$HDŽ$˜èú,ýÿH‹L$H…ÀH‰D$H‰„$˜„7kHƒ)„WH‹´$˜1?è±*ýÿH…À„Œm1ÒH‰ÆH‰ßH‰D$è–(ýÿH‹L$Hƒ)„XH‹¼$˜H‰„$ˆHƒ/„¼VHƒ¼$ˆHDŽ$˜„cgHƒ+„BaH‹D$ºHƒH‹¼$ˆH‰ÆèÚ+ýÿH‰ÁH…À„ûpH;ߔ#”ÃH;-”#”ÀØ…]IH;
”#„PIH‰ÏH‰L$è¨%ýÿH‹L$…	È€oHƒ)„¯`…Û„oVH‹„$ˆHƒH‹„$ˆH‰„$˜H‹\$H‹H‰D$HƒèH‰„d`H‹¼$ˆHƒ/„Ù^H‹„$˜H‰„$ˆHƒH‹¼$˜Hƒ/„©^H‹t$H‹œ$ˆHDŽ$˜H‹H‰D$HƒèH‰„ÍVHDŽ$ˆH‰\$éÓÿÿDHE1À1É1ÛH‰#ù%E1íH‹„$ˆÇù%†L‹t$hÇù%æHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$éÞãÿÿfDL%fÿǃø%L‰%pø%Çnø%)é±÷ÿÿf„L‰%Qø%ÇSø%‚ÇEø%métøÿÿHÿL‹t$h1É1ÛH‰!ø%E1ÀE1íE1äÇø%†H‹„$ˆÇø%éHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$éÛâÿÿL%fþH‹¼$ˆÇ{÷%L‰%h÷%Çf÷%,é‰öÿÿH‰ßH‰D$èƒ ýÿH‹L$éîÎÿÿH‹|$ºL‰æè·(ýÿI‰ÀH…À„4H;¼‘#”ÀL;
‘#”ÂÂ…L;ð#„÷L‰ÇL‰D$è…"ýÿL‹D$…	Èn7Iƒ(„Ú…Û…â:H‹5…è%H‹|$1ÒèA(ýÿI‰ÀH…À„B>H;F‘#”ÀL;”#”ÂÂ…•L;z#„ˆL‰ÇL‰D$è"ýÿL‹D$…	ÈbCIƒ(„f%…Û…t@H;-?#„Ð'H‹Òì%H‹=kö%H‰Þè« ýÿH‰D$ H…À„ÑJHƒH‰„$ˆH‹5ñ%H‹|$ èð'ýÿH‰D$ H‰„$˜H…À„wNH‹¼$ˆHƒ/„x3H‹5™ç%H‰ïºHDŽ$ˆèH'ýÿH‰D$ H‰„$ˆH…À„ÇRH‹t$ ¿1ÀH‹œ$˜èi%ýÿI‰ÅH…À„£N1ÒH‰ÆH‰ßèP#ýÿIƒmI‰À„:H‹¼$ˆHƒ/„i:HDŽ$ˆM…À„NH‹¼$˜Hƒ/„.:H‹t$1ÒL‰ÇL‰D$HDŽ$˜è™&ýÿL‹D$H…ÀH‰D$ H‰„$˜„ÊTIƒ(„>H‹¼$˜H;=}#”ÀH;=ˎ#”ÂÂ…D)H;=±Ž#„7)èN ýÿ‰ÅÀˆ2YH‹¼$˜Hƒ/„Ú=HDŽ$˜…Û…ðTH‹?æ%H‰ïHƒH‹5ï%H‰D$8èO&ýÿI‰ÀH…À„a[H‹5lô%1ÒH‰ÇHDŽ$ˆH‰D$è"ýÿH‹¼$ˆL‹D$H‰„$˜H…ÿt
Hƒ/„9FH‹„$˜HDŽ$ˆH‰D$ H…À„ÒZIƒ(„ÀCL‹´$˜Hƒm„ CH‹_ê%H‹=øó%HDŽ$˜H‰Þè,ýÿH‰D$ H…À„2]HƒH‰„$˜H‹5‹å%H‹|$ èq%ýÿI‰ÀH…À„”aH‹¼$˜Hƒ/„ØH¿L‰D$HDŽ$˜èè!ýÿL‹D$H…ÀH‰D$ H‰„$˜„UlIƒH‹„$˜L‰D$L‰x èãýÿL‹D$H…ÀH‰D$ H‰„$ˆ„µkH‹™Œ#H‹|$ L‰D$H‹5pí%è«ýÿL‹D$…ÀˆßXH‹”$ˆH‹´$˜L‰ÇL‰D$è‘ ýÿL‹D$H…ÀH‰D$P„—mIƒ(„˜XH‹¼$˜Hƒ/„|XH‹¼$ˆHDŽ$˜Hƒ/„TXH‹5-ç%H‹|$PHDŽ$ˆè7$ýÿH‰D$ H‰„$ˆH…À„njH‹|$ 1ÒH‹5Cò%HDŽ$˜èòýÿH‹¼$˜H‰D$`H…ÿt
Hƒ/„@\Hƒ|$`H‹„$ˆHDŽ$˜„ÔnHƒ(„¯WHDŽ$ˆ1À1íHÇD$@HÇD$HHÇD$ L‰t$L‰d$pL‹d$8L‰|$xI‰ÇH‹t$1ÒL‰çè#ýÿH‰ÃH…À„3iH;Œ#A”ÅH;]‹#”ÀDè…³NH;B‹#„¦NH‰ßèÜýÿA‰ŅÀˆFtHƒ+„ÌoE…턬tH‹5—æ%H‹|$0èý"ýÿH‰„$ˆH…À„pvH‹|$L‰æèýÿH‰„$˜H…À„ÛuH‹¼$ˆH‰Æè‘ýÿH‹¼$˜H‰D$XHƒ/„WlHƒ|$XH‹¼$ˆHDŽ$˜„]vHƒ/„lHDŽ$ˆH…ítHƒm„ñmH‹52â%ºL‰çèí!ýÿH‰ÃH…À„|H;òŠ#@”ÅH;?Š#”À@è…ÝVH;$Š#„ÐVH‰ßè¾ýÿ‰ŅÀˆ¹yHƒ+„k…í„…1ÿè« ýÿH‰ÃH…À„yH‹à‰#L‰æH‰ÇèíýÿHƒ+H‰Å„åxH…í„éxH‹|$`H‰îè:ýÿHƒmH‰Ã„´xH…Û„ÅxH‹dá%H‹|$H‰Þèßýÿ…ÀˆxHƒ+„yH‹=æ%èñ“ýÿH‰„$ˆH…À„yyH‹5Iê%H‰ÇèA!ýÿH‰„$˜H…À„ßvH‹¼$ˆHƒ/„+^H‹¼$˜H‹t$HDŽ$ˆè`ýÿH‹¼$ˆI‰ÅH…ÿt
Hƒ/„YyHDŽ$ˆM…í„òvH‹¼$˜Hƒ/„Â]H‹\$ HDŽ$˜H…ÛtH‹H‰D$(HƒèH‰„wL‰ïè<ýÿ…À„L]HƒÎÿL‰ïèØýÿH‰ÃH…Û„
uH‰ÞL‰ïè!ýÿH‰„$˜H…À„Ó~Hƒ+„¼~H‹„$˜IƒmH‰D$ „—~H‹5‡â%H‹|$ HDŽ$˜è ýÿH‰„$˜H…À„÷}¿è¦ýÿH‰ÃH…À„m}H‹D$XHƒH‰C è¸ýÿH‰„$ˆH…À„â|H‹Pâ%H‹5¹á%H‰Çè‘ýÿ…ÀˆP|H‹”$ˆH‹¼$˜H‰ÞèýÿI‰ÅH…À„»{H‹¼$˜Hƒ/„‚HDŽ$˜Hƒ+„õH‹¼$ˆHƒ/„úHDŽ$ˆM…ÿt
Iƒ/„ÒtH‹=Ñã%贑ýÿI‰ÆH…À„:H‹5¡ß%H‰Çè	ýÿH‰„$ˆH…À„ЀIƒ.„¹€¿è”ýÿI‰ÆH…À„-€IƒEL‰h èªýÿH‰ÃH…À„ŸH‹o‡#H‹5Xá%H‰Çèˆýÿ…Àˆ
H‹¼$ˆH‰ÚL‰öè}ýÿH‰„$˜H…À„y~H‹¼$ˆHƒ/„]~HDŽ$ˆIƒ.„:~Hƒ+„#~H‹¬$˜H‹EH;÷…#H‰ït
H;‹…#…ހèýÿHƒø…}1öH‰ïèýÿH‰ÃH…À„¥x¾H‰ïèýÿH…À„xH‹¼$˜Hƒ/„ñxHDŽ$˜H‰ÅH‹t$HH…ötH‹H‰D$(HƒèH‰„v}H‹t$@H…ötH‹H‰D$(HƒèH‰„¸xH‹5dß%H‰ïè|ýÿI‰ÆH…À„nH‹5™ë%1ÒH‰ÇèOýÿH‰„$˜H…À„wmIƒ.„`mH‹¼$˜Hƒ/„DmH‹5;Þ%L‰ïHDŽ$˜èýÿI‰ÆH…À„lH‰îH‰Çè`‹ýÿH‰„$˜H…À„lIƒ.„îkL‹¼$˜Iƒm„ÎkH‹5³Þ%L‰ÿHDŽ$˜è·ýÿH‰„$˜H…À„&kH‰ÆL‰çè›ýÿI‰ÆH…À„jH‹¼$˜Hƒ/„sjH‹~„#L‰öL‰çHDŽ$˜èýÿI‰ÅH…À„ÉiM…ÿ„®iH‹|$`L‰úH‰ÆèšýÿIƒm„~i…ÀˆiIƒ.„_iH‹5þÝ%L‰ÿèýÿI‰ÆH…À„ÄhH‰ÆL‰çè'ýÿH‰„$˜H…À„qIƒ.„õpL‹¬$˜Iƒ,$„wH‰l$@M‰ìH‹l$XHDŽ$˜H‰\$Hé,øÿÿfDH‹¼$ˆL%ŽðÇ«é%L‰%˜é%Ç–é%:H…ÿtHƒ/„³oHDŽ$ˆHƒ+…¹èÿÿH‰ßè™ýÿé¬èÿÿH‹5uÚ%H‹=fè%1ÒèýÿH‰ÃH‰„$˜H…À„%H‰ÇèÃÿýÿH‹¼$˜Hƒ/„—H÷ïL‹t$h1É1ÛH‰é%E1ÀE1íE1äHDŽ$˜H‹„$ˆÇçè%‡ÇÙè%øHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$é°Óÿÿ¶Øé+ÜÿÿL%6ïÇSè%L‰%@è%Ç>è%Jéaçÿÿ1Û駻ÿÿHïE1À1ÉE1íH‰è%E1äH‹„$ˆÇè%‰L‹t$hÇøç%HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$éÏÒÿÿH‰ßH‰L$èªýÿH‹L$é{¿ÿÿH‰ßH‰L$è“ýÿH‹L$éɿÿÿè„ýÿ陼ÿÿH”$°H‰ÙH‰ïLqðH5c‡%èޢýÿ…À‰êÜÿÿHüí¾™Çç%$H‰ç%Çÿæ%™é™ÕÿÿHÐíE1À1É1ÛH‰Ýæ%E1íH‹„$ˆÇÔæ%„L‹t$hÇÁæ%˜HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$é¡ÑÿÿHDŽ$H#íL‹t$h1É1ÛH‰.æ%E1ÀE1íE1äÇ'æ%‰H‹„$ˆÇæ%
HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$éèÐÿÿH‰ÏèÈýÿé#¾ÿÿH‰ßH‰D$è¶ýÿH‹L$H‹D$éŽÿÿL‰÷èŸýÿéýºÿÿè•ýÿéA»ÿÿH6ìL‹t$h1É1ÛH‰Aå%E1ÀE1íH‹„$ˆÇ5å%„Ç'å%™HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$éþÏÿÿH‰ßèÞ
ýÿé¾ÿÿèÔ
ýÿéc½ÿÿH‰ßèÇ
ýÿéèÄÿÿè½
ýÿéкÿÿH‰Ïè°
ýÿ鑽ÿÿè¦
ýÿéí½ÿÿèœ
ýÿé
»ÿÿH‹5°Ù%H‹|$0è6ýÿH‰ÃH…À„™-¿èÐýÿH‰D$ H‰„$˜H…À„¾2H‹ÛÕ%HƒH‹”$˜H‰B Iƒ$H‹„$˜L‰`(è½ýÿH‰D$ H‰„$ˆH…À„3H‹5¨×%H‹|$ L‰úè“ýÿ…ÀˆÔH‹”$ˆH‹´$˜H‰ßèƒýÿI‰ÅH…À„z;Hƒ+„™H‹¼$˜Hƒ/„}H‹¼$ˆHDŽ$˜Hƒ/„UHDŽ$ˆHÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ éFÊÿÿ¶Øéìÿÿè.ýÿ髸ÿÿè¤
ýÿf.ìíz„º	H‹u}#HƒH‹¼$˜H‰„$é¹ÿÿèïýÿé8ÕÿÿHÇÇÿÿÿÿèNýÿH‰ÃH…À„HH‹|$ H‰Æè
ýÿHƒ+I‰À…ìÄÿÿH‰ßH‰D$è«ýÿL‹D$éÕÄÿÿHGéL‹t$h1É1ÛH‰Râ%E1ÀE1íH‹„$ˆÇFâ%ŽÇ8â%hHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$éÍÿÿ¶èéù¼ÿÿH‹5ØÒ%H‹=Áà%1ÒèzýÿH‰D$H‰„$H…À„3H‹|$èøýÿH‹¼$Hƒ/„3HNèL‹t$h1É1ÛH‰Yá%E1ÀE1íH‹„$ˆHDŽ$ÇAá%…Ç3á%ÈHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$é
Ìÿÿèí	ýÿéí¹ÿÿL‰÷èà	ýÿérÓÿÿèFýÿH‰ß辄ýÿH‰D$H‰„$H…À…š·ÿÿH^çE1À1É1ÛH‰kà%E1íH‹„$ˆÇbà%L‹t$hÇOà%rHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$é/ËÿÿH‰Çè	ýÿéïÒÿÿH‰ßè	ýÿéæßÿÿH‰ÏH‰D$èðýÿL‹D$é˜Àÿÿèáýÿé#ÓÿÿH‚æE1À1ÉE1íH‰Žß%L‹t$hÇ‹ß%H‹„$ˆÇuß%tHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$éLÊÿÿ¶ØéŒèÿÿH‹åx#Hƒéüÿÿè‡
ýÿH‹|$èý‚ýÿH‰ÃH‰D$H…À…<gH¢åE1À1ÉE1íH‰®Þ%L‹t$hÇ«Þ%H‹„$ˆÇ•Þ%wHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$éuÉÿÿèXýÿéøÑÿÿ¶Øé(áÿÿL‰ÇèCýÿé#¿ÿÿè9ýÿéêÐÿÿè¯ýÿf.÷èz„7
H‹€x#HƒH‹¼$H‰„$ˆé<Ñÿÿèúýÿéö¿ÿÿH›äE1ÀE1íL‹t$hH‰¤Ý%H‹„$ˆÇžÝ%ÇÝ%yHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$égÈÿÿèJýÿéb¾ÿÿè@ýÿ逾ÿÿH‰ßè3ýÿéa¾ÿÿ¶èéü¸ÿÿHÌãL‰|$1É1ÛL‹|$L‹t$hE1ÀE1íH‰ÇÜ%H‹„$ˆÇÁÜ%¬Ç³Ü%¸HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ éœÇÿÿH‰D$èzýÿH‹L$é´ÝÿÿH‰L$èÖýÿH‹|$èL€ýÿH‹L$H…ÀH‰ÃH‰D$…rdHìâE1ÀE1íL‹t$hH‰õÛ%H‹„$ˆÇïÛ%ÇáÛ%|HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$éÁÆÿÿH‰ïè¡ýÿ鯵ÿÿè—ýÿ遵ÿÿèýýÿH‰ßèuýÿH‰„$ˆH…À…Y°ÿÿHâÇ7Û%„H‰$Û%Ç"Û% E1À1ÉE1íL‹t$hHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$é
ÆÿÿH‰ßèÌýÿé]½ÿÿL‰Çè¿ýÿé.½ÿÿèµýÿé_ñÿÿHDŽ$ˆé·ÙÿÿHEáE1ÀE1íL‹t$hH‰NÚ%H‹„$ˆÇHÚ%Ç:Ú%~HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$éÅÿÿH¨àE1À1ÉE1íH‰´Ù%L‹t$hDZÙ%„H‹„$ˆÇ›Ù%¢HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$érÄÿÿH‹s#HƒH‹¼$˜éAöÿÿH‹ûr#Hƒé&ûÿÿL‰Çè*ýÿéâÿÿH‰÷èýÿéγÿÿH¾ßE1À1ÛE1íH‰ÊØ%L‹t$hÇÇØ%H‹„$ˆÇ±Ø%ŽHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$é‘ÃÿÿèäýÿL‰÷è\|ýÿH‰ÃH‰D$ H…À…¥`HßE1À1ÉE1íH‰
Ø%L‹t$hH‹„$ˆL‰|$Çý×%§Çï×%HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(éáÂÿÿ1Àéà¯ÿÿH‹¼$ˆHDŽ$˜H…ÿ…­ÿÿHKÞÇh×%„H‰U×%ÇS×%±é¥ËÿÿL‰Çèvýÿ锺ÿÿH‰ßèiýÿL‹D$égºÿÿ¶Øé*¿ÿÿH‰L$H‰D$èHýÿL‹D$H‹L$é)ÙÿÿHßÝE1À1ÉE1íH‰ëÖ%L‹t$hH‹„$ˆL‰|$ÇÛÖ%§ÇÍÖ%HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(é¿Áÿÿè¢ÿüÿ鱱ÿÿHCÝE1À1É1ÛH‰PÖ%E1íH‹„$ˆÇGÖ%„L‹t$hÇ4Ö%´HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$éÁÿÿH¢ÜE1À1É1ÛH‰¯Õ%E1íH‹„$ˆÇ¦Õ%L‹t$hÇ“Õ%‘HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$ésÀÿÿHÇD$8L‰ýHÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ I‹}H‹5ŒÔ%H9÷t
è’ýÿ…À„¼ÿÿH‹5›Í%L‰ïè‹ýÿH‰ÃH‰„$˜H…À„j6H‹5HÆ%¿1ÀèTýÿI‰ÆH…À„u/1ÒH‰ßH‰Æè;ýÿIƒ.H‰Ã„‰H…Û„R/H‹¼$˜Hƒ/„dHDŽ$˜Iƒm„`I‰Ýél»ÿÿH‰ÇèÌþüÿf.$ßz„šH‹n#HƒH‹´$˜H‰„$ˆéȮÿÿHÂÚÇßÓ%H‰ÌÓ%ÇÊÓ%¡飸ÿÿ1ÛéԬÿÿH”ÚE1À1ÉE1íH‰ Ó%L‹t$hH‹„$ˆL‰|$ǐÓ%§Ç‚Ó%„HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ ék¾ÿÿè¾þüÿH‰ßè6wýÿH‰D$H‰„$˜H…À…JÅÿÿHÖÙE1À1É1ÛH‰ãÒ%E1íH‹„$ˆÇÚÒ%ŠL‹t$hÇÇÒ%!HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$駽ÿÿH5ÙL‹t$h1É1ÛH‰@Ò%E1ÀE1íH‹„$ˆÇ4Ò%„Ç&Ò%·HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$éý¼ÿÿH‰ßH‰L$èØúüÿH‹L$éYÔÿÿE1ÀE1íL‰|$L‹t$hHÇD$8H[ØH‰oÑ%ÇqÑ%§ÇcÑ%‰HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ éd¼ÿÿH‰Ïè5úüÿéÅÓÿÿL‰Çè(úüÿéÚÿÿèúüÿéÅÿÿèúüÿéöÓÿÿHµ×ÇÒÐ%ŠH‰¿Ð%ǽÐ%#é–õÿÿH‹¡j#HƒH‹¼$éÄòÿÿ¶Ûé®ÿÿH‹¼$˜H‹„$ˆHDŽ$H…ÿ…OÃÿÿHI×E1À1ÉE1íH‰UÐ%L‹t$h1ÛÇPÐ%ŠÇBÐ%2HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$é»ÿÿèlûüÿL‰÷èäsýÿH‰ÁH‰D$ H…À…XE1ÀE1íL‰|$L‹t$hHÇD$8HpÖH‰„Ï%H‹„$ˆÇ~Ï%§ÇpÏ%‹HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(ékºÿÿL‰|$L‹t$h1ÉE1íHÇD$8HáÕH‰õÎ%H‹„$ˆÇïÎ%§ÇáÎ%HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ éӹÿÿè¶÷üÿé3ªÿÿH‹5ŠÄ%H‹|$0èPýÿI‰ÀH…À„˜3H‰D$L‰æ1?è þüÿL‹D$H…ÀH‰Ã„ÙI1ÒL‰ÇH‰ÆL‰D$èýûüÿHƒ+L‹D$I‰Å„d$L‰¬$˜M…í„°IIƒ(„<$H‹ág#H‹t$H‹œ$˜H‰×èäýüÿI‰ÆH…À„´1H‰ÆH‰ßè=øüÿIƒ.I‰Å„ï#M…í„“1H‹¼$˜Hƒ/„Ê#L;=†g#HDŽ$˜„aøÿÿH‹5Á%L‰úL‰ïèüüÿ…ÀˆÁIHÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$ HÇD$(éd´ÿÿH‹g#HƒéùÿÿHâÓE1íÇüÌ%§L‹t$hH‰äÌ%H‹„$ˆÇÚÌ%HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ L‰|$龷ÿÿHLÓÇiÌ%ŠH‰VÌ%ÇTÌ%5é-ñÿÿèzõüÿéU¨ÿÿèpõüÿéÃêÿÿL‰%,Ì%Ç.Ì%ƒÇ Ì%yéOÌÿÿHñÒE1ÀÇÌ%®H‰øË%ÇöË%ÍHÇD$8L‰|$1ÉL‹|$E1íHÇD$@L‹t$hHÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$éò¶ÿÿ¶ØéØÖÿÿHZÒL‹t$h1É1ÛH‰eË%E1ÀE1íH‹„$ˆÇYË%ŠÇKË%8HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$é"¶ÿÿH°ÑL‰|$1É1ÛL‹|$E1ÀE1íL‹t$hH‰«Ê%H‹„$ˆÇ¥Ê%®Ç—Ê%ÛHÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$鉵ÿÿèÜõüÿH‰ßèTnýÿH‰D$H‰„$˜H…À…cËÿÿHôÐE1À1É1ÛH‰Ê%E1íH‹„$ˆÇøÉ%’L‹t$hÇåÉ%¹HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ éδÿÿH\ÐE1À1ÉE1íH‰hÉ%L‹t$hH‹„$ˆL‰|$ÇXÉ%§ÇJÉ%’HÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ é<´ÿÿHÊÏ1ÉE1íL‰t$ H‰ÔÈ%L‹t$hL‰|$H‹„$ˆÇÄÈ%±L‹|$DZÈ% HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$P鬳ÿÿL‰ÇèŒñüÿé°ÿÿH‰ßèñüÿ颬ÿÿL‰Çèrñüÿ鋬ÿÿL‰D$ècñüÿL‹D$éa¬ÿÿH‹ºb#HƒH‰„$˜é¯ÿÿHçÎE1À1ÛE1íH‰óÇ%L‹t$hÇðÇ%’H‹„$ˆÇÚÇ%»HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$麲ÿÿH‹[a#HƒH‹´$˜éaóÿÿH0ÎL‰|$1É1ÛL‹|$L‹t$hE1ÀE1íH‰+Ç%H‹„$ˆÇ%Ç%¯ÇÇ%èHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(é	²ÿÿH—ÍE1À1ÉE1íH‰£Æ%L‹t$hÇ Æ%•Ç’Æ%]HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$鐱ÿÿL‰|$L‰ëL‹|$IƒEL‹t$hHÇD$éرÿÿè0ïüÿé®ÿÿè&ïüÿé¢ÿÿL‰ÇL‰D$è”ðüÿf.ÜÐL‹D$z„¦ýÿÿH‹¸_#Hƒé¡ýÿÿèêîüÿ黢ÿÿH‹ÌE1ÀE1íL‹t$hH‰”Å%H‹„$ˆÇŽÅ%’Ç€Å%¾HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$é`°ÿÿèCîüÿé¡áÿÿè9îüÿéyáÿÿH‰ßè,îüÿéZáÿÿHÍËE1À1ÉE1íH‰ÙÄ%L‹t$hL‰|$H‹„$ˆÇÉÄ%¶L‹|$ǶÄ%n HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ 韯ÿÿH-ËE1À1É1ÛH‰:Ä%E1íH‹„$ˆÇ1Ä%™H‹l$pÇÄ%vL‹t$hHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ é¯ÿÿHÊE1À1ÉE1íH‰œÃ%E1äH‹„$ˆÇ“Ã%‡L‹t$hÇ€Ã%ôHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$HÇD$éW®ÿÿHåÉL‰|$1É1ÛH‰ðÂ%L‹|$E1íÇêÂ%¸L‹t$hÇ×Â%‹ H‹„$ˆHÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$鸭ÿÿè›ëüÿé~ÌÿÿL‰|$1ÉL‹|$E1íH-ÉL‹t$hÇEÂ%¯H‰2Â%Ç0Â%êHÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$éI­ÿÿH‹œÁ%H…Û„,H‹D$pH‹xH9û„"œÿÿH‰Þè‰òüÿ…À…œÿÿH‹D$pH‹K H5‘¶H‹@H‹P H‹jZ#H‹81ÀèØñüÿH^ÈH‹l$p1É1ÛH‰iÁ%L‹t$hE1ÀE1íÇ`Á%—H‹„$ˆÇJÁ%lHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$é*¬ÿÿfèêüÿ顥ÿÿH¬ÇL‰t$ 1É1ÛH‰·À%E1íH‹„$ˆL‰|$L‹t$hǤÀ%°L‹|$Ç‘À%÷HÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$郫ÿÿH‰L$èÑëüÿH‰ßèIdýÿH‹L$H…ÀH‰D$H‰„$…õÁÿÿHäÆE1À1ÛE1íH‰ð¿%L‹t$hÇí¿%’H‹„$ˆÇ׿%ÀHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ é*ÿÿHNÆL‰|$1É1ÛH‰Y¿%L‹|$E1íÇS¿%¸H‹„$ˆÇ=¿%Œ L‹t$hHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ é!ªÿÿH‹|$hL‰îè<éüÿH‰ÃH…À„S9L‰|$L‹t$hL‹|$HÇD$évªÿÿH‰ßèËçüÿé[ÿÿ¶Û铝ÿÿHdÅǁ¾%™H‰n¾%Çl¾%xE1À1ÉE1íH‹l$pHÇD$8L‹t$hHÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$éX©ÿÿH‰ïèçüÿéњÿÿH»ÄH‹l$p1É1ÛH‰ƽ%L‹t$hE1ÀE1íǽ½%™H‹„$ˆÇ§½%{HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$釨ÿÿèjæüÿ鲚ÿÿHÄ1ÛÇ&½%’E1íH‰½%L‹t$hÇ	½%ÂH‹„$ˆHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$éá§ÿÿHDŽ$ˆHcÃL‰t$ 1É1ÛH‰n¼%L‹t$hE1íL‰|$H‹„$ˆÇ[¼%°L‹|$ÇH¼% HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(é:§ÿÿH‹5ˬ%H‹=ôº%1Òè­éüÿH‰D$ H…À„L9H‹\$ H‰ßèRÒýÿH‹H‰D$HƒèH‰„¼HƒÂL‰|$1É1ÛL‹|$L‹t$hE1ÀE1íH‰~»%H‹„$ˆÇx»%¹Çj»%› HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ éS¦ÿÿL‰D$è1äüÿL‹D$é¾ÅÿÿL‰D$èäüÿL‹D$éƒÅÿÿL‰ïH‰D$èäüÿL‹D$éZÅÿÿL‰ïI‰Ýèñãüÿé¢ÿÿH’ÁE1ÀǬº%’H‰™º%Ç—º%ñHÇD$8HÇD$E1íL‹t$hHÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$é~¥ÿÿHýÀE1íǺ%’L‹t$hH‰ÿ¹%H‹„$ˆÇõ¹%æHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$éդÿÿHcÀL‰t$ 1É1ÛH‰n¹%E1íH‹„$ˆL‰|$L‹t$hÇ[¹%±L‹|$ÇH¹% HÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$éC¤ÿÿHѿE1À1ÉÇé¸%±H‰ָ%ÇԸ% HÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PL‰t$ L‹t$hL‰|$L‹|$HÇD$é٣ÿÿHI¿L‰|$1É1ÛH‰T¸%L‹|$E1íÇN¸%»L‹t$hÇ;¸%­ H‹„$ˆHÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$é£ÿÿH‹5ը%H‹=ֶ%1ÒèåüÿH‰„$ˆH…À„Ä5H‰Çè6ÎýÿH‹¼$ˆHƒ/„²Hj¾E1À1ÉE1íH‰v·%H‹l$pÇs·%šL‹t$hHDŽ$ˆÇT·%ŠHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$éR¢ÿÿL‰ÇèàüÿéëÁÿÿè
àüÿé’âÿÿL‰÷èýßüÿéjâÿÿèóßüÿéÂÿÿH‰ßèæßüÿ闔ÿÿH‡½E1À1ÉE1íH‰“¶%L‹t$hL‰|$H‹„$ˆÇƒ¶%¶L‹|$Çp¶%b HÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$éY¡ÿÿHç¼Ç¶%‹H‰ñµ%Çïµ%EéÈÚÿÿH‹5»¦%H‹=ì´%1Òè¥ãüÿH‰D$ H…À„‚(H‹\$ H‰ßèJÌýÿH‹H‰D$HƒèH‰„$H{¼L‰|$1É1ÛL‹|$L‹t$hE1ÀE1íH‰vµ%H‹„$ˆÇpµ%¼Çbµ%½ HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ éK ÿÿHٻ1ÉE1íL‰t$ H‰ã´%L‹t$hL‰|$H‹„$ˆÇӴ%±L‹|$Ç4% HÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$黟ÿÿHI»Çf´%›H‰S´%ÇQ´%œéàõÿÿH"»E1À1É1ÛH‰/´%E1íH‹„$ˆÇ&´%›H‹l$pÇ´%žL‹t$hHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ é÷žÿÿH…ºL‹t$h1É1ÛH‰³%E1ÀE1íH‹„$ˆÇ„³%’Çv³%öHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$éVžÿÿHä¹L‰|$1É1ÛH‰ï²%L‹|$E1íÇé²%»H‹„$ˆÇӲ%® L‹t$hHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ 鷝ÿÿD¶òé4’ÿÿL‰ÇèŽÛüÿéÿ—ÿÿL‰D$èÛüÿL‹D$é՗ÿÿH‰ßL‰D$èhÛüÿL‹D$鬗ÿÿH¹L‰t$ 1ÉL‹t$hH‰²%H‹„$ˆL‰|$L‹|$Çü±%´Çî±%7 HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PééœÿÿH‰D$èÇÚüÿL‹D$ée—ÿÿè¸Úüÿéÿÿè®Úüÿ鑏ÿÿH‰÷è¡Úüÿéö´ÿÿHB¸E1À1ÉE1íH‰N±%L‹t$hL‰|$H‹„$ˆÇ>±%¶L‹|$Ç+±%d HÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$éœÿÿ¶ÛéĶÿÿH£·E1À1ÉE1íL‰|$L‹t$hL‹|$H‰ °%Ç¢°%¶Ç”°%l HÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$镛ÿÿH‰ïèfÙüÿéS¼ÿÿL‰ÇèYÙüÿé3¼ÿÿHú¶H‹l$p1É1ÛH‰°%L‹t$hE1ÀE1íÇü¯%›H‹„$ˆÇæ¯% HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$éƚÿÿH‹5w %H‹=€®%1Òè9ÝüÿH‰D$H‰„$˜H…À„W:H‹|$èÙÅýÿH‹¼$˜Hƒ/„*H
¶H‹l$p1É1ÛH‰¯%E1ÀE1íH‹„$ˆÇ¯%œL‹t$hHDŽ$˜Çí®%¯HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$é͙ÿÿH[µE1À1É1ÛH‰h®%E1íH‹„$ˆÇ_®%…L‹t$hÇL®%ÄHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$é,™ÿÿè×üÿL‹D$鸹ÿÿH‰÷èýÖüÿé1ÿÿHž´E1À1ÉE1íH‰ª­%H‹l$pǧ­%žL‹t$hÇ”­%ÌH‹„$ˆHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$él˜ÿÿè¿ØüÿH‰ßè7QýÿH‰„$ˆH…À…g‰ÿÿHܳÇù¬%žH‰æ¬%Çä¬%ÊésîÿÿHµ³L‰|$1ÉL‹|$H‰½¬%L‹t$hǺ¬%ÜH‹„$ˆÇ¤¬%/#HÇD$éޗÿÿHl³L‰t$ 1ÉL‹t$hH‰t¬%H‹„$ˆL‰|$L‹|$Çd¬%±ÇV¬% HÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$éQ—ÿÿH‰ïè1ÕüÿézŠÿÿH‰ßè$Õüÿ鬊ÿÿHŲL‰|$1É1ÛH‰Ы%L‹|$E1ÀÇʫ%ÜH‹„$ˆÇ´«%2#L‹t$hHÇD$éé–ÿÿèÌÔüÿé4”ÿÿH‹(F#HƒH‰ÃH‹¼$˜Hƒ/tÚHDŽ$˜E1öH;ýE#A”ÆéA”ÿÿè÷ÖüÿH‰ßèoOýÿH‰D$ H‰„$ˆH…À…µÿÿH²E1ÀÇ)«%¿H‰«%Ç«%Ú HÇD$8éßÿÿH‰ßè.Ôüÿéè“ÿÿD¶òéՓÿÿHƱL‰|$1É1ÛH‰Ѫ%L‹|$ÇΪ%ÜH‹„$ˆÇ¸ª%-#L‹t$hHÇD$éí•ÿÿèÐÓüÿ骉ÿÿH‰D$èÁÓüÿL‹D$é·ÿÿè"ÖüÿH‰ßèšNýÿH‰D$PH‰„$˜H…À…ÿÿH:±L‰t$ 1É1ÛH‰Eª%E1ÀH‹„$ˆL‰|$L‹t$hÇ2ª%´L‹|$Ǫ%+ HÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$é#•ÿÿèÓüÿé,ÜÿÿL‰÷èùÒüÿéÜÿÿL‰ÇèìÒüÿé·ÛÿÿH‰ßèßÒüÿL‹D$éŠÛÿÿH{°E1À1ÉL‰t$ H‰…©%L‹t$hL‰|$H‹„$ˆÇu©%´L‹|$Çb©%- HÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$é]”ÿÿH‰ßè½Óüÿf.´z„fýÿÿH‹æB#HƒH‰ÃéaýÿÿL‰ïèÒüÿéϏÿÿèÒüÿ鮏ÿÿèþÑüÿ醏ÿÿL‰ÇèñÑüÿégÿÿH’¯L‰t$ 1É1ÛH‰¨%L‹t$hL‰|$H‹„$ˆÇ¨%´L‹|$Çz¨%G HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$Péu“ÿÿL‰|$E1ÀL‹|$1ÉHô®L‹t$hÇ¨%¶H‰ù§%H‹„$ˆÇï§%o HÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$éؒÿÿH‰ßè¸Ðüÿé[‡ÿÿHY®L‰|$1É1ÛL‹|$E1ÀE1íL‹t$hH‰T§%H‹„$ˆÇN§%¿Ç@§%Ü HÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$é2’ÿÿH‹¼$ˆHƒ/„7HDŽ$ˆH¢­E1À1ÉE1íL‰|$L‹t$hL‹|$H‰Ÿ¦%Ç¡¦%¿Ç“¦%í HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ 隑ÿÿE1öéƒÿÿH­Ç¦%žH‰¦%Ç
¦%ÞE1À1ÉE1íH‹l$pHÇD$8L‹t$hHÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$éçÿÿHf¬L‰t$ 1ÉL‹t$hH‰n¥%H‹„$ˆL‰|$L‹|$Ç^¥%´ÇP¥%5 HÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$éKÿÿH‹5ä>#L‹|$1É1ÛHɫL‹t$hE1ÀÇޤ%ÙH‰ˤ%H‹„$ˆÇd%#HÇD$H‰t$éöÿÿH„«Ç¡¤%žH‰ޤ%ÇŒ¤%Ïé}þÿÿH]«H‹l$p1É1ÛH‰h¤%L‹t$hE1ÀE1íÇ_¤%žH‹„$ˆÇI¤%áHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$é)ÿÿèÍüÿé:©ÿÿH‰ÏèÿÌüÿéըÿÿH‰L$èðÌüÿH‹L$é|¨ÿÿH‰÷H‰L$èÙÌüÿH‹L$éJ¨ÿÿL‰ÇH‰D$èÂÌüÿH‹L$éö§ÿÿH‹D$HƒH‰„$˜闩ÿÿHHªE1À1ÉL‰t$ H‰R£%L‹t$hL‰|$H‹„$ˆÇB£%´L‹|$Ç/£%0 HÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$é3ŽÿÿHiE1ÀÇۢ%¿H‰Ȣ%ÇƢ%ß HÇD$8éËÖÿÿèãËüÿé4‚ÿÿE¶íéd±ÿÿH‰ÏH‰D$èÈËüÿH‹D$éקÿÿH‰÷è¶Ëüÿé&©ÿÿH‹|$ è§ËüÿéÍìÿÿHH©1ÉÇc¢%´H‰P¢%ÇN¢%@ HÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`é~éÿÿHé¨L‰t$ 1É1ÛH‰ô¡%L‹t$hL‰|$H‹„$ˆÇä¡%´L‹|$Çѡ%= HÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$é̌ÿÿHZ¨E1À1ÉE1íH‰f¡%H‹l$pÇc¡% L‹t$hÇP¡%HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ éHŒÿÿH‹|$ èÊüÿé5åÿÿè
ÊüÿéDéÿÿH®§E1À1ÉE1íH‰º %H‹l$pÇ· % L‹t$hǤ %H‹„$ˆHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$é|‹ÿÿH
§L‰|$1É1ÛH‰ %L‹|$E1íÇ %¿L‹t$hÇüŸ%ð H‹„$ˆHÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$鿊ÿÿH‹5g%H‹= ž%1ÒèYÍüÿH‰D$ H‰„$˜H…À„Ç#H‹|$ èùµýÿH‹¼$˜Hƒ/„”H-¦L‰|$1É1ÛL‹|$L‹t$hE1ÀE1íH‰(Ÿ%H‹„$ˆHDŽ$˜ÇŸ%ÀÇŸ%!HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ éñ‰ÿÿH¥L‰t$ 1ÉL‹t$hL‰|$L‹|$H‰}ž%Çž%´Çqž%8 HÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$鄉ÿÿL‹|$E1À1ÉL‹t$hH‹5ÿ7#Hí¤Ç
ž%ÙH‰÷%H‹„$ˆÇí%	#HÇD$H‰t$é"‰ÿÿèuÉüÿH‰ïèíAýÿH‰ÃH…À…x{ÿÿH—¤E1À1ÉE1íH‰£%H‹l$pÇ % L‹t$hǍ%H‹„$ˆHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$éeˆÿÿH‹5Ž%H‹=œ%1ÒèØÊüÿH‰D$H‰„$˜H…À„© H‹|$èx³ýÿH‹¼$˜Hƒ/„H¬£H‹l$p1É1ÛH‰·œ%E1ÀE1íH‹„$ˆÇ«œ%ŸL‹t$hHDŽ$˜ÇŒœ%ðHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$él‡ÿÿHú¢L‰|$1É1ÛL‹|$L‹t$hE1ÀE1íH‰õ›%H‹„$ˆÇï›%ÓÇá›%Ç"HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ éʆÿÿHX¢L‰|$1É1ÛL‹|$L‹t$hE1ÀE1íH‰S›%H‹„$ˆÇM›%¿Ç?›%ò HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ é(†ÿÿèÄüÿéM¡ÿÿèÄüÿé¡ÿÿH¢¡L‰|$1É1ÛH‰­š%L‹|$E1íǧš%ÓL‹t$hÇ”š%¶"H‹„$ˆHÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$éu…ÿÿH‰ÇèUÃüÿéD¨ÿÿèKÃüÿ颧ÿÿèAÃüÿéz§ÿÿL‰Çè4Ãüÿé[§ÿÿHՠL‰|$1É1ÛH‰à™%L‰õE1íL‹|$Çי%ÃH‹„$ˆÇY%D!L‹t$hHÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ 鮄ÿÿ@¶íé9©ÿÿH‰ßè…Âüÿ鏟ÿÿH‰ÏèxÂüÿéDŸÿÿH‰ßèkÂüÿ遂ÿÿH‰ßè^Âüÿ鱞ÿÿHÿŸÇ™%ÂH‰	™%Ç™%+!éÍÿÿH؟L‰|$1É1ÛH‰ã˜%L‹|$E1íÇݘ%ÂL‹t$hÇʘ%!H‹„$ˆHÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$鴃ÿÿH‰L$è’ÁüÿH‹L$éݜÿÿH.ŸÇK˜% H‰8˜%Ç6˜%
é'òÿÿH‹L$E1ÀE1íL‹t$hHÇD$8HîžH‰˜%H‹„$ˆÇü—%“Çî—%HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$éׂÿÿè*ÃüÿH‰ßè¢;ýÿH‰D$H…À…ǚÿÿHJžE1À1É1ÛH‰W—%E1íH‹„$ˆÇN—%“L‹t$hÇ;—%HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ é$‚ÿÿH‰ßL‰D$èÿ¿üÿL‹D$év€ÿÿH›L‰|$1ÉL‹|$H‰£–%L‹t$hÇ –%åH‹„$ˆÇŠ–%t#HÇD$éāÿÿèÂüÿH‰ßè:ýÿH‰D$ H‰„$˜H…À…·¢ÿÿH/L‰|$1É1ÛH‰:–%L‰õE1ÀE1íL‹|$H‹„$ˆÇ&–%ÃÇ–%8!L‹t$hHÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$éÿÿèñ¾üÿ鶣ÿÿH‹-0#H5žH‹8èvÂüÿéÔÿÿè̾üÿé¿îÿÿ1Ééþ™ÿÿHfœE1À1ÉE1íH‰r•%L‹t$hÇo•%“H‹„$ˆÇY•%HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ éB€ÿÿL‰|$E1ÀL‹|$1ÉH[L‹t$hÇٔ%ßH‰Ɣ%H‹„$ˆÇ¼”%Y#HÇD$éöÿÿH„›H‹l$p1É1ÛH‰”%L‹t$hE1ÀE1ídž”% H‹„$ˆÇp”%HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$éPÿÿE1öé~rÿÿL‰D$pH‰D$è!½üÿL‹D$pH‹L$éÒ}ÿÿH¸šL‰|$1ÛL‹|$H‰%L‹t$hǽ“%åH‹„$ˆÇ§“%v#HÇD$éá~ÿÿH‰ßH‰L$輼üÿH‹L$éÙ}ÿÿL‰ÇH‰L$襼üÿH‹L$éq}ÿÿHAšI‰ØL‰|$1ÛH‰K“%L‹|$ÇH“%åH‹„$ˆÇ2“%m#L‹t$hHÇD$ég~ÿÿHõ™E1À1ÉÇ
“%“H‰ú’%Çø’%-HÇD$8é\ØÿÿH‹5Ӄ%H‹=ì‘%1Òè¥ÀüÿH‰D$H‰„$˜H…À„8 H‹|$èE©ýÿH‹¼$˜Hƒ/„ Hy™H‹l$p1É1ÛH‰„’%E1ÀE1íH‹„$ˆÇx’%¡L‹t$hHDŽ$˜ÇY’%*HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$é9}ÿÿHǘL‰|$1É1ÛH‰ґ%L‰õE1íL‹|$Çɑ%ÃL‹t$hǶ‘%:!H‹„$ˆHÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$é |ÿÿHƒÏÿèïÁüÿH‰ÅH…À„ÁH‰ÆL‰ï註üÿHƒmH‰Ã…•¢ÿÿH‰ïèRºüÿ鈢ÿÿèHºüÿé4¢ÿÿè>ºüÿéˡÿÿHߗE1À1ÉE1íH‰ë%H‹l$pÇè%¢L‹t$hÇՐ%>H‹„$ˆHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$é­{ÿÿH;—E1À1É1ÛH‰H%E1íH‹„$ˆÇ?%¢H‹l$pÇ,%<L‹t$hHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ é{ÿÿHž–E1ÀE1íL‹t$hH‰§%H‹„$ˆÇ¡%“Ç“%HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ é|zÿÿH
–E1ÀE1íL‹t$hH‰%H‹„$ˆÇ
%“ÇÿŽ%HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$éßyÿÿL‹D$1ÉE1íL‹t$hHÇD$8HU•H‰iŽ%H‹„$ˆÇcŽ%“ÇUŽ%HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$éGyÿÿ蚹üÿH‹|$è2ýÿH‰D$H…À…™‘ÿÿH¸”E1À1ÉE1íH‰č%L‹t$hÇM%“H‹„$ˆÇ«%HÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ é”xÿÿ1À鎒ÿÿH”L‰|$1É1ÛL‹|$E1ÀE1íL‹t$hH‰%H‹„$ˆÇ%¼Ç%¹ HÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$éôwÿÿH‚“L‰t$ 1É1ÛH‰Œ%L‹t$hL‰|$H‹„$ˆÇ}Œ%´L‹|$ÇjŒ%E HÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$énwÿÿL‰|$E1ÀL‹|$1ÉHí’L‹t$hÇŒ%ßH‰ò‹%H‹„$ˆÇè‹%[#HÇD$é"wÿÿH°’L‰t$ 1É1ÛH‰»‹%L‹t$hL‰|$H‹„$ˆÇ«‹%´L‹|$ǘ‹%H HÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$éœvÿÿH*’ÇG‹% H‰4‹%Ç2‹%é#åÿÿH’E1À1ÉE1íH‰‹%H‹l$pÇ‹%¢H‹„$ˆÇöŠ%@L‹t$hHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$éÑuÿÿH‹\$L‹t$hE1ÀE1íHÇD$8HF‘H‰ZŠ%H‹„$ˆÇTŠ%“ÇFŠ%3HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$é/uÿÿH½L‰|$1ÉL‹|$H‰ʼn%L‹t$hlj%åH‹„$ˆÇ¬‰%r#HÇD$éætÿÿHtL‰|$1É1ÛH‰‰%L‹|$Ç|‰%åH‹„$ˆÇf‰%p#L‹t$hHÇD$é›tÿÿE1ÀH‹\$E1íL‹t$hHÇD$8HH‰$‰%H‹„$ˆÇ‰%“lj%2HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$éùsÿÿèL´üÿL‰÷èÄ,ýÿH‰ÃH…À…¶qÿÿL‰|$E1ÀL‹|$1ÉH_L‹t$hÇwˆ%åH‰dˆ%H‹„$ˆÇZˆ%k#HÇD$é”sÿÿL‹t$L‰|$0E1À1ÉL‹|$xHL‰d$8E1íH‰ˆ%L‹d$pH‰l$XL‰õH‹„$ˆL‰|$L‹t$hÇý‡%ÅL‹|$Çê‡%p!HÇD$(HÇD$ésÿÿH©ŽE1À1ÉE1íH‰µ‡%Ç·‡%ÄÇ©‡%T!HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$(L‰|$L‰õL‹|$HÇD$L‹t$hé¹rÿÿH)Ž1ÉE1íÇA‡%ÃH‰.‡%Ç,‡%B!HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(éuÿÿÿH¾L‰|$1É1ÛH‰Ɇ%L‰õE1íL‹|$Ç%ÃL‹t$hÇ­†%=!H‹„$ˆHÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$é qÿÿH‹59w%H‹=Z…%1Òè´üÿH‰D$H…À„¡H‹\$H‰ß踜ýÿH‹H‰D$HƒèH‰„pHéŒH‹l$p1É1ÛH‰ô…%L‹t$hE1ÀE1íÇë…%£H‹„$ˆÇՅ%OHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ HÇD$éµpÿÿL‰|$E1ÀL‹|$1ÉH4ŒL‹t$hÇL…%éH‰9…%H‹„$ˆÇ/…%¦#HÇD$éipÿÿèL®üÿéàÕÿÿHí‹L‰|$1É1ÛH‰ø„%L‰õE1íL‹|$Çï„%ÃL‹t$hÇ܄%E!H‹„$ˆHÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$(HÇD$ HÇD$éÏoÿÿ貭üÿéà“ÿÿH‰ß襭üÿéV”ÿÿ蛭üÿ韓ÿÿHDŽ$˜H0‹L‰|$1É1ÛH‰;„%L‹|$E1íÇ5„%ÓH‹„$ˆÇ„%Ä"L‹t$hHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ éoÿÿèæ¬üÿéÛæÿÿH‡ŠL‰|$1É1ÛH‰’ƒ%L‹|$E1ÀÇŒƒ%ÕH‹„$ˆÇvƒ%ß"L‹t$hHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ éZnÿÿHè‰L‰õE1À1ÉH‰ô‚%E1í1ÛL‹t$hL‰|$L‹|$Çâ‚%ÄÇԂ%b!HÇD$@HÇD$HHÇD$0HÇD$XHÇD$(HÇD$ HÇD$éØmÿÿH‰ï踫üÿé’ÿÿHY‰L‰|$1É1ÛL‹|$E1ÀE1íL‹t$hH‰T‚%H‹„$ˆÇN‚%¹Ç@‚%— HÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$é2mÿÿHÇ݁%šH‰ʁ%Çȁ%†éWÃÿÿèîªüÿébâÿÿI‰ØHŒˆ1É1ÛH‰œ%L‹t$hL‰|$H‹„$ˆÇŒ%ßL‹|$Çy%^#HÇD$é³lÿÿH‰ß蓪üÿé'ÿÿL‹t$L‰|$0I‰À1ÉL‹|$xH ˆL‰d$8E1íH‰,%L‹d$pH‰l$@L‰õH‹„$ˆH‰\$HL‹t$h1ÛL‰|$L‹|$ǁ%ÐÇõ€%‘"HÇD$(HÇD$é&lÿÿL‰÷èªüÿ锖ÿÿL‰ï‰D$(èõ©üÿ‹D$(ém–ÿÿH‹|$`H‰Æèï±üÿéP–ÿÿL‰|$0M‰ðL‹|$x1ÉL‹t$Hl‡L‰d$8E1íH‰x€%L‹d$pH‰l$@L‰õH‹„$ˆH‰\$HL‹t$h1ÛL‰|$L‹|$ÇO€%ÏÇA€%‡"HÇD$HÇD$(érkÿÿèU©üÿ郕ÿÿL‹t$L‰|$0I‰À1ÉL‹|$xHâ†L‰d$8E1íH‰î%L‹d$pH‰l$@L‰õH‹„$ˆH‰\$HL‹t$h1ÛL‰|$L‹|$ÇÅ%ÏÇ·%„"HÇD$(HÇD$éèjÿÿL‹t$L‰|$0E1À1ÉL‹|$xH‰D$(E1íHZ†L‰d$8L‹d$pH‰d%H‹„$ˆH‰l$@L‰õL‹t$hH‰\$H1ÛL‰|$L‹|$Ç@%ÏÇ2%‚"HÇD$éljÿÿL‰ïèL¨üÿé%”ÿÿL‰÷è?¨üÿé”ÿÿL‹|$xM‰ðL‹t$1ÉH‰D$(H̅L‰d$8L‹d$pH‰Ö~%H‹„$ˆH‰l$@L‰õL‹t$hH‰\$H1ÛL‰l$0E1íL‰|$L‹|$Ǫ~%ÎÇœ~%u"HÇD$éÖiÿÿL‹t$L‹|$xI‰À1ÉHU…L‰d$8L‹d$pH‰_~%H‹„$ˆH‰l$@L‰õL‹t$hH‰\$H1ÛL‰l$0E1íL‰|$L‹|$Ç3~%ÎÇ%~%g"HÇD$(HÇD$éViÿÿè9§üÿ鲒ÿÿL‰÷è,§üÿ铒ÿÿL‹|$xM‰ðL‹t$1ÉH‰D$(H¹„L‰d$8L‹d$pH‰Ã}%H‹„$ˆH‰l$@L‰õL‹t$hH‰\$H1ÛL‰l$0E1íL‰|$L‹|$Ç—}%Ílj}%["HÇD$éÃhÿÿL‹t$L‹|$xI‰À1ÉHB„L‰d$8L‹d$pH‰L}%H‹„$ˆH‰l$@L‰õL‹t$hH‰\$H1ÛL‰l$0E1íL‰|$L‹|$Ç }%ÍÇ}%M"HÇD$(HÇD$éChÿÿL‹t$L‰|$0E1À1ÉL‹|$xH½ƒL‰d$8E1íH‰É|%L‹d$pH‰l$XL‰õH‹„$ˆL‰|$L‹t$hǬ|%ÅL‹|$Ç™|%q!HÇD$HÇD$(éÊgÿÿL‹t$L‹l$PL‰|$0L‰d$8L‹|$xH‰l$XL‹d$pL‰õIƒEHÇD$(é„cÿÿHƒE1À1É1ÛH‰,|%E1íH‹„$ˆÇ#|%ŸH‹l$pÇ|%ìL‹t$hHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ éôfÿÿH‚‚L‰|$1É1ÛL‹|$E1ÀE1íL‹t$hH‰}{%H‹„$ˆÇw{%ÀÇi{%ý HÇD$8HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$é[fÿÿL‹t$L‰|$0E1À1ÉL‹|$xH‰D$(1ÛE1íHˁL‰d$8L‹d$pH‰Õz%H‹„$ˆH‰l$XL‰õL‹t$hL‰|$L‹|$Ǹz%ÆÇªz%~!HÇD$éäeÿÿH‰D$(L‹t$E1À1ÉHcH‰l$XH‰rz%Çtz%ÆÇfz%|!L‰|$0L‹|$xL‰d$8L‹d$pE1íé×òÿÿL‹t$L‰|$0H‰øE1ÀL‹|$xL‰d$81ÉE1íHH‰l$XL‹d$pL‰õH‰z%L‹t$h1ÛL‰|$L‹|$Çùy%ÆÇëy%!HÇD$(HÇD$éeÿÿèÿ¢üÿéCÿÿH €L‰|$E1ÀL‹|$H‰§y%L‹t$hH‰L$H‹„$ˆ1ÉÇ•y%æÇ‡y%„#éÊdÿÿL‹t$L‰|$0E1À1ÉL‹|$xHD€L‰d$81ÛH‰Qy%L‰õL‹d$pL‰l$ L‹t$hE1íL‰|$H‹„$ˆÇ1y%ÊL‹|$Çy%Ù!HÇD$HÇD$(éOdÿÿL‰÷è/¢üÿéþŽÿÿL‰|$0M‰ðL‹|$x1ÉL‹t$H‰D$(E1íH´L‰d$8L‹d$pH‰¾x%H‹„$ˆH‰l$@L‰õL‹t$hH‰\$H1ÛL‰|$L‹|$Çšx%ÐÇŒx%“"HÇD$éÆcÿÿL‰ÿ覡üÿé!‹ÿÿL‹t$L‰|$0E1À1ÉL‹|$xH‰D$(1ÛE1íH)L‰d$8L‰õL‹d$pH‰0x%L‹t$hL‰|$H‹„$ˆÇ x%ÉL‹|$Ç
x%½!HÇD$éGcÿÿL‰|$0L‹t$E1À1ÉHÆ~L‰d$8L‹|$xL‹d$pH‰Ëw%ÇÍw%ÉÇ¿w%Ì!HÇD$(é>ðÿÿH‰ßè٠üÿéðˆÿÿH‹\$étOÿÿH‹L$ éCXÿÿH‹\$éOÿÿH‹\$ é£WÿÿL‹t$L‰|$0E1À1ÉL‹|$xL‰d$8E1íH6~H‰Jw%L‰õL‹d$pL‰|$H‹„$ˆL‹|$L‹t$hÇ-w%ÈÇw%¨!HÇD$HÇD$(éPbÿÿH‰ïè0 üÿé?‡ÿÿH‰ßè# üÿé‡ÿÿL‹t$L‰|$0E1À1ÉL‹|$xL‰d$81ÛE1íH¦}L‰õL‹d$pÇ»v%ÈH‰¨v%L‹t$hL‰|$L‹|$Ç—v%¦!H‹„$ˆHÇD$HÇD$(éÀaÿÿH‰ß蠟üÿéކÿÿL‹t$L‰|$0E1À1ÉL‹|$xL‰d$8E1íH%}H‰9v%L‰õL‹d$pL‰|$H‹„$ˆL‹|$L‹t$hÇv%ÇÇv%›!HÇD$HÇD$(é?aÿÿH‰D$(L‹t$E1À1ÉH¾|L‰|$0L‹|$xL‰d$8L‹d$pH‰¾u%ÇÀu%ÉDzu%»!é[ûÿÿè؞üÿ靆ÿÿH‹|$èɞüÿéïÿÿHj|E1À1É1ÛH‰wu%E1íH‹„$ˆÇnu%£L‹t$hÇ[u%KHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ éD`ÿÿHÒ{E1À1É1ÛH‰ßt%E1íH‹„$ˆÇÖt%œH‹l$pÇÃt%«L‹t$hHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ é§_ÿÿL‹t$L‰|$0E1À1ÉL‹|$xL‰d$8E1íH{H‰-t%L‰õL‹d$pL‰|$H‹„$ˆL‹|$L‹t$hÇt%ÇÇt%š!HÇD$(HÇD$é3_ÿÿL‹t$L‹|$xE1À1ÉH‰D$(H­zL‰d$8L‰õL‹d$pH‰´s%L‹t$hL‰l$0E1íH‹„$ˆL‰|$L‹|$Ç—s%Ìljs%("HÇD$éÃ^ÿÿL‹t$L‹|$xE1À1ÉHBzL‰d$8L‹d$pH‰Ls%L‰õH‹„$ˆL‰l$0L‹t$hE1íL‰|$L‹|$Ç,s%ÌÇs%&"HÇD$(HÇD$éO^ÿÿH‰D$(è-œüÿH‹D$(éû†ÿÿH‰÷èœüÿé;‡ÿÿL‰çèœüÿéðˆÿÿH¯yL‰|$E1ÀL‹|$H‰¶r%L‹t$hH‰L$H‹„$ˆ1ÉǤr%æÇ–r%†#éÙ]ÿÿ輛üÿéäßÿÿH]yE1À1É1ÛH‰jr%E1íH‹„$ˆÇar%¡H‹l$pÇNr%&L‹t$hHÇD$8HÇD$HÇD$@HÇD$HHÇD$0HÇD$XHÇD$`HÇD$PHÇD$(HÇD$ é2]ÿÿL‹t$L‰|$0E1À1ÉL‹|$xL‰d$8H§xH‰»q%L‰õL‹d$pL‰|$H‹„$ˆL‹|$L‹t$hÇžq%Ëǐq%ò!HÇD$(HÇD$éÁ\ÿÿL‹t$L‰|$0E1À1ÉL‹|$xL‰d$8E1íH3xH‰Gq%L‰õL‹d$pL‰|$H‹„$ˆL‹|$L‹t$hÇ*q%ËÇq%ñ!HÇD$HÇD$(éM\ÿÿL‹t$L‰|$0E1À1ÉL‹|$xH‰D$(E1íH¿wL‰d$8L‰õL‹d$pL‰|$L‹t$hL‹|$H‰·p%ǹp%ËÇ«p%ï!HÇD$éô[ÿÿL‹t$L‰|$0E1À1ÉL‹|$xL‰d$8E1íHWwH‰kp%L‰õL‹d$pL‰|$H‹„$ˆL‹|$L‹t$hÇNp%ËÇ@p%ê!HÇD$(HÇD$éq[ÿÿL‹t$L‰|$0E1À1ÉL‹|$xH‰D$(1ÛE1íHávL‰d$8L‰õL‹d$pH‰èo%L‹t$hL‰|$H‹„$ˆÇØo%ËL‹|$ÇÅo%è!HÇD$éÿZÿÿL‰ïèߘüÿé\ÿÿH‰ßèҘüÿé7ÿÿL‹t$L‰|$0E1À1ÉL‹|$xH‰D$(HZvL‰d$8L‰õL‹d$pH‰ao%L‹t$hL‰l$ E1íH‹„$ˆL‰|$L‹|$ÇDo%ÊÇ6o%Û!HÇD$épZÿÿL‹t$L‹|$xL‰d$8L‹d$p˜H…Àx1HƒøHCxH
ÓuHEÊH‰ÂH‹1#H5
eH‹81Àè(ŸüÿH®uL‰l$01É1ÛH‰¹n%L‰õE1ÀE1íL‰|$H‹„$ˆL‹|$L‹t$hÇ›n%ÌǍn%"HÇD$HÇD$(é¾YÿÿH‹·#ºH5Ã_H‹81À詞üÿé|ÿÿÿH‰÷è|—üÿé}‚ÿÿH‰ßèo—üÿéЁÿÿL‰÷èb—üÿ鹁ÿÿèX—üÿ陁ÿÿL‹|$xM‰ðL‹t$1ÉH‰D$(HåtL‰d$8L‰õL‹d$pH‰ìm%L‹t$hL‰l$0E1íH‹„$ˆL‰|$L‹|$ÇÏm%ÌÇÁm%"HÇD$éûXÿÿL‹|$xM‰ðL‹t$1ÉHztL‰d$8L‹d$pH‰„m%L‰õH‹„$ˆL‰l$0L‹t$hE1íL‰|$L‹|$Çdm%ÌÇVm%
"HÇD$HÇD$(é‡XÿÿL‹|$xM‰ðL‹t$1ÉHtL‰d$8L‹d$pH‰m%L‰õH‹„$ˆL‰l$0L‹t$hE1íL‰|$L‹|$Çðl%ÌÇâl%"HÇD$(HÇD$éXÿÿL‹t$L‹|$xI‰À1ÉH’sL‰d$81ÛL‹d$pH‰šl%L‰õH‹„$ˆL‰l$0L‹t$hE1íL‰|$L‹|$Çzl%ÌÇll%"HÇD$(HÇD$éWÿÿL‰÷è}•üÿé:ÿÿH‰D$(HsM‰ðL‹|$xH‰%l%L‹t$Ç"l%ÌÇl%"L‰d$8L‹d$p1ÉL‰l$0é¬ñÿÿL‹t$L‹|$xI‰À1ÉHÅrL‰d$81ÛL‹d$pH‰Ík%L‰õH‹„$ˆL‰l$0L‹t$hE1íL‰|$L‹|$Ç­k%ÌÇŸk%"HÇD$(HÇD$éÐVÿÿH‰ß谔üÿéþ}ÿÿ覔üÿéÞ}ÿÿ蜔üÿéü}ÿÿ貚üÿH‰„$ˆH…À„’H‹¼$˜Hƒ/„4H‹¼$ˆHDŽ$˜H‹GH‹¨èÿÕH‰ÃH…À„ìH‹¼$ˆÿÕI‰ÆH…À„ûH‹¼$ˆÿվH‰Çè%ƒýÿ…ÀxlH‹¼$ˆHƒ/tWHDŽ$ˆL‰õéÖ~ÿÿH‰D$(HqL‹t$E1ÀL‰d$8L‹|$xL‹d$pH‰j%Ǐj%Ìǁj%."érþÿÿ觓üÿë¢L‹|$xM‰ðL‹t$1ÉH<qL‰d$8L‹d$pH‰Fj%L‰õH‹„$ˆL‰l$0L‹t$hE1íL‰|$L‹|$Ç&j%ÌÇj%6"HÇD$HÇD$(éIUÿÿL‰d$8L‹t$½L‹d$pL‹|$xH‹¼$ˆHƒ/„¦HDŽ$ˆèeýÿ…Àu1HƒýHûrH‰êH
ˆpH5Í_HEÈH‹â#H‹81Àèà™üÿHfpL‰õE1À1ÉH‰ri%L‹t$hL‰l$0E1íH‹„$ˆL‰|$L‹|$ÇUi%ÌÇGi%>"HÇD$HÇD$(éxTÿÿè[’üÿéPÿÿÿL‰d$8L‹t$1íL‹d$pL‹|$xé#ÿÿÿè6’üÿéÂýÿÿ‹G…À…ÝSH‰ûHƒì DH‹H‹8ÿPH‹òXÀH‹8f(Ðò\ÙsòT$ÿPòT$òXÀf(ÚòYÚf(Èò\
²sf(ÁòYÁòXØf/žss¤fïäf.Üzt˜f(ÃòL$òT$ò\$èu”üÿò\$fïíòT$òYsòL$ò^Ãf.èòQØw6òYÓÇCòYËòSHƒÄ f(Á[ÃòGÇGHÇGÃò\$òL$òT$è™üÿò\$òL$òT$럄HƒìH‹H‹8ÿPò
Ërò\Èf(Á输üÿfWVsHƒÄÐf.¨r‹Zfïÿf.Ç‹<SH‰ûHƒì0ò=„ròD$f/ø†ì@H‹H‹8ÿPH‰ßòD$èɒüÿò
Qròl$òT$ò\Íf/Êr3ò
3ròD$f(Âò^Íèà’üÿò\$f/Ør¤HƒÄ0[ÃfDòD$òúqòL$ ò\Âò^D$èå’üÿòt$òL$ f(Ðf(ÆòT$òYÂò\Èf(Áò
·qò^Îèn’üÿòT$ò\$ò\Úf/Ø‚$ÿÿÿHƒÄ0[ÃfDò|$ò\=²qò²qòYÇò|$(fïÿf.øòQȇò5Nqò^ñòt$@H‰ßèHüÿfïäf(ÈòD$òYÁòXqf/àsØf(ÐH‹òL$òYÐH‹8òYÂòD$ÿPòL$ò1qò=ápf(ÙòYÙòYÓòYÓò\úf/øwZòL$ 輑üÿòD$òD$諑üÿòL$ ò=ípò•pò\T$òYùòXÐòYT$(òYÏòXÊf/L$†-ÿÿÿòD$(òYD$HƒÄ0[Ã…¾ýÿÿfïÀÃD… ýÿÿ魐üÿòL$èR–üÿòL$éÑþÿÿ€HƒìòL$èSüÿòL$HƒÄòYÁÃfHƒìòD$èaüÿò^D$膎üÿò\ÞoHƒÄÃf„fïÉf.ÁzufïÀÀHƒìòD$èüÿò
¡oò^L$HƒÄéRüÿfHƒìòD$èñüÿfWpèŽüÿò
lof(Ñò^L$HƒÄò\Ðf(ÂéüÿHƒìòY”oèï’üÿHƒÄòXÀÃfDfïäf.Ì‹êSf(ÐH‰ûHƒì òof/Ðwxf(ÁH‹?òL$òYCoòT$èȎüÿfïÀòT$H‰ßHÀòH*ÀòXÂ蚍üÿòL$òD$f(Áè%üÿòT$…ÀtòûnHƒÄ f(Â[Ãf„ò\ÐòL$f(ÂèMüÿH‰ßòD$èüÿòL$fïíf(Ðf.éòQÙw*òXÓòYÒòXT$HƒÄ [f(ÂÀ…ÿÿÿéýŒüÿòD$f(Áò\$è8”üÿò\$òT$ë³f.„SH‰ûHƒìò$f(ÊòD$èԓüÿò$$H‰ßf(ÈòYÌf(Äò$薌üÿò\$ò$HƒÄ[òYÃò^Èf(ÁÃf„f(Øf(ÁSH‰ûòXÁf(ëHƒì ò^èòL$ò\$ò,$è~Œüÿò\$òL$òY
ºmf(ÓòYÐòYÐòYÊf(ÂòYÂòXÁfïÉf.ÈòQàwXò\ÔòY$H‹ò\$H‹8òXÓò$ÿPò\$ò$f(Ëf(óòXÊò^ñf/ðsòYÛò^Úf(ÓHƒÄ f(Â[Ãò\$òT$òd$èá’üÿò\$òT$òd$ézÿÿÿf.„HƒìòL$ò$蜋üÿòL$òYÁòX$HƒÄÄHƒìè׋üÿHƒÄéþŠüÿ@f.„SH‰ûHƒì òD$èM‹üÿòL$H‰ßòY
|lòD$f(ÁòL$èǏüÿòL$fïäf(Øf.áòQÑw"f.ãòL$òYÊòQÓw5f(ÁHƒÄ ò^Â[ÃòD$f(ÁòT$èè‘üÿfïäò\$òT$ë·f(ÃòT$òL$èQüÿòT$òL$ë¨òˆkSH‰ûò\Ñò^Ñf(ÊèÏüÿH‹;[éJ‹üÿf.„SH‰ûHƒìècŠüÿH‰ßòD$èUŠüÿòL$HƒÄ[ò^Èf(ÁÐSH‰ûHƒì0ò kòD$ f/ØòL$(‚šf/Ù‚H‹H‹8ÿPH‹òD$H‹8ÿPò
àjò^L$ òD$òD$艋üÿò
Ájò^L$(òD$òD$èj‹üÿòXD$ò=œjf/ør–f/~jv\ò\$HƒÄ0[ò^Øf(ÃÄòD$ H‰ßèŽüÿH‰ßòD$òD$(èþüÿòL$HƒÄ0[òXÁò^Èf(ÁÃfDòD$è%‹üÿf(ÈòD$ò^L$ òL$è
‹üÿòL$f(Ðò^T$(òT$ f(Ùò_Úò\Ëò\$f(ÁòL$èsˆüÿò\$òT$ òD$ò\Óf(ÂèTˆüÿòXD$詊üÿòL$HƒÄ0[ò\Èf(Áé1ˆüÿSH‰ûHƒìò$òD$èHˆüÿò$H‰ßf(ÐòYÑf(Áò$è*ˆüÿò\$ò$HƒÄ[òYÃò^Ðf(ÂÃf.„HƒìòD$葉üÿòYD$HƒÄÃfDòXifïÉòH*Îf/Ðr!òYÈòUif/Ñr鲎üÿféˆüÿòÐhSH‰óò\ÐòYÊf(Âò if/Ñrè}ŽüÿH)ÃH‰Ø[ÃDèˇüÿH)ÃH‰Ø[ÃAWAVI‰ÖAUI‰õATI‰ÌUH‰ýSHƒìhHƒù
ä1ÛH…ÉHƒÄhH‰Ø[]A\A]A^A_ÃHI‰ßI)ÏH9֏}fïöfïÿòH*öò|$f/÷òt$†±IƒÇòL$ëfDHƒëf/L$vJòL$H‹}ÿUfïÒòL$òH*Óf(éò^êòXÅèoüÿòL$òH,ÀfïÀòH*Àò\ÈL9ûuªòD$ò\ÁòH,ØM9õŽ5ÿÿÿI)ÜL‰ãé*ÿÿÿ€H9ÖfïÛHH‰ÐHNÆfïÀfïäI‰ßòH*ÃfïÒò=ZgH‰D$H‰ÐòH*ÑHMÆI)ÏI9ÏòH*\$LOùH‰D$H‰ØòI*çL)øf(Ëò^Èf(Áò\ùòYÄòX\gòD$(fïÀòH*ÀHCÿòYÂòYÁfïÉòH*ÈòYÇfïÿò|$ò^ÁòXgf.øòQЇkf(ÂIGfïÉHƒÃòYgò\$PòXgòT$Hòd$XòD$0fïÀòH*ÀH‹D$HƒÀòH*ÈòYÁfïÉòH*Ëò^Áèû‹üÿòH,ØfïÀHCòH*Àè4‰üÿH‹D$òD$ fïÀH)ØHƒÀòH*Àè‰üÿL‰ùòt$ H)ÙH‰ÈòXðfïÀHƒÀòH*Àòt$ èéˆüÿH‹T$òXD$ L)úòD$ HDfïÀòH*ÀH‰T$8轈üÿòl$ L9|$òT$Hò\$PòXèòl$@&òXžeòYfò%®eòXT$(ò-ff(Êf(ÂfTÌf.év7òH,ÂfïÉò5]efUâòH*Èf(éòÂêf(ÅfTÆò\Èf(ÁfVÄò]Øò\$HDH‹}ÿUH‹}òD$ÿUòL$ò|$ò\PeòYD$0òL$ ò^ÁòXD$(f/øw¼f/D$Hs´èwŠüÿòH,ØfïÀHCòH*À谇üÿH‹D$òD$fïÀH)ØHƒÀòH*À萇üÿòt$L‰øH)ØòXðH‰D$PfïÀHƒÀòH*Àòt$èc‡üÿòXD$H‹D$8HDòD$fïÀòH*Àè?‡üÿòXD$òT$@òL$ ò\Ðò‘dò\ÁòYÁò\±df/Ðs=f(ÁòT$ò\ÂòYÁf/dƒÓþÿÿf(Áèò„üÿòT$òXÀf/Ђ¶þÿÿM9õHO\$PI)ÝM9üIOÝéaûÿÿfDfïäfïíòH*âòl$f/åòd$‡ƒûÿÿòD$ò\ÀòH,Øéïûÿÿf„òxcòd$XòXÜéËýÿÿòD$ò\ÀòH,ØéðúÿÿòT$8òd$0ò\$ è^‰üÿòT$8òd$0ò\$ égüÿÿ€ék‚üÿf.„éë‚üÿf.„é+†üÿf.„éK‰üÿf.„é;ƒüÿf.„H‰øHƒìH‹?ÿPfïÀÁè	ó*ÀóYЫHƒÄÐf.„H‹GH‹?ÿà€H…ö~3ATL$òUH‰ýSH‰ÓDH‹}HƒÃÿUòCøL9ãuë[]A\ÃfDÀH…ö~CATL$²UH‰ýSH‰ÓDH‹}HƒÃÿUfïÀÁè	ó*ÀóY:«óCüL9ãuØ[]A\ÃÀAUL-oATL%wUH-SH‰ûHƒì(H‹;ÿSfïÉH‰ÆHÁèHÁîòH*È@¶ÎòAYÌH‰ÊH9D͇H‹;H‹C@„ö„„ƒêòA\ÍòL$HcÒòADÕò\$ò\Ãò$ÿÐòL$òD$f(áfW%ùaf(Äèðüÿò$òYT$ò\$òL$òXÓf/†MÿÿÿHƒÄ(f(Á[]A\A]Ã@ÿÐò
aò\Èf(Áè‚üÿò
AªHƒÄ([]ò\ÈA\A]f(ÁÃfDH…ö~3ATL$òUH‰ýSH‰ÓDH‰ïHƒÃ茀üÿòCøL9ãuê[]A\ÃDÀAVI‰þAUL-²aATL%©eUH-¡iSHƒìI‹>AÿVfïɉÆÁè	Ñîó*È@¶ÎóAYŒH‰Ê9D‡ˆI‹>I‹F@„ö„ƒêóA\óL$HcÒóAD•ó\$ó\ÃóD$ÿÐóL$‰Ã(éW-ªÁë	(ÅèF‚üÿfïÒó\$óL$ó*ÓóYú¨óYT$óXÓ/†KÿÿÿHƒÄ(Á[]A\A]A^ÀÿÐfïÉóƨÁè	ó*ÈóY
³¨ó\Á蚃üÿó
ª¨HƒÄ[]ó\ÈA\A]A^(ÁÃ@f.„H…ö~3ATL$²UH‰ýSH‰ÓDH‰ïHƒÃ蜂üÿóCüL9ãuê[]A\ÃDÀH…ö~KATL$òUH‰ýSH‰ÓDH‹}HƒÃÿUò
õ^ò\Èf(ÁèèüÿfW€_òCøL9ãuÎ[]A\ÐÃDf.„H…ö~kATL$²UH‰ýSH‰ÓDH‹}HƒÃÿUfïÀò
‘^Áè	ó*ÀóY¢§óZÀò\Èf(ÁèqüÿòZÀWæ¨óCüL9ãu´[]A\ÀÃDf.„AWAVI‰þAUL-P—ATL%GŸUH½ÿÿÿÿÿÿSH4Hƒì(éI‹>I‹F…Ò„ЃêòËòL$HcÒòÓò\$ò\Ãò$ÿÐòL$ò%$§òD$òYáf(ÄòYÁèM|üÿò$òYT$ò\$òL$òXÓf/ÂwAI‹>AÿVfïÉI‰Ç¶ÈIÁï	H‰ÊL‰þH!îòH*ÎòAYLÍöÄtfW
õ]I94̆CÿÿÿHƒÄ(f(Á[]A\A]A^A_ÄI‹>I‹FÿÐò5]ò\ðf(Æè~üÿò
Z¦I‹>òYÈò$AÿVò=ò\ò\øf(Çèå}üÿò$fWx]f(ÑòXÀòYÑf/Âv–òX
¦A÷Ç„fÿÿÿfW
I]éYÿÿÿ@H…ö~3ATL$òUH‰ýSH‰ÓDH‰ïHƒÃèLüÿòCøL9ãuê[]A\ÃDÀAVI‰þAUL-r…ATL%i‰UH-aSHƒì錀I‹>I‹F…Ò„؃êóTHcÒóD•óT$ó\ÂóD$ÿÐò%U¥fïÉóZL$‰ÃòYáÁë	f(ÄòYÁèuzüÿfïÉóT$ó*ËóY
ߤóYL$óXÊóZÉf/ÁwCI‹>AÿVfï	öÈÁë	H‰Êó*ÃóAYDóD$öÄt
Wø¥óD$A9Œ†8ÿÿÿóD$HƒÄ[]A\A]A^ÃDI‹>I‹FÿÐfïÀó5_¤Áè	ó*ÀóYL¤ó\ð(Æè0üÿóD¤I‹>óYÐóT$AÿVfïÉó¤Áè	ó*ÈóY
¤ó\Áèó~üÿóT$(ÈW
S¥(ÂóYÂóXÉ/ȆoÿÿÿóXç£óT$€ç„@ÿÿÿW!¥óT$é.ÿÿÿfDH…ö~3ATL$²UH‰ýSH‰ÓDH‰ïHƒÃè\~üÿóCüL9ãuê[]A\ÃDÀf.HZ‹Rfïÿf.Ç‹4SH‰ûHƒì0ò=$ZòD$f/ø†ä@H‹;ÿSH‰ßòD$èÌyüÿò
ôYòl$òT$ò\Íf/Êr.ò
ÖYòD$f(Âò^Íèƒzüÿò\$f/Ør§HƒÄ0[ÐòD$ò¢YòL$ ò\Âò^D$èzüÿòt$òL$ f(Ðf(ÆòT$òYÂò\Èf(Áò
_Yò^ÎèzüÿòT$ò\$ò\Úf/Ø‚,ÿÿÿHƒÄ0[ÃfDò|$ò\=ZYòZYòYÇò|$(fïÿf.øòQȇò5öXò^ñòt$@H‰ßè°}üÿfïäf(ÈòD$òYÁòXÆXf/àsØf(ÐòL$H‹;òYÐòYÂòD$ÿSòL$òÜXò=ŒXf(ÙòYÙòYÓòYÓò\úf/øwZòL$ ègyüÿòD$òD$èVyüÿòL$ ò=˜Xò@Xò\T$òYùòXÐòYT$(òYÏòXÊf/L$†0ÿÿÿòD$(òYD$HƒÄ0[ÃfD…ÆýÿÿfïÀÃD…¨ýÿÿéµwüÿòL$èú}üÿòL$éÑþÿÿDf.„.ݠ‹‹fïÿ.Ç‹nSH‰ûHƒì ó5¶ óD$ót$ó5¦ /ð†ùf„H‹;ÿSfïÒH‰ßÁè	ó*ÐóYT$óT$è«züÿó
g ól$óT$ó\Í/Êr.ó
J óD$(Âó^Íèdzüÿó\$/Ør™HƒÄ [ÃóD$ó óL$ó\Âó^D$èízüÿót$óL$(Ð(ÆóT$óYÂó\È(Áó
֟ó^ÎèùyüÿóT$ó\$ó\Ú/Ø‚ ÿÿÿHƒÄ [Ãf.„ól$ó\-¦ŸfïöóžŸóYÅól$.ðóQȇ2ó=kŸó^ùó|$ó=UŸó|$€H‰ßèzüÿfïä(ÈóD$óYÁóX+Ÿ/àsÚ(ÐóL$H‹;óYÐóYÂóD$ÿSóL$fïÀóŸÁè	ó=ìž(Ùó*ÀóYÙóYD$óYÓóYÓó\ú/øwYóL$è«yüÿóD$óD$èšyüÿóL$ó5¼žó˜žó\T$óYñóXÐóYT$óYÎóXÊ/L$†%ÿÿÿóD$óYD$HƒÄ [Ã…ŒýÿÿfïÀÃD…oýÿÿé}xüÿóL$èxüÿóL$é¸þÿÿ€H‰øHƒìH‹?ÿPHƒÄHÑèÐf.„H‰øHƒìH‹?ÿPHƒÄÑèÃff.„ë¾@f.„H‹GH‹?ÿà€f.˜Tº›ÀE„À…Uf.õ›ÂD„À…?USHƒì(ò-áf/èƒÿf(Ð1íf(Êò%ETH6UòžòYÊHPÀò^áò
’ëòHƒèòYÌòXËH9ÂuëòD$f(ÂòL$òT$èðtüÿòT$òL$ò5\f/t$ò^Êf(Úò\TòYØòX
BòXËò\ÊrFH…í~AHƒÅ»fò\˜SòL$HƒÃf(ÂòT$ètüÿòL$H9ëòT$ò\ÈuÊHƒÄ(f(Á[]Àf(ÍfïÒò\ÈòH,éòH*ÕòXÐéèþÿÿf„fïÉf(ÁÀHƒìòL$ò$èÜwüÿòL$òYÁòX$HƒÄÄHƒìòD$è±rüÿòYD$HƒÄÃfDHƒìH‰øH‹?òL$ò$ÿPòL$òYÁòX$HƒÄÃ@HƒìòL$è±qüÿòL$HƒÄòYÁÃfHƒìóL$èsüÿóL$HƒÄóYÁÃfSH‰ûHƒì ò5PRòD$f/ðòL$rf/ñsBòD$H‰ßèJqüÿH‰ßò$òD$è7qüÿò$HƒÄ [òXÁò^Èf(ÁÃfïäf/ÄwnH‹;ÿSH‹;ò$ÿSò$ò
ØQò^L$òD$f(ÃèƒrüÿòT$ò
µQò^L$ò$f(ÂèarüÿòX$ò=”Qf/ør˜ëŒ@ò<$HƒÄ [ò^øf(ÇÃDHƒìòY´QèpüÿHƒÄòXÀÃfDSH‰ûHƒìò$òD$èhuüÿò$H‰ßf(ÐòYÑf(Áò$èJuüÿò\$ò$HƒÄ[òYÃò^Ðf(ÂÃf.„SH‰ûHƒìè³uüÿH‰ßòD$è¥uüÿòL$HƒÄ[ò^Èf(ÁÐHƒìòD$èpüÿò^D$èFoüÿò\žPHƒÄÃf„fïÉf.ÁzufïÀÀHƒìòD$è9püÿò
aPò^L$HƒÄéqüÿfHƒìòD$èpüÿfWÙPèÔnüÿò
,Pf(Ñò^L$HƒÄò\Ðf(ÂéÑpüÿSH‰ûHƒìò$òL$ë
fïÒf/ÂwFH‹;ÿSf/0Præò
N™ò\Èò\Èf(ÁèÅpüÿòYD$ò$HƒÄ[ò\Øf(ÃÃ@òXÀèŸpüÿòYD$òX$HƒÄ[Ã@f.„SH‰ûHƒìò$òL$DH‹;ÿSòZOòROò\Ðf/Úf(ÂvÜè?püÿfW×Oè2püÿòYD$ò$$HƒÄ[ò\àf(ÄÃf„SH‰ûHƒìò$òL$DH‹;ÿSfïÒf/Âvðò
àNò\Èò^ÁèÓoüÿòYD$òX$HƒÄ[ÃfHƒìè×rüÿHƒÄéNmüÿ@f.„HƒìH‰øH‹?ò$ÿPò
†Nò\Èf(ÁèyoüÿòY¡NfïÒf.ÐòQÈwò$HƒÄòYÁÃòL$èjtüÿòL$ëßfSH‰ûHƒì òD$èýrüÿòL$H‰ßòY
lNòD$f(ÁòL$è'müÿòL$fïäf(Øf.áòQÑw"f.ãòL$òYÊòQÓw5f(ÁHƒÄ ò^Â[ÃòD$f(ÁòT$èØsüÿfïäò\$òT$ë·f(ÃòT$òL$è±süÿòT$òL$ë¨UH‰ýSHƒìXf/ÿ–ò$sxò<$f.=KMzu1ÛHƒÄXH‰Ø[]Ãò$fWÛM1ÛèÔküÿò
,MòD$ë@HƒÃò$H‹}ÿUò$òYÈf/L$wßHƒÄXH‰Ø[]ÃDf(àòQèfïÀf.Äòl$‡ò$èÊmüÿòD$(òD$òYN–òXN–f(ðòD$òYD–f(Îò\
H–ò\5–f(àò<–ò\%$–ò^Áò
@–f(ìòd$0òXìòl$HòX–òD$8ò–ò^Æò\ÈòL$@H‹}ÿUH‹}f(Ðò\iLòT$ÿUòT$ò
RLòD$f(ÂfTLò\ÈòD$Hò^ÁòL$òXD$òYÂòX$òX¥•è`qüÿòL$f/
š•òH,Øò\$rò|$@f/ûƒ@þÿÿH…Ûˆ\ÿÿÿò-t•f/év
f/Ù‡Dÿÿÿf(ÃòL$ èelüÿòD$òD$8èTlüÿòL$ òl$0òD$òD$òYÉò^éòXÅè+lüÿòL$HCòXL$ò\ÈfïÀòH*ÀòL$fïÉòH*ËòYL$(ò\$òL$èÙmüÿòL$ò\Èf/L$‚£þÿÿHƒÄXH‰Ø[]Ãf(Äèàpüÿéçýÿÿf.„ò¨JSH‰ûò\Ñò^Ñf(Êè3müÿH‰ß[éjjüÿf.„AVfïÉAUòH*ÎI‰ÕATI‰ôUSH‰ûHìЋòD$x…Àt
H9r„š	òAJòt$xM‰eAÇEf(úòAuò\þòt$Hf/þò|$@†C	ò\$Hòl$@òT$òYËòA]òAm òXÙòL$òA](f(Ãò$èkoüÿòL$ò$òYL$@òH,èfïÀòT$I‰m0f(áòL$`òQÉf.ć 	òY
“ò-ŸIò5ÿIf(ÁòL$@òY
e“ò\Áf(àf(ÈfTåf.ô‡KfïÀò5IòH*Åf(þòXÎòt$ òXøf(áòL$òX“òAM8f(ïòA}@ò¼$€ò\éòXÏf(ùòL$pòAMPò
í’òl$0ò^Èòã’òAmHòXÁòL$HòYÍfD(ÀòD$8òAEXf(Ãò\Åf(ëò\éf(Îò^ÅòYÈòXÊòYÈf(ÇòY|$@ò\Ãf(éòL$Xò^ÇòAM`òYðf(ÎòXÊòYÈfA(ÀòAXÀòXÐfA(Àò^ÅòL$hòAMhòYÔòT$òAUpòD^ÁòXÂf(èòD$PòAExfA(ÀòXÅòD$òA…€@H‹;ÿSòL$H‹;òYÈò$ÿSò$f/L$f(Іˆf/L$‡òt$ò|$8fïÛòH*Ýò\ÎòY×f(Áò^Çf(Êò{GòXÊòT$(òXD$0ò\ØòX\$ fTyGò^Þò\Ëf/Êò$‡ZÿÿÿèÝlüÿò$òT$(òL,èM‰îI)îL‰òHÁú?H‰ÐL1ðH)ÐHƒø~#òD$`òYD$ fïÛòH*Øò\Âf/ÇæIT$fïÀòd$Hò^d$@òH*ÂòYÄI9í/Œqf/ʇÏþÿÿM)ìòt$xf/t$ MGìHÄÐ[]L‰èA\A]A^ÐfïÀA¾f.ЛÀDDðf/L$Pwkf(ÂòL$(ò$è_güÿò^D$XòXD$0èîküÿòL,èM…íˆXþÿÿE„ö…OþÿÿòL$(ò\L$ò$òYÊòFòYL$Xéâþÿÿ€f(ÂòL$(ò$èôfüÿòt$pò^D$hò\ðf(Æè{küÿòL,èM9ìŒåýÿÿE„öò$òL$(…Ñýÿÿò\L$PòYÊò§EòYL$héoþÿÿ@HUI9ÕŒÊþÿÿIE€fïÛf(øòH*ÚHƒÂò^ûf(ßò\ÜòYÓH9ÂuÚé”þÿÿDIUH9ꏂþÿÿHE€fïÛf(èòH*ÚHƒÂò^ëf(Ýò\Üò^ÓH9ÂuÚéLþÿÿDf(Óò^ŒEòl$`H‰ÂòXH÷ÚH¯Âf(ÅòXÅòYÓòXøŽò^Ýò^ÕòXT$ òYÓfïÛòH*Øò^Øf(ÁòT$(ò$èeüÿò$òT$(f(èf(Ãò\Âf/ŇÅýÿÿòXÓòl$(f/ꇀüÿÿIEfEïÒfïÉòL*ÐHEfEïäòH*ÈID$fïäH)èòL*àL‰àL)èfE(êòD”$˜f(ÁHƒÀf(ñòŒ$¨òA^ÂòH*àòEYêfE(ôòD¤$òYñòEYôfD(Ìò$$òDYÌòD¬$Èò´$ÀòD´$¸òDŒ$°è«düÿòD¤$ò„$ˆòD¤$ fA(ìò^,$f(Åè{düÿòT$@ò4$òD”$˜òYt$Hò„$òAYÒf(Æò^ÂèEdüÿò%uòuL‰àòDYH)èò´$ÀòŒ$¨f(üòD´$¸òD¬$ÈfA(ÓòDŒ$°òD¤$ ò^ÖòD”$˜òD$ò\úf(×f(ûò^Öò\úòøŒf(êò^þò\ïf(ýf(ìò^þf(÷ò=܌fD(ÿòD\þfïöòH*ðòXt$ òY´$òD^ùòŒ$ˆòYŒ$€òXñfïÉòI*ÎòYÈf(ÆòXÁfA(ËòA^ÎòE^øò\éf(Íf(ëòA^ÎòAXÇò\éf(Íf(êòA^Îò\éf(Íf(ìòA^ÎfD(÷òD\ñfA(ËòA^ÍòE^Ùò\éf(Íf(ëòA^ÍòA\ãòA^áò\éf(Íf(êòA^Íò\ÜòA^Ùò\éf(Íf(ïòA^Íò\ÓòE^ôò\éf(Íòl$(òA^ÊfE(æòE^àòA^ÑòAXÄòA^Èò\úòXÁf(Ïò^$òA^ÈòXÁf/è‡SùÿÿéúÿÿfDò¼$€òD$òYÂò\øf(ÇòXÁè¬füÿòL,èéKúÿÿfòH,ÀfïäfUèòH*àf(ôòÂðf(ÎfTÊò\áf(ÌfVÍé÷ÿÿ@f(âò|$Hò\çòd$@é¤öÿÿf.BŠ[öÿÿ…Uöÿÿòz8òròb H‹j0ò|$òz@òYÎòt$Hò5¾@ò¼$€òzHòd$@ò|$0òzPòYÌòt$ ò|$pòzXò|$8òz`ò|$XòzhòL$`ò|$hòzpò|$òzxò|$Pòº€ò|$éøÿÿf(Äò\$ò$èûeüÿòT$ò\$ò$é6öÿÿDAUI‰ÕATI‰ôUH‰ýSHƒìH‹òD$…Àt
H9r„OòT$ò=‰?fïÉM‰eòI*ÌAÇEò\úòAUòA} f(ÇòL$ò|$èO`üÿòL$òYÁòL$ èÚ]üÿòT$òL$ ò\$òD$òYÑòAEfïÀòYÚòAUXòX?f.ÃòQã‡ÜòY%|ˆòXÔf/ц.òH,ÙI‰]0H‹}ÿUòd$1Àf/Äf(Ìw!ëbf.„H‹}ÿUòL$1Àf/ÁvCHƒÀH9Ã|âL‰âfïÒò\ÁH)ÂHƒÂòH*ÒòYT$òYÊfïÒòH*ÐòYT$ò^Êf/Áw½HƒÄH[]A\A]ÃDf.BЦþÿÿ… þÿÿòZ H‹Z0ò\$òZò\$éCÿÿÿf(ÃòT$8òd$0òL$(ò\$ èdüÿòd$0òY%y‡òT$8òL$(ò\$ òXÔf/чëþÿÿf(ÃòT$ èÚcüÿòT$ @òH,ÚéÍþÿÿfDH…ö„fïÉ”Áf.Á›ÀEDÀujòÊ=fïÉòH*Îf/ÐròYÈòÇ=f/ÑrIé$cüÿ@òH=SH‰óò\ÐòYÊf(Âò˜=f/Ñr"èõbüÿH)ÃH‰Ø[ÃD1ÀÃDé;\üÿè3\üÿH)ÃH‰Ø[Ðf.„SH‰ûHƒì òD$f(ÁòL$èC[üÿ…À…»òL$fïíf.Í‹·ò¯<òd$f/àv[ò\àH‰ßòL$f(Äè½`üÿH‰ßòD$èOaüÿòL$fïöf(Ðf.ñòQÙ‡|òXÓf(ÂòYÂòXD$HƒÄ [ÃòY
<H‰ßf(Áè\üÿfïÀH‰ßHÀòH*ÀòXD$HƒÄ [éE`üÿDò`<HƒÄ [Ãf…CÿÿÿòD$HƒÄ H‰ß[é`üÿòD$f(Áò\$èòaüÿò\$òT$é^ÿÿÿSH‰ûHƒìò$f(ÊòD$è4`üÿò$$H‰ßf(ÈòYÌf(Äò$è¶_üÿò\$ò$HƒÄ[òYÃò^Èf(ÁÃf„f(Øf(ÁSH‰ûòXÁf(ëHƒì ò^èòL$ò\$ò,$èþ_üÿò\$òL$òY
z;f(ÓòYÐòYÐòYÊf(ÂòYÂòXÁfïÉf.ÈòQàwUò\ÔòY$ò\$H‹;òXÓò$ÿSò\$ò$f(Ëf(óòXÊò^ñf/ðsòYÛò^Úf(ÓHƒÄ f(Â[Ãò\$òT$òd$è¤`üÿò\$òT$òd$ë€SH‰ûHƒì@òD$8f(ÁòL$ èÃXüÿ…À…«òS:f/D$ ‡wò—„òt$ f/Ɔò:fïíòl$òD$ò^ÆòXÆòD$0ë0€f(ùò^øf(ÇèßZüÿòXD$òL$ò\Áf/D$syH‹;ÿSòY„è[üÿò\$0H‹;f(ËòYÈòXÃòXL$f(áòL$ ò^àò\Üòd$(òYËòL$ÿSòL$òނò\ÑòYÑò\Ðf/T$‚^ÿÿÿH‹;ÿSòD$òD$(èÇZüÿò
9f/L$vfW¿9òT$8ò
ƒòXÐf(ÂfT!9òT$òXSƒèZüÿòl$òT$ò\:ƒf/êv.fWl9HƒÄ@[ÃfDH‹;ÿSòXÀò\®8òYƒHƒÄ@[Ãòð8HƒÄ@[Ãfò|$ òâ8ò-z8òYÇòl$òYÇfïÿò|$òXÅf.øòQÈwYòXL$òt$f(ÁòXÁf.ðòQÐwNò\Êòt$ f(Áf(ÎòXÎò^Áf(ÈòYÈòXÀòXL$ò^ÈòL$0é4þÿÿòL$è^üÿòL$ë”òL$(òT$è÷]üÿòL$(òT$ë“f„SH‰ûHƒì0ò5°7òD$ ò\ðf(ÆèXüÿòD$(H‹;ÿSf/D$ òD$ƒºH‹;ÿSòYD$(èVüÿòf7òT$ò\Øf(ÃòYÃf/Âr~f(ÂòT$ò\$è9Xüÿò\$òD$f(Ãè$XüÿòL$ò^Èò7òXÁè©\üÿòH,ÀH…ÀžÁŽaÿÿÿòT$fïöf.Ö›ÂEфÒ…EÿÿÿHƒÄ0[ÃfDf/Ӹré¸ëâ@f.„Hƒìò¤6H‰øH‹?òD$ò\Øò$ÿPòL$¸ò$f/Ávf(ÑfòYËHƒÀòXÑf/ÂwîHƒÄÃf„HƒìH‰øH‹?ò$ÿPò66ò\Ðf(Âè)Wüÿò!6ò\$òD$f(Ãè
WüÿòL$ò^Èf(Áèz\üÿHƒÄòH,ÀÃf/ 6ré¡Yüÿé›Süÿf.„SH‰ûHƒì ò\À5f(ÈòD$ò&èiVüÿòD$H‹;ÿSH‹;ò$ÿSò%‡5ò\$$òD$ò
l5ò^L$f(Äè%Vüÿò
}5ò=Ý5f(Ðf(ØfTÁf.øv7òH,ÂfïÀò%25fUËòH*Àf(ðòÂòf(ÖfTÔò\Âf(ÐfVÑf/|‡^ÿÿÿò=ö4f/ú‡Lÿÿÿf(ÇòL$ò$ò^ÂòXÇèUüÿòL$ò$f(Øò\¹4òl$òYÊò^ÅòYËf(Ýò\›4ò^Ëf/Á‚íþÿÿHƒÄ òH,Â[Ãff(éf(ÚHƒì8H‰øò\èò\ØH‹?òT$òL$òD$(f(õò\$ò^óòl$ ò4$ÿPò4$ò\$òL$òT$f/ðr3òl$ fïÉòd$(òYÝòYÃf.ÈòQÐwHòXÔHƒÄ8f(ÂÃ@f(úò\ùò
Ø3ò\ÈfïÀòYßòYÙf.ÃòQËw*ò\ÑHƒÄ8f(ÂÃòd$ò$èÁYüÿòd$ò$ë›f(ÃòT$ò$è YüÿòT$ò$ëµ1ÀH…ö„•ATI‰ôIÑìUH‰õI	ôSH‰ûL‰àHÁèI	ÄL‰àHÁèL	àI‰ÄIÁìL	àI‰ÄIÁìI	ÄL‰àHÁè I	ĸÿÿÿÿH9ÆwfDH‹;ÿSD!àH9Årò[]A\ÃDH‹;ÿSL!àH9ÅsèH‹;ÿSL!àH9ÅräëØf.„ÃDf.„AWAVAUATI‰ôUSHƒìH…Òtt¸ÿÿÿÿI‰þI‰ÍH‰ÕH‰óH‹?H9ÂwqI‹F„A‰ÔE„À…âJ‰L$ÿÐD‹l$A‰ÄM¯åE9åv$‰è1Ò÷ÐA÷õA‰×A9ÔsI‹>AÿVA‰ÄM¯åE9çwíIÁì IÜHƒÄL‰à[]A\A]A^A_Ã@I‹FHƒúÿ„¢E„ÀuTLbÿÐI÷äH‰ÆH‰×I9Äv+H÷Õ1ÒH‰èI÷ôI‰ÕH9ÖsfDI‹>AÿVI÷äH‰×I9ÅwîH‰øL$ëDI‹>I‹FÿÐL!èH9ÅrïL$épÿÿÿfDI‹>I‹FÿÐD!èD9àwïL$éPÿÿÿfDÿЉÀIÄé>ÿÿÿ@ÿÐIÄé0ÿÿÿfDAWAVAUATUS‰óHƒì…ÒteI‰þA‰̉ÕA‰õH‹?I‹Fƒúÿ„E„ÀucJ‰L$ÿÐD‹d$‰ÃI¯ÜA9Üv%‰è1Ò÷ÐA÷ôA‰×9ÓsI‹>AÿV‰ÃI¯ÜA9ßwîHÁë DëHƒÄ‰Ø[]A\A]A^A_ÃfDI‹>I‹FÿÐD!à9ÅrðA\ëÒf„ÿÐÃëÃf.„AW‰ðAVAUATUSHƒìH‹l$Pf…Ò„ðL‰ËA‰õI‰üE‹	fƒúÿ„A‰×A‰ÎE„À…¯DrE…É… ‰T$H‹?AÿT$‹T$‰EÇ·ME·þA¯ÏfA9Ά¡÷Ò·™A÷ÿA‰Öf9Ñr(é‹I‹<$AÿT$‰EÇ·MA¯ÏfA9Îvh‹…ÀtÚÁmƒ+ëãf„I‹<$AÿT$‰EÇ·ED!ðfA9ÇsD‹E…ÉtÙÁmƒ+·ED!ðfA9ÇräDèHƒÄ[]A\A]A^A_ÃHƒÄÁé[AD
]A\A]A^A_Ãf„E…Éu;H‹?AÿT$‰EÇ·EHƒÄ[]DèA\A]A^A_Ã@Ámƒ+éíþÿÿ@Ámƒ+ëÍ€AW‰ðAVAUATUSHƒìH‹l$P„Ò„ÞL‰ËA‰ôI‰ýE‹	€úÿ„þA‰×A‰ÎE„À…ŸDzE…É…‰T$H‹?AÿU‹T$‰EÇD‰øöe‰ÁA8dž™÷ÒA¶ÿ¶™÷ÿA‰Ö8Ñr$遐I‹}AÿU‰EÇD‰øöe‰ÁA8Ævb‹…ÀtÜÁmƒ+ëäI‹}AÿU‰EǶED!ðA8ÇsD‹E…ÉtÛÁmƒ+¶ED!ðA8ÇråDàHƒÄ[]A\A]A^A_ÃfDHƒÄfÁé[A]A\A]A^A_Ãf„E…Éu;H‹?AÿU‰EǶEHƒÄ[]DàA\A]A^A_ÃDÁmƒ+éúþÿÿ@Ámƒ+ëÌ€U‰ðSHƒìH‹l$ „ÒtA‹…ÀtÑmAƒ)‹EƒàHƒÄ[]Ã@H‰øL‰ËH‹?ÿP‰EÇëØf„H…Òu#IÉH…ÉŽQfDI‰1IƒÁL9ÈuôÃAW¸ÿÿÿÿI‰ÿAVAUI‰ÕATUH‰õSHƒìH9‡“„ME„À…ìH…É~nIÉDbL‰ËH‰$‰ÐM‰æ÷ЉD$DI‹?AÿW‰ÁI¯ÌD9ñs(‹D$1ÒA÷öA‰Õ9ÑsfDI‹?AÿW‰ÁI¯ÌA9ÍwîHÁé HƒÃHéH‰KøH9$u±HƒÄ[]A\A]A^A_ÃfHƒúÿ„~E„À…ÝH…É~×IÉLbL‰ËI÷ÕH‰$fDI‹?AÿWI÷äI‰ÁI‰ÒL9às%L‰è1ÒI÷ôI‰ÖI9ÑsI‹?AÿWI÷äI‰ÒI9ÆwîL‰ÐHƒÃHèH‰CøH;$u²élÿÿÿÃ@H…ÉŽ^ÿÿÿL‰ËM$É„I‹?HƒÃAÿWHèH‰CøI9Üuéé3ÿÿÿ@H…ÉŽ&ÿÿÿL‰ËM$ÉI‹?HƒÃAÿW‰ÀHèH‰CøI9ÜuçéÿÿÿfI‰ÔIÑìI	ÔL‰àHÁèI	ÄL‰àHÁèI	ÄL‰àHÁèI	ÄL‰àHÁèI	ÄL‰àHÁè I	ÄH…ÉŽ»þÿÿL‰ËM4ÉDI‹?AÿWL!àI9ÅrñHèHƒÃH‰CøL9óuáé‹þÿÿ@I‰ÔIÑìI	ÔL‰àHÁèI	ÄL‰àHÁèI	ÄL‰àHÁèI	ÄL‰àHÁèI	ÄH…ÉŽMþÿÿL‰ËM4É€I‹?AÿWD!àA9ÅrñHèHƒÃH‰CøL9óuáéþÿÿff.„…Òu$I‰H…ÉŽ»€A‰1IƒÁL9ÈuôÃAWI‰ÿAVAUA‰ÕATU‰õSHƒìƒúÿ„‰E„À…¸H…É~hI‰A÷ÕDbL‰ËH‰$M‰æD‰l$I‹?AÿW‰ÁI¯ÌA9Îv(‹D$1ÒA÷öA‰Õ9ÑsfDI‹?AÿW‰ÁI¯ÌA9ÍwîHÁé HƒÃé‰KüH;$u³HƒÄ[]A\A]A^A_ÃÃH…É~èL‰ËM$‰@I‹?HƒÃAÿWè‰CüL9ãuëHƒÄ[]A\A]A^A_Ã@‰ÐI‰ÄIÑìI	ÄL‰àHÁèI	ÄL‰àHÁèI	ÄL‰àHÁèI	ÄL‰àHÁèA	ÄH…ÉŽyÿÿÿL‰ËM4‰DI‹?AÿWD!àA9ÅrñèHƒÃ‰CüI9ÞuãHƒÄ[]A\A]A^A_Ã@AWAVAUATU‰õSHƒìf…Òu+IIH…É~ffA‰)IƒÁL9ÈuóHƒÄ[]A\A]A^A_Ã@I‰ÿfƒúÿ„ÓE„À…H…É~ÒDrII÷ÒE1ÀH‰$·ÂE·æL‰Ë1ÿ‰D$E…À…‰I‹?AÿWA¸‰Ç·ÈA¯ÌfD9ñsJ‹D$™A÷üA‰Õf9Ñs:E…Àt€ÁïE1	ùA¯ÌfA9ÍvI‹?AÿW·ȉÇA¯ÌfA9ÍwØA¸ÁéHƒÃéf‰KþH;$„(ÿÿÿE…À„zÿÿÿÁïE1	ùë‚„H…ÉŽÿÿÿL‰ËM$I1Ò1Àë+f.„I‹?AÿWºLHƒÃf‰KþI9Ü„Ìþÿÿ…ÒtÛÁè1Òëà@·ÂA‰ÖI‰ÄIÑìI	ÄL‰àHÁèI	ÄL‰àHÁèI	ÄL‰àHÁèA	ÄH…ÉއþÿÿM,IL‰Ë1É1À€…Ét@ÁèD‰â1É!ÂfA9ÖsI‹?AÿWD‰â!ÂfA9Ör޹êHƒÃf‰SþI9ÝuÂHƒÄ[]A\A]A^A_Ðf.„AWAVAUA‰õATUSHƒì„Òu+I	H…É~fEˆ)IƒÁI9ÁuôHƒÄ[]A\A]A^A_ÃDI‰þ€úÿ„ôE„À…;H…É~Ò¶ÂL‰ËI,	E1ɉD$Db1ÿE…É…¸fDI‹>AÿVA¹‰ÇD‰à@öç‰ÁA8Ävt¸ÿ+D$E¶ܙA÷ûA‰×8Ñr<ëZf.„I‹>AÿV‰ÇD‰à@öç‰ÁA8džvÁïD‰àA¹@öç‰ÁA8Çv E…ÉtËÁïD‰àAƒé@öç‰ÁA8Çw瀉ÈHƒÃfÁèDèˆCÿH9Ý„ÿÿÿE…É„NÿÿÿÁïAƒééQÿÿÿfH…ÉŽãþÿÿL‰ËI,	1Ò1Àë+f.„I‹>AÿVºALHƒÃˆKÿH9Ý„«þÿÿ…ÒtÛÁèƒêëß¶ÂA‰ÔH‰ÅHÑíH	ÅH‰èHÁèH	ÅH‰èHÁè	ÅH…ÉŽqþÿÿM<	L‰Ë1É1Àë)„I‹>AÿV‰ê!ÂA8ÔsPÁè‰ê¹!ÂA8Ôs…ÉtÛÁè‰êƒé!ÂA8Ôrí@DêHƒÃˆSÿI9ßuÚHƒÄ[]A\A]A^A_Ãf.„DêHƒÃ¹ˆSÿI9ßu­ëÑf.„A¹éµþÿÿDH…É~kAVE1ÀI‰þ1ÀAUA‰ÕATA‰ôUI,	SL‰Ëë!@I‹>AÿVA¸‰CáˆHƒÃH9ÝtD‰áE„ítíE…ÀtÖÑèAƒèëÛfD[]A\A]A^ÀÃDf.„AWI‰÷AVAUATUH‰ÕSHƒì(L‰D$Iƒø~rL‰ÀI‰üI‰ÎM‰ÍHƒè1Ûò
×#H‰D$ëòL$òA\ÞHƒÃH;\$t?òAÞL‰þL‰êL‰çòL$ò^ÁèëHüÿI)ÇH‰DÝM…ÿ¾HƒÄ([]A\A]A^A_ÃH…ö~ìH‹D$L‰|ÅøHƒÄ([]A\A]A^A_ÐHƒìHƒÄÃ%.200s.%.200s is not a type object%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObject%s.%s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObject%.200s does not export expected C variable %.200sC variable %.200s.%.200s has wrong signature (expected %.500s, got %.500s)%.200s does not export expected C function %.200sC function %.200s.%.200s has wrong signature (expected %.500s, got %.500s)numpy.random.mtrand.RandomState.__reduce__numpy.random.mtrand.RandomState.__getstate__numpy.random.mtrand.RandomState.__str__%s() got an unexpected keyword argument '%U'numpy.random.mtrand.RandomState.randnumpy.random.mtrand.RandomState.randn%s() got multiple values for keyword argument '%U'%.200s() keywords must be stringsnumpy.random.mtrand.RandomState.random_sample%.200s() takes %.8s %zd positional argument%.1s (%zd given)numpy.random.mtrand.RandomState.randomnumpy.random.mtrand.RandomState.betanumpy.random.mtrand.RandomState.exponentialnumpy.random.mtrand.RandomState.standard_exponentialnumpy.random.mtrand.RandomState.standard_normalnumpy.random.mtrand.RandomState.normalnumpy.random.mtrand.RandomState.standard_gammanumpy.random.mtrand.RandomState.gammanumpy.random.mtrand.RandomState.fnumpy.random.mtrand.RandomState.noncentral_fnumpy.random.mtrand.RandomState.chisquarenumpy.random.mtrand.RandomState.noncentral_chisquarenumpy.random.mtrand.RandomState.standard_cauchynumpy.random.mtrand.RandomState.standard_tnumpy.random.mtrand.RandomState.vonmisesnumpy.random.mtrand.RandomState.paretonumpy.random.mtrand.RandomState.weibullnumpy.random.mtrand.RandomState.powernumpy.random.mtrand.RandomState.laplacenumpy.random.mtrand.RandomState.gumbelnumpy.random.mtrand.RandomState.logisticnumpy.random.mtrand.RandomState.lognormalnumpy.random.mtrand.RandomState.rayleighnumpy.random.mtrand.RandomState.waldcalling %R should have returned an instance of BaseException, not %Rraise: exception class must be a subclass of BaseException__int__ returned non-int (type %.200s).  The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__%.4s__ returned non-%.4s (type %.200s)too many values to unpack (expected %zd)numpy.random.mtrand.RandomState.__setstate__numpy.random.mtrand.RandomState.__repr__numpy.random.mtrand.RandomState.seedvalue too large to convert to inthasattr(): attribute name must be stringnumpy.random.mtrand.RandomState.__init__numpy.random.mtrand.RandomState.get_statenumpy.random.mtrand.RandomState.tomaxintnumpy.random.mtrand.RandomState.random_integersnumpy.random.mtrand.RandomState.bytesnumpy.random.mtrand.RandomState.uniformnumpy.random.mtrand.RandomState.dirichletnumpy.random.mtrand.RandomState.multinomialnumpy.random.mtrand.int64_to_longnumpy.random.mtrand.RandomState.logseriesnumpy.random.mtrand.RandomState.geometricnumpy.random.mtrand.RandomState.zipfnumpy.random.mtrand.RandomState.poissonnumpy.random.mtrand.RandomState.negative_binomialCannot convert %.200s to %.200snumpy.random.mtrand.RandomState.binomialnumpy.random.mtrand.RandomState.triangularnumpy.random.mtrand.RandomState.set_statenumpy.random.mtrand.RandomState.permutationnumpy.random.mtrand.RandomState.shufflenumpy.random.mtrand.RandomState.hypergeometricneed more than %zd value%.1s to unpacknumpy.random.mtrand.RandomState.multivariate_normalnumpy.random.mtrand.RandomState.randintnumpy.random.mtrand.RandomState.choicecompiletime version %s of module '%.100s' does not match runtime version %sinvalid vtable found for imported typenumpy.random._bounded_integersPyObject *(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *)int (double, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)int (PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)PyObject *(void *, bitgen_t *, PyObject *, PyObject *, PyObject *)PyObject *(void *, void *, PyObject *, PyObject *, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *)PyObject *(void *, void *, PyObject *, PyObject *, int, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)PyObject *(void *, void *, PyObject *, PyObject *, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)_ARRAY_API is not PyCapsule objectmodule compiled against ABI version 0x%x but this version of numpy is 0x%xmodule compiled against API version 0x%x but this version of numpy is 0x%xFATAL: module compiled as unknown endianFATAL: module compiled as little endian, but detected different endianness at runtimenumpy.random.mtrand.RandomState
    RandomState(seed=None)

    Container for the slow Mersenne Twister pseudo-random number generator.
    Consider using a different BitGenerator with the Generator container
    instead.

    `RandomState` and `Generator` expose a number of methods for generating
    random numbers drawn from a variety of probability distributions. In
    addition to the distribution-specific arguments, each method takes a
    keyword argument `size` that defaults to ``None``. If `size` is ``None``,
    then a single value is generated and returned. If `size` is an integer,
    then a 1-D array filled with generated values is returned. If `size` is a
    tuple, then an array with that shape is filled and returned.

    **Compatibility Guarantee**

    A fixed bit generator using a fixed seed and a fixed series of calls to
    'RandomState' methods using the same parameters will always produce the
    same results up to roundoff error except when the values were incorrect.
    `RandomState` is effectively frozen and will only receive updates that
    are required by changes in the the internals of Numpy. More substantial
    changes, including algorithmic improvements, are reserved for
    `Generator`.

    Parameters
    ----------
    seed : {None, int, array_like, BitGenerator}, optional
        Random seed used to initialize the pseudo-random number generator or
        an instantized BitGenerator.  If an integer or array, used as a seed for
        the MT19937 BitGenerator. Values can be any integer between 0 and
        2**32 - 1 inclusive, an array (or other sequence) of such integers,
        or ``None`` (the default).  If `seed` is ``None``, then the `MT19937`
        BitGenerator is initialized by reading data from ``/dev/urandom``
        (or the Windows analogue) if available or seed from the clock
        otherwise.

    Notes
    -----
    The Python stdlib module "random" also contains a Mersenne Twister
    pseudo-random number generator with a number of methods that are similar
    to the ones available in `RandomState`. `RandomState`, besides being
    NumPy-aware, has the advantage that it provides a much larger number
    of probability distributions to choose from.

    See Also
    --------
    Generator
    MT19937
    numpy.random.BitGenerator

    __pyx_capi__name '%U' is not definedcannot import name %Snumpy/random/mtrand.c%s (%s:%d)mtrand.pyxrandnat leastat mostrandom_samplerandombetastandard_exponentialstandard_normalstandard_gammanoncentral_fnoncentral_chisquarestandard_cauchystandard_tvonmisesparetoweibullpowerlaplacegumbellogisticlognormalrayleighwaldan integer is requirednumpy.random.mtrand.samplenumpy.random.mtrand.ranfseed__init__BitGeneratorget_statetomaxintrandom_integersuniformdirichletmultinomiallogserieszipfpoissonnegative_binomial__init__.pxdnumpy.PyArray_MultiIterNew2Missing type objectnumpy.PyArray_MultiIterNew3triangularhypergeometricmultivariate_normalrandintchoice%d.%d%sbuiltinscython_runtime__builtins__4294967296type.pxdbool.pxdcomplex.pxdcomplexnumpydtypeflatiterbroadcastndarrayufuncnumpy.random.bit_generatorbit_generator.pxdSeedSequenceSeedlessSequencenumpy.random._commondoubleLEGACY_POISSON_LAM_MAXuint64_tMAXSIZE_rand_uint64_rand_uint32_rand_uint16_rand_uint8_rand_bool_rand_int64_rand_int32_rand_int16_rand_int8check_constraintcheck_array_constraintdouble (double *, npy_intp)kahan_sumdouble_fillcontdisccont_broadcast_3discrete_broadcast_iiinumpy.core._multiarray_umath_ARRAY_API_ARRAY_API not found_ARRAY_API is NULL pointernumpy.import_arrayinit numpy.random.mtrand_bit_generator__getstate____setstate____reduce__set_statebytesshufflepermutation°Ôüÿ0×üÿÂÕüÿ¹Õüÿ°Õüÿ<âýÿìâýÿàýÿàýÿüßýÿèGþÿ0OþÿZKþÿQKþÿHKþÿäpþÿ$rþÿmþÿúlþÿðlþÿälþÿ×pþÿøpþÿqþÿiqþÿ‹qþÿ¨ þÿ8©þÿ:§þÿ1§þÿ(§þÿ<áþÿÄìþÿ¥èþÿ˜èþÿŒèþÿThis function is deprecated. Please call randint({low}, {high} + 1) insteadFormat string allocated too short.x must be an integer or at least 1-dimensionalprobabilities are not non-negativenumpy.core.umath failed to importmean and cov must have same lengthget_state and legacy can only be used with the MT19937 BitGenerator. To silence this warning, set `legacy` to False.covariance is not positive-semidefinite.cov must be 2 dimensional and squarecheck_valid must equal 'warn', 'raise', or 'ignore'can only re-seed a MT19937 BitGeneratora must be 1-dimensional or an integerThis function is deprecated. Please call randint(1, {low} + 1) insteadRandomState.triangular (line 3149)RandomState.standard_t (line 2078)RandomState.standard_normal (line 1330)RandomState.standard_exponential (line 543)RandomState.standard_cauchy (line 2005)RandomState.random_sample (line 371)RandomState.random_integers (line 1234)RandomState.permutation (line 4480)RandomState.noncentral_f (line 1758)RandomState.noncentral_chisquare (line 1918)RandomState.negative_binomial (line 3407)RandomState.multinomial (line 4116)Providing a dtype with a non-native byteorder is not supported. If you require platform-independent byteorder, call byteswap when required.
In future version, providing byteorder will raise a ValueErrorNon-native byte order not supportedNegative dimensions are not allowedInvalid bit generator. The bit generator must be instantized.Format string allocated too short, see comment in numpy.pxdFewer non-zero entries in p than sizeCannot take a larger sample than population when 'replace=False'
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        continuous probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        .. note::
            New code should use the ``zipf`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.
        Generator.zipf: which should be used for new code.

        Notes
        -----
        The probability density for the Zipf distribution is

        .. math:: p(x) = \frac{x^{-a}}{\zeta(a)},

        where :math:`\zeta` is the Riemann Zeta function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 2. # parameter
        >>> s = np.random.zipf(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy import special  # doctest: +SKIP

        Truncate s values at 50 so plot is interesting:

        >>> count, bins, ignored = plt.hist(s[s<50], 50, density=True)
        >>> x = np.arange(1., 50.)
        >>> y = x**(-a) / special.zetac(a)  # doctest: +SKIP
        >>> plt.plot(x, y/max(y), linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        .. note::
            New code should use the ``weibull`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel
        Generator.weibull: which should be used for new code.

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> s = np.random.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and dispersion (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        .. note::
            New code should use the ``vonmises`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Dispersion of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.
        Generator.vonmises: which should be used for new code.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the dispersion,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and dispersion
        >>> s = np.random.vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        unknown dtype code in numpy.pxd (%d)
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        .. note::
            New code should use the ``uniform`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than or equal to high.  The default value is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        randint : Discrete uniform distribution, yielding integers.
        random_integers : Discrete uniform distribution over the closed
                          interval ``[low, high]``.
        random_sample : Floats uniformly distributed over ``[0, 1)``.
        random : Alias for `random_sample`.
        rand : Convenience function that accepts dimensions as input, e.g.,
               ``rand(2,2)`` would generate a 2-by-2 array of floats,
               uniformly distributed over ``[0, 1)``.
        Generator.uniform: which should be used for new code.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.
        If ``high`` < ``low``, the results are officially undefined
        and may eventually raise an error, i.e. do not rely on this
        function to behave when passed arguments satisfying that
        inequality condition. The ``high`` limit may be included in the
        returned array of floats due to floating-point rounding in the
        equation ``low + (high-low) * random_sample()``. For example:

        >>> x = np.float32(5*0.99999999)
        >>> x
        5.0


        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        .. note::
            New code should use the ``triangular`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        See Also
        --------
        Generator.triangular: which should be used for new code.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        
        tomaxint(size=None)

        Return a sample of uniformly distributed random integers in the interval
        [0, ``np.iinfo(np.int_).max``]. The `np.int_` type translates to the C long
        integer type and its precision is platform dependent.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            Drawn samples, with shape `size`.

        See Also
        --------
        randint : Uniform sampling over a given half-open interval of integers.
        random_integers : Uniform sampling over a given closed interval of
            integers.

        Examples
        --------
        >>> rs = np.random.RandomState() # need a RandomState object
        >>> rs.tomaxint((2,2,2))
        array([[[1170048599, 1600360186], # random
                [ 739731006, 1947757578]],
               [[1871712945,  752307660],
                [1601631370, 1479324245]]])
        >>> rs.tomaxint((2,2,2)) < np.iinfo(np.int_).max
        array([[[ True,  True],
                [ True,  True]],
               [[ True,  True],
                [ True,  True]]])

        state must be a dict or a tuple.
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        .. note::
            New code should use the ``standard_t`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        See Also
        --------
        Generator.standard_t: which should be used for new code.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ?

        We have 10 degrees of freedom, so is the sample mean within 95% of the
        recommended value?

        >>> s = np.random.standard_t(10, size=100000)
        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727

        Calculate the t statistic, setting the ddof parameter to the unbiased
        value so the divisor in the standard deviation will be degrees of
        freedom, N-1.

        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(s, bins=100, density=True)

        For a one-sided t-test, how far out in the distribution does the t
        statistic appear?

        >>> np.sum(s<t) / float(len(s))
        0.0090699999999999999  #random

        So the p-value is about 0.009, which says the null hypothesis has a
        probability of about 99% of being true.

        set_state can only be used with legacy MT19937state instances.
        seed(self, seed=None)

        Reseed a legacy MT19937 BitGenerator

        Notes
        -----
        This is a convenience, legacy function.

        The best practice is to **not** reseed a BitGenerator, rather to
        recreate a new one. This method is here for legacy reasons.
        This example demonstrates best practice.

        >>> from numpy.random import MT19937
        >>> from numpy.random import RandomState, SeedSequence
        >>> rs = RandomState(MT19937(SeedSequence(123456789)))
        # Later, you want to restart the stream
        >>> rs = RandomState(MT19937(SeedSequence(987654321)))
        
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        .. note::
            New code should use the ``rayleigh`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        See Also
        --------
        Generator.rayleigh: which should be used for new code.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = np.random.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        
        random_integers(low, high=None, size=None)

        Random integers of type `np.int_` between `low` and `high`, inclusive.

        Return random integers of type `np.int_` from the "discrete uniform"
        distribution in the closed interval [`low`, `high`].  If `high` is
        None (the default), then results are from [1, `low`]. The `np.int_`
        type translates to the C long integer type and its precision
        is platform dependent.

        This function has been deprecated. Use randint instead.

        .. deprecated:: 1.11.0

        Parameters
        ----------
        low : int
            Lowest (signed) integer to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is the *highest* such
            integer).
        high : int, optional
            If provided, the largest (signed) integer to be drawn from the
            distribution (see above for behavior if ``high=None``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        randint : Similar to `random_integers`, only for the half-open
            interval [`low`, `high`), and 0 is the lowest value if `high` is
            omitted.

        Notes
        -----
        To sample from N evenly spaced floating-point numbers between a and b,
        use::

          a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

        Examples
        --------
        >>> np.random.random_integers(5)
        4 # random
        >>> type(np.random.random_integers(5))
        <class 'numpy.int64'>
        >>> np.random.random_integers(5, size=(3,2))
        array([[5, 4], # random
               [3, 3],
               [4, 5]])

        Choose five random numbers from the set of five evenly-spaced
        numbers between 0 and 2.5, inclusive (*i.e.*, from the set
        :math:`{0, 5/8, 10/8, 15/8, 20/8}`):

        >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
        array([ 0.625,  1.25 ,  0.625,  0.625,  2.5  ]) # random

        Roll two six sided dice 1000 times and sum the results:

        >>> d1 = np.random.random_integers(1, 6, 1000)
        >>> d2 = np.random.random_integers(1, 6, 1000)
        >>> dsums = d1 + d2

        Display results as a histogram:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(dsums, 11, density=True)
        >>> plt.show()

        
        randint(low, high=None, size=None, dtype=int)

        Return random integers from `low` (inclusive) to `high` (exclusive).

        Return random integers from the "discrete uniform" distribution of
        the specified dtype in the "half-open" interval [`low`, `high`). If
        `high` is None (the default), then results are from [0, `low`).

        .. note::
            New code should use the ``integers`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is one above the
            *highest* such integer).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is int.

            .. versionadded:: 1.11.0

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        random_integers : similar to `randint`, only for the closed
            interval [`low`, `high`], and 1 is the lowest value if `high` is
            omitted.
        Generator.integers: which should be used for new code.

        Examples
        --------
        >>> np.random.randint(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
        >>> np.random.randint(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> np.random.randint(5, size=(2, 4))
        array([[4, 0, 2, 1], # random
               [3, 2, 2, 0]])

        Generate a 1 x 3 array with 3 different upper bounds

        >>> np.random.randint(1, [3, 5, 10])
        array([2, 2, 9]) # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> np.random.randint([1, 5, 7], 10)
        array([9, 8, 7]) # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7], # random
               [ 1, 16,  9, 12]], dtype=uint8)
        
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        .. note::
            New code should use the ``power`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a < 1.

        See Also
        --------
        Generator.power: which should be used for new code.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = np.random.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats # doctest: +SKIP
        >>> rvs = np.random.power(5, 1000000)
        >>> rvsp = np.random.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('np.random.power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + np.random.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        .. note::
            New code should use the ``pareto`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.
        Generator.pareto: which should be used for new code.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.

        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        numpy.core.multiarray failed to import
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        .. note::
            New code should use the ``normal`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.
        Generator.normal: which should be used for new code.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        normal is more likely to return samples lying close to the mean, rather
        than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.normal(mu, sigma, 1000)

        Verify the mean and the variance:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.1  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from N(3, 6.25):

        >>> np.random.normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        .. note::
            New code should use the ``noncentral_f`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.

            .. versionchanged:: 1.14.0
               Earlier NumPy versions required dfnum > 1.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        See Also
        --------
        Generator.noncentral_f: which should be used for new code.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = np.random.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        .. note::
            New code should use the ``noncentral_chisquare`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.

            .. versionchanged:: 1.10.0
               Earlier NumPy versions required dfnum > 1.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        See Also
        --------
        Generator.noncentral_chisquare: which should be used for new code.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(np.random.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval [0, 1].

        .. note::
            New code should use the ``negative_binomial`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        See Also
        --------
        Generator.negative_binomial: which should be used for new code.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        
        multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (standard deviation, or "width,"
        squared) of the one-dimensional normal distribution.

        .. note::
            New code should use the ``multivariate_normal`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        Generator.multivariate_normal: which should be used for new code.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

          - Spherical covariance (`cov` is a multiple of the identity matrix)
          - Diagonal covariance (`cov` has non-negative elements, and only on
            the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> x = np.random.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        The following is probably true, given that 0.6 is roughly twice the
        standard deviation:

        >>> list((x[0,0,:] - mean) < 0.6)
        [True, True] # random

        
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        .. note::
            New code should use the ``multinomial`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        n : int
            Number of experiments.
        pvals : sequence of floats, length p
            Probabilities of each of the ``p`` different outcomes.  These
            must sum to 1 (however, the last element is always assumed to
            account for the remaining probability, as long as
            ``sum(pvals[:-1]) <= 1)``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        Generator.multinomial: which should be used for new code.

        Examples
        --------
        Throw a dice 20 times:

        >>> np.random.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]]) # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> np.random.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3], # random
               [2, 4, 3, 4, 0, 7]])

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        A loaded die is more likely to land on number 6:

        >>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26]) # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62]) # random

        not like:

        >>> np.random.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

        
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 < ``p`` < 1.

        .. note::
            New code should use the ``logseries`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range (0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.
        Generator.logseries: which should be used for new code.

        Notes
        -----
        The probability density for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a)*count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        .. note::
            New code should use the ``lognormal`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.
        Generator.lognormal: which should be used for new code.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = np.random.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + np.random.standard_normal(100)
        ...    b.append(np.product(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        .. note::
            New code should use the ``logistic`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.
        Generator.logistic: which should be used for new code.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

        
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        .. note::
            New code should use the ``hypergeometric`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative.
        nsample : int or array_like of ints
            Number of items sampled.  Must be at least 1 and at most
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.
        Generator.hypergeometric: which should be used for new code.

        Notes
        -----
        The probability density for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = np.random.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        .. note::
            New code should use the ``gumbel`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull
        Generator.gumbel: which should be used for new code.

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = np.random.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = np.random.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        .. note::
            New code should use the ``geometric`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        See Also
        --------
        Generator.geometric: which should be used for new code.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 #random

        
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        .. note::
            New code should use the ``gamma`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        Generator.gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        .. note::
            New code should use the ``f`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.
        Generator.f: which should be used for new code.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        
        choice(a, size=None, replace=True, p=None)

        Generates a random sample from a given 1-D array

        .. versionadded:: 1.7.0

        .. note::
            New code should use the ``choice`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        a : 1-D array-like or int
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated as if a were np.arange(a)
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        replace : boolean, optional
            Whether the sample is with or without replacement
        p : 1-D array-like, optional
            The probabilities associated with each entry in a.
            If not given the sample assumes a uniform distribution over all
            entries in a.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if a or p are not 1-dimensional,
            if a is an array-like of size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size

        See Also
        --------
        randint, shuffle, permutation
        Generator.choice: which should be used in new code

        Notes
        -----
        Sampling random rows from a 2-D array is not possible with this function,
        but is possible with `Generator.choice` through its ``axis`` keyword.

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to np.random.randint(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> np.random.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        .. note::
            New code should use the ``chisquare`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        See Also
        --------
        Generator.chisquare: which should be used for new code.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random
        
        bytes(length)

        Return random bytes.

        .. note::
            New code should use the ``bytes`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : str
            String of length `length`.

        See Also
        --------
        Generator.bytes: which should be used for new code.

        Examples
        --------
        >>> np.random.bytes(10)
        ' eh\x85\x022SZ\xbf\xa4' #random
        
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        .. note::
            New code should use the ``binomial`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.
        Generator.binomial: which should be used for new code.

        Notes
        -----
        The probability density for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = np.random.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 38%.

        a must be greater than 0 unless no samples are taken'a' cannot be empty unless no samples are takenUnsupported dtype %r for randintRandomState.standard_gamma (line 1502)RandomState.multivariate_normal (line 3942)RandomState.logseries (line 3854)RandomState.lognormal (line 2882)RandomState.hypergeometric (line 3721)RandomState.geometric (line 3660)RandomState.dirichlet (line 4236)RandomState.chisquare (line 1843)
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        .. note::
            New code should use the ``wald`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        See Also
        --------
        Generator.wald: which should be used for new code.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        
        standard_normal(size=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        .. note::
            New code should use the ``standard_normal`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.
        Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from :math:`N(\mu, \sigma^2)`, use one of::

            mu + sigma * np.random.standard_normal(size=...)
            np.random.normal(mu, sigma, size=...)

        Examples
        --------
        >>> np.random.standard_normal()
        2.1923875335537315 #random

        >>> s = np.random.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = np.random.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from :math:`N(3, 6.25)`:

        >>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        standard_gamma(shape, size=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        .. note::
            New code should use the ``standard_gamma`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        Generator.standard_gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        standard_exponential(size=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        .. note::
            New code should use the ``standard_exponential`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        See Also
        --------
        Generator.standard_exponential: which should be used for new code.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.standard_exponential((3, 8000))

        
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        .. note::
            New code should use the ``standard_cauchy`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        See Also
        --------
        Generator.standard_cauchy: which should be used for new code.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              http://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        
        shuffle(x)

        Modify a sequence in-place by shuffling its contents.

        This function only shuffles the array along the first axis of a
        multi-dimensional array. The order of sub-arrays is changed but
        their contents remains the same.

        .. note::
            New code should use the ``shuffle`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        x : array_like
            The array or list to be shuffled.

        Returns
        -------
        None

        See Also
        --------
        Generator.shuffle: which should be used for new code.

        Examples
        --------
        >>> arr = np.arange(10)
        >>> np.random.shuffle(arr)
        >>> arr
        [1 7 5 2 9 4 3 6 0 8] # random

        Multi-dimensional arrays are only shuffled along the first axis:

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        
        random_sample(size=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` multiply
        the output of `random_sample` by `(b-a)` and add `a`::

          (b - a) * random_sample() + a

        .. note::
            New code should use the ``random`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        See Also
        --------
        Generator.random: which should be used for new code.

        Examples
        --------
        >>> np.random.random_sample()
        0.47108547995356098 # random
        >>> type(np.random.random_sample())
        <class 'float'>
        >>> np.random.random_sample((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * np.random.random_sample((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        
        randn(d0, d1, ..., dn)

        Return a sample (or samples) from the "standard normal" distribution.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `standard_normal`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        .. note::
            New code should use the ``standard_normal`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        If positive int_like arguments are provided, `randn` generates an array
        of shape ``(d0, d1, ..., dn)``, filled
        with random floats sampled from a univariate "normal" (Gaussian)
        distribution of mean 0 and variance 1. A single float randomly sampled
        from the distribution is returned if no argument is provided.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        Z : ndarray or float
            A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
            the standard normal distribution, or a single such float if
            no parameters were supplied.

        See Also
        --------
        standard_normal : Similar, but takes a tuple as its argument.
        normal : Also accepts mu and sigma arguments.
        Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from :math:`N(\mu, \sigma^2)`, use:

        ``sigma * np.random.randn(...) + mu``

        Examples
        --------
        >>> np.random.randn()
        2.1923875335537315  # random

        Two-by-four array of samples from N(3, 6.25):

        >>> 3 + 2.5 * np.random.randn(2, 4)
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        rand(d0, d1, ..., dn)

        Random values in a given shape.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `random_sample`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        Create an array of the given shape and populate it with
        random samples from a uniform distribution
        over ``[0, 1)``.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        out : ndarray, shape ``(d0, d1, ..., dn)``
            Random values.

        See Also
        --------
        random

        Examples
        --------
        >>> np.random.rand(3,2)
        array([[ 0.14022471,  0.96360618],  #random
               [ 0.37601032,  0.25528411],  #random
               [ 0.49313049,  0.94909878]]) #random

        
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        .. note::
            New code should use the ``poisson`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        lam : float or array_like of floats
            Expectation of interval, must be >= 0. A sequence of expectation
            intervals must be broadcastable over the requested size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        See Also
        --------
        Generator.poisson: which should be used for new code.

        Notes
        -----
        The Poisson distribution

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> s = np.random.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

        
        permutation(x)

        Randomly permute a sequence, or return a permuted range.

        If `x` is a multi-dimensional array, it is only shuffled along its
        first index.

        .. note::
            New code should use the ``permutation`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        See Also
        --------
        Generator.permutation: which should be used for new code.

        Examples
        --------
        >>> np.random.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> np.random.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        .. note::
            New code should use the ``laplace`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        See Also
        --------
        Generator.laplace: which should be used for new code.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        .. note::
            New code should use the ``dirichlet`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        -------
        ValueError
            If any value in ``alpha`` is less than or equal to zero

        See Also
        --------
        Generator.dirichlet: which should be used for new code.

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               http://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        RandomState.vonmises (line 2180)RandomState.rayleigh (line 2997)RandomState.logistic (line 2797)RandomState.binomial (line 3257)state dictionary is not valid.probabilities do not sum to 1RandomState.weibull (line 2370)RandomState.uniform (line 1003)RandomState.tomaxint (line 585)RandomState.shuffle (line 4384)RandomState.poisson (line 3493)RandomState.laplace (line 2581)RandomState.randint (line 643)RandomState.pareto (line 2268)RandomState.normal (line 1395)RandomState.gumbel (line 2674)'a' and 'p' must have same sizeRandomState.randn (line 1170)RandomState.power (line 2473)RandomState.gamma (line 1582)RandomState.choice (line 804)mean must be 1 dimensionalRange exceeds valid boundsRandomState.zipf (line 3574)RandomState.wald (line 3073)RandomState.rand (line 1126)RandomState.bytes (line 768)probabilities contain NaNRandomState.seed (line 221)'p' must be 1-dimensionala must be 1-dimensionalRandomState.f (line 1665)standard_exponentialnoncentral_chisquarenumpy.random.mtrandmultivariate_normalngood + nbad < nsamplecline_in_tracebackDeprecationWarningnegative_binomial__randomstate_ctormay_share_memorysum(pvals[:-1]) > 1.0standard_normalstandard_cauchyrandom_integers_poisson_lam_maxstandard_gamma_legacy_seedinghypergeometricRuntimeWarningrandom_samplecount_nonzerobit_generatorOverflowErrorsearchsortedreturn_indexnoncentral_fnewbyteorderRuntimeErrorpermutationmultinomialexponentialcheck_validRandomStateImportErrortriangularstandard_t__pyx_vtable__numpy.dualmtrand.pyxmode > rightlogical_orless_equalleft == rightissubdtypeempty_likeValueErrorIndexErrorset_statelogserieslognormalleft > modehas_gaussget_stategeometricdirichletchisquareTypeErrorMT19937warningsvonmisessubtractreversedrayleighoperatorlogisticitemsizeisscalarisnativeisfinitefloatingbinomialallcloseweibulluniformtobytesstridesshufflereshapereplacerandintpoissonnsample_mt19937laplaceintegergreaterfloat64castingcapsule at 0x{:X}asarrayalpha <= 0_MT19937unsafeuniqueuint64uint32uint16samplereducerandom_rand_pickleparetonormallegacykwargs__import__ignoregumbelformatdoublecumsumcompatchoiceastypearangezerosuint8statesigmashapescalerightravelrangerandnraisepvalspowernumpyngoodkappaisnanint64int32int16indexgaussgammafinfoequal__enter__emptydtypedfnumdfden__class__bytesarrayalpha__all__zipfwarnwald__test__takesqrtsortsizesideseedrtolranfrandprodnoncndimnbad__name__modemean__main__longlocklessleftitemintpint8high__exit__copybool_betaatolargstolsvd__str__poslowloclamkeygetepsdotcovanyalladd<u4npmuiddf)(pnlfbaTð¿ð?˜ð?:Œ0âŽyE>ÿÿÿÿÿÿÿÀUUUUUUÕ?"@mÅþ²{ò ?à?ø@>@˜3?Írû?q¼ÓëÃì?0@0C@€UUUUUUµ?lÁlÁf¿  J?88C¿$ÿ+•K?<™ٰj_¿¤A¤Az?—SˆBž¿…8–þÆ?5gGö¿€?/*p?3…f?(_?xY?յS?¹ôN?Ž¡J?¥F?DïB?Qt??u+<?Û
9?6?Ó?3?n‡0?ëé-?Äd+?Ñõ(?6›&?XS$?Í"?Yö?âÞ?mÕ?Ù?é?Æ?i+?q\?V—?™Û?Æ(
?s~?>Ü	?ÊA?Į?Ü"?ʝ?G?§?ðiþ>l‘û>7Äø>êö>*Jó>œœð>ìøí>Ì^ë>ïÍè>Fæ>çÆã>7Pá>ÁáÞ>K{Ü>Ú>‚Å×>ÇuÕ>;-Ó>±ëÐ>û°Î>ð|Ì>eOÊ>4(È>8Æ>LìÃ>N×Á>ȿ>•¾½>œº»>¼¹>Ú·>Ùε>ô߳>ö±>°>ñ0®>ƒU¬>¹~ª>|¬¨>¸ަ>Y¥>IP£>w¡>Ðҟ>Bž>ºeœ>)µš>~™>©_—>šº•>C”>”{’>€á>øJ>﷍>X(Œ>'œŠ>N‰>͇>x†>bŒ„>xƒ>¬—>õ!€>’^}>;z>Хw>@Òt>wr>b<o>ñyl>½i>²g>ÂSd>3§a>óÿ^>ô]\>&ÁY>z)W>â–T>P	R>·€O>ýL>5~J>3H>õŽE>nC>’²@>VK>>®è;>ŽŠ9>ë07>»Û4>óŠ2>ˆ>0>pö->¢²+>s)>»7'>%>†Í">˜ž >¼s>éL>*>=>Tð>TÙ>4Æ>í¶>y«
>ϣ>éŸ	>>L£>‡ª>lµ>å‡ÿ=+¬û=×÷=0
ô=ØCð=‰„ì=8Ìè=Ûå=hpá=ÓÌÝ=0Ú=šÖ=ê
Ó=n‚Ï=¢Ì=|…È=ôÅ=£Á=œ;¾=¼ں=Z€·=o,´=óް=ߗ­=.Wª=ا=×è£=%» =½“=™rš=´W—=	C”=“4‘=M,Ž=4*‹=D.ˆ=y8…=ÏH‚=†¾~=¥÷x=õ<s=rŽm=ìg=ãUb=ÑË\=ÞMW=
ÜQ=TvL=»G=AÏA=æ<=¬X7=–/2=©-=è(=Yý"==ì=9=£e=…ž
=Ðã=“5=¶'ù<týï<ƒìæ<õÝ<7Õ<8SÌ<C©Ã<»<\¤²<íIª<Ž
¢<‘æ™<Oޑ<+ò‰<"‚<ïßt<ɵe<ÓÇV<SH<·¥9<˜t+<ƅ<OÛ<‘w<ºê;OÑ;ú$¸;¾ԟ;ë9ˆ;œÅb;HÄ6;]£;«]É:X}:âî9e'‹5ìÄ2’µV2­™Œ27©2ˆ„Â2ÆÙ2Æfï2‚ß3ن3À3Hœ3®(&3Åo.3z63oN>3ËòE3lM3F¾T3/í[3ßûb3íi34Ãp3f€w3“&~3·[‚3Bš…3œψ3gü‹37!3“>’3÷T•3Õd˜3—n›3Ÿrž3Fq¡3ãj¤3Ã_§31Pª3r<­3Æ$°3k	³3›êµ3Œȸ3q£»3|{¾3ÛPÁ3¹#Ä3CôÆ3žÂÉ3òŽÌ3dYÏ3"Ò3+éÔ3®×3ürÚ3ö5Ý3Í÷ß3¸â3xå3”7è3ðõê3«³í3àpð3¤-ó3êõ37¦ø31bû3þ3ùl4ðÊ4ù(4‡4hå4áC4’¢4ƒ
4¿`4MÀ47 4…€4?á4nB4¤4L4i4aÌ4T04í”45ú42`4îÆ4p. 4¿–!4åÿ"4èi$4ÑÔ%4¨@'4t­(4>*4Š+4ëù,4ßj.4ðÜ/4'P14Ä24):44±54&)74™¢84c:4™;4$=4+–>4®@4¶˜A4KC4v¡D4B(F4¸°G4à:I4ÆÆJ4rTL4ïãM4GuO4„Q4²R4Ú4T4ÎU4EiW4ŸY4 ¦Z4ÔG\4Çë]4’_4š:a4”åb4ÿ’d4èBf4\õg4jªi4bk4‹m4ºÙn4¾™p4¤\r4}"t4Yëu4H·w4[†y4¥X{46.}4 4¼q€4§a4]S‚4æFƒ4N<„4 3…4å,†4+(‡4{%ˆ4ã$‰4o&Š4,*‹4'0Œ4m84
CŽ4P4•_4›q‘47†’4{“4w·”4>ԕ4àó–4s˜4<™4¶dš4›4­¿œ4$ò4(Ÿ4a 4–ž¡4lߢ4$¤4Ål¥4„¹¦4x
¨4Ä_©4ˆ¹ª4ê¬4{­4 ã®4EP°4©±4{:³4귴4);¶4nķ4îS¹4çéº4–†¼4<*¾4տ4‰‡Á4ÈAÃ4.Å4ÏÆ4עÈ4ÚÊ4ˆfÌ4RWÎ4²RÐ4*YÒ4FkÔ4œ‰Ö4δØ4‹íÚ44Ý4§Šß4²ðá4¢gä4ðæ4kŒé4¤<ì4…ï4“ßñ4yÕô4æ÷4uû4ò_þ4ç5Œ°5Ž5Œ5@5ó
5ø5å]5^é5­Ÿ5‡5q§5v
5»¼!5¾Î%5ÂV*5×s/5;S55‡:<5ÿœD5àNO5ó^5ÉNv5QHqoõMֻaÝnj DotTrùotoùuÓ$w'xîÍx,jyíy7\z׻zô{ÜW{S˜{»Ñ{.|Œ3|Ž]|ȃ|¸¦|ÆÆ|Iä|Œÿ|Í}C0}F}„Z}›m}‚}S}( }¯}-½}‚Ê}"×}ã}|î}Mù}™~i
~Æ~¶~B(~o0~C8~Ä?~öF~ßM~T~âZ~a~ìf~›l~r~]w~v|~`~ †~¶Š~$~m“~“—~•›~wŸ~:£~ަ~fª~ѭ~#±~Z´~y·~€º~q½~KÀ~Ã~ÁÅ~^È~éÊ~aÍ~ÇÏ~Ò~`Ô~”Ö~¹Ø~ÎÚ~ÕÜ~ÎÞ~¸à~–â~fä~*æ~âç~é~-ë~Áì~Jî~Éï~=ñ~§ò~ô~\õ~¨ö~ë÷~$ù~Uú~}û~œü~²ý~Áþ~Çÿ~Å»ª‘pHâ¤`	Â	i
	£6ÂH
È
A´!ˆèB–ä+m¨Ý5XtŠš¤§¤›‹tW3	ØŸ`Ìw·K×\Ø
L
·sÃ


G	{¤ÂÖßÜͲ‹Vÿ~þ~Ãü~dû~öù~xø~êö~Kõ~šó~Öñ~ÿï~î~ì~ýé~Ïç~‰å~)ã~®à~Þ~aÛ~ŒØ~•Õ~{Ò~;Ï~ÓË~AÈ~Ä~‘À~m¼~¸~z³~¤®~ˆ©~"¤~kž~]˜~ï‘~‹~ԃ~|~Ås~áj~Ua~W~÷K~ó?~æ2~¬$~~÷~
ñ}Ü}€Ä}	ª}Œ}ši}ÉA}}—Û|Q˜|øD|¼Ú{3N{˜Šz‡eyÙww7msð?7ˆåEî?ñÿP¦Ðì?'{ë{åë?*æ!ë?çúb¥ºvê?›mU—Þé?9ªUÄ1Té?/ÒÓv£Ôè?¸Åxè]è?&1$-Šîç?~Ô	›n…ç?cK©[»!ç?Æ„IÃÂæ?\Omúgæ?f¯§Áíæ?u¬Li=½å?s‡ڂ˜lå?š‰xºå?¯øQÁfÓä?iàŽûjŠä?%ᨯ™Cä?€‹±+Ëþã?ÑáDܻã?Ùݧ­zã?cE#;ã?^ÚEã#ýâ?$O¶˜Àâ?½2m…â?£PŒ"ŽKâ?È>ºêâ?‰{‡sÛá?%;Ç¥á?îoÎmÎoá?œ3¼‡;á?ÃJ9á?++ØÕà?*ÐTˆ[¤à?};î1¹sà?HeÒëèCà?$ó`±âà?vE!þ=Íß?úſŽ-rß?MBëцß?–K=ÀÞ?QÓ}6EiÞ?ü7áu“Þ?!§ˆ¿Ý?zí¹}ÙkÝ?~é½Ý?’à@ÜÁÈÜ?`ûƒÙÜxÜ?ƒ¥Ð*Ü?µî®8ÜÛ?ˆ™QiÛ?o€T”“CÛ?_ï(4°øÚ?åöýָ®Ú?@£j§eÚ?ô!u vÚ?’7ZiÖÙ?¨{	òÙ?šŸìIÙ?]TŒÙ?9]·çÀØ?Œ?¼„‰}Ø?8aDµé:Ø?Yζiù×?€Ɲҷ×?ãr^sSw×?ꍰ0‚7×?žd>[øÖ?œéä%۹Ö?Ÿ
Əþ{Ö?ä'HBÂ>Ö?vXï#Ö?lî1&ÆÕ?ï©:l°ŠÕ?磽!×OÕ?õ‰ލÕ?ù&×ÛÔ?Óڋ«¢Ô?タ+	jÔ?âAëî1Ô?N¡0ZúÓ?…²«0HÃÓ?ï}±G·ŒÓ?ÝÐü(¥VÓ?5$1Æ!Ó?pB9 õëÒ?b"®FS·Ò?)vEW(ƒÒ?ývG}rOÒ?ÿ~ñ/Ò?Û	{÷^éÑ?Z¼šáý¶Ñ?‚…Ñ?ï‘âބSÑ?ºŸºÌi"Ñ?l¦ÙR¸ñÐ?3SønÁÐ?>éNŒ‘Ð?Ґ]ðbÐ?,|y€õ2Ð?jG“«>Ð?T“ÿLҫÏ?~>–\çOÏ?›àèºôÎ?ò@YHšÎ?§ƒ/֎@Î?9O"HŒçÍ?¸îã>Í?ý1´ ¢7Í?ŸÐö8¶àÌ?ÎOxŠÌ?]æ4Ì?5D9gþßË?¥är|¾‹Ë?>ïܸ$8Ë?[ëB/åÊ?I<ÀKܒÊ?¼\ß*AÊ?ÅäÑðÉ?#>䠟É?¡’æžÆOÉ?y»%d†É?ÕbPŸޱÈ?ùŒÄÍcÈ?æç”PRÈ?®…ÈjÉÇ?þFŸ¹}Ç?9(¹Q1Ç?ê„îcæÆ?(ڦ^w›Æ?¬Ñ0U^QÆ?1j°úÐÆ?¶ÂT	ξÅ?õx.BTvÅ?IŒmb.Å?ú¶<X÷æÄ?–0˜Ø Ä?ÆÌ-ɰYÄ?šj8ÓÄ?©ø…wÎÃ?ÉՔ&‰Ã?¯úßBEÃ?n}¾ªgÃ?4Ï…
¾Â?@™`r*{Â?xè»{Æ8Â?eÊ=¯ÝöÁ?fÖ1 oµÁ?x®ðæytÁ?/qÉ ý3Á? ìï÷óÀ?/¶T{i´À?¾¥·îPuÀ?nz­6À?ê˦üð¿?f…u¿?<îóú¾?̹ŽF¾?ûºaõz¾?˜“­‘½?×M‘‡½?Wý€k[£¼?¯.ô.¼?&qWš¹»?He5TF»?eTe±CӺ?·8Ù=]aº?(ôFÐMð¹?pk3G€¹?¹t刯¹?;SZƒ¢¸?ºÄ;,`4¸?ó¦׀sǷ?<†W[·?¶„Hð¶? ¶0܍…¶?÷ÞÊ\Þ¶?>»‘íû²µ?6ÐY¹åJµ?)ِòšã´?\˜CÓ}´?±%d´?žŸ›™w²³?çÆSN³?э”vöê²?pÎaˆ²?Œ,Q’&²?@£o¨‰ű?’SuFe±?PÊV‡È±?;‡§°?Èõ×I°?v–iºÐׯ?4èD™ô¯?å².¥žg®?X1Iα­?Jyƒý¬?é!d¼J¬?…پz™«?„€j»éª?8ñG;ª?L|{‚ʎ©?mw€n—ã¨?k9:è9¨?ž«´¼‘§?R¯¶yë¦?A &ÇòE¦?ÊÒÅU¢¥?ëŖò<¥?k&«_¤?ÿÿG #?®?~#£?ÀVÉ#‡¢?Ôó_´ì¡?¡³ŸÐS¡?QÖ|z¼ ?îú
Y²& ?˜¯Çö$Ÿ?htQz®ÿ?3Tݜ?pXúP¡¾›?›N’æ梚?H*gŠ™?g™ìS(u˜?–ü‡Ú1c—?w@¢r‹T–?Q«¦=I•?¾ð‡ÎQA”?„]1%Ò<“?2:¹áÉ;’?__rTE>‘?ð	RD?ÎljÞý›Ž?W'n¹¶Œ?-ÉBUú؊?½§hê‰?õtªæ¶4‡?Ëä“n…?boQx°ƒ?qv³íiû?ù×_)òN€?Å]túQW}?6H—Ôé#z? 6ì7Ÿw?ý"ãΗús?C@Wi=q?Ḱ³Xl?ÿþ¡óˆØf?$£á¨k”a?%>Tµ+Y?¹ü÷
²O?KŸ2Ã=?Á]¿”ìdÑ<A]‹X`<+M[I²Öj<º[©5“q<s*Jåæ"u<€zÂûPx<̷yïÑ8{<˜½m·Øì}<<\ÆIð;€<pöÖ$Ûp<3&ڐ˜‚<Ên=þˆ³ƒ<!þÆń<ÃJøͅ<½+§ð@φ<ÐÚÍɇ<o`ÓTY¾ˆ<Ò7"U€­‰<R]¾ȗŠ<ģÝݥ}‹<‰?Œ×{_Œ<6|ñM¢=<ZsñxfŽ<ªO_ÏðŽ<	2h]Òď<XujívK<ü€›GH³<¯õI‡ó‘< ßK댑<çI>é&ä‘<.ÿ8eÒG’<h#ឪ’<KÚ&¥š“<‚mâÒm“< b!ÑSΓ<HgpÊ(.”<ç5_\”<“Íkøë”<Mox)J•<ý¾¸=ާ•<Ï.Ýǘ–<àhm-a–<D©úbS½–<»yy—<sy#nt—<r~|oϗ<™ÕþS*˜<ìá+/w„˜<*ÅÐPˆޘ<D¢ý½S8™<8­Bޑ™<¿ÿu,ë™<Jˆ¾BDš<aҖS%š<É$òDØõš<›—Ly_N›<‰?³¾¦›<™þY“ùþ›<ŸÒpšWœ<ÛZÂ+¯œ<ûæðŽò<kØñ½^<WBju¶<þ1|÷ž<Dσ´ež<bâåA½ž<Ÿ”âÆŸ<µþW+FlŸ<¡©eÂß<Ù<šŸ
 <b±
ö]9 <øvre <rK»㐠<7q­¼ <f/z |è <¬9R¡<¾}po0@¡<ûwál¡<–#=©	˜¡<ƒR=Ýġ<âĩð¡<±Ó'¢<)£³MH¢<ŸÐ;ƒt¢<ª͋tɠ¢<];¥d!͢<!Œù¢<vû|
&£<¡ŠªR£<ð…šF£<üïÏL¬£<m3ÀÝأ<Ä	Oôͤ<ÐlFæ×2¤<§lq”ü_¤<ăÈü<¤<¤kšº¤<êEËôè¤<ûف®¥<øµ,ÄgC¥<'o1¼Aq¥<ùœNk=Ÿ¥<5“Ô[ͥ<&ÏVúû¥<.sã*¦<Œ›\–‘X¦<îëÓE‡¦<ß<~ ¶¦<¦YË$å¦<û©PS§<úa¬C§<0ÑwÑ1s§<
$±v䢧<÷}kÅҧ<wrÎÌÕ¨<*æߺ3¨<çaY‰c¨<T¤Ï.”¨<”`ÌHŨ<þóö¨<ásŽ\'©<Š‚5²ØX©<ô»@9ŽŠ©<]ÇÚ}¼©<QéÝܨî©<-YЊ!ª<ÆV5¶Sª<óÐ2›†ª<zeß9ª<ÿ¬ʝ(íª<µ‹nÖÓ «<B%ÏøÃT«<¶O2{úˆ«<&Ûx½«<…ý-@ò«<-àBNS'¬<¤±ꂲ\¬<û##Ø_’¬<l¥•ó\Ȭ<€q탫þ¬<­ò0AM5­<þ£íCl­<
¥S‘£­<5ÒJ7ۭ<›P&´7®<R¤|”K®<#ôšO„®<xvJk½®<h‘[üèö®<¼ nË0¯<Ð^Q˜k¯<åáï³ƥ¯<Ø	Ý
äà¯<Ôùz7°<9ï4,°<£$’žkJ°<Û&ÏÜh°<­:ω‡°<È3÷s¦°<o”©œŰ<·ÏïPå°<Îïf¯±<J’jœ$±<+:oìÍD±<ÁąEe±<ž®o݆±< x¢§
§±<Z*x¦aȱ<p3›ªê±<¢ôð“ò²<PåOR3.²<º;@æÆP²<¦ÚÇa¯s²<+SBé<QÛE´‡º²<p-–|޲<eY&Yγ<Ч*'³<eÉ;³–L³<V¨Œør³<CQ4œõ—³<ƒ‹zD¾³<ÐޭŒå³<­îõé/´<øB½ÉÒ3´<,É…í[´<2”Әƒ„´<L¡]§˜­´<'±{0״<•¹Oµ<²ª¬qø+µ<Z§ø1Wµ<aDLý‚µ<á8úa¯µ<ž½ˆdܵ<y—
¶<”.{$U8¶<2ôÃ`Og¶<îH—Jý–¶<{š/eǶ<%ô±ø¶<Ò\Î}*·<Ãq½â<]·<ùqkµҐ·<Óv}Gŷ<né£ú·<þÀ,ñ0¸<Bsh9h¸<«[i΅ ¸<•6;‚âٸ<DuóÒZ¹<*ü4ûO¹<؍ñЌ¹<êÙ$:êʹ<xñI>V
º<;LèC%Kº<ꆭÂhº<ÄE؂3Ѻ<
¶»<ê‘P±]»<^Úvґ¦»<wïKÞTñ»<§àÂA>¼<ôÈÈBôŒ¼<©òì޼<Å8'k1½<ì;ìo”‡½<ŸñN¯Pà½<`	nò;¾<Có*¯š¾<JêPgÂü¾<§÷‘—nb¿<åÆöCþ˿<.ìb³âÀ<ïŽõ‹VÀ<N¥ËÍQÀ< H]x1ÐÀ<¦’C¨Á<*DugxVÁ<Ö³¼ŸÁ<|úɠ¼ëÁ<Ÿ‘Y¶+=Â<¥ªI®õ“Â<ðDŠãðÂ<^÷Ì'îTÃ<a¸ÈÇNÁÃ<bäf—7Ä<ÑQGÍ׹Ä<ösÏ<ØJÅ<ÒsázîÅ<r¿KmgªÆ</ÆêÖP‡Ç<íò染È<…{H
ÜéÉ<üqÚQžÃË<ƒ»~)ÙÉÎ<Ɨ$'R~1œ×[}<?Žõn®°2·›|D÷'Ñeˆ•r9\-þ²kÕ[~p,Ý4Éȝ¬ß	6xÔq{3¢·|‹Zlo	B{>®¯
—žðN±õ®Ve´½ÃΙ‡ðöÕˆVn®æÐ6Ênô¤ÔÝvK¶–§ãz÷ñicp%Eò t¨Q®)2U¹±1ÁWQ9Linëâ?úˆ×23F:¿L"3\L‡QÀìÃ	¡V–™	Ùf[ŒÐ‚à_rWDÝdx–…ö	hæ+*Åkôä2=Ko:ñq rÖ	M—ÈuÀ\Çxô?AŸ{ŠŸFS~8â;æ€b‘­=Zƒ¹V`±…bB²‰í‡út“uЬ9=ºŒJÐEÌŽ>ñàXƒ–½‘دG¬w“Úd‹O •’8cx¸–’ˆ–A˜€ºFẙi¼&›zqV…œØÏYםΡagŸÀ6	X 83:뇡üÄko­¢‚Îɣ¢jî_ۤ|	Mªä¥‚gä^å¦Ä¥Üݧt¨æ|Ψî_Γ·©X¸­p™ª2‚X^t«„t£H¬蟿‚­W;ޭlò ®~°$\¯z[°ô߁İúñ¶Pp±:–²ž²J¨ß+º²N!X³¾ɦñ³֬ᆴü“ÇóµªýÅ¥µXþ7(.¶
Ɉ³¶˜µ?5·¨}Üh³·ºÖ.¸öG{¥¸tš•¹rº…й&oyaø¹†âî=cºìA/˺D‘´H0»⤮œ’»žÈ<ò»”)Ò9O¼Ô@ᣩ¼žTнœrÞûV½j֋ª½@?˷ú½ÞdsI¾^iÉ@•¾(±†0߾taÞö&¿⊂žl¿Ä©1°¿°ýºñ¿ˆEA1À²T[ÏnÀ&‹mªÀŠi™#äÀdŠ)ùÁB}õQÁJw†Á´tž}¸ÁBê éÁÞÕîÂþƒ<
EÂÂO†vpÂc/šÂF€é<´ÆҢèÂì"Ae
Üއ0ÃÆ~RÃøfßúqÆ(*QÃú—t­ÃH3DÈÃ@«ÌäáèMŽ÷ùÃ`P¸}Ähýwx%Äƿµè8Ä*ÏJÄèGô+[ÄElÿiIJPIwĸû+	ƒÄöE>Äҙç•İ0ݝÄ2´y‘¢ÄüŽŽ¦ÄŒûëø¨ÄžêΩÄ4úA©Ä (N­¦Ät.Ȱ¢Äâ-æÄô-…̕ÄÀ^&܌Äz#ì;‚ÄæޖæuÄ‚~ÖgÄ6XÄ .pmFĘË3Än
ËÄ��ÄbËH²íÃ<Y>ÄÒô‘޵ÃLa™õ–Ã’EZvÃp“óRÃ(²Á-Èx½_Ãbò˿ÜžŸ¹ӰÂðüŒ‚ÂdñyÚQžӶ¬ÂVgŒñèÁ<»7–°ÁÍ܆uÁ¶Öt®7Á$»ööÀ¤MH³À𯋉lÀdó’ "À¸rqտŽH)݄¿
Æ/Å0¿ÆwپÚ}2€}¾¦K	¾D5zº½&ø¹§R½ Æcæ¼äM,}u¼ª·c¿ÿ»¢æ?ò„»ŒѠÙ»¬p5º¶’¿ó¹ü«Ô.b¹J3ʸT[vv+¸\‰[œ…·”UÕ@ضBiÙ÷"¶à7oLeµÒi¿¿ž´FçÈγ>œSÏô²R(D2²–Z> ±ÂáB0$°¦yÄ1¯ágW®r-¿ެ
@樫(ÿ™óaª¢foe©<P³š§òÑ&¦ê‹Ô{¤”ÀœƢó}ôô 
¾k3Ÿ¼ùy+ñœīD¸š¸/x[U˜x?ЫÕòñΩý’äšÚüø…sž¹Œ–Gì*‰ŽÛùE…š6Ãý€&é9xB|Ì*X£w$ q*5·4‚jfâ¨cÄãOfZrÎNrPÚo\fÇD¢YŠ£å6
4P4&{>æËWú®öˆ¡ŒÓ°-¦¢|&‹ÇaY°¬+öÝÀèäÙMÛ€?V#z?£ºu?øq?}›n?„k?L¢h?ée?öRc?çØ`?Zw^?*+\?ÔñY?RÉW?ø¯U?_¤S?X¥Q?߱O?ÉM?3êK?ŽJ?ŽGH?ª‚F?jÅD?`C?(`A?j·??Ô>?x<?øà:?0O9?†Â7?Å:6?»·4?993?¿1?%I0?C×.?Mi-?!ÿ+? ˜*?«5)?'Ö'?úy&?!%?CË#?Šx"?Ì(!?õÛ?ñ‘?­J??$Ä?¾„?ØG?c
?QÕ?”Ÿ?!l?ë:?å?ß?@´?‹‹
?Üd?)@?i
?’ü?Ý?À?4¥?±‹?îs?å]?I?ä6?¼Kþ>í,ü>Nú>Ôø÷>qãõ>Ñó>ÇÁñ>jµï>ú«í>k¥ë>µ¡é>Πç>¬¢å>F§ã>“®á>Œ¸ß>'ÅÝ>\ÔÛ>#æÙ>uú×>JÖ>š*Ô>_FÒ>’dÐ>+…Î>$¨Ì>wÍÊ>õÈ>Ç>JKÅ>ÅyÃ>|ªÁ>iݿ>…¾>ÍI¼>;ƒº>ʾ¸>tü¶>5<µ>	~³>êq>Ô°>ÂO®>±™¬>œåª>~3©>Tƒ§>ե>Í(¤>g~¢>çՠ>G/Ÿ>„Š>›ç›>‰Fš>J§˜>Ü	—>:n•>bԓ>Q<’>¦>x>ª~>—í‹>>^Š>šЈ>«D‡>lº…>Ü1„>ùª‚>À%>\D>„@|>ó?y>¥Bv>–Hs>ÁQp>#^m>¸mj>|€g>m–d>†¯a>ÄË^>$ë[>£
Y>=3V>ð[S>º‡P>–¶M>ƒèJ>~H>…UE>”B>«Î?>Ç=>åS:>›7>"å4>=22>T‚/>dÕ,>m+*>m„'>cà$>N?">,¡>ý>Àm>tØ>F>­¶>1*>¥ 
>>Y–>š>ʗ>ë>öIý=ù_ø=à{ó=«î=^Åé=úòä=ƒ&à=ü_Û=gŸÖ=ÊäÑ='0Í=„È=åØÃ=P6¿=˙º=\¶=	s±=Ûè¬=Ød¨=
ç£=yoŸ=/þš=6“–=š.’=fЍ=§x‰=i'…=½܀=a1y=ª¶p=xIh=ðé_==˜W=ˆTO=G=Ü÷>=Nß6=’Õ.=èÚ&=–ï=ç=-H=L=Äÿ<אð<̀á<ú”Ò<ŽÎÃ<Ø.µ<X·¦<Äi˜<HŠ<R©x<i$]< B<²\'<‘,
<ç;Gõ´;øP„;úü*;.0¥:ÜIú4_hÜ2z…3Êå+3ç@3aQ3i`3{am3A’y3‘i‚3*¨‡35•Œ3=‘3r©•3þá™3öì3|ϡ3ڍ¥3«+©3¬¬3ް3“^³3•¶3׶¹3iż3-¿3c®Â3%‹Å3uYÈ3<Ë3LÎÍ3gvÐ3;Ó3k¥Õ3‹-Ø3$¬Ú3´!Ý3±Žß3ˆóá3Pä3P¦æ3øôè3é<ë3p~í3չï3^ïñ3Jô3ÖIö3<oø3³ú3m«ü3œÂþ3·j4r4Uw4³z45|4ì{4ëy4Bv4q48j	4õa
4FX49M4Û@
4834]$4U4,4ìð4 Ý4SÉ4´4۝4Æ4Ïn4V4w<4$"44Vë4ëÎ4ޱ45”4÷u4,W 4Ù7!4"4¼÷"4ýÖ#4ҵ$4@”%4Mr&4P'4_-(4p
)47ç)4ºÃ*4 +4|,4éW-4—3.4/4~ê/4ÃÅ04ï 14|24W34244
54è54Ã64"ž74@y84sT94¿/:4*;4¸æ;4nÂ<4Rž=4hz>4´V?4=3@4A4íA4qÊB4¨C4†D4udE4-CF4K"G4ÑH4ÇáH41ÂI4£J4v„K4\fL4ÍHM4Ì+N4aO4‘óO4bØP4ٽQ4ý£R4ԊS4crT4²ZU4ÆCV4§-W4ZX4èY4UðY4ªÝZ4îË[4(»\4_«]4›œ^4åŽ_4C‚`4¿va4alb40cc47[d4~Te4Of4òJg42Hh4ÙFi4ñFj4…Hk4 Kl4MPm4˜Vn4^o48hp4¦sq4å€r4s4
¡t4´u4Év4Càw4”ùx4 z4ù2{40S|4Ùu}4›~4ÎÂ4¢v€4@
4L¥4Ò>‚4àق4vƒ4Ä„4¸´„4lV…4ïù…4RŸ†4¦F‡4ÿï‡4p›ˆ4
I‰4ëø‰4"«Š4Ê_‹4üŒ4ÓЌ4l4åLŽ4`4þԏ4坐4<j‘4-:’4æ
“4˜å“4vT4»¡•4¢†–4np—4g_˜4ÛS™4 Nš4”N›4Uœ4¬c4>yž4ݖŸ4%½ 4Áì¡4r&£4k¤4»¥4(§4û„¨4‹ª4«4.­4Qä®4N³°4tž²4ª´4\۶4H9¹4«̻4p¡¾4ÈÁ4~XÅ4wÉ4p_Î4ä~Ô4úÀÜ4¤Ýé4ì™wõE`¨m´r¯’u\zw8Êxk¿y5zz/
{ԃ{—å{ˆ7|3}|&¹|Hí|}C}‹g}ۇ}ü¤}a¿}g×}]í}ƒ~~4%~5~ÕC~“Q~g^~ij~ªu~>€~2Š~•“~rœ~դ~Ƭ~N´~u»~CÂ~¼È~èÎ~ÌÔ~kÚ~Ëß~ïä~Üé~”î~ó~t÷~ û~£ÿ~6Ê
<ÄÜÚ½‡ :#×%](Ð*.-z/³1Ü3ó5û7ó9Ü;·=„?EAøBŸD:FÊGNIÈJ8LMùNLP•QÕR
T=UdV„WœX¬YµZ¸[³\¨]–^~__`;abàbªcod.eèeœfLgögœh<iÙipjk‘kl l!mžmnŒnünhoÑo5p–pópLq¡qòq?r‰rÏrsPs‹sÃsös'tSt|t¡tÃtàtûtu$u3u?uFuJuKuGu?u4u$uuùtÞt¾tštrtEttßs¥sfs#sÚrr:rãq†q#q»pMpÙo_oßnXnËm7mœlùkOkœjâiiThg¡f¸eÆdÈcÀb«aŠ`]_!^Ø\[ZžXWuUÄSþQ"P/N"LúI¶GSEÏB(@Z=d:A7í3e0¤,¤(_$Îê©ä	Fü~>ô~¨ë~7â~È×~/Ì~7¿~°~
 ~
~w~G]~“>~Y~,ë}6°}b}¹ô|ÒO|06{ÒÒxð?‡ðyÉjDï?©l[T·î?wð'à?î?•Þ§oÓí?ò¼W’pí?Ü¡xIí?ë-§¨3½ì?x©Î^jì?êºîÙì?‚ÜáNëÎë?Rõ:e…ë?Ý4‚:>ë?¢èl?*ùê?%zñþµê?áÉPՋtê?¯õýª4ê?Øeî;öé?$"¹é?ÁzaWF}é?Gz‘Bé?Oq1½ñé?¨
æOUÐè?ߺH­˜è?¬¼7üëaè?nÏV,è?Ëâ Kíöç?XhœwšÂç?հ <ç?VØp\ç?m?ôå)ç?îzêºPøæ?‰ZcžXÇæ?*;Q^÷–æ?#ã’*'gæ?U˜â7æ?e&€˜$	æ?jÿJoèÚå?‰\Ȭ)­å?L&äå?FžðSå?ÕleZµ&å?g¶ èÄúä?ÀNIO?Ïä?xRÜr!¤ä?Pß_hyä?y6IJOä?ã_5Š%ä?‚[X™~ûã?£1¯>Òã?Íb¦U©ã?ÕÚ+Àã?éPõ‹„Xã?5:pɗ0ã?ï8dýúã?î;êU¬áâ?J•תºâ?͓Žò“â?í)„mâ?„ېZ]Gâ?ò÷/©|!â? –’©àûá?i™Tþ‡Öá?Ñ?Wq±á?P<›p›Œá?Ú9†há?œ©^­Cá?81H’á?Y2¢³ûà? BAØà?®Ùp¦´à?]™v‘à?6<ðÌ}nà?.?¦¯¼Kà?*‚‹á1)à?Äʸ…Üà?¡½{ŒwÉß?Ê©§…ß?óz/Ë)Bß?•~qÿÞ?T½ n¼Þ?ÅÃNj#zÞ?…›_ê88Þ?	:vG­öÝ?±V2µÝ?3Þ&d­tÝ?€¡64Ý?m[®´ôÜ?H¨ÀsU´Ü?Ç×»ètÜ?¸,oÒ5Ü?ja|÷Û?‘mq֤¸Û?x‹zÛ?Ê1³bÄ<Û?R…¡žNÿÚ?žZ_:)ÂÚ?€ؤJS…Ú?MÀ êËHÚ?>„F9’Ú?ߓ^¥ÐÙ?ÆÀ„•Ù?“ŸàۮYÙ?Ë3›£Ù?ñ¹üáãØ?ˆ‘Þ?i©Ø?¶Z¬¨8oØ?Ù
ªO5Ø?ٸ­û×?°ô¯PÂ×?ëR’¯9‰×?í±ÇigP×?La©;Ù×?ªL†ŽßÖ?!ވ­†§Ö?âË%ÁoÖ?å{7=8Ö?ÈҀtúÖ?DÂvCøÉÕ?¾îÖ6“Õ?=p³\Õ?í;SÂo&Õ?’m¿ŽjðÔ?¢œW£ºÔ?Ôj­Ÿ…Ô?þ$ÃïÌOÔ?z5ѼÔ?ÛҎÐèåÓ?®Cñ|P±Ó?yhó|Ó?žÑù%ÑHÓ?/öZMéÓ?f!w;áÒ?Ý?–>ǭÒ?±MAŒzÒ?‰ÞŠGÒ?žÌ÷yÀÒ?ö.âÑ?PðÂ9կÑ?èTTí²}Ñ?gî4»ÇKÑ?#$ÏOÑ?Ä	‡Y•èÐ?ÚB²ˆM·Ð?6C;†Ð?ÙéB"_UÐ?~tÇö·$Ð?œ߉‹èÏ?52¸ŒˆÏ?Ҙélþ'Ï?DœɤTÈÎ?Ý<(²iÎ?„qE8
Î?
ÇUīÍ?OQ²ø¶MÍ?Ìo^ŠðÌ?Sßq™͒Ì?Gطð5Ì?¡¾zxÙË?ª1‡zd}Ë?:ÑÌR´!Ë?W¢gÆÊ?~&~kÊ?=~-2÷Ê?ZþҿҶÉ?'|j_]É?iút¿¯É?[’‘°ªÈ?8šŠRÈ?uqbÕùÇ?#£hÓø¡Ç?¦µzœ|JÇ?G–~`óÆ?\ò!>¤œÆ?œñ­¢GFÆ?ùƒøvJðÅ?l󈬚Å?5hȩmEÅ?Á㭍ðÄ?-ÎõlœÄ?ÕuÂéGÄ?®1i‹%ôÃ?î×調 Ã?ˆ«´¸MÃ?e*|„ûÂ?zèÂ?·^ƒ¢ÕVÂ?4<%FÂ?B}u’´Á?c-¨å@cÁ?¹n¢ËÁ?º	R=³ÂÀ?…¿¸KùrÀ?*}T#À?,"kË>©¿?R)ÿ¿?K¥šò{o¾?èvaµӽ?命¹«8½?
t;I_ž¼?hм?3âòxÿk»?3öÊéìӺ?†bê3™<º?[Ü¦¹?« ¤u0¹?R(¿{¸?Öï>Êæ·?vªZ9S·?LJisk6?M…$a.¶?¤ftWµ?®+ú›µ?"@á|´?†š&#ïí³?p>ÙäÅ_³?1›ÏfҲ?‘
ÝDÓE²?}‰—¾º±?òÐ/±?%–,�?—ä0ž—°?5nl+,&¯?Q²GÕ®?bñ­þ.	­?,*(>ý«?p_8óª?cU)ùê©?«µh*àã¨?'¯wûާ?dИ³éۦ?ԭò<²ڥ?]']ۤ?Ëî˜Îòݣ?—ô=è|â¢?¼jŸé¡?€–.˜ñ ?ĥׁøŸ?uŒ‚Ûž?	̓0œ?øë"NŸRš?
Á¶Ñy˜?‚¿ôڥ–?d°ûòê֔?^«8
“?0`4I‘?IÝrO*?¬O'¤‹?x¤
Aˆ?àÏB–ë„?’/•)’¥?7hìø`á|?]¸٨žv?ý±°Šp?g°ÁCŸ_e?÷¹¶¦T?yÙx;IÏ<Æöý㍋<´[,<¯P’<a;D8¹|•<§/èü˜<¼ÐL.#š<÷a8/Mœ<trtZ/¬<ÃÕL-H2Ÿ<­»Ž'2M <C];õ <w6A—¦’¡<õz¢'¢<€Øc8.µ¢<õ‘WÀ?<£</±¢^½£<U›ÿï9¤<§þ=6»±¤<tÓbu%¥<–Χ€•¥<ê~ÙÏ1¦<=|£aÒk¦<p’¢Ҧ<¦øFÓÚ6§<w*³­˜§<CõF­Eø§<w
CSÌU¨<šv{žd±¨<˜ÏN©.©<ê,‚Gc©<FÅ8Žɹ©<,§¤Ü̪<YÍwmgbª<0n­´ª<œlm±«<)zB‡„U«<:ŸRŽ6¤«<2‚¿*Öñ«<óNYùp>¬<a;2¥Ь<‹&rþÉԬ<H·€Ÿ­<ä)g­<ø#ί­<Svñ©:÷­<þíҵë=®<oz3郮<΂ù½:ɮ<&bð„ç
¯<ˆöØTöQ¯<®ׇžm•¯<¬.ú}Sد<ì4BàV
°<š9õ@.°<ü¥žêN°< r[Vo°<ôq†°<a¼„}¯°<ÌKf=ϰ<kKÈî°<î•2 ±<¾1G-±<A‘ŽŸ>L±< Ŀk±<4Úx§‰±<ˆmîQ¨±<Ë*øøfƱ<.ÔӋä±<Ÿ @™Š²<éÆÄre ²<Ãé}>²<ûk©´[²<Óf*y²<×ǁ–²<Ú.¸b»³²<S¸ábØв<Ž©ËèÙí²<×Hn
Á
³<0¹ôáŽ'³<¡^&pDD³<ÕRʺâ`³<jX¾j}³<d²²oݙ³<=¸¿;¶³<àV˜†ҳ<ƒZr޾î³<tžàqå
´<]t¦-û&´<¤0<èC´<]ÇÊs÷^´<6Ãfžßz´</H2º–´<]A��<ܳ¬Iδ<¦8ê´<bU^﫵<Z‹
òM!µ<OfjÕæ<µ<ȲNwXµ<x_Utµ<…Ɓµ<Y$#ýªµ<=s}ÑrƵ<ӌ/{ãáµ<8^ŸÈOýµ<ã`¸¶<¢°¢è4¶<&·O¶<r–ÉWâj¶<71±ƒB†¶<±²P)¢¡¶<»C³è½¶<RÓ(abض<Tøa1Äó¶<ëh‹÷'·<ÆiQŽ*·<ÜîpÜ÷E·<så5ea·<IôïúÖ|·<“½ºÈM˜·<	‹<ʳ·<û"ÛóLϷ<çÞsŒÖê·<ꆤg¸<v†ÈÚ"¸<Ÿ‰΢=¸<½õÑNY¸<Å~zou¸<-÷G_и<CÀ’ެ¸<œ¡«eȸ<'jDQIä¸<µs):¹<Gƒ(Ü8¹<ü
ïF8¹<Š¢ybT¹<îÕp»Žp¹<1*.‰ˌ¹<¿™?“©¹<,ÙՌyŹ<to+ìá¹<JÒú&rþ¹<’6ù9º<[Ȣ!»7º<ˆ»žTº<¤©JrZqº<=1 dLŽº<ñŸ>V«º<ÎõZÍxȺ<6³‹á´åº<¡ÃO»<[˜šð| »<à 
>»<=ÎAµ[»<'‰?¹}y»<<÷åñd—»<n%…Ûkµ»<¢À.k“ӻ<ƒ®›Üñ»< ìlH¼<-zðå×.¼<
nŒM¼<‡ìfl¼<¦ëàf‹¼<«¢6½ª¼<Ö;Çáɼ<7àh0^é¼<n‹2	½< ï7Û(½<GÆ3ÞH½<#ñç–i½<¥û×ôs‰½<pn ™	ª½<IüøÒʽ<7.R•Ñë½<ÒIû
¾<öFêÄt.¾<ˆÑYP¾<%þ—/r¾<
¿*K!”¾<o÷¶¾<:§v#پ<©ìaü¾<!SŠ2¿<mM·¤B¿<hÉ _f¿<‚—‰fŠ¿<¿"q»®¿<…ç/Ò`ӿ<öÁYø¿<u ÓGÔÀ<Gɏ¨!À<«©ƒ©4À<Çõ>NÚGÀ<~³­ö;[À<h&§#ÐnÀ<.c˜‚À<T¢è—–À<ÄÀquͪÀ<HÔîÑ=¿À<0=ª4êÓÀ<“eÏÔèÀ<¶Ÿ¦ïÿýÀ<Ap nÁ<5]»›!)Á<m	Äi?Á<;.`HdUÁ<óî;ùkÁ<aÒt߂Á<¬ëNVšÁ<Ž/w­±Á<”¦q©œÉÁ<9®äûëáÁ<ÙâŸúÁ<Ì¼Â<îÓozG-Â<$œ¬¤EGÂ<àXvǼaÂ<.Y¨ú²|Â<xwÍ.˜Â<R
*S7´Â<—ۖ1ÔÐÂ<õx©±
îÂ<î®VÒìÃ<£¤h^{*Ã<£®ÄIÃ<@¨3zÒiÃ<
AV’³ŠÃ<úˆ®pu¬Ã<¦³'ÏÃ<uô`ªÛòÃ<Ú幜¤Ä<”^T˜=Ä<:§DÎdÄ<¼CœubÄ<'Zks·Ä<‰Í
%ãÄ<A¬éSŸÅ<B~:R@Å<äJ©±qÅ<ٍq‹%Å<þÐ:$ŠÜÅ<L†ÏiÆ<êj{ÎSÆ<Ã埾@•Æ<2â	kÛÆ<4z_ð('Ç<s	V•yÇ<ŒÎÖô-ÔÇ<4ò)9È<|ª¿«È<–Do”à.É<«W@îËÉ<Zw”x܏Ê<±ýx8˜Ë<3­	‚´;Í<jï%€=ó¨Æû˜¾B½úT£
êîÁ~öQ~÷ÓéU²¹Ê~KïªDú
GËÿaí7\%a•FO–£ä¥a¤–SuzpšD(ì²|ÓWcñ†Þ%ƒW¦ÚÐMÇ$—	õÛ©túõ`£øK[Þo¨ÜTÓ`ñ¬¹gû°ÆtSŸ´wþf#ì·å¡éìºí«½Wlÿ`0ÀH¢7‚ÂÑ[âz¦Ä1îz—¢Æ¤–(©zÈ…ÞK^2Ê#éÌËÄ9øMÍ™ìMµÎ0É¿ÐæÄÖMFÑPôâ¨rÒÉðOŽÓx´™šÔS’¸˜Õ왎	Ö2èȩn×è{THØŒ,­‹Ùҭ§ÝÙŒ^p™Ú .À]MÛÐü[\ùÛ}š¹ëÜr;ݐ/4ˆÒÝdŸ6dcÞNQpîÞ.´¦tß@í™eôßò$¼äoàX¢%ÂæàL¸(<Yá™?¼ŒÇáªÛé1â‘څ˜â†AµûâJU3[ã*Й·ã­žéä4wÔFgä\	LӺä$•Үåx¼N÷Yåäȥ剆>ïåxÙo6æxÕÆu{æªf¾æòôåUÿæ§Y>ç9ž>‚{ç¢ppã¶çCBwðçŒðS(è:5û^èd„ܓè¼ÎðAÇèöN}8ù蛇Ì)éêˆÓ	Y颚“û†éfHq¬³éն”&ßé|æ«s	ê¤fñœ2ê,•2«Zêtզêðޗ§ê Ùó…Ìê<æexðêì/vëJ*þ…5ë´b1®Vëú„âôvë æ_–ë|Ïô´ëÐIô¸Òë>.n±ïëè½ãìZ±R'ìӯBì–ñ)ý[ìôîl@uì´Pҍì‘¶¥ìþ'Äð¼ìûT„Óì³Ȉtéì·‘Äþì(…5wíI„'íL/$;ínX­ûMíÝØT`íèOArí‚©äWƒíÈ,¤”í·…+¤í´jtȳíRfAßÂíRn¤qÑíӊ<ß퀙ííÔúíÄK®îZÙÀîàWî$eKs)î¼ä
4î<›¸=>îô‚)îG'QîA@éYî.´(5bîñ—Xjîz>lqî‚{2Xxîº{Ï~î²JH҄îCc¶`ŠîQÈÌzîÚ%~ ”îê)¨Q˜î\HœîôsrUŸî®Ìb'¢î¬Bkƒ¤îq-üh¦îúÖnקî
úΨî;3èK©îd)P©î^À٨îTv‰ç§î$Hx¦îƒž¢Š¤îÚä"¢î$ 5.Ÿî.¯&¼›îäò$ŗî:
<G“îuU@Žîzœ6®ˆîý=Ž‚îˆ¸§Þ{îÿ7ÿ›tî^½©Ãlî~žRdîˆ(£E[î¶WN™QîÏJGîP,áS<îØ*à²0î‚­b$îZ<¸^îG*¢	îÌIã'ûíl!vêëí~"äÛíÓ9ÎËíô,d¹íÉ8éܦíé7r“í6¨8í+9Òií®Sí"¤ÞA<íØ/jç#íDæ/s
í4þÚï츷Ôì´n•·ìÁ0¶˜ìx©
yìþ1õWìbɆf5ì5³´LìÐoŽ”ëë’¶ )ÄëÜîõšëB…Éáoëž­ÓBëK-°ëéYâêW"™®®ê&㎍xêåsýÏ?êöٍLê;V/ÖÅé¤G©;„é(GG?éÖÅv½öèæèÄ]ªèê±zàYè@©öèÀ3‚H«ç¥juLç¢*èæث¶ }æ~08ŸæB÷8s”å€r—påXô6ԋä7ý¿ù㜱î5]ãþä/µâWU™âƒx‚<á°gîÄhàªq+°‚ߪþ~ŇÞý;Æ	uÝ¿)åFÜ‚.øøÚuº²á…ÙÏHïæ×e½­ÖðâIÔ¬Ǵ§¡Ñžvâβ^بË"-ÍnÒÇí"/+Ã:¸e½4TĶt(*X@¬˜E—žü¤Hú‰,0ð÷ÅfJ3KZ4€?ÉNö@SŒ¾¤Ýi@«ªª>Aޓ=?ƒ»~)ÙÉ@Áè lªƒѿ3­	‚´;
@࿅8–þÆ?5gGö¿@@´¾dÈñgí?$@=
ףp=@˜nƒÀÊí?[¶Ö	m™?h‘í|?5®?333333@rŠŽäòò?$—ÿ~ûñ?B>è٬ú@rù鷯í?…ëQ¸…Û?ìQ¸…ë±?9´Èv¾ŸŠ?Âõ(\@ffffff@š™™™™™.@€4@ôýÔxé&Á?ä?UUUUUUÅ?€a@ÀX@€`@à|@¸Ê@€MA-DTû!	@ñh㈵øä>-DTû!@àC€;´µÀÒùÿÐPÜùÿÈ;Ýùÿ:Þùÿd9ßùÿ*`Húÿø€HúÿàHúÿ(0Iúÿ`@Iúÿt°Iúÿˆ0JúÿÀ JúÿÜKúÿ`Lúÿ€Múÿ¬ Núÿ	€NúÿD	ÐNúÿp	Oúÿ	POúÿ¬	 OúÿØ	€Túÿh
`YúÿÌ
P[úÿ _úÿX_úÿ|ÐbúÿÌfúÿ húÿ„Àjúÿìpnúÿ\
prúÿ°uúÿ”€xúÿP{úÿ”@úÿ8€‚úÿÔP†úÿpPŠúÿðŽúÿÔ0’úÿp0–úÿð˜úÿ¨0œúÿD0 úÿðp£úÿŒ°¦úÿ(ð©úÿÄà­úÿhбúÿ5úÿ°°¹úÿTð¼úÿàðÀúÿŒ Âúÿ Âúÿ$0Ãúÿ@ ÄúÿlÅúÿ˜`ÆúÿÔðÉúÿDÌúÿ”0ÎúÿäðÎúÿ`Ôúÿ|`Õúÿ ÀÞúÿ Àéúÿ|àøúÿ ðûÿp €ûÿÌ °#ûÿˆ!@<ûÿè! RûÿX"Yûÿ¨" \ûÿ4#0`ûÿÀ#ÀcûÿL$@gûÿÐ$€kûÿl%ŒûÿÜ%ð¦ûÿä&0¸ûÿ0'Íûÿ|' ÷ûÿä' üÿ¼(PRüÿ,)€yüÿ0*`Aýÿ(+BýÿP+ÀBýÿh+PEýÿ¤+pEýÿ¼+ EýÿÔ+àEýÿì+ Fýÿ,@Fýÿ,pGýÿP,ÐGýÿp,ÐHýÿ”,Iýÿ¬, IýÿÄ,àIýÿè,Jýÿ-@Jýÿ$-àKýÿX-@Lýÿx-`Lýÿ-àLýÿ°-PRýÿü-`Rýÿ.pRýÿ$.€Rýÿ8.RýÿL. Rýÿ`.ÐRýÿx.àRýÿŒ. Sýÿ¼.pSýÿì.Týÿ8/ÐTýÿh/VýÿÀ/PVýÿð/°Výÿ 00WýÿP0ÐXýÿœ0YýÿÌ0àZýÿ1 [ýÿ@1°]ýÿ|1p`ýÿ¸1`ýÿÐ1°`ýÿè1À`ýÿü1Ð`ýÿ2PbýÿD2€býÿ\2 býÿt2ÐbýÿŒ2ðbýÿ¤2cýÿ¼2dýÿè2 dýÿ3€dýÿ 3°dýÿ@3àdýÿX3 eýÿp3`eýÿˆ3ðeýÿ´3`fýÿÔ3°fýÿô3Ðfýÿ40gýÿ(4ðgýÿL4Àjýÿ”4ðjýÿ°4°uýÿø4Ðwýÿ45€xýÿX5°yýÿ˜5zýÿ¸5{ýÿÜ5°}ýÿ6À~ýÿ86 ýÿP6€ýÿh6 ýÿ|6ð€ýÿ 6‚ýÿÄ6°‚ýÿø6„ýÿD7Єýÿ7`†ýÿ8à‡ýÿˆ80ˆýÿ´8ðŠýÿ9pŒýÿ¤9€Žýÿ:àýÿl:`‘ýÿ¬:zRx$èÌùÿ	FJw€?;*3$"D`BúÿXlBúÿXD{
A4t°BúÿEBŒD†D ƒd
GBIAAB¬ÈBúÿ
ÀÄBúÿo4Ô CúÿwA†DƒD K
CAHI
CAChCúÿgAƒ
P<(¼CúÿiA†KƒD0d
AAJV
AAHDCA`hìCúÿGBBŽE E(ŒD0†A8ƒD`š
8C0A(B BBBCK
8F0A(B BBBFDÌØDúÿ¦BBŽF B(ŒA0†A8ƒDP‰8A0A(B BBBP€ÔùÿëBŽEH ŒD(†D0ƒG€xˆHfˆA€Z0D(A BBBDhÕùÿÿBEŽE L(ŒD0†A8ƒB@Ó8C0A(B BBBD°ÎÕùÿÿBEŽE L(ŒD0†A8ƒB@Ó8C0A(B BBB\ø\DúÿBŽBE ŒD(†A0ƒO
(D BBBII
(D BBBE{(A EBB4XEúÿQA†DƒD ^
CAEM
CAG(4EúÿMA†GƒD X
DAG¼XEúÿ+Aƒ\
CIÜhEúÿADR
J(øœEúÿPA†DƒD Q
DAAŒ$ÀEúÿ×BBŽE E(ŒA0†C8ƒFp¢
8A0A(B BBBDL
8A0A(B BBBBëxT€AˆBB˜A A¨A°A¸AÀIp`´JúÿßBBŒA †A(ƒD0{
(D ABBBL
(D ABBK
(D ABBG@ŒNúÿçA†AƒD0o
AAIV
AAHz
CABD\8PúÿÉBŒH†D ƒ
ABDl
ABA€
ABE ¤ÀSúÿcAƒI k
CHLÈTúÿ7BBŒA †D(ƒG@q
(D ABBF„
(D ABBCLüVúÿ7BBŒA †D(ƒG@q
(D ABBF„
(D ABBCdhìYúÿBEŽE B(ŒA0†D8ƒH€g
8A0A(B BBBDa
8F0A(B BBBAdД[úÿ’BŽBB ŒA(†D0ƒDPeXH`@XAP^
0A(A BBBEG
0A(A BBBIl8Ì]úÿªBBŒD †D(ƒDP½
(A ABBEyXH`@XAP^
(A ABBB‹
(C ABBE¨¨aúÿòBBŽB B(ŒD0†D8ƒDpXxZ€BˆFF˜B F¨A°B¸FÀJpi
8A0A(B BBBAjxD€RxAp^
8A0A(B BBBDÿxW€fxApˆT`dúÿ:BŽBB ŒA(†D0ƒDPeXL`GXAP^
0A(A BBBBUX^`BhApAxB€AˆDB˜F JPe
0A(A BBBC|àgúÿÃBBŒA †D(ƒDPeXH`@XAP^
(A ABBAOXW`BhBpBxB€BˆBB˜B JPa
(A ABBI|`	diúÿÃBBŒA †D(ƒDPeXH`@XAP^
(A ABBAOXW`BhBpBxB€BˆBB˜B JPa
(A ABBI à	´kúÿëBŽBB ŒD(†A0ƒD`th_pBxA€AˆBF˜A E¨A°Q`S
0A(A BBBGV
0A(A BBBJshLpGhA`\
0C(A BBBC˜„
oúÿ>BBŽB B(ŒD0†D8ƒD`Qh^pBxA€AˆBA˜D B¨F°J`i
8A0A(B BBBAAhHp@hA`^
8A0A(B BBBJ˜ ¤qúÿÅBBŽB B(ŒD0†D8ƒDp‚xH€@xAp^
8A0A(B BBBISxZ€BˆFF˜B F¨A°B¸FÀJpe
8A0A(B BBBK¨¼ØtúÿòBBŽB B(ŒD0†D8ƒDpXxZ€BˆFF˜B F¨A°B¸FÀJpi
8A0A(B BBBAjxD€RxAp^
8A0A(B BBBDÿxW€fxAp´h,xúÿ–BBŽB B(ŒD0†A8ƒGp\x`€BˆFA˜E F¨A°B¸FÀJpi
8A0A(B BBBFMxD€RxAp^
8A0A(B BBBDxW€fxApixV€gxNp˜ 
|úÿ>BBŽB B(ŒD0†D8ƒD`Qh^pBxA€AˆBA˜D B¨F°J`i
8A0A(B BBBAAhHp@hA`^
8A0A(B BBBJ¨¼
¸~úÿòBBŽB B(ŒD0†D8ƒDpXxZ€BˆFF˜B F¨A°B¸FÀJpi
8A0A(B BBBAjxD€RxAp^
8A0A(B BBBDÿxW€fxApˆh‚úÿ²BŽBB ŒA(†D0ƒDPeXH`@XAP^
0A(A BBBEOXe`BhApBxB€AˆBB˜A JPa
0A(A BBBD˜ô@„úÿ>BBŽB B(ŒD0†D8ƒD`Qh^pBxA€AˆBA˜D B¨F°J`i
8A0A(B BBBAAhHp@hA`^
8A0A(B BBBJ¨ä†úÿòBBŽB B(ŒD0†D8ƒDpXxZ€BˆFF˜B F¨A°B¸FÀJpi
8A0A(B BBBAjxD€RxAp^
8A0A(B BBBDÿxW€fxAp˜<8Šúÿ>BBŽB B(ŒD0†D8ƒD`Qh^pBxA€AˆBA˜D B¨F°J`i
8A0A(B BBBAAhHp@hA`^
8A0A(B BBBJ˜Ø܌úÿ>BBŽB B(ŒD0†D8ƒD`Qh^pBxA€AˆBA˜D B¨F°J`i
8A0A(B BBBAAhHp@hA`^
8A0A(B BBBJ˜t€úÿ>BBŽB B(ŒD0†D8ƒD`Qh^pBxA€AˆBA˜D B¨F°J`i
8A0A(B BBBAAhHp@hA`^
8A0A(B BBBJ $’úÿëBŽBB ŒD(†A0ƒD`th_pBxF€AˆBF˜A E¨F°J`S
0A(A BBBDV
0A(A BBBJshLpGhA`\
0C(A BBBC ´p•úÿëBŽBB ŒD(†A0ƒD`th_pBxF€AˆBF˜A E¨F°J`S
0A(A BBBDV
0A(A BBBJshLpGhA`\
0C(A BBBC X¼˜úÿëBŽBB ŒD(†A0ƒD`th_pBxF€AˆBF˜A E¨F°J`S
0A(A BBBDV
0A(A BBBJshLpGhA`\
0C(A BBBC üœúÿëBŽBB ŒD(†A0ƒD`th_pBxF€AˆBF˜A E¨F°J`S
0A(A BBBDV
0A(A BBBJshLpGhA`\
0C(A BBBCˆ TŸúÿ:BŽBB ŒA(†D0ƒDPeXL`GXAP^
0A(A BBBBUX^`BhApAxB€AˆDB˜F JPe
0A(A BBBC¨,¢úÿòBBŽB B(ŒD0†D8ƒDpXxZ€BˆFF˜B F¨A°B¸FÀJpi
8A0A(B BBBAjxD€RxAp^
8A0A(B BBBDÿxW€fxAppØ\¥úÿ%BBŒA †A(ƒG0`
(D ABBJm
(D ABBJD
(A ABBFU
(A ABBE L¦úÿ|Aƒ~
Ae
Kpt¦úÿ‰D W
E(Œè¦úÿèAƒG l
AKV
AI(¸¬§úÿèAƒG l
AKV
AI8äp¨úÿMBŒA†K ƒf
ABIx
CBCl „©úÿ…BŽBE ŒA(†A0ƒD@
0A(A BBBE‚
0A(A BBBFV
0C(A BBBHL¤¬úÿ BBŒD †D(ƒD0‰
(D ABBFl
(D ABBCLàt®úÿ BBŒD †D(ƒD0‰
(D ABBFl
(D ABBC 0D°úÿ¼YƒG g
AApTà°úÿbBBŽB E(ŒA0†A8ƒDP0
8D0A(B BBBByXH`@XAP\
8C0A(B BBBF ÈܵúÿüAƒG ^
AI|츶úÿU	BŽBB ŒA(†D0ƒD@w
0C(A BBBHyHHP@HA@a
0C(A BBBKÜ
0F(C BBBEXl˜¿úÿó
BBŽB E(ŒA0†A8ƒD`hHp@hA`_
8D0A(B BBBJÈ<ÊúÿBBŽB B(ŒA0†A8ƒG€˜ˆH@ˆA€^
8A0A(B BBBFü
8A0A(B BBBJS
8A0A(B BBBC\\ÈØúÿBBŽB B(ŒD0†A8ƒD€€ˆH@ˆA€_
8D0A(B BBBJX¼xæúÿBŽBB ŒD(†A0ƒD@u
0A(A BBBDd
0C(A BBBB¸¬îúÿ*BBŽB B(ŒA0†A8ƒDÔ˜r B¨A°F¸BÀAÈBÐBØAàOw˜L G˜A^
8D0A(B BBBFº˜F O¨A°J¸BÀAÈAÐBØAàT\Ô ûÿ‚BBŽB B(ŒA0†D8ƒGàÑèHð@èAàa
8D0A(B BBBDl4PûÿUBEŽB B(ŒD0†A8ƒGÐ_ØDàRØAÐa
8D0A(B BBBEóØWàfØAÐL¤@0ûÿdBEŒA †A(ƒD@`
(A ABBEf
(C ABBJˆô`6ûÿˆBŽBE ŒD(†D0ƒDPkXH`@XAP^
0A(A BBBATXa`AhApBxA€DˆBF˜A TPA
0A(A BBBDˆ€d9ûÿˆBŽBE ŒD(†D0ƒDPkXH`@XAP^
0A(A BBBATXa`AhApBxA€DˆBF˜A TPA
0A(A BBBDˆh<ûÿˆBŽBE ŒD(†D0ƒDPkXH`@XAP^
0A(A BBBATXa`AhApBxA€DˆBF˜A TPA
0A(A BBBD€˜l?ûÿBBŒD †D(ƒDPeXL`GXAP^
(A ABBCSXa`AhApBxA€HˆEF˜A MP}
(A ABBC˜hBûÿ<BŽBE ŒD(†D0ƒD`\hDpRhA`^
0A(A BBBBYhZpFxF€BˆFA˜E F¨A°M`A
0A(A BBBF/hWpfhA`l¸Fûÿ BBŽB E(ŒA0†A8ƒGÀ™ÈEÐRÈAÀb
8D0A(B BBBD[ÈVÐgÈNÀ( ,fûÿÓBBŽB B(ŒA0†A8ƒGq˜f B¨B°B¸BÀAÈBÐOk˜D R˜A^
8A0A(B BBBDD˜S S¨A°B¸BÀAÈBÐBØAàTp
8A0A(B BBBE¦
8A0A(B BBBH˜W f˜Aø˜V g˜NH0!€ûÿ?BBŽE B(ŒA0†A8ƒGPü
8D0A(B BBBCH|!øûÿßBBŽB B(ŒA0†D8ƒDP¢
8D0A(B BBBHdÈ!Œ¥ûÿ*BBŽH B(ŒA0†D8ƒD <
8A0A(B BBBCV
8A0A(B BBBHÔ0"´Ïûÿx"BBŽB B(ŒA0†A8ƒG7˜b F¨D°B¸FÀDÈBÐY²˜D R˜A^
8D0A(B BBBA;˜H S¨E°B¸FÀBÈBÐFØBàY\˜W f˜AÀ˜V g˜Nl#\ñûÿ,8BBŽB B(ŒD0†A8ƒGЕ
8D0A(B BBBAfØDàSØAÐqØWàfØAÐx#)üÿ/'BBŽB E(ŒA0†A8ƒD€¼ˆ_QˆB€c
8D0A(B BBBAFˆI@ˆA€@ˆ_QˆA€8ˆ_TˆA€ûˆ_RˆD€ŠˆERˆB€’ˆGQˆA€êˆBTˆA€ˆERˆB€ˆGQˆA€\|$HOüÿßÇBBŽB B(ŒD0†A8ƒGh
8D0A(B BBBG¦˜H @˜A”Ü$¡´ùÿChROŒM †A(ƒG°Æ
(A ABBA›¸NÀEÈFÐFØAàAèAðAøA€N°¸NÀEÈFÐFØAàAèAðAøA€N°$t%0ýÿ(LƒG0ÌEDÃU0ƒœ%8ýÿ/Dj8´%Pýÿ‰]ƒG@|
AGx
AG+ADÃ[@ƒð%¤ýÿD U&¬ýÿ'D b &Äýÿ>\ ]8&ìýÿ?D nP&ýÿDQ0h&ýÿ&OƒK0w
EJKALÃK0ƒœ&ýÿWAƒG AA ¼&XýÿöIƒO0ª
EAà&4ýÿ(D cø&LýÿDI 'Týÿ½AƒG0e
EA4'ðýÿ&IƒXP'ýÿ/AƒG ]A0p'ýÿŸAƒG@¦
AQl
AS‘A¤'€ýÿSAƒG }AÄ'ÀýÿD UÜ'Èýÿ}Aƒi
FLHü'(ýÿiBBŽE E(ŒD0†D8ƒD U
8D0A(B BBBDH(L$ýÿ\(H$ýÿp(D$ýÿ„(@$ýÿ˜(<$ýÿ¬(8$ýÿ%G]Ä(P$ýÿ	,Ø(L$ýÿ9GŒE†D ƒ^ABGÃÆÌ,)\$ýÿIGŒE†D ƒqABDÃÆÌH8)|$ýÿBIŒH †H(ƒGP·
(E ABBEc(A AFB,„)P%ýÿ9GŒE†D ƒ_ABFÃÆÌT´)`%ýÿ2BŽEI ŒH(†H0ƒD@¹
0D(A BBBHr0A(A FBB,*H&ýÿ9GŒE†D ƒ_ABFÃÆÌ,<*X&ýÿQGŒE†D ƒ{ABBÃÆÌ,l*ˆ&ýÿqGŒE†D ƒUABHÃÆÌHœ*Ø&ýÿœBBŽE I(ŒH0†K8ƒK`É
8E0A(B BBBI,è*,(ýÿ9GŒE†D ƒ_ABFÃÆÌ@+<(ýÿÊBŽEI ŒH(†H0ƒD@Þ
0A(A BBBF,\+È)ýÿ9GŒE†D ƒ_ABFÃÆÌ8Œ+Ø)ýÿ]ƒG@y
ABx
AG(AGÃ[@ƒ8È+,,ýÿ¹[ƒG0™
ADt
AKCADÃ[0ƒ,°.ýÿGJ,¸.ýÿGJ4,À.ýÿH,¼.ýÿ	0\,¸.ýÿyr†AƒD@
EAHhÃÆ,0ýÿ(D c¨,0ýÿD UÀ,$0ýÿ,D gØ,<0ýÿD Uð,D0ýÿD U(-L0ýÿëAƒG0J
AMA4-1ýÿDQL-1ýÿSAƒG }Al-X1ýÿ/AƒG ]AŒ-h1ýÿ'D b¤-€1ýÿ>\ ]¼-¨1ýÿ?D n(Ô-Ð1ýÿ‚AƒG R
AMXA.42ýÿgAƒG UA .„2ýÿNAƒG DA@.´2ýÿDIX.¼2ýÿ^D B
E t.3ýÿ½AƒG0e
EAD˜.œ3ýÿÅA†DƒDpf
DADM
DAF!
DAAà.$6ýÿ&IƒXDü.86ýÿ»
BŽFJ ŒD(†A0ƒJ€Â
0A(A EBBB8D/°@ýÿBEŒD †D(ƒDpY
(A ABBF €/”Býÿ¥YƒiFÃPƒL<¤/ Cýÿ/AƒG0›
ADm
AJL
ACP
DEä/DýÿWAƒG AA 0PDýÿðIƒO0§
EA4(0Eýÿ§AƒGP 
AG^
AAL
AC `0”GýÿAƒG@à
AG„0€HýÿWD Rœ0ÈHýÿ`D V´0Iýÿ È0IýÿNAƒG0?F ì0HJýÿ
L@ƒ
Ir
E014Kýÿ¡MŒG†G ƒT
ABFhÃÆÌHD1°KýÿZBBŽB B(ŒD0†A8ƒDP}
8D0A(B BBBEH1ÄLýÿ¶BBŽB B(ŒA0†A8ƒFPm
8C0A(B BBBGxÜ18Mýÿ‰BDŽB B(ŒA0†A8ƒDP
8A0A(B BBBDD
8D0F(B BBBJ^
8A0A(E BBBExX2LNýÿyBDŽB B(ŒA0†A8ƒDPï
8A0A(B BBBGD
8E0E(B BBBJ]
8A0A(E BBBF(Ô2POýÿGA†CƒD a
AAE`3tOýÿ´jJŽB E(ŒA0†D8ƒDP
8A0A(B BBBCƒÃÆÌÍÎÏEPƒ†ŒŽˆd3ÐQýÿ|jEŽB E(ŒA0†C8ƒDPƒ8A0A(B BBBAÃÆÌÍÎÏDPƒ†ŒŽi
8A0A(B BBBEi8A0A(B BBB`ð3ÄRýÿBBŽB B(ŒA0†C8ƒDPa
8A0A(B BBBEº8A0A(B BBB`T4pTýÿ[BBŽB E(ŒA0†A8ƒDP_
8A0A(B BBBFÛ
8A0A(B BBBK<¸4lVýÿqGŽJE ŒD(†E0ƒB(A BBBHÃÆÌÍÎ\ø4¬Výÿ¯BEŽB B(ŒA0†D8ƒD`r
8A0A(B BBBAS8A0A(B BBB@##0'¨²Â ­
m '('õþÿoð¸
ð '@`ŸØ0ˆn	þÿÿo˜0ÿÿÿoðÿÿo¨.ùÿÿo^8'ƭ֭æ­ö­®®&®6®F®V®f®v®†®–®¦®¶®Ʈ֮æ®ö®¯¯&¯6¯F¯V¯f¯v¯†¯–¯¦¯¶¯Ư֯æ¯ö¯°°&°6°F°V°f°v°†°–°¦°¶°ưְæ°ö°±±&±6±F±V±f±v±†±–±¦±¶±Ʊֱæ±ö±²²&²6²F²V²f²v²†²–²¦²¶²Ʋֲæ²ö²³³&³6³F³V³f³v³†³–³¦³¶³Ƴֳæ³ö³´´&´6´F´V´f´v´†´–´¦´¶´ƴִæ´ö´µµ&µ6µFµVµfµvµ†µ–µ¦µ¶µƵֵæµöµ¶¶&¶6¶F¶V¶f¶v¶†¶–¶¦¶¶¶ƶֶæ¶ö¶··&·6·
    This is an alias of `random_sample`. See `random_sample`  for the complete
    documentation.
    
    This is an alias of `random_sample`. See `random_sample`  for the complete
    documentation.
    
        permutation(x)

        Randomly permute a sequence, or return a permuted range.

        If `x` is a multi-dimensional array, it is only shuffled along its
        first index.

        .. note::
            New code should use the ``permutation`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        See Also
        --------
        Generator.permutation: which should be used for new code.

        Examples
        --------
        >>> np.random.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> np.random.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        
        shuffle(x)

        Modify a sequence in-place by shuffling its contents.

        This function only shuffles the array along the first axis of a
        multi-dimensional array. The order of sub-arrays is changed but
        their contents remains the same.

        .. note::
            New code should use the ``shuffle`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        x : array_like
            The array or list to be shuffled.

        Returns
        -------
        None

        See Also
        --------
        Generator.shuffle: which should be used for new code.

        Examples
        --------
        >>> arr = np.arange(10)
        >>> np.random.shuffle(arr)
        >>> arr
        [1 7 5 2 9 4 3 6 0 8] # random

        Multi-dimensional arrays are only shuffled along the first axis:

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        .. note::
            New code should use the ``dirichlet`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        -------
        ValueError
            If any value in ``alpha`` is less than or equal to zero

        See Also
        --------
        Generator.dirichlet: which should be used for new code.

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               http://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        .. note::
            New code should use the ``multinomial`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        n : int
            Number of experiments.
        pvals : sequence of floats, length p
            Probabilities of each of the ``p`` different outcomes.  These
            must sum to 1 (however, the last element is always assumed to
            account for the remaining probability, as long as
            ``sum(pvals[:-1]) <= 1)``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        Generator.multinomial: which should be used for new code.

        Examples
        --------
        Throw a dice 20 times:

        >>> np.random.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]]) # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> np.random.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3], # random
               [2, 4, 3, 4, 0, 7]])

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        A loaded die is more likely to land on number 6:

        >>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26]) # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62]) # random

        not like:

        >>> np.random.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

        
        multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (standard deviation, or "width,"
        squared) of the one-dimensional normal distribution.

        .. note::
            New code should use the ``multivariate_normal`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        Generator.multivariate_normal: which should be used for new code.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

          - Spherical covariance (`cov` is a multiple of the identity matrix)
          - Diagonal covariance (`cov` has non-negative elements, and only on
            the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> x = np.random.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        The following is probably true, given that 0.6 is roughly twice the
        standard deviation:

        >>> list((x[0,0,:] - mean) < 0.6)
        [True, True] # random

        
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 < ``p`` < 1.

        .. note::
            New code should use the ``logseries`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range (0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.
        Generator.logseries: which should be used for new code.

        Notes
        -----
        The probability density for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a)*count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        .. note::
            New code should use the ``hypergeometric`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative.
        nsample : int or array_like of ints
            Number of items sampled.  Must be at least 1 and at most
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.
        Generator.hypergeometric: which should be used for new code.

        Notes
        -----
        The probability density for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = np.random.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        .. note::
            New code should use the ``geometric`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        See Also
        --------
        Generator.geometric: which should be used for new code.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 #random

        
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        continuous probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        .. note::
            New code should use the ``zipf`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.
        Generator.zipf: which should be used for new code.

        Notes
        -----
        The probability density for the Zipf distribution is

        .. math:: p(x) = \frac{x^{-a}}{\zeta(a)},

        where :math:`\zeta` is the Riemann Zeta function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 2. # parameter
        >>> s = np.random.zipf(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy import special  # doctest: +SKIP

        Truncate s values at 50 so plot is interesting:

        >>> count, bins, ignored = plt.hist(s[s<50], 50, density=True)
        >>> x = np.arange(1., 50.)
        >>> y = x**(-a) / special.zetac(a)  # doctest: +SKIP
        >>> plt.plot(x, y/max(y), linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        .. note::
            New code should use the ``poisson`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        lam : float or array_like of floats
            Expectation of interval, must be >= 0. A sequence of expectation
            intervals must be broadcastable over the requested size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        See Also
        --------
        Generator.poisson: which should be used for new code.

        Notes
        -----
        The Poisson distribution

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> s = np.random.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

        
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval [0, 1].

        .. note::
            New code should use the ``negative_binomial`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        See Also
        --------
        Generator.negative_binomial: which should be used for new code.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        .. note::
            New code should use the ``binomial`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.
        Generator.binomial: which should be used for new code.

        Notes
        -----
        The probability density for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = np.random.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 38%.

        
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        .. note::
            New code should use the ``triangular`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        See Also
        --------
        Generator.triangular: which should be used for new code.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        .. note::
            New code should use the ``wald`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        See Also
        --------
        Generator.wald: which should be used for new code.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        .. note::
            New code should use the ``rayleigh`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        See Also
        --------
        Generator.rayleigh: which should be used for new code.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = np.random.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        .. note::
            New code should use the ``lognormal`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.
        Generator.lognormal: which should be used for new code.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = np.random.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + np.random.standard_normal(100)
        ...    b.append(np.product(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        .. note::
            New code should use the ``logistic`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.
        Generator.logistic: which should be used for new code.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

        
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        .. note::
            New code should use the ``gumbel`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull
        Generator.gumbel: which should be used for new code.

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = np.random.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = np.random.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        .. note::
            New code should use the ``laplace`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        See Also
        --------
        Generator.laplace: which should be used for new code.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        .. note::
            New code should use the ``power`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a < 1.

        See Also
        --------
        Generator.power: which should be used for new code.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = np.random.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats # doctest: +SKIP
        >>> rvs = np.random.power(5, 1000000)
        >>> rvsp = np.random.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('np.random.power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + np.random.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        .. note::
            New code should use the ``weibull`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel
        Generator.weibull: which should be used for new code.

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> s = np.random.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        .. note::
            New code should use the ``pareto`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.
        Generator.pareto: which should be used for new code.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.

        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and dispersion (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        .. note::
            New code should use the ``vonmises`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Dispersion of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.
        Generator.vonmises: which should be used for new code.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the dispersion,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and dispersion
        >>> s = np.random.vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        .. note::
            New code should use the ``standard_t`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        See Also
        --------
        Generator.standard_t: which should be used for new code.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ?

        We have 10 degrees of freedom, so is the sample mean within 95% of the
        recommended value?

        >>> s = np.random.standard_t(10, size=100000)
        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727

        Calculate the t statistic, setting the ddof parameter to the unbiased
        value so the divisor in the standard deviation will be degrees of
        freedom, N-1.

        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(s, bins=100, density=True)

        For a one-sided t-test, how far out in the distribution does the t
        statistic appear?

        >>> np.sum(s<t) / float(len(s))
        0.0090699999999999999  #random

        So the p-value is about 0.009, which says the null hypothesis has a
        probability of about 99% of being true.

        
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        .. note::
            New code should use the ``standard_cauchy`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        See Also
        --------
        Generator.standard_cauchy: which should be used for new code.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              http://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        .. note::
            New code should use the ``noncentral_chisquare`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.

            .. versionchanged:: 1.10.0
               Earlier NumPy versions required dfnum > 1.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        See Also
        --------
        Generator.noncentral_chisquare: which should be used for new code.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(np.random.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        .. note::
            New code should use the ``chisquare`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        See Also
        --------
        Generator.chisquare: which should be used for new code.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random
        
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        .. note::
            New code should use the ``noncentral_f`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.

            .. versionchanged:: 1.14.0
               Earlier NumPy versions required dfnum > 1.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        See Also
        --------
        Generator.noncentral_f: which should be used for new code.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = np.random.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        .. note::
            New code should use the ``f`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.
        Generator.f: which should be used for new code.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        .. note::
            New code should use the ``gamma`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        Generator.gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        standard_gamma(shape, size=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        .. note::
            New code should use the ``standard_gamma`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        Generator.standard_gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        .. note::
            New code should use the ``normal`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.
        Generator.normal: which should be used for new code.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        normal is more likely to return samples lying close to the mean, rather
        than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.normal(mu, sigma, 1000)

        Verify the mean and the variance:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.1  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from N(3, 6.25):

        >>> np.random.normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        standard_normal(size=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        .. note::
            New code should use the ``standard_normal`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.
        Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from :math:`N(\mu, \sigma^2)`, use one of::

            mu + sigma * np.random.standard_normal(size=...)
            np.random.normal(mu, sigma, size=...)

        Examples
        --------
        >>> np.random.standard_normal()
        2.1923875335537315 #random

        >>> s = np.random.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = np.random.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from :math:`N(3, 6.25)`:

        >>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        random_integers(low, high=None, size=None)

        Random integers of type `np.int_` between `low` and `high`, inclusive.

        Return random integers of type `np.int_` from the "discrete uniform"
        distribution in the closed interval [`low`, `high`].  If `high` is
        None (the default), then results are from [1, `low`]. The `np.int_`
        type translates to the C long integer type and its precision
        is platform dependent.

        This function has been deprecated. Use randint instead.

        .. deprecated:: 1.11.0

        Parameters
        ----------
        low : int
            Lowest (signed) integer to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is the *highest* such
            integer).
        high : int, optional
            If provided, the largest (signed) integer to be drawn from the
            distribution (see above for behavior if ``high=None``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        randint : Similar to `random_integers`, only for the half-open
            interval [`low`, `high`), and 0 is the lowest value if `high` is
            omitted.

        Notes
        -----
        To sample from N evenly spaced floating-point numbers between a and b,
        use::

          a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

        Examples
        --------
        >>> np.random.random_integers(5)
        4 # random
        >>> type(np.random.random_integers(5))
        <class 'numpy.int64'>
        >>> np.random.random_integers(5, size=(3,2))
        array([[5, 4], # random
               [3, 3],
               [4, 5]])

        Choose five random numbers from the set of five evenly-spaced
        numbers between 0 and 2.5, inclusive (*i.e.*, from the set
        :math:`{0, 5/8, 10/8, 15/8, 20/8}`):

        >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
        array([ 0.625,  1.25 ,  0.625,  0.625,  2.5  ]) # random

        Roll two six sided dice 1000 times and sum the results:

        >>> d1 = np.random.random_integers(1, 6, 1000)
        >>> d2 = np.random.random_integers(1, 6, 1000)
        >>> dsums = d1 + d2

        Display results as a histogram:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(dsums, 11, density=True)
        >>> plt.show()

        
        randn(d0, d1, ..., dn)

        Return a sample (or samples) from the "standard normal" distribution.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `standard_normal`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        .. note::
            New code should use the ``standard_normal`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        If positive int_like arguments are provided, `randn` generates an array
        of shape ``(d0, d1, ..., dn)``, filled
        with random floats sampled from a univariate "normal" (Gaussian)
        distribution of mean 0 and variance 1. A single float randomly sampled
        from the distribution is returned if no argument is provided.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        Z : ndarray or float
            A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
            the standard normal distribution, or a single such float if
            no parameters were supplied.

        See Also
        --------
        standard_normal : Similar, but takes a tuple as its argument.
        normal : Also accepts mu and sigma arguments.
        Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from :math:`N(\mu, \sigma^2)`, use:

        ``sigma * np.random.randn(...) + mu``

        Examples
        --------
        >>> np.random.randn()
        2.1923875335537315  # random

        Two-by-four array of samples from N(3, 6.25):

        >>> 3 + 2.5 * np.random.randn(2, 4)
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        rand(d0, d1, ..., dn)

        Random values in a given shape.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `random_sample`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        Create an array of the given shape and populate it with
        random samples from a uniform distribution
        over ``[0, 1)``.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        out : ndarray, shape ``(d0, d1, ..., dn)``
            Random values.

        See Also
        --------
        random

        Examples
        --------
        >>> np.random.rand(3,2)
        array([[ 0.14022471,  0.96360618],  #random
               [ 0.37601032,  0.25528411],  #random
               [ 0.49313049,  0.94909878]]) #random

        
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        .. note::
            New code should use the ``uniform`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than or equal to high.  The default value is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        randint : Discrete uniform distribution, yielding integers.
        random_integers : Discrete uniform distribution over the closed
                          interval ``[low, high]``.
        random_sample : Floats uniformly distributed over ``[0, 1)``.
        random : Alias for `random_sample`.
        rand : Convenience function that accepts dimensions as input, e.g.,
               ``rand(2,2)`` would generate a 2-by-2 array of floats,
               uniformly distributed over ``[0, 1)``.
        Generator.uniform: which should be used for new code.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.
        If ``high`` < ``low``, the results are officially undefined
        and may eventually raise an error, i.e. do not rely on this
        function to behave when passed arguments satisfying that
        inequality condition. The ``high`` limit may be included in the
        returned array of floats due to floating-point rounding in the
        equation ``low + (high-low) * random_sample()``. For example:

        >>> x = np.float32(5*0.99999999)
        >>> x
        5.0


        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        
        choice(a, size=None, replace=True, p=None)

        Generates a random sample from a given 1-D array

        .. versionadded:: 1.7.0

        .. note::
            New code should use the ``choice`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        a : 1-D array-like or int
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated as if a were np.arange(a)
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        replace : boolean, optional
            Whether the sample is with or without replacement
        p : 1-D array-like, optional
            The probabilities associated with each entry in a.
            If not given the sample assumes a uniform distribution over all
            entries in a.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if a or p are not 1-dimensional,
            if a is an array-like of size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size

        See Also
        --------
        randint, shuffle, permutation
        Generator.choice: which should be used in new code

        Notes
        -----
        Sampling random rows from a 2-D array is not possible with this function,
        but is possible with `Generator.choice` through its ``axis`` keyword.

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to np.random.randint(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> np.random.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        
        bytes(length)

        Return random bytes.

        .. note::
            New code should use the ``bytes`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : str
            String of length `length`.

        See Also
        --------
        Generator.bytes: which should be used for new code.

        Examples
        --------
        >>> np.random.bytes(10)
        ' eh\x85\x022SZ\xbf\xa4' #random
        
        randint(low, high=None, size=None, dtype=int)

        Return random integers from `low` (inclusive) to `high` (exclusive).

        Return random integers from the "discrete uniform" distribution of
        the specified dtype in the "half-open" interval [`low`, `high`). If
        `high` is None (the default), then results are from [0, `low`).

        .. note::
            New code should use the ``integers`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is one above the
            *highest* such integer).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is int.

            .. versionadded:: 1.11.0

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        random_integers : similar to `randint`, only for the closed
            interval [`low`, `high`], and 1 is the lowest value if `high` is
            omitted.
        Generator.integers: which should be used for new code.

        Examples
        --------
        >>> np.random.randint(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
        >>> np.random.randint(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> np.random.randint(5, size=(2, 4))
        array([[4, 0, 2, 1], # random
               [3, 2, 2, 0]])

        Generate a 1 x 3 array with 3 different upper bounds

        >>> np.random.randint(1, [3, 5, 10])
        array([2, 2, 9]) # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> np.random.randint([1, 5, 7], 10)
        array([9, 8, 7]) # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7], # random
               [ 1, 16,  9, 12]], dtype=uint8)
        
        tomaxint(size=None)

        Return a sample of uniformly distributed random integers in the interval
        [0, ``np.iinfo(np.int_).max``]. The `np.int_` type translates to the C long
        integer type and its precision is platform dependent.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            Drawn samples, with shape `size`.

        See Also
        --------
        randint : Uniform sampling over a given half-open interval of integers.
        random_integers : Uniform sampling over a given closed interval of
            integers.

        Examples
        --------
        >>> rs = np.random.RandomState() # need a RandomState object
        >>> rs.tomaxint((2,2,2))
        array([[[1170048599, 1600360186], # random
                [ 739731006, 1947757578]],
               [[1871712945,  752307660],
                [1601631370, 1479324245]]])
        >>> rs.tomaxint((2,2,2)) < np.iinfo(np.int_).max
        array([[[ True,  True],
                [ True,  True]],
               [[ True,  True],
                [ True,  True]]])

        
        standard_exponential(size=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        .. note::
            New code should use the ``standard_exponential`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        See Also
        --------
        Generator.standard_exponential: which should be used for new code.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.standard_exponential((3, 8000))

        
        exponential(scale=1.0, size=None)

        Draw samples from an exponential distribution.

        Its probability density function is

        .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),

        for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter,
        which is the inverse of the rate parameter :math:`\lambda = 1/\beta`.
        The rate parameter is an alternative, widely used parameterization
        of the exponential distribution [3]_.

        The exponential distribution is a continuous analogue of the
        geometric distribution.  It describes many common situations, such as
        the size of raindrops measured over many rainstorms [1]_, or the time
        between page requests to Wikipedia [2]_.

        .. note::
            New code should use the ``exponential`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats
            The scale parameter, :math:`\beta = 1/\lambda`. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized exponential distribution.

        See Also
        --------
        Generator.exponential: which should be used for new code.

        References
        ----------
        .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and
               Random Signal Principles", 4th ed, 2001, p. 57.
        .. [2] Wikipedia, "Poisson process",
               https://en.wikipedia.org/wiki/Poisson_process
        .. [3] Wikipedia, "Exponential distribution",
               https://en.wikipedia.org/wiki/Exponential_distribution

        
        beta(a, b, size=None)

        Draw samples from a Beta distribution.

        The Beta distribution is a special case of the Dirichlet distribution,
        and is related to the Gamma distribution.  It has the probability
        distribution function

        .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1}
                                                         (1 - x)^{\beta - 1},

        where the normalization, B, is the beta function,

        .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1}
                                     (1 - t)^{\beta - 1} dt.

        It is often seen in Bayesian inference and order statistics.

        .. note::
            New code should use the ``beta`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Alpha, positive (>0).
        b : float or array_like of floats
            Beta, positive (>0).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` and ``b`` are both scalars.
            Otherwise, ``np.broadcast(a, b).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized beta distribution.

        See Also
        --------
        Generator.beta: which should be used for new code.
        
        random(size=None)

        Return random floats in the half-open interval [0.0, 1.0). Alias for
        `random_sample` to ease forward-porting to the new random API.
        
        random_sample(size=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` multiply
        the output of `random_sample` by `(b-a)` and add `a`::

          (b - a) * random_sample() + a

        .. note::
            New code should use the ``random`` method of a ``default_rng()``
            instance instead; see `random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        See Also
        --------
        Generator.random: which should be used for new code.

        Examples
        --------
        >>> np.random.random_sample()
        0.47108547995356098 # random
        >>> type(np.random.random_sample())
        <class 'float'>
        >>> np.random.random_sample((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * np.random.random_sample((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        
        set_state(state)

        Set the internal state of the generator from a tuple.

        For use if one has reason to manually (re-)set the internal state of
        the bit generator used by the RandomState instance. By default,
        RandomState uses the "Mersenne Twister"[1]_ pseudo-random number
        generating algorithm.

        Parameters
        ----------
        state : {tuple(str, ndarray of 624 uints, int, int, float), dict}
            The `state` tuple has the following items:

            1. the string 'MT19937', specifying the Mersenne Twister algorithm.
            2. a 1-D array of 624 unsigned integers ``keys``.
            3. an integer ``pos``.
            4. an integer ``has_gauss``.
            5. a float ``cached_gaussian``.

            If state is a dictionary, it is directly set using the BitGenerators
            `state` property.

        Returns
        -------
        out : None
            Returns 'None' on success.

        See Also
        --------
        get_state

        Notes
        -----
        `set_state` and `get_state` are not needed to work with any of the
        random distributions in NumPy. If the internal state is manually altered,
        the user should know exactly what he/she is doing.

        For backwards compatibility, the form (str, array of 624 uints, int) is
        also accepted although it is missing some information about the cached
        Gaussian value: ``state = ('MT19937', keys, pos)``.

        References
        ----------
        .. [1] M. Matsumoto and T. Nishimura, "Mersenne Twister: A
           623-dimensionally equidistributed uniform pseudorandom number
           generator," *ACM Trans. on Modeling and Computer Simulation*,
           Vol. 8, No. 1, pp. 3-30, Jan. 1998.

        
        get_state()

        Return a tuple representing the internal state of the generator.

        For more details, see `set_state`.

        Parameters
        ----------
        legacy : bool, optional
            Flag indicating to return a legacy tuple state when the BitGenerator
            is MT19937, instead of a dict.

        Returns
        -------
        out : {tuple(str, ndarray of 624 uints, int, int, float), dict}
            The returned tuple has the following items:

            1. the string 'MT19937'.
            2. a 1-D array of 624 unsigned integer keys.
            3. an integer ``pos``.
            4. an integer ``has_gauss``.
            5. a float ``cached_gaussian``.

            If `legacy` is False, or the BitGenerator is not MT19937, then
            state is returned as a dictionary.

        See Also
        --------
        set_state

        Notes
        -----
        `set_state` and `get_state` are not needed to work with any of the
        random distributions in NumPy. If the internal state is manually altered,
        the user should know exactly what he/she is doing.

        
        seed(self, seed=None)

        Reseed a legacy MT19937 BitGenerator

        Notes
        -----
        This is a convenience, legacy function.

        The best practice is to **not** reseed a BitGenerator, rather to
        recreate a new one. This method is here for legacy reasons.
        This example demonstrates best practice.

        >>> from numpy.random import MT19937
        >>> from numpy.random import RandomState, SeedSequence
        >>> rs = RandomState(MT19937(SeedSequence(123456789)))
        # Later, you want to restart the stream
        >>> rs = RandomState(MT19937(SeedSequence(987654321)))
        ˆy)À})y)y)؁)0)y) y)y)y)y)0})Ð~)y)Ð)؁)y)èy){)0})Ð~)y)0})Ð~)y)y) }) y)y)Xy)y)Xy) y)y)€)€)y)€)€)0|)y)(€)y)(€)0|)y)y)(€)y)Ø|)(~)y)؁)y)؁)y)؁)y) }) y)y) }) y)y) }) y)y)})(y)y) y)y)}) y)y)Ø})ø|)Èy)y)˜|){)y)˜|){)y)~)y)؁)y){)y)H|)€|)Ð{)y){)y)})H€)y)°€)(x)˜|)àz)y)€)y)ˆy) „)›A„)@ˆ„)&„)€š<„)€’#øƒ)PŠðƒ) ‹èƒ)@š>àƒ)p	؃)ЋЃ)Ћȃ)š$)$¸ƒ) ‰°ƒ)à˜Ë¨ƒ)@Š ƒ)@Š˜ƒ)!ƒ)ˆƒ) "€ƒ)†xƒ)`"pƒ)`‡hƒ)à…`ƒ) "Xƒ)`…Pƒ)à'Hƒ)à„ @ƒ)€ƒ!8ƒ) "0ƒ)`"(ƒ) ˜$ ƒ) ,ƒ)`˜*ƒ) ˜-ƒ)à—%ƒ)@…ø‚) …ð‚) —$è‚) à‚)؂) †Ђ)…Ȃ) …)`—(¸‚) —%°‚)@ƒ!¨‚)‡ ‚) „ ˜‚)à–(‚) –,ˆ‚)à'€‚)`–(x‚) –#p‚)€„ h‚)à•#`‚)`„ X‚)ƒ!P‚)€†H‚)@„ @‚)`†8‚)@†0‚)ð‰
(‚)`‰ ‚)I‚)€•G‚) ’L‚)
‚) !ø)‹ð)(è);à)9؁)GЁ)Gȁ)€… )`0¸)@‡°)@•&¨) 5 )$˜) )ˆ)¨Œ	€)þŽx)`p)h)#Ž`)ޏX)øŽP)XH)Ž@)H8)ُ0)E()E )ԏ)ԏ)˜Œ	)˜Œ	)@Âø€)‰ð€)Ώè€)òŽà€)òŽ؀)àZЀ)•(Ȁ)@)@¸€)8°€)0Š¨€)4 €)°‹
˜€)°‹
€)àùõˆ€)Ž€€)Žx€) í#p€)èŽ
h€) ˆ`€)ŽX€)ɏP€)€‰H€)@€)€”%8€)@”)0€)Ž(€)6 €)6€)܎€)܎€)֎€)֎ø) ‹
ð) ‹
è)Àv!à)Ø)ŽÐ)ЎÈ)ʎÀ)‹¸)
°)¨)ºŽ )	˜) Š) Šˆ)C€)Cx)ÀßÛ
p)´Žh)0`)ˆŒ	X)ùP)®ŽH)®Ž@)àÓÎ8)¨Ž0)‹
()‹
 ) Ì:))€‹
)€‹
)uø~)(ð~)òè~)òà~)9àØ~)p‹
Ð~)´È~)P‰À~)P‰¸~)€©!°~)3¨~)덠~)à˜~)¢Ž~)œŽˆ~)–Ž€~)Žx~)¯p~) h~)ª`~)xŒ	X~)ŠŽP~)hŒ	H~)XŒ	@~)ðŠ8~)¥0~)HŒ	(~)„Ž ~)„Ž~)~)Ս~)A~)ø})ð})è})à}) i‘
Ø}) Ð})`‹È})àŠÀ})΍¸})@‰°})›¨})Њ })˜})})–ˆ})
€})8Œ	x})8Œ	p})@/h})P‹
`})P‹
X}) ‹P})@‹
H})@‹
@})à´8})‘0})ü(})ˆ	 }) ˆ})~})~})€“#}) †ø|)yð|)°Š
è|)	à|) ŠØ|)0Ð|)0È|)ŠÀ|)Š¸|)Às°|)à‡¨|)à‡ |) b„˜|)?|)?ˆ|)p	€|)ex|)ep|)`h|)`ˆ`|)`ˆX|)àT7
P|)à‰
H|)~Ž@|)~Ž8|)ˆ0|)[(|)[ |) ‡|) ‡|) I´|)Љ
|)Љ
ø{)à;#
ð{)Ǎè{)Ǎà{)€,UØ{)-Ð{)È{)À{)xޏ{)@,'°{)@“"¨{)Š {)˜{)(Œ	{)=ˆ{)=€{) ‡x{)
p{)
h{)€¶`{)ŠX{)ŠP{)`d£H{)¸@{)øŒ8{)øŒ0{) Z¦	({)‰ {)ø{)rŽ{)rŽ{)À®
{)“#øz)à†ðz)„èz)Vàz)lŽØz)lŽÐz)€ŠÈz)fŽÀz)Q¸z)Q°z)±¨z) Vq z)ðŒ˜z)ðŒz)€5ˆz)`Ž€z)`Žxz) Mepz)ªhz)ª`z)‰Xz)‰Pz)`øHz)p‰@z)p‰8z) Gs0z)€ˆ(z)L z)Lz)ZŽz)TŽz)Œ	z)Œ	øy)€îß	ðy)£èy)èŒày)àŒØy)	
Ðy)Œ	Èy)NŽÀy)Nޏy)G°y)œ¨y)œ y)HŽ˜y)Hސy)°‰
ˆy)B€y)Bxy)ì}py)0‹
hy)0‹
`y)Àë?Xy)BŽPy)BŽHy)،@y)،8y)ÀBM0y)=(y)<Ž y)<Žy)8y)3y).y)ðˆøx)ðˆðx)À8ô	èx)€‡àx)€‡Øx)À4éÐx)(‰Èx)(‰Àx)à)Ò
¸x)àˆ°x)àˆ¨x) "À x)pŠ˜x)pАx)àÝÈ
ˆx)6Ž€x)6Žxx)ðƒpx) Ý!hx)ð`x)ЌXx)ø‹	Px)Hx)ç@x))8x) 	0x)Ȍ(x)㏠x)@ØSx)`Šx)`Šx)àÍK
x))øw)•ðw)Žèw)‡àw)0ŽØw)Ðw)Èw)ÀÀ 
Àw)€¸w)€À%°w)y¨w)è‹	 w)è‹	˜w) ³Âw)ˆw)€w)à*xw)pw)hw)؋	`w)¸ŒXw)¸ŒPw)७
Hw)/@w)*Ž8w)0w)(w)`›
‘ÿÿÿÿÿÿÿÿ`u)°‚ø %P¡@6DЂÐ# $@n)àm)P°p#&‘ $)5‘P4B‘ O‘p/sà© ")Ž°¹ )Z‘à€)OŒC)]Œ°E@)dŒ`I	)rŒ`MÀ)iŒ PÀü(˜°Ä`÷(Ž@- ì(d‘àáÀé(‡ŽpT€Ý(±pê`Ð(!‘€:àË(8ŒÀ=`Ã(¡ÐÓ@¸(~ŒpS€°(‡Œ@V ¡(ŽŒ0Z@–(—Œp]`Š(¨Œ@a€|(Œ@e@o(µŒài@f(ªŒ m€Z(¿Œ q€P(όàs B(ڌ wÀ5(㌠{&(êŒ`~@(òŒ €
(øŒà„àü'Јê'ÀÝ'° Ì' ”@Â'#à—·'QŽg ¬'ïpF'æ0B€'ލ°>'ٍ ;@|'aސ7u'\ސÒÀd'ύ4Y'kŽõ`G'Í0@;'¹ þ/'j‘¨ *'r‘ “à%'n§à$'Sà¤`%'GCC: (GNU) 4.4.7 20120313 (Red Hat 4.4.7-23)GCC: (GNU) 8.3.1 20190311 (Red Hat 8.3.1-3)È𐸨.˜0Ø0`Ÿ	 ­
°­@·m
 mðÚ¨à '('0'8'' 'à$' u)ñÿl"*ñÿ3P#mp#X@…)Î`…)àÐ#E $
W0$oq $w£ %gא%iñ&GP'¦>@·ëO+¸ÿc*¹ÿx(…€…))QÏp)Mäp…)ìÀ)+x…)ð)A @*P1*×D0…)Uh…)jh€)‡X…)™p/ßÔ)èÀ})ù0z)H{)%ø€)=T…)JH…)YP…)gP4ç£@6ÉÚp€)êˆ|)ùè)à):c<€:7qHz)‰y)˜À=7θx)èAC’O„){À$)’°EªÉÐ$)à`Iòð)$ w)4()@Ё)Lˆ„)q؁)}0)‰à$)  `M:Üw)ì˜y)ü%) y)# PÃh %)pSÿ&)Ö@Vë
	 })	 &) 2	0Z>q	Py)	Xy)‘	@&)¨	p]ÅÞ	`&) õ	@aò'
€)7
€)G
€)W
€)g
€&) ~
@e–»
(|)Ê
 &)(á
0|)ð
ài>* €)7(€)DÐ&)[ mò ') · q²÷ ')às>Iw)U0')l wò¥ ~)µÐ|)ÂØ|)Ï(~)ß`') ö {>-
€')D
`~>|
 ')“
 >É
À')à
à„ë˜})&à') =Јët() ‹ëÄ () Û°ë y)%})4})C(y)S@() j ”:£`()ºà—òï€() à›%|T‰q žèŸè³ Mïpy)P¡…;hx)IX)Z@)mX„)~ठ¦°z)·§ Ý ©¼ñà©b&àƒ)8¸})QÐv)`P„)x $)ˆy)žP¯ü±P°U	é)ûȀ)
})`*)3Øv)B`„)[°¹ó
•ˆx)¥Ѓ)¹hw)Ìxw)ÛÈv)êØ~)þ8)€x)~), {):°$)Q°ÄŠØ{)—È)§€~)·Ð)Lj…)Ó )â¸)òv)0%)ÐÓY‚)‡0})•Ð~)¤@„)Å z)×w)ã~)ï‚)à%) 2àáhðw)y€v)‰H)šx)¨0x)ºpê*òXx)˜)`~)&v)68„)RÀ%) i þ‚¤p)²¨})ǘ{)Ú˜~)ê@w)úh)€)@*)3¨u)C0U€Øz) „)ǘ„)ñ|)ý¨„).˜|):àz)J°u)Z *) q-džH~)±°w)¸€)Ôàv)á4ˆˆ{)'€„)L{)X°))o7ˆ©`))À ;ˆõ@))°>Dø})R ))i~)w0B<¹)) ÐpF 	…)&à() =gÓxø~)Ѝ)šx„)Ë ()(âØ})ñø|)Èy)v) v)0øu)@à?zÀv)‰)— v)§˜v)·¸v)ưv)Õ “ßp~)$h)5Hy)GP)Yp|)h })ƒX)“h~)¢˜u)²0„)˨*…)À)4 u)D`x)V0~)ix~)xÒx"·°})Æ )Ô@|)äÈ{)öx|) p„)< H|)L €))(c €|)r Ð{)„ ðu)” õ,8Ù pw)è w)ü Hx)
!¨{)!àu)/!H€)=!°€)S!(x)a!à))0x!¨v)ˆ!ày)š!ðv)ª!Ø)»!¨~)Ì!Èz)Ü!ˆ)ï!à)ý! ‚)	"¸y)"8)'"y)6"¸u)F"èu)V"Øu)f"Ðu)v"Èu)†"Àu)–"@-/'Î"èv)Ú" …)ó"P~)#ˆv)#P|)-#ˆ~)=#؄)t#`€)…#8})”#à„)Ë#~)Û#Є)$@%)()$Ȅ)_$èw)p$…)¨$…)à$øw)ñ$ø„))%àw)9%ð„)p%ð€)%è„)µ%‚)à%pTßÇ&X€)&&8~)5&èz)D&p)T&°)b&X~)r&ˆ})‡&ðy)˜&0€)©&y)À&Ày)Ð&0y)ß&v)ï&`v)ÿ&èy)'xv)!'@~)6'`)I'P€)a'z)q'Àz)€'Àw)‘'Øy)¨'y)·'@x)Æ'hv)Ö'€%)(í'pv)ý'`{)(0v)#(Xv)3((v)C(Pv)S( v)c(Hv)s(@v)ƒ(8v)“(Àk)p£(€*)(A´(øv)É((})Ø(ø)í(°~)ú(‚))(‚)')H„)D)z)T)„)q)¸ƒ)‰)Ðy)œ)ðƒ)±)0‚)È)øƒ)Þ)(„)ø)èƒ)$*Ѐ)P*)|*xx)¥*px)Ð*`y)û*°ƒ)'+°)S+¨)~+¸)¡+)Ì+€{)ï+ȁ),øz);,{)g,ðz), „)¼,ȃ)è,„)-8‚):-Ð})O-ð|)e-È}){-8|)™-})¿-@€)ë-}).¨€)C.8€)o.Px)Š.x).Hw)É.„)õ.)!/„)O/¸{)z/u)Š/°{)¶/~)Ç/`)Ö/°y)ç/à|)ý/(z)0€u)<0@l) j0Ðz)0¨ƒ)•0h„)Ä0)õ0¸„)-1°„)V1À{)f1؃)z1è|)Œ1({)¦1 )µ1)È1è€)Ø1 €)ì1ˆ€)ý1ø)2˜)'2ˆ)32P)C20)W2ð~)h2È~)2ð})“2€})¦2h})º2P})Î2È|)ä2°|)3h|)3 |)=3|)T3ð{)e3x{)v3@{)ˆ3{)˜3ˆz)¨3pz)¹3`z)Ó3z)æ3y)4èx)4Ðx)84 x)M4x)b4Øw)t4¨w)‡4w)–4`w)¨48w)·4 {)Õ4u) ÿ4àt) '5)65)I5à€)Y5˜€)m5€€)~5ð)’5)¨5€)´5H)Ä5()Ø5)ì5è~)ý5À~)6è})(6x});6`})O6H})c6À|)y6¨|)—6`|)³6|)Ò6|)é6è{)ú6p{)7X{)!78{)37{)C7¸z)R7˜z)d7€z)t7hz)…7Xz)Ÿ7@z)·7 z)Æ7z)Ù7¨y)ê7€y)ù7hy)
8@y)8øx)98àx)X8Èx)q8°x)‹8˜x) 8x)µ8Ðw)Ç8 w)Ú8ˆw)é8Xw)û80w)
9 ƒ) 9)09xy)[9¨‚)€98z)ª9¸‚)Ö9Øx):‚),: x)W:p‚)€:z)«:Ђ)Ó:؀)þ:ƒ)$;x€)O;€ƒ)v;Èw)¡;`‚)Ê;¨z)ô;؂)<xz)D<Ȃ)k<Pz)–<)Â<¨x)ì<€‚)=à{)C=ƒ)k=Àx)•=ˆ‚)À=@)ë=hƒ)>x)=>pƒ)`>ø{)‹>ƒ)·>€)â>ˆƒ)
?|)8?ƒ)d?ðx)Ž?˜‚)º?x)å?x‚)@˜w)<@X‚)f@h{)‘@ø‚)¹@Pw)ä@H‚)
A{)8Aà‚)_Aà})‰AHƒ)²Aà~)ÝAXƒ)Bp})0B@ƒ)ZBX})…B8ƒ)°Bøy)ÛB°‚)C€w)/CP‚)UCx)€Ch‚)¬C)×C˜ƒ)DX|),Dƒ)XD0{)‚Dè‚)«D(w)ÖD@‚)üD )'E`ƒ)RE¸~)}EPƒ)¨E@})ÓE0ƒ)þE |))F ƒ)TF¸|)F(ƒ)«Fè)ÕFxƒ)G8y)*G ‚)SGP{)}Gð‚)©G8x)¸G
›AáG
@ˆüG
&%H
€š<NH
€’#yH
PŠH
 ‹ H
@š>ÉH
p	ÙH
ЋëH
š$I
$=I
 ‰SI
à˜Ë|I
@ŠI
!·I
ÚI
 "J
†&J
`"NJ
`‡nJ
à…’J
 "ºJ
`…ßJ
à'K
à„ -K
€ƒ!TK
 "|K
`"¤K
 ˜$ÍK
 ,õK
`˜*L
 ˜-GL
à—%pL
@…•L
 …ºL
 —$ãL
 	M
-M
 †PM
…uM
 …™M
`—(ÂM
 —%ëM
@ƒ!N
‡4N
 „ ZN
à–(ƒN
 –,¬N
à'ÔN
`–(ýN
 –#&O
€„ LO
à•#uO
`„ ›O
ƒ!ÂO
€†åO
@„ P
`†.P
@†QP
ð‰
fP
`‰}P
I‡P
€•G°P
 ’LÛP

íP
 !Q
‹(Q
(4Q
;?Q
9JQ
GTQ
€… xQ
`0 Q
@‡ÀQ
@•&éQ
 5R
$R
 )R
7R
¨Œ	HR
þŽVR
`fR
rR
#ށR
ޏŽR
øŽœR
X¬R
޻R
HËR
ُØR
EâR
ԏïR
˜Œ	S
@Â(S
‰>S
ΏKS
òŽYS
àZS
•(ªS
@ºS
8ÊS
0ŠÞS
4T
°‹
T
àùõAT
ŽPT
 í#xT
èŽ
†T
 ˆ¡T
ްT
ɏ½T
€‰ÓT
ßT
€”%U
@”)1U
Ž@U
6KU
܎YU
֎gU
 ‹
yU
Àv! U
¬U
޻U
ЎÉU
ʎ×U
‹êU

øU
V
ºŽV
	V
 Š3V
C=V
ÀßÛ
eV
´ŽsV
0ƒV
ˆŒ	”V
ù£V
®Ž±V
àÓÎÙV
¨ŽçV
‹
ùV
 Ì:!W
-W
€‹
?W
uhW
(xW
ò‡W
9à¯W
p‹
ÁW
´ÎW
P‰åW
۩!
X
3X
ë'X ~)8X
àGX
¢ŽUX
œŽcX
–ŽqX
ŽX
¯ŒX
 œX
ª©X
xŒ	ºX
ŠŽÈX
hŒ	ÙX
XŒ	êX
ðŠýX
¥
Y
HŒ	Y
„Ž)Y
5Y
ՍDY
ANY
ZY
jY
 i‘
‘Y
 žY
`‹°Y
àŠÃY
΍ÒY
@‰éY
›öY
Њ	Z
Z
–"Z

5Z
8Œ	FZ
@/nZ
P‹
€Z
 ‹¨Z
@‹
ºZ
à´âZ
‘ïZ
üûZ
ˆ	[
 ˆ![
~.[
€“#W[
 †z[
y‡[
°Š
š[
	ª[
 Š½[
0È[
ŠÜ[
Às\
à‡ \
 b„H\
?R\
p	_\
el\
`y\
`ˆ“\
àT7
»\
à‰
Ð\
~ŽÞ\
ˆù\
[]
 ‡#]
 I´K]
Љ
`]
à;#
ˆ]
Ǎ—]
€,U¿]
-Ê]
Ú]
xŽè]
@,'^
@“"9^
ŠL^
h^
(Œ	y^
=ƒ^
 ‡£^

²^
€¶Ú^
Šî^
`d£_
¸$_
øŒ4_
 Z¦	[_
‰s_
ø_
rŽ_
À®
µ_
“#Þ_
à†`
„&`
V3`
lŽA`
€ŠT`
fŽb`
Qo`
±~`
 Vq¥`
ðŒµ`
€5Ý`
`Žë`
 Mea
ª!a
‰9a
`øaa
p‰wa
 Gsža
€ˆ·a
LÄa
ZŽÒa
TŽàa
Œ	ña
€îß	b
£(b
èŒ8b
àŒHb
	
]b
Œ	nb
NŽ|b
G‰b
œ˜b
Hަb
°‰
»b
BÈb
ì}ðb
0‹
c
Àë?*c
BŽ8c
،Hc
ÀBMoc
=|c
<ŽŠc
8—c
3¤c
.±c
ðˆÉc
À8ô	ðc
€‡
d
À4é4d
(‰Kd
à)Ò
rd
àˆŠd
 "˱d
pŠÄd
àÝÈ
ìd
6Žúd
ðƒ e
 Ý!He
ðTe
Ќde
ø‹	ue
e
珙e
)¦e
 	³e
ȌÃe
ãÏe
@ØS÷e
`Š
f
àÍK
2f
)=f
•Lf
Ž[f
‡jf
0Žxf
ˆf
ÀÀ 
°f
€¿f¸w)êf
€À%g
y!g
è‹	2g
 ³ÂZg
gg
à*Žg
›g
؋	¬g
¸Œ¼g
७
äg
/
h
*Žh
(h
`›
Ph`u) ^h@n) hàm)PÀh ")}öh )u1i€)li)s«i@)¹ãi	)3jÀ)7VjÀü(éœj`÷(SÖj ì(5kÀé(ZFk€Ý(#~k`Ð( 
·kàË(qík`Ã(e$l@¸(el€°(À¦l ¡(UÞl@–(Ò
m`Š(ÎUm€|(Û
ˆm@o(#
Æm@f(õn€Z(´Gn€P(ô	ˆn B(È
ÄnÀ5(Âþn&(¶6o@(­
oo€
(®
¦oàü'‘
ßoê'àpÀÝ'/Qp Ì'Œp@Â'ß	Æp·'*üp ¬'K
8q'Ârq€'7
µq'¦	îq@|'
$ru':_rÀd'!ŸrY'´Úr`G'„ s@;'^s/'!šs *'MÔsà%'£tà$'h9t`%'hatñÿlt"ntÀ"t#—t u)¦t('Ít@#Ùt 'øtñÿÿtñÿu
€u
€¥#u
€­-u
€‘6u
ۥ?u
€™Hu
ۃRu
ۄ\u
€Áfu
€¹ou
€½xu
€µu`;¥u
 ‘Patñÿ¬uüñÿºu0'Çu8'ÐuðÚãu u)ïu 'vv(v>vavqvP@‚€v•v§vÐbGÄv`-×vèvZ`wwÐ&S"w4wFwÐ?>Uwfw?Sow ‹w` '™w©w¼wÊwßwîwxx°E&7xp?/Nxcxwx”x£x´xÌx@u)÷x	y!y19=yXykyyyP(†y6œy u)£yàE»
¸yâ{ XÏyâyÀ#(ðy
z$zÀA^4zHz_zoz`.‹z=,"€àBÅšzm z´zP'}Ëz c´æzõz
{{0{€-J{`ge{~{7{Pl¯Œ{€/¨{º{Ë{PANÛ{@-ó{||Ð$&)|>|.I]|v| ]ZŒ|™|ª|¾| ;Ò|â|ó| 8¹}à[
}_¶<}O}f}x}@?…}™}pi[-~³}Á} TWÕ} 1qü}~~,~>~U~d~r~À"ö~~~¦~PayÄ~Ø~ô~>ë!6J\wˆ —p=ª¼ËÙìþÀ=€€P-1€-%K€[€j€}€À;y‹€¡€´€ɀ݀à=ËvZNì€þ€ >
À/2=M ?'[i…)n`;—ª°‰°YW؁ B½êû‚$‚)ºCh2‚F‚ðU§V‚àe|q‚4ÊŠ‚€; ‚À-	¸‚ւè‚ u)ô‚ƒƒÐ ?!ƒ@=(/ƒ0'Bƒð>Sƒ%/jƒ|ƒƒ@ œƒ€/9½ƒð\¡̓Uðكðƒ„pS/„1„D„S„ 2œj„|„0%Ÿˆ„`"Wœ„ª„ۄ@1Q……"… A3…À_‰R…e…»zÀR¥t…Ð'i‘…°;	…à@g«…º…Ð-9ׅ$½é…ú…
†"†Ð59@†S†p-k††Œ†Ðkq¥†¸† P҆ 솇‡0!&/‡C‡^‡p‡ƒ‡“‡Z†pZ©‡҇å‡þ‡ˆ"+ˆ	 ­1ˆÀ39Mˆcˆð#tˆ/usr/lib/../lib64/crti.ocall_gmon_startmtrand.c__pyx_f_5numpy_6random_6mtrand_11RandomState__reset_gauss__pyx_tp_new_5numpy_6random_6mtrand_RandomState__pyx_vtabptr_5numpy_6random_6mtrand_RandomState__pyx_empty_tuple__pyx_tp_traverse_5numpy_6random_6mtrand_RandomState__pyx_getprop_5numpy_6random_6mtrand_11RandomState__bit_generator__pyx_bisect_code_objects__pyx_tp_clear_5numpy_6random_6mtrand_RandomState__pyx_tp_dealloc_5numpy_6random_6mtrand_RandomState__Pyx_PyObject_CallOneArg__Pyx_GetException__pyx_f_5numpy_6random_6mtrand_11RandomState__shuffle_raw__Pyx_ImportType__Pyx_ImportVoidPtr__Pyx_ImportFunction__Pyx_Import__pyx_m__pyx_setprop_5numpy_6random_6mtrand_11RandomState__bit_generator__Pyx_GetBuiltinName__pyx_b__Pyx__GetModuleGlobalName__pyx_d__Pyx_IterFinish__Pyx_ImportFrom__Pyx_AddTraceback__pyx_code_cache__pyx_cython_runtime__pyx_n_s_cline_in_traceback__pyx_empty_bytes__pyx_pw_5numpy_6random_6mtrand_11RandomState_11__reduce____pyx_n_s_get_state__pyx_n_s_legacy__pyx_n_s_randomstate_ctor__pyx_n_s_pickle__pyx_n_u_bit_generator__pyx_lineno__pyx_filename__pyx_clineno__pyx_pw_5numpy_6random_6mtrand_11RandomState_7__getstate____pyx_pw_5numpy_6random_6mtrand_11RandomState_5__str____pyx_n_s_class__pyx_n_s_name__pyx_kp_u__3__pyx_kp_u__4__Pyx_CheckKeywordStrings.constprop.27__pyx_pw_5numpy_6random_6mtrand_11RandomState_39rand__pyx_n_s_random_sample__pyx_n_s_size__pyx_pw_5numpy_6random_6mtrand_11RandomState_41randn__pyx_n_s_standard_normal__Pyx_ParseOptionalKeywords.constprop.28__pyx_pw_5numpy_6random_6mtrand_11RandomState_19random_sample__pyx_f_5numpy_6random_7_common_double_fill__pyx_pyargnames.13229__pyx_pw_5numpy_6random_6mtrand_11RandomState_21random__pyx_pyargnames.13274__pyx_pw_5numpy_6random_6mtrand_11RandomState_23beta__pyx_kp_u__12__pyx_float_0_0__pyx_n_u_b__pyx_n_u_a__pyx_f_5numpy_6random_7_common_cont__pyx_n_s_a__pyx_n_s_b__pyx_pyargnames.13325__pyx_pw_5numpy_6random_6mtrand_11RandomState_25exponential__pyx_float_1_0__pyx_n_u_scale__pyx_pyargnames.13377__pyx_n_s_scale__pyx_pw_5numpy_6random_6mtrand_11RandomState_27standard_exponential__pyx_pyargnames.13427__pyx_pw_5numpy_6random_6mtrand_11RandomState_45standard_normal__pyx_pyargnames.14625__pyx_pw_5numpy_6random_6mtrand_11RandomState_47normal__pyx_n_s_loc__pyx_pyargnames.14672__pyx_pw_5numpy_6random_6mtrand_11RandomState_49standard_gamma__pyx_n_u_shape__pyx_n_s_shape__pyx_pyargnames.14728__pyx_pw_5numpy_6random_6mtrand_11RandomState_51gamma__pyx_pyargnames.14778__pyx_pw_5numpy_6random_6mtrand_11RandomState_53f__pyx_n_u_dfden__pyx_n_u_dfnum__pyx_n_s_dfnum__pyx_n_s_dfden__pyx_pyargnames.14833__pyx_pw_5numpy_6random_6mtrand_11RandomState_55noncentral_f__pyx_n_u_nonc__pyx_pyargnames.14887__pyx_n_s_nonc__pyx_pw_5numpy_6random_6mtrand_11RandomState_57chisquare__pyx_n_u_df__pyx_n_s_df__pyx_pyargnames.14942__pyx_pw_5numpy_6random_6mtrand_11RandomState_59noncentral_chisquare__pyx_pyargnames.14992__pyx_pw_5numpy_6random_6mtrand_11RandomState_61standard_cauchy__pyx_pyargnames.15043__pyx_pw_5numpy_6random_6mtrand_11RandomState_63standard_t__pyx_int_0__pyx_pyargnames.15089__pyx_pw_5numpy_6random_6mtrand_11RandomState_65vonmises__pyx_n_u_kappa__pyx_n_u_mu__pyx_n_s_mu__pyx_n_s_kappa__pyx_pyargnames.15139__pyx_pw_5numpy_6random_6mtrand_11RandomState_67pareto__pyx_pyargnames.15191__pyx_pw_5numpy_6random_6mtrand_11RandomState_69weibull__pyx_pyargnames.15240__pyx_pw_5numpy_6random_6mtrand_11RandomState_71power__pyx_pyargnames.15289__pyx_pw_5numpy_6random_6mtrand_11RandomState_73laplace__pyx_n_u_loc__pyx_pyargnames.15339__pyx_pw_5numpy_6random_6mtrand_11RandomState_75gumbel__pyx_pyargnames.15396__pyx_pw_5numpy_6random_6mtrand_11RandomState_77logistic__pyx_pyargnames.15453__pyx_pw_5numpy_6random_6mtrand_11RandomState_79lognormal__pyx_n_u_sigma__pyx_n_u_mean__pyx_n_s_mean__pyx_n_s_sigma__pyx_pyargnames.15510__pyx_pw_5numpy_6random_6mtrand_11RandomState_81rayleigh__pyx_pyargnames.15566__pyx_pw_5numpy_6random_6mtrand_11RandomState_83wald__pyx_pyargnames.15618__Pyx_Raise.constprop.29__Pyx_PyNumber_IntOrLongWrongResultType.constprop.32__Pyx_IternextUnpackEndCheck__Pyx_PyInt_As_int64_t.part.15__Pyx_PyInt_As_Py_intptr_t.part.14__pyx_pw_5numpy_6random_6mtrand_11RandomState_9__setstate____pyx_n_s_set_state__pyx_pw_5numpy_6random_6mtrand_11RandomState_3__repr____pyx_n_s_str__pyx_n_s_format__pyx_kp_u_at_0x_X__pyx_builtin_id__pyx_pw_5numpy_6random_6mtrand_1sample__pyx_n_s_rand_2__pyx_pw_5numpy_6random_6mtrand_3ranf__Pyx_PyInt_As_long__pyx_pw_5numpy_6random_6mtrand_11RandomState_13seed__pyx_n_s_MT19937__pyx_n_s_legacy_seeding__pyx_tuple__5__pyx_builtin_TypeError__pyx_pyargnames.13041__pyx_n_s_seed__Pyx_PyInt_As_int__pyx_pw_5numpy_6random_6mtrand_11RandomState_1__init____pyx_n_u_capsule__pyx_n_s_capsule__pyx_n_s_lock__pyx_pyargnames.12790__pyx_tuple__2__pyx_builtin_ValueError__pyx_pw_5numpy_6random_6mtrand_11RandomState_15get_state__pyx_n_s_state__pyx_n_u_MT19937_2__pyx_n_s_warnings__pyx_n_s_warn__pyx_tuple__6__pyx_n_u_has_gauss__pyx_n_u_gauss__pyx_n_u_state__pyx_n_u_key__pyx_n_u_pos__pyx_pyargnames.13099__pyx_pw_5numpy_6random_6mtrand_11RandomState_29tomaxint__pyx_n_s_np__pyx_n_s_empty__pyx_n_s_int64__pyx_n_s_dtypePyArray_API__pyx_n_s_exit__pyx_n_s_enter__pyx_tuple__13__pyx_pyargnames.13472__pyx_pw_5numpy_6random_6mtrand_11RandomState_43random_integers__pyx_kp_u_This_function_is_deprecated_Plea_2__pyx_n_s_low__pyx_n_s_high__pyx_builtin_DeprecationWarning__pyx_n_s_randint__pyx_int_1__pyx_n_u_l__pyx_kp_u_This_function_is_deprecated_Plea__pyx_pyargnames.14530__pyx_pw_5numpy_6random_6mtrand_11RandomState_33bytes__pyx_n_s_uint32__pyx_tuple__16__pyx_n_s_astype__pyx_kp_u_u4__pyx_n_s_tobytes__pyx_pw_5numpy_6random_6mtrand_11RandomState_37uniform__pyx_n_s_subtract__pyx_n_s_all__pyx_n_s_isfinite__pyx_tuple__30__pyx_builtin_OverflowError__pyx_pyargnames.14300__pyx_pw_5numpy_6random_6mtrand_11RandomState_105dirichlet__pyx_n_s_any__pyx_n_s_less_equal__pyx_n_s_operator__pyx_n_s_index__pyx_n_s_zeros__pyx_n_s_float64__pyx_n_s_alpha__pyx_pyargnames.16903__pyx_tuple__44__pyx_pw_5numpy_6random_6mtrand_11RandomState_103multinomial__pyx_n_u_pvals__pyx_f_5numpy_6random_7_common_check_array_constraint__pyx_f_5numpy_6random_7_common_kahan_sum__pyx_n_u_n__pyx_f_5numpy_6random_7_common_check_constraint__pyx_n_s_n__pyx_n_s_pvals__pyx_tuple__43__pyx_pyargnames.16742__pyx_f_5numpy_6random_6mtrand_int64_to_long__pyx_n_s_isscalar__pyx_n_u_unsafe__pyx_n_s_casting__pyx_tuple___pyx_pw_5numpy_6random_6mtrand_11RandomState_99logseries__pyx_n_u_p__pyx_f_5numpy_6random_7_common_disc__pyx_n_s_p__pyx_pyargnames.16457__pyx_pw_5numpy_6random_6mtrand_11RandomState_95geometric__pyx_pyargnames.16226__pyx_pw_5numpy_6random_6mtrand_11RandomState_93zipf__pyx_pyargnames.16174__pyx_pw_5numpy_6random_6mtrand_11RandomState_91poisson__pyx_n_u_lam__pyx_pyargnames.16120__pyx_n_s_lam__pyx_pw_5numpy_6random_6mtrand_11RandomState_89negative_binomial__pyx_pyargnames.16065__pyx_pw_5numpy_6random_6mtrand_11RandomState_87binomial__pyx_ptype_5numpy_broadcast__pyx_pyargnames.15839__pyx_pw_5numpy_6random_6mtrand_11RandomState_85triangular__pyx_n_s_greater__pyx_n_s_equal__pyx_f_5numpy_6random_7_common_cont_broadcast_3__pyx_pyargnames.15672__pyx_n_s_left__pyx_n_s_mode__pyx_n_s_right__pyx_tuple__31__pyx_tuple__32__pyx_tuple__33__pyx_pw_5numpy_6random_6mtrand_11RandomState_17set_state__pyx_tuple__7__pyx_n_s_get__pyx_tuple__10__pyx_tuple__11__pyx_tuple__8__pyx_tuple__9__pyx_pw_5numpy_6random_6mtrand_11RandomState_109permutation__pyx_n_s_integer__pyx_n_s_arange__pyx_n_s_shuffle__pyx_n_s_asarray__pyx_n_s_ndim__pyx_n_s_may_share_memory__pyx_n_s_array__pyx_n_s_intp__pyx_tuple__46__pyx_builtin_IndexError__pyx_pw_5numpy_6random_6mtrand_11RandomState_107shuffle__pyx_ptype_5numpy_ndarray__pyx_n_s_empty_like__pyx_tuple__45__pyx_n_s_strides__pyx_n_s_itemsize__pyx_n_s_int8__pyx_pw_5numpy_6random_6mtrand_11RandomState_97hypergeometric__pyx_n_s_less__pyx_n_s_add__pyx_n_u_ngood__pyx_n_u_nsample__pyx_n_u_nbad__pyx_f_5numpy_6random_7_common_discrete_broadcast_iii__pyx_n_s_ngood__pyx_pyargnames.16280__pyx_n_s_nbad__pyx_n_s_nsample__pyx_tuple__34__pyx_pw_5numpy_6random_6mtrand_11RandomState_101multivariate_normal__pyx_n_u_warn__pyx_float_1eneg_8__pyx_n_s_svd__pyx_n_s_numpy_dual__pyx_tuple__36__pyx_n_s_cov__pyx_n_s_check_valid__pyx_n_s_tol__pyx_pyargnames.16512__pyx_slice__38__pyx_n_s_reshape__pyx_int_neg_1__pyx_n_s_double__pyx_n_u_ignore__pyx_n_u_raise__pyx_n_s_allclose__pyx_n_s_dot__pyx_n_s_T__pyx_n_s_rtol__pyx_n_s_atol__pyx_n_s_sqrt__pyx_tuple__42__pyx_tuple__35__pyx_tuple__37__pyx_tuple__39__pyx_tuple__40__pyx_tuple__41__pyx_pw_5numpy_6random_6mtrand_11RandomState_31randint__pyx_k__14__pyx_ptype_5numpy_dtype__pyx_n_s_isnative__pyx_tuple__15__pyx_n_s_newbyteorder__pyx_n_s_int32__pyx_f_5numpy_6random_17_bounded_integers__rand_int32__pyx_n_s_compat__pyx_n_s_long__pyx_f_5numpy_6random_17_bounded_integers__rand_int64__pyx_n_s_int16__pyx_f_5numpy_6random_17_bounded_integers__rand_int16__pyx_pyargnames.13608__pyx_f_5numpy_6random_17_bounded_integers__rand_int8__pyx_n_s_uint64__pyx_f_5numpy_6random_17_bounded_integers__rand_uint64__pyx_f_5numpy_6random_17_bounded_integers__rand_uint32__pyx_n_s_uint16__pyx_f_5numpy_6random_17_bounded_integers__rand_uint16__pyx_n_s_uint8__pyx_f_5numpy_6random_17_bounded_integers__rand_uint8__pyx_n_s_bool__pyx_f_5numpy_6random_17_bounded_integers__rand_bool__pyx_kp_u_Unsupported_dtype_r_for_randint__pyx_pw_5numpy_6random_6mtrand_11RandomState_35choice__pyx_n_s_copy__pyx_n_s_item__pyx_n_s_prod__pyx_n_s_finfo__pyx_n_s_eps__pyx_n_s_isnan__pyx_n_s_logical_or__pyx_n_s_reduce__pyx_n_s_cumsum__pyx_n_s_searchsorted__pyx_n_u_right__pyx_n_s_side__pyx_tuple__29__pyx_tuple__20__pyx_n_s_replace__pyx_tuple__17__pyx_n_s_issubdtype__pyx_n_s_floating__pyx_n_s_count_nonzero__pyx_n_s_ravel__pyx_n_s_rand__pyx_n_s_unique__pyx_n_s_return_index__pyx_n_s_sort__pyx_n_s_take__pyx_tuple__19__pyx_pyargnames.13828__pyx_tuple__18__pyx_n_s_permutation__pyx_tuple__26__pyx_tuple__21__pyx_tuple__27__pyx_tuple__22__pyx_tuple__28__pyx_tuple__23__pyx_tuple__24__pyx_tuple__25__pyx_moduledef__pyx_string_tab__pyx_int_4294967296__pyx_n_s_main__pyx_n_s_ValueError__pyx_n_s_id__pyx_n_s_TypeError__pyx_n_s_RuntimeWarning__pyx_builtin_RuntimeWarning__pyx_n_s_range__pyx_n_s_DeprecationWarning__pyx_n_s_OverflowError__pyx_n_s_reversed__pyx_n_s_IndexError__pyx_n_s_RuntimeError__pyx_n_s_ImportError__pyx_builtin_ImportError__pyx_kp_u_Invalid_bit_generator_The_bit_ge__pyx_kp_u_can_only_re_seed_a_MT19937_BitGe__pyx_kp_u_get_state_and_legacy_can_only_be__pyx_kp_u_state_dictionary_is_not_valid__pyx_kp_u_state_must_be_a_dict_or_a_tuple__pyx_kp_u_set_state_can_only_be_used_with__pyx_kp_u_Providing_a_dtype_with_a_non_nat__pyx_kp_u_a_must_be_1_dimensional_or_an_in__pyx_kp_u_a_must_be_greater_than_0_unless__pyx_kp_u_a_must_be_1_dimensional__pyx_kp_u_a_cannot_be_empty_unless_no_sam__pyx_kp_u_p_must_be_1_dimensional__pyx_kp_u_a_and_p_must_have_same_size__pyx_kp_u_probabilities_contain_NaN__pyx_kp_u_probabilities_are_not_non_negati__pyx_kp_u_probabilities_do_not_sum_to_1__pyx_kp_u_Cannot_take_a_larger_sample_than__pyx_kp_u_Negative_dimensions_are_not_allo__pyx_kp_u_Fewer_non_zero_entries_in_p_than__pyx_kp_u_Range_exceeds_valid_bounds__pyx_kp_u_left_mode__pyx_kp_u_mode_right__pyx_kp_u_left_right__pyx_kp_u_ngood_nbad_nsample__pyx_kp_u_mean_must_be_1_dimensional__pyx_kp_u_cov_must_be_2_dimensional_and_sq__pyx_kp_u_mean_and_cov_must_have_same_leng__pyx_kp_u_check_valid_must_equal_warn_rais__pyx_kp_u_covariance_is_not_positive_semid__pyx_kp_u_sum_pvals_1_1_0__pyx_kp_u_alpha_0__pyx_kp_u_x_must_be_an_integer_or_at_least__pyx_kp_u_Format_string_allocated_too_shor__pyx_kp_u_Non_native_byte_order_not_suppor__pyx_kp_u_Format_string_allocated_too_shor_2__pyx_kp_u_numpy_core_multiarray_failed_to__pyx_tuple__50__pyx_kp_u_numpy_core_umath_failed_to_impor__pyx_n_s_kwargs__pyx_n_s_args__pyx_n_s_sample__pyx_kp_s_mtrand_pyx__pyx_n_s_ranf__pyx_vtable_5numpy_6random_6mtrand_RandomState__pyx_type_5numpy_6random_6mtrand_RandomState__pyx_n_s_pyx_vtable__pyx_n_s_RandomState__pyx_ptype_5numpy_6random_6mtrand_RandomState__pyx_vp_5numpy_6random_7_common_POISSON_LAM_MAX__pyx_vp_5numpy_6random_7_common_LEGACY_POISSON_LAM_MAX__pyx_vp_5numpy_6random_7_common_MAXSIZE__pyx_n_s_numpy__pyx_n_s_MT19937_2__pyx_n_s_mt19937__pyx_n_s_poisson_lam_max__pyx_n_s_beta__pyx_n_s_binomial__pyx_n_s_bytes__pyx_n_s_chisquare__pyx_n_s_choice__pyx_n_s_dirichlet__pyx_n_s_exponential__pyx_n_s_f__pyx_n_s_gamma__pyx_n_s_geometric__pyx_n_s_gumbel__pyx_n_s_hypergeometric__pyx_n_s_laplace__pyx_n_s_logistic__pyx_n_s_lognormal__pyx_n_s_logseries__pyx_n_s_multinomial__pyx_n_s_multivariate_normal__pyx_n_s_negative_binomial__pyx_n_s_noncentral_chisquare__pyx_n_s_noncentral_f__pyx_n_s_normal__pyx_n_s_pareto__pyx_n_s_poisson__pyx_n_s_power__pyx_n_s_randn__pyx_n_s_random__pyx_n_s_random_integers__pyx_n_s_rayleigh__pyx_n_s_standard_cauchy__pyx_n_s_standard_exponential__pyx_n_s_standard_gamma__pyx_n_s_standard_t__pyx_n_s_triangular__pyx_n_s_uniform__pyx_n_s_vonmises__pyx_n_s_wald__pyx_n_s_weibull__pyx_n_s_zipf__pyx_n_s_numpy_random_mtrand__pyx_mdef_5numpy_6random_6mtrand_1sample__pyx_mdef_5numpy_6random_6mtrand_3ranf__pyx_n_u_beta__pyx_n_u_binomial__pyx_n_u_bytes__pyx_n_u_chisquare__pyx_n_u_choice__pyx_n_u_dirichlet__pyx_n_u_exponential__pyx_n_u_f__pyx_n_u_gamma__pyx_n_u_geometric__pyx_n_u_get_state__pyx_n_u_gumbel__pyx_n_u_hypergeometric__pyx_n_u_laplace__pyx_n_u_logistic__pyx_n_u_lognormal__pyx_n_u_logseries__pyx_n_u_multinomial__pyx_n_u_multivariate_normal__pyx_n_u_negative_binomial__pyx_n_u_noncentral_chisquare__pyx_n_u_noncentral_f__pyx_n_u_normal__pyx_n_u_pareto__pyx_n_u_permutation__pyx_n_u_poisson__pyx_n_u_power__pyx_n_u_rand__pyx_n_u_randint__pyx_n_u_randn__pyx_n_u_random__pyx_n_u_random_integers__pyx_n_u_random_sample__pyx_n_u_ranf__pyx_n_u_rayleigh__pyx_n_u_sample__pyx_n_u_seed__pyx_n_u_set_state__pyx_n_u_shuffle__pyx_n_u_standard_cauchy__pyx_n_u_standard_exponential__pyx_n_u_standard_gamma__pyx_n_u_standard_normal__pyx_n_u_standard_t__pyx_n_u_triangular__pyx_n_u_uniform__pyx_n_u_vonmises__pyx_n_u_wald__pyx_n_u_weibull__pyx_n_u_zipf__pyx_n_u_RandomState__pyx_n_s_all_2__pyx_kp_u_seed_self_seed_None_Reseed_a_le__pyx_kp_u_RandomState_seed_line_221__pyx_kp_u_random_sample_size_None_Return__pyx_kp_u_RandomState_random_sample_line_3__pyx_kp_u_standard_exponential_size_None__pyx_kp_u_RandomState_standard_exponential__pyx_kp_u_tomaxint_size_None_Return_a_sam__pyx_kp_u_RandomState_tomaxint_line_585__pyx_kp_u_randint_low_high_None_size_None__pyx_kp_u_RandomState_randint_line_643__pyx_kp_u_bytes_length_Return_random_byte__pyx_kp_u_RandomState_bytes_line_768__pyx_kp_u_choice_a_size_None_replace_True__pyx_kp_u_RandomState_choice_line_804__pyx_kp_u_uniform_low_0_0_high_1_0_size_N__pyx_kp_u_RandomState_uniform_line_1003__pyx_kp_u_rand_d0_d1_dn_Random_values_in__pyx_kp_u_RandomState_rand_line_1126__pyx_kp_u_randn_d0_d1_dn_Return_a_sample__pyx_kp_u_RandomState_randn_line_1170__pyx_kp_u_random_integers_low_high_None_s__pyx_kp_u_RandomState_random_integers_line__pyx_kp_u_standard_normal_size_None_Draw__pyx_kp_u_RandomState_standard_normal_line__pyx_kp_u_normal_loc_0_0_scale_1_0_size_N__pyx_kp_u_RandomState_normal_line_1395__pyx_kp_u_standard_gamma_shape_size_None__pyx_kp_u_RandomState_standard_gamma_line__pyx_kp_u_gamma_shape_scale_1_0_size_None__pyx_kp_u_RandomState_gamma_line_1582__pyx_kp_u_f_dfnum_dfden_size_None_Draw_sa__pyx_kp_u_RandomState_f_line_1665__pyx_kp_u_noncentral_f_dfnum_dfden_nonc_s__pyx_kp_u_RandomState_noncentral_f_line_17__pyx_kp_u_chisquare_df_size_None_Draw_sam__pyx_kp_u_RandomState_chisquare_line_1843__pyx_kp_u_noncentral_chisquare_df_nonc_si__pyx_kp_u_RandomState_noncentral_chisquare__pyx_kp_u_standard_cauchy_size_None_Draw__pyx_kp_u_RandomState_standard_cauchy_line__pyx_kp_u_standard_t_df_size_None_Draw_sa__pyx_kp_u_RandomState_standard_t_line_2078__pyx_kp_u_vonmises_mu_kappa_size_None_Dra__pyx_kp_u_RandomState_vonmises_line_2180__pyx_kp_u_pareto_a_size_None_Draw_samples__pyx_kp_u_RandomState_pareto_line_2268__pyx_kp_u_weibull_a_size_None_Draw_sample__pyx_kp_u_RandomState_weibull_line_2370__pyx_kp_u_power_a_size_None_Draws_samples__pyx_kp_u_RandomState_power_line_2473__pyx_kp_u_laplace_loc_0_0_scale_1_0_size__pyx_kp_u_RandomState_laplace_line_2581__pyx_kp_u_gumbel_loc_0_0_scale_1_0_size_N__pyx_kp_u_RandomState_gumbel_line_2674__pyx_kp_u_logistic_loc_0_0_scale_1_0_size__pyx_kp_u_RandomState_logistic_line_2797__pyx_kp_u_lognormal_mean_0_0_sigma_1_0_si__pyx_kp_u_RandomState_lognormal_line_2882__pyx_kp_u_rayleigh_scale_1_0_size_None_Dr__pyx_kp_u_RandomState_rayleigh_line_2997__pyx_kp_u_wald_mean_scale_size_None_Draw__pyx_kp_u_RandomState_wald_line_3073__pyx_kp_u_triangular_left_mode_right_size__pyx_kp_u_RandomState_triangular_line_3149__pyx_kp_u_binomial_n_p_size_None_Draw_sam__pyx_kp_u_RandomState_binomial_line_3257__pyx_kp_u_negative_binomial_n_p_size_None__pyx_kp_u_RandomState_negative_binomial_li__pyx_kp_u_poisson_lam_1_0_size_None_Draw__pyx_kp_u_RandomState_poisson_line_3493__pyx_kp_u_zipf_a_size_None_Draw_samples_f__pyx_kp_u_RandomState_zipf_line_3574__pyx_kp_u_geometric_p_size_None_Draw_samp__pyx_kp_u_RandomState_geometric_line_3660__pyx_kp_u_hypergeometric_ngood_nbad_nsamp__pyx_kp_u_RandomState_hypergeometric_line__pyx_kp_u_logseries_p_size_None_Draw_samp__pyx_kp_u_RandomState_logseries_line_3854__pyx_kp_u_multivariate_normal_mean_cov_si__pyx_kp_u_RandomState_multivariate_normal__pyx_kp_u_multinomial_n_pvals_size_None_D__pyx_kp_u_RandomState_multinomial_line_411__pyx_kp_u_dirichlet_alpha_size_None_Draw__pyx_kp_u_RandomState_dirichlet_line_4236__pyx_kp_u_shuffle_x_Modify_a_sequence_in__pyx_kp_u_RandomState_shuffle_line_4384__pyx_kp_u_permutation_x_Randomly_permute__pyx_kp_u_RandomState_permutation_line_448__pyx_n_s_test__pyx_k_Cannot_take_a_larger_sample_than__pyx_k_DeprecationWarning__pyx_k_Fewer_non_zero_entries_in_p_than__pyx_k_Format_string_allocated_too_shor__pyx_k_Format_string_allocated_too_shor_2__pyx_k_ImportError__pyx_k_IndexError__pyx_k_Invalid_bit_generator_The_bit_ge__pyx_k_MT19937__pyx_k_MT19937_2__pyx_k_Negative_dimensions_are_not_allo__pyx_k_Non_native_byte_order_not_suppor__pyx_k_OverflowError__pyx_k_Providing_a_dtype_with_a_non_nat__pyx_k_RandomState__pyx_k_RandomState_binomial_line_3257__pyx_k_RandomState_bytes_line_768__pyx_k_RandomState_chisquare_line_1843__pyx_k_RandomState_choice_line_804__pyx_k_RandomState_dirichlet_line_4236__pyx_k_RandomState_f_line_1665__pyx_k_RandomState_gamma_line_1582__pyx_k_RandomState_geometric_line_3660__pyx_k_RandomState_gumbel_line_2674__pyx_k_RandomState_hypergeometric_line__pyx_k_RandomState_laplace_line_2581__pyx_k_RandomState_logistic_line_2797__pyx_k_RandomState_lognormal_line_2882__pyx_k_RandomState_logseries_line_3854__pyx_k_RandomState_multinomial_line_411__pyx_k_RandomState_multivariate_normal__pyx_k_RandomState_negative_binomial_li__pyx_k_RandomState_noncentral_chisquare__pyx_k_RandomState_noncentral_f_line_17__pyx_k_RandomState_normal_line_1395__pyx_k_RandomState_pareto_line_2268__pyx_k_RandomState_permutation_line_448__pyx_k_RandomState_poisson_line_3493__pyx_k_RandomState_power_line_2473__pyx_k_RandomState_rand_line_1126__pyx_k_RandomState_randint_line_643__pyx_k_RandomState_randn_line_1170__pyx_k_RandomState_random_integers_line__pyx_k_RandomState_random_sample_line_3__pyx_k_RandomState_rayleigh_line_2997__pyx_k_RandomState_seed_line_221__pyx_k_RandomState_shuffle_line_4384__pyx_k_RandomState_standard_cauchy_line__pyx_k_RandomState_standard_exponential__pyx_k_RandomState_standard_gamma_line__pyx_k_RandomState_standard_normal_line__pyx_k_RandomState_standard_t_line_2078__pyx_k_RandomState_tomaxint_line_585__pyx_k_RandomState_triangular_line_3149__pyx_k_RandomState_uniform_line_1003__pyx_k_RandomState_vonmises_line_2180__pyx_k_RandomState_wald_line_3073__pyx_k_RandomState_weibull_line_2370__pyx_k_RandomState_zipf_line_3574__pyx_k_Range_exceeds_valid_bounds__pyx_k_RuntimeError__pyx_k_RuntimeWarning__pyx_k_T__pyx_k_This_function_is_deprecated_Plea__pyx_k_This_function_is_deprecated_Plea_2__pyx_k_TypeError__pyx_k_Unsupported_dtype_r_for_randint__pyx_k_ValueError__pyx_k__12__pyx_k__3__pyx_k__4__pyx_k_a__pyx_k_a_and_p_must_have_same_size__pyx_k_a_cannot_be_empty_unless_no_sam__pyx_k_a_must_be_1_dimensional__pyx_k_a_must_be_1_dimensional_or_an_in__pyx_k_a_must_be_greater_than_0_unless__pyx_k_add__pyx_k_all__pyx_k_all_2__pyx_k_allclose__pyx_k_alpha__pyx_k_alpha_0__pyx_k_any__pyx_k_arange__pyx_k_args__pyx_k_array__pyx_k_asarray__pyx_k_astype__pyx_k_at_0x_X__pyx_k_atol__pyx_k_b__pyx_k_beta__pyx_k_binomial__pyx_k_binomial_n_p_size_None_Draw_sam__pyx_k_bit_generator__pyx_k_bool__pyx_k_bytes__pyx_k_bytes_length_Return_random_byte__pyx_k_can_only_re_seed_a_MT19937_BitGe__pyx_k_capsule__pyx_k_casting__pyx_k_check_valid__pyx_k_check_valid_must_equal_warn_rais__pyx_k_chisquare__pyx_k_chisquare_df_size_None_Draw_sam__pyx_k_choice__pyx_k_choice_a_size_None_replace_True__pyx_k_class__pyx_k_cline_in_traceback__pyx_k_compat__pyx_k_copy__pyx_k_count_nonzero__pyx_k_cov__pyx_k_cov_must_be_2_dimensional_and_sq__pyx_k_covariance_is_not_positive_semid__pyx_k_cumsum__pyx_k_df__pyx_k_dfden__pyx_k_dfnum__pyx_k_dirichlet__pyx_k_dirichlet_alpha_size_None_Draw__pyx_k_dot__pyx_k_double__pyx_k_dtype__pyx_k_empty__pyx_k_empty_like__pyx_k_enter__pyx_k_eps__pyx_k_equal__pyx_k_exit__pyx_k_exponential__pyx_k_f__pyx_k_f_dfnum_dfden_size_None_Draw_sa__pyx_k_finfo__pyx_k_float64__pyx_k_floating__pyx_k_format__pyx_k_gamma__pyx_k_gamma_shape_scale_1_0_size_None__pyx_k_gauss__pyx_k_geometric__pyx_k_geometric_p_size_None_Draw_samp__pyx_k_get__pyx_k_get_state__pyx_k_get_state_and_legacy_can_only_be__pyx_k_greater__pyx_k_gumbel__pyx_k_gumbel_loc_0_0_scale_1_0_size_N__pyx_k_has_gauss__pyx_k_high__pyx_k_hypergeometric__pyx_k_hypergeometric_ngood_nbad_nsamp__pyx_k_id__pyx_k_ignore__pyx_n_s_import__pyx_k_import__pyx_k_index__pyx_k_int16__pyx_k_int32__pyx_k_int64__pyx_k_int8__pyx_k_integer__pyx_k_intp__pyx_k_isfinite__pyx_k_isnan__pyx_k_isnative__pyx_k_isscalar__pyx_k_issubdtype__pyx_k_item__pyx_k_itemsize__pyx_k_kappa__pyx_k_key__pyx_k_kwargs__pyx_k_l__pyx_k_lam__pyx_k_laplace__pyx_k_laplace_loc_0_0_scale_1_0_size__pyx_k_left__pyx_k_left_mode__pyx_k_left_right__pyx_k_legacy__pyx_k_legacy_seeding__pyx_k_less__pyx_k_less_equal__pyx_k_loc__pyx_k_lock__pyx_k_logical_or__pyx_k_logistic__pyx_k_logistic_loc_0_0_scale_1_0_size__pyx_k_lognormal__pyx_k_lognormal_mean_0_0_sigma_1_0_si__pyx_k_logseries__pyx_k_logseries_p_size_None_Draw_samp__pyx_k_long__pyx_k_low__pyx_k_main__pyx_k_may_share_memory__pyx_k_mean__pyx_k_mean_and_cov_must_have_same_leng__pyx_k_mean_must_be_1_dimensional__pyx_k_mode__pyx_k_mode_right__pyx_k_mt19937__pyx_k_mtrand_pyx__pyx_k_mu__pyx_k_multinomial__pyx_k_multinomial_n_pvals_size_None_D__pyx_k_multivariate_normal__pyx_k_multivariate_normal_mean_cov_si__pyx_k_n__pyx_k_name__pyx_k_nbad__pyx_k_ndim__pyx_k_negative_binomial__pyx_k_negative_binomial_n_p_size_None__pyx_k_newbyteorder__pyx_k_ngood__pyx_k_ngood_nbad_nsample__pyx_k_nonc__pyx_k_noncentral_chisquare__pyx_k_noncentral_chisquare_df_nonc_si__pyx_k_noncentral_f__pyx_k_noncentral_f_dfnum_dfden_nonc_s__pyx_k_normal__pyx_k_normal_loc_0_0_scale_1_0_size_N__pyx_k_np__pyx_k_nsample__pyx_k_numpy__pyx_k_numpy_core_multiarray_failed_to__pyx_k_numpy_core_umath_failed_to_impor__pyx_k_numpy_dual__pyx_k_numpy_random_mtrand__pyx_k_operator__pyx_k_p__pyx_k_p_must_be_1_dimensional__pyx_k_pareto__pyx_k_pareto_a_size_None_Draw_samples__pyx_k_permutation__pyx_k_permutation_x_Randomly_permute__pyx_k_pickle__pyx_k_poisson__pyx_k_poisson_lam_1_0_size_None_Draw__pyx_k_poisson_lam_max__pyx_k_pos__pyx_k_power__pyx_k_power_a_size_None_Draws_samples__pyx_k_probabilities_are_not_non_negati__pyx_k_probabilities_contain_NaN__pyx_k_probabilities_do_not_sum_to_1__pyx_k_prod__pyx_k_pvals__pyx_k_pyx_vtable__pyx_k_raise__pyx_k_rand__pyx_k_rand_2__pyx_k_rand_d0_d1_dn_Random_values_in__pyx_k_randint__pyx_k_randint_low_high_None_size_None__pyx_k_randn__pyx_k_randn_d0_d1_dn_Return_a_sample__pyx_k_random__pyx_k_random_integers__pyx_k_random_integers_low_high_None_s__pyx_k_random_sample__pyx_k_random_sample_size_None_Return__pyx_k_randomstate_ctor__pyx_k_ranf__pyx_k_range__pyx_k_ravel__pyx_k_rayleigh__pyx_k_rayleigh_scale_1_0_size_None_Dr__pyx_k_reduce__pyx_k_replace__pyx_k_reshape__pyx_k_return_index__pyx_k_reversed__pyx_k_right__pyx_k_rtol__pyx_k_sample__pyx_k_scale__pyx_k_searchsorted__pyx_k_seed__pyx_k_seed_self_seed_None_Reseed_a_le__pyx_k_set_state__pyx_k_set_state_can_only_be_used_with__pyx_k_shape__pyx_k_shuffle__pyx_k_shuffle_x_Modify_a_sequence_in__pyx_k_side__pyx_k_sigma__pyx_k_size__pyx_k_sort__pyx_k_sqrt__pyx_k_standard_cauchy__pyx_k_standard_cauchy_size_None_Draw__pyx_k_standard_exponential__pyx_k_standard_exponential_size_None__pyx_k_standard_gamma__pyx_k_standard_gamma_shape_size_None__pyx_k_standard_normal__pyx_k_standard_normal_size_None_Draw__pyx_k_standard_t__pyx_k_standard_t_df_size_None_Draw_sa__pyx_k_state__pyx_k_state_dictionary_is_not_valid__pyx_k_state_must_be_a_dict_or_a_tuple__pyx_k_str__pyx_k_strides__pyx_k_subtract__pyx_k_sum_pvals_1_1_0__pyx_k_svd__pyx_k_take__pyx_k_test__pyx_k_tobytes__pyx_k_tol__pyx_k_tomaxint_size_None_Return_a_sam__pyx_k_triangular__pyx_k_triangular_left_mode_right_size__pyx_k_u4__pyx_k_uint16__pyx_k_uint32__pyx_k_uint64__pyx_k_uint8__pyx_k_uniform__pyx_k_uniform_low_0_0_high_1_0_size_N__pyx_k_unique__pyx_kp_u_unknown_dtype_code_in_numpy_pxd__pyx_k_unknown_dtype_code_in_numpy_pxd__pyx_k_unsafe__pyx_k_vonmises__pyx_k_vonmises_mu_kappa_size_None_Dra__pyx_k_wald__pyx_k_wald_mean_scale_size_None_Draw__pyx_k_warn__pyx_k_warnings__pyx_k_weibull__pyx_k_weibull_a_size_None_Draw_sample__pyx_k_x_must_be_an_integer_or_at_least__pyx_k_zeros__pyx_k_zipf__pyx_k_zipf_a_size_None_Draw_samples_f__pyx_methods__pyx_methods_5numpy_6random_6mtrand_RandomState__pyx_getsets_5numpy_6random_6mtrand_RandomState__pyx_doc_5numpy_6random_6mtrand_11RandomState_12seed__pyx_doc_5numpy_6random_6mtrand_11RandomState_14get_state__pyx_doc_5numpy_6random_6mtrand_11RandomState_16set_state__pyx_doc_5numpy_6random_6mtrand_11RandomState_18random_sample__pyx_doc_5numpy_6random_6mtrand_11RandomState_20random__pyx_doc_5numpy_6random_6mtrand_11RandomState_22beta__pyx_doc_5numpy_6random_6mtrand_11RandomState_24exponential__pyx_doc_5numpy_6random_6mtrand_11RandomState_26standard_exponential__pyx_doc_5numpy_6random_6mtrand_11RandomState_28tomaxint__pyx_doc_5numpy_6random_6mtrand_11RandomState_30randint__pyx_doc_5numpy_6random_6mtrand_11RandomState_32bytes__pyx_doc_5numpy_6random_6mtrand_11RandomState_34choice__pyx_doc_5numpy_6random_6mtrand_11RandomState_36uniform__pyx_doc_5numpy_6random_6mtrand_11RandomState_38rand__pyx_doc_5numpy_6random_6mtrand_11RandomState_40randn__pyx_doc_5numpy_6random_6mtrand_11RandomState_42random_integers__pyx_doc_5numpy_6random_6mtrand_11RandomState_44standard_normal__pyx_doc_5numpy_6random_6mtrand_11RandomState_46normal__pyx_doc_5numpy_6random_6mtrand_11RandomState_48standard_gamma__pyx_doc_5numpy_6random_6mtrand_11RandomState_50gamma__pyx_doc_5numpy_6random_6mtrand_11RandomState_52f__pyx_doc_5numpy_6random_6mtrand_11RandomState_54noncentral_f__pyx_doc_5numpy_6random_6mtrand_11RandomState_56chisquare__pyx_doc_5numpy_6random_6mtrand_11RandomState_58noncentral_chisquare__pyx_doc_5numpy_6random_6mtrand_11RandomState_60standard_cauchy__pyx_doc_5numpy_6random_6mtrand_11RandomState_62standard_t__pyx_doc_5numpy_6random_6mtrand_11RandomState_64vonmises__pyx_doc_5numpy_6random_6mtrand_11RandomState_66pareto__pyx_doc_5numpy_6random_6mtrand_11RandomState_68weibull__pyx_doc_5numpy_6random_6mtrand_11RandomState_70power__pyx_doc_5numpy_6random_6mtrand_11RandomState_72laplace__pyx_doc_5numpy_6random_6mtrand_11RandomState_74gumbel__pyx_doc_5numpy_6random_6mtrand_11RandomState_76logistic__pyx_doc_5numpy_6random_6mtrand_11RandomState_78lognormal__pyx_doc_5numpy_6random_6mtrand_11RandomState_80rayleigh__pyx_doc_5numpy_6random_6mtrand_11RandomState_82wald__pyx_doc_5numpy_6random_6mtrand_11RandomState_84triangular__pyx_doc_5numpy_6random_6mtrand_11RandomState_86binomial__pyx_doc_5numpy_6random_6mtrand_11RandomState_88negative_binomial__pyx_doc_5numpy_6random_6mtrand_11RandomState_90poisson__pyx_doc_5numpy_6random_6mtrand_11RandomState_92zipf__pyx_doc_5numpy_6random_6mtrand_11RandomState_94geometric__pyx_doc_5numpy_6random_6mtrand_11RandomState_96hypergeometric__pyx_doc_5numpy_6random_6mtrand_11RandomState_98logseries__pyx_doc_5numpy_6random_6mtrand_11RandomState_100multivariate_normal__pyx_doc_5numpy_6random_6mtrand_11RandomState_102multinomial__pyx_doc_5numpy_6random_6mtrand_11RandomState_104dirichlet__pyx_doc_5numpy_6random_6mtrand_11RandomState_106shuffle__pyx_doc_5numpy_6random_6mtrand_11RandomState_108permutation__pyx_doc_5numpy_6random_6mtrand_2ranf__pyx_doc_5numpy_6random_6mtrand_samplecrtstuff.cderegister_tm_clones__do_global_dtors_auxcompleted.7182__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entrylegacy-distributions.cfe_doublewe_doubleke_doublefe_floatwe_floatke_floatwi_doubleki_doublefi_doublewi_floatki_floatfi_floatrandom_positive_int64.localalias.11a.9939__FRAME_END____dso_handle_DYNAMIC__GNU_EH_FRAME_HDR__TMC_END___GLOBAL_OFFSET_TABLE_PyPyFloat_FromDoublePyPyDict_CopyPyPyObject_IsSubclassPyPyImport_ImportModuleLevelObjectPyPyOS_snprintfrandom_laplace_PyPy_EllipsisObjectPyPyExc_TypeErrorrandom_buffered_bounded_boollegacy_random_zipfPyPyDict_SetItemrandom_geometric_inversionPyPyExc_BaseExceptionlegacy_fPyPySequence_ListPyPyErr_SetObjectrandom_weibullPyPyDict_GetItemrandom_f_ITM_deregisterTMCloneTablelegacy_paretoPyPyLong_AsLongPyPyModule_GetDict_PyPy_DeallocPyPySequence_GetItemPyPyMem_MallocPyPyDict_GetItemStringPyPyObject_SetAttrStringrandom_negative_binomialrandom_standard_cauchy__isnan@@GLIBC_2.2.5PyPyNumber_SubtractPyPyNumber_InPlaceTrueDividePyPyFloat_Typeexp@@GLIBC_2.2.5PyPyImport_ImportModule__pyx_module_is_main_numpy__random__mtrandPyPyLong_FromLonglegacy_chisquarerandom_standard_exponential_fill_fPyPyErr_NormalizeExceptionPyPyFloat_AsDoublePyPyDict_Nextlegacy_gaussrandom_standard_gamma_edatarandom_binomial_btpePyPyUnicode_FromFormatPyPyObject_GetItemlegacy_normalPyPyUnicode_InternFromStringPyPyUnicode_FromStringrandom_rayleighPyPyFloat_AS_DOUBLEPyPyDict_SetItemStringPyPyCapsule_Newrandom_standard_exponentialrandom_uniform_finiPyPyUnicode_Comparelegacy_random_binomialrandom_bounded_uint64_fillPyPyTuple_TypePyPyNumber_RemainderPyPyUnicode_DecodePyPyExc_ValueErrorlegacy_random_multinomialrandom_bounded_uint16_fillPyPyObject_GetAttrStringPyPyDict_Sizelegacy_standard_exponentialPyPyObject_IsTruePyPyCapsule_Typerandom_logisticlegacy_random_logseriesPyPyBytes_TypePyPyErr_Clearlegacy_negative_binomialPyPyExc_RuntimeErrorrandom_standard_uniform_fill_fPyPyErr_ExceptionMatchesrandom_bounded_uint64PyPyDict_Newpow@@GLIBC_2.2.5PyPyLong_FromStringrandom_positive_intPyPyObject_Hashlog@@GLIBC_2.2.5random_standard_gamma_frandom_triangularrandom_buffered_bounded_uint32PyPyErr_WarnFormatPyPyExc_AttributeErrorfmod@@GLIBC_2.2.5random_powerPyPyCapsule_IsValidrandom_bounded_uint8_fillPyPyLong_Typerandom_noncentral_frandom_standard_exponential_inv_fill_fPyPyNumber_LongPyPyObject_SizePyPyErr_Restoreacos@@GLIBC_2.2.5PyPyEval_RestoreThreadPyPyType_ReadyPyPyList_Typelegacy_waldPyPyErr_SetStringPyPyExc_OverflowErrorrandom_buffered_bounded_uint8memcpy@@GLIBC_2.2.5PyPyBytes_FromStringAndSizePyPyEval_SaveThreadPyPyCode_Newrandom_betaPyPyImport_AddModulePyPyCapsule_GetNamePyPyUnicode_CheckPyPyExc_DeprecationWarningPyPyList_AsTuple__gmon_start__random_exponentialexpf@@GLIBC_2.2.5PyPyObject_NotPyPyErr_FetchPyPyErr_GetExcInfoPyPyList_SET_ITEMrandom_gammaPyPyList_Appendlegacy_random_poissonrandom_standard_uniform_fPyPyObject_CallPyPyNumber_AddPyPyErr_SetExcInforandom_loggamPyPyExc_StopIterationsqrtf@@GLIBC_2.2.5PyPySequence_SetItemPyPyThreadState_Getrandom_gamma_fPyPySequence_Sizelegacy_weibullpowf@@GLIBC_2.2.5random_standard_exponential_fPyPyMem_Reallocrandom_paretoPyPyTuple_New_endPyPyObject_SetAttrrandom_positive_int64PyPyModule_GetNamelegacy_standard_gammarandom_geometric_searchrandom_standard_t_PyPy_NoneStructPyPyCapsule_GetPointer_PyPy_FalseStructPyInit_mtrandPyPyNumber_Multiplyrandom_vonmisesrandom_bounded_uint32_fillrandom_standard_normal_frandom_positive_int32random_standard_uniformPyPyUnicode_FromStringAndSizePyPyExc_NameError__bss_startPyPyBool_Typelogf@@GLIBC_2.2.5legacy_powerrandom_normallegacy_exponentialrandom_chisquarelegacy_standard_cauchyPyPyExc_ExceptionPyPyObject_GetIterlegacy_gammarandom_standard_exponential_fillrandom_intervalrandom_waldPyPyUnicode_CheckExactPyPySequence_Checkrandom_noncentral_chisquarePyPyType_ModifiedPyPyModule_Create2PyPyTuple_Packrandom_standard_normalPyPySequence_ITEMlegacy_betalegacy_noncentral_fPyPySlice_NewPyPyNumber_InPlaceAddPyPyObject_RichCompareBoolrandom_standard_exponential_inv_fillPyPyBaseObject_TypePyPyFrame_Newrandom_lognormalrandom_buffered_bounded_uint16PyPyObject_SetItemPyPyErr_Formatlegacy_random_hypergeometricrandom_uintrandom_gumbelPyPyErr_WarnExrandom_standard_uniform_filllegacy_standard_tPyPyErr_OccurredPyPyTraceBack_HerePyPyLong_FromSsize_trandom_standard_normal_fill_ffloor@@GLIBC_2.2.5legacy_random_geometricPyPyExc_SystemErrorPyPyList_Newrandom_bounded_bool_fillPyPyType_IsSubtyperandom_binomial_inversion_ITM_registerTMCloneTablePyPyExc_ImportErrorPyPySequence_Tuplelegacy_noncentral_chisquarePyPyCFunction_NewExPyPyException_SetTracebacksqrt@@GLIBC_2.2.5PyPyObject_DelItemPyPy_GetVersionPyPyObject_IsInstancePyPyObject_RichCompareceil@@GLIBC_2.2.5PyPyUnicode_FormatPyPyImport_GetModuleDict_PyPy_TrueStruct__cxa_finalize@@GLIBC_2.2.5_initrandom_standard_normal_fillPyPySequence_Containslegacy_lognormalPyPyObject_GetAttr.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.data.rel.ro.dynamic.got.got.plt.data.bss.commentÈÈ$.öÿÿoðð 8(@¸¸ðHÿÿÿo¨.¨.îUþÿÿo˜0˜0@dØ0Ø0ˆnnB`Ÿ`Ÿ@x ­ ­s°­°­	~@·@·5„mm	Š m mÐm ’ðÚðÚ´ ¨à¨àX5ª ' ¶('(Â0'0Ï8'8àØ'èÝ ' Øæà$'à$@P ì u) u	p ñ0 u	Y€u	`~N	àó	‡ˆg|
ú