Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
numpy / random / _generator.pypy36-pp73-x86_64-linux-gnu.so
Size: Mime:
ELF>PÇ@Û@8@ü^ü^ ¸k¸k(¸k(P>¨P ÐkÐk(Ðk(ààÈÈÈ$$PåtdHHHììQåtdRåtd¸k¸k(¸k(HHGNUØ@TþÖñø\RýYž GèBÎCÁ	p"	€	#¤†@€012a@„AT%
†Ñ$ê¥@Å¿Š†»ÁÃÆÈÉËÌÎÑÒÓÔÕÖÙÚÜÝÞàáäåæèéêìíîñòõöùüýÿ	

RÐm•ñHÊJݼã(²y	ºa«†…­a³ף{éŠ6ž}¡‘tk¥÷m@•t‰O”j‚ÏtÌ#ÍH)M ,,qғšÓ75kΑÒï(çB€9
êÓïýSÆÃß	Øf™Q{Þ`¹ñÿ¡·Øܪ¼<­X§Íڟ“"Œ´Ð³Å;
	Í讋áh”“p3`%‘ؔ΢¡“o…s‰ڃ1<g#UL±—ù`cR³Ìøˆ/7ÖÇ‚`GÆëŽWŸsžÞCEÕìºSNDäPeßcÞ|‰’vlá«ï9¯p3Ùù؈¥å9j»ã’|.á«ï¿M¡ùCYd’e$±ê+ñ*²\Ñ=§Æ÷kúD\~ýµSâ8±çØqXe䞓{·K€ŽÂ%Û
]˜¬Ø p	»†^õ	'> ªäwZh
þ˜ûxÃ{Â1°
íF9Öw
Õˆz§	â]ÀWV”>
ôE£Þèß4ÎøyíiœÎ¯·

|³>	L	—	5rÜ
ܲê‚Å
ìñ
~
ýª(
¼Æ	¡
BÐ”𠾤O+	#þ
©Š‹f
ÅÏ_	
Y1žoµF4®	U2a¤³dMÚÃ$Ê
€	â	¼øV
¶ž
5örƒK§Å/IÞ‘•uÝ
	þ	8 h6³ïü¥ÊR
nj
«ï6¼ìÅR"ÕG°OqdÐK	O ]SBÐ[°0`½ÿO9ð^gVÀc&H‹G‹ LI ÐM2Ô x`ÆàS9¾€‡[pY°n‹
àŽf)°_£p…b{¡4P[(@ª*ä“}€q/ßRÊ
 Toð`Å	;2`yñP““!€[Jsð8°Yˆðƒ|nàK9fð[ö\ëî
`Нµ
Ðp¥~ xNr°{Z{ðc»
"Ym0´Øà‰qPà€GX°rW"POQü`^‚`_N@
ðy
È0Pœ"ª*:Ð_^l [,ސM9(
°V¹ô}¶Ât§™€]/›°vªÐQ95`¼*Ð}‰q`àà]>ï ^?Ò°]'l]|pL¸(Ø/'Š€xXÐYy¼ÀwW)ª*LÀY	J K%__gmon_start___init_fini_ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_PyPy_NoneStructPyPyBaseObject_Type_PyPy_DeallocPyPyExc_ValueErrorPyPyErr_FormatPyPyTuple_PackPyPyObject_CallPyPyObject_GetAttrPyPyErr_ClearPyPyObject_RichCompareBoolPyPySlice_New_PyPy_EllipsisObjectPyPyTuple_NewPyPyCode_NewPyPyErr_FetchPyPyThread_free_lockPyPyErr_RestorePyPyBuffer_ReleasePyPyLong_FromSsize_tPyPyErr_SetStringmemcpyPyPyErr_NormalizeExceptionPyPyErr_OccurredPyPyException_SetTracebackPyPyErr_SetExcInfoPyPyExc_AttributeErrorPyPyErr_ExceptionMatchesPyPyObject_Freefreerandom_intervalrandom_bounded_uint64PyPyCapsule_NewPyPyDict_SetItemPyPyObject_HasAttrPyPyType_ModifiedPyPyDict_DelItemPyPyExc_RuntimeErrorPyPyObject_GetAttrStringPyPyExc_TypeErrorPyPyOS_snprintfPyPyErr_WarnExPyPyDict_GetItemStringPyPyModule_GetNamePyPyExc_ImportErrorPyPyCapsule_IsValidPyPyCapsule_GetNamePyPyCapsule_GetPointerPyPyModule_GetDictPyPyDict_NewPyPyImport_ImportModuleLevelObjectPyPyList_NewPyPyExc_NameErrorPyPyGILState_EnsurePyPyGILState_ReleasePyPyObject_GetItemPyPyExc_StopIterationPyPyThreadState_GetPyPyFrame_NewPyPyTraceBack_HerePyPyObject_Not_PyPy_FalseStruct_PyPy_TrueStructPyPyUnicode_FromStringPyPyUnicode_FromFormatPyPyObject_SetAttrPyPyMem_ReallocPyPyMem_MallocPyPyUnicode_FormatPyPyNumber_InPlaceMultiplyPyPyNumber_MultiplyPyPyLong_FromLongPyPyList_AppendPyPyList_AsTuplePyPyBytes_FromStringPyPyTuple_TypePyPyNumber_AddPyPyBytes_TypePyPyBytes_AS_STRINGPyPyBytes_SizePyPySequence_TuplePyPyList_SET_ITEMPyPyNumber_InPlaceAddPyPyObject_SetItemPyPyExc_NotImplementedErrorPyPyObject_GenericGetAttrPyPyExc_DeprecationWarningPyPyErr_WarnFormatPyPyDict_NextPyPyUnicode_CheckPyPyUnicode_Comparerandom_betaPyPyDict_SizePyPyDict_GetItemrandom_exponentialrandom_normalrandom_gammarandom_frandom_noncentral_frandom_chisquarerandom_noncentral_chisquarerandom_standard_cauchyrandom_standard_trandom_vonmisesrandom_paretorandom_weibullrandom_powerrandom_laplacerandom_gumbelrandom_logisticrandom_lognormalrandom_rayleighrandom_waldrandom_negative_binomialrandom_poissonrandom_zipfrandom_geometricrandom_logseriesPyPyExc_BaseExceptionPyPyObject_IsSubclassPyPyErr_SetObjectPyPyExc_BufferErrorvsnprintfPyPy_FatalErrorPyPyType_IsSubtypePyPyErr_GetExcInfoPyPyLong_TypePyPyLong_AsSsize_tPyPyNumber_IndexPyPyLong_AsLongPyPyUnicode_CheckExactPyPyNumber_LongstrlenPyPyUnicode_DecodeASCIIPyPyBytes_FromStringAndSizePyPySequence_CheckPyPySequence_GetItemPyPyErr_GivenExceptionMatchesPyPyExc_OverflowErrorPyPyLong_AsUnsignedLongPyPyErr_PrintExPyPyErr_WriteUnraisablePyPyList_TypePyPyList_GET_SIZEPyPySequence_ITEMPyPyExc_ZeroDivisionErrorPyPyObject_GetIterPyPyExc_SystemErrorPyPyMem_FreePyPyErr_NoMemorymallocPyPySlice_TypePyPyIndex_CheckPyPyObject_SizePyPyList_SetSlicePyPyNumber_Remainderrandom_uniformPyPyFloat_AsDoublePyPyFloat_FromDoublePyPyObject_IsTruePyPySequence_SizePyPyObject_RichComparerandom_standard_exponential_fillrandom_standard_exponential_fill_frandom_standard_exponential_inv_fillrandom_standard_exponential_inv_fill_frandom_standard_uniform_fillrandom_standard_uniform_fill_frandom_standard_normal_fillrandom_standard_normal_fill_fPyPyThread_allocate_lockPyPyObject_GetBufferrandom_standard_gammarandom_standard_gamma_frandom_triangularPyPyObject_IsInstancePyPyFloat_TypePyPyFloat_AS_DOUBLErandom_hypergeometricPyPyEval_SaveThreadrandom_binomialPyPyEval_RestoreThreadPyPyObject_Mallocrandom_multinomialPyPyBool_TypePyPyNumber_OrPyPyLong_FromSize_tPyPyNumber_FloorDividerandom_multivariate_hypergeometric_countrandom_multivariate_hypergeometric_marginalsPyPySequence_SetItemPyPy_OptimizeFlagPyPyExc_AssertionErrorPyPyErr_SetNonePyPyExc_UnboundLocalErrorPyPySequence_ListPyPyNumber_MatrixMultiplyPyPyNumber_NegativePyPyNumber_AbsolutePyPyNumber_InPlaceTrueDividePyPyNumber_SubtractPyPyLong_FromUnsignedLongPyPyObject_DelItemPyInit__generatorPyPy_GetVersionPyPyUnicode_FromStringAndSizePyPyModule_Create2PyPyImport_AddModulePyPyObject_SetAttrStringPyPyUnicode_InternFromStringPyPyUnicode_DecodePyPyObject_HashPyPyLong_FromString__pyx_module_is_main_numpy__random___generatorPyPyImport_GetModuleDictPyPyDict_SetItemStringPyPyType_ReadyPyPyImport_ImportModulePyPyCapsule_TypePyPyExc_ExceptionPyPyCFunction_NewExrandom_standard_uniform_frandom_standard_uniformrandom_standard_exponentialexplograndom_standard_exponential_fexpflogfrandom_standard_normalrandom_standard_normal_fpowsqrtpowfsqrtfrandom_positive_int64random_positive_int32random_positive_intrandom_uintrandom_loggamrandom_gamma_ffloorrandom_binomial_btperandom_binomial_inversion__isnanacosfmodrandom_geometric_searchrandom_geometric_inversionceilrandom_buffered_bounded_uint32random_buffered_bounded_uint16random_buffered_bounded_uint8random_buffered_bounded_boolrandom_bounded_uint64_fillrandom_bounded_uint32_fillrandom_bounded_uint16_fillrandom_bounded_uint8_fillrandom_bounded_bool_filllogfactoriallibm.so.6libpthread.so.0libc.so.6_edata__bss_start_endGLIBC_2.2.5þ ui	:ui	:¸k( Àk(àÿÈk(Èk(ÀO*`¯*ÈO*8µ*ÐO*0±*àO*@·*èO*˜¶*ðO*`¯*P*ȯ*P*`¯* P*`¯*(P*8µ*0P*˜²*8P*0±*`P*ð²*hP*8´*pP*`¯*xP*8µ*€P*µ* P*@·*¨P*`¯*°P*°*¸P*(±*ÀP* ¶*ÈP*ˆ¯*àP*ð²*èP*8´*ðP*`¯*Q*`¯*Q*8µ*Q*0±* Q*0³*(Q*ȯ*0Q*`¯*@Q*˜¯*HQ*`¯*PQ*8µ*XQ*0±*€Q*˜¯*ˆQ*ȯ*Q*`¯* Q*hµ*¨Q*xµ*°Q*`¯*ÀQ*hµ*ÈQ*xµ*ÐQ*ر*ØQ*`¯*ðQ*ˆµ*øQ*`¯* R*ˆµ*(R*ر*0R*`¯*@R*`¯*PR*ˆµ*XR*`¯*€R*p²*ˆR*€³*R*`¯* R*@·*¨R*`¯*ÀR*@·*ÈR*`¯*àR*@·*èR*`¯*S*0³*S*ȯ*S*`¯* S*0³*(S*ȯ*0S*`¯*@S*0³*HS*ȯ*PS*`¯*`S*2*hS*p¯*pS*`¯*€S*ȯ*ˆS*`¯* S*2*¨S*ȯ*°S*`¯*ÀS*X³*ÈS*€²*ÐS*è¯*ØS*`¯*T*H²*T*(±*T*`¯* T*H²*(T*(±*0T*`¯*@T*p³*HT*`¯*`T*@·*hT*`¯*€T*(±*ˆT*`¯* T*ø±*¨T*(²*°T* ±*¸T*`¯*ÐT*(±*ØT*`¯*U*2*U*°µ*U*`¯*U*0¶* U*x®*(U*˜²*@U*H²*HU*¨°*PU*`¯*`U*ðµ*hU* ±*pU*`¯*xU*˜²*U*ð¶*˜U*`¯*°U*ح*¸U* ¶*ÐU*ح*ØU* ¶*ðU*x¶*V*˜¯*V*³*V*˜´*V*€²* V*ø¶*0V*0²*@V*@±*HV*¸´*PV*0µ*`V*°¯*€V*p°*ˆV*°*V*x°* V*º*¨V*܌ÈV*º*ÐV*€8ðV*º*øV*³W*º* W*2@W*ø¹*HW*€²hW*ð¹*pW*@²W*è¹*˜W*àƒ¸W*à¹*ÀW*à±àW*ع*èW*ˆŠX*й*X* ±0X*ȹ*8X*`±XX*9*`X* ±€X*¸¹*ˆX*@¦¨X*°¹*°X*P‰ÐX*¨¹*ØX* €øX* ¹*Y* Y*˜¹*(Y* €HY*¹*PY*`ƒpY*ˆ¹*xY*€˜Y*€¹* Y*à„ÀY*x¹*ÈY*@ƒèY*p¹*ðY*àZ*h¹*Z*`‚8Z*`¹*@Z*à°`Z*X¹*hZ* ˆZ*P¹*Z*€°Z*H¹*¸Z*€€ØZ*@¹*àZ*À[*8¹*[* ([*0¹*0[*@8P[*(¹*X[* °x[* ¹*€[*`° [*¹*¨[* °È[*¹*Ð[*à¯ð[*¹*ø[* ¯\*¹* \* ƒ@\*ø¸*H\*@‚h\*ð¸*p\*8\*è¸*˜\*`¸\*à¸*À\*ƒà\*ظ*è\*à‚]*и*]*`€0]*ȸ*8]*@X]*8*`]*`¯€]*¸¸*ˆ]* ¯¨]*°¸*°]*à®Ð]*¨¸*Ø]* ®ø]* ¸*^* ^*˜¸*(^*À~H^*¸*P^* ‚p^*ˆ¸*x^*@€˜^*€¸* ^* ƒÀ^*x¸*È^* è^*p¸*ð^*€ƒ_*h¸*_*0ˆ8_*`¸*@_*`®`_*X¸*h_*àˆˆ_*P¸*_* ®°_*H¸*¸_*-Ø_*@¸*à_*€­`*8¸*`*@­(`*0¸*0`*P`*(¸*X`* ˆx`* ¸*€`*`„ `*¸*¨`*€„È`*¸*Ð`*­ð`*¸*ø`*@…a*¸* a*+Ž@a*ø·*Ha*,ha*ð·*pa*‡a*è·*˜a*֌¸a*à·*Àa*ˆàa*ط*èa* ¬b*з*b*‚0b*ȷ*8b*à‡Xb*7*`b*‡€b*¸·*ˆb*)ލb*°·*°b*@‰Ðb*¨·*Øb*à«øb* ·*c* « c*˜·*(c* ~Hc*·*Pc*`«pc*ˆ·*xc*¦˜c*€·* c*%Àc*x·*Èc*Јèc*p·*ðc*ð†d*h·*d*À78d*`·*@d*«`d*X·*hd*Žˆd*P·*d*ްd*H·*¸d*ŽØd*@·*àd*'Že*8·*e*'Ž(e*0·*0e*Pe*(·*Xe**xe* ·*€e*p e*·*¨e*€ªÈe*·*Ðe*Žðe*·*øe*Žf*·* f*xŠ@f*ø¶*Hf*à†hf*ð¶*pf*Ќf*è¶*˜f*8‹¸f*à¶*Àf*üàf*ض*èf*ó‹g*ж*g*ʌ0g*ȶ*8g*0‹Xg*6*`g*†€g*¸¶*ˆg*싨g*°¶*°g* ‹Ðg*¨¶*Øg*¶øg* ¶*h*± h*˜¶*(h*%ŽHh*¶*Ph*%Žph*ˆ¶*xh*¬˜h*€¶* h* )Àh*x¶*Èh*€‡èh*p¶*ðh*€‡i*h¶*i*¦8i*`¶*@i*@ª`i*X¶*hi* (ˆi*P¶*i*#ްi*H¶*¸i*#ŽØi*@¶*ài*‹j*8¶*j*‹(j*0¶*0j*ˆPj*(¶*Xj*ªxj* ¶*€j*  j*¶*¨j*€Èj*¶*Ðj*hŠðj*¶*øj*hŠk*¶* k*@k*øµ*Hk*hk*ðµ*pk*勐k*èµ*˜k* ©¸k*àµ*Àk*ދàk*ص*èk*l*е*l*@„0l*ȵ*8l*¡Xl*5*`l*ºŒ€l*¸µ*ˆl*p‡¨l*°µ*°l*øÐl*¨µ*Øl*`©øl* µ*m* © m*˜µ*(m*׋Hm*µ*Pm*ð‡pm*ˆµ*xm*Ž˜m*€µ* m*ŽÀm*xµ*Èm*´Œèm*pµ*ðm*´Œn*hµ*n*®Œ8n*`µ*@n*®Œ`n*Xµ*hn*˜ˆn*Pµ*n*`s°n*Hµ*¸n*ôØn*@µ*àn*Ћo*8µ*o*¨Œ(o*0µ*0o*ІPo*(µ*Xo*‘xo* µ*€o*‘ o*µ*¨o*¢ŒÈo*µ*Ðo*ðo*µ*øo*ɋp*µ* p*XŠ@p*ø´*Hp*˜Œhp*ð´*pp*0‰p*è´*˜p*ð¸p*à´*Àp*‹Œàp*ش*èp*…Œq*д*q*ˆ0q*ȴ*8q*`Xq*4*`q*Œ€q*¸´*ˆq*yŒ¨q*°´*°q*‹Ðq*¨´*Øq*‹øq* ´*r*HŠ r*˜´*(r*‹Hr*´*Pr*‹pr*ˆ´*xr*‹˜r*€´* r*Àr*x´*Èr*@ûèr*p´*ðr*‡s*h´*s*`‡8s*`´*@s*àô`s*X´*hs*8Šˆs*P´*s*ਰs*H´*¸s*øŠØs*@´*às* ât*8´*t*|(t*0´*0t*ÐPt*(´*Xt*Žxt* ´*€t*»‹ t*´*¨t*èŠÈt*´*Ðt*°‹ðt*´*øt*sŒu*´* u*mŒ@u*ø³*Hu*gŒhu*ð³*pu*aŒu*è³*˜u*w¸u*à³*Àu*àŠàu*س*èu*(Šv*г*v* Ã0v*ȳ*8v*rXv*3*`v*Š€v*¸³*ˆv*[Œ¨v*°³*°v*ŠÐv*¨³*Øv*ø‰øv* ³*w*°ˆ w*˜³*(w*mHw*³*Pw*è‰pw*ˆ³*xw*à€˜w*€³* w*UŒÀw*x³*Èw*UŒèw*p³*ðw*ìx*h³*x*ì8x*`³*@x* f`x*X³*hx*hˆx*P³*x* ‰°x*H³*¸x* ˆØx*@³*àx*cy*8³*y*ˆ(y*0³*0y*èPy*(³*Xy*èxy* ³*€y*^ y*³*¨y*€ˆÈy*³*Ðy* ·ðy*³*øy* ¦z*³* z* ›@z*ø²*Hz*Yhz*ð²*pz*䍐z*è²*˜z*P¸z*à²*Àz*‰àz*ز*èz* ‹{*в*{*à0{*Ȳ*8{* †X{*2*`{*F€{*¸²*ˆ{*F¨{*°²*°{* ¨Ð{*¨²*Ø{*àø{* ²*|*؊ |*˜²*(|*•‹H|*²*P|*`¨p|*ˆ²*x|* ¨˜|*€²* |*AÀ|*x²*È|*pˆè|*p²*ð|*Ž}*h²*}*Ž8}*`²*@}*`Ž`}*X²*h}*Àzˆ}*P²*}* g°}*H²*¸}*!ŽØ}*@²*à}*!Ž~*8²*~*8(~*0²*0~*‹P~*(²*X~*2x~* ²*€~*2 ~*²*¨~*-È~*²*Ð~*ÀZð~*²*ø~*à§*²* *؍@*ø±*H*OŒh*ð±*p*OŒ*è±*˜* …¸*à±*À* §à*ر*è*(€*б*€*(0€*ȱ*8€*PX€*1*`€*ÀC€€*¸±*ˆ€*5¨€*°±*°€* …Ѐ*¨±*؀*Žø€* ±**Њ *˜±*(*ЊH*±*P*p*ˆ±*x*˜*€±* * ‚*x±*ȁ*€…è*p±*ð*IŒ‚*h±*‚* „8‚*`±*@‚*À4`‚*X±*h‚*`§ˆ‚*P±*‚*`ˆ°‚*H±*¸‚* „؂*@±*à‚*ԍƒ*8±*ƒ*؉(ƒ*0±*0ƒ*ЍPƒ*(±*Xƒ*Žxƒ* ±*€ƒ*Ž ƒ*±*¨ƒ*„ȃ*±*Ѓ*#ðƒ*±*øƒ*À%„*±* „*BŒ@„*ø°*H„*  h„*ð°*p„*ˆ‹„*è°*˜„*ˉ¸„*à°**À]à„*ذ*è„*°†…*а*…*À0…*Ȱ*8…* §X…*0*`…*€‚€…*¸°*ˆ…*P¨…*°°*°…*Ѕ*¨°*؅*<Œø…* °*†*<Œ †*˜°*(†*†H†*°*P†*Їp†*ˆ°*x†*P‡˜†*€°* †*Pˆ*x°*Ȇ*‰è†*p°*ð†*	‡*h°*‡*à…8‡*`°*@‡*@ˆ`‡*X°*h‡*6Œˆ‡*P°*‡*{‹°‡*H°*¸‡*€؇*@°*à‡*0Œˆ*8°*ˆ**Œ(ˆ*0°*0ˆ*`Pˆ*(°*Xˆ*t‹xˆ* °*€ˆ*°‰ ˆ*°*¨ˆ*0‡Ȉ*°*Ј*ðˆðˆ*°*øˆ*Ȋ‰*°* ‰*
@‰*ø¯*H‰*h‰*ð¯*p‰* ‰‰*è¯*˜‰*$Œ¸‰*à¯*	*$Œà‰*د*è‰*°ŠŠ*Я*Š*0Š*ȯ*8Š*ŒXŠ*/*`Š*Œ€Š*¸¯*ˆŠ*°‡¨Š*°¯*°Š*Њ*¨¯*؊*‰øŠ* ¯*‹*p† ‹*˜¯*(‹*ŒH‹*¯*P‹*Œp‹*ˆ¯*x‹*¨Š˜‹*€¯* ‹*@ÿ*x¯*ȋ*è‹*p¯*ð‹*ŒŒ*h¯*Œ*Œ8Œ*`¯*@Œ*
`Œ*X¯*hŒ*ˆŒ*P¯*Œ*°Œ*H¯*¸Œ*ÀT،*@¯*àŒ*@O*8¯**`C(*0¯*0*`†P*(¯*X*€öx* ¯*€* é *¯*¨*Œȍ*¯*Ѝ*Œð*¯*ø*ûŒŽ*¯* Ž*öŒ@Ž*ø®*HŽ*ȍhŽ*ð®*pŽ*`…Ž*è®*˜Ž* C¸Ž*à®**…àŽ*خ*èŽ* Š*Ю** ‡0*Ȯ*8*m‹X*.*`*€‰€*¸®*ˆ*&¨*°®*°*@†Џ*¨®*؏*Íø* ®**Í *˜®*(*p‰H*®*P*ñŒp*ˆ®*x*茘*€®* *˜Š*x®*Ȑ*¿è*p®*ð*@à‘*h®*‘*Ž8‘*`®*@‘*f‹`‘*X®*h‘*_‹ˆ‘*P®*‘*X‹°‘*H®*¸‘*Œؑ*@®*à‘*0’*8®*’*€¦(’*0®*0’*`ÖP’*(®*X’*Q‹x’* ®*€’* Ö ’*®*¨’*J‹Ȓ*®*В*C‹ð’*®*ø’* Ê“*®* “*À8@“*ø­*H“*âŒh“*ð­*p“*⌐“*è­*˜“*`‰¸“*à­** ½à“*ح*è“*Ž”*Э*”*ú‹0”*ȭ*8”*»X”*-*`”*@³ð”*ô›•* ª*`•*€µx•*² •*à³Е*°ø•*°µ–*À–*°±0–*@—*@–*à–*€–*P\à–*ÿ›è–* @—*œH—*œ`—*œh—*œ*èµؗ*`
˜*೘*€™*˜*P™*0˜*°H˜*@™*`˜*Ph˜*˜*€›* ˜*à™*à˜*€T@™*@ŸP™*PX™*×`™**€™*P˜™*pà™**œè™*Àæš*ÿ›š*0š*›8š*"Xš*,œ`š*`š€š*4œˆš* ¨š*?œ°š*@ К*Dœؚ*ðøš*Mœ›*Ð ›*Hœ(›* €›*Tœˆ›* à ›*`œ¨›*pÞ*lœț*@à›*qœè›*Pœ*œœ*`™ œ*œ(œ*à™€œ*~œ˜œ*°*@ *p(*pP*ž**’ * ž*œž*: ž*œ(ž*`΀ž*›œ˜ž*0О*@ *؞* *øž*ð5Ÿ* *PŸ*¡*`Ÿ*  * Ÿ*Ý * *0 *+  *ð4@ *0X *  *¹œ¨ *p*¡*\¡*€+ ¡*œ(¡*`˜@¡*œH¡*à˜ ¡*¶¸¡*pà¡*¸¢* 18¢*8¶@¢*ÀH¢*ðp¢* £*€¢* £*°¢* •"*` £*ʙ(£*8£*<H£*͜P£*СX£* £*ܜ¨£*à0#*éœȣ* 0à£*öœè£*P,¤*½—¤* :¤*€H* ¤*ô•(¤*ÀD8¤*@C*@¤*±—H¤* HX¤*<*`¤*¨—h¤*°0x¤*€6*€¤*–˜ˆ¤*@7˜¤* )* ¤*Nœ¨¤*P¸¤* (*$*N™Ȥ* Gؤ* *à¤* —è¤*`ø¤*À*¥*ė¥*@B¥*	* ¥*͗(¥*ðJ8¥*@ú)@¥*ò—H¥*\X¥*`î)`¥*û—h¥*pNx¥*@ã)€¥*–ˆ¥*ÐQ˜¥* Ö) ¥*ù•¨¥*0U¸¥*àÉ)%*–ȥ*Yإ*ÀÁ)à¥*–è¥*à[ø¥*·)¦*–¦*@_¦*®) ¦*+–(¦*€a8¦* ¡)@¦*6–H¦*PdX¦* •)`¦*?–h¦*°gx¦* †)€¦*F–ˆ¦*€j˜¦* y) ¦*N–¨¦*Pm¸¦*@l)&*T–Ȧ* pئ*€_)à¦*\–è¦* sø¦*@M)§*c–§* w§*ÀA) §*l–(§* z8§*À0)@§*v–H§* ~X§* ')`§*–h§*ð€x§*@)€§*˜ˆ§*Pq˜§*à) §*–¨§*ྸ§*À)'*„–ȧ*P„ا*`ù(à§*––è§* ‡ø§*€ð(¨*ž–¨*PЍ* æ( ¨*±˜(¨*8¨*@à(@¨*¬˜H¨*ð X¨* Í(`¨*£–h¨*Џx¨* Â(€¨*™ˆ¨*°Ú˜¨*¯( ¨*d˜¨¨*p︨*!((*Ÿ˜Ȩ*°Zب* Ž(à¨*Œ˜è¨*€ø¨*à‚(©*»˜©* •©*À~( ©*˜(©* ‰8©* y(`©*ԗh©*`J€©*—ˆ©*Ϙ©*àu( ©*)š°m(ñ¸m(Àm(Èm(Ðm(Øm(Ãàm(èm(ðm(Èøm(ün(n(Æn(Ún(' n(Ö(n(ý0n(ö8n(÷@n(ÛHn(3Pn(7Xn(=`n(òhn(>pn(@xn(ʀn(ùˆn(ón(J˜n( n(O¨n(ï°n(Á¸n(WÀn(\Èn(_Ðn(åØn(hàn(jèn(ßðn(Ñøn(Äo(yo(èo(o(Å o(ˆ(o(Š0o(û8o(Ž@o(Ho(ÕPo(Xo(‘`o(øho(àpo(Øxo(ð€o(ˆo(Ґo(¡˜o(Ç o(ã¨o(Ͱo(¨¸o(¬Ào(­Èo(°Ðo(Øo(¼ào(½èo(¾ðo(þøo(¿p( p((p(0p(8p(@p(Hp(	Pp(
Xp(Ì`p(hp(
pp(xp(€p(ˆp(p(˜p(É p(¨p(°p(¸p(Àp(Èp(Ðp(Øp(àp(èp(ðp( øp(!q("q(#q($q(% q(Ú(q(ê0q(&8q((@q()Hq(*Pq(+Xq(,`q(-hq(.pq(xq(/€q(ۈq(0q(1˜q(2 q(4¨q(5°q(6¸q(8Àq(9Èq(:Ðq(;Øq(æàq(<èq(?ðq(Aøq(ér(Br(Cr(Dr(E r(F(r(G0r(ù8r(H@r(IHr(KPr(LXr(M`r(Nhr(Ppr(Qxr(R€r(Sˆr(Tr(U˜r(V r(X¨r(Y°r(Z¸r([Àr(]Èr(^Ðr(ÞØr(`àr(aèr(bðr(cør(ds(ås(es(fs(g s(i(s(k0s(l8s(m@s(nHs(ÑPs(oXs(p`s(qhs(Äps(rxs(s€s(tˆs(us(v˜s(w s(x¨s(	°s(z¸s({Às(|Ès(}Ðs(~Øs(às(€ès(Ëðs(øs(‚t(ƒt(„t(…t(† t(
(t(‡0t(‰8t(‹@t(ŒHt(ÙPt(Xt(`t(Õht(pt(’xt(Ԁt(“ˆt(”t(ؘt(• t(–¨t(—°t(˜¸t(ôÀt(™Èt(šÐt(›Øt(œàt(žèt(Ÿðt( øt(çu(¢u(£u(¤u(¥ u(¦(u(§0u(©8u(ª@u(«Hu(ÐPu(®Xu(`u(¯hu(±pu(²xu(³€u(´ˆu(µu(¶˜u(· u(¸¨u(¹°u(º¸u(»Àu(¾Èu(ÀHƒìèCHƒÄÃÿ52´'ÿ%4´'@ÿ%2´'héàÿÿÿÿ%*´'héÐÿÿÿÿ%"´'héÀÿÿÿÿ%´'hé°ÿÿÿÿ%´'hé ÿÿÿÿ%
´'héÿÿÿÿ%´'hé€ÿÿÿÿ%ú³'hépÿÿÿÿ%ò³'hé`ÿÿÿÿ%ê³'h	éPÿÿÿÿ%â³'h
é@ÿÿÿÿ%ڳ'hé0ÿÿÿÿ%ҳ'hé ÿÿÿÿ%ʳ'h
éÿÿÿÿ%³'héÿÿÿÿ%º³'héðþÿÿÿ%²³'héàþÿÿÿ%ª³'héÐþÿÿÿ%¢³'héÀþÿÿÿ%š³'hé°þÿÿÿ%’³'hé þÿÿÿ%г'héþÿÿÿ%‚³'hé€þÿÿÿ%z³'hépþÿÿÿ%r³'hé`þÿÿÿ%j³'héPþÿÿÿ%b³'hé@þÿÿÿ%Z³'hé0þÿÿÿ%R³'hé þÿÿÿ%J³'héþÿÿÿ%B³'héþÿÿÿ%:³'héðýÿÿÿ%2³'h éàýÿÿÿ%*³'h!éÐýÿÿÿ%"³'h"éÀýÿÿÿ%³'h#é°ýÿÿÿ%³'h$é ýÿÿÿ%
³'h%éýÿÿÿ%³'h&é€ýÿÿÿ%ú²'h'épýÿÿÿ%ò²'h(é`ýÿÿÿ%ê²'h)éPýÿÿÿ%â²'h*é@ýÿÿÿ%ڲ'h+é0ýÿÿÿ%Ҳ'h,é ýÿÿÿ%ʲ'h-éýÿÿÿ%²'h.éýÿÿÿ%º²'h/éðüÿÿÿ%²²'h0éàüÿÿÿ%ª²'h1éÐüÿÿÿ%¢²'h2éÀüÿÿÿ%š²'h3é°üÿÿÿ%’²'h4é üÿÿÿ%в'h5éüÿÿÿ%‚²'h6é€üÿÿÿ%z²'h7épüÿÿÿ%r²'h8é`üÿÿÿ%j²'h9éPüÿÿÿ%b²'h:é@üÿÿÿ%Z²'h;é0üÿÿÿ%R²'h<é üÿÿÿ%J²'h=éüÿÿÿ%B²'h>éüÿÿÿ%:²'h?éðûÿÿÿ%2²'h@éàûÿÿÿ%*²'hAéÐûÿÿÿ%"²'hBéÀûÿÿÿ%²'hCé°ûÿÿÿ%²'hDé ûÿÿÿ%
²'hEéûÿÿÿ%²'hFé€ûÿÿÿ%ú±'hGépûÿÿÿ%ò±'hHé`ûÿÿÿ%ê±'hIéPûÿÿÿ%â±'hJé@ûÿÿÿ%ڱ'hKé0ûÿÿÿ%ұ'hLé ûÿÿÿ%ʱ'hMéûÿÿÿ%±'hNéûÿÿÿ%º±'hOéðúÿÿÿ%²±'hPéàúÿÿÿ%ª±'hQéÐúÿÿÿ%¢±'hRéÀúÿÿÿ%š±'hSé°úÿÿÿ%’±'hTé úÿÿÿ%б'hUéúÿÿÿ%‚±'hVé€úÿÿÿ%z±'hWépúÿÿÿ%r±'hXé`úÿÿÿ%j±'hYéPúÿÿÿ%b±'hZé@úÿÿÿ%Z±'h[é0úÿÿÿ%R±'h\é úÿÿÿ%J±'h]éúÿÿÿ%B±'h^éúÿÿÿ%:±'h_éðùÿÿÿ%2±'h`éàùÿÿÿ%*±'haéÐùÿÿÿ%"±'hbéÀùÿÿÿ%±'hcé°ùÿÿÿ%±'hdé ùÿÿÿ%
±'heéùÿÿÿ%±'hfé€ùÿÿÿ%ú°'hgépùÿÿÿ%ò°'hhé`ùÿÿÿ%ê°'hiéPùÿÿÿ%â°'hjé@ùÿÿÿ%ڰ'hké0ùÿÿÿ%Ұ'hlé ùÿÿÿ%ʰ'hméùÿÿÿ%°'hnéùÿÿÿ%º°'hoéðøÿÿÿ%²°'hpéàøÿÿÿ%ª°'hqéÐøÿÿÿ%¢°'hréÀøÿÿÿ%š°'hsé°øÿÿÿ%’°'hté øÿÿÿ%а'hu鐸ÿÿÿ%‚°'hv逸ÿÿÿ%z°'hwépøÿÿÿ%r°'hxé`øÿÿÿ%j°'hyéPøÿÿÿ%b°'hzé@øÿÿÿ%Z°'h{é0øÿÿÿ%R°'h|é øÿÿÿ%J°'h}éøÿÿÿ%B°'h~éøÿÿÿ%:°'héð÷ÿÿÿ%2°'h€éà÷ÿÿÿ%*°'héÐ÷ÿÿÿ%"°'h‚éÀ÷ÿÿÿ%°'hƒé°÷ÿÿÿ%°'h„é ÷ÿÿÿ%
°'h…é÷ÿÿÿ%°'h†é€÷ÿÿÿ%ú¯'h‡ép÷ÿÿÿ%ò¯'hˆé`÷ÿÿÿ%ê¯'h‰éP÷ÿÿÿ%â¯'hŠé@÷ÿÿÿ%گ'h‹é0÷ÿÿÿ%ү'hŒé ÷ÿÿÿ%ʯ'hé÷ÿÿÿ%¯'hŽé÷ÿÿÿ%º¯'héðöÿÿÿ%²¯'héàöÿÿÿ%ª¯'h‘éÐöÿÿÿ%¢¯'h’éÀöÿÿÿ%š¯'h“é°öÿÿÿ%’¯'h”é öÿÿÿ%Н'h•éöÿÿÿ%‚¯'h–é€öÿÿÿ%z¯'h—épöÿÿÿ%r¯'h˜é`öÿÿÿ%j¯'h™éPöÿÿÿ%b¯'hšé@öÿÿÿ%Z¯'h›é0öÿÿÿ%R¯'hœé öÿÿÿ%J¯'héöÿÿÿ%B¯'hžéöÿÿÿ%:¯'hŸéðõÿÿÿ%2¯'h éàõÿÿÿ%*¯'h¡éÐõÿÿÿ%"¯'h¢éÀõÿÿÿ%¯'h£é°õÿÿÿ%¯'h¤é õÿÿÿ%
¯'h¥éõÿÿÿ%¯'h¦é€õÿÿÿ%ú®'h§épõÿÿÿ%ò®'h¨é`õÿÿÿ%ê®'h©éPõÿÿÿ%â®'hªé@õÿÿÿ%ڮ'h«é0õÿÿÿ%Ү'h¬é õÿÿÿ%ʮ'h­éõÿÿÿ%®'h®éõÿÿÿ%º®'h¯éðôÿÿÿ%²®'h°éàôÿÿÿ%ª®'h±éÐôÿÿÿ%¢®'h²éÀôÿÿÿ%š®'h³é°ôÿÿÿ%’®'h´é ôÿÿÿ%Š®'hµéôÿÿÿ%‚®'h¶é€ôÿÿUH‰õSQH‹5Ûê)èÞÿÿÿH‰ÃH…Àuèøÿÿ1íH…Ût%ëH‰îºH‰ÇèØýÿÿ‰ŅÀxÜHÿuH‰ßè5õÿÿ‰èZ[]ÃSH‹5—ð)¿1Àè[ýÿÿH‰tå)H…ÀuƒÈÿé£	H‹5ð)¿1Àè4ýÿÿH‰Eå)H…ÀtÙH‹yå)H‹5¢å)¿1ÀèýÿÿH‰å)H…Àt³H‹5ï)¿1ÀèïüÿÿH‰èä)H…Àt”H‹5äî)¿1ÀèÐüÿÿH‰Áä)H…À„qÿÿÿH‹5Ñî)¿1Àè­üÿÿH‰–ä)H…À„NÿÿÿH‹5žè)¿1ÀèŠüÿÿH‰kä)H…À„+ÿÿÿH‹5“î)¿1ÀègüÿÿH‰@ä)H…À„ÿÿÿH‹5è)¿1ÀèDüÿÿH‰ä)H…À„åþÿÿH‹5åç)¿1Àè!üÿÿH‰êã)H…À„ÂþÿÿH‹5²ç)¿1ÀèþûÿÿH‰¿ã)H…À„ŸþÿÿH‹5·ð)¿1ÀèÛûÿÿH‰”ã)H…À„|þÿÿH‹5¼è)¿1Àè¸ûÿÿH‰iã)H…À„YþÿÿH‹5Yð)¿1Àè•ûÿÿH‰>ã)H…À„6þÿÿH‹Ž¥'¿1ÀH‰ÙH‰ÚH‰ÞèiûÿÿH‰
ã)H…À„
þÿÿH‹5rò)¿1ÀèFûÿÿH‰ßâ)H…À„çýÿÿH‹5ïí)¿1Àè#ûÿÿH‰´â)H…À„ÄýÿÿH‹5Lé)¿1ÀèûÿÿH‰‰â)H…À„¡ýÿÿH‹5Qè)¿1ÀèÝúÿÿH‰^â)H…À„~ýÿÿH‹5þè)¿1ÀèºúÿÿH‰3â)H…À„[ýÿÿH‹5{ç)¿1Àè—úÿÿH‰â)H…À„8ýÿÿH‹5øç)¿1ÀètúÿÿH‰Ýá)H…À„ýÿÿH‹5õç)¿1ÀèQúÿÿH‰²á)H…À„òüÿÿH‹5Òê)¿1Àè.úÿÿH‰‡á)H…À„ÏüÿÿH‹5·ç)¿1ÀèúÿÿH‰\á)H…À„¬üÿÿH‰ÚH‰ÞH‰ßèúÿÿH‰îá)H…À„ŽüÿÿH‹5îê)¿1ÀèÊùÿÿH‰á)H…À„küÿÿH‹ëî)H‹5<ê)¿1Àè ùÿÿH‰áà)H…À„AüÿÿH‹5ê)¿1Àè}ùÿÿH‰¶à)H…À„üÿÿH‹5ã)¿1ÀèZùÿÿH‰‹à)H…À„ûûÿÿH‹5Ãæ)¿1Àè7ùÿÿH‰`à)H…À„ØûÿÿH‹5 å)¿1ÀèùÿÿH‰5à)H…À„µûÿÿH‹5uå)¿1ÀèñøÿÿH‰
à)H…À„’ûÿÿH‹5*ë)¿1ÀèÎøÿÿH‰ßß)H…À„oûÿÿH‹5å)¿1Àè«øÿÿH‰´ß)H…À„LûÿÿH‹5lê)¿1ÀèˆøÿÿH‰‰ß)H…À„)ûÿÿH‹¡'H‹5òà)¿1Àè^øÿÿH‰Wß)H…À„ÿúÿÿH‹5Gí)¿1Àè;øÿÿH‰,ß)H…À„ÜúÿÿH‹5Ôì)1?èøÿÿH…À„ÀúÿÿH‹5ë)1?èü÷ÿÿH…À„¤úÿÿH‹5”ì)1?èà÷ÿÿH…À„ˆúÿÿH‹5 ä)¿1ÀèÄ÷ÿÿH‰­Þ)H…À„eúÿÿH‹5õã)1?è¡÷ÿÿH…À„IúÿÿH‹5Qì)¿1Àè…÷ÿÿH‰fÞ)H…À„&úÿÿH‹5æå)¿1Àèb÷ÿÿH‰;Þ)H…À„úÿÿH‹5sà)¿1Àè?÷ÿÿH‰Þ)H…À„àùÿÿH‹5Xà)¿1Àè÷ÿÿH‰åÝ)H…À„½ùÿÿH‹5õë)¿1ÀèùöÿÿH‰ºÝ)H…À„šùÿÿH‹5²ã)¿1ÀèÖöÿÿH‰Ý)H…À„wùÿÿH‹5ã)¿1Àè³öÿÿH‰dÝ)H…À„TùÿÿH‹5„ë)¿1ÀèöÿÿH‰9Ý)H…À„1ùÿÿH‹5é)¿1ÀèmöÿÿH‰Ý)H…À„ùÿÿH‹56ë)¿1ÀèJöÿÿH‰ãÜ)H…À„ëøÿÿH‹5+ë)¿1Àè'öÿÿH‰¸Ü)H…À„Èøÿÿ¿è­ôÿÿH‰–Ü)H…À„®øÿÿH‹FÞ)¿HÿH‹5·â)H‰P 1ÀèÜõÿÿH‰]Ü)H…À„}øÿÿH‹5•â)¿1Àè¹õÿÿH‰2Ü)H…À„ZøÿÿH‹5âè)¿1Àè–õÿÿH‰Ü)H…À„7øÿÿH‹5Oâ)¿1ÀèsõÿÿH‰ÜÛ)H…À„øÿÿH‹5,â)¿1ÀèPõÿÿH‰±Û)H…À„ñ÷ÿÿH‹5Ùß)1?è-õÿÿH…À„Õ÷ÿÿH‹=ì)L‹
.ì)VA¸1É1ö¿AQhèÿ5yå)ÿ5Kä)RRPRRºètñÿÿHƒÄPH…À„ˆ÷ÿÿH‹5¨Þ)¿1ÀèÄôÿÿH‰Û)H…À„e÷ÿÿH‹5Þ)¿1Àè¡ôÿÿH‰òÚ)H…À„B÷ÿÿH‹5ZÞ)¿1Àè~ôÿÿH‰ÇÚ)H…À„÷ÿÿH‹5/å)¿1Àè[ôÿÿH‰œÚ)H…À„üöÿÿH‹5å)¿1Àè8ôÿÿH‰qÚ)H…À„ÙöÿÿL‹
‘ß)L‹¢ß)1?H‹
tß)H‹…ß)H‹5^ß)èùóÿÿH…À„¡öÿÿH‹	ë)L‹
úê)Q1ö1ÉA¸¿AQjÿ5 ß)ÿ5‚Ý)RRPRRºèCðÿÿHƒÄPH…À”À¶À÷Ø[ÃQH‹'H‹8èîÿÿ…ÀtZéøíÿÿXÃUH‰ý1ÒH‰÷S1öQèäìÿÿH…ÀtCH‹5¸Þ)H‰ÂH‰ïH‰ÃèšêÿÿH‹…ÀxHÿʽH‰uH‰ßèþêÿÿëHÿÊH‰uH‰ßèìêÿÿƒÍÿ‰èZ[]ÃAWAVAUATI‰üUSHƒì(H‹5Sâ)èfðÿÿÇD$‰D$…À…H‹['H‹5äÝ)H‰ßèõÿÿH‰D$H…À„&H‹5ÇÝ)L‰çèïôÿÿH‰$H…À„
H9D$…ºH‹5°Ý)H‰ßèÈôÿÿI‰ÇH…À„ûH‹5•Ý)L‰çè­ôÿÿI‰ÆH…À„ìI9ÇuH‹5mÝ)L‰çèôÿÿI‰ÅH…À…Úë#H‹5PÝ)H‰Çè€ôÿÿ‰D$…ÀuÌ1í1ÛE1íé(è…þÿÿM9÷„âèÙòÿÿH…À…ÔH‹5¡Ü)L‰çè1ôÿÿH‰ÃH…À…¯è`ìÿÿH‹5yÜ)L‰çèôÿÿH‰ÅH…À…­è.þÿÿH…ÛtOè†òÿÿH…À……L‰çè…ñÿÿ‹D$‰D$é¤1í1ÛE1íHÇ$E1öE1ÿëY1í1ÛE1íE1öëM1í1ÛE1íëDH‰Ýë?I‹¼$H‹5xÜ)H‰Âè èÿÿ…Àx I‹¼$H‹5UÜ)èXìÿÿ‰D$…À‰,ÿÿÿ1í1ÛèóñÿÿH…ÀuH‹‡š'I‹T$ H5»H‹81Àè‘ñÿÿÇD$ÿÿÿÿM…ÿt
IÿuL‰ÿè·èÿÿHƒ|$uë4ÇD$1í1ÛE1íE1öH‹D$H‹L$H‹H‰D$HÿÈH‰uH‰ÏèyèÿÿM…öt
IÿuL‰÷ègèÿÿHƒ<$t H‹$H‹$H‹H‰D$HÿÈH‰uH‰Ïè@èÿÿM…ítIÿMuL‰ïè-èÿÿH…Ût
HÿuH‰ßèèÿÿH…ítrHÿMulH‰ïèèÿÿëbH‹5ÏÚ)H‰Ç1íèuòÿÿ…À…=þÿÿékþÿÿI‹¼$H‹5±Ú)H‰ÂèQçÿÿ…ÀˆÑþÿÿI‹¼$H‹5ŠÚ)èëÿÿ‰D$…À‰,þÿÿé¬þÿÿ‹D$HƒÄ([]A\A]A^A_ÃAVE‰ÆAUI‰õH‰ÖATI‰ÌUH‰ÕSHìÐèÎéÿÿH…À„ªH‰ÃH‹@ö€³€u H‹>˜'H‰éL‰êH5©¹H‹81Àè÷ïÿÿëmL‹K(M9ás#H‹¥˜'M‰àH‰éL‰êH5¥¹H‹81ÀèËïÿÿëAAÿÎuKM9ávFI‰æPL‰éI‰èAQHô¹M‰áL‰÷¾È1Àè*æÿÿ1ÒL‰ö1ÿè®ïÿÿZY…ÀyHÿuH‰ßè»æÿÿ1ÛHÄÐH‰Ø[]A\A]A^ÃAWI‰×AVI‰þAUI‰õH5ð¾ATI‰ÌUSAPèâèÿÿH…À„ÁL‰îH‰ÇH‰Ãè»æÿÿH‰ÅH…Àu(L‰÷èkíÿÿL‰éH5ɹH‰ÂH‹7™'H‹81ÀèýîÿÿëvL‰æH‰ÇèÀéÿÿ…Àu9H‰ïè$ëÿÿL‰÷H‰Åè)íÿÿI‰éM‰àL‰éH‰ÂH‹ö–'H5¯¹H‹81Àèµîÿÿë.L‰æH‰ïè(íÿÿI‰H…ÀtH‹1íHPÿH‰H…ÒuH‰ßèÇåÿÿëHÿuH‰ßè¸åÿÿƒÍÿZ‰è[]A\A]A^A_ÃAWI‰×AVI‰þAUI‰õH5ñ½ATI‰ÌUSAPèãçÿÿH…À„ÁL‰îH‰ÇH‰Ãè¼åÿÿH‰ÅH…Àu(L‰÷èlìÿÿL‰éH5R¹H‰ÂH‹8˜'H‹81ÀèþíÿÿëvL‰æH‰ÇèÁèÿÿ…Àu9H‰ïè%êÿÿL‰÷H‰Åè*ìÿÿI‰éM‰àL‰éH‰ÂH‹÷•'H58¹H‹81Àè¶íÿÿë.L‰æH‰ïè)ìÿÿI‰H…ÀtH‹1íHPÿH‰H…ÒuH‰ßèÈäÿÿëHÿuH‰ßè¹äÿÿƒÍÿZ‰è[]A\A]A^A_ÃH‹!ä)H…ÀtHÿÃAVA¸¹1ÀAUHÁ¾ATUSHìHl$ Ld$(H‰ïè®ãÿÿè9îÿÿHÝÀ¾L‰çH‰Á1ÀèãÿÿŠD$(8D$ u
ŠD$*8D$"t?H\$0¾È1ÀM‰áH†ÕH‰ßL#ÃH‰éèTãÿÿ1ÿºH‰ÞèÕìÿÿ…ÀˆD#1ÿèÆêÿÿH‰?ã)H…À„D#1öH=»èxèÿÿH‰ã)H…À„=#1öH=ûºè*ëÿÿH‰óâ)H…À„6#¾õH=~»)è©ëÿÿH‰ã)H…À„,#H‰ÇèaãÿÿH‰ââ)H…À„+#HÿH=å¿èBèÿÿH‰»â)H…À„##HÿH=Ͽè#èÿÿH‰”â)H…À„#HÿH‹‰â)H5¸¿HÛ|)H‹=„â)è_ãÿÿ…Àˆ#L‹3M…ötvŠC 
C!H‹{t7€{"t
èHäÿÿI‰ë7H‹CH‹SHpÿH…Òt1ÉèûäÿÿI‰ëè1êÿÿI‰ëH‹CHpÿèOçÿÿI‰H‹H‹8H…ÿ„ý$è¨åÿÿHÿÀ„ï$HƒÃ(ë‚WÀèáÿÿH‰RÓ)H…À„Ñ$òIãèdáÿÿH‰-Ó)H…À„´$òãèGáÿÿH‰Ó)H…À„—$òãè*áÿÿH‰ãÒ)H…À„z$1ÿèãâÿÿH‰ÄÒ)H…À„c$¿èÉâÿÿH‰¢Ò)H…À„I$¿è¯âÿÿH‰€Ò)H…À„/$¿2è•âÿÿH‰^Ò)H…À„$¿1‰è{âÿÿH‰<Ò)H…À„û#¿ʚ;èaâÿÿH‰Ò)H…À„á#1Ò1öH=¾èaäÿÿH‰òÑ)H…À„Á#HƒÏÿè(âÿÿH‰ÑÑ)H…À„¨#H‹’'ƒ8uèwëÿÿH‰ÃH…À„A!ë5H‹*×)H‹5sÖ)H‹=„à)èïçÿÿ…Àyϻ“žL%ó¹A½é#H5ô¿H‰Çè%áÿÿH…ÀtH‹=9Ô)èT9H…ÀtKë1H‹6à)H5ƿH‰ßèGâÿÿ…Àyӻ™žL%›¹A½éËH‹=-Û)è9H‰Þ)H…Àu»žžL%l¹A½éœH‹=®×)èá8H‰ÚÝ)H…ÀtÑH‹=Û)èÉ8H‰ºÝ)H…Àt¹H‹=FÛ)è±8H‰šÝ)H…Àt¡H‹=þÚ)è™8H‰zÝ)H…Àt‰H‹=NÛ)è8H‰ZÝ)H…À„mÿÿÿH‹=úÒ)èe8H…À„XÿÿÿH‹=ýÚ)èP8H‰!Ý)H…À„<ÿÿÿH‹=¡Ú)è48H…À„'ÿÿÿH‹=,Û)è8H‰èÜ)H…À„ÿÿÿH‹=˜×)è8H…À„öþÿÿH‹=kÜ)èî7H‰¯Ü)H…À„ÚþÿÿH‹=ÏÚ)èÒ7H‰‹Ü)H…À„¾þÿÿèþéÿÿ…ÀˆbH‹n‘'H=ÇÃ)HƒH‰$Ý)H‰Ý)H‰Ý)H‰÷Ü)H‰èÜ)HYÍ)H‰*Þ)H+4H‰DÍ)HÝ4H‰>Í)èãÿÿ…Ày»¥žL%µ·A½éåH‹5çÝ)H‹=XÄ)HAÃ)HÇvÃ)è;óÿÿ…ÀxÀH‹5VÛ)H‹=ïÝ)H‰ÚèWåÿÿ…Àx¦HÄÌ)H=å¿)H‰ŽÜ)H‰‡Ý)HPÃH‰¡Ì)ètâÿÿ…ÀˆoÿÿÿH‹5eÝ)H‹=¾À)HÇã¿)èÈòÿÿ…ÀˆIÿÿÿH=¿)èóÿÿ…Àˆ5ÿÿÿH{¿)H=t½)H‰Ü)èâÿÿ…ÀˆÿÿÿHY½)HÇ޽)H‰ßèÓòÿÿ…ÀˆñþÿÿH×Ë)H=p¸)H‰ÉÛ)H‰ÊÜ)HõH‰´Ë)H]ÅH‰®Ë)Hï…H‰¨Ë)HÁH‰¢Ë)HcJH‰œË)HuâH‰–Ë)H'DH‰Ë)èkáÿÿ…ÀˆfþÿÿH‹5TÜ)H‹=õ¸)H-޷)HǸ)è¸ñÿÿ…Àˆ9þÿÿH‰ïèòÿÿ…Àˆ)þÿÿHÏÊ)HHµ)H‹5	Ü)¹H‰ÇH‰òÛ)Hëçó¥H‰ÊÊ)H‰ßH(IH‰-ÉÚ)H‰ºÊ)H‰-¶)èÎàÿÿ…ÀˆÉýÿÿH‹5¯Û)H‹=øµ)Hǵ)è"ñÿÿ…Àˆ£ýÿÿH‰ßèuñÿÿ…Àˆ“ýÿÿH=׸H‰bÚ)è
ÝÿÿH‰ÃH…À„ïA¸¹hH‰ÇH|¸H5£¸èôÿÿH…À„¸HÿuH‰ßèúÛÿÿH=¸è¾ÜÿÿH‰ÃH…À„ A¸¹H‰ÇHp¹H5T¸è0ôÿÿH…À„iHÿuH‰ßè«ÛÿÿH=2¸èoÜÿÿH‰ÃH…À„QA¸¹(H‰ÇH<¸H5¸èáóÿÿH…À„HÿuH‰ßè\ÛÿÿH=¸è ÜÿÿH‰ÃH…À„A¸¹hH‰ÇHŽ·H5î·è’óÿÿH‰,Ú)H…À„ÄA¸¹P
H‰ßHʷH5½·èaóÿÿH…À„šA¸¹8H‰ßH©·H5“·è7óÿÿH‰ÉÙ)H…À„iA¸¹XH‰ßH‚·H5b·èóÿÿH‰Ù)H…À„8A¸¹àH‰ßHY·H51·èÕòÿÿH…À„HÿuH‰ßèPÚÿÿH=6·èÛÿÿH‰ÃH…À„öA¸¹hH‰ÇH&´H5	·è†òÿÿH…À„¿A¸¹HH‰ßH·H5߶è\òÿÿH…À„•H‹¸H‹5fÍ)è1ÛÿÿH‰ÅH…Àtz1öH‰ÇèÿàÿÿI‰ÄH…Àu è²âÿÿH…ÀuH‹F‹'H5_ËH‹8èÞÿÿHÿMuH‰ïè‰ÙÿÿM…ät5A¸¹H‰ßH„¶H5U¶èÒñÿÿH…ÀtHÿu.H‰ßèQÙÿÿë$HÿuH‰ßèBÙÿÿ»¦žL%:²A½éjH=J¶èïÙÿÿH‰ÃH…À„UH
G¶Hµ×)H‰ÇH5D¶èPòÿÿ…Àˆ
H
"¶Hˆ×)H‰ßH5¶è+òÿÿ…ÀˆåH
¶H[×)H‰ßH5¶èòÿÿ…ÀˆÀHÿuH‰ßè—ØÿÿH=xÊè[ÙÿÿH‰ÃH…À„ØH
€ÊHi×)H‰ÇH5ѵè»òÿÿ…ÀˆëH
[ÊH<×)H‰ßH5¹µè–òÿÿ…ÀˆÆH
6ÊH×)H‰ßH5¡µèqòÿÿ…Àˆ¡H
ÊHâÖ)H‰ßH5‰µèLòÿÿ…Àˆ|H
ìÉHµÖ)H‰ßH5pµè'òÿÿ…ÀˆWH
ÇÉHˆÖ)H‰ßH5Vµèòÿÿ…Àˆ2H
¢ÉH[Ö)H‰ßH5=µèÝñÿÿ…Àˆ
H
}ÉH.Ö)H‰ßH5$µè¸ñÿÿ…ÀˆèH
XÉHÖ)H‰ßH5µè“ñÿÿ…ÀˆÃHÿuH‰ßè%×ÿÿH=D´èé×ÿÿH‰ÃH…À„fH
fÉH—Õ)H‰ÇH5̴èIñÿÿ…ÀˆyH
‘ÉHjÕ)H‰ßH5¸´è$ñÿÿ…ÀˆTH
»´H=Õ)H‰ßH5ƴèÿðÿÿ…Àˆ/H
ŸÉHÕ)H‰ßH5«´èÚðÿÿ…Àˆ
H
zÉHãÔ)H‰ßH5’´èµðÿÿ…ÀˆåH
ÉH¶Ô)H‰ßH5x´èðÿÿ…ÀˆÀH
 ÉH‰Ô)H‰ßH5i´èkðÿÿ…Àˆ›H
›ÊH\Ô)H‰ßH5I´èFðÿÿ…ÀˆvH
ŽËH/Ô)H‰ßH5)´è!ðÿÿ…ÀˆQH
ùËHÔ)H‰ßH5´èüïÿÿ…Àˆ,H
ÔËHÕÓ)H‰ßH5÷³è×ïÿÿ…ÀˆHÿuH‰ßèiÕÿÿH‹=ÊÉ)1Ò1öèÉ+I‰ÄH…À„¡H‹5®É)H‹=·Ô)H‰Âè·Ôÿÿ…ÀˆðIÿ$uL‰çè!ÕÿÿH‹=2Æ)1Ò1öè+I‰ÄH…À„pH‹5Æ)H‹=oÔ)H‰ÂèoÔÿÿ…Àˆ¸Iÿ$uL‰çèÙÔÿÿH‹=rÉ)1Ò1öè9+I‰ÄH…À„?H‹5ŽÉ)H‹='Ô)H‰Âè'Ôÿÿ…Àˆ}Iÿ$uL‰çè‘Ôÿÿ¿è×ÝÿÿI‰ÄH…À„H‹TÉ)1öL‰çHÿH‹EÉ)èàÙÿÿH‹=ñÈ)1ÒL‰æè¿*H‰ÅH…À„.Iÿ$uL‰çè5ÔÿÿH‹5É)H‰ïèÖ-I‰ÄH…À„H‹5óÈ)H‹=„Ó)H‰Âè„Óÿÿ…Àˆ÷Iÿ$uL‰çèîÓÿÿHÿMuH‰ïèàÓÿÿ¿è&ÝÿÿH‰ÅH…À„zH‹ÛÎ)1öH‰ïHÿH‹ÌÎ)è/ÙÿÿH‹=ØÇ)ºH‰îè*I‰ÄH…À„HÿMuH‰ïèÓÿÿH‹5’Î)L‰çè"-H‰ÃH…À„qH‹5wÎ)H‹=ÐÒ)H‰ÂèÐÒÿÿ…ÀˆcHÿuH‰ßè;ÓÿÿIÿ$uL‰çè-ÓÿÿHT$Ht$HÇD$HÇD$H|$HÇD$HÇD$ HÇD$(HÇD$0èCØÿÿH=g±è§ÓÿÿH‰ÅH…À„H5l±H‰ÇèÕÿÿHÿMH‰ÃuH‰ïè«ÒÿÿH…ÛuH‹_„'H5K±H‹8è×ÿÿé?H‹„'H9Ct,H‹„'H5ÐÉH‹8èØÖÿÿHÿ…H‰ßèWÒÿÿé1öH‰ßèˆÙÿÿHÿH‰ÆÑ)uH‰ßè4ÒÿÿH‹µÑ)H…ÀuH‹C'H5â°H‹8è‚ÖÿÿéÁÿ=	H‹‡Ñ)t&ÿº	H5wɉÁH‹†ƒ'H‹81ÀèœÚÿÿé‹ÿ˜ƒøH‹OÑ)w'ÿ˜º
H5‹É‰ÁH‹Jƒ'H‹81Àè`ÚÿÿëRÿA‰ŅÀuH‹*ƒ'H5«ÉH‹81Àè9Úÿÿë+ƒøtH‹ƒ'H5¼ÉH‹81ÀèÚÿÿëH‹|$H…ÿu$ë,H‹̓'H‹8èýÓÿÿ…Àu`»á_½½éæHÿuè ÑÿÿHÇD$H‹|$H…ÿt
HÿuèÑÿÿHÇD$H‹|$H…ÿ„Hÿ…üèÞÐÿÿéòº½¾á_H=«¯H
	¬è¼*HT$0Ht$(H|$ è¸#…Àx>H‹5Ϳ)H‹=öÍ)1ÒèÖÿÿH‰ÃH…Àt-H‰Ç蟧Hÿu,H‰߽¿»`èhÐÿÿë"»û_½¾ë»`½¿ë
»`½¿H‹|$H‹T$H‹t$èPÖÿÿH‹|$ H…ÿt
HÿuèÐÿÿH‹|$(H…ÿt
HÿuèÐÿÿH‹|$0H…ÿ„³Hÿ…ªèìÏÿÿé H‹Î)òèçÎÿÿI‰ÄH…À„’H‹Î)H‹5ÅÃ)L‰âH‹¸è.Ïÿÿ…ÀˆÑ
Iÿ$uL‰çè˜ÏÿÿH‹=ÑÍ)èœ×ÿÿH‹=]Ä)è°(I‰ÄH…À„RH‹5EÇ)H‰ÇèÕÙÿÿI‰ÆH…À„‘
Iÿ$uL‰çèKÏÿÿH‹=Ä)L‰5ſ)èh(H‰ÅH…À„!H‹5ýÆ)H‰ÇèÙÿÿH‰ÃH…À„&HÿMuH‰ïèÏÿÿH‹=ÔÃ)H‰u¿)è (I‰ÄH…À„ðH‹5ýÅ)H‰ÇèEÙÿÿI‰ÆH…À„
Iÿ$uL‰çè»ÎÿÿH‹=ŒÃ)L‰5%¿)èØ'H‰ÅH…À„¿H‹5mÆ)H‰ÇèýØÿÿH‰ÃH…À„­
HÿMuH‰ïèsÎÿÿH‹=DÃ)H‰վ)è'I‰ÄH…À„ŽH‹5%Æ)H‰ÇèµØÿÿI‰ÆH…À„‹	Iÿ$uL‰çè+ÎÿÿH‹œÂ)1öH=˺)L‰5|¾)è¯×ÿÿH‰ÅH…À„TH‹5¼Æ)H‹=mÍ)H‰ÂèmÍÿÿ…Àˆ(
HÿMuH‰ïè×Íÿÿè²ÐÿÿH‰ÅH…À„.H‹7Á)H‹5ÀÉ)H‰Çè0Íÿÿ…Àˆ
H‹À)H‹5‚É)H‰ïèÍÿÿ…Àˆõ	H‹ƒÄ)H‹5Ê)H‰ïèôÌÿÿ…Àˆè	H‹íÆ)H‹5.Ê)H‰ïèÖÌÿÿ…ÀˆÛ	H‹Æ)H‹5Ê)H‰ïè¸Ìÿÿ…ÀˆÎ	H‹‰¾)H‹5âÈ)H‰ïèšÌÿÿ…ÀˆÁ	H‹c¿)H‹5ÜÈ)H‰ïè|Ìÿÿ…Àˆ´	H‹ÕÁ)H‹5É)H‰ïè^Ìÿÿ…Àˆ§	H‹7¿)H‹5¨È)H‰ïè@Ìÿÿ…Àˆš	H‹YÄ)H‹5RÉ)H‰ïè"Ìÿÿ…Àˆ	H‹‹Ä)H‹5<É)H‰ïèÌÿÿ…Àˆ€	H‹eÁ)H‹5¦È)H‰ïèæËÿÿ…Àˆs	H‹§Å)H‹5É)H‰ïèÈËÿÿ…Àˆf	H‹1Á)H‹5rÈ)H‰ïèªËÿÿ…ÀˆY	H‹“¾)H‹5È)H‰ïèŒËÿÿ…ÀˆL	H‹M¾)H‹5ÆÇ)H‰ïènËÿÿ…Àˆ?	H‹½)H‹5Ç)H‰ïèPËÿÿ…Àˆ2	H‹ù¿)H‹5âÇ)H‰ïè2Ëÿÿ…Àˆ%	H‹³¼)H‹5DÇ)H‰ïèËÿÿ…Àˆ	H‹…¿)H‹5ŽÇ)H‰ïèöÊÿÿ…Àˆ	H‹÷Á)H‹5àÇ)H‰ïèØÊÿÿ…ÀˆþH‹¹Â)H‹5ÚÇ)H‰ïèºÊÿÿ…ÀˆñH‹kÁ)H‹5œÇ)H‰ïèœÊÿÿ…ÀˆäH‹EÁ)H‹5vÇ)H‰ïè~Êÿÿ…Àˆ×H‹O¾)H‹5èÆ)H‰ïè`Êÿÿ…ÀˆÊH‹¼)H‹5zÆ)H‰ïèBÊÿÿ…Àˆ½H‹S¼)H‹5tÆ)H‰ïè$Êÿÿ…Àˆ°H‹EÄ)H‹5fÇ)H‰ïèÊÿÿ…Àˆ£H‹·¿)H‹5¸Æ)H‰ïèèÉÿÿ…Àˆ–H‹i¾)H‹5jÆ)H‰ïèÊÉÿÿ…Àˆ‰H‹+»)H‹5ÔÅ)H‰ïè¬Éÿÿ…Àˆ|H‹­Á)H‹5¶Æ)H‰ïèŽÉÿÿ…ÀˆoH‹_Á)H‹5ˆÆ)H‰ïèpÉÿÿ…ÀˆbH‹À)H‹5BÆ)H‰ïèRÉÿÿ…ÀˆUH‹C¿)H‹5Æ)H‰ïè4Éÿÿ…ÀˆHH‹5¿)H‹5þÅ)H‰ïèÉÿÿ…Àˆ;H‹¿)H‹5ØÅ)H‰ïèøÈÿÿ…Àˆ.H‹éÁ)H‹5Æ)H‰ïèÚÈÿÿ…Àˆ!H‹û»)H‹5<Å)H‰ïè¼Èÿÿ…ÀˆH‹U½)H‹5FÅ)H‰ïèžÈÿÿ…ÀˆH‹5Ǻ)H‹=€È)H‰êè€Èÿÿ…ÀˆñHÿMuH‰ïèêÈÿÿ1ÒH5קH=©è…ÊÿÿH‰ÅH…À„B
H‹úÆ)H‹5s¼)H‰êH‹¸è,Èÿÿ…Àˆ«HÿMuH‰ïè–ÈÿÿH‹=ÇÆ)èšÐÿÿH‹5#·)H‹=¬Æ)1ÒèeÎÿÿH…À„ü	H‹=}Æ)H‰vÆ)HÿuèTÈÿÿH‹5å¶)H‹=vÆ)1Òè/ÎÿÿH…À„Ý	H‹=?Æ)H‰8Æ)HÿuèÈÿÿH‹5§¶)H‹=@Æ)1ÒèùÍÿÿH…À„¾	H‹=Æ)H‰úÅ)HÿuèèÇÿÿH‹5i¶)H‹=
Æ)1ÒèÃÍÿÿH…À„Ÿ	H‹=ÃÅ)H‰¼Å)Hÿuè²ÇÿÿH‹5+¶)H‹=ÔÅ)1ÒèÍÿÿH…À„€	H‹=…Å)H‰~Å)Hÿuè|ÇÿÿÇbÅ)Hû´)èæÇÿÿH‰ï´)èÚÇÿÿH‰ë´)èÎÇÿÿH‰ç´)èÂÇÿÿH‰ã´)è¶ÇÿÿH‰ߴ)èªÇÿÿH‰۴)èžÇÿÿH‰״)è’Çÿÿ¹H‰Þ1ÒH‰ɴ)H=ªÄ)ó¥H5ç¥H=Z©è•ÈÿÿH‰ÅH…À„ÜH‹úÄ)H‹5ƒº)H‰êH‹¸è<Æÿÿ…ÀˆÏHÿMuH‰ïè¦ÆÿÿH‹=ÇÄ)èªÎÿÿ1ÒH5‡¥H=ú¨è5ÈÿÿH‰ÅH…À„“H‹’Ä)H‹5#º)H‰êH‹¸èÜÅÿÿ…ÀˆƒHÿMuH‰ïèFÆÿÿH‹=_Ä)èJÎÿÿH‹ÓÀ)1öH=º²)èÅÏÿÿH‰ÅH…À„JH‹5ª¹)H‹=ƒÅ)H‰ÂèƒÅÿÿ…Àˆ>HÿM…›H‰ïèéÅÿÿéŽHÿ…H‰ßL%՞»§žA½èÁÅÿÿHƒ=9Å)tAHƒ='Å)tL‰áD‰êH=²¤‰Þè™H‹=Å)H…ÿt7HÿHÇÿÄ)u'èxÅÿÿë èqÎÿÿH…ÀuH‹Ux'H5p¤H‹8èÆÉÿÿH‹ÏÄ)HÄ[]A\A]A^û·žA½錻ÞA½ë»ϞA½
ërE1ö»ޞA½ëbI‰î»ãžA½ëRE1ö»öžA½ëBI‰ÞA½»øžë2»ŸA½oë%»ŸA½›ë»;ŸA½jë»[ŸA½Iÿ$uL‰çè•ÄÿÿL%’M…ö„ÄþÿÿIÿ…»þÿÿL‰÷ètÄÿÿé®þÿÿHÿ…¿H‰ßL%`»¨žA½èLÄÿÿé†þÿÿ‰ÞH
†Ÿ‰ê»ŸH=£L%-A½èéXþÿÿ»ážL%A½éQ»óžL%úœA½é:»+ŸL%ãœA½5é#»KŸL%̜A½eé»kŸL%µœA½èéõ»uŸL%žœéä»vŸL%œéÓ»wŸL%|œé»xŸL%kœé±»yŸL%Zœé »zŸL%Iœé»{ŸL%8œé~»|ŸL%'œém»}ŸL%œé\»~ŸL%œéK»ŸL%ô›é:»€ŸL%ã›é)»ŸL%қ黂ŸL%[黃ŸL%°›éö»„ŸL%Ÿ›éå»…ŸL%Ž›éÔ»†ŸL%}›éû‡ŸL%l›é²»ˆŸL%[›é¡»‰ŸL%J›é»ŠŸL%9›é»‹ŸL%(›én»ŒŸL%›é]»ŸL%›éL»ŽŸL%õšé;»ŸL%äšé*»ŸL%Ӛ黑ŸL%šé»’ŸL%±šé÷»“ŸL% šéæ»”ŸL%šéÕ»•ŸL%~šéÄ»–ŸL%mšé³»—ŸL%\š颻˜ŸL%Kš鑻™ŸL%:š逻šŸL%)šër»›ŸL%šëd»œŸL%
šëV»ŸL%ÿ™ëH»©ŸL%®™A½Ñë4» L%š™A½%ë »# L%†™A½ãë». L%r™I‰îé$üÿÿ»ZžL%¡™A½éÑúÿÿ»^žL%Š™A½éºúÿÿ»_žL%s™A½é£úÿÿ»`žL%\™A½éŒúÿÿ»„žL%E™A½éuúÿÿ»†žL%.™A½é^úÿÿ»ˆžL%™A½éGúÿÿ»ŠžL%™A½é0úÿÿ»ŒžL%é˜A½éúÿÿ»—žL%ҘA½éúÿÿ» žL%»˜A½éëùÿÿ»µžL%¤˜A½éÔùÿÿ»^L%˜A½é½ùÿÿ»͞L%v˜A½
é¦ùÿÿ»ٞL%_˜A½éùÿÿ»îžL%H˜A½éxùÿÿ»ŸL%1˜A½oéaùÿÿ»ŸL%˜A½›éJùÿÿ»)ŸL%˜A½5é3ùÿÿ»9ŸL%ì—A½jéùÿÿ»IŸL%՗A½eéùÿÿ»YŸL%¾—A½éîøÿÿ»iŸL%§—A½èé×øÿÿ»sŸL%—鯸ÿÿ»§ŸL%<—A½Ñ靸ÿÿ»´ŸL%%—A½阸ÿÿ»ŸL%—A½選ÿÿ»ПL%÷–A½ éjøÿÿ»ޟL%à–A½#éSøÿÿ»ìŸL%ɖA½$é<øÿÿ» L%²–A½%é%øÿÿ»! L%›–A½ãéøÿÿ», L%„–éý÷ÿÿ»§žL%¶–A½éæ÷ÿÿ»¨žL%Ÿ–A½éÏ÷ÿÿ»ŽžL%ˆ–A½é¸÷ÿÿHƒìH‹}o'H…ÀtÿÐHƒÄÐH=‘ª)HŠª)H9øtH‹Vn'H…Àt	ÿà€Ã€H=aª)H5Zª)H)þHÁþH‰ðHÁè?HÆHÑþtH‹ío'H…ÀtÿàfDÀ€=9ª)u/UHƒ=öo'H‰åtH=Êk'è-Çÿÿèhÿÿÿƪ)]ÀÀé{ÿÿÿf.„H‹G@H‹Ã„H‹GHƒH‹GËWt1Ò~
H‹‡€H‹Ãff.„‰òƒêx,HcҍFþHƒ|×H˜~ëo€HƒèHƒ|Ç\HcЅÀyí…öŽŸE1À1ÉHƒ•¸ëfDHƒÀHƒ|ÇDHcÐ9Æí1ÀAƒøÿuH÷Ù1ÀH9Èœ
D@CÃDH‹L×PH‰ÈHÁø?I‰ö~ÐHƒ~©1Ò@H‹D×PH‰ÊH÷ÚH‰ÆHÁþ?AƒøÿHDÊH‰ÂH÷ڃþÿHDÂH9Èœ
D@CøCÃH‹GPH‰ÆHÁþ?ëÕHƒìö‡²u31öÿ—8H…Àt!H‹—º)H‰PH‹”m'HƒH‰P H‰ØHƒÄÃH‹Ùm'1ÒH‹5€º)ÿ@뽄ATI‰ÔUH‰õSH‰ûH‹ H…ÿt	H‰ÖÿՅÀu!H‹»Ø1ÀH…ÿt[L‰æH‰è]A\ÿà€[]A\Ðf.„H‹G HƒH‹G ÃHƒìö‡²u#1öÿ—8H…ÀtH‹ßl'HƒH‰PHƒÄÃfH‹)m'1ÒH‹5й)ÿ@ëÍ„H‹H‰ðH…ÿtH‰Öÿà€1ÀÃDH‹G HƒH‹G ÃH‹‡@HƒH‹‡@Ãf.„A‰ðAƒèx_IcȉðHÁá9T|HE…À~K1öë€}2pA9ð~ D‰À)ðÑøðHcÈHÁá‹L9Ñ~ÞA‰ÀA9ðà9ʟ¶ÒÐÃÀ‹O1Àëã@¶Ç@€ÿs‡bHۙHc‚HÐÿàfH©Ã„H|‘ÄH	‘ÄHS‘ÄHҐÃ„H­Ã„H„Ã„…öHY‘H7HDÂÃ…öHǐH*‘HDÂÃ…öH·H‘HDÂÃH’ÃHÃ„H’Ã„HUÃ„H‰Ã„HkÃ„H	Ã„HãÃ„H¼Ã„H”Ã„H@Ã„H…ÿt;H…öt6H9÷„H‹OH‹VH9Ñt(€\Ht
1~\HtÐ1ÀH9Ñ”ÀÀ1ÀÃD·F\f9G\u΋GX;FXuÆATUS…À~7H‹_H9^…°Hÿ1Àëf„H‹TÇ HƒÀH;TÆ…ŒH9Áuç€\S¸t[]A\À¸Ã1^`9_`uäL‹gH‹nM…ätWH…ítÒI‹<$H‹uH…ÿtRH…ötÀI‹\$H9]uµ»èÿÿÿ…Àt§I‹<H‹tH…ÿt(H…ötI‹DHƒÃH;DøtÔ1Àë€1ÀH…í”Àésÿÿÿ1Û1ÀHƒ|”Àéaÿÿÿf.„UH‰ýSHƒìH‹i'H‹ H‹H‰] HƒÀH‰H…ÿt
Hƒ/„H‹H‹}(HƒÀH‰](H‰H…ÿt	Hƒ/tbH‹H‹}0HƒÀH‰]0H‰H…ÿtHƒ/t5H‹}XH…ÿtHÇEXHƒ/tHƒÄ1À[]ÃDè;¶ÿÿHƒÄ1À[]Ãfè+¶ÿÿëÄf„è¶ÿÿë—f„è¶ÿÿégÿÿÿfDAWAÿAVAUATUSHƒìH‹.D‰D$‰D$H…í~9I‰ýI‰öI‰×A‰Ì1ÛAƒüt:D‹D$‹L$IWL‰ïIvè±ÿÿÿHƒÃM/H9ÝuÕHƒÄ[]A\A]A^A_ÃfDI‹}‹D$H‹…ÀuHƒêH‰uÇèsµÿÿëHƒÂH‰ë¶€H‹©g'H‹WHƒH‰GH…ÒtHƒ*t
1ÀÀHƒìH‰×è,µÿÿ1ÀHƒÄÃDSH‰ûH‹H…ÿtHÇCHƒ/tH‹CH‰ß[H‹€Hÿà@èë´ÿÿëäf„UH‰ýSHƒìH‹ g'H‹ H‹H‰] HƒÀH‰H…ÿt	Hƒ/tCH‹H‹½ØHƒÀH‰ØH‰H…ÿtHƒ/tHƒÄ1À[]Àè{´ÿÿHƒÄ1À[]Ãfèk´ÿÿë¶f„SH‰ûH‹ H…ÿtHÇC Hƒ/tEH‹»ØH…ÿtHǃØHƒ/tH‹CH‰ß[H‹€Hÿà€è´ÿÿëáf„èû³ÿÿë´f„HƒìI‰øL‹O‹w@¾Dè9úÿÿH‹Re'H‹:M…ÉtBI‹1H‹L‹H‹L9Æt;I‹QðL‹NH‰ÁH5;…1ÀH‹L‹L‰ÒHƒÄéO¼ÿÿ€H͊L‹I‰ÁI‰ÐL‰Ñ1ÀH5ȄHƒÄé¼ÿÿDf.„H‹¾‰Ѓè0<	w3Hq¾IBЍQЀú	wfD€HƒÆDAоQЀú	vêH‰7ÃHƒìH‹ƒd'H5ԄH‹81À費ÿÿ¸ÿÿÿÿHƒÄÄU1ÀH‰ý¿SHƒìè»ÿÿH…ÀtFH‰Ã1ÒH‰ÆH‰ï覸ÿÿHƒ+tHƒÄ[]Ãf„H‰ßH‰D$蓲ÿÿH‹D$HƒÄ[]ÀHƒÄ1À[]ÀSH‰ûHƒì H|$HT$Ht$褷ÿÿHƒH‹=™d'H9{ …ÿH9{X„=H‹{8H…ÿtI‹°)…Ò~:H‹
˯)H9Ï„â¸L®¯)ë@HƒÀI‹ÀH9Ï„ÇHcð9Âèèó³ÿÿHƒ+H‹|$H‹T$H‹t$諵ÿÿH‹{ H…ÿtHÇC Hƒ/tdH‹{(H…ÿtHÇC(Hƒ/t=H‹{0H…ÿtHÇC0Hƒ/tH‹CH‰ßÿHHƒÄ [Ãèk±ÿÿëãf„è[±ÿÿë¼f„èK±ÿÿë•f„H{PèWµÿÿéýþÿÿf1öfDƒê‰¯)9ò„4ÿÿÿH.)HcÒH‹<ÐH‰<ðH‰Ðéÿÿÿ@Hƒ/HÇCX…±þÿÿèá°ÿÿé§þÿÿff.„UH‰ýH‰÷SHƒìè߹ÿÿH…ÀtJH‰ÃH‹EH‰ïH‰ÞH‹@xÿPHƒ+tHƒÄ[]Ãf„H‰ßH‰D$胰ÿÿH‹D$HƒÄ[]À1ÀëÌff.„ëŽ@f.„Hƒ:…Hƒz…L‹‡ˆM…À„›…ö~rFÿLÅ1Àë„L‹‡ˆM‹L‰DPHƒÀI9Áuç1ÀIÇÂÿÿÿÿfDL‹‡€M‹ÀL‰DÂL‹M‰ÐM…ÉtM‹ÁL‰„HƒÀ9ÆÍH‰:H‹GPH‰BH‹GHºðÁ	ÑtY1ÀÃfDA‰òL‹GhAƒêx5IcÂLcÎE‰ÒM)ÑHÁàNÍðÿÿÿL‰DPL‹€M¯HƒèI9Âuæ…öOÿÿÿë@Hƒ1ÀÃf„H‹©`'SH59H‰ÓH‹8膳ÿÿHǸÿÿÿÿHÇC[ÃAWAVI‰þAUI‰ÕATUSHƒì8H‹I‹D‹d$pL‹|$xH‰D$H‹H‰$Aƒü„†H…Û~kIAAƒì1íI‰ÖH‰D$ I@E‰åI‰üH‰D$HAH‰D$(HFH‰D$AWL‰òL‰çHƒÅAUL‹L$0L‹D$(H‹L$8H‹t$ ègÿÿÿLd$Lt$XZH9ëuÈHƒÄ8[]A\A]A^A_ÀH‹D$H…À~Hƒ<$~I9ÇtJ1íH…Û~ÍL‰éL‹d$L‹,$€L‰öH‰ÏL‰úHƒÅ螲ÿÿMæH‰ÁLéH9ëuàHƒÄ8[]A\A]A^A_ÐL9<$u°H‹$HƒÄ8H‰þL‰ïH¯Ó[]A\A]A^A_éY²ÿÿf„AWM‰ÏAVM‰ÆAUATI‰üUSHƒì(L‹*H‹ƒùt^H…Û~CAÿ1í‰D$HBH‰D$HFH‰D$‹L$H‹T$L‰çM‰ùH‹t$M‰ðHƒÅMìè›ÿÿÿH9ëuØHƒÄ([]A\A]A^A_ÀH…Û~å1íf„L‰çL‰òL‰þHƒÅ讱ÿÿMìH9ëuæHƒÄ([]A\A]A^A_ÀAWAVI‰þAUI‰õATI‰ÔUSHƒì(L|$Hl$H\$L‰úH‰îH‰ßè²ÿÿL‰úH‰îH‰ß螭ÿÿ詵ÿÿH…ÀutH‹t$H…ötH‹|$è@¶ÿÿ…Àx\H‹D$H…ÀtHƒH‹D$H…ÀtHƒH‹t$H…öt	HƒH‹t$H‹|$H‹T$I‰>I‰uI‰$èc²ÿÿHƒÄ(1À[]A\A]A^A_ÃfH‹|$IÇIÇEIÇ$H…ÿtHƒ/tYH‹|$H…ÿtHƒ/t9H‹|$H…ÿtHƒ/tHƒÄ(¸ÿÿÿÿ[]A\A]A^A_ÃDè˫ÿÿëàf„軫ÿÿëÀf„諫ÿÿë f„SH‰ûHƒì HT$Ht$H|$è԰ÿÿH‹ChHƒH…À„ƒH‹{ ÿÐH‹{@èIJÿÿHƒ+H‹|$H‹T$H‹t$è,¯ÿÿH‹{XH…ÿtHÇCXHƒ/t5H‹{`H…ÿtHÇC`Hƒ/tH‹CH‰ßÿHHƒÄ [Ãè«ÿÿëãèûªÿÿëÄf„‹Sp…Ò„xÿÿÿ‹CtH‹{ …Àu
èEªÿÿécÿÿÿ‹K8H‹SHE1ÀH‹s@è½ôÿÿH‹{ ëÝ€AWAVLvÿAUATUSHƒì(L‹l$`L9ò~HG(L‰óL‰L$M‰ÄH‰D$I¯ØHBÿH‰ÍH‰D$LËDH‹|$L‰öIƒîè'²ÿÿH‹L$H‰êL‰ïI¯ÄL<L‰þèܮÿÿH‰ÞH‰êL‰ÿèήÿÿH‰ßH‰êL‰îè.ÿÿL)ãL;t$u®H‹_\'HƒHƒÄ([]A\A]A^A_Ãff.„AUATUSH^ÿHƒìH9Ú=H‰ÍLg(LjÿfH‰Ú1ÉE1À1öL‰ç莬ÿÿH‹LÝHDÅH‹H‰H‰TÝHƒëL9ëuÐHƒÄ[]A\A]ÃDAVAUA‰ÕATI‰üUSH…ötuH‹=ö¨)H‰õè^©ÿÿI‰ÆH…À„Ñè=¬ÿÿH‰ÃH…À„ÀL‰çE‰èH‰éH‰ÂL‰öè}¨ÿÿI‰ÄHƒ+t[L‰à]A\A]A^ÄH‰ßè©ÿÿ[L‰à]A\A]A^Ã@1ÿèQ²ÿÿH‰ÅH…ÀthH‹=r¨)èݨÿÿI‰ÆH…ÀtEè+ÿÿH‰ÃH…Àt8L‰çE‰èH‰éH‰ÂL‰öè¨ÿÿHƒmI‰Äu€H‰ï貨ÿÿHƒ+…tÿÿÿë†fDHƒmuH‰ï葨ÿÿE1ä[]L‰àA\A]A^ÃfATI‰ÔUH‰õSH‰ûH‹ H…ÿt	H‰ÖÿՅÀuAH‹{(H…ÿt	L‰æÿՅÀu/H‹{0H…ÿt	L‰æÿՅÀuH‹{X1ÀH…ÿt[L‰æH‰è]A\ÿàfD[]A\Ðf.„ATI‰ÔUH‰õSH‰ûè~ÿÿÿ…ÀuH‹»@H…ÿt[L‰æH‰è]A\ÿàf[]A\Ðf.„UH‰ýSHƒìH…öt:H‰óHƒH‹} Hƒ/tH‰] HƒÄ1À[]Ã@蛧ÿÿH‰] HƒÄ1À[]ÃfDH‹ÑY'ëÀDf.„UH‰þH‰ýSHƒìH‹=ͦ)èȱÿÿH‰ÃH…ÀtHƒÄH‰Ø[]ÃfDH‹¡Y'H‰êH5œH‹81Àèå¯ÿÿëÓAVA‰ÖAUA‰õATUSL‹gH‰ûè6©ÿÿL‰çHSPHs‰ÅE‰ðD‰éèîðÿÿ[‰ï]A\A]A^é­ÿÿDf.„SH‰þH‰ûH‹=:¦)è¨ÿÿH…ÀtHƒ[Ãfè[©ÿÿH‰ß[é2ÿÿÿfHƒì藯ÿÿ1ÒH…Àu‰ÐHƒÄÃf„H‹©X'H‹8è1©ÿÿºÿÿÿÿ…ÀtØè©ÿÿ1ÒëÏDf.„UH‰õSHƒì貰ÿÿH‰ÃH…Àt
HƒÄH‰Ø[]ÃH‹éW'H‹8èá¨ÿÿ…ÀtãH‹Y'H‰êH5’~H‹81Àè®ÿÿëÆAWAVI‰þAUI‰ÍATU‰ÕS‰óHƒì8èS¬ÿÿI‰ąÛ…ÐA‰ï1ÛE…ÿ„ZL‹
ë¤)M…É„JD‹Ӥ)D‰úL‰ÏD‰Öè•ëÿÿA9ÂŽ,H˜HÁàIÁE;y…I‹HƒH‹ó¤)L‰ç1ÉH‰Þè®ÿÿI‰ÄH…À„"‰h0H‰Çèg®ÿÿHƒ+t1Iƒ,$tHƒÄ8[]A\A]A^A_ÃL‰çè0¥ÿÿHƒÄ8[]A\A]A^A_ÐH‰ßè¥ÿÿIƒ,$uÇë×€Hƒ=h¤)t{HT$(Ht$ H|$è:ªÿÿH‹5ž)H‹=D¤)èG¯ÿÿI‰ÇH…À„H‰Çèªÿÿ…ÀI‹…ÀHƒèI‰„H‹üV'H9­W'„¬H‹T$(H‹t$ H‹|$èc¨ÿÿA‰ßA÷ßE…ÿ…ªþÿÿ@L‰ïèè¥ÿÿI‰ÅH…À„ÿÿÿ…Û…4L‰÷è̥ÿÿI‰ÆM…ö„pH‹™£)HƒìE1À1ÉL‹
£)1Ò1ö1ÿAQUAVAUPPPPPèâ¨ÿÿHƒÄPH‰ÃI‹EHƒèI‰EH…À„öIƒ.„ÜH…Û„™þÿÿL‹£)E…ÿ„QþÿÿM…Ò„:D‹
ã¢)D‰úL‰×D‰Îè¥éÿÿLcèE9éŽ9IcÍHÁáLÑD;y„RD;
²¢)„%IcÁD‰ÊHÁàLÐóo@ðƒêHƒè@A9Õ|ëAƒÁD‰yH‰D‰
q¢)HƒéÆýÿÿ„Hƒ+…ìýÿÿH‰ßè.£ÿÿéßýÿÿf„L‰ö‰ÙH°{1ÀH=Á{èV¤ÿÿI‰ÆéµþÿÿfDHƒèI‰„ûH‹T$(H‹t$ H‹|$跦ÿÿéúüÿÿfIƒm…{ýÿÿL‰ï轢ÿÿénýÿÿ„è[¥ÿÿH‹üT'H‹5ś)H‹=þ¡)聩ÿÿH‹T$(H‹t$ H‹|$è]¦ÿÿé üÿÿ„D9
¡)…Eq@L‰×IcöHÁæè©ÿÿI‰ÂH…À„ÂüÿÿIcÍD‹
Z¡)H‰[¡)HÁáD‰5L¡)HÁE9ÍŒ”þÿÿé´þÿÿ€L‰÷è¢ÿÿéþÿÿL‰ïèø¡ÿÿéýýÿÿH‹AT'H‰ÐL‰ÿH‰T$H‰$èաÿÿH‹$H‹T$H9ЄØþÿÿH;ÌT'„ýÿÿH‰Çèî¦ÿÿ…À…»þÿÿé
ýÿÿH‹©T'H‹êS'몿èơÿÿH…À„ûûÿÿH¹@H‰” )H‰
… )D‰xH‰HƒéÓûÿÿDIÁåK*éàýÿÿH‹9H‰Hƒ/…±ûÿÿè.¡ÿÿé§ûÿÿf„ATUSHƒìH‹5ɚ)è|«ÿÿH…À„ËH‹5,š)H‰ÇH‰Åèa«ÿÿH‰ÃH…À„ÝHƒmtvH‹5?–)H‰ßè?«ÿÿH‰ÅH…À„ÓHƒ+tE¿蓧ÿÿH‰ÃH…À„×H‰h H‹=ä›)H‰ÆèԪÿÿH…À„ËHƒ+t-HƒÄ[]A\Ã@H‰ßèp ÿÿë±fDH‰ïè` ÿÿë€fDH‰ßH‰D$èK ÿÿH‹D$HƒÄ[]A\ÃDA¼yD‰æH
éxºhH=¤tèúÿÿHƒÄ1À[]A\Ã@A¼ƒyHƒmuÉH‰ïèóŸÿÿ뿐A¼†yHƒ+u²H‰ßèܟÿÿë¨f.„A¼‰yëÆ„A¼Žyë΄AWAVAUATUSHƒìH‹G(H;çQ'tHƒL‹g(HƒÄL‰à[]A\A]A^A_ÃH‹1)I‰ý1íH‹HƒÀH‰L‹§€HcWtM<ÔM9üsQI‹<$èe¨ÿÿI‰ÆH…À„ùH…ítHƒm„©L‰öH‰ßè¨ÿÿH…À„±Hƒ+toIƒÄL‰õH‰ÃM9çw²H‹HƒÀH‰I‹}(Hƒ/„ØI‰](H‹HBH‰M‹e(fDH‰H…ÒtxH…í„2ÿÿÿHƒm…'ÿÿÿH‰ï謞ÿÿéÿÿÿ€H‰ßH‰D$蓞ÿÿH‹D$ézÿÿÿf„H‰ïèxžÿÿL‰öH‰ßè]§ÿÿH…À…OÿÿÿL‰õ¾gxºWëDH‰ßèHžÿÿé{ÿÿÿ¾[xºVH
ðvH=ØrE1äè øÿÿH‹HPÿéDÿÿÿ@èžÿÿéÿÿÿfDATH‹5‡)UH‰ýSè]¨ÿÿH…À„|H‹}hH‰Ãèø¦ÿÿH‰ÅH…À„¼H‰ÆH‰ßè¥ÿÿI‰ÄH‹M…ät~HPÿH‰H…Òt*HƒmtL‰à[]A\ÃH‰ï萝ÿÿL‰à[]A\ÄH‰ßèxÿÿHƒmuÎë×€A¼öwD‰æºOE1äH
vH=!rèD÷ÿÿL‰à[]A\Ã@HƒèH‰t?HƒmA¼úwuÀH‰ïèÿÿë¶„Hƒ+A¼øwu¢H‰ßèüœÿÿë˜f.„H‰ßèèœÿÿë·fDHƒìH‹hèó¥ÿÿH…ÀtHƒÄÃf„ºKH
uu¾µwH‰D$H=«qèžöÿÿH‹D$ëÉ€HƒìHctècÿÿH…ÀtHƒÄÃf„ºGH
%u¾vwH‰D$H=‹qèNöÿÿH‹D$ëÉ€AUATUSH‰ûHƒìHƒ¿„¥1ÿèn¥ÿÿI‰ÄH…À„RH‹«HcCtLlÅL9ís=H‹}è¥ÿÿH‰ÃH…À„¸H‰ÆL‰ç蝡ÿÿ…ÀH‹…ÚHƒèH‰t9HƒÅI9íwÃL‰çèؠÿÿH…À„_Iƒ,$„ôHƒÄ[]A\A]Ãf„H‰ß舛ÿÿë½fDHctèWœÿÿH‰ÃH…À„ÛH‹=4Š)H‰Æ謢ÿÿH…À„ÓHƒ+u©H‰ßH‰D$è@›ÿÿH‹D$ë•f„½0wIƒ,$ºCtI‰îH
×sH=opè
õÿÿHƒÄ1À[]A\A]ÃDHƒè½2wH‰u¿H‰ßèâšÿÿIƒ,$ºCu·L‰ç‰T$èʚÿÿ‹T$ë¥@ºC½*wë•@L‰çH‰D$裚ÿÿH‹D$éõþÿÿf„ºA½wébÿÿÿHƒ+ºA½w…MÿÿÿH‰߉T$è`šÿÿ‹T$é8ÿÿÿ€½5wéÿÿÿfDAUATUSH‰û1ÿHƒìè|£ÿÿH…À„óI‰ÄH‹«€HcCtLlÅL9ís3H‹}è"£ÿÿH‰ÃH…ÀtbH‰ÆL‰ç诟ÿÿ…À…Hƒ+t9HƒÅI9íwÍL‰çèðžÿÿH…À„§Iƒ,$uXL‰çH‰D$賙ÿÿH‹D$ëD@H‰ß蠙ÿÿë½fDIƒ,$½HvuL‰ç脙ÿÿH
>rº4‰îH=ÿnèjóÿÿ1ÀHƒÄ[]A\A]ÃDIƒ,$uL‰çèI™ÿÿHƒ+½JvuºH‰ßè6™ÿÿë°@½Bvë¥f„Iƒ,$½Mvuë†fAWAVI‰þAUI‰õ1öATUSH‰Ó1ÒHƒìH‹=æŠ)èYïÿÿH‰ÅH…À„ýH‹CH‹5)H‰ïö€³„úè-£ÿÿI‰ÇH…À„I‹~xèȢÿÿI‰ÄH…À„q¿èrŸÿÿI‰ÆH…À„L‰` H‹óI'H9C…EHƒH‰ÞL‰÷èbžÿÿI‰ÄH…À„Iƒ.„ÔHƒ+„Ú1ÒL‰æL‰ÿè%žÿÿH‰ÃH…À„ Iƒ/„×Iƒ,$„¼H‹CH;¡I'„ÂH‹ìH'L‹5EJ'H‹:L9ó…H5ËpL‰óèJœÿÿº¾ñsé÷è3¢ÿÿI‰ÄH…À„I‹~xèΡÿÿI‰ÇH…À„¿èxžÿÿI‰ÆH…À„BL‰x 1ÒH‰ÆL‰çHƒH‰X(ècÿÿH‰ÃH…À„0Iƒ.„ÕIƒ,$„ºH‹CH;ßH'…³L‹5ŠI'L9ó„>HƒH‰ßè5šÿÿH‰ßI‰Ä誛ÿÿ1ÒII9Ìs€A¶HƒÂAˆLÿH9ÐuíHƒ+„3IƒHƒmt3L‰õHƒ+tHƒÄH‰è[]A\A]A^A_ÃDH‰ß踖ÿÿëßfDE1öH‰ïL‰õ袖ÿÿH…ÛuÀëÄL‰ç萖ÿÿé9ÿÿÿL‰÷耖ÿÿéÿÿÿL‰÷èp–ÿÿéþÿÿH‰ßè`–ÿÿéþÿÿL‰çèP–ÿÿé7þÿÿL‰ÿè@–ÿÿéþÿÿI‹A½sÇD$þHƒèI‰„Hƒ+„ÛM…öt
Iƒ.„E1ÿM…ätIƒ,$t]M…ÿtIƒ/tB‹T$H
 nD‰î1ÛH=“kèÎïÿÿHƒm„ÿÿÿ1íéÿÿÿ@H‰ß谕ÿÿéÀþÿÿL‰ÿ蠕ÿÿë´fDL‰ç萕ÿÿë™H‹wF'L‹5ÐG'H‹:L9ó„‹ýÿÿH‹H Hçt1ÀH5.nA½ásèžÿÿÇD$Hƒ+…YÿÿÿE1öE1äDH‰ßè0•ÿÿéÿÿÿÇD$þE1öA½‡sIƒ/…ýþÿÿ1ÛL‰ÿè•ÿÿH…Û…àþÿÿéåþÿÿ„L‰÷èè”ÿÿéßþÿÿ1ۺø¾nsH
ŽmH=†jèÁîÿÿH…í„þÿÿéåþÿÿ1ۺ¾®sëÎf1ۺþ¾…së¾A½°sÇD$éƒþÿÿ€Iƒ/„ÑIƒ,$…³L‰ãA½‰sE1äÇD$þéÿÿÿA½ÑsÇD$éÿÿÿM‰÷A½Üsë H‰ß褝ÿÿI‰ÄH…ÀudA½ŽsÇD$þéïþÿÿE1öA½”sÇD$þéÙþÿÿH‹ÜD'H‹8éûûÿÿH‹H HWs1ÀH5žlA½˜s腜ÿÿÇD$þékþÿÿH‰ÃéCûÿÿA½‰sÇD$þé³ýÿÿL‰ãA½‰sE1äÇD$þévþÿÿ@HƒìH‹‡PH‰ñH…ÀtH‰ÖH‰ÏÿЅÀt1H‹ªE'HƒHƒÄÐè;úÿÿH…Àt>Hƒ(ußH‰Çè8“ÿÿëÕfD¾ï…ºÛH
àkH=ièíÿÿ1Àë¹€¾†ºÝëÖff.„UH‰ÕSH‰ûHƒìH‹GÿH…ÀtAH‹KH‰êH‰ÆH‰ßÿQ0H…ÀtTHƒ(tH‹E'HƒHƒÄ[]Ã@H‰Ç蠒ÿÿëàfD¾
rºâH
HkH=¸hè{ìÿÿHƒÄ1À[]Ãf¾rºãëÖ@HƒìH‹GÿH…Àt	HƒÄÃ@ºßH
ýj¾fH‰D$H=“hè&ìÿÿH‹D$ëÎDf.„UH‰õSHƒìH‹5Ї)èkœÿÿH…ÀtvH‰îH‰ÇH‰ÃèXœÿÿH…Àt3Hƒ+t
HƒÄ[]ÃfDH‰ßH‰D$èÑÿÿH‹D$HƒÄ[]ÀHƒ+¾Qgt5H
_jºêH="hèëÿÿHƒÄ1À[]Ã@¾OgëÔf„H‰߉t$èd‘ÿÿ‹t$ë¹@f.„é;ÿÿÿf.„UH‰õSHƒìH‹5‡)蛛ÿÿH…ÀtvH‰îH‰ÇH‰Ãèx’ÿÿH…Àt3Hƒ+t
HƒÄ[]ÃfDH‰ßH‰D$èóÿÿH‹D$HƒÄ[]ÀHƒ+¾•gt5H
iºíH=zgè½êÿÿHƒÄ1À[]Ã@¾“gëÔf„H‰߉t$蔐ÿÿ‹t$ë¹@f.„AWAVAUI‰ý¿ATUSHƒì赙ÿÿH‰ÃH…À„AH‹ò‡)1öH‰ßHƒH‹â‡)轕ÿÿH‹=V„)ºH‰Þè™æÿÿH‰ÅH…À„-Hƒ+„[H‹5¬‡)H‰ïè´éÿÿI‰ÄH…À„PHƒ8„Hƒm„H‹5„‰)L‰ïèDšÿÿH‰ÅH…À„8H‹5‚)H‰Çè)šÿÿH‰ÃH…À„EHƒm„
H‹5;‰)H‰ßèóÿÿH‰ÅH…À„7Hƒ+„õ¿èS–ÿÿI‰ÆH…À„ïH‰h H‹5‰)L‰ïèęÿÿH‰ÅH…À„H‹5)H‰Ç詙ÿÿI‰ÅH…À„
Hƒm„ú¿èø•ÿÿH‰ÃH…À„Iƒ$L‰` L‰p(L‰h0Iƒ,$tLHƒÄH‰Ø[]A\A]A^A_ÃfH‰ïè؎ÿÿéðþÿÿH‰ÇèȎÿÿHƒm…ÚþÿÿëÛH‰ß谎ÿÿé˜þÿÿL‰ç蠎ÿÿëªfDH‰ï萎ÿÿééþÿÿH‰ß耎ÿÿéþþÿÿA¾A¿~Hƒmt-H
bgD‰òD‰þ1ÛH=/eèJèÿÿM…ä…FÿÿÿéHÿÿÿ@H‰ïè0ŽÿÿëÉfDH‰ïè ŽÿÿéùþÿÿH
gºŒ¾_H=àdèûçÿÿéÿÿÿfDE1äA¿dA¾ŒHƒ+…rÿÿÿE1íH‰ßè̍ÿÿM…í„^ÿÿÿIƒm…SÿÿÿL‰ï谍ÿÿéFÿÿÿA¾ŒA¿gé+ÿÿÿ€H
fº¾v1ÛH=Vdèqçÿÿéqþÿÿ@A¾A¿xéëþÿÿ€A¿{A¾é^ÿÿÿ€L‰óA¿ƒA¾éCÿÿÿ@Iƒ.tEA¾A¿…éþÿÿf„Iƒ.uL‰óA¿ˆA¾éÿÿÿA¾A¿ˆéÿÿÿL‰÷A¿…A¾èLÿÿéPþÿÿff.„UH‰õSHƒìH‹5H†)è—ÿÿH…À„šH‹5Ë~)H‰êH‰ÇH‰Ãèm“ÿÿ…ÀH‹x.HƒèH‰tH‹¶>'HƒHƒÄ[]ÃH‰ßèPŒÿÿëáfDHƒè¾H‰t*H
7eº‰H=7cè"æÿÿHƒÄ1À[]Ãf„H‰߉t$èŒÿÿ‹t$ëÄfD¾뷐SHƒìH‹5Œ…)èO–ÿÿH…ÀtzH‹5~)H‰ÇH‰Ãè8–ÿÿH…Àt3Hƒ+t
HƒÄ[ÀH‰ßH‰D$裋ÿÿH‹D$HƒÄ[ÄHƒ+¾Ýt5H
‚dº†H=²bèmåÿÿHƒÄ1À[ÃD¾ÛëÔf„H‰߉t$èD‹ÿÿ‹t$ë¹@f.„AUATUH‰ýSHƒìH‹5L„)臕ÿÿH…À„H‹5o€)H‰ÇH‰Ãèl•ÿÿI‰ÄH‹M…ä„-HƒèH‰„H‹5„)H‰ïèA•ÿÿH‰ÅH…À„EH‹5îƒ)H‰Çè&•ÿÿH‰ÃH…À„bHƒm„ÇH‹5€)H‰ßè•ÿÿH‰ÅH…À„THƒ+„ÚH‹=û„)H‰îèkÿÿH‰ÃH…À„?Hƒm„ÄH‹5̈́)H‰ßèEÿÿH‰ÅH…À„¹Hƒ+„H‰îL‰ç褒ÿÿH‰ÃH…À„Hƒm„Iƒ,$„êH‹I‰ÜHPH‰H‰H…Àt5HƒÄL‰à[]A\A]ÀH‰ïèЉÿÿé,ÿÿÿH‰ßè	ÿÿéÛþÿÿH‰ß谉ÿÿHƒÄL‰à[]A\A]ÃfH‰ß蘉ÿÿéÿÿÿH‰ï舉ÿÿé/ÿÿÿ½ŠHƒ+…hA½H‰ßèc‰ÿÿH
`bD‰ê‰îH=À`èKãÿÿM…ä„UÿÿÿI‹$L‰ãE1äHƒèé:ÿÿÿ€H‰ßè ‰ÿÿéìþÿÿL‰çè‰ÿÿé	ÿÿÿH‰ïè‰ÿÿéîþÿÿH
õaº€¾pE1äH=M`èØâÿÿHƒÄL‰à[]A\A]Ãf.„Hƒè½rA½€H‰„=ÿÿÿH
¥aº€¾rH=`è‹âÿÿé™þÿÿfD»‰޺L‰ãH
kaH=Ð_è[âÿÿI‹$E1äHƒèéVþÿÿ»HƒmuÄH‰ïè4ˆÿÿëºf½„é«þÿÿfD»‡ëÖf„»ëÆH
aº‰îH=d_èïáÿÿé¨þÿÿf.„ATUSHƒìH…Ò„ÁI‰ôH‹5•})H‰Õè-’ÿÿH‰ÃH…À„H‰êL‰æH‰ÇèSÿÿ…ÀH‹x4HPÿ1íH‰H…ÒtHƒÄ‰è[]A\ÃH‰ßèx‡ÿÿHƒÄ‰è[]A\ÃDHƒè¾×gH‰t:H
`ºð½ÿÿÿÿH=â^è=áÿÿHƒÄ‰è[]A\Ãf¾ÕgëÏf„H‰߉t$è‡ÿÿ‹t$ë´H‹GH5Ë^½ÿÿÿÿH‹P H‹8'H‹81À詏ÿÿéVÿÿÿ@ATI‰ôUH‰ýS衈ÿÿH‰ÃH…Àt	H‰Ø[]A\ÐH‹y8'H‹8èq‰ÿÿ…ÀtäèX‰ÿÿ[L‰æH‰ï]A\é‰ôÿÿf„GÁ<4wiH
¢h¶ÀHcHÈÿàfD¸Ãf.„¸Ãf.„¸Ãf.„¸Ãf.„¸Ãf.„HƒìH‹•7'@¾×H5^H‹81Àèÿÿ1ÀHƒÄÃf„¶wD1À@„ö„ÁAWAVAUATUSH‰ûHƒì(H‹GH‹H‹:Hƒ„‹‹WX@€þs„–@€þp„ŒD¶CG1ÉE„À„ A¾…Ò~'ƒêHOA¾HT× „L¯1HƒÁH9ÊuóÆCGHÇC0VK{@€ú4‡hH
5h¶ÒHc‘HÊÿâDA¾ëфÀƒúH‹K0A”ÀDˆCGH‹H‹:H‹WH9Ñ…¤‹WX¹éLÿÿÿf„@ˆt$INÿL%liH‰L$L-Œh@H‹(¶CF@¾փî?H‹M<@„þ<^„ö@€þ4‡T@¶öIctµLîÿæfDA¿f.„H‹Q¶A\L9ú„W<C„a<Ht€|$H…ˆL9ú…H‹CH‹S H‹MHHH9Ê…†LúM…öt	L¯|$LúHƒk0H‰S H9Ý„H‹CHUH‰H‹EH…À„Ó€x\Su1H‹HHƒ9„H‹SH‹u(H‹BHzH‰{H‰JH‹SHðH‰BHƒ{0„ÀH‹C‹{@¶sDéÙþÿÿf„A¿f.„<@…ÿÿÿ¾{DH‰L$èÚüÿÿH‰ÇH…À„ÖH‹s 1ÒH‹L$H‰ðH÷÷H…Òt
HþH)ÖH‰s Hƒ{8…Ãþÿÿ¾{DH‰L$è•üÿÿH‹L$H‰C8H‹Q¶A\L9ú…¬þÿÿ8D$„¿þÿÿ<C…ŸþÿÿHƒy„˜þÿÿH‹SH‹EHrHBH‰sH‹IH‰JH‹SH‰BéÿÿÿfƒÿMÿIƒçüIƒÇé=þÿÿDƒÿMÿIƒçøIƒÇé%þÿÿDA¿éþÿÿDA¿éþÿÿDH‹é3'H5ÚZH‰L$E1ÿH‹8è†ÿÿ¶CFH‹L$éÄþÿÿ@H‹¹3'H5*ZH‰L$E1ÿH‹81ÀèàŠÿÿ¶CFH‹L$é’þÿÿÆD$Ié-ýÿÿÆD$Hé#ýÿÿÆD$UéýÿÿƒÿɃáƒÁCˆL$éýÿÿH‹Y3'@¾ÖH5ÆYH‹81À脊ÿÿH‹C‹{@ÆD$¶sDéÔüÿÿ€@€þ4‡^ÿÿÿ@¶öIc4´LæÿæA¿éþÿÿDƒÿMÿIƒçðIƒÇ éíýÿÿDA¿éÝýÿÿDA¿éÍýÿÿDƒÿMÿIƒçøIƒÇéµýÿÿDƒÿMÿIƒçüIƒÇéýÿÿDH‹CHPðH‰SH‹hðH9Ý…üüÿÿ€Hƒ{0HÇCu)ÆCD1ÀÇC@HƒÄ([]A\A]A^A_ÃDH‰Õé´üÿÿH‰ßèÈÌÿÿHƒÄ(¸ÿÿÿÿ[]A\A]A^A_Ã@H5aYH‹2'H‹81ÀèH‰ÿÿHƒÄ(¸ÿÿÿÿ[]A\A]A^A_ÃH‹í1'H5¾XH‹81Àè‰ÿÿ¸ÿÿÿÿévÿÿÿH5sXë°f„AWAVI‰þAUATUH½>SH’eHƒì(HD$H‰t$H‰$¶€ú}‡¶ÂHcƒHØÿà„HƒÆIƒ~(H‰t$…L‰÷èäùÿÿƒøÿ„dI‹FH‹t$E1ÿLl$H‹¶H‹D‹`X„Ét~€ù)ty€ù w
¸HÓàH…èuåL‰ïè:Ìÿÿƒøÿ„E9ü~I‹VIcÏH‹H‹H‹TÊHcÈH9Ñ…cH‹t$¶€ù,t	€ù)…0€ù,uHFH‰D$¶NH‰ÆAƒÇ„Éu‚E9ü…©„É„XAÆFGIÇF(DHƒÆH‰t$¶€ú}†ïþÿÿH‹<$è—Ëÿÿƒøÿ„wH˜I‰F(H‹t$é¾þÿÿfDE1äL‰÷èÍøÿÿƒøÿ„MI‹F(H‹t$I‰F0A¶FEHƒÆAˆFF¶FÿE‰f@AˆFDH‰t$IÇF(élþÿÿ@E1äA8VDuªE9f@u¤A¶FEA8FFu™A€~Gu’HƒÆI‹F(IÇF(IF0H‰t$é)þÿÿf„A€~DtIƒ~„~L‰÷è&øÿÿƒøÿ„¦Iƒ~…bH‹D$HƒÄ([]A\A]A^A_ÃfDL‰÷èð÷ÿÿƒøÿ„pI‹F(IF A¶FEIÇF(IÇF0AˆFFH‹D$AÆFDHpH‰t$éŽýÿÿfDHƒÆL‰÷I‹^8H‰t$è“÷ÿÿƒøÿ„AÆFDH…Û„jÿÿÿI‹N 1ÒH‰ÈH÷óH…Ò„UÿÿÿHËH)ÓI‰^ éFÿÿÿ„HƒÆAÆFE=H‰t$éýÿÿDHFH‰D$¶VJš€ùv	€úd…ÊH‰ÆA¼é‡þÿÿ@HFM‹f(IÇF(H‰D$€~{M‹n8…öL‰÷èÝöÿÿƒøÿtaH‹D$AÆFDIÇF0HpIÇF8H‰t$M…ä„L‰÷E1ÿèQüÿÿH‰ÆH…Àt"IƒÇM9ü„ìH‹t$L‰÷è/üÿÿH‰ÆH…ÀuÞ1ÀHƒÄ([]A\A]A^A_ÃfDHFH‰D$¶H‰ÆAˆVEé(üÿÿ„H‹©-'H52UH‹8芀ÿÿ1ÀHƒÄ([]A\A]A^A_Ãf„HFH‰D$€~:tHƒÆDH‰t$H‰ðHƒÆ€~ÿ:uîHpH‰t$é¸ûÿÿ„H‹9-'H52UH‹8è€ÿÿ1ÀëŽfDL‰÷è¨Çÿÿ1ÀéyÿÿÿH‰t$M…í„rûÿÿM‰n8éiûÿÿI‹FD‰ùH5{UH‹H‹‹PXH‹Û,'H‹81Àè„ÿÿH…À…püÿÿ1ÀéÜþÿÿH‹¹,'ºZH5%SH‹81Àèãƒÿÿ1Àéÿÿÿ@H‹‘,'¾ÑH5çTH‹81À轃ÿÿ몉ÁH‹r,'H5›TH‹81À衃ÿÿëŽH‹X,'H5!TH‹8è9ÿÿ1ÀéªþÿÿH‹;,'H5ìTH‹8èÿÿ1ÀéþÿÿDSH‹GH‰ûL‹@ ö€³t+H‹Œ,'HåTL‰~H‹81ÀèË}ÿÿ‰ÂH‰؅Òu[ÃH‹I+'1É1ÒH5^UH‹81ÀèƒÿÿHƒ+t1À[Ãf.„H‰ßè(zÿÿ1Àëè@AWI‰×AVI‰þAUATUH‰õSHÎHƒìHHD$(L‰D$Ll$0H‰D$HD$8HÇD$(HÇD$0HÇD$8H‰D$@H‹T$H‹t$L‰éL‰÷èÃzÿÿ…À„	H‹H‹|$(H…Òt.H‰Øëf„HƒÀH‹H…ÒtH9:uïH‹T$0H)èI‰멐è{~ÿÿ…À„H‹H‹t$(H…ÀtVH‹8I‰ÜH9þt,èC{ÿÿ…Àˆ«tIƒÄI‹$H‹t$(H…Àt'H‹8H9÷u×L‰àH‹L$0H)èI‰Iƒ<$…=ÿÿÿH‹t$(H9Ýu(éŽfDèëzÿÿ…Àxg„ÂHƒÅH‹t$(H9ëtkH‹EH‹8H9÷u×H‹T$H‰ñH5øSH‹¡)'H‹81Àègÿÿ¸ÿÿÿÿHƒÄH[]A\A]A^A_Ã苁ÿÿH…À„IÿÿÿëÙè{ÿÿH…ÀuÏHƒÅH‹t$(H9ëu•H‰ñH‹T$H5ùS럀H‹9)'H‹T$H5µSH‹81Àèó€ÿÿHƒÄH¸ÿÿÿÿ[]A\A]A^A_ÃH‹t$(éNÿÿÿDAWAVAUATI‰ôUH‰ýSHƒì8L‹5E*'H‹^HÇD$HÇD$L‰t$ H…Ò…AHƒû„'Hƒû…H‹V0I‹D$(M‹L$ H‹ØHƒìHu(A¸H‹=“)'HƒH‰ÙAVjÿ5úq)ÿ5dh)jÿ54q)Pjÿ5Óq)ÿÍu)HƒÄPH…À„ÀHƒ+…šH‰ßH‰D$èAwÿÿH‹D$HƒÄ8[]A\A]A^A_ÃI‹\$„HƒûH1PH
!PHMȝÀHƒì¶ÀSHPL@H‹Ý''H5¶RL
kSH‹81Àè•ÿÿX¾"ZH
ËOºÖH=ËRè¶Ðÿÿ1ÀHƒÄ8[]A\A]A^A_ÃDL‰òéßþÿÿ„I‰ÕHƒû„;~iHƒûtHƒû…QÿÿÿH‹F0H‰D$ I‹D$(L‰ïH‰D$I‹D$ H‰D$è¼xÿÿI‰ÇHƒût`Hƒût{H…Ût4M…ÿL‹L$H‹D$H‹T$ élþÿÿH…Û…ïþÿÿH‰×èwxÿÿI‰ÇH‹5mp)L‰ïIƒïè±uÿÿH‰D$H…À„¶þÿÿH‹5¤o)L‰ïè”uÿÿH‰D$H…À„ÇIƒïM…ÿ~ŽH‹5Fh)L‰ïènuÿÿH…ÀtzH‰D$ IƒïécÿÿÿHƒ+t2ºüH
ŠN¾KH‰D$H=…QèpÏÿÿH‹D$é²þÿÿfDH‰ßH‰D$èSuÿÿH‹D$ëº@H‹F H‰×H‰D$è§wÿÿI‰ÇéLÿÿÿHT$H‰ÙL‰ïLANH5&)èñúÿÿ…À‰Úþÿÿ¾é1þÿÿHƒìH‹ä%'H
NH5¶PjL
iQA¸HôMH‹81Àè†}ÿÿY^¾éìýÿÿf.„AVAUATUH‰ýSHƒì L‹
re)L‹%ã&'H‹^L‰L$L‰d$H…Ò…DHƒû„2Hƒû„H…Û„H…ÛHqMI‰ØH
^MH%OHIÈHƒìH‹%%'IÁø?SI÷ÐH5öOH‹8L
¨PAƒà1ÀèÑ|ÿÿX¾ªZH
MºH=/PèòÍÿÿ1ÀHƒÄ []A\A]A^ÃL‰âH‹ØHƒìHu(H‹¯d)H‹=Ø%'A¸HƒH‹
'n)ATjQPjQH‰ÙPjÿ5Šf)ÿüq)H‹;HWÿHƒÄPH‰H…À„H…ÒuˆH‰ßH‰D$èksÿÿH‹D$HƒÄ []A\A]A^Ãf„H‹V(L‹N éfÿÿÿL‰âëïI‰ÕHƒû„ËHƒûtmH…Û…½þÿÿH‰×è„uÿÿI‰ÆH…À„L‹L$H‹T$éÿÿÿH…Ò„Ǻ/H
ßK¾ÓH‰D$H=OèÅÌÿÿH‹D$éËþÿÿH‹F(H‰×H‰D$H‹F H‰D$èuÿÿH…À~™HT$H‰ÙL‰ïLhMH5°)è[øÿÿ…À‰sÿÿÿ¾™é_þÿÿf„H‹F H‰×H‰D$è¿tÿÿI‰ÆM…öŽCÿÿÿH‹5Ìd)L‰ïèôqÿÿH…Àt–H‰D$IFÿë†@H‰ßH‰D$èrÿÿH‹D$é"ÿÿÿf„H‹5ñd)L‰ïè±qÿÿH…Àt©H‰D$Iƒî땐AVAUATI‰üUSHƒì0H‹²b)H‹
›b)H‹-$'H‹^H‰D$H‰L$H‰l$ H…Ò…pHƒû„V~$Hƒû„ºHƒû…ÀH‹V0H‹N(L‹N ëfI‰ÁH‰êH…Û…¡HƒìI‹œ$ØIt$(A¸HƒH‹=·k)UjWPjÿ5"d)QH‰ÙjWH‹=œ#'ÿ†o)HƒÄPH…À„ùHƒ+tHƒÄ0[]A\A]A^ÃfDH‰ßH‰D$èëpÿÿH‹D$HƒÄ0[]A\A]A^Ãf„H‰êéLÿÿÿ„H…ÛHÒII‰ØH
¿IH¢KHIÈHƒìH‹†!'IÁø?SI÷ÐH5WLH‹8L
	MAƒà1Àè2yÿÿX¾Þ'ZH
hIº«H=ÀLèSÊÿÿHƒÄ01À[]A\A]A^Ã@H‰êéÀþÿÿ„I‰ÕHƒû„kŽHƒûtHƒû…MÿÿÿH‹F0H‰D$ H‹F(L‰ïH‰D$H‹F H‰D$èZrÿÿI‰ÆHƒû„“Hƒû…óM…ö~*H‹5Wb)L‰ïèoÿÿH…À„H‰D$ IƒîM…öL‹L$H‹L$H‹T$ H‹v`)é(þÿÿf„H…Û…·þÿÿH‰×èßqÿÿI‰ÆM…ö~ÃH‹5Àe)L‰ïèoÿÿH…ÀtH‰D$IƒîM…ö~¡H‹56b)L‰ïèönÿÿH…À„_ÿÿÿH‰D$IƒîéLÿÿÿ€Hƒ+tBºH
H¾(H‰D$H=]KèðÈÿÿH‹D$éÛýÿÿfDH…Û…*ÿÿÿéfÿÿÿfH‰ßH‰D$èÃnÿÿH‹D$ëª@H‹F H‰×H‰D$èqÿÿI‰ÆéUÿÿÿHT$H‰ÙL‰ïLŠIH5Ö)èaôÿÿ…À‰Õþÿÿ¾Ê'éþÿÿDf.„AWAVAUATI‰ôUH‰ýSHƒì8H‹_)L‹5Ž 'HÇD$H‹^H‰D$L‰t$ H…Ò…VHƒû„DHƒû„*Hƒû„H…ÛHGH
GHOÈŸÀHmJ¶ÀL
#ELOÊLDHƒìH‹³'SHæHH5„IH‹81ÀèjvÿÿX¾})ZH
 FºlH=(Jè‹Çÿÿ1ÀHƒÄ8[]A\A]A^A_Ãf.„L‰òM‹L$ H‹ØHƒìHu(A¸H‹=t'HƒH‰ÙAVjÿ5³g)ÿ5^)jÿ5`)Pjÿ5ä_)ÿ†k)HƒÄPH…À„QHƒ+u‚H‰ßH‰D$èþlÿÿH‹D$HƒÄ8[]A\A]A^A_Ãf.„H‹V0I‹D$(éeÿÿÿfL‰òëïI‰ÕHƒû„cŽ•HƒûtHƒû…¥þÿÿH‹F0H‰D$ I‹D$(L‰ïH‰D$I‹D$ H‰D$èðnÿÿI‰ÇHƒû„ˆHƒû…áM…ÿ~*H‹5í^)L‰ïèlÿÿH…À„
H‰D$ IƒïM…ÿûL‹L$H‹D$H‹T$ é¾þÿÿfDH…Û…þÿÿH‰×ènÿÿI‰ÇH‹5Í^)L‰ïIƒïè¹kÿÿH‰D$H…À„ÜM…ÿ~¬H‹5×^)L‰ïè—kÿÿH…À„jÿÿÿH‰D$IƒïéWÿÿÿHƒ+tJºµH
²D¾¦)H‰D$H=5Hè˜ÅÿÿH‹D$éþÿÿfDH…Û…<ÿÿÿénÿÿÿf.„H‰ßH‰D$èckÿÿH‹D$ë¢@H‹F H‰×H‰D$è·mÿÿI‰ÇéTÿÿÿHT$H‰ÙL‰ïLXFH5Öÿ(èñÿÿ…À‰ßþÿÿ¾j)élýÿÿI‹\$éýÿÿDAWAVAUATI‰ôUH‰ýSHƒì8L‹55'H‹^HÇD$HÇD$L‰t$ H…Ò…AHƒû„'Hƒû…H‹V0I‹D$(M‹L$ H‹ØHƒìHu(A¸H‹=‹'HƒH‰ÙAVjÿ5êd)ÿ5T[)jÿ5c)Pjÿ5ëb)ÿ½h)HƒÄPH…À„ÀHƒ+…šH‰ßH‰D$è1jÿÿH‹D$HƒÄ8[]A\A]A^A_ÃI‹\$„HƒûH!CH
CHMȝÀHƒì¶ÀSHCL@H‹Í'H5¦EL
[FH‹81Àè…rÿÿX¾*ZH
»BººH=kFè¦Ãÿÿ1ÀHƒÄ8[]A\A]A^A_ÃDL‰òéßþÿÿ„I‰ÕHƒû„;~iHƒûtHƒû…QÿÿÿH‹F0H‰D$ I‹D$(L‰ïH‰D$I‹D$ H‰D$è¬kÿÿI‰ÇHƒût`Hƒût{H…Ût4M…ÿL‹L$H‹D$H‹T$ élþÿÿH…Û…ïþÿÿH‰×ègkÿÿI‰ÇH‹5…a)L‰ïIƒïè¡hÿÿH‰D$H…À„¶þÿÿH‹5ta)L‰ïè„hÿÿH‰D$H…À„ÇIƒïM…ÿ~ŽH‹56[)L‰ïè^hÿÿH…ÀtzH‰D$ IƒïécÿÿÿHƒ+t2º
H
zA¾5*H‰D$H=%Eè`ÂÿÿH‹D$é²þÿÿfDH‰ßH‰D$èChÿÿH‹D$ëº@H‹F H‰×H‰D$è—jÿÿI‰ÇéLÿÿÿHT$H‰ÙL‰ïLAAH5Öü(èáíÿÿ…À‰Úþÿÿ¾ú)é1þÿÿHƒìH‹Ô'H
ð@H5¦CjL
YDA¸Hô@H‹81ÀèvpÿÿY^¾ð)éìýÿÿf.„AWAVAUATI‰üUSH‰óHƒì8L‹5Õ'H‹nHÇD$HÇD$HÇD$ L‰t$(H…Ò…hHƒý„NHƒý…ÄH‹V8H‹K0H‹C(L‹K HƒìI‹œ$ØIt$(A¸H‹=î'HƒAVjÿ5\)QH‰Ùjÿ5œ_)Pjÿ5ƒ_)ÿUe)HƒÄPH…À„ÀHƒ+…ÂH‰ßH‰D$èÉfÿÿH‹D$HƒÄ8[]A\A]A^A_ÃDL‰ïèiÿÿI‰ÇH‹56_)L‰ïIƒïèRfÿÿH‰D$H…À…ðH‹kHƒýH‘?H
?HMȝÀHƒì¶ÀUH?L@H‹='H5BL
ËBH‹81ÀèõnÿÿX¾¦*ZH
+?ºH=CèÀÿÿ1ÀHƒÄ8[]A\A]A^A_ÃDL‰òé¸þÿÿ„Hƒý‡fÿÿÿI‰ÕHDMHcªHÐÿàH‹F8H‰D$(H‹C0H‰D$ H‹C(L‰ïH‰D$H‹C H‰D$èhÿÿI‰ÇHƒý„~2Hƒý„Hƒýu+M…ÿ”L‹L$H‹D$H‹L$ H‹T$(é/þÿÿH…턵þÿÿM…ÿ~ÙHT$H‰éL‰ïLl>H5,ú(èëÿÿ…Ày·¾’*éûþÿÿf„Hƒ+tZº[H
>¾Ï*H‰D$H=åAèø¾ÿÿH‹D$éÚþÿÿfDH‹5qW)L‰ïè™dÿÿH…À„{ÿÿÿH‰D$(IƒïéhÿÿÿfH‰ßH‰D$è³dÿÿH‹D$ë’@H‹F L‰ïH‰D$ègÿÿI‰ÇH‹55])L‰ïèEdÿÿH‰D$H…ÀtkIƒïH‹5xY)L‰ïè(dÿÿH‰D$ H…Àt	IƒïéÐþÿÿHƒìH‹:'H
V=H5@jL
¿@A¸HO=H‹81ÀèÜlÿÿY^¾ˆ*éâýÿÿHƒìH‹õ'A¸H5È?jL
{@H
û<H‹8H=1Àè—lÿÿ_¾‚*AXéœýÿÿf.„AWAVAUATI‰ôUH‰ýSHƒì(L‹5õ'H‹^HÇD$L‰t$H…Ò…JHƒû„0Hƒû…žH‹V(M‹L$ H‹ØHƒìHu(H‹?T)H‹=Ð'A¸HƒH‹
·])AVjQPjQH‰ÙPjÿ5Ú[)ÿŒa)H‹;HWÿHƒÄPH‰H…À„5H…Ò…¢H‰ßH‰D$è÷bÿÿH‹D$HƒÄ([]A\A]A^A_ÃI‹\$fDH…ÛHê;H
Ú;HOÈŸÀHE?¶ÀL
û9LOÊL@HƒìH‹Œ'SHÕ;H5]>H‹81ÀèCkÿÿX¾*+ZH
y;º`H=?èd¼ÿÿ1ÀHƒÄ([]A\A]A^A_ÃL‰òéÖþÿÿ„I‰ÕHƒû„Hƒû„¡H…Û…HÿÿÿH‰×èˆdÿÿH‹5ÉZ)L‰ïI‰ÇèÆaÿÿIƒïH‰D$H…À„ÿÿÿM…ÿÛL‹L$H‹T$éoþÿÿ@H…Òt3ºŸH
Ë:¾S+H‰D$H=Î>豻ÿÿH‹D$éEÿÿÿ€H‰ßH‰D$è“aÿÿH‹D$ë¹@H‹F(H‰×H‰D$H‹F H‰D$èÞcÿÿH…ÀŽzÿÿÿHT$H‰ÙL‰ïL”:H5lö(è'çÿÿ…À‰Tÿÿÿ¾+é¹þÿÿDH‹F H‰×H‰D$ècÿÿI‰Çé#ÿÿÿ€H‹5™S)L‰ïèÁ`ÿÿH…Àt—H‰D$IGÿ냐AWAVAUATI‰ôUH‰ýSHƒì8L‹5%'H‹^HÇD$HÇD$L‰t$ H…Ò…AHƒû„'Hƒû…H‹V0I‹D$(M‹L$ H‹ØHƒìHu(A¸H‹='HƒH‰ÙAVjÿ5ÚZ)ÿ5DQ)jÿ5TU)Pjÿ5ûX)ÿ­^)HƒÄPH…À„ÀHƒ+…šH‰ßH‰D$è!`ÿÿH‹D$HƒÄ8[]A\A]A^A_ÃI‹\$„HƒûH9H
9HMȝÀHƒì¶ÀSH9L@H‹½'H5–;L
K<H‹81ÀèuhÿÿX¾¹+ZH
«8º¤H=ã<薹ÿÿ1ÀHƒÄ8[]A\A]A^A_ÃDL‰òéßþÿÿ„I‰ÕHƒû„;~iHƒûtHƒû…QÿÿÿH‹F0H‰D$ I‹D$(L‰ïH‰D$I‹D$ H‰D$èœaÿÿI‰ÇHƒût`Hƒût{H…Ût4M…ÿL‹L$H‹D$H‹T$ élþÿÿH…Û…ïþÿÿH‰×èWaÿÿI‰ÇH‹5•W)L‰ïIƒïè‘^ÿÿH‰D$H…À„¶þÿÿH‹5ÄS)L‰ïèt^ÿÿH‰D$H…À„ÇIƒïM…ÿ~ŽH‹5&Q)L‰ïèN^ÿÿH…ÀtzH‰D$ IƒïécÿÿÿHƒ+t2ºïH
j7¾â+H‰D$H=;èP¸ÿÿH‹D$é²þÿÿfDH‰ßH‰D$è3^ÿÿH‹D$ëº@H‹F H‰×H‰D$è‡`ÿÿI‰ÇéLÿÿÿHT$H‰ÙL‰ïL37H5Fó(èÑãÿÿ…À‰Úþÿÿ¾§+é1þÿÿHƒìH‹Ä'H
à6H5–9jL
I:A¸Hæ6H‹81ÀèffÿÿY^¾+éìýÿÿf.„AVAUATUH‰ýSHƒì L‹%Ê'H‹^L‰d$H…Ò… H…Û„Hƒû„H…ÛHg6H
W6HIÈH‰ØH‚4HÁø?L
·9H…ÛLIÊL@HƒìH‹'SHX6H5Ö8H‹81Àè¼eÿÿX¾4,ZH
ò5ºôH=b:èݶÿÿ1ÀHƒÄ []A\A]A^ÃfDH‹V H‹ØHƒìHu(E1ÀL‹
“M)H‹=Ì
'HƒH‹W)H‰ÙATjPAQjPAQjPÿéZ)HƒÄPH…ÀthHƒ+u—H‰ßH‰D$èe\ÿÿH‹D$HƒÄ []A\A]A^ÃL‰âë‡I‰ÕH…Û„¬Hƒû…ÝþÿÿH‹F H‰×H‰D$è‘^ÿÿH…ÀXH‹T$éNÿÿÿfHƒ+t2º2H
5¾],H‰D$H=m9èèµÿÿH‹D$éÿÿÿfDH‰ßH‰D$èË[ÿÿH‹D$ëºHT$H‰ÙL‰ïLý4H5ñ(è†áÿÿ…À‰‚ÿÿÿ¾&,éŸþÿÿ@H‰×èø]ÿÿI‰ÆH…ÀŽ`ÿÿÿH‹5N)L‰ïè-[ÿÿH…Àt¤H‰D$IFÿé9ÿÿÿf.„AWAVAUATI‰ôUH‰ýSHƒì(L‹5…
'H‹^HÇD$L‰t$H…Ò…JHƒû„0Hƒû…žH‹V(M‹L$ H‹ØHƒìHu(H‹¯K)H‹=(
'A¸HƒH‹
GU)AVjQPjQH‰ÙPjÿ5jS)ÿY)H‹;HWÿHƒÄPH‰H…À„5H…Ò…¢H‰ßH‰D$è‡ZÿÿH‹D$HƒÄ([]A\A]A^A_ÃI‹\$fDH…ÛHz3H
j3HOÈŸÀHÕ6¶ÀL
‹1LOÊL@HƒìH‹'SH3H5í5H‹81ÀèÓbÿÿX¾¸,ZH
	3º5H=±7èô³ÿÿ1ÀHƒÄ([]A\A]A^A_ÃL‰òéÖþÿÿ„I‰ÕHƒû„Hƒû„¡H…Û…HÿÿÿH‰×è\ÿÿH‹5YR)L‰ïI‰ÇèVYÿÿIƒïH‰D$H…À„ÿÿÿM…ÿÛL‹L$H‹T$éoþÿÿ@H…Òt3ºH
[2¾á,H‰D$H=þ6èA³ÿÿH‹D$éEÿÿÿ€H‰ßH‰D$è#YÿÿH‹D$ë¹@H‹F(H‰×H‰D$H‹F H‰D$èn[ÿÿH…ÀŽzÿÿÿHT$H‰ÙL‰ïL>2H5\î(è·Þÿÿ…À‰Tÿÿÿ¾¨,é¹þÿÿDH‹F H‰×H‰D$è[ÿÿI‰Çé#ÿÿÿ€H‹5)K)L‰ïèQXÿÿH…Àt—H‰D$IGÿ냐AWAVAUATI‰ôUH‰ýSHƒì8L‹5µ
'H‹^HÇD$HÇD$L‰t$ H…Ò…AHƒû„'Hƒû…H‹V0I‹D$(M‹L$ H‹ØHƒìHu(A¸H‹=c
'HƒH‰ÙAVjÿ5jR)ÿ5ÔH)jÿ5ŒN)Pjÿ5sM)ÿ=V)HƒÄPH…À„ÀHƒ+…šH‰ßH‰D$è±WÿÿH‹D$HƒÄ8[]A\A]A^A_ÃI‹\$„HƒûH¡0H
‘0HMȝÀHƒì¶ÀSHÎ0L@H‹M'H5&3L
Û3H‹81Àè`ÿÿX¾G-ZH
;0º“H=5è&±ÿÿ1ÀHƒÄ8[]A\A]A^A_ÃDL‰òéßþÿÿ„I‰ÕHƒû„;~iHƒûtHƒû…QÿÿÿH‹F0H‰D$ I‹D$(L‰ïH‰D$I‹D$ H‰D$è,YÿÿI‰ÇHƒût`Hƒût{H…Ût4M…ÿL‹L$H‹D$H‹T$ élþÿÿH…Û…ïþÿÿH‰×èçXÿÿI‰ÇH‹5
L)L‰ïIƒïè!VÿÿH‰D$H…À„¶þÿÿH‹5üL)L‰ïèVÿÿH‰D$H…À„ÇIƒïM…ÿ~ŽH‹5¶H)L‰ïèÞUÿÿH…ÀtzH‰D$ IƒïécÿÿÿHƒ+t2ºáH
ú.¾p-H‰D$H=Í3èà¯ÿÿH‹D$é²þÿÿfDH‰ßH‰D$èÃUÿÿH‹D$ëº@H‹F H‰×H‰D$èXÿÿI‰ÇéLÿÿÿHT$H‰ÙL‰ïLó.H56ë(èaÛÿÿ…À‰Úþÿÿ¾5-é1þÿÿHƒìH‹T'H
p.H5&1jL
Ù1A¸H¦.H‹81Àèö]ÿÿY^¾+-éìýÿÿf.„AWAVAUATI‰ôUH‰ýSHƒì(L‹5U'H‹^HÇD$L‰t$H…Ò…JHƒû„0Hƒû…žH‹V(M‹L$ H‹ØHƒìHu(H‹ŸE)H‹=ð'A¸HƒH‹
O)AVjQPjQH‰ÙPjÿ5òN)ÿìR)H‹;HWÿHƒÄPH‰H…À„5H…Ò…¢H‰ßH‰D$èWTÿÿH‹D$HƒÄ([]A\A]A^A_ÃI‹\$fDH…ÛHJ-H
:-HOÈŸÀH¥0¶ÀL
[+LOÊL@HƒìH‹ì'SHc-H5½/H‹81Àè£\ÿÿX¾Ë-ZH
Ù,ºæH=á1èĭÿÿ1ÀHƒÄ([]A\A]A^A_ÃL‰òéÖþÿÿ„I‰ÕHƒû„Hƒû„¡H…Û…HÿÿÿH‰×èèUÿÿH‹5áM)L‰ïI‰Çè&SÿÿIƒïH‰D$H…À„ÿÿÿM…ÿÛL‹L$H‹T$éoþÿÿ@H…Òt3ºCH
+,¾ô-H‰D$H=.1è­ÿÿH‹D$éEÿÿÿ€H‰ßH‰D$èóRÿÿH‹D$ë¹@H‹F(H‰×H‰D$H‹F H‰D$è>UÿÿH…ÀŽzÿÿÿHT$H‰ÙL‰ïL",H5|è(è‡Øÿÿ…À‰Tÿÿÿ¾»-é¹þÿÿDH‹F H‰×H‰D$èïTÿÿI‰Çé#ÿÿÿ€H‹5ùD)L‰ïè!RÿÿH…Àt—H‰D$IGÿ냐AWAVAUATI‰ôUH‰ýSHƒì(L‹5…'H‹^HÇD$L‰t$H…Ò…JHƒû„0Hƒû…žH‹V(M‹L$ H‹ØHƒìHu(H‹ÏB)H‹=à'A¸HƒH‹
GL)AVjQPjQH‰ÙPjÿ5"L)ÿP)H‹;HWÿHƒÄPH‰H…À„5H…Ò…¢H‰ßH‰D$è‡QÿÿH‹D$HƒÄ([]A\A]A^A_ÃI‹\$fDH…ÛHz*H
j*HOÈŸÀHÕ-¶ÀL
‹(LOÊL@HƒìH‹'SHš*H5í,H‹81ÀèÓYÿÿX¾O.ZH
	*ºHH=A/èôªÿÿ1ÀHƒÄ([]A\A]A^A_ÃL‰òéÖþÿÿ„I‰ÕHƒû„Hƒû„¡H…Û…HÿÿÿH‰×èSÿÿH‹5K)L‰ïI‰ÇèVPÿÿIƒïH‰D$H…À„ÿÿÿM…ÿÛL‹L$H‹T$éoþÿÿ@H…Òt3º¦H
[)¾x.H‰D$H=Ž.èAªÿÿH‹D$éEÿÿÿ€H‰ßH‰D$è#PÿÿH‹D$ë¹@H‹F(H‰×H‰D$H‹F H‰D$ènRÿÿH…ÀŽzÿÿÿHT$H‰ÙL‰ïLY)H5Ìå(è·Õÿÿ…À‰Tÿÿÿ¾?.é¹þÿÿDH‹F H‰×H‰D$èRÿÿI‰Çé#ÿÿÿ€H‹5)B)L‰ïèQOÿÿH…Àt—H‰D$IGÿ냐AWAVAUATI‰ôUH‰ýSHƒì(L‹5µ'H‹^HÇD$L‰t$H…Ò…JHƒû„0Hƒû…žH‹V(M‹L$ H‹ØHƒìHu(H‹ÿ?)H‹=Ø'A¸HƒH‹
wI)AVjQPjQH‰ÙPjÿ5RI)ÿLM)H‹;HWÿHƒÄPH‰H…À„5H…Ò…¢H‰ßH‰D$è·NÿÿH‹D$HƒÄ([]A\A]A^A_ÃI‹\$fDH…ÛHª'H
š'HOÈŸÀH+¶ÀL
»%LOÊL@HƒìH‹Lÿ&SHÒ'H5*H‹81ÀèWÿÿX¾Ó.ZH
9'º«H=¡,è$¨ÿÿ1ÀHƒÄ([]A\A]A^A_ÃL‰òéÖþÿÿ„I‰ÕHƒû„Hƒû„¡H…Û…HÿÿÿH‰×èHPÿÿH‹5AH)L‰ïI‰Çè†MÿÿIƒïH‰D$H…À„ÿÿÿM…ÿÛL‹L$H‹T$éoþÿÿ@H…Òt3ºH
‹&¾ü.H‰D$H=î+èq§ÿÿH‹D$éEÿÿÿ€H‰ßH‰D$èSMÿÿH‹D$ë¹@H‹F(H‰×H‰D$H‹F H‰D$èžOÿÿH…ÀŽzÿÿÿHT$H‰ÙL‰ïL‘&H5ã(èçÒÿÿ…À‰Tÿÿÿ¾Ã.é¹þÿÿDH‹F H‰×H‰D$èOOÿÿI‰Çé#ÿÿÿ€H‹5Y?)L‰ïèLÿÿH…Àt—H‰D$IGÿ냐AVAUATI‰üUSHƒì0H‹‚=)H‹
k=)H‹-Üþ&H‹^H‰D$H‰L$H‰l$ H…Ò…pHƒû„V~$Hƒû„ºHƒû…ÀH‹V0H‹N(L‹N ëfI‰ÁH‰êH…Û…¡HƒìIt$(I‹œ$ØH‹=ùü&A¸HƒUjÿ5~F)Pjÿ5í>)QH‰Ùjÿ5IB)ÿSJ)H‹;HWÿHƒÄPH‰H…À„ìH…ÒtHƒÄ0[]A\A]A^ÃfH‰ßH‰D$è³KÿÿH‹D$HƒÄ0[]A\A]A^ÐH‰êéLÿÿÿ„H…ÛH¢$I‰ØH
$Hù$HIÈHƒìH‹Vü&IÁø?SI÷ÐH5''H‹8L
Ù'Aƒà1ÀèTÿÿX¾h/ZH
8$ºH=È)è#¥ÿÿHƒÄ01À[]A\A]A^Ã@H‰êéÀþÿÿ„I‰ÕHƒû„kŽHƒûtHƒû…MÿÿÿH‹F0H‰D$ H‹F(L‰ïH‰D$H‹F H‰D$è*MÿÿI‰ÆHƒû„“Hƒû…óM…ö~*H‹5'=)L‰ïèOJÿÿH…À„H‰D$ IƒîM…öL‹L$H‹L$H‹T$ H‹F;)é(þÿÿf„H…Û…·þÿÿH‰×è¯LÿÿI‰ÆM…ö~ÃH‹5@)L‰ïèèIÿÿH…ÀtH‰D$IƒîM…ö~¡H‹5=)L‰ïèÆIÿÿH…À„_ÿÿÿH‰D$IƒîéLÿÿÿ€H…ÒtCº`H
Û"¾‘/H‰D$H=f(ècÿÿH‹D$éèýÿÿ€H…Û…*ÿÿÿéfÿÿÿfH‰ßH‰D$è“IÿÿH‹D$ë©@H‹F H‰×H‰D$èçKÿÿI‰ÆéUÿÿÿHT$H‰ÙL‰ïLá"H5†ß(è1Ïÿÿ…À‰Õþÿÿ¾T/éþÿÿDf.„AVAUATI‰üUSHƒì0H‹:)H‹
ë9)H‹-\û&H‹^H‰D$H‰L$H‰l$ H…Ò…pHƒû„V~$Hƒû„ºHƒû…ÀH‹V0H‹N(L‹N ëfI‰ÁH‰êH…Û…¡HƒìIt$(I‹œ$ØH‹=aû&A¸HƒUjÿ5þB)Pjÿ5m;)QH‰Ùjÿ5É>)ÿÓF)H‹;HWÿHƒÄPH‰H…À„ìH…ÒtHƒÄ0[]A\A]A^ÃfH‰ßH‰D$è3HÿÿH‹D$HƒÄ0[]A\A]A^ÐH‰êéLÿÿÿ„H…ÛH"!I‰ØH
!H!HIÈHƒìH‹Öø&IÁø?SI÷ÐH5§#H‹8L
Y$Aƒà1Àè‚PÿÿX¾ý/ZH
¸ ºeH=x&裡ÿÿHƒÄ01À[]A\A]A^Ã@H‰êéÀþÿÿ„I‰ÕHƒû„kŽHƒûtHƒû…MÿÿÿH‹F0H‰D$ H‹F(L‰ïH‰D$H‹F H‰D$èªIÿÿI‰ÆHƒû„“Hƒû…óM…ö~*H‹5§9)L‰ïèÏFÿÿH…À„H‰D$ IƒîM…öL‹L$H‹L$H‹T$ H‹Æ7)é(þÿÿf„H…Û…·þÿÿH‰×è/IÿÿI‰ÆM…ö~ÃH‹5=)L‰ïèhFÿÿH…ÀtH‰D$IƒîM…ö~¡H‹5†9)L‰ïèFFÿÿH…À„_ÿÿÿH‰D$IƒîéLÿÿÿ€H…ÒtCº×H
[¾&0H‰D$H=%èA ÿÿH‹D$éèýÿÿ€H…Û…*ÿÿÿéfÿÿÿfH‰ßH‰D$èFÿÿH‹D$ë©@H‹F H‰×H‰D$ègHÿÿI‰ÆéUÿÿÿHT$H‰ÙL‰ïLiH5&Ü(è±Ëÿÿ…À‰Õþÿÿ¾é/éþÿÿDf.„AVAUATI‰üUSHƒì0H‹‚6)H‹
k6)H‹-Ü÷&H‹^H‰D$H‰L$H‰l$ H…Ò…pHƒû„V~$Hƒû„ºHƒû…ÀH‹V0H‹N(L‹N ëfI‰ÁH‰êH…Û…¡HƒìIt$(I‹œ$ØH‹=©ö&A¸HƒUjÿ5~?)Pjÿ5í7)QH‰Ùjÿ5I;)ÿSC)H‹;HWÿHƒÄPH‰H…À„ìH…ÒtHƒÄ0[]A\A]A^ÃfH‰ßH‰D$è³DÿÿH‹D$HƒÄ0[]A\A]A^ÐH‰êéLÿÿÿ„H…ÛH¢I‰ØH
HHIÈHƒìH‹Võ&IÁø?SI÷ÐH5' H‹8L
Ù Aƒà1ÀèMÿÿX¾’0ZH
8ºÜH=(#è#žÿÿHƒÄ01À[]A\A]A^Ã@H‰êéÀþÿÿ„I‰ÕHƒû„kŽHƒûtHƒû…MÿÿÿH‹F0H‰D$ H‹F(L‰ïH‰D$H‹F H‰D$è*FÿÿI‰ÆHƒû„“Hƒû…óM…ö~*H‹5'6)L‰ïèOCÿÿH…À„H‰D$ IƒîM…öL‹L$H‹L$H‹T$ H‹F4)é(þÿÿf„H…Û…·þÿÿH‰×è¯EÿÿI‰ÆM…ö~ÃH‹59)L‰ïèèBÿÿH…ÀtH‰D$IƒîM…ö~¡H‹56)L‰ïèÆBÿÿH…À„_ÿÿÿH‰D$IƒîéLÿÿÿ€H…ÒtCº'	H
Û¾»0H‰D$H=Æ!è\ÿÿH‹D$éèýÿÿ€H…Û…*ÿÿÿéfÿÿÿfH‰ßH‰D$è“BÿÿH‹D$ë©@H‹F H‰×H‰D$èçDÿÿI‰ÆéUÿÿÿHT$H‰ÙL‰ïLðH5ÆØ(è1Èÿÿ…À‰Õþÿÿ¾~0éþÿÿDf.„AVAUATI‰üUSHƒì0H‹3)H‹
ë2)H‹-\ô&H‹^H‰D$H‰L$H‰l$ H…Ò…pHƒû„V~$Hƒû„ºHƒû…ÀH‹V0H‹N(L‹N ëfI‰ÁH‰êH…Û…¡HƒìIt$(I‹œ$ØH‹=Qô&A¸HƒUjÿ5þ;)Pjÿ54)QH‰Ùjÿ5Y7)ÿÓ?)H‹;HWÿHƒÄPH‰H…À„ìH…ÒtHƒÄ0[]A\A]A^ÃfH‰ßH‰D$è3AÿÿH‹D$HƒÄ0[]A\A]A^ÐH‰êéLÿÿÿ„H…ÛH"I‰ØH
H‘HIÈHƒìH‹Öñ&IÁø?SI÷ÐH5§H‹8L
YAƒà1Àè‚IÿÿX¾'1ZH
¸º,	H=Ø裚ÿÿHƒÄ01À[]A\A]A^Ã@H‰êéÀþÿÿ„I‰ÕHƒû„kŽHƒûtHƒû…MÿÿÿH‹F0H‰D$ H‹F(L‰ïH‰D$H‹F H‰D$èªBÿÿI‰ÆHƒû„“Hƒû…óM…ö~*H‹5§2)L‰ïèÏ?ÿÿH…À„H‰D$ IƒîM…öL‹L$H‹L$H‹T$ H‹Æ0)é(þÿÿf„H…Û…·þÿÿH‰×è/BÿÿI‰ÆM…ö~ÃH‹5 5)L‰ïèh?ÿÿH…ÀtH‰D$IƒîM…ö~¡H‹5.2)L‰ïèF?ÿÿH…À„_ÿÿÿH‰D$IƒîéLÿÿÿ€H…ÒtCº—	H
[¾P1H‰D$H=vèA™ÿÿH‹D$éèýÿÿ€H…Û…*ÿÿÿéfÿÿÿfH‰ßH‰D$è?ÿÿH‹D$ë©@H‹F H‰×H‰D$ègAÿÿI‰ÆéUÿÿÿHT$H‰ÙL‰ïLyH5fÕ(è±Äÿÿ…À‰Õþÿÿ¾1éþÿÿDf.„AVAUATUH‰ýSHƒì L‹
r/)L‹%ãð&H‹^L‰L$L‰d$H…Ò…DHƒû„2Hƒû„H…Û„H…ÛHqI‰ØH
^HêHIÈHƒìH‹%ï&IÁø?SI÷ÐH5öH‹8L
¨Aƒà1ÀèÑFÿÿX¾¯1ZH
ºœ	H=Wèò—ÿÿ1ÀHƒÄ []A\A]A^ÃL‰âH‹ØHƒìHu(H‹¯.)H‹= ï&A¸HƒH‹
'8)ATjQPjQH‰ÙPjÿ5Š0)ÿü;)H‹;HWÿHƒÄPH‰H…À„H…ÒuˆH‰ßH‰D$èk=ÿÿH‹D$HƒÄ []A\A]A^Ãf„H‹V(L‹N éfÿÿÿL‰âëïI‰ÕHƒû„ËHƒûtmH…Û…½þÿÿH‰×è„?ÿÿI‰ÆH…À„L‹L$H‹T$éÿÿÿH…Ò„ǺÜ	H
ß¾Ø1H‰D$H=*èŖÿÿH‹D$éËþÿÿH‹F(H‰×H‰D$H‹F H‰D$è?ÿÿH…À~™HT$H‰ÙL‰ïL-H50Ó(è[Âÿÿ…À‰sÿÿÿ¾ž1é_þÿÿf„H‹F H‰×H‰D$è¿>ÿÿI‰ÆM…öŽCÿÿÿH‹5Ì.)L‰ïèô;ÿÿH…Àt–H‰D$IFÿë†@H‰ßH‰D$è<ÿÿH‹D$é"ÿÿÿf„H‹5ñ.)L‰ïè±;ÿÿH…Àt©H‰D$Iƒî땐AWAVAUATI‰ôUH‰ýSHƒì8L‹5î&H‹^HÇD$HÇD$L‰t$ H…Ò…AHƒû„'Hƒû…H‹V0I‹D$(M‹L$ H‹ØHƒìHu(A¸H‹=ûí&HƒH‰ÙAVjÿ5Ê5)ÿ54,)jÿ54.)Pjÿ5#1)ÿ9)HƒÄPH…À„ÀHƒ+…šH‰ßH‰D$è;ÿÿH‹D$HƒÄ8[]A\A]A^A_ÃI‹\$„HƒûHH
ñHMȝÀHƒì¶ÀSHwL@H‹­ë&H5†L
;H‹81ÀèeCÿÿX¾>2ZH
›ºá	H=膔ÿÿ1ÀHƒÄ8[]A\A]A^A_ÃDL‰òéßþÿÿ„I‰ÕHƒû„;~iHƒûtHƒû…QÿÿÿH‹F0H‰D$ I‹D$(L‰ïH‰D$I‹D$ H‰D$èŒ<ÿÿI‰ÇHƒût`Hƒût{H…Ût4M…ÿL‹L$H‹D$H‹T$ élþÿÿH…Û…ïþÿÿH‰×èG<ÿÿI‰ÇH‹5½/)L‰ïIƒïè9ÿÿH‰D$H…À„¶þÿÿH‹5¤,)L‰ïèd9ÿÿH‰D$H…À„ÇIƒïM…ÿ~ŽH‹5,)L‰ïè>9ÿÿH…ÀtzH‰D$ IƒïécÿÿÿHƒ+t2º 
H
Z¾g2H‰D$H=Õè@“ÿÿH‹D$é²þÿÿfDH‰ßH‰D$è#9ÿÿH‹D$ëº@H‹F H‰×H‰D$èw;ÿÿI‰ÇéLÿÿÿHT$H‰ÙL‰ïLœH5¶Ï(è~ÿÿ…À‰Úþÿÿ¾,2é1þÿÿHƒìH‹´é&H
ÐH5†jL
9A¸HOH‹81ÀèVAÿÿY^¾"2éìýÿÿf.„AVAUI‰ÕATI‰ôUH‰ýSHƒì0H‹´ê&H‹^HÇD$HÇD$H‰T$ M…í…0Hƒû„ŠHƒû„|HƒûH=H
-HMȝÀHƒì¶ÀSH¸L@H‹éè&H5ÂL
wH‹81Àè¡@ÿÿX¾ß9ZH
׺H=è‘ÿÿ1ÀHƒÄ0[]A\A]A^ÃH‹V0I‹L$(I‹D$ H‹ØHƒìHu(E1ÉH‹=©è&A¸Hƒjÿ5ï1)ÿ5Y()jÿ5¹+)QH‰Ùjÿ5Í,)Pÿ¶5)H‹;HWÿHƒÄPH‰H…À„'H…Ò…vÿÿÿH‰ßH‰D$è)7ÿÿH‹D$HƒÄ0[]A\A]A^ÀHƒû„>~lHƒûtHƒû…ÈþÿÿH‹F0H‰D$ I‹D$(L‰ïH‰D$I‹D$ H‰D$è?9ÿÿI‰ÆHƒûtcHƒût~H…Ût7M…öH‹D$H‹L$H‹T$ éüþÿÿfDH…Û…cþÿÿL‰ïè÷8ÿÿI‰ÆH‹5õ+)L‰ïIƒîè16ÿÿH‰D$H…À„)H‹5´*)L‰ïè6ÿÿH‰D$H…À„ÇIƒîM…ö~‹H‹5Æ()L‰ïèî5ÿÿH…ÀtzH‰D$ Iƒîé`ÿÿÿH…Òt3º`H
¾:H‰D$H=®èñÿÿH‹D$é'þÿÿ€H‰ßH‰D$èÓ5ÿÿH‹D$ë¹@H‹F L‰ïH‰D$è'8ÿÿI‰ÆéLÿÿÿHT$H‰ÙL‰ïLQH5æÌ(èq»ÿÿ…À‰×þÿÿ¾Í9é¥ýÿÿHƒìH‹dæ&H
€H56jL
éA¸HH‹81Àè>ÿÿY^¾Ã9é`ýÿÿI‹\$éýÿÿAUATI‰ÔUH‰ýSHƒì(H‹ñ%)H‹bç&H‹^H‰D$H‰T$M…ä…›Hƒû„]Hƒû„OH…Û„ÆH…ÛHð
I‰ØH
Ý
H‰HIÈHƒìH‹¤å&IÁø?SI÷ÐH5uH‹8L
'Aƒà1ÀèP=ÿÿX¾g:ZH
†
ºeH=fèqŽÿÿ1ÀHƒÄ([]A\A]Ã@Hƒû„^Hƒû„üH…Û…eÿÿÿL‰çè«6ÿÿI‰ÅH…À€H‹D$H‹T$fDH‹ØHƒìHu(E1ÉH‹
ç$)A¸HƒH‹=f.)jWQjWH‹=På&QH‰Ùj	ÿ5l*)Pÿ-2)HƒÄPH…Àt<Hƒ+…KÿÿÿH‰ßH‰D$è­3ÿÿH‹D$HƒÄ([]A\A]ÃDH‹V(H‹F ésÿÿÿHƒ+„ƺ¨H
v¾:H‰D$H=Qè\ÿÿH‹D$éãþÿÿfH‹F(L‰çH‰D$H‹F H‰D$è¦5ÿÿH…ÀŽÿÿÿHT$H‰ÙL‰çLáH5„Ê(èï¸ÿÿ…À‰ßþÿÿ¾V:étþÿÿDH‹F L‰çH‰D$èW5ÿÿI‰ÅM…í޳þÿÿH‹5d%)L‰çèŒ2ÿÿH…ÀtšH‰D$IEÿë†@H‰ßH‰D$è«2ÿÿH‹D$é#ÿÿÿH‹59))L‰çèQ2ÿÿH…Àt±H‰D$Iƒí띐AVAUI‰ÕATI‰ôUH‰ýSHƒì H‹´ä&H‹^HÇD$H‰T$M…í…)Hƒû„“Hƒû„…H…ÛHGH
7HOÈŸÀH¢¶ÀL
X	LOÊL@HƒìH‹éâ&SH¿H5º
H‹81Àè :ÿÿX¾ë:ZH
Ö
º­H=æèKÿÿ1ÀHƒÄ []A\A]A^ÃfH‹V(I‹|$ H‹ØHƒìHu(E1ÉH‹v")A¸HƒH‹
õ+)jQPjQH‰ÙPjÿ5Ò+)WH‹=šã&ÿ¼/)HƒÄPH…À„—Hƒ+uŠH‰ßH‰D$è<1ÿÿH‹D$HƒÄ []A\A]A^Ãf.„Hƒû„Hƒû„¤H…Û…ÎþÿÿL‰ïèk3ÿÿH‹5d+)L‰ïI‰Æè©0ÿÿIƒîH‰D$H…À„M…öÞH‹|$H‹T$éÿÿÿ€Hƒ+t2ºøH
ª	¾;H‰D$H=µ萊ÿÿH‹D$éÇþÿÿfDH‰ßH‰D$ès0ÿÿH‹D$ëº@H‹F(L‰ïH‰D$H‹F H‰D$è¾2ÿÿH…ÀŽwÿÿÿHT$H‰ÙL‰ïL
H5¼Ç(è¶ÿÿ…À‰Qÿÿÿ¾Û:é<þÿÿDH‹F L‰ïH‰D$èo2ÿÿI‰Æé ÿÿÿ€H‹5y")L‰ïè¡/ÿÿH…Àt—H‰D$IFÿëƒI‹\$é’ýÿÿ€AVAUI‰ÕATI‰ôUH‰ýSHƒì H‹ôá&H‹^HÇD$H‰T$M…í…)Hƒû„“Hƒû„…H…ÛH‡H
wHOÈŸÀHâ¶ÀL
˜LOÊL@HƒìH‹)à&SHH5ú
H‹81Àèà7ÿÿX¾o;ZH
ºýH=Nè‰ÿÿ1ÀHƒÄ []A\A]A^ÃfH‹V(I‹|$ H‹ØHƒìHu(E1ÉH‹¶)A¸HƒH‹
5))jQPjQH‰ÙPjÿ5ú")WH‹=¢á&ÿü,)HƒÄPH…À„—Hƒ+uŠH‰ßH‰D$è|.ÿÿH‹D$HƒÄ []A\A]A^Ãf.„Hƒû„Hƒû„¤H…Û…ÎþÿÿL‰ïè«0ÿÿH‹5Œ")L‰ïI‰Æèé-ÿÿIƒîH‰D$H…À„M…öÞH‹|$H‹T$éÿÿÿ€Hƒ+t2º+H
꾘;H‰D$H=èЇÿÿH‹D$éÇþÿÿfDH‰ßH‰D$è³-ÿÿH‹D$ëº@H‹F(L‰ïH‰D$H‹F H‰D$èþ/ÿÿH…ÀŽwÿÿÿHT$H‰ÙL‰ïLT	H5Å(èG³ÿÿ…À‰Qÿÿÿ¾_;é<þÿÿDH‹F L‰ïH‰D$è¯/ÿÿI‰Æé ÿÿÿ€H‹5¹)L‰ïèá,ÿÿH…Àt—H‰D$IFÿëƒI‹\$é’ýÿÿ€AVAUI‰ÕATI‰ôUH‰ýSHƒì H‹4ß&H‹^HÇD$H‰T$M…í…)Hƒû„“Hƒû„…H…ÛHÇH
·HOÈŸÀH"	¶ÀL
ØLOÊL@HƒìH‹iÝ&SHDH5:H‹81Àè 5ÿÿX¾’>ZH
Vº¿H=¾èA†ÿÿ1ÀHƒÄ []A\A]A^ÃfH‹V(I‹|$ H‹ØHƒìHu(E1ÉH‹ö)A¸HƒH‹
u&)jQPjQH‰ÙPjÿ5: )WH‹=:Ý&ÿ<*)HƒÄPH…À„—Hƒ+uŠH‰ßH‰D$è¼+ÿÿH‹D$HƒÄ []A\A]A^Ãf.„Hƒû„Hƒû„¤H…Û…ÎþÿÿL‰ïèë-ÿÿH‹5Ì)L‰ïI‰Æè)+ÿÿIƒîH‰D$H…À„M…öÞH‹|$H‹T$éÿÿÿ€Hƒ+t2º

H
*¾»>H‰D$H=è…ÿÿH‹D$éÇþÿÿfDH‰ßH‰D$èó*ÿÿH‹D$ëº@H‹F(L‰ïH‰D$H‹F H‰D$è>-ÿÿH…ÀŽwÿÿÿHT$H‰ÙL‰ïL†H5¬Â(臰ÿÿ…À‰Qÿÿÿ¾‚>é<þÿÿDH‹F L‰ïH‰D$èï,ÿÿI‰Æé ÿÿÿ€H‹5ù)L‰ïè!*ÿÿH…Àt—H‰D$IFÿëƒI‹\$é’ýÿÿ€AVAUATUH‰ýSH‰óHƒìL‹fHÇD$H…Òu<Iƒü…šH‹^ HƒH‹}Hƒ/tH‰]1ÀHƒÄ[]A\A]A^ÃDèã)ÿÿëáI‰ÕM…ät0IƒüuZH‹F H‰×H‰D$è1,ÿÿI‰ÆM…öŸH‹\$ë fDH‰×è,ÿÿH‹5ù)L‰ïI‰ÆèN)ÿÿIƒîH‰D$H…ÀuÂL‹c@HƒìH‹]Ú&H`H5/ATL
¢A¸H
&H‹81Àèÿ1ÿÿX¾>iZH
òºH=
è ƒÿÿ¸ÿÿÿÿéÿÿÿHT$L‰áL‰ïLþH5]Â(èخÿÿ…À‰;ÿÿÿ¾3ië±f„AUATUSH‰ûHƒìH‹-ÄÙ&H‹H‹uèß'ÿÿ…ÀtH‹{HƒÄH‰Þ[]A\A]éU(ÿÿDH‹Cö€³€„öƒ³@tv1ÿè_/ÿÿI‰ÅH…ÀtW1ÒH‰ÆH‰ßèZ.ÿÿIƒmI‰ÄtpM…ät;I‹|$H‹uèm'ÿÿ…ÀtiL‰æH‰ßèî'ÿÿIƒ,$uHƒÄL‰ç[]A\A]é%(ÿÿDHƒÄ[]A\A]ÃDH‹ùØ&H5òH‹8HƒÄ[]A\A]é`,ÿÿL‰ïèè'ÿÿë†fDH‹ÉØ&I‹L$H‰ÚH5rH‹81Àè€0ÿÿé}ÿÿÿf.„AVAUATUH‰õSH‰ûHƒì L‹fHÇD$H…Ò…Iƒü…>H‹n HƒEH‹{ Hƒ/„çH‰k H‹5Ì )H‰ïèÄ1ÿÿI‰ÄH…À„H5DH‰ÇèÉ*ÿÿ…À„1H5-L‰çèb.ÿÿI‰ÅH…À„vóAoEH‹5Y)H‰ïC(óAoMK8I‹E H‰CHè[1ÿÿH‰ÅH…À„_H‹»ØHƒ/t"H‰«Ø1ÀIƒ,$t"HƒÄ []A\A]A^ÃDè«&ÿÿë×f„L‰ç‰D$è”&ÿÿ‹D$HƒÄ []A\A]A^Ãè{&ÿÿéÿÿÿfDI‰ÕM…ä„ôIƒü…H‹F H‰×H‰D$è¹(ÿÿI‰ÆM…ö‘H‹l$é¹þÿÿH
-ÿºt¾H=Hè€ÿÿ¸ÿÿÿÿéGÿÿÿf„H‹5Y)H‹=Š#)1ÒèÛ+ÿÿH‰ÃH…À„$H‰Çè÷üÿÿHƒ+ºw¾¢„ëH
ÀþH=åè°ÿÿ¸ÿÿÿÿéÝþÿÿfDè›.ÿÿH…À„|þÿÿºy¾´ëÃfDºz¾¾ë±@H‰×èØ'ÿÿH‹5	)L‰ïI‰Æè%ÿÿIƒîH‰D$H…À…þþÿÿL‹eHƒìH‹%Ö&H(ÿH5÷ATL
jüA¸H
îþH‹81ÀèÇ-ÿÿX¾QZH
ýýºqH=èè~ÿÿ¸ÿÿÿÿéþÿÿfDH‰߉t$‰T$èÈ$ÿÿ‹T$‹t$éøþÿÿºw¾žééþÿÿHT$L‰áL‰ïL”þH5³½(ènªÿÿ…À‰Iþÿÿ¾Fé|ÿÿÿff.„U1ÒSHƒìH‹5a)H‹=â!)èE*ÿÿH…ÀtPH‰ÃH‰ǽhè`ûÿÿHƒ+t*‰îH
òüºH=…è ~ÿÿHƒÄ1À[]ÀH‰ßè$ÿÿëÌfD½hë¿f„U1ÒSHƒìH‹5Ù)H‹=b!)èÅ)ÿÿH…ÀtPH‰ÃH‰ǽLhèàúÿÿHƒ+t*‰îH
rüºH=-è }ÿÿHƒÄ1À[]ÀH‰ßèˆ#ÿÿëÌfD½Hhë¿f„U1ÒSHƒìH‹5))H‹=â )èE)ÿÿH…ÀtPH‰ÃH‰ǽ${è`úÿÿHƒ+t*‰îH
òûºH=Ýè }ÿÿHƒÄ1À[]ÀH‰ßè#ÿÿëÌfD½ {ë¿f„U1ÒSHƒìH‹5¡)H‹=b )èÅ(ÿÿH…ÀtPH‰ÃH‰ǽ\{èàùÿÿHƒ+t*‰îH
rûºH=è |ÿÿHƒÄ1À[]ÀH‰ßèˆ"ÿÿëÌfD½X{ë¿f„AUATUSHƒìHƒ¿ˆ„H‰û1ÿèž+ÿÿI‰ÄH…À„:H‹«ˆHcCtLlÅL9ís3H‹}èD+ÿÿH‰ÃH…ÀtdH‰ÆL‰çèÑ'ÿÿ…À…™Hƒ+t;HƒÅI9íwÍL‰çè'ÿÿH…À„Iƒ,$u^L‰çH‰D$èÕ!ÿÿH‹D$ëJfDH‰ßèÀ!ÿÿë»fD½ºvIƒ,$A½<uL‰çèž!ÿÿH
XúD‰ê‰îH=£è†{ÿÿ1ÀHƒÄ[]A\A]Ãf„Iƒ,$tqHƒ+½¼vA½<uºH‰ßèP!ÿÿë°fDH‹5)H‹=Ò)1Òè#'ÿÿH‰ÃH…ÀtMH‰ǽ¡vA½:è8øÿÿHƒ+…pÿÿÿë´@½´vA½<éZÿÿÿL‰çèð ÿÿë…fD½¿vé+ÿÿÿ½vA½:é0ÿÿÿ@f.„U1ÒSHƒìH‹5a)H‹=2)è•&ÿÿH…ÀtPH‰ÃH‰ǽy†è°÷ÿÿHƒ+t*‰îH
BùºH=½èpzÿÿHƒÄ1À[]ÀH‰ßèX ÿÿëÌfD½u†ë¿f„U1ÒSHƒìH‹5Ù)H‹=²)è&ÿÿH…ÀtPH‰ÃH‰ǽ±†è0÷ÿÿHƒ+t*‰îH
ÂøºH=uèðyÿÿHƒÄ1À[]ÀH‰ßèØÿÿëÌfD½­†ë¿f„AUATUSHƒìH…ö„ûL‹%öÑ&H‰ýH‰óA‰պL‰fH‹5)H‹XIƒ$è(ÿÿ…Àˆ÷„D‰è%¸…À„1H‹E H‰H‹E(H‰C‹E8‰C$H‹E@H‰C0H‹EHHÇC@H‰C8H‹EPÇC H‰C1ÀAƒåtH‹E0H‰C(HƒEH‹{Hƒ/tfH‰kL9åtE1ÀHƒÄ[]A\A]ÃH‹}XH‹5)ºèk'ÿÿ…ÀˆD‰êâ؅	ÐADÅéTÿÿÿDHƒmt!HÇC몀è›ÿÿë“f„H‰ïèˆÿÿëÕfDº»¾ìdH=_H
)÷ècxÿÿH‹{¸ÿÿÿÿH…ÿ„VÿÿÿHƒ/tsHÇCHƒÄ¸ÿÿÿÿ[]A\A]ÃH‹51
)H‹=º)1Òè$ÿÿH‰ÅH…ÀtRH‰Çè+õÿÿHƒmºÀ¾6eu„H‰ï‰T$‰t$èêÿÿ‹t$‹T$égÿÿÿDèÓÿÿ놐º½¾
eéKÿÿÿºÀ¾2eé<ÿÿÿH‹“Ï&H5\H‹8è"ÿÿ¸ÿÿÿÿé—þÿÿfATUSH…ö„…L‹%ÌÏ&H‰ýH‰óL‰fIƒ$öÂt‹Gp…À…½1ÀöÂtH‹…€H‰C01ÀöÂtH‹…ˆH‰C81À÷ÂtH‹…H‰C@1âtH‹ExH‰C(H‹EPH‰‹Et‰C$H‹EhH‰CH‹E`H‰C‹Ep‰C HƒEH‹{Hƒ/t+H‰kL9åt
1À[]A\ÃHƒmtHÇCëå€è³ÿÿëΐH‰ïè¨ÿÿëÝfDH‹5y)H‹=*)1Òè{"ÿÿH‰ÅH…Àt}H‰ÇA¼|tè•óÿÿHƒmt^H=ÿH
!õºD‰æèSvÿÿH‹{¸ÿÿÿÿH…ÿ„iÿÿÿHƒ/tHÇC¸ÿÿÿÿéQÿÿÿf„èÿÿëÞf„H‰ïèÿÿë˜A¼xtëH‹ßÍ&H5¨þH‹8èX ÿÿ¸ÿÿÿÿéÿÿÿ@f.„SHì H‰´$øH‰”$H‰Œ$L‰„$L‰Œ$„Àt@)„$ )Œ$0)”$@)œ$P)¤$`)¬$p)´$€)¼$H\$ H„$°¾ÈÇD$H‰D$HL$H„$ðH‰ßHnþÇD$0H‰D$èÄÿÿH‰ßèL$ÿÿHĠ[ÃH‹G HƒH‹G ÃAUATI‰ü¿USHƒìè¹ÿÿH…À„ I‰ÅA‹D$t…ÀudH‹-Í&HƒE¿èŽ!ÿÿH‰ÃH…À„’Iƒ$H‹=¾)1ÒH‰ÞL‰c L‰k(H‰k0èp ÿÿH…Àt+Hƒ+„HƒÄ[]A\A]ÃfDH‹-iÍ&HƒEëšfHƒ+A¼Úf„€D‰æH
÷òºäH=šýè%tÿÿHƒÄ1À[]A\A]ÄIƒmt9HƒmA¼Ïfu¼H‰ïèôÿÿë²fH‰ßH‰D$èãÿÿH‹D$HƒÄ[]A\A]ÃL‰ïèÈÿÿë½fDH‰ßè¸ÿÿésÿÿÿA¼ËféeÿÿÿDAVAUI‰ýHcþATI‰ÌUS‰ÓHƒìèdÿÿH…À„KI‰ƅÛutH‹-ÅË&HƒE¿è> ÿÿH‰ÃH…À„¢IƒEH‹=n)1ÒH‰ÞL‰k L‰s(H‰k0è ÿÿH…Àt;Hƒ+„±Hƒ8L‰ h„€HƒÄ[]A\A]A^ÃH‹-	Ì&HƒEëŠfHƒ+A¼™{„ D‰æH
—ñº’H=büèÅrÿÿHƒÄ1À[]A\A]A^ÃfDIƒ.tZHƒmA¼Ž{u½H‰ïè•ÿÿë³H‰ÇH‰D$èƒÿÿH‹D$HƒÄ[]A\A]A^ÐH‰ßH‰D$ècÿÿH‹D$é8ÿÿÿf„L‰÷èHÿÿëœfDH‰ßè8ÿÿéSÿÿÿA¼Š{éEÿÿÿDATUH‰ýSH‰óHƒì@H‹H‹~HÇD$HÇD$HPH‰H‹5)HÇD$ HÇD$(HÇD$0HÇD$8H9÷tè!ÿÿ…Àt)H‹HBH‰H‰ØH‰H…Ò„`HƒÄ@[]A\ÀHT$ Ht$H|$èÜÿÿ‹½`@€çf@€ϘHcÿèFÿÿH‰D$(H…À„˜‹…d…À…*H‹›É&Hƒ¿H‰D$0èÿÿH‰D$8H…À„òH‹T$(HƒH‰ÆH‰X H‹=3)H‰P(H‹T$0HÇD$(H‰P01ÒHÇD$0èÕÿÿH‰D$0H…À„÷H‹|$8Hƒ/„ÈHƒ+H‹l$0HÇD$8„ HÇD$0H‹|$H…ÿt
Hƒ/„³HÇD$H‹|$H…ÿt
Hƒ/„†HÇD$H‹|$ H…ÿt
Hƒ/„‰HÇD$ H‰ëH‹UéŽþÿÿ@H‰ßH‰D$è3ÿÿH‹D$HƒÄ@[]A\ÃDH‹)É&HƒéÑþÿÿH‰ßèÿÿéSÿÿÿèûÿÿé.ÿÿÿfDèëÿÿépÿÿÿfDèÛÿÿéCÿÿÿfDèËÿÿémÿÿÿfD½áoHÇD$(H‹|$0H…ÿt
Hƒ/„žHÇD$0H‹|$8H…ÿt
Hƒ/„‘HÇD$8H‹=ù)è,ÿÿ…À„´º²‰îH=ùH
îèJoÿÿHT$(Ht$8H|$0èFhÿÿ…ÀˆŽH‹-wÇ&H‹|$(HƒEHƒ/„cHÇD$(H‹|$0Hƒ/„;HÇD$0H‹|$8Hƒ/„H‹T$ H‹t$HÇD$8H‹|$èæÿÿH‹HPÿH‰èéýÿÿ€A¼²H‹|$H‹T$ H‹t$è¶ÿÿH‹|$(H…ÿt
Hƒ/„H‹|$0H…ÿt
Hƒ/„þH‹|$8H…ÿt
Hƒ/„ÊD‰âH
í‰îH=øèBnÿÿH‹HPÿ1Àéˆüÿÿ@½õoH‹|$(H…ÿ„bþÿÿHƒ/…XþÿÿèÿÿéNþÿÿf„èûÿÿéXþÿÿfDèëÿÿéeþÿÿfD½pë®f„èËÿÿéãþÿÿfDè»ÿÿé»þÿÿfDè«ÿÿé“þÿÿfD½!pA¼´éæþÿÿè‹ÿÿé,ÿÿÿfDè{ÿÿéôþÿÿfDèkÿÿéøþÿÿfDHƒìH…ÿuèRÿÿ1ÒH…Àu;‰ÐHƒÄÃ@Hƒ/tRH‹³Ä&H‰òH5÷H‹81ÀèßÿÿºÿÿÿÿëÍ„H‹9Å&H‹8èÁÿÿºÿÿÿÿ…Àt­è£ÿÿ1Ò뤀H‰t$èÞÿÿH‹t$띀AWAVAUATUSHì8H‹Å&L‹¤$pI9Ü„'…É…gL‹
ðÄ&IƒM‰ÎHcï¿H‰T$H‰t$èZÿÿI‰ÇH…À„ÎH‹/)Hƒ1ÒL‰þI‰_ H‹=s)HƒI‰G(M‰w0è2ÿÿI‰ÅI‹M…í„HƒèI‰„–óo„$póoŒ$€óo”$óoœ$ óo¤$°A…póo¬$ÀA€óo´$Ðóo¼$àA•óo„$ðóoŒ$A óo”$óoœ$ A¥°óo¤$0A­ÀAµÐA½àA…ðAA•A A¥0M…ät I‹D$H‹…Òˆ¯ºðÁ…Ò„½H‹5Õ
)L‰çè…ÿÿI‰ÇH…À„	I‹½@Hƒ/„øIt$PH|$ M‰½@I‹„$h¹bHƒI‰…hH‹„$xóH¥I}PHt$ ¹bóH¥I‰EP1ÀIA‰mtI‰]XAö„$`M¥€•ÀHÁåM‰¥€ƒÀH)IDžA‰…`I…ÀI‰…ˆH9у+Iƒ½‰¢H‰ÈëDHƒ8‰ŽHƒÀH9ÂwíI‹EhLåI‰E`I9ìƒçE1öI‹<$è%ÿÿH‰ÃH…À„™M…öt
Iƒ.„:I‹}`èÿÿI‰ÆH…À„åH‰ÞH‰ÇèºÿÿI‰ÇI‹M…ÿ„ÛHƒèI‰„ŽH‹wÁ&L‰ÿI9G…–èEÿÿI‰ÆIƒþÿ„8Iƒ/„¾IƒÄM‰u`I‰ÞL9å‡\ÿÿÿH‹D$M‰ìI‰…HH‹D$I‰…PI‹EHPI‰Ué	fDL‹
AÂ&IƒM‰Îé”üÿÿDL‰÷èÿÿH‹áÀ&L‰ÿI9G„jÿÿÿèÿÿH…À„¦H‰ÇH‰D$è™ÿÿH‹T$I‰ÆHƒ*…EÿÿÿH‰×èÏÿÿé8ÿÿÿf.„L‰ÿè¸ÿÿé5ÿÿÿL‰÷è¨ÿÿé¹þÿÿI‰éoþÿÿ@L‰ÿèˆÿÿé]üÿÿIƒ$HÄ8L‰à[]A\A]A^A_ÃfD¾ü‡ºH
çH=`òL‰óè@hÿÿI‹EE1äHƒèI‰EH…ÀtH…Ût¬Hƒ+u¦H‰ßèÿÿ뜀L‰ïèÿÿëÚfDèû
ÿÿéþüÿÿfDI‰޾ˆº닐HƒèA¼
ˆ½I‰tFH
†æº¾
ˆH=Ìñè¯gÿÿéjÿÿÿf.„Iƒ.…Ñ1ÛE1íA¼‡½õL‰÷è~
ÿÿH
8æ‰êD‰æH=ƒñèfgÿÿM…í…ÿÿÿE1äé)ÿÿÿDèKÿÿH…À…åIÇÆÿÿÿÿé®ýÿÿfDHƒèI‰„ƒH
Ýåºõ¾‡H=#ñègÿÿë\@ºúH
µå¾1‡A¼H=úðèÝfÿÿIƒm…WþÿÿL‰ïèÊÿÿéJþÿÿH
åºõ¾‡H=Åðè¨fÿÿE1äé%þÿÿ1ÛA¼‡½õL‰ÿè‹ÿÿéÿÿÿ‹0º(‡1ÀH=¾ïè¡ðÿÿI‹D$Hé2ûÿÿIƒ$é9ûÿÿIƒ/A¼
ˆ½t¹H
庾
ˆH=Lðè/fÿÿéêýÿÿ1Ûé¹üÿÿUH‰ýSH‰óHƒìH‹H‹5)
)H9÷tè_ÿÿ…Àu1Ò1öëDH‹µHH‹•P‹d‹}tÿ³Èÿ³Àÿ³¸ÿ³°ÿ³¨ÿ³ ÿ³˜ÿ³ÿ³ˆÿ³€ÿsxÿspÿshÿs`ÿsXÿsPÿsHÿs@ÿs8ÿs0ÿs(ÿs ÿsÿsÿsÿ3è™øÿÿHÄÐH…Àt
HƒÄ[]ÃfDºMH
ä¾̉H‰D$H=sïè.eÿÿH‹D$ëÊ€ATUSH‰ûèDTÿÿH‹-]½&H‹»@HƒEH‰«@H…ÿtHƒ/tOL‹£pI9ìt)M…ät$I‹D$H‹…Ò~kºÿÿÿÿðÁHǃxƒút*Hǃp[1À]A\Äè›
ÿÿëªf„H‹»pH…ÿtÕHǃpHƒ/uÄèn
ÿÿë½@‹0ºʗ1ÀH= íèƒîÿÿI‹D$Hévÿÿÿf„USH‰ûHƒì(HT$Ht$H|$èsÿÿH‹H‹«pH;-b¼&HPH‰„¥H…턜H‹EH‹…ÒŽžºÿÿÿÿðÁHǃxƒú„¡HǃpH‹HƒèH‹|$H‹T$H‰H‹t$èˆ
ÿÿH‹»@H…ÿtHǃ@Hƒ/tH‰ßèWÿÿHƒÄ([]Ã@ès	ÿÿH‰ßèûVÿÿHƒÄ([]Ã@Hǃp딋0ºg…1ÀH=ˆìèkíÿÿH‹EHéDÿÿÿfH‹»pH…ÿ„ZÿÿÿHǃpHƒ/…Eÿÿÿè	ÿÿH‹Hƒèé;ÿÿÿf.„AVAUATI‰üUSHƒìH‹5’)èEÿÿH…À„|H‹5õ)H‰ÇH‰Ãè*ÿÿH‰ÅH…À„–Hƒ+„H‹5þ(H‰ïèÿÿH‰ÃH…À„‰Hƒm„ŽL‰æ¿1ÀH‹-ý)è¨ÿÿI‰ÄH…À„1ÒH‰ïH‰Æè?ÿÿIƒ,$H‰ÅteH…í„ü¿èÿÿI‰ÄH…À„NH‰X H‹=k)H‰ÆH‰h(èOÿÿH…Àt:Iƒ,$„HƒÄ[]A\A]A^ÃfH‰ïèèÿÿéeÿÿÿL‰çèØÿÿë‘fDIƒ,$A¾>yA½dt]D‰êD‰öH
qàH=ìè¤aÿÿHƒÄ1À[]A\A]A^ÃDH‰ßèˆÿÿéßþÿÿL‰çH‰D$èsÿÿH‹D$HƒÄ[]A\A]A^ÐL‰çèXÿÿë™fDA¾yA½dë…fA¾,yA½eHƒ+…mÿÿÿH‰ßè"ÿÿé`ÿÿÿDA¾yA½dëÖf.„A¾!yHƒmA½d…,ÿÿÿH‰ïèáÿÿéÿÿÿ@Hƒ+tA¾6yëÐH‰ßA¾6yè¼ÿÿëÀf.„SH‰ûHƒìH‹Gö€³tKHƒH‰ßö€³tcèfÿÿHƒ+tHƒÄ[Ãf.„H‰ßH‰D$ècÿÿH‹D$HƒÄ[ÄH;á·&t	è"ÿÿ…Àtè9ÿÿH…ÀtTHÇÀÿÿÿÿë«èsÿÿÿ뛐H‰ßèØ	ÿÿH‰ÃH…ÀtÒH‹@H;շ&„hÿÿÿH‰ßèW‹ÿÿH‰ÃH…Àt»H‹@éOÿÿÿfDH‹ɶ&H5âßH‹8è:
ÿÿ딄SH‰ûHƒìH‹Gö€³tKHƒH‰ßö€³tcèvÿÿHƒ+tHƒÄ[Ãf.„H‰ßH‰D$èsÿÿH‹D$HƒÄ[ÄH;ñ¶&t	è2
ÿÿ…ÀtèIÿÿH…ÀtTHÇÀÿÿÿÿë«èsÿÿÿ뛐H‰ßèèÿÿH‰ÃH…ÀtÒH‹@H;å¶&„hÿÿÿH‰ßègŠÿÿH‰ÃH…Àt»H‹@éOÿÿÿfDH‹ٵ&H5òÞH‹8èJ	ÿÿ딄AVAUI‰ýATUSHƒìH‹5âö(è%ÿÿH…À„œH‹5)1ÒH‰ÇH‰Ãèˆ
ÿÿH‰ÅH…À„ÜHƒ+„òH‹5Cü(H‹=Tþ(èßÿÿI‰ÄH…À„ÓL‰î¿1ÀL‹5â)èÿÿH‰ÃH…À„a1ÒH‰ÆL‰÷è$
ÿÿHƒ+I‰Å„‡M…í„>L‰î¿1ÀèOÿÿI‰ÆH…À„“1ÒH‰ÆL‰çèæ	ÿÿIƒ.H‰Ãt}Iƒm„…H…Û„˜Iƒ,$tRH‰ÞH‰ïèÇ	ÿÿH…À„nHƒmtgHƒ+t}HƒÄ[]A\A]A^Ã@H‰ßè˜ÿÿélÿÿÿH‰ßèˆÿÿéÿÿÿL‰çèxÿÿë¤fDL‰÷èhÿÿIƒm…{ÿÿÿL‰ïèUÿÿénÿÿÿH‰ïH‰D$èCÿÿHƒ+H‹D$…ƒÿÿÿH‰ßH‰D$è'ÿÿH‹D$HƒÄ[]A\A]A^ÃDA¾D‰öH
ܺ}H=Œçèï\ÿÿHƒÄ1À[]A\A]A^ÃA¾HƒmuH‰ïèËÿÿIƒ,$uºL‰çè¼ÿÿë°f.„A¾Hƒ+ušH‰ßèœÿÿëf.„HƒmuSH‰ïA¾è{ÿÿélÿÿÿfDIƒmA¾'u‰L‰ïè[ÿÿé|ÿÿÿfDHƒmtA¾*ë—A¾'é\ÿÿÿA¾é!ÿÿÿH‰ïA¾*èÿÿénÿÿÿ„AWAVAUI‰ý¿ATUSHƒìèÕÿÿH…À„LI‰ÄI‹EL‰ïHƒI‹EH‹5[ú(I‰D$ è9ÿÿH‰ÃH…À„L‹=´&L9ø„,¿èƒÿÿH‰ÅH…À„÷HƒH‰ÆL‰çH‰X è
ÿÿI‰ÆH…À„Hƒm„EIƒ,$„*H‹-óô(H‹=Ì)H‰îè¬ÿÿI‰ÄH…À„ÐHƒ¿èÿÿH‰ÅH…À„I‹E¿HƒI‹EH‰E H‹²ñ(HƒL‰}0H‰E(IƒèÕÿÿI‰ÇH…À„L‰` H‰h(IƒL‰p0Iƒ.„ëH…Ût
Hƒ+„PHƒÄL‰ø[]A\A]A^A_ÃfDH‹a²&H‹8èYÿÿ…À„è<ÿÿL‹=ղ&IƒI‹]H‹-ô(H‹=çÿ(L9û…úH‰îè¾ÿÿI‰ÆH…À„Hƒ¿è$ÿÿH‰ÅH…À„8I‹E¿HƒI‹EH‰E H‹Äð(HƒH‰E(Iƒ$L‰e0èæÿÿI‰ÇH…À„BL‰p H‰h(Iƒ,$…ÿÿÿM‰æL‰÷èÜÿþÿéÿÿÿ€H‹EA½:jÇD$
HPÿH‰UH…Ò„ñIƒ,$„¦M…ÿtIƒ/tO‹T$D‰îE1ÿH
GØH=GäèzYÿÿéœþÿÿDH‰ßèhÿþÿé£þÿÿÇD$M‰÷A½]jM‰æ@L‰ÿè@ÿþÿë§fDL‰çè0ÿþÿéÉýÿÿH‰ïè ÿþÿé®ýÿÿIƒ,$…´ÇD$
E1ÿA½/jL‰çèôþþÿéMÿÿÿ€ÇD$E1ÿA½õiH‹EM‰æHPÿH‰UH…Ò…ÿÿÿE1äH‰ïè´þþÿM…ä…þþÿÿéÿÿÿfD¾ðiºH
P×H=PãM‰æE1ÿè}XÿÿéŸýÿÿ„èÿÿH‰ïèóVÿÿI‰ÄH…À…ýÿÿA½-jÇD$
é­þÿÿ@èëÿÿH‰ïèÃVÿÿI‰ÇH…À…ÆH
áÖº¾[jH=×âè
XÿÿéþÿÿDIƒ.„–þÿÿº¾]jE1ÿH
£ÖH=£âèÖWÿÿI‹$HPÿI‰$H…Ò…÷üÿÿéÕýÿÿ@M‰÷A½hjÇD$éËþÿÿfH
ZÖº¾ÊiE1ÿH=Mâè€Wÿÿé»üÿÿ¾ÙiºéÖþÿÿM‰æL‰ûé
üÿÿI‰ÆéýÿÿA½/jÇD$
é¯ýÿÿfDAVAUATA‰ÔUH‰õSH‰ûèZÿþÿHƒH‰ïA‰ÅèÿþÿH…À„ÒH‰ï1ÒH‰ÆèÿÿH‰ÅH…À„©IcüèÑýþÿI‰ÄH…À„½H‰ÆH‰ïèÿÿI‰ÆH‹EM…ö„ÊHƒèH‰E„üIƒ,$„áHƒL‰ö¿1ÀèÞÿÿH‰ÅH…À„’1ÒH‰ÆH‰ßèuÿÿHƒmI‰Ä„ïIƒ.„ÕH‹HPÿM…ä„rH‰H…Ò„©L‰çA¾CŽècÓÿÿIƒ,$taH
öÔºêD‰öH=MÖè!VÿÿHƒ+„·D‰ïèOÿÿ[¸ÿÿÿÿ]A\A]A^ÐHƒèH‰E„‚I‹$A¾,ŽHPÿI‰$H…ÒuŸL‰çèÓûþÿ땐L‰çèÈûþÿéÿÿÿH‰ïè¸ûþÿIƒ,$…üþÿÿëÛH‰ßè ûþÿéJÿÿÿL‰÷èûþÿéÿÿÿH‰ïè€ûþÿIƒ.…	ÿÿÿëÜ@H‰ïèhûþÿéqÿÿÿH‰ßèXûþÿé<ÿÿÿA¾(Žé	ÿÿÿDH‹-‰ú(HƒEé6þÿÿ€HƒmA¾*Ž…ÛþÿÿH‰ïèûþÿéÎþÿÿf.„Iƒ.uL‰÷èòúþÿH‹HPÿI‰ÜA¾>Žéùþÿÿf.„AW1ÒAVAUATI‰üUSH‰ó1öHƒìHH‹=©ì(HÇD$HÇD$HÇD$ HÇD$(HÇD$0HÇD$8èæPÿÿHÇD$H‰ÅH…À„qI‹t$hH‰ßèÿþÿHÇD$H‰ÃH…À„OHT$(Ht$ H|$è‹ÿþÿH‹5lë(H‰ïèŒÿÿI‰ÅH‰D$0H…À„sI‹|$xè!ÿÿI‰ÅH…À„-¿èËÿÿH‰D$8H…À„%L‰h 1ÒHƒH‹t$8H‹|$0H‰^(è°ÿþÿI‰ÅH‰D$H…À„GH‹|$8Hƒ/„pHÇD$8H‹|$0Hƒ/„hI‹|$xL‹|$HÇD$0HÇD$èWûþÿHƒø„íIƒM‰ýH‹T$(H‹t$ H‹|$èbÿþÿHƒm„®Hƒ+t1M…ÿtIƒ/tHƒÄHL‰è[]A\A]A^A_Ã@L‰ÿèùþÿëàfDH‰ßèøøþÿëÅfDA¼UrA¾èI‰íE1ÿ1ÛH‹|$0H…ÿt
Hƒ/„¸H‹|$8H…ÿt
Hƒ/„´H
nÑD‰òD‰æH=Ýè›RÿÿH…ítHƒmA½uH‰ïèøþÿH…Û…AÿÿÿéBÿÿÿL‰ÿèXÿÿ…À„ˆ1öL‰ÿèvøþÿI‰ÅHÇD$M…í…ëþÿÿA¼ÐrA¾òéè+øþÿé†þÿÿfDèøþÿéŽþÿÿfDèøþÿé>ÿÿÿfDèû÷þÿéBÿÿÿfDA¼arA¾ëéûþÿÿ€1ÿèñÿÿI‰ÄH…À„½H‰ÆL‰ÿèùþÿIƒ,$I‰Å…YÿÿÿL‰çè¤÷þÿéLÿÿÿ€A¼}rH‹|$H…ÿt
Hƒ/„ÖHÇD$H‹|$0H…ÿt
Hƒ/„ÉHÇD$0M…ítIƒm„ÀH‹|$8H…ÿt
Hƒ/„¼Ll$8Lt$0HÇD$8H|$L‰êL‰öH‰|$è\üþÿH‹5
ï(H‰ïèmÿÿI‰ÇH…À„ÑH‹|$H‰ÆèdúþÿIƒ/‰D$„þH‹T$8H‹t$0H‹|$è¢úþÿ‹D$HÇD$HÇD$0HÇD$8…ÀtºíD‰æH=€ÛH
JÏè„PÿÿH‹T$L‰öL‰ïè„Iÿÿ…ÀˆH‹5Må(H‹=öó(1ÒèGüþÿI‰ÇH…À„]H‰ÇècÍÿÿIƒ/„ùA¼sA¾ïE1ÿë„A¾íE1ÿH‹|$H‹T$(H‹t$ è#üþÿH‹|$H…ÿ„Hƒ/I‰í…ýÿÿèãõþÿéýÿÿfDL‰ÿèÐõþÿéõþÿÿA¼ré+þÿÿDA¼ réþÿÿDè£õþÿé þÿÿfDè“õþÿé-þÿÿfDL‰ïè€õþÿé3þÿÿèsõþÿé:þÿÿfDA¼«réßýÿÿDA¼sA¾îE1ÿé-ÿÿÿ@L‰ÿA¼sA¾ïE1ÿè)õþÿé
ÿÿÿ@A¼úrA¾îéøþÿÿ€HÇD$A¼ÐrA¾òé×þÿÿA¼sA¾ïéÆþÿÿI‰íéùûÿÿDHƒìH‹‡HH…ÀtH‰÷ÿÐH…Àt&HƒÄÐèÛùÿÿH…Àu𾱅º×ëf.„¾™…ºÕH
@ÍH= ÙèsNÿÿ1Àë¹Df.„H‹Gö€³té.ôþÿfDSH‰ûHƒìH;ѥ&t	èüþÿ…Àtè)ýþÿH…ÀthHÇÀÿÿÿÿHƒÄ[ÃH‰ßèÏ÷þÿH‰ÃH…ÀtÙH‹Х&H9Cu,f.„H‰ßèˆÿÿÿHƒ+uÅH‰ßH‰D$èÕóþÿH‹D$ë±H‰ßè&yÿÿH‰ÃH…ÀuÎë˜H‹¥¤&H5¾ÍH‹8èøþÿë€@SH‰ûHƒìH‹Gö€³tCèfóþÿHcÈH9ÁuHƒÄ[ÄHƒøÿtEH‹[¥&H5¼ØH‹8èÄ÷þÿ¸ÿÿÿÿëÏDH;٤&t	èûþÿ…Àtè1üþÿH…Àtm¸ÿÿÿÿë§è üþÿH…Àt±ëíH‰ßèÑöþÿH‰ÃH…ÀtÓH‹Ҥ&H9Cu+@H‰ßèPÿÿÿHƒ+…hÿÿÿH‰߉D$èÚòþÿ‹D$éSÿÿÿH‰ßè)xÿÿH‰ÃH…ÀuÉë“H‹¨£&H5ÁÌH‹8è÷þÿéxÿÿÿ@SH‰ûHƒìH‹Gö€³tSH‹5ܤ&1Òè
ûþÿ…Àx/ƒøtHƒÄH‰ß[é·ôþÿ€H‹Q¤&H5Ú×H‹8èºöþÿHÇÀÿÿÿÿHƒÄ[ÃDH;ɣ&t	è
úþÿ…Àt&è!ûþÿH…ÀuÒH‹£&H5ÌH‹8èvöþÿHƒÈÿë½H‰ßè¸õþÿH‰ÃH…ÀtÊH‹¹£&H9Cu(H‰ßè8ÿÿÿHƒ+uH‰ßH‰D$èÅñþÿH‹D$éxÿÿÿH‰ßèwÿÿH‰ÃH…ÀuËé\ÿÿÿfDAVAUATUSH‹á£&H9Þ„H‰õI‰ü1öH‰ïè˜ñþÿI‰ÅH…À„$I‹|$Hƒ/„mM‰l$H‹EHƒøÿ„HƒøŽûL‹-Áé(L‰ïèAöþÿ…À„	L‰îL‰çèŽûþÿH…À„Hƒ(„{H‹5Œé(L‰çèlûþÿI‰ÄH…À„H‹5)â(H‰ÇèQûþÿI‰ÅI‹$M…í„¡HƒèI‰$„ãH‰ï¾èÖðþÿH‰ÅH…À„ÚH‰ƿ1ÀèÛøþÿI‰ÄH…À„ï1ÒH‰ÆL‰ïèröþÿIƒ,$I‰Æ„ÔHƒm„¹I‹EHHÿM…ö„ØI‰MH…É„‹Iƒ.tuHƒH‰Ø[]A\A]A^ÃDHƒè½a”»I‰$„À‰ډîH
ÎÈH=ÖèJÿÿ[1À]A\A]A^ÃfDèëïþÿé‰þÿÿfDL‰çèØïþÿéÿÿÿL‰÷èÈïþÿé~ÿÿÿL‰ïè¸ïþÿéhÿÿÿH‰ïè¨ïþÿé:ÿÿÿL‰çè˜ïþÿéÿÿÿH‰ÇèˆïþÿéxþÿÿH‹i &½9”»H5ÕH‹8èÐóþÿéCÿÿÿL‰çèPïþÿé3ÿÿÿ½;”»é!ÿÿÿf„½M”»
é	ÿÿÿH‹	 &½T”»
H5àÔH‹8èpóþÿéãþÿÿè£ñþÿé©þÿÿfD½_”»éÁþÿÿf„I‹E½h”HHÿI‰M»H…É…™þÿÿL‰ïè©îþÿéŒþÿÿ@HƒmtI‹E½w”HHÿëÇH‰ïè‚îþÿëç½w”ë¶f„HƒìH‹FH;ٟ&t	H;5¨ &u^è±üÿÿH…Àt,Hƒ(tH‹ &HƒHƒÄÃfDH‰Çè(îþÿëàfD¾­jH
ÕÆºH=@ÔèHÿÿ1ÀHƒÄÃ@H‹H H‹ݞ&H5´ÆHÈH‹81Àè•öþÿ¾¬jë³@f.„AUATUSHƒì(H‹-ÿŸ&H‹^H‰l$H…Ò…ÍH…Û„¼Hƒû…êH‹^ L‹%çæ(L‰çè‡òþÿ…À„ßL‰æH‰ßèÔ÷þÿH…À„KHƒ(„qH‹5ºæ(H‰ßè²÷þÿI‰ÄH…À„¼H52ÇH‰Çè·ðþÿIƒ,$A‰Å„)H‹-Rë(E…í„H‰޿1Àè:õþÿI‰ÄH…Àt$1ÒH‰ÆH‰ïèÕòþÿIƒ,$H‰Ã„H…Û…¨A½»¤Z‰ÞH
¾ÅD‰ê1ÛH=FÓè©Fÿÿé~@H…ÛH²ÅH
¢ÅHIÈH‰ØHÍÃHÁø?L
ÉH…ÛLIÊL@HƒìH‹P&SHžÆH5!ÈH‹81ÀèõþÿX¾xZZH
=źèH=ÅÒ1Ûè&FÿÿHƒÄ(H‰Ø[]A\A]Äè»îþÿH‹-Dê(H‹{H9ïtH‰îèSõþÿ…ÀtHƒHƒÄ(H‰Ø[]A\A]ÃDH‰ëéJþÿÿL‹%áæ(H‹=:ë(L‰æèíþÿH‰ÅH…À„HƒH‰޿1ÀèÛóþÿH‰ÃH…À„1ÒH‰ÆH‰ïèrñþÿHƒ+I‰Ä„]M…ä„ìHƒm„9L‰æ¿1ÀH‹é(è‹óþÿH‰ÅH…À„ç1ÒH‰ßH‰Æè"ñþÿHƒmH‰Ã„I‹$HƒèH…Û„ÃI‰$H…À…àþÿÿL‰çèþêþÿéÓþÿÿf„L‰çèèêþÿéÊýÿÿH‰ÇèØêþÿé‚ýÿÿI‰ÔH…Û„ÌHƒû…þÿÿH‹F H‰×H‰D$èíþÿH…ÀêH‹\$éýÿÿfDH‹y›&H5ZÐH‹8èêîþÿHT$Ht$H|$è¶ïþÿH‹D$H…ÀtHƒH‹D$H…ÀtHƒH‹T$H…Òt	HƒH‹T$H‹t$H‹|$èîþÿ¿èNòþÿH=Ðè’ëþÿH‹T$H‹t$H‹|$I‰ÄèÛíþÿM…ä„:L‰çèÊïþÿIƒ,$t#H‹-è(éÓýÿÿ€L‰çèÈéþÿéìüÿÿL‰çè¸éþÿëÓHT$H‰ÙL‰çLêÃH5-ƒ(èxoÿÿ…À‰ðþÿÿ¾jZéFýÿÿfDHƒmA½»çZ…§üÿÿH‰ïèbéþÿéšüÿÿDI‹$HƒèI‰$A½»êZH…À…uüÿÿL‰çè0éþÿéhüÿÿH‰ïè éþÿéºýÿÿH‰ßèéþÿé–ýÿÿH‰ïèéþÿé×ýÿÿH‰×è`ëþÿI‰ÅH…ÀŽDþÿÿH‹5½Û(L‰çè•èþÿH…À„ÿÿÿH‰D$IEÿéþÿÿfDH‰ïèîþÿéÈþÿÿèSëþÿL‰çè+AÿÿH‰ÅH…À…åüÿÿA½»ÙZé¼ûÿÿDf.„AWAVAUATUH‰ýSH‰óHƒì(H‹FH;ə&L‹wPt
H;4š&….HƒE1äHÇD$HÇD$E1íHƒ|$…ÆH‹ÿ™&H9C…
H䧏
òþÿL9àŽãL‰æH‰ßIƒÄèEðþÿI‰ÇH…À„M…ítIƒm„ùH‹’™&L‰ÿI9G…è`ëþÿH‰ÁHƒùÿ„3‹Et…À…ˆH‹uhH…ö„CH‹E`Hƒþÿ„¥H™HÇÇÿÿÿÿH÷þH…ÉyH‹•€L‹L$JʈFH9ÁíH¯ÎIÎH…ÿxI>I‰þHƒD$M‰ýM…ö…ÿÿÿ¾ÙmºŽégf.„L‹D$H‹•ˆHÇÇÿÿÿÿH‹…€J‹4ÂH‹•J‹ÀH…Ò„mÿÿÿJ‹<ÂédÿÿÿDL‰ïèÈæþÿH‹‘˜&L‰ÿI9G„ÿþÿÿè¿ìþÿI‰ÅH…Àt7H‰ÇèOêþÿIƒmH‰Á…äþÿÿL‰ïH‰D$è„æþÿH‹L$Hƒùÿ…ÒþÿÿDèkïþÿH…À…*HÇÁÿÿÿÿé³þÿÿfDH‰ßH‹D$ÿÐI‰ÇH…À…aþÿÿè5ïþÿH…ÀtH‹
Y˜&H‰ÇH‹1èžéþÿ…À„…èÁèþÿHƒ+M‰ïu~H‰ßèæþÿëtfDL9c~áL‰æH‰ßIƒÄèCîþÿI‰ÇH…À…þýÿÿM‰ᄐmºë„M‰ᄡmºHƒ+„.f„H
Z¾H=ÂÌE1öèŠ?ÿÿM…ÿt
Iƒ/„#HƒÄ(L‰ð[]A\A]A^A_Ãf„H‹|$èvîþÿH‰ÅH…À„!H‹=kà(H‰Æè{ïþÿI‰ÄH…À„Hƒm„L‰æ¿1ÀL‹-câ(èNíþÿH‰ÅH…À„ƒ1ÒH‰îL‰ïèåêþÿHƒmH‰Â„·H…Ò„êIƒ,$„ƒH‰×H‰T$A½N„A¾£èڻÿÿH‹T$Hƒ*„ND‰òD‰îH
\½H=¤Ëè>ÿÿHƒ+¾ÙmºŽ…ÛþÿÿH‰߉t$‰T$èkäþÿ‹T$‹t$é¾þÿÿfDL‰ÿèPäþÿéÐþÿÿH‹‰•&H5úÊA½¥ƒA¾•H‹8è–èþÿéyÿÿÿH‰ïèäþÿéïþÿÿL‰Ïè(íþÿH‰ÅH…À„,H‹=ß(H‰Æè-îþÿI‰ÄH…À„"Hƒm„>L‰æ¿1ÀL‹-á(èìþÿH‰ÅH…À„C1ÒH‰îL‰ïè—éþÿHƒmH‰Â„JH…Ò„ßIƒ,$„H‰×H‰T$A½„A¾ 茺ÿÿH‹T$Hƒ*…µþÿÿH‰×èUãþÿé¨þÿÿL‰çH‰T$èCãþÿH‹T$éfþÿÿf„H‰ïH‰D$è#ãþÿH‹T$é2þÿÿf„H‰÷èÈêþÿH‰ÃH…ÀtuH‹@H‹€èH‰D$H…À„DIÇÄÿÿÿÿé­úÿÿH‰ÂHÂ…OûÿÿH…À‰FûÿÿH‹´”&H5ÉA½©ƒA¾•H‹8èçþÿéôýÿÿ@H‰ïèâþÿéµþÿÿH
E»º¾©mE1öH= Éèk<ÿÿéëüÿÿL‰çH‰T$èYâþÿH‹T$éÊþÿÿH‰ïH‰D$èBâþÿH‹T$éŸþÿÿ¾ØmºŽévüÿÿA½D„A¾£épýÿÿA½F„A¾£Hƒm…YýÿÿH‰ïèùáþÿéLýÿÿA¾£A½I„Iƒ,$…5ýÿÿL‰çèÕáþÿé(ýÿÿA½„A¾ éýÿÿA½„A¾ ë¥A¾ A½„뻾«mºE1ÿéÞûÿÿM‰ï¾ÆmºéÌûÿÿA½I„A¾£ë‰A½„A¾ éxÿÿÿUH‰ýSH‰óHƒìH‹H‹5iß(H9÷t	èŸêþÿ…ÀtCH;-„“&…®Hƒ}HptHƒÄH‰Ø[]ÃfDH‰ïèáþÿHƒÄH‰Ø[]ÃfDL‹€L‹…ˆ1ÒHÇÇÿÿÿÿH‹H‰+H‹EPH‰C‹ut…ö~¨„I‹ÑH‰DÓI‹ÐH‰DÓPH‰øH…ÉtH‹ÑH‰„ӐHƒÂ9ÖÒHƒÄH‰Ø[]ÄH‹™Þ(H…ÛteH‹}H9û„9ÿÿÿH‰Þè¿éþÿ…À…)ÿÿÿH‹EH‹K H5¨ÇH‹P H‹-‘&H‹81ÀèóèþÿH
í¸º ¾lˆ1ÛH=™Çè:ÿÿéïþÿÿH‹è’&H5SºH‹8èiäþÿëÄ€SH‰ûHì°Ht$è{þÿÿH…À„BóoóoHóoP óoX0óo`@)„$à‹KtóohPóop`)Œ$ðóoxpóo€€)”$óoˆóo )œ$)¤$ óo˜°óo ÀH‹)¬$0)´$@)¼$PH‹Ph)„$`)Œ$p)”$€)œ$)¤$ …ÉŽGHƒ¼$pyVH;”$0uLH„$àƒéHÈëHƒ¸˜y.HƒÀH9PPu$H¯PH9ÁuâH‹ˑ&HƒHİ[ÃfDH‹ù&HƒHİ[Ã@ºtH
E·¾zH‰D$H=Æèn8ÿÿH‹D$Hİ[Ãékþÿÿf.„SH‰ûHì°Ht$èÛüÿÿH…À„RóoóoHóoP óoX0óo`@óohP)„$àóop`óoxp)Œ$ðóo€€óoˆ)”$Hcstóo )œ$)¤$ óo˜°óo ÀH‹)¬$0Nÿ)´$@)¼$PH‹Ph)„$`)Œ$p)”$€)œ$)¤$ …öŽSHcÁHƒ¼Äpy_H9”Ä0uUH„ôà‰ÉHÁáH‰ÇH)ÏH‰ùë@Hƒ¸€y.HƒèH9PHu$H¯PH9ÁuâH‹&HƒHİ[ÃfDH‹I&HƒHİ[Ã@ºnH
•µ¾ÑyH‰D$H=“Äè¾6ÿÿH‹D$Hİ[Ãé[þÿÿf.„AWAVI‰öAUATI‰ÔUH‰ýL‰÷SHì(HÇD$ Ht$PHÇD$(HÇD$0èþúÿÿH…À„H‹}hI‰ÅL¼$ 1ÛHÿ‡'‹d…É…IH‹EL‰âL‰þH‰ïÿP0H…À„ðHƒ(„®H‹…H…À„)HcUtHÐH9Ðréd@HƒÀH9†SHƒ8xíH‹5~Ê(H‹=WÙ(1Òè¨áþÿH‰ÅH…À„¼H‰ÇA¼ñ}農ÿÿHƒm„KH
M´º¿D‰æA¿˜qH=oÃA¾Ûèl5ÿÿHT$HHt$@HÇD$ H|$8Hl$0HÇD$(HÇD$0Ld$(Ll$ èŽàþÿ1Ò1ö1ÿèCáþÿH‹D$8H‰êL‰æL‰ïH‰D$H‹D$@H‰D$H‹D$HH‰D$è.ÿÿ…ÀˆçH‰ßè7ßþÿH‹T$H‹t$H‹|$èóàþÿH‹T$0H‹t$(H‹|$ èŸÞþÿHÇD$ HÇD$(HÇD$0H
^³D‰òD‰þH=¸Âè‹4ÿÿ1Àë\€L‹%Ɍ&Iƒ<$„L‹EhE‹vtIEMUP‹•d…Ò…I‹}M‰ùD‰ñL‰ÒH‰Æè‹,ÿÿH‰ßèƒÞþÿIƒ$L‰àHÄ([]A\A]A^A_Ãf„èKÚþÿH‰ÃI‰ÇH…À…Åýÿÿè‡ßþÿA¿)qA¾ÍéBÿÿÿfDM‰'H‹…H…À…×ýÿÿL‹%Œ&éSÿÿÿ1ÒD‰öL‰ïH‰D$L‰T$L‰D$è„2ÿÿL‹T$M‰ùD‰ñH‹D$I‹}L‹D$L‰ÒH‰ÆèÐ+ÿÿºD‰öL‰ïèP2ÿÿé0ÿÿÿL‰çè`ÙþÿéíþÿÿH‰ÇèPÙþÿéEýÿÿH‰ïè@Ùþÿé¨ýÿÿA¿qA¾Èéƒþÿÿ€A¿qA¾Öé£ýÿÿ€H‰êL‰æL‰ïèJÞþÿéþÿÿDA¼í}éRýÿÿDAVAUATI‰ôUSH‰ûèýÚþÿHƒ‰ÅM…äubH‰ßA½°ŽA¼ñèίÿÿH
h±D‰âD‰îH=³è•2ÿÿHƒ+t‰ïèÈÞþÿ[¸ÿÿÿÿ]A\A]A^Ãf.„H‰ßèhØþÿë×fDL‰æ‹HƒÆ‚ÿþþþ÷Ò!Ð%€€€€té‰ÂÁê©€€DÂHVHDò‰ÁÁHƒÞL)æ„L‰ç1ÒèßþÿI‰ÄH…À„çHƒL‰æ¿1Àè7àþÿI‰ÅH…Àte1ÒH‰ÆH‰ßèÒÝþÿIƒmI‰Æ„¤Iƒ,$„‰H‹HBÿM…ötAH‰H…ÀteL‰÷A½œŽA¼ïènÿÿIƒ.…éþÿÿL‰÷è×þÿéÜþÿÿIƒ,$„€H‹HBÿA½—ŽA¼ïH‰H…À…²þÿÿH‰ßèX×þÿé¥þÿÿH‰ßèH×þÿë‘fDL‰çè8×þÿéjÿÿÿL‰ïè(×þÿéOÿÿÿA½‡ŽA¼ïédþÿÿfL‹%YÖ(Iƒ$éõþÿÿL‰çè÷ÖþÿésÿÿÿfAVAUATUSH‹Hc@tA‰ÆAÁîAÆAÑþƒøŽ«H_H,ÇE1äL-¿ë"€Hƒ½ˆy9AƒÄHƒÃHƒíE9æ~uH‹UHH‹C@H‰S@H‹UH‰EHH‹H‰H‰EHƒ»€x½H‹=þÓ(L‰îè~ýÿÿƒøÿu³è„Øþÿº½H
	¯¾…‰ÃH=Ҿè50ÿÿ‰ßènÜþÿ[1À]A\A]A^Ã[¸]A\A]A^ÃfUSHÇÃÿÿÿÿHìèH‹GPD‹GtHt$L‹—€L‹ŸˆH‰|$H‰D$H‹H‰ò1ÀE…À~:f.„M‹ÂL‰JM‹ÃL‰JPI‰ÙH…ÉtL‹ÁHƒÀL‰ŠHƒÂA9ÀÐèkÉÿÿH‰ÃH…ÀtcH;̇&…–H»pèzþÿÿ…À„H‹H‰ØH‰H…ÒtHÄè[]Ãf.„H‰ßH‰D$è3ÕþÿH‹D$HÄè[]Ã@H
ڭº<¾N‰H=Ƚè/ÿÿº*H
¸­¾³uH=˽èæ.ÿÿ1ÀëŽfH‹-ùÒ(H…턪H‹xH9ý„MÿÿÿH‰îèÞþÿ…À…=ÿÿÿH‹CH‹M H5¼H‹P H‹‰…&H‹81ÀèOÝþÿHƒ+tYH
C­º*¾µuH=Q½èl.ÿÿHÄè1À[]ú+H
­¾ÀuH=(½èC.ÿÿH‹HPÿ1ÀéÙþÿÿDH‰ßè(ÔþÿëH‹ÿ†&H5j®H‹8è€Øþÿé|ÿÿÿf.„AWLcÏAVAUATUSHcÞD‰ÎHìèH‹„$ H¼$ ‰T$H‹@hH‰D$èdÿÿˆD$A9ÙŒÿ1D‰˅ÛŽÇD$L¬$ E1ÿL´$ðM‰ì„I‹l$O‹TþD‰úL9Õ„«Hƒý„L‰T$D‰|$èÕþÿHc|$A‰Äè$ÔþÿI‰ÅH…À„hL‹T$L‰×èKÜþÿI‰ÆH…À„/H‰ïè7ÜþÿH‰ÅH…À„;¿èáÙþÿH‰ÃH…À„¥H‰h0H‹=jÊ(H‰ÆL‰h L‰p(èÝþÿH‰ÅH‹H…í„ÛHƒèH‰„þH‰î¿1ÀL‹-EÐ(èèÚþÿH‰ÃH…À„,1ÒL‰ïH‰ÆèØþÿHƒ+I‰Å„ÒH‹EHHÿM…í„	H‰MH…É„ÔL‰ïA¿ðA¾åèp©ÿÿIƒm„¥DD‰òD‰þ»¥½H
êªH=¬è,ÿÿD‰çèUØþÿè@ÔþÿH
ʪ‰ê‰ÞA‰ÄH=+»èö+ÿÿD‰çè.ØþÿÇD$ÿÿÿÿ‹D$HÄè[]A\A]A^A_ÃIÇD$PÇD$Iƒ¼$‰IƒÇIƒÄD9ûþÿÿH‹„$0H‹¼$(H‹´$pH…À„9SÿMDÕH‰úëHÇM9Åt*I‹uXIƒÅI‹EH…À„HƒèH¯ÆH…öÖHÂM9ÅuÖH‹D$L‹„$øLéó„H‹=±Î(H5ª«èÍÓÿÿƒøÿ…Tÿÿÿ»Ï½éàþÿÿDHƒèA¿èA¾åH‰…—þÿÿH‰ßèÏÐþÿéŠþÿÿf.„H‰ßè¸ÐþÿéõýÿÿH‰ßè¨Ðþÿé!þÿÿL‰ïè˜ÐþÿéSþÿÿH‰ïèˆÐþÿéþÿÿE‰ȉÞA)؃îˆÅL´$ðH<݉öAQÿI>HÁæHcÒI|>øITÖH)÷H‹HƒèHƒêH‰JH‹HHH‰JHH‹ˆˆH‰ŠˆH9øuÖA@ÿL‰ñHÇÂÿÿÿÿH´ÄøHÇAH‹„$@HƒÁH‰‘ˆH‰AHH9ñuÜé&üÿÿ€A¿ύA¾æéýÿÿ€‰ßD‰ÉD)σéxeJ4ÍH„$ ‰ɍSÿHðHÁáH´4HcÒH)ÎH”Ô0f„H‹HƒèHƒêH‰JH‹HHH‰JHH‹ˆˆH‰ŠˆH9ðu֍OÿH”$(HÇÆÿÿÿÿH„$ H<Êë
fDHƒÂHÇ@H‹Œ$pH‰°H‰HPH‰ÐH9úuÙéFûÿÿ@IƒmuL‰ïèáÎþÿA¿эA¾æéüÿÿA¿ӍIƒmuL‰ïè»ÎþÿIƒ.t5H…ítÕH‹EA¾æHHÿH‰MH…É…UüÿÿH‰ïèÎþÿéHüÿÿ„L‰÷èxÎþÿëÁfDH‹EHHÿA¿ëA¾åë¸f.„A¿Սé{ÿÿÿH‰úfL‹„$øI‰ÑH‹„$H‹¼$@H…À„°L‰ñM‰Â1öë!fƒÆIÀ9ó~,H‹yXHƒÁH‹AH…À„±HƒèH¯ÇH…ÿԃÆIÂ9óÔH‹D$LÀM‰ÐI‰ÂI9Òv	M9È‚E1ÿ‹l$…í…óDo¤$ DsÿóDoœ$0óDo”$@óDoŒ$PóDo„$`óo¼$pD)¤$óo´$€óo¬$D)œ$ óo¤$ óo„$°D)”$0H‹„$ )¼$`óoœ$Àóo”$ÐóoŒ$àD)Œ$@D)„$PH‹Ph)´$p)¬$€)¤$)„$ )œ$°)”$À)Œ$Ð…ÛŽ
McÖJƒ¼Ԡ‰J;”Ô`…øHcÃH¼$E‰óH‰ÖLÅIÁãJI‰ÉM)Ùë#€Hƒ¹€‰ºHƒéH9qH…¬H¯qI9ÉuÚóoŒ$ðóo”$óoœ$óo¤$ )Œ$óo¬$0óo„$@)”$ óo´$Póo¼$`)œ$0óoŒ$póo”$€)¤$@H‹Œ$ðóoœ$)¬$Póo¤$ óo¬$°)„$`H‹Ih)´$p)¼$€)Œ$)”$ )œ$°)¤$À)¬$ÐJƒ¼Ԡ‰ªJ;ŒÔ`…œLÇH‰þL)Þëf„Hƒ¿€y~HƒïH9OHutH¯OH9þuâD‹\$E…Û…Ÿ	L„$0IÀL9À†6
€I¯IƒÀI9ÀróH‹´$(H‹¼$øèVÏþÿD‹T$E…Ò…»	L‰ÿèÊþÿéµøÿÿ€|$F„]D‹L$E…É…ÿHŒ$@H´$pÿt$SH‹”$H‹¼$8LŒ$L„$@èEÿÿY^L‰ÿè«ÉþÿÇD$éHøÿÿóoŒ$ €|$Fóo”$0óoœ$@H‹„$ )Œ$óo¤$Póo¬$`)”$ óo´$p)œ$0I‰ÄH‹Phóo¼$€)¤$@óo„$óoŒ$ )¬$Póo”$°óoœ$Àóo¤$Ð)´$`óo¬$à)¼$p)„$€)Œ$)”$ )œ$°)¤$À)¬$ЄDCÿHÇÇÿÿÿÿ…Û~`H˜Hƒ¼Ġ‰H;”Ä`…òLýH„Ä H‰Ö1ÉëHƒ¼ø€‰ÉLÀH9p@…¼ƒÁH¯09ËuÙHcÃL„$0H‰T$8HÁàI4H‰D$0L9ƆH‰ÑL‰ÀDH¯HƒÀH9ÆwóI‰ÍL‰ïL‰D$(H‰T$ èÏþÿH‹T$ L‹D$(H…ÀI‰Ç„…L‰|$HL‰d$@…ÛŽLT$@CÿHÇÇÿÿÿÿMJI‰ÆHŒ$ M‰ÓI4ÁL‰ÐfDH‹iH‰¸HƒÀHƒÁH‰hH9Æuä€|$F„H‹t$0I2ID2D‰öHÁæH)ñH‰P@H¯HƒèH9ÈuïL‰Ð1Òf.„HƒxuHÇ@PƒÂHƒÀ9ÓæóoŒ$ €|$Fóo”$0I‹T$hóoœ$@)Œ$óo¤$Póo¬$`)”$ óo„$p)œ$0óo´$€óo¼$)¤$@óoŒ$ óo”$°)¬$Póoœ$Àóo¤$Ðóo¬$à)„$`)´$p)¼$€)Œ$)”$ )œ$°)¤$À)¬$ЄÒIcƅÛ~iHÇÆÿÿÿÿHƒ¼Ġ‰¼H;”Ä`…®H<õH„Ä 1Éë&f.„Hƒ¼ð€‰HøH9P@…tƒÁH¯9ËÙH‹´$(L‰êL‰ÿèÖÊþÿfot$@fo|$PfoŒ$foD$`´$ fot$pfo”$ ¼$0fo¼$€foœ$°„$@fo¤$Àfo¬$д$Pfo„$àfo´$ð¼$`fo¼$Œ$p”$€œ$¤$ ¬$°„$À´$м$àé¥÷ÿÿIƒÁI‰SPI¯SM‰ËL9ÎuëéwýÿÿfDM‰Ðél÷ÿÿ„H¬$ð‰ÞH‰ïè¾ÿÿ<F…‰úÿÿH¼$ èîÿÿ…À„H‰ïè	îÿÿ…À…dúÿÿ»½½2éÍòÿÿfH´$pÿt$8IJPSMJH‹T$XH‹¼$8è¹ÿÿXZM…ÿ…xþÿÿ»ü½éŠòÿÿ€fH~ÀD)¤$D)œ$ D)”$0D)Œ$@D)„$P)¼$`)´$p)¬$€)¤$)„$ )œ$°)”$À)Œ$ÐH…À‰…ùÿÿH;”$`…wùÿÿD‰ñH¼$LÍH‰øH‰ÑJ4ëHƒ¸˜‰JùÿÿHƒÀH9HP…<ùÿÿH¯HH9ÆuÚóo„$ðóo´$ óo¼$0óoŒ$@)„$óo„$óo”$P)´$@óoœ$`óo¤$p)„$ óo„$óo¬$€)¼$PH‹„$ðóo´$ )„$0H‹Œ$€óo„$óo¼$°)Œ$`H‹@h)”$p)œ$€)¤$)¬$ )„$°)´$À)¼$ÐH…ɉ8øÿÿH;„$`…*øÿÿJë @Hƒ¿˜‰øÿÿHƒÇH9GP…øÿÿH¯GH9ÏuÚHcÃéˆ÷ÿÿf.„H¬$ð1҉ÞH‰ïèLÿÿHŒ$@H´$pÿt$SH‹”$H‹¼$8LŒ$L„$@è2ÿÿH‰ïº‰Þèÿÿ_AXéØ÷ÿÿL´$ð‰ÞH‰T$ L‰÷è¡ÿÿH‹T$ ˆD$é*ùÿÿ1?éºøÿÿ1>é0ûÿÿH‹=D¿(1öèíèÿÿƒøÿ„áH‹„$ H‹T$ L‹D$(I‰ÄéJùÿÿL´$ðé‡ñÿÿI‰Õé
ùÿÿH‹”$(H‹D$ÇD$L‹„$øLM‰Âé’óÿÿM‰Âé˜óÿÿ»´½1é@ïÿÿL´$ð1҉ÞH‰D$L‰÷èÿÿH‹D$H‹”$ L„$0IÀH‹RhL9À‡>öÿÿH‹´$(H‹¼$øè¡Åþÿº‰ÞL‰÷èÒÿÿéEöÿÿL´$ðëâèÃþÿºÈH
“™¾÷Œ‰ÃH=̩½èºÿÿ‰߻üèîÆþÿé”îÿÿH‹´$(H‹¼$øè4ÅþÿéçõÿÿDf.„AW1ÀAVA‰ιAUATI‰ôUSH‰ûHìH|$0H‰T$H‰|$(óH«H‹L‰D$D‰L$$H‰D$E…öŽHƒ¾‰Ì¸€‰ÂA9ÆŽ]HƒÀIƒ¼ĈxæH‹wq&H5P©H‹81Àè¦ÈþÿH‹|$0H…ÿ„Hƒ/…þE1ÿ1íèĿþÿHÇD$0HÇD$8H…ítHƒm„tM…ÿt
Iƒ/„sfoD$0foL$@H‰ØfoT$Pfo\$`fod$pfo¬$€fo´$Kfo¼$ fo„$°S foŒ$Àfo”$Ð[0foœ$àc@fo¤$ðkPs`{pƒ€‹“ ›°£ÀHÄ[]A\A]A^A_ÃfDHÇD$0HÇD$8é&ÿÿÿf„IcþèˆÅþÿH‰ÅH…À„¶þÿÿAFÿE1íHÅH‰$ë€J‰D- IƒÅL9,$tyK‹|,è‡ÇþÿI‰ÇH…ÀußH‹|$0H…ÿtHƒ/„‚þÿÿHÇD$0HÇD$8Hƒm…ŒþÿÿH‰ïè&¾þÿéþÿÿL‰ÿè¾þÿé€þÿÿIcþèëÄþÿH‰ÅH…À„þÿÿ€H‹D$H‹|$L‹hxèÇþÿI‰ÇH…À„ÔL‰ïèñÇþÿI‰ÅH…À„ÒH‹|$諿þÿH…À„H‹|$1ÒH‰Æè£ÄþÿH‰ÂH…À„¿¿H‰$èiÄþÿH‹$H…À„îHƒEH‹=¨»(H‰ÆL‰x(H‰P81ÒH‰h L‰h0H‰$èBÃþÿH‹$H…ÀI‰ÇH‹„HƒèH‰„îIƒ?„×I‹$‹”$@L‰ÿ‹t$$H‹ˆhèj£ÿÿH…À„¢þÿÿH‹T$(¹D‰öH‰Çèœÿÿ…Àˆ…þÿÿÿ´$øD‰öD‰÷ÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øÿ´$øAÿ´$ÈAÿ´$ÀAÿ´$¸Aÿ´$°Aÿ´$¨Aÿ´$ Aÿ´$˜Aÿ´$Aÿ´$ˆAÿ´$€Aÿt$xAÿt$pAÿt$hAÿt$`Aÿt$XAÿt$PAÿt$HAÿt$@Aÿt$8Aÿt$0Aÿt$(Aÿt$ Aÿt$Aÿt$Aÿt$Aÿ4$‹”$àè}çÿÿHĠ…ÀˆýÿÿHƒm…Æûÿÿé0ýÿÿfD1ÒéSûÿÿL‰ÿèI»þÿéþÿÿH‰Ïè<»þÿéþÿÿHƒèA¼šhH‰t+H
⓺ùD‰æE1ÿH=¯¤è
ÿÿé¦üÿÿA¼†hëÕH‰ÏèõºþÿëËIƒ/uL‰ÿèåºþÿA¼ˆhëµDA¼ŠhIƒ/tFIƒmtH…Òt˜Hƒ*u’H‰×貺þÿëˆL‰ïH‰$褺þÿH‹$ëÙH‹ç¹(Hƒé÷üÿÿA¼Œhë´L‰ÿH‰$èzºþÿH‹$ë¨@UHÇÅÿÿÿÿSH‰ûHìxH‹GPD‹`‹OtH‰æL‹—€H‰<$H‰D$AƒáÇH‰ò1ÀL‹ŸˆL‹‡…É~0I‹<ÂH‰zI‹<ÃH‰zPH‰ïM…ÀtI‹<ÀHƒÀH‰ºHƒÂ9ÁыƒdL‹ChAƒÉXH¼$ HƒìHv™PèJùÿÿèÅÂþÿZYH…À…
fo„$ H‰ßfoŒ$°H´$Ðfo”$Àfoœ$Ðfo¤$à)„$Ðfo¬$ð)Œ$àfo´$fo¼$)”$ðfo„$ foŒ$0)œ$fo”$@foœ$P)¤$fo¤$`)¬$ )´$0)¼$@)„$P)Œ$`)”$p)œ$€)¤$譬ÿÿ¾åzºH…À„HÄx[]þÚzºˆH
`‘H=X¢è“ÿÿHÄx1À[]Àéþÿÿf.„UIÇÃÿÿÿÿSH‰ûHì¨H‹CPD‹`‹KtH‰åH‰$L‹‡€H‰D$Aƒá§H‰êL‹—ˆ1ÀH‹¿…É~0I‹4ÀH‰rI‹4ÂH‰rPL‰ÞH…ÿtH‹4ÇHƒÀH‰²HƒÂ9ÁыƒdL‹ChAƒÉ8H¼$ÐHƒìH„H‰îPèG÷ÿÿèÂÀþÿZYH…À…ïfo„$ÐH‰îH‰ßfoŒ$àfo”$ðfoœ$fo¤$)$fo¬$ fo´$0)L$fo¼$@fo„$P)T$ foŒ$`fo”$p)\$0foœ$€)d$@fo¤$)l$P)t$`)|$p)„$€)Œ$)”$ )œ$°)¤$ÀèȪÿÿ¾†zºH…À„HĨ[]þ{zº|H
xH=˜ è«ÿÿHĨ1À[]ÃDf.„éþÿÿf.„AWAVAUATUH‰ýSHƒìH‹Fö€³„H‰÷è6¶þÿI‰ÄIƒüÿ„¡L‰àI\$HƒèHIØHÁûHƒÃH‹52­(H‰ïè’ÀþÿI‰ÆH…À„¶èñ¸þÿH‰ÅH…À„ÕH‰ßè¿þÿH‰ÃH…À„ùH‹5z¨(H‰ÂH‰ïè_µþÿ…ÀˆHƒ+„íL‹-žª(H‹=7µ(L‰îè·þÿH‰ÃH…À„ËHƒH‹5(§(H‰ßèÀþÿI‰ÅH…À„ÜHƒ+„"H‹5ã­(L‰êH‰ïèð´þÿ…ÀˆˆIƒm„H‹5¦¥(H‰êL‰÷è;»þÿH‰ÃH…À„§Iƒ.„Hƒm„úH‹5¯(H‰ß苿þÿH‰ÅH…À„Hƒ+„õH‹5–¦(¿1Àè2½þÿI‰ÅH…À„V1ÒH‰ÆH‰ïèɺþÿIƒmH‰Ã„ËH‹EHƒèH…Û„ºH‰EH…À„½H‹5V¦(H‰ßè¿þÿH‰ÅH‹H…í„HƒèH‰„2H‹5۳(1ÒH‰ïèaºþÿH‰ÃH‹EH…Û„ùHƒèH‰E„L‰çèk½þÿH‰ÅH…ÀtsH‹=Œf&H‰ÆH‰ú衼þÿHƒmI‰Ä„M…ätNL‰æH‰ßèsµþÿIƒ,$„H‹HJÿH…Àt/H‰H…É„ÀHƒÄ[]A\A]A^A_ÐH‰ßèسþÿéþÿÿH‹HBÿA¿ A¼H‰H…ÀtBD‰âD‰þH
¬ŒH=©èœ
ÿÿHƒÄ1À[]A\A]A^A_ÃHƒèA¿A¼H‰u¾H‰ßèk³þÿë´f„H‰ßèX³þÿéÑýÿÿH‰ßèH³þÿéÁþÿÿH‰ïè8³þÿéàþÿÿH‰ßH‰D$è#³þÿH‹D$é)ÿÿÿf„H‰ïè³þÿéàþÿÿL‰çH‰D$èó²þÿH‹D$éáþÿÿf„A¼A¿æ1ÛfIƒ.„¾Hƒmt_H…ÛtHƒ+tdM…í„öþÿÿIƒm…ëþÿÿL‰ï蘲þÿéÞþÿÿH‹EA¿HƒèH‰EA¼1ÛE1íH…À…µþÿÿf.„H‰ïèX²þÿë—fDH‰ßèH²þÿë’fDL‰ïè8²þÿéÖüÿÿH‰ïè(²þÿéùüÿÿL‰÷è²þÿéÞüÿÿH‰ßè²þÿéþüÿÿL‰ïèø±þÿé(ýÿÿH‰ïèè±þÿé6ýÿÿH;tc&tH‰ß貹þÿ…À„CèźþÿH…À„¯Hƒ+uH‰ß讱þÿfD裺þÿ»IÇÄÿÿÿÿH…À„]ûÿÿH
‹Šºé¾’H=~›èqÿÿ1Àézýÿÿf.„A¿ÉA¼éšýÿÿ€A¼A¿×E1íédþÿÿ@Iƒ.…L‰÷A¼A¿Óè±þÿéXýÿÿDL‰÷è±þÿé5þÿÿE1íA¼A¿Õéþÿÿ@苳þÿL‰ïèc	ÿÿH‰ÃH…À… ûÿÿE1íA¼A¿áéãýÿÿA¼A¿ãéÏýÿÿ€E1íA¼A¿ðé´ýÿÿ@I‰ÝA¿üA¼éÁýÿÿ@HƒèA¿é×ýÿÿf„H;áa&tH‰÷H‰t$è¸þÿH‹t$…Àt<è,¹þÿH…À…{þÿÿH‹a&H5%ŠH‹8è}´þÿé`þÿÿ„A¿ésýÿÿH‰÷譳þÿH‰ÃH…Àt´H‹@H;ªa&u7„ö€³„àýÿÿH‰ß蛯þÿI‰ÄHƒ+…[ùÿÿH‰ß覯þÿéNùÿÿH‰ßèù4ÿÿH‰ÃH…À„åýÿÿH‹@ë·H‰ßè?³þÿI‰ÅH…À„©ýÿÿH‹<a&I9Eu)I‹EL‰ïö€³t.è1¯þÿI‰ÄIƒmuL‰ïè?¯þÿë…L‰ïè•4ÿÿI‰ÅH…ÀuÇélýÿÿèc©ÿÿI‰ÄëÐA¼A¿ÓéXûÿÿH‹ö_&H5‰H‹8èg³þÿé6ýÿÿfAWAVAUATI‰üUSHƒì8H‹G‰t$,ö€³„êHƒ1ÿè¸þÿH‰D$H…À„þ	H‹rŸ(HƒI‹D$H;`&t
H;`&…;Iƒ$M‰ç1ÀHÇD$E1íE1öHƒ|$L‰d$ ÇD$(M‰ìI‰ÅÇD$…ñH‹4`&I9G…²L‰ÿèB¸þÿL9èŽL‰îL‰ÿIƒÅèz¶þÿH‰ÅH…À„>M…öt
Iƒ.„ÿHƒM…ätIƒ,$„ûH‹5¤ž(H‰ßèܳþÿH‰$H…À„‡Hƒ+„uH9-«(„}L‹%Ù`&L9etH‰ïèӬþÿ…À„+‹T$…Òu
1ÀL9e”	D$H‹|$H‰îè9³þÿƒøÿ„ÐHƒ|$I‰ÜI‰îH‹$„ÿÿÿL‰ÿH‹D$ÿÐH‰ÅH…À…6ÿÿÿM‰åL‹d$ è7¶þÿH…Àt"H‹[_&H‰ÇH‹2蠰þÿ…À„IèïþÿIƒ/„·Hƒ+„ H‹|$è·þÿHƒøÿ„³Hcl$,H)Å…˜‹D$…À„6H‹×_&HƒH‹|$èٱþÿI‰ÇH…À„5¿胳þÿH‰ÁH…À„qH‰X L‰õL‰ëL‰x(Iƒ,$…²fDL‰çH‰$èl¬þÿHƒ|$H‹$…é§€H‰ßèH¬þÿH9-™©(…ƒþÿÿ‹L$(…É„H‹5pœ(H‹|$èޱþÿƒøÿ„ÇD$(ÇD$éþÿÿL‰÷èø«þÿéôýÿÿL‰çèè«þÿéøýÿÿ¿趲þÿH…ÀtIƒ$L‰` I‰ÄéúüÿÿH
z„º ¾%|H=[†è£ÿÿ1ÉHƒÄ8H‰È[]A\A]A^A_ÀM9oŽnL‰îL‰ÿIƒÅèϳþÿH‰ÅH…À…UýÿÿM‰徂|L‹d$ º§éŽ@H‰$L‹d$ E1>–|º§H‹$H‹H‰D$HƒèH‰„ÉIƒ/„õI‰ÝI‰îM…À„VIƒ(„6H
°ƒH=›…èãÿÿI‹$1ÉHPÿI‰$H…Ò„TþÿÿH‹D$H‹0HVÿH‰4$H‰H…Ò„ÀH…Ût
Hƒ+„ÉH…í„÷þÿÿHƒm…ìþÿÿH‰ïH‰$聪þÿH‹$é×þÿÿ¾’}ººHƒ+…ºH‰$L‰õL‰ëE1ÀE1ÿ@H‹<$‰T$(‰t$L‰D$è:ªþÿM…ÿ‹t$‹T$(L‹D$„ÿÿÿIƒ/…ÿÿÿL‰ÿ‰T$‰t$L‰$èªþÿL‹$‹t$‹T$éæþÿÿDH‰ÇH‰$èä©þÿH‹$é+ÿÿÿH‰ßH‰$è̩þÿH‹$é"ÿÿÿL‰ljT$‰4$豩þÿ‹4$‹T$é¯þÿÿDH‹|$ èf­þÿHƒøÿ„ÅHcT$,HÇÇÿÿÿÿH)ÂHIúH‰T$HƒÇ軲þÿI‰ÄH…À„íH‹T$E1öHBH…Òx2H‰\$L‰óI‰ÆH‹™(H‰ÞL‰çHƒÃHƒ覮þÿI9ÞuáH‹\$HºÿÿÿÿÿÿÿH‹|$L‰áH‰Ö肫þÿƒøÿ„­Iƒ,$…ÙüÿÿL‰çèæ¨þÿÇD$(ÇD$éaûÿÿM‰åL‹d$ ¾z|º§Hƒ+„4Iƒ/„BH
dH=OƒL‰õL‰ëè‘ÿÿI‹$1ÉHƒèI‰$…±ýÿÿéüÿÿ„H‹¥(H;²Z&L‹d$ H‹}„Îè^­þÿ…À…¥H‹uH‹=S¥(èv²þÿI‰ÀM…À„ÏL‰Æ1?L‰D$L‹-œ¥(èO°þÿL‹D$H…ÀI‰Æ„N1ÒL‰ïH‰Æèá­þÿIƒ.L‹D$I‰Å„M…í„&Iƒ(„ìL‰ïèä~ÿÿIƒm„¾}º±E1Àéuüÿÿ€L‹d$ ¾>}º´E1ÀéWüÿÿf„H‰$L‰õL‰ëE1ÀéýÿÿfDL‰ëL‰õE1Àé@ýÿÿf.„L‰çè¯þÿI‰ÇH…À„%H‹@H‹€èH‰D$H…À„!HÇÀÿÿÿÿ韸ÿÿ€M‰åL‹d$ éóùÿÿL‹d$ ¾à|º­E1Àé·ûÿÿf„L‰ÇèئþÿéÿÿÿL‰÷èȦþÿL‹D$éßþÿÿfDL‰ï谦þÿ¾}º±E1ÀélûÿÿfDH‰ï谯þÿH‰ÃH…À…Áùÿÿ¾}ººH
4H=L‰õL‰ëèaÿÿéyûÿÿH‰ßèT¦þÿéSùÿÿL‰ÿèG¦þÿé<ùÿÿ¿HIý脯þÿH‰ÃH…À„;E1ÿH…í~H‹a–(L‰þH‰ßIƒÇHƒ膫þÿL9ýuáHºÿÿÿÿÿÿÿH‹|$H‰ÙH‰Öèg¨þÿƒøÿ„Hƒ+…úøÿÿH‰ßè̥þÿéíøÿÿL‹d$ ¾¸|ºªE1Àé~úÿÿ¾}º±éoúÿÿH‹}èx­þÿ…À…JýÿÿH‹}H‹¢(H‰þH‰Ç蚧þÿI‰Àé?ýÿÿI‰ÀL‹d$ ¾¹|ºªé)úÿÿ¾}º±éúÿÿM‰à¾Â|L‹d$ ºªéúÿÿ¾T}º¶é¬þÿÿ¾”}ººéYüÿÿE1öE1í¾o|º§é”úÿÿ¾q|º§E1öE1íé/üÿÿ¾h}º¸édþÿÿ¾q}º¸éaúÿÿH‰$E1ÀL‰õL‰뾌|º§éùÿÿH
m}º¤¾K|H=Nè–þþÿIƒ,$¹…åøÿÿ1í1Ûéøÿÿf.„AWAVAUATUSHƒìXL‹%C•(L‹-,•(H‹V&H‹^H‰|$L‰d$0L‰l$8H‰D$@H…Ò…d	Hƒû„Â~0Hƒû„¦Hƒû…´H‹F0H‰D$L‹n(L‹f ëf„H‹9V&H‰D$H…Û…ƒH‹\£(¿H‹˜(ÿhE1É1É1ÒA¸H‰ÆL‰çÿÓH‰ÃH…À„é	Hƒ8„WH‹£(¿H‹¨(ÿhE1É1É1ÒA¸H‰ÆL‰ïÿÕH‰ÅH…À„Í	Hƒ8„ËE ;C „L‹%˜(H‹=±¢(L‰æ葤þÿH‰ÂH…À„µHƒH‹5
•(H‰×H‰T$è}­þÿH‹T$H…ÀI‰Æ„Hƒ*„"¿èȩþÿI‰ÇH…À„<HƒE1ÒH‰ÆL‰÷H‰h HƒH‰X(讨þÿI‰ÅH…À„RIƒ/„0Iƒ.„H‹¢(IƒEL‰ïÿ0I‰ÄH…À„m	Hƒ8„	L‹=D—(H‹=ݡ(L‰þ轣þÿI‰ÆH…À„YHƒH‹5~œ(L‰÷讬þÿI‰ÇH…À„ÊIƒ.„ØL‹5ù–(H‹=’¡(L‰öèr£þÿH‰ÂH…À„öHƒH‹5ë˜(H‰×H‰T$è^¬þÿH‹T$H…ÀI‰Æ„¥Hƒ*„ã1ÀL‰æ¿èªþÿH…À„“1ÒH‰ÆL‰÷H‰D$虧þÿH‹L$I‰ÀHƒ)„G	M…À„fIƒ.„	L‰Æ1?L‰D$谩þÿL‹D$H…ÀH‰Á„Ï1ÒH‰ÆL‰ÿL‰D$ H‰D$è8§þÿH‹L$L‹D$ I‰ÆHƒ)„¡	Iƒ(„‡	I‹HƒèM…ö„é
I‰H…À„[	L;5T&”ÀL;5RS&”ÂÂu
L;5<S&…¦D¶øIƒ.„è	E…ÿ„^H‹L$HƒìI‰ÙA¸H‹=R&L‹±ØHq(IƒH‹›(L‰ñÿ5çR&jPÿ5v‘(jPATjPH‹T$Xÿãž(H‰ÁHƒÄPH…À„GIƒ.…‰L‰÷H‰D$èT þÿH‹L$érf.„H‰Çè8 þÿéœüÿÿ…À…áüÿÿL‰çè ¡þÿf.ؠòD$‹ÜL‰ïè¡þÿf.¼ ‹þò\D$L‹%T(H‹=ZŸ(L‰æòD$ è4¡þÿH‰ÂH…À„˜HƒH‹5­–(H‰×H‰T$(è ªþÿH‹T$(H…ÀI‰Æ„ßHƒ*„ÕòD$ 蚞þÿI‰ÇH…À„þH‰ƿ1À诧þÿI‰ÄH…À„#	1ÒH‰ÆL‰÷èF¥þÿIƒ,$I‰Å„Iƒ/„æM…í„íIƒ.„ÃL;-4R&”ÀL;-rQ&”ÂÂ…_L;-XQ&„RL‰ï蚡þÿA‰ąÀ‰CÇD$MM‰ï1ÉE1ö¾r%E1íE1ä@Iƒ/u/1ÒL‰ÿH‰T$ ‰t$H‰L$貞þÿH‹T$ H‹L$‹t$H…Ò…E1ÿé‡H‰Ç舞þÿ‹E ;C …5ûÿÿéGþÿÿ€H‹¹P&H‰D$é\úÿÿ€H…ÛHjwI‰ØH
WwH
yHIÈHƒìH‹O&IÁø?SI÷ÐH5ïyH‹8L
¡zAƒà1ÀèʦþÿX¾Û$ZH
wºúH= ˆ1Ûèé÷þÿHƒÄXH‰Ø[]A\A]A^A_ÀH‰×èȝþÿéÑúÿÿH‰×踝þÿéþÿÿD¶àIƒm„AE…䄨L‹l$òD$M‹½ØIƒ荜þÿI‰ÆH…À„)òD$ èvœþÿI‰ÄH…À„zH‹˗(L‰îL‰ùM‰ñHƒìÿ5O&HƒÆ(A¸H‹=—N&jPÿ5Ž(jPATjPH‹T$Xÿ{›(H‰ÁI‹HƒÄPH…É„@HƒèI‰„SIƒ.„)Iƒ,$„þE1íE1äHƒ+„@HƒmH‰Ë„M…ätIƒ,$„@M…턾þÿÿIƒm…³þÿÿL‰ï蔜þÿé¦þÿÿ€L‰÷耜þÿéÝùÿÿL‰ÿèpœþÿéÃùÿÿL‰÷è`œþÿé0ýÿÿL‰ÿèPœþÿé
ýÿÿL‰çè@œþÿéóüÿÿIƒ/¹¾'&ÇD$\„TýÿÿHƒ*A¿„ìM…öt
Iƒ.„µM…ÿt
Iƒ/„îH…Ét
Hƒ)„ÿ‹T$H
ØtH=ý…èÈõþÿH…ÛtHƒ+t-1ÛH…í„òþÿÿHƒm…çþÿÿH‰ï蟛þÿéÚþÿÿf.„1ÉH‰ßH‰L$聛þÿH‹L$H‰Ëë¼€L‰çèh›þÿé³þÿÿH‹©M&H‰D$éP÷ÿÿ€L‰÷‰t$H‰L$è7›þÿ‹t$H‹L$é,ÿÿÿf„H‰׉t$H‰L$è›þÿH‹L$‹t$éõþÿÿL‰ÿ‰t$H‰L$èïšþÿ‹t$H‹L$éóþÿÿH‰ωt$èԚþÿ‹t$éìþÿÿH‰ÕHƒû„£Ž•HƒûtHƒû…MüÿÿH‹F0H‰D$@H‹F(H‰ïH‰D$8H‹F H‰D$0èòœþÿI‰ÄHƒû„‹Hƒû…ëM…ä~*H‹5ïŒ(H‰ïèšþÿH…À„AH‰D$@IƒìM…ä/H‹D$@L‹d$0L‹l$8H‰D$éHöÿÿH…Û…¿ûÿÿH‰×èœþÿI‰ÄM…ä~ËH‹5 (H‰ï踙þÿH…ÀtH‰D$0IƒìM…ä~©H‹5F‘(H‰ï薙þÿH…À„gÿÿÿH‰D$8IƒìéTÿÿÿ€E1íE1ä1íE1ÿE1öÇD$F¾%1ÉéŠýÿÿfDE1íE1äE1ÿE1öÇD$G¾ %1ÉédýÿÿH‰Çèh™þÿéðöÿÿL‰ïèX™þÿé²ûÿÿL‰÷èH™þÿé÷ÿÿL‰÷è؛þÿA‰DžÀ‰KøÿÿÇD$\¾I&E1ÿ1Éé
ýÿÿfDE1ÿE1öÇD$[1ɾ&éêüÿÿfDH‰×èè˜þÿé÷ÿÿL‰çH‰L$E1íE1äè͘þÿH‹L$éëûÿÿL‰÷H‰L$賘þÿH‹L$éÀûÿÿf„L‰ÿH‰L$蓘þÿH‹L$é–ûÿÿf„H…Û…2þÿÿéfþÿÿfL‰÷L‰D$èc˜þÿL‹D$éÕöÿÿf„H‰ÏH‰D$èC˜þÿL‹D$é¢öÿÿf„…øÿÿè%¡þÿH…À„øÿÿE1íE1äÇD$J1ɾ>%E1ÿE1öéðûÿÿ@…ü÷ÿÿòD$ èç þÿòD$ H…À„â÷ÿÿE1íE1äÇD$K1ɾH%E1ÿE1öé¬ûÿÿ„L‰ÿ託þÿé˜öÿÿL‰Ç蘗þÿélöÿÿH‰ÏL‰D$胗þÿL‹D$éHöÿÿf„èšþÿL‰çèóïþÿI‰ÆH…À…\E1íE1äE1ÿ¾Ì%ÇD$V1Éé.ûÿÿf.„èۙþÿL‰çè³ïþÿI‰ÆH…À…E1íE1äE1ÿ¾[%ÇD$M1Ééîúÿÿf.„L‰÷èè–þÿéöÿÿE1íE1ä1ÉÇD$V¾Î%éªúÿÿfDE1íE1ä1ÉÇD$M¾]%éŠúÿÿfDE1íE1äÇD$V1ɾî%ézúÿÿfDE1íE1äÇD$M1ɾ`%éZúÿÿfD1ÉE1ä¾ù%ÇD$Véy÷ÿÿf„Iƒ/„YE1íE1ÿÇD$M1ɾo%éúÿÿ@H‹F H‰×H‰D$0èw˜þÿI‰Äéüÿÿ€裘þÿL‰ÿè{îþÿI‰ÆH…À…’óÿÿE1ÿÇD$\¾ &1Éé¼ùÿÿ„H‹5‘…(H‹=2“(1Ò蛛þÿI‰ÆH…À„:H‰Çè·lÿÿIƒ.„ÒE1íE1äÇD$N1ɾ‚%E1ÿE1öéaùÿÿDM‰óÇD$\E1ö1ÉM‰߾"&é?ùÿÿ1ÉE1íE1侟%ÇD$Qé^öÿÿfDL‰ñ¾6&E1öÇD$\é@öÿÿ軗þÿL‰÷è“íþÿI‰ÆH…À…1ɾ%&ÇD$\éöÿÿ1ÉE1�%ÇD$Réùõÿÿf„HƒèI‰„ÀL‰âE1íE1侳%ÇD$Pé|øÿÿ„Iƒ(„ØE1ö¾F&ÇD$\é¡õÿÿH‹5B„(H‹=ã‘(1ÒèLšþÿI‰ÆH…À„6H‰ÇèhkÿÿIƒ.„·ÇD$]E1ÿE1ö1ɾY&éøÿÿE1ÿÇD$^¾v&1ÉéøÿÿHT$0H‰ÙH‰ïLËnH5((èÏÿÿ…À‰«ùÿÿ¾Ç$éÚõÿÿL‰ÿE1íE1ÿèϓþÿÇD$M¾o%1Éé¯÷ÿÿL‰÷賓þÿé!þÿÿL‰ÇH‰D$E1ö螓þÿ¾F&H‹L$ÇD$\é·ôÿÿL‰÷E1ÿE1öèy“þÿÇD$]¾Y&1ÉéY÷ÿÿE1íE1äE1ÿ¾~%ÇD$N1Éé<÷ÿÿE1äE1ÿÇD$M1ɾo%é"÷ÿÿ1ɾF&ÇD$\éJôÿÿE1ÿÇD$]¾U&1Éé÷öÿÿH‰Âé7óÿÿH‰ÂéÒïÿÿL‰âE1íE1侳%ÇD$PéôÿÿH‰ÂéÎðÿÿAWAVAUATI‰üUSHƒìH‰T$H…Ò„†Hƒ‹GpH‰õ…À…‹wtH‰ïè¤ãÿÿH‰ÃH…À„H;ÑD&„;H‰Çèó˜þÿHƒø…™1öH‰ß迚þÿI‰ÆH…À„ã¾H‰ß覚þÿI‰ÅH‹M…í„ßHƒèH‰„ZHƒm„bH‹-(E&I9î”ÁL;5cD&”ÀÈu
L;5MD&…ǶÙI‹D$…Ût[H‹t$L‰çÿPI‰ÇH…À„dH9è”ÀL;=D&”ÂÂ…L;=D&„ÿL‰ÿèG”þÿ…À‰òº¨¾GoéH‹T$L‰îL‰çÿP I‰ÇH…À„öHƒ(„<Iƒ.„"fIƒmtHƒÄ‰Ø[]A\A]A^A_ÄL‰ïè8‘þÿëÝfDL‰÷èȓþÿ‰ÅÀ‰*ÿÿÿE1ÿº¦¾1oH
ËiH=³{èþêþÿIƒ.»ÿÿÿÿ„¢M…ÿtŠIƒ/u„L‰ÿèܐþÿéwÿÿÿ€H‰ßèȐþÿHƒm…žþÿÿH‰ï赐þÿé‘þÿÿ¶ÀL‰îL‰ç…À„ßèú‘þÿH‰ÃH…À„EI‹D$L‰úH‰ÞL‰çÿPH‰ÅH…À„pHƒ+„oHƒm„TIƒ.»…cÿÿÿL‰÷èEþÿéQÿÿÿL‰÷è8þÿéÓþÿÿH‰Çè(þÿé·þÿÿH‹5	(H‹=š(1Òèû•þÿH‰ÃH…À„±H‰ÇègÿÿHƒ+„]H
§hº¢¾únI‰íH=‚z»ÿÿÿÿèÈéþÿécþÿÿè‘þÿH‰ÃH…À„uH;øA&…µI‹D$H‹T$H‰ÞL‰çÿPH‰ÅH…À…ÿÿÿ½moHƒ+„ÔH
.hº«‰î»ÿÿÿÿH=
zèUéþÿIƒ.…aþÿÿéùþÿÿfDH‹)@&H5ºyE1ÿE1öA¼#oA½¤H‹8舓þÿHƒ+t2D‰êD‰æI‰íH
ÃgH=«yèöèþÿM…ö…ïýÿÿƒËÿéöýÿÿDH‰ßè؎þÿëÄfDâH…ÀˆaHƒøHBkH
ûeA¼oHEÊH‰ÂE1ÿE1öH‹@&H5îxA½¤H‹81Àè>—þÿéaÿÿÿf„E1ÿA¼oA½¤éDÿÿÿ@HƒèH‰„›Iƒ.t-H
ÿfº¤¾oI‰íH=Úx»ÿÿÿÿè èþÿé»üÿÿL‰÷èŽþÿëÉfDH‰ïèŽþÿéŸýÿÿH‰ßèðþÿé„ýÿÿH‹a?&ºE1ÿH5ºqA¼oA½¤E1öH‹81Àèy–þÿéœþÿÿ@H‰ß訍þÿéXÿÿÿH‰ß蘍þÿéþÿÿH‰ß舍þÿé–ýÿÿº­¾†oé`üÿÿº§¾;oéPüÿÿA¼oA½¤E1ÿE1öé1þÿÿº©¾Qoé)üÿÿº«¾joéüÿÿH‹GH5èd»ÿÿÿÿH‹P H‹(>&H‹81Àèƕþÿé¨ûÿÿL‰íA¼SoA½©éÕýÿÿH‹-‹(H…ítKH‹xH9ý„2ýÿÿH‰îè,–þÿ…À…"ýÿÿH‹CH‹M H5t½loH‹P H‹•=&H‹81Àè[•þÿéýÿÿH‹o?&H5Úf½loH‹8èëþÿéøüÿÿº¤¾oI‰íƒËÿH
 eH=wèSæþÿéîúÿÿº¢¾önI‰íƒËÿH
ødH=àvè+æþÿéÆúÿÿfDAWH‰ðAVAUI‰ýATUSHƒì8H‹U>&H‹5~|(L‹%ï|(H‹hH‰\$H‰t$L‰d$ H‰\$(H…Ò…–Hƒý‡ŒH
AsHc©HÊÿâ@H‰$L‹`0H‹p(H‹@ H‰D$¿1ÀH‹-¥Š(èГþÿI‰ÆH…À„1ÒH‰ïH‰Æèg‘þÿIƒ.H‰Å„ÒH…í„éL‹52€(H‹=ˊ(L‰ö諌þÿI‰ÇH…À„ÏHƒH‹5ƒ(L‰ÿ蜕þÿI‰ÆH…À„Iƒ/„ŽºL‰öH‰ïè•þÿI‰ÇH…À„:Iƒ.„ L;=ù=&”ÀL;=7=&”ÂÂ…ôI9ß„ëL‰ÿècþÿA‰ƅÀˆ0Iƒ/„ÜE…ö„äH‹5–{(ºL‰çè!“þÿ…ÀˆéM‹½ØIu(L‹$I‹L‰ùHSI‰H‹T$„²H‹=ë<&ÿՈ(H…À„ÜIƒ/„²Hƒm„¿HƒÄ8[]A\A]A^A_ÄH‰$H‰\$éoþÿÿfH‰$é[þÿÿ€H‰$éGþÿÿ€H‹H8H‰$é/þÿÿIƒ/D¶ð…$ÿÿÿL‰ÿèʉþÿE…ö…ÿÿÿL‹5’~(H‹=+‰(L‰öè‹þÿI‰ÇH…À„HƒH‹5t(L‰ÿèü“þÿI‰ÆH…À„ Iƒ/„vºL‰öH‰ïèf“þÿI‰ÇH…À„
Iƒ.„¸L;=Y<&”ÀL;=—;&”ÂÂ…tI9ß„kL‰ÿèËþÿA‰ƅÀˆ(Iƒ/„žE…ö„ÅH‹5öy(ºL‰ç聑þÿ…ÀˆiM‹½ØIu(L‹$I‹L‰ùHSI‰H‹T$„ÒH‹=ó9&ÿ-‡(H…À…`þÿÿA¼é»cé‡@L‰÷萈þÿé!ýÿÿL‰ÿ耈þÿéeýÿÿH‰ïH‰$èlˆþÿH‹$HƒÄ8[]A\A]A^A_Ãf„L‰÷èHˆþÿéSýÿÿH…íHRaI‰èH
?aHýbHIÈHƒìH‹9&IÁø?UI÷ÐH5×cH‹8L
‰dAƒà1À貐þÿX¾LZH
è`º5H=°rèÓáþÿHƒÄ81À[]A\A]A^A_ÃfD¶ðéŸþÿÿ€H‹=Q:&ÿ#†(H…À„:Iƒ/…NýÿÿL‰ÿH‰$脇þÿH‹$é9ýÿÿH
u`º[¾lH=8rè[áþÿHƒÄ81À[]A\A]A^A_Ãf.„Hƒý‡öþÿÿH
¿nI‰ÖHc©HÊÿâH‹P8H‰T$(H‹P0H‰T$ H‹P(H‹@ L‰÷H‰T$H‰D$èd‰þÿI‰ÄHƒý„›~aHƒý„µHƒýu&M…ä~*H‹5){(L‰÷聆þÿH…À„kH‰D$(IƒìM…äYH‹D$H‹t$L‹d$ H‰D$H‹D$(H‰$éáúÿÿH…íuÐé¥f.„è‰þÿL‰÷èóÞþÿI‰ÇH…À…ûÿÿA¼x»\@H
E_‰ÚD‰æH=
qè0àþÿ1Àéçûÿÿf„A¼z»\Iƒ/uÇL‰ÿè†þÿë½DL‰ÿèø…þÿé}üÿÿH‹=É7&ÿ[„(H…À…ŽûÿÿM‰þ»eA¼ëf.„»\A¼}Iƒ.…cÿÿÿL‰÷装þÿéVÿÿÿfDL‰÷萅þÿé;üÿÿA¼»\écÿÿÿ„L‰ÿèh…þÿéUüÿÿH‹@ L‰÷H‰D$过þÿI‰ÄM…䎝þÿÿH‹5¤}(L‰÷èô„þÿH…ÀtH‰D$IƒìM…äŽwþÿÿH‹5Þz(L‰÷è΄þÿH…À„5þÿÿH‰D$ Iƒìé"þÿÿ€A¼Ñ»aéËþÿÿL‰÷èH‡þÿI‰ÄM…äŽ&þÿÿH‹5Uw(L‰÷è}„þÿH…À„qÿÿÿH‰D$IƒìéZÿÿÿfDA¼Š»]éHþÿÿè;‡þÿL‰÷èÝþÿI‰ÇH…À…ÜúÿÿA¼Ê»aéþÿÿ€A¼Ì»aé;þÿÿ»aA¼Ïé‹þÿÿH‹=ù~(H9ß„TH‰ïè8‰þÿ…À…-H‹=Ù~(H‰îèQŽþÿI‰ÇM…ÿ„9L‰þ¿1ÀL‹%|(è/ŒþÿH‰ÃH…À„à1ÒH‰ÆL‰çèƉþÿHƒ+I‰Å„¹I‹HƒèM…í„¶I‰H…À„L‰ïA¼4»gèºZÿÿIƒm…GýÿÿL‰ï臃þÿé:ýÿÿfA¼Ü»bé(ýÿÿA¼—»^éKýÿÿM‰þ»`A¼²é˜ýÿÿHT$H‰éL‰÷L^H5„(è	ÿÿ…À‰üÿÿ¾5é2ûÿÿL‰ÿèƒþÿécÿÿÿH‰ßèƒþÿé:ÿÿÿA¼/»géÞüÿÿH‰ïèˊþÿH‹=¤}(…À…¼þÿÿH‰îèô„þÿI‰Çé¾þÿÿA¼%»hétüÿÿff.„AWAVAUATUSHƒì8H‹ë4&H‹s(H‰|$H‹nH‰\$H‰D$H‰\$ H…Ò…óHƒý„É~'Hƒý„…Hƒý…ƒL‹n0H‹F(L‹f ëDI‰ÝI‰ÜH…í…aH‰ƿ1ÀH‹-0(è[ŠþÿI‰ÇH…À„§1ÒH‰ïH‰Æèò‡þÿIƒ/H‰Å„
H…í„„L‹=½v(H‹=V(L‰þè6ƒþÿI‰ÆH…À„ŠHƒH‹5—y(L‰÷è'ŒþÿI‰ÇH…À„›Iƒ.„QºL‰þH‰ï葋þÿI‰ÆH…À„…Iƒ/„«L;5„4&”ÀL;5Â3&”ÂÂu	I9Þ…D¶øIƒ.„¼E…ÿ„³H‹D$M‰èL‰âH‹=4&L‹°ØHp(IƒL‰ñÿ™(H…À„ Iƒ.„FHƒm„HƒÄ8[]A\A]A^A_Ã@L‰ÿèà€þÿéæþÿÿI‰ÝéþÿÿH…íHâYI‰èH
ÏYH¢[HIÈHƒìH‹–1&IÁø?UI÷ÐH5g\H‹8L
]Aƒà1ÀèB‰þÿX¾3ZH
xYº›H=xkècÚþÿHƒÄ81À[]A\A]A^A_ÃfL‰÷èH€þÿé¢þÿÿL‰÷è؂þÿA‰DžÀ‰×þÿÿ»fA¼ÏIƒ.„ H
YD‰â‰ÞH=kèÚþÿ1ÀHƒm…øþÿÿH‰ïH‰D$èæþÿH‹D$HƒÄ8[]A\A]A^A_ÃfL‰ÿèÈþÿéHþÿÿL‰÷H‰D$è³þÿH‹D$é£þÿÿf„I‰ÝéMýÿÿ„L‹5at(H‹=ú~(L‰öèڀþÿI‰ÇH…À„.HƒH‹5Cw(L‰ÿèˉþÿI‰ÆH…À„§Iƒ/„•ºL‰öH‰ïè5‰þÿI‰ÇH…À„Iƒ.„L;=(2&”ÀL;=f1&”ÂÂu	I9ß…&D¶ðIƒ/„pE…ö„çH‹D$M‰èL‰âH‹=}0&L‹¸ØHp(IƒL‰ùÿ5}(H…À„nIƒ/…¤ýÿÿL‰ÿH‰D$è~þÿH‹D$éýÿÿL‰÷èˆ~þÿé7ýÿÿI‰ÕHƒý„ŽHƒýtHƒý…ýÿÿH‹F0H‰D$ H‹F(L‰ïH‰D$H‹F H‰D$誀þÿI‰ÆHƒý„ƒHƒý…ƒM…ö~*H‹5wr(L‰ïèÏ}þÿH…À„ÐH‰D$ IƒîM…ö¾L‹d$H‹D$L‹l$ é¯ûÿÿH…í…ýÿÿH‰×è?€þÿI‰ÆM…ö~ÓH‹5Pp(L‰ïèx}þÿH…ÀtH‰D$IƒîM…ö~±H‹5v(L‰ïèV}þÿH…À„oÿÿÿH‰D$Iƒîé\ÿÿÿ€L‰÷èp}þÿéSýÿÿH
eVºÎ¾SH=`hèK×þÿ1ÀéIüÿÿ@èëþÿL‰ÿèÃÕþÿI‰ÆH…À…aûÿÿ»_A¼Ïéÿüÿÿ€»aA¼ÏéÞüÿÿA¼Ï»dIƒ/…ÓüÿÿL‰ÿèã|þÿéÆüÿÿfDL‰ÿèpþÿA‰ƅÀ‰Ëýÿÿ»’A¼ÑëÄL‰ÿè¨|þÿé^ýÿÿH…í…šþÿÿéÆþÿÿfL‰÷èˆ|þÿédýÿÿL‰ÿèx|þÿéƒýÿÿ»tA¼Ðé>üÿÿH‹F H‰×H‰D$è¿~þÿI‰Æéþÿÿ€èë~þÿL‰÷èÃÔþÿI‰ÇH…À…½üÿÿ»‹A¼Ñéÿûÿÿ€»A¼ÑéÞûÿÿH‹=Áv(H9ß„H‰ïèø€þÿ…À…ñH‹=¡v(H‰îè†þÿI‰ÆM…ö„
L‰ö¿1ÀL‹%<y(èïƒþÿH‰ÃH…À„Û1ÒH‰ÆL‰ç膁þÿHƒ+I‰Å„I‹HƒèM…턱I‰H…ÀtkL‰A¼Ôè~RÿÿIƒm…;ûÿÿL‰ïèK{þÿé.ûÿÿA¼Ò» éAþÿÿHT$H‰éL‰ïLVH5
(èøÿÿ…À‰ýÿÿ¾é‹úÿÿL‰÷èþzþÿë‹H‰ßèôzþÿéfÿÿÿH‰ïèǂþÿH‹=¨u(…À…øþÿÿH‰îèð|þÿI‰Æéúþÿÿ»ºA¼Ôé–úÿÿ»¸A¼Ôéúÿÿ»A¼Ñé£ýÿÿ„AWAVAUATUSHƒì8H‹Ë,&H‹äj(H‰|$H‹nH‰\$H‰D$H‰\$ H…Ò…óHƒý„É~'Hƒý„…Hƒý…ƒL‹n0H‹F(L‹f ëDI‰ÝI‰ÜH…í…aH‰ƿ1ÀH‹-y(è;‚þÿI‰ÇH…À„§1ÒH‰ïH‰ÆèÒþÿIƒ/H‰Å„
H…í„„L‹=n(H‹=6y(L‰þè{þÿI‰ÆH…À„ŠHƒH‹5wq(L‰÷è„þÿI‰ÇH…À„›Iƒ.„QºL‰þH‰ïèqƒþÿI‰ÆH…À„…Iƒ/„«L;5d,&”ÀL;5¢+&”ÂÂu	I9Þ…D¶øIƒ.„¼E…ÿ„³H‹D$M‰èL‰âH‹=1,&L‹°ØHp(IƒL‰ñÿyw(H…À„ Iƒ.„FHƒm„HƒÄ8[]A\A]A^A_Ã@L‰ÿèÀxþÿéæþÿÿI‰ÝéþÿÿH…íHÂQI‰èH
¯QH‰SHIÈHƒìH‹v)&IÁø?UI÷ÐH5GTH‹8L
ùTAƒà1Àè"þÿX¾é&ZH
XQºeH=ˆcèCÒþÿHƒÄ81À[]A\A]A^A_ÃfL‰÷è(xþÿé¢þÿÿL‰÷è¸zþÿA‰DžÀ‰×þÿÿ»'A¼¤Iƒ.„ H
õPD‰â‰ÞH=%cèàÑþÿ1ÀHƒm…øþÿÿH‰ïH‰D$èÆwþÿH‹D$HƒÄ8[]A\A]A^A_ÃfL‰ÿè¨wþÿéHþÿÿL‰÷H‰D$è“wþÿH‹D$é£þÿÿf„I‰ÝéMýÿÿ„L‹5Al(H‹=Úv(L‰öèºxþÿI‰ÇH…À„.HƒH‹5#o(L‰ÿ諁þÿI‰ÆH…À„§Iƒ/„•ºL‰öH‰ïèþÿI‰ÇH…À„Iƒ.„L;=*&”ÀL;=F)&”ÂÂu	I9ß…&D¶ðIƒ/„pE…ö„çH‹D$M‰èL‰âH‹=)&L‹¸ØHp(IƒL‰ùÿu(H…À„nIƒ/…¤ýÿÿL‰ÿH‰D$è}vþÿH‹D$éýÿÿL‰÷èhvþÿé7ýÿÿI‰ÕHƒý„ŽHƒýtHƒý…ýÿÿH‹F0H‰D$ H‹F(L‰ïH‰D$H‹F H‰D$èŠxþÿI‰ÆHƒý„ƒHƒý…ƒM…ö~*H‹5Wj(L‰ïè¯uþÿH…À„ÐH‰D$ IƒîM…ö¾L‹d$H‹D$L‹l$ é¯ûÿÿH…í…ýÿÿH‰×èxþÿI‰ÆM…ö~ÓH‹50h(L‰ïèXuþÿH…ÀtH‰D$IƒîM…ö~±H‹5æm(L‰ïè6uþÿH…À„oÿÿÿH‰D$Iƒîé\ÿÿÿ€L‰÷èPuþÿéSýÿÿH
ENº£¾	'H=p`è+Ïþÿ1ÀéIüÿÿ@èËwþÿL‰ÿè£ÍþÿI‰ÆH…À…aûÿÿ»'A¼¤éÿüÿÿ€»'A¼¤éÞüÿÿA¼¤»'Iƒ/…ÓüÿÿL‰ÿèÃtþÿéÆüÿÿfDL‰ÿèPwþÿA‰ƅÀ‰Ëýÿÿ»H'A¼¦ëÄL‰ÿèˆtþÿé^ýÿÿH…í…šþÿÿéÆþÿÿfL‰÷èhtþÿédýÿÿL‰ÿèXtþÿéƒýÿÿ»*'A¼¥é>üÿÿH‹F H‰×H‰D$èŸvþÿI‰Æéþÿÿ€èËvþÿL‰÷è£ÌþÿI‰ÇH…À…½üÿÿ»A'A¼¦éÿûÿÿ€»F'A¼¦éÞûÿÿH‹=‘n(H9ß„H‰ïèØxþÿ…À…ñH‹=qn(H‰îèñ}þÿI‰ÆM…ö„
L‰ö¿1ÀL‹%q(èÏ{þÿH‰ÃH…À„Û1ÒH‰ÆL‰çèfyþÿHƒ+I‰Å„I‹HƒèM…턱I‰H…ÀtkL‰ï»u'A¼©è^JÿÿIƒm…;ûÿÿL‰ïè+sþÿé.ûÿÿA¼§»V'éAþÿÿHT$H‰éL‰ïLøMH5-(èØøþÿ…À‰ýÿÿ¾Õ&é‹úÿÿL‰÷èÞrþÿë‹H‰ßèÔrþÿéfÿÿÿH‰ïè§zþÿH‹=xm(…À…øþÿÿH‰îèÐtþÿI‰Æéúþÿÿ»p'A¼©é–úÿÿ»n'A¼©éúÿÿ»C'A¼¦é£ýÿÿ„AWAVAUATUSH‰óHƒì8H‹nHÇD$HÇD$HÇD$ H…Ò…Hƒý…L‹v H‹n(H‹F0L‰t$H‰l$H‰D$ H‹Eö€³„ÙH‰ïèÙqþÿI‰ÄIƒüÿ„L‹l$ Iü1‰…H‹5g(H‹=üo(è7|þÿH‰ÃH…À„+L‰ö¿1ÀèìyþÿI‰ÄH…À„81ÒH‰ÆH‰ßèƒwþÿIƒ,$H‰Å„MH‹HƒèH…í„6H‰H…À„!L;-²#&t/I‹EH;Í"&…WL‰îH‰ïè¤ÿÿH…À„›Hƒ(„±H‹UH‰èH‰UH…Ò„­HƒÄ8[]A\A]A^A_ÃL9àtH‰ßèáxþÿ…À„bèôyþÿH…À„wHƒ+u
H‰ßèÝpþÿDèÓyþÿIÇÄÿÿÿÿH…À…)¿è	zþÿH‰ÃH…À„õH‹¶k(1öH‰ßHƒH‹¦k(èvþÿH‹=¢d(1ÒH‰ÞèðÆþÿI‰ÅH‹M…í„aHƒèH‰„´H‹5mk(L‰ïèÊþÿH‰ÅH…À„	Hƒ8„¯Iƒm„”L‰çèqþÿH‰ÃH…À„H‹=©k(H‰ÆèQzþÿI‰ÄH‹M…ä„2HƒèH‰„ÕHƒEL‰æ¿1Àè!xþÿH‰ÃH…À„u1ÒH‰ÆH‰ïè¸uþÿHƒ+I‰Å„«Iƒ,$„ÀH‹EHPÿM…턇H‰UH…Ò„’L‰ﻰ“è¥FÿÿIƒm„šH
4Hº‰ÞH=ÝZè`ÉþÿHƒmuH‰ïèQoþÿ1ÀHƒÄ8[]A\A]A^A_ÃIƒm„…H
ïGº¾Š“H=•ZèÉþÿ1ÀëÅH‹kHƒìH‹õ&HJH5ÇJUL
{KA¸H
¿HH‹81Àè˜wþÿX¾T“ZH
‹GºH=6Zè¹Èþÿ1ÀécÿÿÿfH‰ßè¨nþÿé?þÿÿL‰ïè˜nþÿé_þÿÿH‰ÇèˆnþÿéDþÿÿH‰ÇèxnþÿéBýÿÿH‰ïH‰D$ècnþÿH‹D$HƒÄ8[]A\A]A^A_ÀH‰ßè@nþÿéÒüÿÿL‰çè0nþÿé¦üÿÿI‰ÔHƒý„›~yHƒýtHƒý…ùþÿÿH‹F0H‰D$ H‹C(L‰çH‰D$H‹C H‰D$èVpþÿI‰ÅHƒýtrHƒý„‰H…ítBM…íåH‹l$L‹t$é¤ûÿÿfDL‰ïè¨mþÿénþÿÿH…í…‡þÿÿH‰×èÿoþÿI‰ÅH‹5%a(L‰çIƒíè9mþÿH‰D$H…À„WþÿÿH‹5$a(L‰çèmþÿH‰D$H…À„ðIƒíH‹5ë`(L‰çèûlþÿH‰D$ H…À„ŠIƒíéVÿÿÿ@H‰ßèmþÿéýÿÿH‰ßèmþÿéHýÿÿH‰ïèølþÿéaýÿÿL‰çèèlþÿé3ýÿÿL‰ïèØlþÿéYýÿÿHPÿA¼š“H‰H…Ò„÷H
tEºD‰æH=XèŸÆþÿé:ýÿÿ¾O“é¿ýÿÿH
JEº¾“H=ðWèsÆþÿ1Àéýÿÿ@H‹A¼ГA½HƒèH‰H…À…µ1íH‰ßè?lþÿH
ùDD‰êD‰æH=£Wè&ÆþÿH…í…½üÿÿ1ÀéÇüÿÿfDHƒèA¼‡“A½ë©fDH‹H H‹Ý&H5´DHFH‹81Àè•tþÿ¾è“º	H
…DH=5Wè¸ÅþÿH‹EHPÿ1Àéúÿÿf„¾é“ëÉf„»˜“éüÿÿfDH‹F H‰×H‰D$èßmþÿI‰Åéüýÿÿ€Iƒ,$„¥H‹EH‰ëA¼«“HPÿéyþÿÿA¼ГA½éÙþÿÿfDL‹%¹&L9àtH‰ïèôrþÿ…À„ètþÿH…À…&úÿÿH‹ç&H5EH‹8èXoþÿéúÿÿHT$H‰éL‰çLÒEH5w(è¢ðþÿ…À‰õüÿÿ¾E“éßûÿÿL‰çè¨jþÿéNÿÿÿHƒìH‹ˆ&H
nDH5ZFjL

GA¸HxEH‹81Àè*sþÿY^¾A“éûÿÿHƒìH‹C&A¸H5FjL
ÉFH
DH‹8H0E1Àèårþÿ_¾;“AXéGûÿÿH‰ëA¼«“éDýÿÿH‰ïèÂmþÿH‰ÃH…À„êþÿÿH‹@L‹-»&L9èu5fDö€³„ÅøÿÿH‰ßè«iþÿI‰ÄHƒ+…È÷ÿÿH‰ßè¶iþÿé»÷ÿÿH‰ßè	ïþÿH‰ÃH…À„ÅøÿÿH‹@ë·H‰ßèOmþÿH‰ÅH…À„ŠøÿÿL9hu)H‹Eö€³t1H‰ïèHiþÿI‰ÄHƒmu–H‰ïèViþÿëŒH‰Çè¬îþÿH‰ÅH…ÀuÇéTøÿÿL9àtH‰ïèqþÿ…Àtè)rþÿH…ÀtIIƒÌÿë¹H‰ïèÖlþÿI‰ÇH…ÀtàL9huL‰ÿè tÿÿIƒ/I‰Äu’L‰ÿèïhþÿëˆH‰ÇèEîþÿI‰ÇH…ÀuÕë·H‹Ä&H5ÝBH‹8è5mþÿëŸA½éqüÿÿH
rAº¾‚“H=Tè›Âþÿ1ÀéEùÿÿH
NAD‰êD‰æH=øSè{Âþÿ1Àé%ùÿÿH‹]&H5vBH‹8èÎlþÿén÷ÿÿf„AWAVI‰ÖAUI‰õATUSHƒì8ö‡²…O1öÿ—8H‰ÃH…Û„ÜH‹-d&H‹Eg(HÇCXHÇD$H‰CH‰k H‰k(H‰k0M‹eHƒEHÇD$HÇD$ M…ö…Iƒü„—Iƒü„„IƒüHÅ@H
µ@HMȝÀHƒì¶ÀATH£BL@H‹p&H5ICL
þCH‹81Àè(pþÿX¾ekZH
@ºYH=îRèIÁþÿHƒ+„1Ûé„I‹E0H‰D$ M‹u(M‹e L‰t$L‰d$I‹Fö€³„ÜL‰÷èÜfþÿHcÐA‰ÆH9Ð…eAƒþÿ„{H‹|$ H…ÿ„H;=Þ&A”ÅH;=&”ÀDèu	H9ï…úE¶íIƒ$H‹{ Hƒ/„‹L‰c H‹¸d(D‰³`H9C„7I9ì….‹`d(ƒø~[H‹S8H…ÒtrAƒæ…XD‰«dHC@HSDHǃhH‰CáH)ÊH…ÉHEÂH‰CHHƒÄ8H‰Ø[]A\A]A^A_ÄHcÈH¶c(ƒÀH‹ʉéc(H‰S8H…ÒuŽèkfþÿH‰C8H…Àu€èmkþÿ¾(lºiH
>H=eQè?þÿérþÿÿèShþÿA‰Ńøÿ…ùþÿÿè¢nþÿH…À„ëþÿÿ¾^ké.þÿÿ€Hƒøÿ„ÍH‹o&H5ÐJH‹8èØiþÿècnþÿH…À…#A¾ÿÿÿÿélþÿÿ€HsPD‰òL‰çè™iþÿƒøÿ„˜Hƒ{X…¯þÿÿH‰kXHƒEé¡þÿÿ€èeþÿékþÿÿfDH‹Sx1:Ou	1z”	ƒdéþÿÿH‹‰&1ÒH‹50d(ÿ@H‰ÃéžüÿÿfIƒü„6~dIƒütIƒü…ðüÿÿI‹E0H‰D$ I‹E(L‰÷H‰D$I‹E H‰D$èñfþÿI‰ÇIƒüt]IƒütxM…ät1M…ÿýL‹d$L‹t$é@ýÿÿDM…ä…“üÿÿL‰÷è¯fþÿI‰ÇH‹5¥X(L‰÷IƒïèécþÿH‰D$H…À„€H‹5ü[(L‰÷èÌcþÿH‰D$H…À„IƒïM…ÿ~‘H‹5N\(L‰÷è¦cþÿH…ÀtzH‰D$ IƒïéfÿÿÿE1íéýÿÿ„H‰ß1Ûè¶cþÿé‡ýÿÿè¬lþÿH…À„%þÿÿé6þÿÿfD¾¯kº]é¶ýÿÿf„I‹E L‰÷H‰D$èßeþÿI‰ÇéLÿÿÿHT$L‰áL‰÷Lm>H5¾ü'è)éþÿ…À‰Ýþÿÿ¾OkéÖûÿÿ¾\kéÌûÿÿDH;¹&tL‰÷è÷jþÿ…À„}è
lþÿH…À…™ýÿÿH‹ê&H5=H‹8è[gþÿé~ýÿÿfDHƒìH‹Å&H
á;H5—>jL
J?A¸HÉ=H‹81ÀègkþÿY^¾Eké:ûÿÿM‹eéÞúÿÿL‰÷èJfþÿI‰ÇH…À„oÿÿÿH‹@L‹5C&L9ðu9fDö€³twL‰ÿè7bþÿHcÐA‰ÆH9Ðu1Iƒ/…UûÿÿL‰ÿè:bþÿéHûÿÿL‰ÿèçþÿI‰ÇH…À„¹üÿÿH‹@ë³HƒøÿtdH‹&H5gGH‹8èofþÿIƒ/…üÿÿL‰ÿèíaþÿé€üÿÿH;y&tL‰ÿè·iþÿ…Àt.èÎjþÿH…ÀuÊH‹²&H5Ë;H‹8è#fþÿë²è¬jþÿH…Àt’ë¦L‰ÿè]eþÿI‰ÅH…ÀtÂL9pu8I‹Eö€³tbL‰ïèZaþÿHcÈA‰ÆH9Èu-Iƒm…ÿÿÿL‰ïè\aþÿéÿÿÿH‰Çè¯æþÿI‰ÅH…Àu¸éCÿÿÿHƒÀtAH‹-&H5ŽFAƒÎÿH‹8è’eþÿë±H;±&tL‰ïèïhþÿ…ÀtèjþÿH…ÀtfAƒÎÿëŒèöiþÿH…ÀtµëîL‰ïè§dþÿH‰ÂH…ÀtÔL9pu,H‰×H‰T$è,mÿÿH‹T$A‰ÆHƒ*…KÿÿÿH‰×è²`þÿé>ÿÿÿH‰ÇèæþÿH‰ÂH…ÀuÄëšH‹„&H5:H‹8èõdþÿë‚Hƒìè'øÿÿH…Àt(H‹›_(HǀpH‰PH‹¥&HƒH‰@HƒÄÃDAWI‰÷AVAUATUSHƒì8H‹x&H‹5‰P(H‰<$I‹oHÇD$H‰\$H‰t$ H‰\$(H…Ò…˜Hƒý„N~,Hƒý„ÂHƒý…¨M‹o8I‹w0M‹g(ëf.„I‰ÝI‰ÜHƒý…€I‹G H‰D$¿1ÀH‹-©^(èÔgþÿI‰ÇH…À„ð1ÒH‰ïH‰ÆèkeþÿIƒ/H‰Å„>H…í„ÍL‹=6T(H‹=Ï^(L‰þè¯`þÿI‰ÆH…À„ÓHƒH‹5W(L‰÷è iþÿI‰ÇH…À„äIƒ.„
ºL‰þH‰ïè
iþÿI‰ÆH…À„ÎIƒ/„dL;5ý&”ÀL;5;&”ÂÂu	I9Þ…ÓD¶øIƒ.„EE…ÿ„,H‹$HƒìH‹•O(A¸H‹=à&L‹±ØHq(IƒH‹Y(L‰ñAUjRPjRL‰âPjÿ52Q(L‹L$XÿÏ\(HƒÄPH…À„Iƒ.„ÐHƒm„’HƒÄ8[]A\A]A^A_ÃfDL‰ÿè(^þÿéµþÿÿI‰ÝéDþÿÿ„L‰÷è^þÿééþÿÿL‰÷è˜`þÿA‰DžÀ‰ÿÿÿ»¯(A¼_Iƒ.„hH
Õ6D‰â‰ÞH=Iè7þÿ1ÀHƒm…nÿÿÿH‰ïH‰$è§]þÿH‹$HƒÄ8[]A\A]A^A_Ã@L‰ÿèˆ]þÿéþÿÿL‰÷H‰$èt]þÿH‹$éÿÿÿL‰ïèÐ_þÿI‰ÆH‹5P(L‰ïIƒîè
]þÿH‰D$H…À…pI‹o„H…íHB6H
26HOÈŸÀH9¶ÀL
S4LOÊLD@HƒìH‹ã
&UH
8H5´8H‹81ÀèšeþÿX¾|(ZH
Ð5ºH=ˆH軶þÿHƒÄ81À[]A\A]A^A_Ãf.„I‰ÝéÈüÿÿ„L‹5aQ(H‹=ú[(L‰öèÚ]þÿI‰ÇH…À„>HƒH‹5CT(L‰ÿèËfþÿI‰ÆH…À„·Iƒ/„ÕºL‰öH‰ïè5fþÿI‰ÇH…À„)Iƒ.„¿L;=(&”ÀL;=f&”ÂÂu	I9ß…öD¶ðIƒ/„ E…ö„÷H‹$L‰âH‹=‰
&L‹¸ØHp(IƒL‰ùL‹
€N(AUjL‹D$ÿ	Z(Y^H…À„pIƒ/…LýÿÿL‰ÿH‰$è[þÿH‹$é7ýÿÿ€L‰÷èx[þÿé®üÿÿL‰÷èh[þÿé‹ýÿÿHƒý‡&þÿÿI‰ÕHðBHcªHÐÿàI‹G8H‰D$(I‹G0H‰D$ I‹G(L‰ïH‰D$I‹G H‰D$è„]þÿI‰ÆHƒý„;~]Hƒý„UHƒýu&M…ö~*H‹5IO(L‰ïè¡ZþÿH…À„²H‰D$(IƒîM…ö H‹D$L‹d$H‹t$ L‹l$(H‰D$éûÿÿH…íuÔéAýÿÿfDH
•3º^¾œ(H=HFè{´þÿ1Àé/üÿÿ@è]þÿL‰ÿèó²þÿI‰ÆH…À…ûÿÿA¼_»¨(éoüÿÿ€»ª(A¼_éNüÿÿA¼_»­(Iƒ/…CüÿÿL‰ÿèZþÿé6üÿÿfDL‰ÿè \þÿA‰ƅÀ‰ûýÿÿA¼e»ã(ëÄI‹G L‰ïH‰D$è?\þÿI‰ÆM…öŽýþÿÿH‹5LL(L‰ïètYþÿH…ÀtH‰D$IƒîM…öŽ×þÿÿH‹5þQ(L‰ïèNYþÿH…À„•þÿÿH‰D$ Iƒîé‚þÿÿ€L‰ÿèhYþÿéýÿÿL‰÷èXYþÿé4ýÿÿL‰ÿèHYþÿéSýÿÿ»Å(A¼`éNûÿÿèÛ[þÿL‰÷賱þÿI‰ÇH…À…­üÿÿA¼e»Ü(é/ûÿÿ€»á(A¼eéûÿÿH‹=™S(H9ß„H‰ïèè]þÿ…À…ñH‹=yS(H‰îècþÿI‰ÆM…ö„
L‰ö¿1ÀL‹%,V(èß`þÿH‰ÃH…À„Û1ÒH‰ÆL‰çèv^þÿHƒ+I‰Å„I‹HƒèM…턱I‰H…ÀtkL‰ïA¼j»)èn/ÿÿIƒm…kúÿÿL‰ïè;Xþÿé^úÿÿA¼f»ù(éþÿÿHT$H‰éL‰ïL63H5}ì'èèÝþÿ…À‰:ýÿÿ¾f(é#ûÿÿL‰÷èîWþÿë‹H‰ßèäWþÿéfÿÿÿH‰ïè·_þÿH‹=€R(…À…øþÿÿH‰îèàYþÿI‰Æéúþÿÿ»)A¼jéÆùÿÿA¼j»)éÀùÿÿA¼e»Þ(écýÿÿ„AWAVAUATI‰ÔUH‰õSHìÈH‹²	&H‰<$H9Ú…UH´$ðL‰çèåuÿÿI‰ÆH…À„™H9Ý…ÀHt$ H‰ïèÃuÿÿI‰ÇH…À„H‹5XL(L‰çèxaþÿI‰ÅH…À„üH‹@ö€³„ûL‰ïèÃVþÿHcÐA‰ÄH9Ð…dAƒüÿ„"Iƒm„ŸH‹5L(H‰ïè aþÿI‰ÅH…À„H‹@ö€³„KL‰ïèkVþÿHcЉÅH9Ð…­ƒýÿ„tIƒm„YH‹$‰îD‰狐dAÿ·ÈAÿ·ÀAÿ·¸Aÿ·°Aÿ·¨Aÿ· Aÿ·˜Aÿ·Aÿ·ˆAÿ·€AÿwxAÿwpAÿwhAÿw`AÿwXAÿwPAÿwHAÿw@Aÿw8Aÿw0Aÿw(Aÿw AÿwAÿwAÿwAÿ7Aÿ¶ÈAÿ¶ÀAÿ¶¸Aÿ¶°Aÿ¶¨Aÿ¶ Aÿ¶˜Aÿ¶Aÿ¶ˆAÿ¶€AÿvxAÿvpAÿvhAÿv`AÿvXAÿvPAÿvHAÿv@Aÿv8Aÿv0Aÿv(Aÿv AÿvAÿvAÿvAÿ6èKÿÿHĠƒøÿ„[HƒH‰ØHÄÈ[]A\A]A^A_ÃfL‰ïèUþÿéTþÿÿL‰ïèUþÿéšþÿÿL‹5!S(M…ö„BH‹zI9þ„ŽýÿÿL‰öè;^þÿ…À…~ýÿÿI‹D$I‹N H5#<H‹P H‹¨&H‹81Àèn]þÿ¾–pº½ëf¾—pº½fDH
J-H=‚@è}®þÿ1ÀéBÿÿÿfDL‹-‘R(M…í„×H‹}I9ý„#ýÿÿL‰îè«]þÿ…À…ýÿÿH‹EI‹M H5”;H‹P H‹&H‹81Àèß\þÿ¾ pº¾ëƒ¾¡pº¾éqÿÿÿ¾ªpº¿éaÿÿÿH‹
&H‰L$H9ÈtL‰ïè·[þÿ…À„ÈèÊ\þÿH…ÀuH‹®&H5Ç-H‹8èXþÿ€è£\þÿH…À…6A¼ÿÿÿÿéÅüÿÿ€¾®pº¿ééþÿÿf„Hƒøÿ„2H‹W&H5¸8H‹8èÀWþÿë¦fDH‹
Ù&H‰L$H9ÈtL‰ïè[þÿ…À„ëè"\þÿH…ÀuH‹&H5-H‹8èwWþÿ€èû[þÿH…À…ѽÿÿÿÿétüÿÿ„¾ºpº½éAþÿÿHƒøÿ„¬H‹·&H58H‹8è Wþÿë®H‹‡&H5ò,H‹8èWþÿ¾–pº½éùýÿÿH‹b&H5Í,H‹8èãVþÿ¾ pº¾éÔýÿÿ¾¬pIƒmº¿…¿ýÿÿL‰ï‰t$‰$è@Rþÿ‹$‹t$é¤ýÿÿè/[þÿH…À„Àþÿÿéyþÿÿ¾°pë»è[þÿH…À„FÿÿÿéÿÿÿL‰ïè¿UþÿH‰ÁH…À„$þÿÿH‹=¼&H‹@H‰|$H9øuGfDö€³„VH‰ÏH‰L$èžQþÿH‹L$HcðA‰ÄH9ðu1Hƒ)…ÐúÿÿH‰ÏèœQþÿéÃúÿÿH‰ÏèïÖþÿH‰ÁH…À„ÛýÿÿH‹@ë¥Hƒøÿ„WH‹d&H‰L$H5À6H‹8èÈUþÿH‹L$Hƒ)…¡ýÿÿH‰ÏèAQþÿé”ýÿÿL‰ïèôTþÿH‰ÂH…À„þÿÿH‹
ñ&H‹@H‰L$H9ÈuCö€³„!H‰×H‰T$èÖPþÿH‹T$Hcð‰ÅH9ðu1Hƒ*…`úÿÿH‰×èÕPþÿéSúÿÿH‰×è(ÖþÿH‰ÂH…À„¼ýÿÿH‹@ë¦Hƒøÿ„­H‹&H‰T$H5ù5H‹8èUþÿH‹T$Hƒ*…‚ýÿÿH‰×èzPþÿéuýÿÿH;D$tH‰ÏH‰L$èAXþÿH‹L$…À„ËH‰L$èJYþÿH‹L$H…À…éþÿÿH‹%&H5>*H‹8è–TþÿH‹L$éÉþÿÿH‰L$èYþÿH‹L$H…À„‘þÿÿé¬þÿÿH‰T$èõXþÿH‹T$H…À„;ÿÿÿéVÿÿÿH;D$tH‰×H‰T$è®WþÿH‹T$…À„	H‰T$è·XþÿH‹T$H…À…ÿÿÿH‹’&H5«)H‹8èTþÿH‹T$éýþÿÿH‰ÏèASþÿH‹L$H…ÀI‰Â„ÿÿÿH‹D$I9BuYI‹Bö€³„ÀL‰×H‰L$L‰T$è"OþÿL‹T$H‹L$HcðA‰ÄH9ðu;Iƒ*…uýÿÿL‰×H‰L$èOþÿH‹L$é^ýÿÿL‰×èdÔþÿH‹L$H…ÀI‰Âu’éŸýÿÿHƒÀ„ÊL‰T$H‹Ô&H554H‰L$H‹8AƒÌÿè4SþÿH‹L$L‹T$ë‹H‰×èpRþÿH‹T$H…ÀI‰Â„ÞþÿÿH‹D$I9BuXI‹Bö€³„šL‰×H‰T$L‰T$èQNþÿL‹T$H‹T$Hcð‰ÅH9ðu;Iƒ*…lýÿÿL‰×H‰T$èFNþÿH‹T$éUýÿÿL‰×è”ÓþÿH‹T$H…ÀI‰Âu“é–ýÿÿHƒÀ„ÖL‰T$H‹&H5e3H‰T$H‹8ƒÍÿèeRþÿH‹T$L‹T$ëŒH;D$t$L‰×H‰T$L‰T$è°UþÿL‹T$H‹T$…À„}L‰T$H‰T$è¯VþÿH‹T$L‹T$H…À„HƒÍÿé7ÿÿÿH;D$t L‰×H‰L$L‰T$è[UþÿL‹T$H‹L$…ÀtsL‰T$H‰L$è^VþÿH‹L$L‹T$H…À„¯AƒÌÿéþÿÿL‰T$H‰T$è3VþÿH‹T$L‹T$H…À„ÿÿÿë‚L‰T$H‰L$èVþÿH‹L$L‹T$H…À„þÿÿë¯L‰×è²PþÿL‹T$H‹L$H…ÀH‰Â„oÿÿÿH‹D$H9BuTH‰×L‰T$H‰L$H‰T$èYÿÿH‹T$H‹L$A‰ÄL‹T$Hƒ*…qýÿÿH‰×L‰T$H‰L$èŒLþÿL‹T$H‹L$éPýÿÿH‰×L‰T$H‰L$èËÑþÿH‹L$L‹T$H…ÀH‰Âuˆé	ÿÿÿH5]&H‹6ý%éAþÿÿL‰×èùOþÿL‹T$H‹T$H…ÀH‰Á„eþÿÿH‹D$H9AuSH‰ÏL‰T$H‰T$H‰L$èaXÿÿH‹L$H‹T$‰ÅL‹T$Hƒ)…‰ýÿÿH‰ÏL‰T$H‰T$èÔKþÿL‹T$H‹T$éhýÿÿH‰ÏL‰T$H‰T$èÑþÿH‹T$L‹T$H…ÀH‰Áu‰éþÿÿH5¥%H‹~ü%é¹üÿÿf„AWAVAUATUSH‰óHƒìXH‹¸ý%H‹nH‰|$HÇD$0HÇD$8HÇD$@H‰D$HH…Ò…N	Hƒý„ìHƒý…bH‹F8H‰D$L‹s0L‹c(H‹k H‹ŽJ(¿H‹˜(ÿhE1É1É1ÒA¸H‰ÆH‰ïÿÓH‰ÃH…À„»	Hƒ8„¡H‹JJ(¿L‹¨(ÿhE1É1É1ÒA¸H‰ÆL‰çAÿÕI‰ÅH…À„þ	Hƒ8„lH‹J(¿L‹¸(ÿhE1É1É1ÒA¸H‰ÆL‰÷Aÿ×I‰ÇH…À„Ù	Hƒ8„A‹E ;C „*L‹%?(H‹=œI(L‰æè|KþÿH‰ÅH…À„p
HƒH‹5D(H‰ïèmTþÿI‰ÆH…À„A
Hƒm„F	H‹-·>(H‹=PI(H‰îè0KþÿI‰ÄH…À„LHƒH‹51A(L‰çè!TþÿI‰ÃH…À„Iƒ,$„J	¿L‰\$èkPþÿL‹\$H…ÀI‰Â„ÚHƒ1ÒL‰ßH‰ÆH‰X IƒEL‰h(H‰D$ èGOþÿL‹\$L‹T$ H…ÀH‰Á„Iƒ*„×
Iƒ+„í
H‰Î1?H‰L$èYQþÿH‹L$H…ÀH‰Å„ 1ÒH‰ÆL‰÷èëNþÿHƒmH‹L$I‰Ä„Ø
Hƒ)„¾
M…ä„9Iƒ.„Ó
L;%Ôû%”ÀL;%û%”ÂÂu
L;%üú%…v¶èIƒ,$„(…í…ðH‹-a=(H‹=úG(H‰îèÚIþÿI‰ÆH…À„&HƒH‹5sB(L‰÷èËRþÿH‰ÅH…À„8Iƒ.„•L‹%=(H‹=¯G(L‰æèIþÿI‰ÃH…À„1HƒH‹5?(L‰ßL‰\$è{RþÿL‹\$H…ÀI‰Æ„VIƒ+„ˆ¿èÆNþÿI‰ÄH…À„œIƒE1ÒH‰ÆL‰÷L‰h IƒL‰x(è¬MþÿH‰ÁH…À„ÖIƒ,$„åIƒ.„»H‰Î1?H‰L$èÇOþÿH‹L$H…ÀI‰Æ„ï1ÒH‰ÆH‰ïèYMþÿIƒ.H‹L$I‰Ä„
Hƒ)„ýM…ä„ÇHƒm„ÙL;%Bú%”ÀL;%€ù%”ÂÂ…½	L;%fù%„°	L‰çè¨Iþÿ‰ŅÀˆ‘Iƒ,$„û…í…¶L‹%¼;(H‹=UF(L‰æè5HþÿH‰ÅH…À„ßHƒH‹5Î@(H‰ïè&QþÿI‰ÆH…À„îHƒm„J
H‹-p;(H‹=	F(H‰îèéGþÿI‰ÂH…À„?HƒH‹5‚>(L‰×L‰T$èÕPþÿL‹T$H…ÀH‰Å„GIƒ*„K
¿è MþÿI‰ÂH…À„<Hƒ1ÒH‰ÆH‰ïH‰X IƒL‰x(H‰D$èLþÿL‹T$H…ÀH‰Á„;Iƒ*„‚
Hƒm„`
H‰Î1?H‰L$èNþÿH‹L$H…ÀH‰Å„61ÒH‰ÆL‰÷èªKþÿHƒmH‹L$I‰Ä„›
Hƒ)„w
M…䄚Iƒ.„q
L;%“ø%”ÀL;%Ñ÷%”ÂÂ…ÆL;%·÷%„¹L‰çèùGþÿ‰ŅÀˆøIƒ,$„…
…í…H‹D$HƒìI‰ØH‹=áö%L‹ ØHp(Iƒ$L‹
Š?(L‰ájAQAWjAQAUjH‹T$XÿFC(HƒÄ@H…À„Iƒ,$…wL‰çH‰D$èÑDþÿH‹D$é`H‹kHƒýHÑH
ÁHMȝÀHƒì¶ÀUHÉL@H‹}õ%H5V L
!H‹81Àè5MþÿX¾Ø2ZH
kº%
H=“01ÛèTžþÿHƒÄXH‰Ø[]A\A]A^A_ÃfH‹‰ö%H‰D$éùÿÿ€H‰Çè DþÿéRùÿÿH‰ÇèDþÿé‡ùÿÿA;G …Ìùÿÿ…À…ÄùÿÿH‰ïèîDþÿf.¦DòD$‹ŠL‰÷èÒDþÿf.ŠDòD$ ‹žL‰çè¶Dþÿf.nDf(È‹´òd$f/á‡$f/L$ ‡hòt$f.t$ ‹¦L‹d$òD$òL$(M‹œ$ØIƒL‰\$è_BþÿL‹\$H…ÀI‰Â„†òL$(H‰D$f(Áè:BþÿL‹\$L‹T$H…ÀI‰Æ„ŒòD$ èBþÿL‹\$L‹T$H…ÀH‰Å„ãH‹d=(L‰æM‰ÑL‰ÙHƒìÿ5)õ%HƒÆ(A¸H‹=€ô%jPUjPAVjPH‹T$hL‰T$`L‰\$XÿA(HƒÄPL‹\$L‹T$H…À„ÐIƒ+„öIƒ*„ÌIƒ.„¢Hƒm„Hƒ+tAI‹uH‰ÃHVÿI‰UH…ÒtNDIƒ/…êýÿÿL‰ÿè6BþÿéÝýÿÿH‰Çè(Bþÿéä÷ÿÿH‰ßH‰D$èBþÿH‹D$H‰ÃM…ítIƒmuL‰ïè÷AþÿM…ÿuªé™ýÿÿDHƒý‡ýÿÿI‰ÔHŒ)HcªHÐÿàH‹F8H‰D$HH‹C0H‰D$@H‹C(L‰çH‰D$8H‹C H‰D$0èDþÿI‰ÅHƒý„c~7Hƒý„xHƒýu0M…폔H‹D$HH‹l$0L‹d$8L‹t$@H‰D$éIöÿÿH…í„M…í~ÔHT$0H‰éL‰çLgH5Ø'è
Çþÿ…Ày²¾Ä2é®üÿÿ@ÇD$h
E1ÿE1íE1ÒÇD$3€M…ÒtIƒ*t=‹T$‹t$H
âH=-èҚþÿH…Û„¾þÿÿH‹HƒèH‰„™þÿÿ1Ûé§þÿÿfL‰×è¨@þÿë¹fDH‰ïè˜@þÿé­öÿÿE1ÿE1ÒÇD$i
ÇD$3é}ÿÿÿDE1ÒÇD$j
ÇD$-3é`ÿÿÿ„L‰çH‰D$èC@þÿL‹\$éŸöÿÿf„L‰çèÈBþÿ‰ŅÀ‰{÷ÿÿÇD$|
E1ÒÇD$W4M…ä„
ÿÿÿIƒ,$…ÿþÿÿL‰çL‰T$èê?þÿL‹T$éèþÿÿH‹5i2(L‰çè‘?þÿH…À„€þÿÿH‰D$HIƒíémþÿÿf.„ÇD$|
E1ÒÇD$4DH…í„—þÿÿHƒm…ŒþÿÿH‰ïL‰T$èw?þÿL‹T$éuþÿÿDL‰ßè`?þÿék÷ÿÿL‰çèÀAþÿI‰ÅH‹5Î5(L‰çIƒíèú>þÿH‰D$0H…À„eúÿÿH‹5Õ4(L‰çèÝ>þÿH‰D$8H…À„kIƒíH‹52(L‰çè¼>þÿH‰D$@H…À„<IƒíéhýÿÿDL‰÷H‰L$èÓ>þÿH‹L$é.÷ÿÿf„L‰çH‰D$è³>þÿH‹L$é÷ÿÿf„H‹F L‰çH‰D$0èÿ@þÿI‰Åé[ÿÿÿHƒ)„>	E1ÒÇD$~
ÇD$¼4éÍþÿÿDL‰×H‰D$ èS>þÿH‹L$ L‹\$é
õÿÿ@L‰ßH‰L$è3>þÿH‹L$éüôÿÿf„H‰Ïè>þÿé5õÿÿH‰ïè>þÿH‹L$éõÿÿfDL‰÷èð=þÿé õÿÿH‰ïH‰D$èÛ=þÿH‹D$éjûÿÿL‰÷H‰D$èÃ=þÿH‹D$éGûÿÿf„L‰×H‰D$è£=þÿH‹D$éûÿÿf„L‰ßH‰D$èƒ=þÿL‹T$H‹D$éîúÿÿ@L‰çèh=þÿéËôÿÿ¶èéZöÿÿ„…pùÿÿèEFþÿH…À„bùÿÿÇD$m
E1ÒÇD$O3é,üÿÿ@…\ùÿÿèFþÿH…À„NùÿÿÇD$n
E1ÒÇD$Y3éüûÿÿ@…FùÿÿòD$(èßEþÿòL$(H…À„,ùÿÿÇD$o
E1ÒÇD$c3éÀûÿÿ„L‰÷è¨<þÿé^ôÿÿèK?þÿL‰çè#•þÿH…À…ÍE1ÒÇD$|
ÇD$4ézûÿÿfH‹59,(H‹=ú9(1ÒèKBþÿI‰ÆH…À„qH‰ÇègÿÿIƒ.„yÇD$r
E1ÒÇD${3é-ûÿÿDH‹5á+(H‹=ª9(1ÒèûAþÿI‰ÆH…À„VH‰ÇèÿÿIƒ.„ÇD$t
E1ÒÇD$›3éÝúÿÿD…TøÿÿH‹5ƒ+(H‹=T9(1Òè¥AþÿI‰ÆH…À„:H‰ÇèÁÿÿIƒ.„ÇD$v
E1ÒÇD$»3é‡úÿÿ€è#>þÿH‰ïèû“þÿH‰ÅH…À…‡ÇD$|
E1ÒÇD$4@M…ö„§ûÿÿIƒ.…ûÿÿL‰÷L‰T$è(;þÿL‹T$é†ûÿÿfDÇD$4E1Ò1íÇD$|
Iƒ,$u´E1ÛL‰çL‰T$ L‰\$èç:þÿL‹\$L‹T$ M…ÛtIƒ+uŠL‰ßL‰T$èÅ:þÿL‹T$ésÿÿÿE1öÇD$x
1íÇD$Ø3ëɐÇD$|
1íÇD$74ë´@ÇD$â31íÇD$y
Iƒ*„œE1Ò돀H‰ïèX:þÿéóÿÿH‰ÏèH:þÿéöòÿÿL‰÷è8:þÿH‹L$é×òÿÿfDÇD$|
1íÇD$B4é9ÿÿÿÇD$ì3ÇD$z
ëˆfDL‰çèð9þÿéøòÿÿHƒ)„‰E1ÒÇD$|
ÇD$T4é~þÿÿfDÇD$ö3ÇD$w
é5ÿÿÿ¶èéQôÿÿH‹5i)(H‹=*7(1Òè{?þÿI‰ÆH…À„ýH‰Çè—ÿÿIƒ.„ÇD$}
E1ÒÇD$f4é]øÿÿH‰ïèM9þÿé©òÿÿèó;þÿH‰ïèˑþÿI‰ÆH…À…ÅðÿÿE1ÒÇD$~
ÇD$x4éøÿÿE1ÒÇD$~
ÇD$z4é·ýÿÿL‰×è÷8þÿé¨òÿÿè;þÿL‰çèu‘þÿH…À…E1ÒÇD$~
ÇD$}4é,ùÿÿL‰÷è¼8þÿÇD$r
E1ÒÇD${3é¬÷ÿÿE1ÒÇD$~
ÇD$4é´ýÿÿH‰ïH‰L$è8þÿH‹L$é‰òÿÿL‰×H‰D$èh8þÿH‹L$égòÿÿL‰÷èV8þÿÇD$t
E1ÒÇD$›3éF÷ÿÿM‰òÇD$~
ÇD$Ÿ4éŽøÿÿH‰Ïè8þÿé|òÿÿL‰÷è8þÿé‚òÿÿH‰ïè8þÿH‹L$éSòÿÿL‰÷èò7þÿÇD$v
E1ÒÇD$»3éâöÿÿM‰òÇD$ª4E1öÇD$~
é¼üÿÿL‰çè·7þÿénòÿÿHƒìH‹—è%H
³H5ijL
A¸H´H‹81Àè9@þÿY^¾º2éÿòÿÿÇD$~
E1ÒÇD$¿4éJ÷ÿÿH‰ÏèM7þÿE1ÒÇD$|
ÇD$T4éíûÿÿH‹5ö&(H‹=¿4(1Òè=þÿI‰ÆH…À„êH‰Çè,ÿÿIƒ.„FÇD$
E1ÒÇD$Î4éòõÿÿè•9þÿL‰çèmþÿH…À…ôE1ÒÇD$€
ÇD$à4éÄõÿÿE1ÒÇD$€
ÇD$â4é÷ÿÿHƒìH‹‰ç%A¸H5\jL
H
H‹8H£1Àè+?þÿ_¾´2AXéðñÿÿL‰÷èV6þÿÇD$}
E1ÒÇD$f4éFõÿÿèé8þÿH‰ïèNþÿH‰ÅI‰ÂH…À…©ïÿÿÇD$€
ÇD$å4éÅúÿÿÇD$€
ÇD$ç4é°úÿÿI‰ìÇD$51íÇD$€
éÛúÿÿE1ÒÇD$r
ÇD$w3éÎôÿÿM‰ÓÇD$5I‰ê1íÇD$€
é3ûÿÿE1ÒÇD$t
ÇD$—3é™ôÿÿHƒ)„E1ÒÇD$€
ÇD$$5é'úÿÿE1ÒÇD$v
ÇD$·3é_ôÿÿÇD$€
E1ÒÇD$'5é4õÿÿH‰Ïè75þÿE1ÒÇD$~
ÇD$¼4é‡õÿÿH‹5Ø$(H‹=©2(1Òèú:þÿI‰ÆH…À„ìH‰ÇèÿÿIƒ.„¢ÇD$
E1ÒÇD$65éÜóÿÿE1ÒÇD$ƒ
ÇD$S5é±ôÿÿL‰÷è´4þÿÇD$
E1ÒÇD$Î4é¤óÿÿE1Ò1íÇD$|
ÇD$T4é:ùÿÿE1ÒÇD$}
ÇD$b4éróÿÿH‰Ïèb4þÿE1ÒÇD$€
ÇD$$5éùÿÿL‰÷èB4þÿÇD$
E1ÒÇD$65é2óÿÿE1ÒÇD$
ÇD$Ê4éóÿÿE1ÒÇD$
ÇD$25éóÿÿE1Ò1íÇD$€
ÇD$$5阸ÿÿH‰ÅéíÿÿI‰ÄéêÿÿM‰ÔE1ÒéÌøÿÿI‰ÃéžëÿÿH‰Åé©éÿÿDAWAVAUATUH‰õSHƒì8L‹%`$(H‹^H‰|$HÇD$ L‰d$(H…Ò…¸Hƒû„šHƒû„ŒH…ÛHvH
fHOÈŸÀHÑ¶ÀL
‡
LOÊL@HƒìH‹ä%SH\H5éH‹81ÀèÏ;þÿX¾ÌWZH
º H=]1íèîŒþÿHƒÄ8H‰è[]A\A]A^A_Ã@L‹f(L‹m Iƒ$H‹-œ'(H‹=52(H‰îè4þÿH‰ÃH…À„QHƒH‹5®)(H‰ßè=þÿH‰ÅH‹H…턯	HƒèH‰„êI‹Eö€³„yHƒm»„éH‹-*'(H‹=Ã1(H‰îè£3þÿH‰ÃH…À„·
HƒH‹54,(H‰ßè”<þÿI‰ÆH‹M…ö„mHƒèH‰„¨L‰î¿1Àè9:þÿI‰ÀH…À„]1ÒH‰ÆL‰÷H‰$èÌ7þÿL‹$H‰ÅIƒ(„ãH…í„ÙIƒ.„ÀH‹5i$(H‹|$è<þÿI‰ÆH…À„cH‰î¿1ÀèÌ9þÿI‰ÀH…À„1ÒH‰ÆL‰÷H‰$è_7þÿL‹$I‰ÂIƒ(„V	M…Ò„mIƒ.„+	Iƒ*„	H‹EL‰$$HPH‰UH‰EH…À„ä@H‹$H‹H‰D$HƒèH‰…þÿÿH‹<$èþ0þÿéþÿÿf„H‰îL‰ï1ÛèÓ:þÿ…À•ÃHƒm„cH‹-¤%(H‹==0(…Û…rþÿÿH‰îè2þÿI‰ÆH…À„ñHƒH‹5–*(L‰÷è;þÿI‰ÀH…À„ÂIƒ.„01ÀL‰î¿L‰$è­8þÿL‹$H…ÀI‰Æ„
1ÒL‰ÇH‰ÆL‰$è<6þÿIƒ.L‹$H‰Å„+I‹HƒèH…í„"I‰H…À„ÿL‹5ø$(H‹=‰/(L‰öèi1þÿH‰ÃH…À„HƒH‹5:%(H‰ïèZ:þÿI‰ÆH…À„
¿è´6þÿI‰ÂH…À„ 
Iƒ$1ÒH‰ÆH‰ßL‰` L‰p(H‰D$è™5þÿL‹T$H…ÀH‰$„
Iƒ*„e
Hƒ+„k
Iƒ,$„@
H‹5¹$(H‰ïèÙ9þÿI‰ÆH…À„
H‹5 (H9ð„H‹và%I9F„D
ºL‰÷è/9þÿI‰ÀH…À„#
H‹,â%I‹I9ØHPÿA”ÄI‰E¶üH…Ò„Ž	L;Oá%”ÁL;=á%”ÂÑ…ÎE„ä…ÅL‰ÇL‰D$èl1þÿL‹D$…ÀA‰Ç‰¨I‹L‰þ½XE1ÒA½ÙE1ÀE1öHƒèéÝf„H‰ßèˆ.þÿI‹Eö€³…üÿÿé‚ýÿÿfH‰ïèh.þÿéýÿÿH‰ßèX.þÿéKüÿÿL‰÷H‰$èD.þÿL‹$é»ýÿÿH‹Aá%A¼A¿HƒI‰ØIƒ.„¤Iƒ(„	L‹%Û"(H‹=t-(L‰æE…ÿ…èK/þÿH‰ÃH…À„„
HƒH‹5Ü'(H‰ßè<8þÿI‰ÆH‹M…ö„	HƒèH‰„ H‹5q (H‰ïè8þÿI‰ÀH…À„H‹4$H‰ÇH‰D$èä.þÿL‹D$H…ÀI‰ÂI‹„4HƒèI‰„ÿL‰T$è44þÿL‹T$H…ÀH‰Ã„L‰P è0þÿI‰ÂH…À„µL‹%ÿ!(H‹=˜,(H‰D$L‰æès.þÿL‹T$H…ÀI‰Ç„ºHƒH‹5ï#(L‰ÿL‰T$èZ7þÿL‹T$H…ÀI‰À„€Iƒ/„SH‹50%(L‰ÂL‰×L‰D$L‰T$è3,þÿL‹T$L‹D$…ÀˆBIƒ(„wL‰ÒH‰ÞL‰÷L‰T$èt2þÿL‹T$H…ÀI‰Ç„¶Iƒ.„²Hƒ+„‘Iƒ*„µH‹5(H‹|$è´6þÿI‰ÂH…À„•H‰D$L‰þ1?èd4þÿL‹T$H…ÀI‰Æ„Œ1ÒL‰×H‰Æèö1þÿIƒ.L‹T$I‰À„$M…À„£Iƒ*„ÌIƒ(„µH‹5!(H‰ïè86þÿI‰ÀH…À„¢¿H‰D$èý4þÿL‹D$H…ÀI‰Â„žH‹Ý(1öH‰ÇL‰D$H‰D$Hƒèý0þÿL‹D$L‹T$L‰ÆL‰×èX4þÿL‹T$L‹D$H…ÀH‰Ã„mIƒ*„{Iƒ(„dH‹4$L‰úH‰ßèß3þÿ…ÀˆH‰ßè?0þÿI‰ÂH…À„aH‰ÆH‰ïH‰D$èc,þÿL‹T$H…ÀI‰Æ„wIƒ*„
Hƒm„¨Iƒ/L‰õ…L‰ÿèÈ*þÿéI‰ÕHƒû„ËHƒû„iH…Û…<÷ÿÿH‰×è-þÿH‹5™(L‰ïI‰ÄèF*þÿIƒìH‰D$ H…À„fM…äSL‹l$ L‹d$(éŒ÷ÿÿ@è-þÿH‰ïèۂþÿI‰ÆH‰ÃH…À…—÷ÿÿE1ÿ1íE1ÒE1ÀA½Ï¾õWL‰$$M…ötIƒ.twM…Àt
Iƒ(„˜M…Òt
Iƒ*„©H
öD‰êH=PèãƒþÿH…ít
Hƒm„›1íM…ÿt
Iƒ/„òþÿÿH…Û„™øÿÿHƒ+…øÿÿH‰ßè§)þÿ邸ÿÿfL‰÷L‰D$‰t$L‰T$èŠ)þÿL‹D$‹t$L‹T$é`ÿÿÿ€L‰ljt$L‰T$è_)þÿ‹t$L‹T$éIÿÿÿL‰׉t$èD)þÿ‹t$éBÿÿÿE1öH‰ïL‰õè*)þÿéTÿÿÿDL‰Çè)þÿéôøÿÿL‰÷è)þÿL‹$éÄøÿÿ€L‰÷èð(þÿé3÷ÿÿL‰Çèà(þÿé÷ÿÿL‰$$HƒèE1ÒE1ÀE1ö¾÷WA½ÏH‰H…Àu6E1ÿH‰ßL‰D$‰t$L‰T$è›(þÿM…ÿL‹T$‹t$L‹D$„™Iƒ/t1ÛE1ÿéRþÿÿ@L‰ÿL‰D$1ÛE1ÿ‰t$L‰T$èU(þÿL‹T$‹t$L‹D$é þÿÿfH‰ïè8(þÿé÷ÿÿL‰×è((þÿéâöÿÿL‰÷L‰$è(þÿL‹$éÀöÿÿL‰ÇH‰$èü'þÿL‹$é•öÿÿèK)þÿI‰ÇH…À„LHƒH‹5Ì(L‰ÿè<2þÿI‰ÂH…À„ÂIƒ/„†¿L‰T$è‡.þÿL‹T$H…ÀI‰Æ„üHƒE1ÒL‰×H‰ÆH‰h IƒEL‰h(èg-þÿL‹T$H…ÀI‰À„Iƒ.„œIƒ*„rI9Ø”ÀL;Ù%”ÂÂ…ºL;ƒÙ%„­L‰ÇL‰D$èÀ)þÿL‹D$…	ÈuIƒ(„~…Û„µH‹Ð(H‹=i&(H‰ÞèI(þÿI‰ÂH…À„o	HƒH‹5Ò (L‰×L‰T$è51þÿL‹T$H…ÀI‰Æ„~	Iƒ*„HH‰î¿1ÀèÛ.þÿI‰ÀH…À„Á	1ÒH‰ÆL‰÷H‰D$èm,þÿL‹D$I‰ÂIƒ(„zM…Ò„3
Iƒ.„PHƒm„+L‰ÕH‹5û(H‹|$è©0þÿI‰ÆH…À„(H‰î¿1Àè^.þÿI‰ÀH…À„91ÒH‰ÆL‰÷H‰D$èð+þÿL‹D$I‰ÂIƒ(„·M…Ò„	Iƒ.„Iƒ*„vH‹EHPH‰UéôÿÿI‹L‰ÃE1ÒE1À1íL‰$$¾nXA½ÔHƒèéÞüÿÿf.„1ÛE1ÿ1íE1ÒA½Ð¾!XéPûÿÿfDL‰÷L‰D$èc%þÿL‹D$é[öÿÿHƒ+„L	A½á¾nYé»üÿÿ€L‰çè0%þÿé³õÿÿL‰×è %þÿéŽõÿÿH‰ßè%þÿéˆõÿÿL‰Çè%þÿéñöÿÿL‰÷è€&þÿf.°%z„¨öÿÿL‹1×%H‹â×%IƒI9ØA”ÄE¶üé öÿÿfDèc'þÿH‰ïè;}þÿI‰ÆH…À…úóÿÿ1ÛE1ÿ1íE1ÒE1ÀA½Ô¾]Xé\úÿÿfè+'þÿH‰ïè}þÿI‰ÆH‰ÃH…À…1òÿÿE1ÿ1íE1ÒE1ÀA½Ð¾Xé#úÿÿf„H‹F(H‰×H‰D$(H‹F H‰D$ è–&þÿH…À޲ùÿÿHT$ H‰ÙL‰ïLGÿH5½'èߩþÿ…À‰Œùÿÿ¾¼WéåðÿÿDH‹F H‰×H‰D$ èG&þÿI‰Äé[ùÿÿ€1ÛE1ÿ1íE1ÒA½Ô¾_XéˆùÿÿfDHƒèE1ÒE1À1íL‰$$¾XA½ÐéÌúÿÿ„¶Øégüÿÿ„è&þÿL‰÷èó{þÿI‰ÆH‰ÃH…À…[óÿÿE1ÿE1ÒE1ÀA½Ö¾{Xéùÿÿ1ÛE1ÿE1ÒE1ÀA½Ñ¾.Xé÷øÿÿDH‹5á(L‰ïèÉ"þÿH…À„ãþÿÿH‰D$(ID$ÿéËþÿÿ1ÛE1ÿE1ÒA½Ñ¾<Xé²øÿÿ„H‹E1ÒE1ÀL‰$$¾}XA½ÖHƒèéóùÿÿ€H‹E1ÀL‰$$¾žXA½ÖHƒèéÎùÿÿf.„H‹E1ÀE1öL‰$$¾©XA½ÖHƒèé£ùÿÿ€1ÛE1ÿL‹$$E1ÒE1ÀA½Ù¾¸Xéøÿÿf„L‰ÿL‰T$è#"þÿL‹T$écúÿÿf„H‰ßè"þÿéSôÿÿM‰÷E1ÒE1ö¾ºXA½Ùécùÿÿ€L‰×L‰D$èÓ!þÿL‹D$éwúÿÿf„L‰÷H‰D$è³!þÿL‹D$L‹T$éHúÿÿ@L‰ÇL‰T$è“!þÿL‹T$é&ôÿÿL‰Çè!þÿéuúÿÿL‰ÿL‰T$H‰D$èj!þÿL‹D$L‹T$éŒôÿÿL‰×èS!þÿé}ûÿÿL‰÷L‰T$èA!þÿL‹T$é\ûÿÿL‰ÇH‰D$è*!þÿL‹T$é2ûÿÿL‰ÇL‰T$è!þÿL‹T$érôÿÿL‰ÃE1ÒE1öE1ÀL‰$$¾nXA½Ôé-øÿÿ1ÛE1ÿE1ÒE1ÀA½Ð¾!Xé¨öÿÿH‰ßL‰T$èÁ þÿL‹T$éXôÿÿL‰÷L‰T$èª þÿL‹T$é7ôÿÿL‰×è˜ þÿé>ôÿÿè>#þÿL‰çèyþÿI‰ÆH…À…‡1ÛI‰ÇL‹$$E1ÒE1ÀA½Û¾ÈXé5öÿÿè#þÿL‰çèÞxþÿI‰ÆH‰ÃH…À…dòÿÿE1ÿL‹$$E1ÒE1ÀA½á¾[YéüõÿÿL‰Çè þÿé>ôÿÿL‰×L‰D$è þÿL‹D$éôÿÿE1ÀE1öA½Û¾ÊXéd÷ÿÿ1ÛE1ÿE1ÀA½Ñ¾<XéªõÿÿL‰÷H‰D$èÃþÿL‹D$L‹T$éÀóÿÿHƒèE1ÒE1>]YA½áéÞöÿÿ1ÛE1ÿL‹$$E1ÀA½Û¾êXéXõÿÿ1ÛE1ÿL‹$$E1ÒA½á¾`Yé<õÿÿL‰×èZþÿ髸ÿÿ1ÛE1ÿL‹$$A½Û¾õXéõÿÿL‰ÃHƒèE1>bYA½áéföÿÿH‰ïL‰T$èþÿL‹T$L‰Õé¾øÿÿL‰÷L‰T$èûþÿL‹T$陸ÿÿL‰ÇH‰D$èäþÿL‹T$éoøÿÿL‰ÇèÒþÿéóÿÿL‰×L‰D$èÀþÿL‹D$énóÿÿE1ÿL‹$$E1ÀA½á¾eYévôÿÿI‹L‰þúXE1ÒA½ÛE1ÀE1öHƒèé½õÿÿH‹E1>jYA½áHƒèé£õÿÿH‹¾qYA½áHƒèéŒõÿÿL‰T$èî þÿL‰çèÆvþÿL‹T$H…ÀI‰À…H‹¾lYA½áHƒèéRõÿÿH‹]é¡êÿÿ1ÛE1ÿL‹$$E1ÒE1ÀA½Ý¾,YéÀóÿÿL‰×èÞþÿéñòÿÿ1ÛE1ÿL‹$$E1ÒA½Ý¾:Yé—óÿÿH‹E1>sYA½áHƒèéçôÿÿ1ÛL‹$$E1ÀE1öA½â¾‚Yéaóÿÿ1ÛL‹$$E1ÀA½â¾YéHóÿÿè þÿH‰ßèñuþÿI‰ÆH…À…B1ÛE1ÿL‹$$I‰ÂE1ÀA½Ü¾Yéóÿÿ1ÛE1ÿL‹$$E1ÀA½Ü¾Yéôòÿÿ1ÛL‹$$E1ÒE1öA½ã¾œYéØòÿÿ1ÛL‹$$E1öA½ã¾žYé¿òÿÿL‹$$E1öA½ã¾£Yé¨òÿÿ1ÛE1ÿL‹$$E1ÒA½Ü¾YéŒòÿÿL‹$$E1ÀE1öA½å¾½YéròÿÿL‹$$A½äE1ÒE1>³YE1öéUòÿÿL‹$$E1ÀA½å¾¿Yé>òÿÿ1ÛE1ÿL‹$$E1ÀA½Ý¾:Yé"òÿÿ1ÛL‹$$E1öA½â¾Yé	òÿÿ1ÛE1ÿL‹$$E1ÀA½Ü¾YéíñÿÿI‰Âé2õÿÿI‰Çéïÿÿ¾nYA½áéBóÿÿI‰Çéôÿÿ1ÛéÂñÿÿ@AWAVAUATUSH‰óHƒìhH‹Î%H‹nH‰|$HÇD$@HÇD$HHÇD$PH‰D$XH…Ò…Hƒý„ŒHƒý…H‹F8H‰D$L‹{0L‹c(H‹k H‹î(¿H‹˜(ÿhE1É1É1ÒA¸H‰ÆH‰ïÿÓH‰ÃH…À„ƒ
Hƒ8„AH‹ª(¿L‹¨(ÿhE1É1É1ÒA¸H‰ÆL‰çAÿÕI‰ÅH…À„æHƒ8„H‹e(¿L‹°(ÿhE1É1É1ÒA¸H‰ÆL‰ÿAÿÖI‰ÆH…À„ÉHƒ8„¿A‹E ;C „ÊL‹%c(H‹=ü(L‰æèÜþÿH‰ÅH…À„
HƒH‹5u(H‰ïèÍ$þÿI‰ÇH…À„ñHƒm„.H‹5ß
(ºH‰ßè2$þÿH‰ÅH…À„æH‰ƿ1ÀèW"þÿH…À„¾1ÒH‰ÆL‰ÿH‰D$èìþÿH‹L$I‰ÄHƒ)„*Hƒm„?M…ä„”Iƒ/„L;%ÕÌ%”ÀL;%Ì%”ÂÂ…L;%ùË%„L‰çè;þÿ‰ŅÀˆÁIƒ,$„>…턾H‹(H;ÀË%H‹=	
(„ôènþÿ…À…ÅH‹5ï	(H‹=Ø(èƒ#þÿI‰ÄM…ä„ÐL‰æ¿1ÀH‹-¾(èa!þÿI‰ÇH…À„ç1ÒH‰ïH‰ÆèøþÿIƒ/H‰Å„9H…í„eIƒ,$„H‰ïèÿïþÿHƒm„øÇD$´E1ä1íE1ÿÇD$u=é'€L‰çèþÿI‰ÅH‹5Æ
(L‰çIƒíèRþÿH‰D$@H…À…X
H‹kHƒýH‘ñH
ñHMȝÀHƒì¶ÀUH4ôL@H‹=É%H5ôL
ËôH‹81Àèõ þÿX¾	<ZH
+ñº0H=³1ÛèrþÿHƒÄhH‰Ø[]A\A]A^A_ÃfH‹IÊ%H‰D$évüÿÿ€H‰Çèàþÿé²üÿÿH‰ÇèÐþÿéçüÿÿA;F …,ýÿÿ…À…$ýÿÿH‹Eö€³„H‰ïè}þÿH‰ÅHƒýÿ„0I‹D$ö€³„6L‰çèVþÿI‰ÄIƒüÿ„qI‹Gö€³„ÀL‰ÿè0þÿH‰ÂHƒúÿ„›Hýÿɚ;®Iüÿɚ;¡JD%H9ÐŒ‹H‹D$H‰T$(H‰ïH‹ØHƒH‰T$èÙþÿH…ÀH‰D$ „ËL‰çèÃþÿL‹\$ H…ÀI‰Ç„ª
H‹T$(H‰×è¥þÿL‹\$ H…ÀH‰Å„Ì
H‹t$HƒìE1ÀA¹jH‹=¹È%ÿ5[(HƒÆ(Pjÿ5Ö(AWjÿ5œ(ASH‹L$`H‹T$hL‰\$XÿÅ(HƒÄPL‹\$H…ÀI‰Ä„ð
H‹T$H‹H‰D$HƒèH‰„	Iƒ+„	Iƒ/„êHƒm„¿Hƒ+tDIƒmL‰ãtQ€Iƒ.…âýÿÿL‰÷èîþÿéÕýÿÿf„H‰ÇèØþÿé4ûÿÿE1äH‰ßL‰ãèÂþÿM…ítIƒmuL‰ïè®þÿM…öu©éýÿÿ@¶èéüÿÿ„Hƒý‡ýÿÿI‰ÔHHýHcªHÐÿàH‹F8H‰D$XH‹C0H‰D$PH‹C(L‰çH‰D$HH‹C H‰D$@è´þÿI‰ÅHƒý„~7Hƒý„ Hƒýu0M…폌H‹D$XH‹l$@L‹d$HL‹|$PH‰D$é‘ùÿÿH…í„PüÿÿM…í~ÔHT$@H‰éL‰çLºðH5§¬'貚þÿ…Ày²¾õ;é–üÿÿ@H‹-‘	(H‹=*(H‰îè
þÿI‰ÇH…À„}
HƒH‹5£(L‰ÿèûþÿH‰ÅH…À„ì
Iƒ/„•H‹5(ºL‰ïèaþÿI‰ÇH…À„!H‰ƿ1Àè†þÿH…À„‡1ÒH‰ÆH‰ïH‰D$èþÿH‹L$I‰ÄHƒ)„iIƒ/„OM…ä„]Hƒm„+L;%Ç%@”ÅL;%AÆ%”À@è…ÝL;%&Æ%„ÐL‰çèhþÿ‰ŅÀˆÎ
Iƒ,$„k…í…-úÿÿH‹-|(H‹=(H‰îèõþÿI‰ÄH…À„ÁHƒH‹5Ž
(L‰çèæþÿI‰ÇH…À„âIƒ,$„oH‹-0(H‹=É(H‰îè©þÿI‰ÃH…À„ÌHƒH‹5¢	(L‰ßL‰\$ è•þÿL‹\$ H…ÀH‰D$„ÒIƒ+„XH‹-Ù(H‹=r(H‰îèRþÿH‰ÁH…À„øHƒH‹5
(H‰ÏH‰L$ è>þÿH‹L$ H…ÀI‰Á„OHƒ)„C	¿L‰L$ è„þÿL‹L$ H…ÀI‰À„wHƒ1ÒL‰ÏH‰ÆH‰X IƒEL‰h(H‰D$(è`þÿL‹L$ L‹D$(H…ÀH‰Á„UIƒ(„Ð	Iƒ)„¦	¿H‰L$ èþÿH‹L$ H…ÀH‰Å„•H‰H H‹|$1ÒH‰ÆIƒL‰p(èûþÿH‰ÁH…À„†Hƒm„Ô	H‹t$H‹H‰D$ HƒèH‰„¢	H‰Î1?H‰L$èþÿH‹L$H…ÀI‰Ä„W1ÒH‰ÆL‰ÿè˜þÿIƒ,$H‹L$H‰Å„µ	Hƒ)„›	H…í„'Iƒ/„x	H;-Ä%”ÀH;-¿Ã%”ÂÂ…¼H;-¥Ã%„¯H‰ïèçþÿA‰ąÀˆÿHƒm„œ	E…ä…sH‹D$HƒìI‰ØH‹=5Ã%H‹¨ØHp(HƒEH‰éL‹
(jÿ5»(AVjÿ59(AUjH‹T$Xÿ"(I‰ÄHƒÄ@H…À…¨úÿÿE1ÿÇD$ºÇD$.>ë%DÇD$ŸE1öE1í1íÇD$B<E1äE1ÿfE1ÀE1É1ÉM…ÿt
Iƒ/„©H…ítHƒm„ÉM…ätIƒ,$„éH…Ét
Hƒ)„
M…ÉtIƒ)tGM…ÀtIƒ(tT‹T$‹t$H
)éH=¶üèjþÿH…Û„NúÿÿHƒ+„6úÿÿ1Ûé=úÿÿ€L‰ÏL‰D$èëþÿL‹D$ë¥@L‰ÇèØþÿë¢fDL‰ÿH‰L$(L‰L$ L‰D$è¹þÿH‹L$(L‹L$ L‹D$é,ÿÿÿDH‰ïH‰L$(L‰L$ L‰D$è‰þÿH‹L$(L‹L$ L‹D$éÿÿÿDL‰çH‰L$(L‰L$ L‰D$èYþÿH‹L$(L‹L$ L‹D$éìþÿÿDH‰ÏL‰L$ L‰D$è.þÿL‹L$ L‹D$éÕþÿÿ€H‰ïèþÿéÅôÿÿE1öE1ä1íE1ÿÇD$ ÇD$Q<éXþÿÿ„E1ä1íE1ÿÇD$¡ÇD$`<é3þÿÿH‰Ïè¸þÿéÉôÿÿL‰ÿè¨þÿé×ôÿÿH‰ïè˜þÿé´ôÿÿH‹5(L‰çèAþÿH…À„ˆùÿÿH‰D$XIƒíéuùÿÿf.„E1äÇD$³ÇD$0=é¸ýÿÿ„H‹F L‰çH‰D$@èŸþÿI‰ÅH‹5}(L‰çèÝ
þÿH‰D$HH…À„íIƒíH‹5Ô(L‰çè¼
þÿH‰D$PH…À„IƒíéÀøÿÿDL‰ÿèØ
þÿé^ùÿÿÇD$³1íE1ÿÇD$D=é&ýÿÿIƒ/„"E1äE1ÿÇD$³ÇD$^=éýÿÿH‹=*þ'èeþÿ…À…'ôÿÿH‹=þ'H‹ÿ(H‰þH‰Çè„þÿI‰Äéôÿÿ@H‰ïèP
þÿé4÷ÿÿL‰çè@
þÿéµóÿÿL‰ÿè0
þÿé	÷ÿÿL‰ßè 
þÿéïöÿÿH‰×L‰\$è
þÿL‹\$éËöÿÿ@¶íé9ùÿÿ€L‰çèèþÿé„ùÿÿè‹þÿL‰çèceþÿI‰ÇH…À…‡E1äH‰ÅÇD$³ÇD$.=éüÿÿH;D$ tH‰×H‰T$ èxþÿH‹T$ …À„Ÿ
H‰T$èþÿH‹T$H…À„[Hƒ*u
H‰×èeþÿDè[þÿH…À…šHÇÅÿÿÿÿé¶ôÿÿH;D$ tH‰×H‰T$ èþÿH‹T$ …À„•H‰T$èþÿH‹T$H…À„Õ
Hƒ*uH‰×èÿþÿ€èóþÿH…À…)	IÇÄÿÿÿÿéuôÿÿH;D$ tL‰ÿè¯þÿ…À„„èÂþÿH…À„üIƒ/uL‰ÿè«þÿè£þÿH…À…¢HÇÂÿÿÿÿéKôÿÿfDH‹(H;ʽ%H‹=ü'„Oèxþÿ…À… H‹5ùû'H‹=â(èþÿI‰ÇM…ÿ„fL‰þ¿1ÀL‹%È(èkþÿH‰ÅH…À„º1ÒL‰çH‰ÆèþÿHƒmI‰Ä„dI‹HƒèM…䄏I‰H…À„;L‰çèâþÿIƒ,$„ÇD$ªE1ä1íE1ÿÇD$¹<é(úÿÿ„L‰ßè¨
þÿé›÷ÿÿD¶àé[ùÿÿ€H‹5Aú'H‹=(1ÒèkþÿI‰ÇH…À„ËH‰Çè‡áþÿIƒ/„âÇD$­E1ä1íE1ÿÇD$Ù<é°ùÿÿE1äÇD$³ÇD$3=é˜ùÿÿ„ÇD$ö<E1ÀE1É1ÉÇD$¯E1ÿH‹t$H‹H‰D$ HƒèH‰…Q
E1Û1íH‹|$H‰L$8L‰L$0L‰D$(L‰\$ èÈ	þÿL‹\$ L‹D$(L‹L$0H‹L$8M…Û„	
Iƒ+A¼…ùÿÿL‰ßH‰L$(L‰L$ L‰D$è„	þÿL‹D$L‹L$ H‹L$(éèøÿÿH‰ÏH‰D$ èc	þÿL‹L$ é¦öÿÿf„Hƒm„ïE1ä1íÇD$³ÇD$A=雸ÿÿÇD$=1íÇD$°H‹t$E1ÀE1É1ÉH‹H‰D$ HƒèH‰…Iÿÿÿé	ÿÿÿ€ÇD$
=ÇD$±ëÀfDH‰ïèÈþÿéÈôÿÿL‰ÿè¸þÿé¤ôÿÿH‰Ïè¨þÿéŠôÿÿL‰ÏH‰L$ è“þÿH‹L$ éCöÿÿf„L‰ÇH‰D$(èsþÿH‹L$(L‹L$ éöÿÿ@ÇD$=ÇD$®é5ÿÿÿL‰çè@þÿéˆôÿÿH‰÷H‰L$ è+þÿH‹L$ éGöÿÿH‰ïH‰D$ èþÿH‹L$ éöÿÿf„L‰ÿèøþÿé{öÿÿH‰ÏèèþÿéXöÿÿL‰çèØþÿH‹L$é9öÿÿfDès
þÿH‰ïèK`þÿI‰ÇI‰ÄH…À…'ôÿÿ1íÇD$·ÇD$‡=é÷ÿÿH‰ïèþÿéWöÿÿ1íÇD$·ÇD$‰=éáöÿÿè
þÿH‰ïèô_þÿH‰ÅH…À…	E1äÇD$·ÇD$Œ=é°öÿÿE1ÀE1É1É1íÇD$·ÇD$Ž=évýÿÿèÌ	þÿH‰ïè¤_þÿI‰ÇH…À…nòÿÿE1ä1íÇD$³ÇD$K=é^öÿÿè™	þÿH‰ïèq_þÿH‰ÁH…À…óóÿÿE1ÀE1ÉÇD$‘=ÇD$·éµüÿÿL‰çè²þÿéØûÿÿL‰ÿè¥þÿé¸ûÿÿH‰ïè˜þÿéûÿÿE1äÇD$³ÇD$M=éëõÿÿL‰ÿèsþÿéüÿÿE1ÀÇD$“=ÇD$·éQüÿÿH‰ïE1ä1íèIþÿÇD$³ÇD$A=é¤õÿÿE1äÇD$³ÇD$P=éŒõÿÿ1ÉÇD$³=ÇD$·éüÿÿÇD$¾=ÇD$·éëûÿÿÇD$³1íE1ÿÇD$a=éFõÿÿHƒìH‹»¶%H
×ÞH5ájL
@âA¸HƒáH‹81Àè]þÿY^¾ë;écíÿÿI‰ËÇD$â=ÇD$·écüÿÿI‰èE1ÉÇD$í=ÇD$·éYûÿÿHƒ)„1íÇD$·ÇD$ÿ=é­ôÿÿÇD$·E1äE1ÿÇD$>é’ôÿÿHƒìH‹¶%A¸H5ÚàjL
áH

ÞH‹8HÌà1Àè©
þÿ_¾å;AXé®ìÿÿH‰ïèÔþÿéûëÿÿL‰çèÇþÿéÛëÿÿL‰ÿèºþÿéºëÿÿH‹5fô'H‹=?(1Òè
þÿI‰ÇH…À„H‰Çè¬ÛþÿIƒ/„kÇD$¸E1ä1íE1ÿÇD$>éÕóÿÿM‰ûÇD$ªE1À1ÉÇD$´<E1É1íE1ÿé•úÿÿH‹=Ùô'èþÿ…À…ÌøÿÿH‹=Åô'H‹®ý'H‰þH‰Çè3þÿI‰ÇéÁøÿÿH‹5™µ%H‰t$ H9ðtH‰ïèÏþÿ…À„ÝèâþÿH…À…y÷ÿÿH‹´%H5ÛÝH‹8è3þÿé^÷ÿÿfDÇD$¥E1ä1íE1ÿÇD$‚<éóÿÿH‹5)µ%H‰t$ H9ðtL‰ÿè_þÿ…À„êèrþÿH…À…Á÷ÿÿH‹R´%H5kÝH‹8èÃþÿé¦÷ÿÿfDH‹5ٴ%H‰t$ H9ðtL‰çèþÿ…À„è"þÿH…À…!÷ÿÿH‹´%H5ÝH‹8èsþÿé÷ÿÿfDÇD$§E1ä1íE1ÿÇD$–<éKòÿÿE1ä1íÇD$ªÇD$²<é1òÿÿÇD$¦E1ä1íE1ÿÇD$Œ<éòÿÿE1ä1íÇD$­ÇD$Õ<éúñÿÿL‰ÿE1äE1ÿè|þÿÇD$³ÇD$^=é×ñÿÿ1íE1ÿÇD$´ÇD$n=é½ñÿÿH‰Ï1íèCþÿÇD$·ÇD$ÿ=éžñÿÿ1íÇD$´ÇD$p=é‡ñÿÿL‰ÿèþÿéˆýÿÿH‰ïèÂþÿH‰ÂH…À„þÿÿH‹5¿³%H‹@H‰t$H9ðu:ö€³„'õÿÿH‰×H‰T$è¦þÿH‹T$H‰ÅHƒ*…êÿÿH‰×è¬þÿé
êÿÿH‰×èÿ†þÿH‰ÂH…À„3õÿÿH‹@ë­L‰ÿèEþÿI‰ÇH…À„þÿÿH‹5B³%H‹@H‰t$H9ðu=@ö€³„uõÿÿL‰ÿè+þÿH‰ÂIƒ/…ñéÿÿL‰ÿH‰T$è1þÿH‹T$éÚéÿÿL‰ÿè†þÿI‰ÇH…À„kõÿÿH‹@ë­L‰çèÅþÿH‰ÂH…À„ÒýÿÿH‹5²%H‹@H‰t$H9ðu=@ö€³„ôÿÿH‰×H‰T$è¦þÿH‹T$I‰ÄHƒ*…AéÿÿH‰×è¬þÿé4éÿÿH‰×èÿ…þÿH‰ÂH…À„›ôÿÿH‹@ë­E1ÿÇD$´ÇD$p=éåïÿÿE1ä1íÇD$¸ÇD$
>éËïÿÿE1äÇD$·ÇD$ÿ=é³ïÿÿL‰ÿèûþÿH‰ÁH…À„hôÿÿH‹D$H9AuCH‹AH‰ÏH‰L$ö€³tCèêÿýÿH‹L$H‰ÂHƒ)…°þÿÿH‰ÏH‰T$èëÿýÿH‹T$é™þÿÿH‰Ïè9…þÿH‰ÁH…Àu­éôÿÿèùþÿH‹L$H‰Âë»H‹¦°%H5¿ÙH‹8èþÿééóÿÿE1äéïÿÿE1ä1íéïÿÿH‰×èHþÿH‹T$ H…ÀH‰Á„RóÿÿH‹D$H9AuMH‹AH‰T$ H‰ÏH‰L$ö€³tRè-ÿýÿH‹L$H‹T$ I‰ÄHƒ)…xþÿÿH‰ÏH‰T$è)ÿýÿH‹T$éaþÿÿH‰ÏH‰T$èr„þÿH‹T$H…ÀH‰Áu™éóòÿÿèKøþÿH‹T$ H‹L$I‰Äë¬H‰×è¤þÿH‹T$ H…ÀH‰Á„HòÿÿH‹D$H9AuMH‹AH‰T$ H‰ÏH‰L$ö€³tRè‰þýÿH‹L$H‹T$ H‰ÅHƒ)…ÔüÿÿH‰ÏH‰T$è…þýÿH‹T$é½üÿÿH‰ÏH‰T$è΃þÿH‹T$H…ÀH‰Áu™ééñÿÿè§÷þÿH‹T$ H‹L$H‰Åë¬I‰ÃéëÿÿH‰ÅéÌãÿÿH‹!¯%H5:ØH‹8è’þÿH‹T$éòÿÿH‹¯%H5ØH‹8èrþÿH‹T$é…ñÿÿ„AWAVAUI‰õATUSHìˆH‹%°%L‹fH‰|$HÇD$`HÇD$hH‰D$pH…Ò…Iƒü„Ú	Iƒü…ˆH‹^0M‹u(M‹m H‹
ý'¿HÇD$`HÇD$8HÇD$@L‹¸(HÇD$HHÇD$PHÇD$XÿhE1É1É1ÒA¸H‰ÆL‰÷Aÿ×I‰ÄH…À„S
Hƒ8„a
H‹’ü'¿E‹|$ H‹¨(ÿhE1É1É1ÒA¸H‰ÆL‰ïÿÕH‰ÅH…À„BHƒ8„(
E…ÿ…7‹u …ö…,L‰÷è¬ýýÿf.dýòD$‹ØI‹Eö€³„'L‰ïè_üýÿH‰D$Hƒ|$ÿ„.¾H‹=²ð'òD$ÿîú'ƒøÿ„=fï>H‹=­ñ'òH*D$ÿÈú'ƒøÿ„wH;p®%„ÚL‹-ëð'H‹=„û'L‰îèdýýÿI‰ÆH…À„HƒH‰D$@H‹50ô'L‰÷èPþÿI‰ÆH‰D$8H…À„XH‹|$@Hƒ/„°L‹-‘ð'H‹=*û'HÇD$@L‰îèýýÿI‰ÆH…À„HƒH‰D$@H‹5¥ò'L‰÷èíþÿI‰ÆH…À„+H‹|$@Hƒ/„
HÇD$@¿è/þÿI‰ÇH…À„YH‹D$@H…Àt
I‰G HÇD$@HƒH‹|$81ÒL‰þI‰_ M‰w(èþÿI‰ÅH‰D$HH…À„RIƒ/„
H‹|$8Hƒ/„÷H‹D$HH‰D$8HƒH‹|$HHƒ/„ÊH‹\$8H‹Fú'HÇD$HHÇD$8‹s H‹{(ÿðH‹5˜ò'L‹sI‰ÇH‹D$H‹¸ØèðþÿI‰ÅH…À„³H‹D$H‹5ò'H‹¸ØèÌþÿH‰D$HH…À„ÿH‹5§ù'1ÒH‰Çè-þÿH‰D$8H…À„$H‹|$HHƒ/„ˆHÇD$HH‹|$8Hƒ/„`HÇD$8èºþýÿH‰D$ M…ÿ~`H‹D$O<þL‰d$H‰l$(H‹l$HPPHƒÀ(H‰\$L‰óI‰ÔI‰ÆfòD$L‰âH‰îL‰÷HƒÃèxþÿH‰CøI9ßußL‹d$H‹l$(H‹\$H‹|$ è¶ýýÿH‹5gé'1ÒL‰ïèeÿýÿH‰D$`Iƒm„L‹l$`M…턚Iƒm„wHÇD$`Hƒ;„ùIƒ,$… 
fDL‰çè ùýÿé
M‹e€IƒüH!ÒH
ÒHMȝÀHƒì¶ÀATH¤ÒL@H‹̩%H5¥ÔL
ZÕH‹81Àè„þÿX¾À5ZH
ºÑº‰
H=zå1Ûè£RþÿHĈH‰Ø[]A\A]A^A_ÃfDºH‹5Ìì'L‰çÿ÷'ƒøÿ„ººH‹5Îí'H‰ïÿåö'ƒøÿ„
H;•ª%„¯L‹-í'H‹=©÷'L‰îè‰ùýÿI‰ÆH…À„Ý	HƒH‹5Zð'L‰÷èzþÿI‰ÇH‰D$8H…À„i
Iƒ.„	L‹-Àì'H‹=Y÷'L‰îè9ùýÿI‰ÆH…À„Ý
HƒH‹5âî'L‰÷è*þÿI‰ÇH…À„6Iƒ.„T
¿èzþýÿI‰ÅH‰D$@H…À„iHƒH‹|$81ÒH‰ÆH‰X L‰x(è^ýýÿI‰ÆH…À„
H‹|$@Hƒ/„ÃHÇD$@H‹|$8Hƒ/„ÓL‰t$8Iƒ>„¬HÇD$8HÇD$H‹›ö'A‹v I‹~(ÿðH‰éL‰âL‰öL‹}ö'H‰D$¿1ÀAÿI‰ÅH…À„v
H;©%H‰D$@…Ì
H‹\$H…ÛtH‹H‰D$ HƒèH‰„…H‹5fé'L‰ïHÇD$@èýþÿH‰D$@H…À„¿
L‰öH‰Çÿãô'H‰D$8H…À„5H‹|$@Hƒ/„þ
HÇD$@H‹|$8Hƒ/„ö
H‹\$H‹52î'HÇD$8H‹»ØèþÿH‰D$H…À„÷
H‹»ØH‹5)î'èlþÿH‰D$@H…À„AH‹5Gõ'H‰Ç1ÒHÇD$HèÄûýÿH‹|$HH‰D$8H…ÿtHƒ/„«H‹D$8HÇD$HH…À„H‹|$@Hƒ/„¥
HÇD$@H‹|$8Hƒ/„}
HÇD$8è/úýÿH‰D$ H‹D$HXPHƒÀ(H‰Þ1ÛHƒ|$ŽL‰d$M‰ìI‰ÝH‹\$L‰t$I‰ÇH‰l$(H‰õ@I‹„$8H‰êL‰ÿL‹°8I‹„$HH‹°8I‹„$@H‹€8H‹6òè¹ýýÿI”$8E1ÒI‰A‹L$IƒD$(…É1ësf.„H‹ˆ0Hˆ8H‹Hƒ@0AƒÂHƒÂE;T$}DH‹Hƒ@ H‹‹H…Étɀ¸@„ÄH‹ˆ0AƒÂHƒÂH‹I@HcI(Hˆ8E;T$|¼IƒÅL9ë…"ÿÿÿM‰åH‹l$(L‹d$L‹t$H‹|$ è^øýÿH‹\$H‹5
ä'1ÒH‰ßèúýÿH‰D$`H‹H‰D$HƒèH‰„Þ	H‹|$`H…ÿ„Hƒ/„&
HÇD$`I‹L‰óHPI‰éH‹¦%é(öÿÿ@ƒùu3H‹H8H;ˆ8ÂHƒÁH‰H8H‹H‹ˆ8Hˆ8éÚþÿÿ@…ɈÎþÿÿHcñH<ðL‹G0L9‡0aHÇG0H‹ƒéH‹´ð0H)°8ë+DHÇG0H‹ƒéH‹´ð0H)°8ƒùÿ„pþÿÿH‹HcñH<ðL‹G0L;‡0}ÃIƒÀL‰Dð0H‹H‹Œð0Hˆ8é9þÿÿHÇ@8H‹Hƒ@0H‹H‹ˆ0H+ˆ8Hˆ8é	þÿÿH‰Çè¨òýÿé’õÿÿH‰Çè˜òýÿéËõÿÿI‰ÖIƒü„£~iIƒütIƒü…aùÿÿH‹F0H‰D$pI‹E(L‰÷H‰D$hI‹E H‰D$`è¾ôýÿI‰ÇIƒütbIƒüt}M…ät6M…ÿL‹l$`L‹t$hH‹\$pé‘ôÿÿDM…ä…ÿøÿÿH‰×èwôýÿI‰ÇH‹5uç'L‰÷Iƒïè±ñýÿH‰D$`H…À„ÈøÿÿH‹54æ'L‰÷è”ñýÿH‰D$hH…À„
IƒïM…ÿ~ŒH‹5Fä'L‰÷ènñýÿH…À„tH‰D$pIƒïé]ÿÿÿ€H‹
ñ'H‰êL‰æ1?ÿ‘H‰D$H…À„
H‹D$H‰D$8H9Ø…
H‹&æ'H‹=¿ð'HÇD$8H‰Þè–òýÿH‰ÂH…À„´
HƒH‹5gé'H‰×H‰T$è‚ûýÿH‹T$H…ÀI‰ÇH‰D$@„û
Hƒ*„¢H‹5³ã'H‹|$èQûýÿH…ÀH‰D$„þ
H‹¤å'H‹==ð'H‰ÞèòýÿH‹T$H…ÀI‰Ç„HƒH‹5Áç'L‰ÿH‰T$èûýÿH‹T$H…ÀI‰Æ„×Iƒ/„é¿H‰T$èJ÷ýÿH‹T$H…ÀI‰ÇH‰D$H„(H‰P H‹|$@1ÒH‰ÆL‰p(è-öýÿI‰ÆH‰D$8H…À„@H‹|$HHƒ/„•HÇD$HH‹|$@Hƒ/„H‹D$8H‰D$@HƒH‹|$8Hƒ/„pHÇD$8L‹t$@HÇD$@é²øÿÿ@ÇD$61íE1íE1ö»é
H‹|$8E1ÿH…ÿtHƒ/„ÙM…ÿt
Iƒ/„ºH‹|$@H…ÿt
Hƒ/„ÆH‹|$HH…ÿt
Hƒ/„‹t$‰Ú1ÛH
WÈH=ÜèGIþÿM…ötI‹HƒèI‰H…ÀtSM…ítIƒmt7M…ätIƒ,$„ïõÿÿH…í„köÿÿHƒm…`öÿÿH‰ïèûîýÿéSöÿÿfDL‰ïèèîýÿë¿fDL‰÷èØîýÿë£fDL‰ÿèÈîýÿé9ÿÿÿè»îýÿéÿÿÿfDè«îýÿé0ÿÿÿfDè›îýÿé4ÿÿÿfDE1íE1ö»ë
ÇD$56éÈþÿÿ„L‰÷èhîýÿétöÿÿè[îýÿéôòÿÿfDH‰×èHîýÿéQýÿÿèëðýÿL‰ïèÃFþÿI‰ÆH…À…öÿÿE1í»ò
ÇD$}6ébþÿÿfèîýÿéKøÿÿfDèûíýÿé,óÿÿfDèëíýÿéÿòÿÿfDL‰ÿèØíýÿéÝòÿÿ»û
ÇD$¸7éþÿÿI‰ÞÇD$9»éüýÿÿÇD$ä6L‹l$»õ
Hƒ*uE1öH‰×è‰íýÿM…ötIƒ.tH‹|$8E1öH…ÿ…ÊýÿÿéÏýÿÿ„L‰÷èXíýÿëØfDL‰÷èHíýÿéŸõÿÿL‹|$H‹54å'I‹¿Øè˜÷ýÿI‰ÆH…À„I‹¿ØH‹56å'èy÷ýÿH‰D$@H…À„&H‹5Tì'H‰Ç1ÒHÇD$HèÑòýÿH‹|$HH‰D$8H…ÿtHƒ/„HH‹D$8HÇD$HH…À„DH‹|$@Hƒ/„²HÇD$@H‹|$8Hƒ/„ŠHT$PHt$XHÇD$8H|$`èÍñýÿH‹D$H‹t$òD$HPPHx(è õýÿH‰Çè(íýÿI‰ÅH‰D$8H…À„ÔH‹T$PH‹t$XHÇD$8H‹|$`è:òýÿ1ÒL‰÷L‰l$PH‹5ñÛ'èôñýÿH‰D$XIƒ.„:L‹t$XM…ö„W	Iƒ.„HÇD$XH‹\$PHÇD$PIƒ,$…­üÿÿéŽòÿÿfDE1íE1ö»ï
ÇD$`6éèûÿÿ„è‹ëýÿé3ôÿÿfDL‰÷èxëýÿL‹t$8éBôÿÿfDècëýÿé#ôÿÿfDèSëýÿéøôÿÿfDèCëýÿéõÿÿfDE1íE1ö»ð
ÇD$i6épûÿÿH‰ßèëýÿénôÿÿèëýÿéFïÿÿfDèûêýÿéyõÿÿfDèëêýÿéQõÿÿfDH‹F H‰×H‰D$`è?íýÿI‰Çéäøÿÿ€…"îÿÿèµóýÿH…À„îÿÿE1íE1ö»ÇD$ã7éäúÿÿ@E1í»ò
ÇD$6é÷üÿÿL9ðtL‰ÿèNòýÿ…À„”
èaóýÿH…À„ú
Iƒ/uL‰ÿèJêýÿf.„è;óýÿH…À…·HÇD$ÿÿÿÿé¶íÿÿ@H‹|$èêýÿéöÿÿE1íE1ö»ÇD$÷7éHúÿÿ„è›ìýÿL‰ïèsBþÿI‰ÆH…À…òÿÿE1í»ò
ÇD$‚6éúÿÿfè»éýÿéÐõÿÿfDE1íE1ö»ÇD$8éèùÿÿ„L‰ÿèˆéýÿH‹T$éùÿÿfDE1í»ò
ÇD$„6éßûÿÿºíH
œÄ¾ƒ[»ù
H=´Äè>CþÿL‹l$HÇD$@ÇD$07ésùÿÿH‹|$8E1ö»ò
ÇD$¦6H…ÿ…_ùÿÿéiùÿÿDH‹ùç'H…Û„ÐH‹xH9û„òÿÿH‰Þè3òýÿ…À„¾L‹l$@éýñÿÿ»ú
ÇD$=7éþøÿÿfDè£èýÿé–îÿÿfDè“èýÿénîÿÿfDèƒèýÿéaøÿÿfDèsèýÿ醸ÿÿfDècèýÿéYøÿÿfDE1í»ò
ÇD$±6铸ÿÿH‰ßè8èýÿéúîÿÿ»ú
ÇD$?7锸ÿÿfD»û
ÇD$L7éVøÿÿfDèûçýÿélûÿÿfDèëçýÿéDûÿÿfDè‹êýÿL‰ïèc@þÿI‰ÆH‰D$@H…À…ÓëÿÿE1í»ÇD$³8éý÷ÿÿÇD$N7H‹\$H‹H‰D$HƒèH‰»û
…Ö÷ÿÿH‹|$è|çýÿéÇ÷ÿÿE1í»ÇD$µ8éØ÷ÿÿfL‰ïèXçýÿéîíÿÿºê¾Q[E1íE1öH
„ÂH=ŠÂ»ô
è+AþÿÇD$Î6HÇD$8é‹÷ÿÿÇD$\7écÿÿÿè³éýÿL‰ïè‹?þÿI‰ÆH‰D$@H…À…^ëÿÿE1í»ÇD$¸8é%÷ÿÿL‰ïèÍæýÿé|íÿÿL‹5Éå'M…ö„úH‹D$H‹xI9þ„QõÿÿL‰öèþïýÿ…À„HH‹D$8H‰D$é2õÿÿ€è{æýÿé®ùÿÿè!éýÿH‰ßèù>þÿI‰ÆH…À…÷L‹l$»õ
ÇD$Û6é–öÿÿE1í»ÇD$º8éöÿÿHT$`L‰áL‰÷LܿH5H}'èókþÿ…À‰Úóÿÿ¾®5éDíÿÿL‹l$ÇD$Ý6»õ
éPøÿÿE1í»ÇD$Ü8éQøÿÿL‹l$E1ö»õ
ÇD$à6éöÿÿL‰÷è³åýÿé¹ùÿÿL‰úÇD$ç8E1ÿ»éü÷ÿÿH‰T$è<èýÿH‰ßè>þÿH‹T$H…ÀI‰Ç…ËôÿÿL‹l$ÇD$â6»õ
éÂ÷ÿÿL‰÷èTåýÿérùÿÿÇD$9Iƒm„gI‰ÞE1í»é|õÿÿHƒ*L‹l$„2»õ
ÇD$7é‡÷ÿÿÇD$9ëºE1í»ÇD$8é<õÿÿL‹l$»õ
ÇD$7éKõÿÿÇD$8Iƒ.„E1íE1ö»éõÿÿHƒìH‹˜•%A¸H5kÀjL
ÁH
ž½H‹8H>¾1Àè:íýÿ_¾¤5AXé°ëÿÿÇD$%8ë–H‹|$@H…ÿt
Hƒ/„HÇD$@H‹|$HH…ÿt
Hƒ/„ñº¾;8H=ñÐHÇD$HH
½è>þÿHT$HHt$@H|$8è7þÿ…Àˆ|H‹L$HH‹T$@1?H‹t$8èìýÿH…À„W1ÒH‰ÆL‰÷H‰D$ èªéýÿIƒ.H‹L$ I‰Ç„"Hƒ)„M…ÿ„-L;=ž–%”ÀL;=ܕ%”ÂÂ… L;=•%„“L‰ÿèæýÿIƒ/A‰Æ„ŒE…öˆóH‹|$8E…ö„H…ÿt
Hƒ/„úHÇD$8H‹|$@H…ÿt
Hƒ/„HÇD$@H‹|$HH…ÿt
Hƒ/„H‹T$PH‹t$XHÇD$HH‹|$`èúèýÿ黿ÿÿL‰ïI‰ÞE1í»èÂâýÿé
óÿÿI‰ÞÇD$]9»éøòÿÿL‰÷E1íE1ö»è•âýÿéàòÿÿE1í»ÇD$’8éËòÿÿE1íE1ö»ÇD$í7é³òÿÿL‹5ñ“%L9ðtL‰ïè,êýÿ…À„_è?ëýÿH…À…ö÷ÿÿH‹“%H58¼H‹8èæýÿéÛ÷ÿÿH‹ñ”%H5\¼»ù
H‹8èmæýÿL‹l$ÇD$27é;òÿÿÇD$7»õ
éHôÿÿIƒ/D¶ð…}þÿÿL‰ÿèÃáýÿégþÿÿH‹—”%H5¼E1í»ô
H‹8èæýÿÇD$Ð6éãñÿÿH‰Ïè‹áýÿéèýÿÿL‰÷è~áýÿH‹L$ éÌýÿÿÇD$R8H‹T$PH‹t$XE1ö»H‹|$`èpçýÿé›ñÿÿèFáýÿéòüÿÿè<áýÿéýÿÿè2áýÿéüýÿÿH‹T$HH‹t$@èþäýÿÇD$g8HÇD$8HÇD$@HÇD$HëèôàýÿéÛýÿÿèêàýÿéîýÿÿL‰ïèäýÿI‰ÇH…À„þÿÿH‹@L‹-–’%L9èu2ö€³„8öÿÿL‰ÿè‹àýÿH‰D$Iƒ/…"äÿÿL‰ÿè”àýÿéäÿÿL‰ÿèçeþÿI‰ÇH…À„;öÿÿH‹@ëµÇD$V8éüþÿÿÇD$[8éïþÿÿÇD$_8éâþÿÿH‹D$I‹N E1íE1öH5˜Ç»ô
H‹@H‹P H‹‘%H‹81ÀèÚèýÿÇD$Ð6é]ðÿÿI‹EH‹K H5^Ç»ù
H‹P H‹ސ%H‹81Àè¤èýÿL‹l$ÇD$27é"ðÿÿL‰ÿèŠãýÿI‰ÆH…À„XõÿÿL9hu1I‹FL‰÷ö€³t6èƒßýÿH‰D$Iƒ.…îþÿÿL‰÷èŒßýÿéáþÿÿH‰ÇèßdþÿI‰ÆH…Àu¿éõÿÿè½ØþÿH‰D$ëÈH‰Âé8îÿÿH‹G%H5`¹H‹8è¸ãýÿéëôÿÿAWAVI‰ÖAUATUH‰õSHƒìhö‡²…§1öÿ—8H‰ÃH…Û„ðH‹DÞ'L‹%M‘%H‰CH‹rØ'L‰cXL‰c`L‹mIƒ$HÇD$0HÇD$8HÇD$@HÇD$PH‰D$HM…ö…_Iƒý„®Iƒý„›Iƒý„£IƒýH¢·H
’·HMȝÀHƒì¶ÀAUH€¹LDH‹L%H5%ºL
ںH‹81ÀèçýÿZ¾/bYºzH
ò¶H=*Ëè%8þÿHƒ+„K	1ÛHƒÄhH‰Ø[]A\A]A^A_ÀH‹E@H‰D$PH‹E8H‰D$HH‹E0H‹}(H‹m H‰D$@H‰|$8H‰l$0H‹œ%H9G…
èmáýÿH‰D$Hƒ|$ÿ„ÔH‹D$HH‹|$PL‹l$@H‰D$H…ÿ„ŸH;=˜%”ÀH;=֏%”ÂÂu	L9ç…Ž¶	D$$H‹EH;Ԏ%t	L9å…ÑM9å„IƒEL9å„H‹EHƒøÿ„LH‹L$‰C8H‰KP…À„À	Hƒ|$Ž
I‹Eö€³„KH;ŒŽ%…ŸIƒEH‹{`Hƒ/„ÛL‰k`L‰ïèßßýÿI‰ÇH…À„›
Hc{8L‰{0HÁçè¢àýÿHcS8H‰C@HÐH‰SHH…À„™
H‹EHƒ}HPH‰U~rE1ÿL‰þH‰ïD‰|$èÓäýÿI‰ÆH…À„ÇH‹0Ž%L‰÷I9F…“èþßýÿH‰ÆHƒþÿ„aIƒ.„wH…öŽmH‹C@J‰4øIƒÇL;}|™H‹EHƒèH‰EH…À„wH‹5ÀÓ'H‹|$ºèäýÿ…ÀˆP„S
H‹”Ó'HƒH‹{XHƒ/„ÿH‹{Ó'H‹sHH‹{@H‹T$H‰CX‹C8…À~+D@ÿH‹T$1Àë	fDH‰ÈH‰ÆH¯ÇHHI9Àuë‹D$$H‰S(L‰ïºH‹5™Ö'‰CpèaåýÿI‰ÇH…À„,H;^Ž%@”ÅH;›%”À@è…—	M9焎	L‰ÿèÆÝýÿ‰Ńøÿ„Iƒ/„‹D$$‰kt…À…
Iƒm…ÞüÿÿL‰ïèïÚýÿéÑüÿÿf.„è{Ýýÿ‰D$$ƒøÿ…gýÿÿèÉãýÿH…À„Yýÿÿ¾ bº{éyüÿÿH‹5áÒ'L‰ïèåýÿH…ÀH‰D$„ó	H‹5Ô×'1?èÀâýÿL‹D$H…ÀI‰Æ„/1ÒL‰ÇH‰ÆèRàýÿIƒ.L‹D$I‰Ç„ðI‹HƒèM…ÿ„I‰H…À„ìIƒm„ñI‹GH;¶‹%…hIƒH‹{`M‰ýHƒ/u€èûÙýÿL‰k`M9å…ýÿÿH‹׊%H5˜ÇM‰åH‹8èEÞýÿº¾céÆfDL‰÷H‰t$(è³ÙýÿH‹t$(érýÿÿf„ÇD$IcE1ÿA¼—Hƒmu$E1ÀH‰ïL‰D$èxÙýÿL‹D$M…Àt
Iƒ(„TM…öt
Iƒ.„UM…ÿt
Iƒ/„ö‹t$H
ü±D‰âH=1Æè,3þÿM…í„þúÿÿIƒm…óúÿÿL‰ïèÙýÿéæúÿÿL9%lÔ'„H‹|$èÞýÿ…À…ó
H‹t$H‹=HÔ'èãýÿH‰ÅH…í„*H‰î¿1ÀL‹%VÖ'èùàýÿI‰ÆH…À„ò
1ÒH‰ÆL‰çèÞýÿIƒ.I‰Ç„
H‹EHƒèM…ÿ„H‰EH…À„b
L‰ÿA¼¤臯þÿIƒ/ÇD$øc…ÿÿÿDL‰ÿèHØýÿéýþÿÿI‹HƒèI‰H…À…›
ÇD$ÜbE1öE1ÿA¼‹f„L‰ÇèØýÿéŸþÿÿL‰÷èø×ýÿéžþÿÿÇD$$é|úÿÿèÛàýÿH…À…RIƒ.HÇÆÿÿÿÿ„AHc|$H‰t$è’ØýÿH…ÀH‰D$„TH‹t$H‰÷è·àýÿL‹D$H…ÀI‰Æ„V¿è\ÞýÿL‹D$H…ÀI‰Ç„aL‰p(H‹=ÀÒ'H‰ÆL‰@ è”áýÿI‰ÆH…À„[Iƒ/„ŽL‰ö¿1ÀL‹%ÅÔ'èhßýÿI‰ÇH…À„ÿ1ÒL‰çH‰ÆèÿÜýÿIƒ/I‰Ä„BM…ä„ÙIƒ.„?L‰çè®þÿIƒ,$„<ÇD$wcA¼™E1ÿE1öé4ýÿÿèËÜýÿH…À„ÒþÿÿH‰ÇH‰D$(èUÚýÿL‹D$(H‰ÆIƒ(…HúÿÿL‰ÇH‰D$(è†ÖýÿH‹t$(é1úÿÿ@H‹!‰%1ÒH‹5ÈÕ'ÿ@H‰ÃéF÷ÿÿf.„Iƒý‡µ÷ÿÿH¾JcªHÐÿàfDH‹E@H‰D$PH‹E8H‰D$HH‹E0H‰D$@H‹E(L‰÷H‰D$8H‹E H‰D$0èkØýÿI‰ÇIƒý‡%H߽JcªHÐÿàfDèÓÞýÿH…À…ðHÇD$ÿÿÿÿéøÿÿ@èÃÛýÿI‰ÅH…ÀtÓH‰ÇèSÙýÿIƒmH‰D$…Û÷ÿÿL‰ïè‹ÕýÿéÎ÷ÿÿfDL‹@ H‹
í†%Hº³H5‡ÂH‹P†%H‹I H‹81ÀèÞýÿé(÷ÿÿDH‹1†%HǰH5›ÂH‹81ÀèéÝýÿéÿöÿÿ@H‹	†%H5¢ÂH‹8èzÙýÿº¾nbH
º­H=òÁèí.þÿéÅûÿÿ„º¾pbëÔ@H‰ßèÈÔýÿé¨öÿÿL‰ÿè¸Ôýÿé±ýÿÿL‰÷è¨Ôýÿé´ýÿÿL‰çE1ÿA¼™E1öèŒÔýÿÇD$wcéðúÿÿ€H‹E L‰÷H‰D$0è×ÖýÿI‰ÇH‹5Ë'L‰÷èÔýÿH‰D$8H…À„RIƒïH‹5Ì'L‰÷èôÓýÿH‰D$@H…À„ IƒïM…ÿH‹l$0H‹|$8é;öÿÿfDH‹5±É'L‰÷è¹ÓýÿH…ÀtH‰D$HIƒïM…ÿ~ÉH‹5Î'L‰÷è—ÓýÿH…ÀtH‰D$PIƒïM…ÿ~§HT$0L‰éL‰÷LʮH5Ûl'è†Yþÿ…Ày…¾bºzé[õÿÿL‰÷èøÕýÿI‰ÇH‹5FÆ'L‰÷Iƒïè2ÓýÿH‰D$0H…À…ÿÿÿL‹méÊôÿÿH‹5yÂ'H‹=âÐ'1Òè3ÙýÿH‰ÅH…À„vH‰ÇèOªþÿHƒmº…¾‘b…þÿÿH‰ï‰T$‰t$è
Óýÿ‹t$‹T$éýýÿÿDH‹5Â'H‹=‚Ð'1ÒèÓØýÿH‰ÅH…À„%H‰Çèï©þÿHƒmºˆ¾±b…ºýÿÿëž„M9ç…[H‹{`Iƒ$M‰åHƒ/„‘øÿÿL‰c`隸ÿÿ„L‰÷H‰t$èsÒýÿH‹t$é¨úÿÿf„L‰÷èXÒýÿL‹D$éþ÷ÿÿfDL‰Çè@ÒýÿéøÿÿL‰ïè0Òýÿéøÿÿè#ÛýÿH…À„WõÿÿA¼ÇD$céÁøÿÿ€H‹5Á'H‹=bÏ'1ÒèÛ×ýÿH‰ÅH…À„£H‰ÇA¼”èñ¨þÿHƒmÇD$0c…xøÿÿH‰ïè¶ÑýÿékøÿÿL‰ÿè¨Ñýÿéeúÿÿ@¶íé|öÿÿ€H‹5	Ë'H‹|$ºè
Úýÿ…ÀˆÉ„aøÿÿH‹ÝÊ'HƒH‹{XHƒ/„°H‹ÄÊ'H‹sHH‹K@H‹T$H‰CX‹C8xÿHcDžÿˆªõÿÿf.„H‰ÆH¯ÁHƒè…ÀyïéŠõÿÿf.„L‹{(L‰ÿè”×ýÿH‰ÁH‰C H…À„N…í„ÚõÿÿL‰øH™H÷|$H…ÀŽÇõÿÿI‹4$H‰ÊHÁfDL‰"HƒÂH9ÊuôHðI‰$éžõÿÿº‹¾Îbé‘ûÿÿH‰ïèˆÐýÿé|ôÿÿÇD$LcM‰ðA¼—E1öH‹EE1ÿHƒèH‰E…éöÿÿéÍöÿÿfE1ÿE1öÇD$ccA¼™é¨öÿÿ€ÇD$ecA¼™ë´E1ÿÇD$rcA¼™é{öÿÿÇD$gcA¼™ëŽL‰ÿèòÏýÿéÜôÿÿÇD$ocA¼™éKöÿÿ¾bºzé“ñÿÿèÆÏýÿé÷óÿÿº…¾bé²úÿÿºˆ¾­bé£úÿÿèžÏýÿéFþÿÿA¼ÇD$œcé@öÿÿHƒìH‹k€%HŒªH5=«jL
ð«A¸H
j¨H‹81Àè
Øýÿ^ºz_¾üaéñÿÿA¼”ÇD$,céãõÿÿA¼ªÇD$déÐõÿÿèØýÿH…À„íóÿÿÇD$dA¼ªé¥õÿÿHƒìH‹Ú%L
o«A¸jHì©H5ªH‹8H
֧1Àè|×ýÿAX¾öaAYºzéqðÿÿA¼ ÇD$ÆcéPõÿÿH‹5Ÿ½'H‹=øË'1ÒèqÔýÿH‰ÅH…À„§H‰ÇA¼°臥þÿHƒmÇD$Bd…õÿÿé‘üÿÿM‰ïH‹H H‹1%H¸­M‰ýH5þ¦A¼ŒH‹81ÀèàÖýÿÇD$òbéÍôÿÿH‰ïèÎýÿé‘õÿÿL‰÷èþÍýÿéfõÿÿH‹|$èÏÕýÿ…À…ûôÿÿH‹t$H‹=CÉ'èöÏýÿH‰ÅéöôÿÿA¼°ÇD$>déuôÿÿE1ÿÇD$ócA¼¤éôÿÿA¼¤ÇD$ñcéLôÿÿÇD$ÜbA¼‹é9ôÿÿE1öÇD$ócA¼¤éÚóÿÿf„AWAVAUATI‰ôUSHì¸H‹•%H‹nH‰|$ HDŽ$HDŽ$˜H‰„$ H…Ò…c
Hƒý„‘Hƒý…ÿH‹n0M‹t$(M‹l$ HÇD$hL‰÷HÇD$pHÇD$xHDŽ$€HDŽ$ˆHDŽ$èzÐýÿH‰ÃHƒøÿ„
H‹Ì'¿L‹¸(ÿhE1É1É1ÒA¸H‰ÆL‰ïAÿ×I‰ÄH…À„úHƒ8„ˆ	H‹ÙË'¿L‹¸(ÿhL‰÷E1ÉA¸¹ºH‰ÆAÿ×I‰ÆH…À„W
Hƒ8„M	I‹FºH‹5Ϳ'L‰÷H‰D$ÿÊ'ƒøÿ„¦HsÿH‹|$ÿ_Ê'f/ŸÌ‡ÉA‹t$ …ö…TH;-~%„H´$H¼$€H”$ˆèòÐýÿL‹=ó¿'H‹=üÊ'L‰þèÜÌýÿH…À„³HƒH‰D$pH‹5›Â'H‰ÇèËÕýÿH‰D$xH…À„­H‹|$pHƒ/„Î1ÀH‰î¿L‹|$xHÇD$pèaÓýÿH…À„à1ÒL‰ÿH‰ÆH‰$è÷ÐýÿH‹$I‰ÇHƒ)„–H‹|$pL‰|$hH…ÿtHƒ/„ÍL‹|$hHÇD$pM…ÿ„ìH‹|$xHƒ/„gHÇD$xH‰ßè†ËýÿH‰D$xH…À„8¿ènÑýÿH‰ÆH‰$H‰D$pH…À„©H‹D$hH‹¼$€HÇD$hHÇD$pH‰F H‹D$xHÇD$xH‰F(H…ÿt
Hƒ/„eH‹¼$HDŽ$€H…ÿt
Hƒ/„2H‹¼$ˆHDŽ$H…ÿt
Hƒ/„ÿHDŽ$ˆH‹-´¾'H‹=MÉ'H‰îè-ËýÿH‰ÁH…À„QHƒH‰D$hH‹5±º'H‰ÏèÔýÿH‹|$hH‰ÁH‰D$xH…À„ƒHƒ/„	HÇD$h¿èVÐýÿH‰ÁH‰D$hH…À„uH‹$HƒH‹D$hH‰H è/ÌýÿH‰ÁH‰D$pH…À„&H‹-¾'H‹=¨È'H‰îèˆÊýÿI‰ÀH…À„lHƒH‹51À'L‰ÇL‰D$ètÓýÿL‹D$H…ÀH‰Á„üIƒ(„ÁH‹5JÁ'H‹|$pH‰ÊH‰L$èPÈýÿH‹L$…Àˆ³Hƒ)„¹H‹T$pH‹t$hH‹|$xè•ÎýÿI‰ÇH…À„H‹|$xHƒ/„jHÇD$xH‹|$hHƒ/„BHÇD$hH‹|$pHƒ/„H‹ÛÇ'I‹oHÇD$pA‹w IƒI‹(ÿðH‰D$I‹Eö€³„Š!L‰ïèöÇýÿH‰D$(Hƒ|$(ÿ„ÞfïÀòH*D$(¾H‹=^½'ÿ€Æ'ƒøÿ„H‹D$ H‹5ӿ'H‹¸Øè7ÒýÿH‰ÁH‰„$ˆH…À„)H‹D$ H‹5Ͽ'H‹¸ØèÒýÿH‰D$pH…À„úH‹5æÆ'H‰Ç1ÒHÇD$hècÍýÿH‹|$hI‰ÅH…ÿt
Hƒ/„HÇD$hM…í„æH‹|$pHƒ/„[HÇD$pIƒm„WèâËýÿH‰D$0H‹D$H™H÷ûH‰ÆH…ÀŽH‹D$ I‰íL‰t$@1íL‹t$(L‰|$ HHPHƒÀ(L‰d$8M‰ìH‰D$HÝI‰ÏI‰õH‰D$fDH‹L$H‹|$L‰âM‰ùI‰ØL‰öHƒÅè1ÉýÿLd$I9íu×L‹|$ L‹d$8L‹t$@H‹|$0è®ÊýÿH‹¼$ˆH…ÿtBH‹5R¶'1ÒèSÌýÿH‹¼$ˆH‰ÁHƒ/„6HDŽ$ˆH…É„óHƒ)„™IƒL‰ûL‰ýE1íHÇD$HÇD$é!I‹l$fDHƒýHŸH
ŸHMȝÀHƒì¶ÀUHl¡L@H‹½v%H5–¡L
K¢H‹81ÀèuÎýÿX¾ÔDZH
«žºÜ
H=s³1Ûè”þÿHĸH‰Ø[]A\A]A^A_ÀH‹-Áw%éqøÿÿ@ºH‹5̺'L‰çÿãÃ'ƒøÿ„zH;-“w%„½L‹-º'H‹=§Ä'L‰îè‡ÆýÿI‰ÇH…À„‹HƒH‹5X½'L‰ÿèxÏýÿI‰ÀH…À„Iƒ/„²¿L‰$èÄËýÿL‹$H…ÀI‰Ç„„HƒEH‰h è¦ÇýÿL‹$H…ÀH‰ÁH‰D$h„ìH‹-‚¹'H‹=Ä'H‰îèûÅýÿL‹$H…ÀH‰Á„\HƒH‰D$pH‹5“»'H‰ÏL‰$èßÎýÿL‹$H…ÀH‰ÁH‰D$x„!H‹|$pHƒ/„;H‹T$xH‹5§¼'L‰$HÇD$pH‹|$hè¨ÃýÿL‹$…Àˆ¼H‹|$xHƒ/„
H‹T$hL‰ÇL‰þL‰$HÇD$xèàÉýÿL‹$H…ÀH‰ÁH‰D$x„¹Iƒ(„1Iƒ/„H‹|$hHƒ/„ø
H‹D$xH‹
4Ã'L‰æ¿HÇD$hH‰D$HƒH‹D$xHÇD$xH‰D$H‰Â1Àÿ‘I‰ÅH…À„§H;±u%H‰D$x…ºH‹5¶'L‰ïHÇD$xè®ÍýÿH‰ÁH‰D$xH…À„mH‹t$H‰ÇÿÁ'H‰ÁH‰D$hH…À„hH‹|$xHƒ/„×HÇD$xH‹|$hHƒ/„¯HÇD$hé—f„H‰ÇèÈÂýÿéköÿÿH‰Çè¸Âýÿé¦öÿÿI‰ÖHƒý„³
Ž}HƒýtHƒý…üÿÿH‹F0H‰„$ I‹D$(L‰÷H‰„$˜I‹D$ H‰„$èÏÄýÿI‰ÇHƒýtnHƒý„ˆH…ít;M…ÿ4L‹¬$L‹´$˜H‹¬$ é0õÿÿH…í…üÿÿH‰×èÄýÿI‰ÇH‹5}·'L‰÷Iƒïè¹ÁýÿH‰„$H…À„ÝûÿÿH‹5¹µ'L‰÷è™ÁýÿH‰„$˜H…À„ÙIƒïM…ÿŽ}ÿÿÿH‹5D´'L‰÷èlÁýÿH…À„™H‰„$ IƒïéKÿÿÿfHÇ$1íE1íE1äÇD$=E1ÿE1ö1ÉHÇD$H‹|$h»EHÇD$@H…ÿt
Hƒ/„©H‹|$pH…ÿt
Hƒ/„­H‹|$xH…ÿt
Hƒ/„YH…Ét
Hƒ)„b‹T$‰Þ1ÛH
ÿ™H=̮èïþÿM…öt
Iƒ.„ÀM…ÿt
Iƒ/„ÁM…ätIƒ,$„ÁH‹T$H…ÒtH‹H‰D$HƒèH‰„²M…ítIƒm„²H‹t$H…ötH‹H‰D$HƒèH‰„£H‹$H…ÒtH‹H‰D$HƒèH‰t)H…턼úÿÿHƒm…±úÿÿH‰ïè=Àýÿé¤úÿÿ„H‰×è(ÀýÿëÍfDL‰÷èÀýÿé3ÿÿÿL‰ÿèÀýÿé2ÿÿÿL‰çèø¿ýÿé2ÿÿÿH‰×èè¿ýÿéAÿÿÿL‰ïèؿýÿéAÿÿÿH‰÷èȿýÿéPÿÿÿH‰L$ 趿ýÿH‹L$ é“þÿÿ@H‰Ï蠿ýÿé‘þÿÿH‰L$ 莿ýÿH‹L$ éCþÿÿ@H‰L$ èv¿ýÿH‹L$ é?þÿÿ@H‹|$h1íE1íE1ÿHÇ$E1ö1ɻEHÇD$HÇD$ÇD$>éÚýÿÿf.„H‰ßèø¿ýÿH‰ÁH‰D$pH…À„¬¿èÝÅýÿH‰ÆH‰$H‰D$hH…À„¤HÇD$hH‹D$pHÇD$pH‰F éåôÿÿ„H‹|$h1íE1íE1ÿHÇ$1ɻ*EHÇD$HÇD$ÇD$?é5ýÿÿDH‹¾'L‰æ¿1Àÿ’I‰ÅH…À„GHÇD$HÇD$H9è…èH‹5±'L‰ïè£ÈýÿH‰ÁH‰D$hH…À„™H‰ßèú¾ýÿH‰ÁH‰D$xH…À„Q¿èßÄýÿI‰ÇH…À„sH‹D$xH‹|$hL‰þHÇD$xI‰G èÔÃýÿI‰ÀH‰D$xH…À„H‹|$hHƒ/„4	HÇD$hIƒ/„	H‹-r²'H‹D$xHÇD$xH‹=ý¼'H‰îH‰$èپýÿH‰ÁH…À„zHƒH‰D$xH‹5]®'H‰ÏèÅÇýÿI‰ÇH…À„¤H‹|$xHƒ/„	HÇD$x¿èÄýÿI‰ÀH‰D$xH…À„H‹$HƒH‹D$xH‰H èà¿ýÿI‰ÀH‰D$hH…À„hH‹-1'H‹=Y¼'H‰îè9¾ýÿI‰ÀH…À„$HƒH‹5â³'L‰ÇL‰D$(è%ÇýÿL‹D$(H…ÀH‰ÁH‰D$p„GIƒ(„‘
H‹T$pH‹5ñ´'H‹|$hèÿ»ýÿ…ÀˆqH‹|$pHƒ/„þ
H‹T$hH‹t$xL‰ÿHÇD$pè=ÂýÿI‰ÀH‰D$pH…À„%Iƒ/„žH‹|$xHƒ/„aHÇD$xH‹|$hHƒ/„?HÇD$hH‹l$pHƒEL‹|$pHÇD$pH‹5ã³'I‹GH‰D$8I‹E H‰D$0H‹D$ H‹¸Øè0ÆýÿH‰ÁH‰„$€H…À„©H‹D$ H‹5ȳ'H‹¸ØèÆýÿH‰D$hH…À„šH‹5ߺ'H‰Ç1ÒHÇD$xè\ÁýÿH‹|$xH‰D$pH…ÿtHƒ/„£H‹D$pHÇD$xH…À„ƒH‹|$hHƒ/„~HÇD$hH‹|$pHƒ/„\HÇD$pèǿýÿHƒ|$0H‰D$@Ž/H‹D$ L‹\$8E1ÒL‰t$XHÝL‹t$0L‰|$8HpPH‰L$(HƒÀ(H‰t$ I‰ÇH‰l$HL‰ÕL‰d$PM‰ìM‰Ýf.„H‹L$L‹L$ I‰ØL‰ÿI‹”$8H‹²8L‰êH‹6è½ýÿA‹L$IƒD$(1҅É+ësH‹ˆ0Hˆ8I‹„Ô8Hƒ@0HƒÂA9T$~JI‹„Ô8Hƒ@ I‹„Ô8‹H…Ét¾€¸@„¡H‹ˆ0HƒÂH‹I@HcI(Hˆ8A9T$¶HƒÅLl$(I9î…>ÿÿÿM‰åL‹|$8H‹l$HL‹d$PL‹t$XH‹|$@èí½ýÿH‹¼$€H…ÿt[H‹5‘©'1Ò蒿ýÿH‹¼$€H‰„$Hƒ/„xH‹Œ$HDŽ$€H…É„ÀHƒ)„òHDŽ$HƒEH‰ëé^øÿÿ„è;¹ýÿéÜðÿÿfDè+¹ýÿé´ðÿÿfDè¹ýÿéŒðÿÿfDè¹ýÿL‹$é·ôÿÿfèû¸ýÿL‹$éåôÿÿfèë¸ýÿé÷îÿÿfDè۸ýÿéÄîÿÿfDè˸ýÿé‘îÿÿfD軸ýÿéþôÿÿfDL‰ÿ訸ýÿéÜôÿÿL‰Ç蘸ýÿéÂôÿÿ»÷GH‹¼$ˆHƒ/„H‹|$hL‰ýE1í1ÉHDŽ$ˆHÇD$HÇD$ÇD$léôöÿÿ1íE1íE1ÿ1ÉHÇD$»òFHÇD$ÇD$^éÕöÿÿºç¾[1íE1ÿH
H“H=™“»‰EèïþÿH‹|$h1ÉHÇ$HÇD$HÇD$ÇD$Iéqöÿÿºê¾Q[1íE1ÿH
ó’H=ù’»ÏEèšþÿH‹|$h1ÉHÇD$xHÇ$ÇD$Mé%öÿÿDƒùu;H‹H8H;ˆ8ÚHƒÁH‰H8I‹„Ô8H‹ˆ8Hˆ8éòüÿÿ€…ɈãüÿÿHcùH4øL‹F0L9†0kHÇF0I‹„Ô8ƒéH‹´ø0H)°8ë+HÇF0I‹„Ô8ƒéH‹´ø0H)°8ƒùÿ„€üÿÿI‹„Ô8HcùH4øL‹F0L;†0}¹IƒÀL‰Dø0I‹„Ô8H‹Œø0Hˆ8é?üÿÿ@HÇ@8I‹„Ô8Hƒ@0I‹„Ô8H‹ˆ0H+ˆ8Hˆ8éüÿÿf„H‹|$h1íE1íE1ÿHÇ$»BE1ÉHÇD$HÇD$ÇD$BéµôÿÿDH‹5q¥'H‹=г'1ÒèۻýÿH‰ÁH…À„öH‰ÇH‰$èóŒþÿH‹$Hƒ)„H‹|$h1íE1íE1ÿHÇ$»YE1ÉHÇD$HÇD$ÇD$Dé:ôÿÿf.„è{µýÿéíëÿÿfDèkµýÿé(êÿÿfDH‰ÏèXµýÿé]êÿÿèKµýÿéêÿÿfDL‰ÿH‰$è4µýÿL‹$é9ðÿÿL‰ÇH‰L$èµýÿH‹L$é(ìÿÿèµýÿé)êÿÿfDH‰Ïèø´ýÿé:ìÿÿH‹F H‰×H‰„$èL·ýÿI‰Çéìòÿÿ@H‹|$h1íE1íE1ÿHÇ$»uE1ÉHÇD$HÇD$ÇD$GéEóÿÿDL‰ÿ舴ýÿéâöÿÿè{´ýÿéÂöÿÿfDè·ýÿH‰ïèóþÿH‰ÁH‰D$hH…À…šêÿÿ1íE1íE1ÿÇD$eHÇD$»˜GHÇD$éåòÿÿfDè´ýÿéÜöÿÿfD1íE1íE1ÿÇD$eHÇD$»šGHÇD$é”òÿÿ@è۳ýÿé›ìÿÿfDL‰ïèȳýÿéœìÿÿèk¶ýÿL‰ÿèCþÿH‰D$pH…À…;èÿÿA¿GH‹|$hH…ÿt
Hƒ/„ËHÇD$hH‹|$pH…ÿt
Hƒ/„^HÇD$pH‹|$xH…ÿt
Hƒ/„QºaD‰þH=¡HÇD$xH
6Ώ-
þÿHT$hHt$xH|$pè)þÿ…Àˆ:H‹‚d%H9E…vHƒEH‰ßèӳýÿI‰ÀH…À„	¿L‰$蹹ýÿL‹$H…ÀH‰Á„V
L‰@ H‰ÆH‰ïH‰D$赸ýÿH‹L$H…ÀH‰$„'Hƒm„ÐHƒ)„¶H‹|$pH…ÿt
Hƒ/„#HÇD$pH‹|$xH…ÿt
Hƒ/„HÇD$xH‹|$hH…ÿt
Hƒ/„ýH‹”$ˆH‹´$HÇD$hH‹¼$€è:¸ýÿé2èÿÿDè²ýÿé˜þÿÿfDèû±ýÿé¥þÿÿfD1íE1íE1ÿÇD$eHÇD$»GHÇD$éƒðÿÿ@軱ýÿé+þÿÿfDH‰Ï許ýÿéÞûÿÿA¿GéöýÿÿDè;´ýÿL‰ïè
þÿH‰ÁH…À…H‹|$h1íE1íI‰ÇHÇ$»¡EHÇD$HÇD$ÇD$KéîïÿÿfDè3±ýÿéGîÿÿfDè#±ýÿéîÿÿfDH‹|$h1íE1íE1ÿHÇD$»¢GHÇD$ÇD$eé—ïÿÿ€HÇ$E1í1ɻ£EHÇD$HÇD$ÇD$K@Iƒ/tM…ÀtIƒ(t/H‹|$h1íE1ÿé@ïÿÿL‰ÿH‰L$(L‰D$ è~°ýÿH‹L$(L‹D$ ëÈfL‰ÇH‰L$ 1íE1ÿè^°ýÿH‹|$hH‹L$ éÿîÿÿ€èC°ýÿéâèÿÿfDHÇD$hH‹|$pH…ÿ…:åÿÿA¿-Gé¨üÿÿfDH‹|$h1íE1íE1ÿHÇD$»©GHÇD$ÇD$eéîÿÿ€H‰ÏèЯýÿé=ýÿÿH‰ïè/ýÿH‹L$éýÿÿfDè[²ýÿH‰ïè3þÿH‰ÁH…À…H‹|$h1íE1íE1ÿHÇD$»¤GHÇD$ÇD$eéîÿÿfDA¿0Gé¶ûÿÿDHÇ$E1í1ɻ¦EHÇD$HÇD$ÇD$Kézþÿÿ€H‰D$è¯ýÿH‹L$é¶èÿÿL‰Çèü®ýÿébòÿÿE1íÇD$e»¦GHÇD$HÇD$é+þÿÿA¿2Gé&ûÿÿHÇ$E1�EHÇD$HÇD$ÇD$KéæýÿÿH‰Ï莮ýÿéZèÿÿ1íE1ÿHÇ$»ìEÇD$Oé)íÿÿèe®ýÿéøñÿÿHÇ$E1�E1ÉHÇD$HÇD$ÇD$KéýÿÿL‰$èְýÿH‰ïè®þÿL‹$H…ÀH‰ÁH‰D$p…‡éÿÿHÇ$E1�EHÇD$HÇD$ÇD$Ké*ýÿÿHÇD$hé«ýÿÿèǭýÿé·ñÿÿ轭ýÿé•ñÿÿH‹|$h1íE1ÿ»îEHÇ$ÇD$OéDìÿÿL‰ÿ茭ýÿéUñÿÿH‹|$h1íE1í1ÉHÇD$»«GHÇD$ÇD$eéìÿÿèR­ýÿéÓúÿÿèH­ýÿéæúÿÿè>­ýÿéùúÿÿHÇ$E1�EHÇD$HÇD$ÇD$KéZüÿÿH”$H‰éL‰÷L‰ˆH5^E'èÉ2þÿ…À‰£êÿÿ¾ÂDé)çÿÿÇD$b»YGH‹”$ˆH‹´$E1íH‹¼$€èʲýÿHÇ$1ÉHÇD$HÇD$éêûÿÿf„H‹|$h1í1ɻðEHÇ$ÇD$Oé
ëÿÿH;î]%tL‰ïè,´ýÿ…À„Aè?µýÿH…À„½IƒmuL‰ïè'¬ýÿè"µýÿòڬHÇD$(ÿÿÿÿH…À„äÿÿH‹|$hL‰ýE1í»ØGHÇD$1ÉHÇD$ÇD$ié‡êÿÿH‹|$hL‰ýE1í»âGHÇD$1ÉHÇD$ÇD$jéVêÿÿHÇ$1ɻõEÇD$OéÚúÿÿH‹|$hL‰ýE1í»õGHÇD$HÇD$ÇD$léêÿÿH‹|$h1íE1íE1ÿHÇ$»ðFHÇD$HÇD$ÇD$^éÒéÿÿHÇ$E1�EHÇD$HÇD$ÇD$KéCúÿÿ螭ýÿH‰ïèvþÿH‰ÁH‰D$xH…À…qíÿÿH‹|$h1íE1ÿ»FÇD$Péiéÿÿ贪ýÿéšïÿÿ說ýÿéxïÿÿH‹|$h1í1ɻFÇD$Pé:éÿÿH‰ïè´ýÿH‰ÅH…À…{÷ÿÿ»eGÇD$céšýÿÿ»HéÌñÿÿL‹[©'M…À„øH‹xI9ø„ûëÿÿL‰ÆL‰$葳ýÿL‹$…À…ãëÿÿI‹EI‹H M‰ﻋEH5n‘E1íH‹P H‹ðZ%H‹81À趲ýÿHÇ$1ÉE1ÀHÇD$HÇD$ÇD$Iéùÿÿf.„H‹|$h1íE1ÿ»ÜEHÇ$ÇD$NéLèÿÿH‹
¨'H…É„H‹xH9ù„)æÿÿH‰ÎH‰$èӲýÿH‹$…À„L‹l$xéæÿÿDL‰D$ E1íI‰ï»gGH‹”$ˆH‹´$H‹¼$€èK¯ýÿHÇ$1ÉL‹D$ HÇD$HÇD$ÇD$céMøÿÿ1ÉÇD$P»Fé9øÿÿH‹|$h1íE1íE1ÿHÇ$»UEHÇD$HÇD$ÇD$Dé`çÿÿ諨ýÿéSíÿÿ1íE1ÿHÇ$»ÞEÇD$NéFçÿÿ1ÉÇD$P»
FéÃ÷ÿÿ»iGH‹”$ˆH‰L$(I‰ïE1íH‹´$H‹¼$€L‰D$ èa®ýÿL‹D$ H‹L$(HÇ$HÇD$HÇD$ÇD$cé`÷ÿÿè¨ýÿé~îÿÿÇD$P»F1ÉE1Àé?÷ÿÿHƒìH‹ÔX%A¸H5§ƒjL
Z„H
ڀH‹8HQƒ1Àèv°ýÿ_¾¸DAXéûáÿÿèTªýÿH‰ïè,þÿI‰ÀH…À…Çêÿÿ1ÉÇD$P»FéÌöÿÿE1;nGéÿÿÿH‰Ïèg§ýÿéîÿÿè]§ýÿéÜîÿÿÇD$P»Fé–öÿÿH‹|$hL‰ýE1í»OHHÇD$HÇD$ÇD$léÇåÿÿ1ÉÇD$P»FéSöÿÿH‹|$hÇD$U»NFéœåÿÿ»PFH‹¼$€Hƒ/t'H‹|$hÇD$U1ÉHDŽ$€éiåÿÿ»^FëË警ýÿëÒH‹|$hÇD$U»ºFéDåÿÿH;%X%tL‰ïèc®ýÿ…À„·èv¯ýÿH…À…FúÿÿH‹VW%H5o€H‹8èǪýÿé+úÿÿH‹+Y%L‰D$M‰ﻋEH5‰€E1íH‹8蜪ýÿL‹D$1ÉHÇ$ÇD$IL‰D$é[õÿÿH‹äX%1íE1íE1ÿH5G€H‰L$ »ÑEH‹8èSªýÿH‹|$hH‹L$ HÇ$ÇD$MétäÿÿL‰ïè|©ýÿI‰ÅH…À„5ÿÿÿH‹yW%I9Eu6I‹Eö€³„5ùÿÿL‰ïèj¥ýÿH‰D$(Iƒm…iÝÿÿL‰ïèr¥ýÿé\ÝÿÿL‰ïèÅ*þÿI‰ÅH…Àuºé1ùÿÿI‰Çé9àÿÿI‹EH‹I 1íE1íH5œŒE1ÿ»ÑEH‹P H‹V%H‹81Àè߭ýÿH‹|$hHÇ$1ÉÇD$Mé³ãÿÿL‰ï軨ýÿH‰ÂH…À„«øÿÿH‹¸V%H9Bu;H‹BH‰×H‰T$ö€³t;訤ýÿH‹T$H‰D$(Hƒ*…/ÿÿÿH‰×謤ýÿé"ÿÿÿH‰×èÿ)þÿH‰ÂH…Àuµé\øÿÿèݝþÿH‹T$H‰D$(ëÃI‰ÀéaÛÿÿH‹bU%H5{~H‹8èӨýÿé(øÿÿ@f.„AWAVAUATUH‰õSHì¸H‹…V%H‹^H‰|$ HDŽ$ H‰„$¨H…Ò…ŸHƒû„ÕHƒû…;L‹f(H‹] HÇD$xH‰ßHDŽ$€HDŽ$ˆHDŽ$HDŽ$˜HDŽ$ èv§ýÿH‰D$Hƒøÿ„§H‹£'¿H‹¨(ÿhH‰ßE1ÉA¸¹ºH‰ÆÿÕH‰ÃH‰D$xH…À„òH‰„$€HƒH‹|$xHƒ/„‡L‹-˜'H‹=¡¢'HÇD$xH‹œ$€HDŽ$€L‰îèd¤ýÿH‰ÅH…À„ÐHƒH‰D$xH‹5øœ'H‰ïèP­ýÿI‰ÆH‰„$ˆH…À„,H‹|$xHƒ/„H‹-Ž—'H‹='¢'HÇD$xH‰îèþ£ýÿI‰ÆH…À„2HƒH‹5ï˜'L‰÷èï¬ýÿI‰ÀH…À„[Iƒ.„Ù
¿L‰D$è:©ýÿL‹D$H…ÀI‰Æ„áHƒ1ÒL‰ÇL‰öH‰X H‹ú’'HƒI‰F(è¨ýÿL‹D$H…ÀH‰ÅH‰D$x„ïIƒ.„
Iƒ(„ë	H‹t$x¿1ÀH‹¬$ˆè"ªýÿI‰ÅH…À„1ÒH‰ïH‰Æ蹧ýÿIƒmH‰Å„û	H‹|$xH‰¬$€Hƒ/„„	H‹¼$€HÇD$xH…ÿ„ªH‹¼$ˆHƒ/„¨	H‹¼$€H;=yT%HDŽ$ˆ”ÀH;=«S%”ÂÂ…h	H;=‘S%„[	è֣ýÿ‰ŅÀˆŒH‹¼$€Hƒ/„
HDŽ$€…í…&L;%OS%L‹{„-H´$˜H¼$H”$ è8¦ýÿH‹-9•'H‹=B 'H‰îè"¢ýÿH…À„ÙHƒH‰„$€H‹5ޗ'H‰Çè«ýÿH‰D$xH…À„øH‹¼$€Hƒ/„Ž
L‰æ¿1ÀH‹l$xHDŽ$€螨ýÿI‰ÅH…À„1ÒH‰ïH‰Æè5¦ýÿIƒmH‰Å„÷H‹¼$€H‰¬$ˆH…ÿtHƒ/„hH‹¬$ˆHDŽ$€H‹|$xH…í„·Hƒ/„¼HÇD$xH‹|$蹠ýÿH‰D$xH…À„¿衦ýÿH‰ÅH‰„$€H…À„$H‹„$ˆH‹¼$HDŽ$ˆHDŽ$€H‰E H‹D$xHÇD$xH‰E(H…ÿt
Hƒ/„˜H‹¼$˜HDŽ$H…ÿt
Hƒ/„eH‹¼$ HDŽ$˜H…ÿt
Hƒ/„2HDŽ$ L‹%ߓ'H‹=xž'L‰æèX ýÿI‰ÀH…À„¤HƒH‰D$xH‹5܏'L‰ÇèD©ýÿI‰ÆH‰„$€H…À„¸H‹|$xHƒ/„AL‹%‚“'H‹=ž'HÇD$xL‰æèòŸýÿI‰ÀH…À„žHƒH‰D$xH‹5N–'L‰ÇèިýÿI‰ÁH…À„êH‹|$xHƒ/„Ó
¿L‰L$HÇD$xè¥ýÿL‹L$H…ÀI‰Æ„:H‹D$xH…Àt
I‰F HÇD$xHƒEH‹¼$€1ÒL‰öI‰n M‰N(èä£ýÿI‰ÀH‰„$ˆH…À„(Iƒ.„æ
H‹¼$€Hƒ/„Ä
H‹„$ˆHDŽ$€HƒL‹¤$ˆH‰D$I‹D$A‹t$ HDŽ$ˆI‹|$(H‰D$8H‹'ÿðHƒ|$H‰D$0ށ
H‹5Z“'H‰ßè§ýÿI‰ÆH‰„$€H…À„€	H‹5—œ'1ÒH‰Çè£ýÿI‰ÆH‰„$ˆH…À„;H‹¼$€Hƒ/„ïH‹5à'1ÒH‹¼$ˆHDŽ$€èå¦ýÿI‰ÆH‰„$€H…À„2H‹¼$ˆHƒ/„7H‹¼$€H;=ÀO%HDŽ$ˆ”ÀH;=òN%”ÂÂ…
H;=ØN%„
èŸýÿA‰ŅÀˆ.H‹¼$€Hƒ/„@HDŽ$€E…í„k	L‹-‘'H‹=µ›'L‰î蕝ýÿI‰ÆH…À„HƒH‰„$ˆH‹5V”'L‰÷è~¦ýÿI‰ÆH…À„3H‹¼$ˆHƒ/„]H‰Þ1?HDŽ$ˆè¤ýÿI‰ÅH…À„P1ÒH‰ÆL‰÷謡ýÿIƒmI‰À„>L‹Œ$ˆL‰„$€M…ÉtIƒ)„àL‹„$€HDŽ$ˆM…À„Iƒ.„L‹¬$€L;-©M%…H‹D$I‹UfïÀHDŽ$€HƒèH‰T$H‰D$H@òAXÇòÂHƒèHƒøÿuëH‹D$ H‹5“'H‹¸Øèk¥ýÿI‰ÆH‰„$ H…À„çH‹D$ H‹5“'H‹¸Øè?¥ýÿI‰ÆH…À„ÜH‹5š'H‰Ç1ÒHDŽ$ˆ薠ýÿH‹¼$ˆH‰„$€H…ÿtHƒ/„ŸH‹„$€HDŽ$ˆH…À„äIƒ.„ÒH‹¼$€Hƒ/„¶HDŽ$€èýžýÿHƒ|$0H‰D$PŽÝH‹D$H‹t$8L‰d$XHÇD$(L‹d$HÁàH‰l$8H‹l$HH‰D$@H‹D$ H‰\$`H‰óHƒÀ(L‰l$ I‰Åò šH…ítKE1öòCLôòC÷L‰ïòT$蕞ýÿòT$òošf(ÈòYÊò\ØòYÓòBóIƒÆI9îu¸H‹T$HT$(H‹D$(òTÓøH\$@H9D$0ƒÿÿÿL‹l$ H‹l$8L‹d$XH‹\$`H‹|$PèuýÿH‹¼$ H…ÿtHH‹5‰'1ÒèŸýÿH‹¼$ I‰ÆHƒ/„lHDŽ$ M…ö„ÍIƒ.„‰fDH‹D$L‹t$HƒHƒ+„ûH‹\$é­H‹]f.„H…ÛHÒqH
ÂqHOÈŸÀH-u¶ÀL
ãoLOÊL@HƒìH‹tI%SH8tH5EtH‹81Àè+¡ýÿX¾òNZH
aqºKH=Y†1ÛèJòýÿHĸH‰Ø[]A\A]A^A_ÃDL‹%yJ%é-ôÿÿ@è˜ýÿéröÿÿfDL‰Çè˜ýÿéöÿÿL‰÷L‰D$èó—ýÿL‹D$éäõÿÿf„¶èé´öÿÿ„è˗ýÿéNöÿÿfDL‰ï踗ýÿéøõÿÿ諗ýÿéoôÿÿfD蛗ýÿéÙôÿÿfDL‰÷H‰D$胗ýÿL‹D$éõÿÿf„I‰ÔHƒû„cHƒû„ùH…Û…þÿÿH‰×踙ýÿH‹5a‘'L‰çI‰Åèö–ýÿIƒíH‰„$ H…À„SþÿÿM…폠H‹œ$ L‹¤$¨éóÿÿèû–ýÿéÜõÿÿfDÇD$1OE1ÉE1À1íA¿´E1öE1íE1äHÇD$1ÛfDH‹|$xH…ÿt
Hƒ/„H‹¼$€H…ÿt
Hƒ/„%H‹¼$ˆH…ÿt
Hƒ/„.M…öt
Iƒ.„?M…Àt
Iƒ(„XM…Ét
Iƒ)„a‹t$H
JoD‰úH=D„è7ðýÿH…ÛtHƒ+„H1ÛM…ätIƒ,$tJM…ítIƒmtNH…ítHƒmtRH‹L$H…É„ªýÿÿH‹H‰D$HƒèH‰…•ýÿÿH‰ÏèוýÿéˆýÿÿfL‰çèȕýÿë¬fDL‰ï踕ýÿë¨fDH‰ï訕ýÿë¤fDL‰L$ L‰D$葕ýÿL‹L$ L‹D$H‹¼$€éÖþÿÿf.„L‰L$ L‰D$èa•ýÿL‹L$ L‹D$é½þÿÿfL‰L$ L‰D$èA•ýÿL‹L$ L‹D$é´þÿÿfL‰÷L‰L$ L‰D$è•ýÿL‹L$ L‹D$é þÿÿ€L‰ÇL‰L$èû”ýÿL‹L$é‘þÿÿL‰Ïèè”ýÿé’þÿÿE1öH‰ßL‰óèҔýÿé§þÿÿDH‹|$螕ýÿI‰ÆH‰„$€H…À„)¿耛ýÿH‰ÅH‰„$ˆH…À„?H‹„$€HDŽ$ˆHDŽ$€H‰E éUõÿÿÇD$;OE1ÉE1À1íH‹¼$€A¿µHÇD$E1íE1äE1öé‡ýÿÿèӖýÿL‰ïè«ìýÿH‰ÅH‰D$xH…À…ñÿÿH‹¼$€E1ÉE1ÀÇD$JOA¿¸ëª@èã“ýÿéÄôÿÿfDèӓýÿé‘ôÿÿfDèÓýÿé^ôÿÿE1ÉE1ÀE1íA¿æÇD$ßPéâüÿÿfE1ÉE1À1íE1íHÇD$E1äA¿¸ÇD$LOé¶üÿÿfDèk“ýÿéµôÿÿfDè–ýÿH‰ïèãëýÿI‰ÆH…À…¹ðÿÿE1ÉE1À1íE1íHÇD$E1äA¿¸ÇD$OOé]üÿÿDE1É1íE1íE1äHÇD$A¿¸ÇD$QOé1üÿÿèë’ýÿéhòÿÿfDL‹l$ H‹5Ԋ'I‹½Øè8ýÿI‰ÆH‰„$ H…À„T
I‹½ØH‹5Ί'èýÿI‰ÆH…À„â
H‹5î‘'H‰Ç1ÒHDŽ$ˆèh˜ýÿH‹¼$ˆH‰„$€H…ÿtHƒ/„·H‹„$€HDŽ$ˆH…À„ö
Iƒ.„ÙH‹¼$€Hƒ/„¦HDŽ$€èϖýÿHƒ|$0H‰D$PŽôH‹D$H‹t$8H‰l$XHÇD$(HÁàL‰|$HHÆH‰D$@LøL‰d$`I‰ÄH‰\$hH‰ófHƒ|$Ž|H‹D$ H‹t$(fïÉL‹t$HHh(H‹D$8L<ðM‰ýòAH‰ïIƒÆIƒÅòL$蕒ýÿòL$òAEøòXÈM9ôuÐò% ’ò^áf(ÌòAIƒÇòYÁòAGøL9ûuèH‹T$H\$@HT$(H‹D$(H9D$0YÿÿÿH‹l$XL‹d$`H‹\$hH‹|$Pè0•ýÿL‹¬$ M…í„ÿ÷ÿÿH‹5Ѐ'1ÒL‰ïèΖýÿH‹¼$ H‰„$˜Hƒ/„mL‹´$˜HDŽ$ M…ö„N
Iƒ.„{HDŽ$˜E1íé™÷ÿÿf„H‰D$èvýÿL‹L$éòÿÿ@E1É1íE1íE1äHÇD$A¿¸ÇD$qOéùÿÿL‰ïè8ýÿéüïÿÿè+ýÿé:ðÿÿfDH‹¼$€M‰ñÇD$|OA¿¸éÀûÿÿfèûýÿé2òÿÿfDL‰÷èèýÿé
òÿÿE1ÉE1À1íÇD$ŽOA¿¸éƒûÿÿD1íéþíÿÿf„諏ýÿéŽïÿÿfDÇD$‘OA¿¸E1ÉE1ÀE1ö1íHÇD$E1íE1äé³øÿÿD¶èéýòÿÿ€H‹F(H‰×H‰„$¨H‹F H‰„$ 谑ýÿH…ÀŽøÿÿH”$ H‰ÙL‰çLÞjH5Û''èöþÿ…À‰ö÷ÿÿ¾âNé öÿÿ@H‹F H‰×H‰„$ è\‘ýÿI‰ÅéÃ÷ÿÿ@H‹5!~'H‹=jŒ'1Ò軔ýÿI‰ÆH‰„$€H…À„H‰ÇèÏeþÿH‹¼$€Hƒ/„äÇD$ OA¿¹HDŽ$€éìþÿÿfDH‹5'L‰çè)ŽýÿH…À„)ÿÿÿH‰„$¨IEÿéÿÿÿ€èóýÿL‰çèËæýÿI‰ÀH‰D$xH…À…GïÿÿH‹¼$€E1ÉÇD$oPA¿ÄéÊùÿÿ@E1ÉE1ÀE1íE1äHÇD$A¿ÄÇD$qPé ÷ÿÿ苐ýÿH‰ïècæýÿH‰„$€H…À…íÿÿH‹|$x½òOH…ÿt
Hƒ/„H‹¼$€HÇD$xH…ÿt
Hƒ/„H‹¼$ˆHDŽ$€H…ÿt
Hƒ/„nºÀ‰îH=`{HDŽ$ˆH
Ifè@çýÿH”$ˆHt$xH¼$€è6àýÿ…ÀˆH‹>%I9D$…÷Iƒ$H‹|$èݍýÿI‰ÁH…À„/¿H‰D$è“ýÿL‹L$H…ÀI‰Æ„NL‰H H‰ÆL‰çè’ýÿH‰ÅH…À„‘Iƒ,$„«Iƒ.„‘H‹¼$€H…ÿt
Hƒ/„UH‹|$xHDŽ$€H…ÿt
Hƒ/„?H‹¼$ˆHÇD$xH…ÿt
Hƒ/„)H‹”$ H‹´$˜HDŽ$ˆH‹¼$èA’ýÿéíÿÿ@èŒýÿéïÿÿfDèŒýÿéuþÿÿfDèó‹ýÿéˆþÿÿfD蓎ýÿL‰çèkäýÿI‰ÀH‰D$xH…À…MíÿÿH‹¼$€E1ÉÇD$tPA¿Äéj÷ÿÿ@裋ýÿéõýÿÿfD½ôOéåýÿÿfD胋ýÿé¿îÿÿfDE1ÀE1öE1íE1äHÇD$A¿ÄÇD$vPéôÿÿH‹¼$€HDŽ$ˆH…ÿ…ëÿÿH‹|$x½Pélýÿÿ@è‹ýÿé¶îÿÿfDL‰÷è‹ýÿébþÿÿL‰çèøŠýÿéHþÿÿE1ÀE1íE1äA¿ÄHÇD$ÇD$˜Péôÿÿ½PéýÿÿfDE1ÉE1íE1äA¿ÄHÇD$ÇD$£PéÓóÿÿ莊ýÿé™îÿÿH‹|$x½PéÂüÿÿèuŠýÿéPøÿÿL‰ïH‰D$ècŠýÿL‹D$é«îÿÿL‰÷èQŠýÿéøÿÿL‰÷èDŠýÿé×îÿÿ½Pé}üÿÿè0Šýÿé¡ýÿÿè&Šýÿé·ýÿÿèŠýÿéÍýÿÿA¿ÁE1ÉE1ÀE1öÇD$0PL‰L$ 1íE1íE1äH‹”$ H‹´$˜L‰D$H‹¼$èñýÿL‹D$L‹L$ HÇD$éùòÿÿ贉ýÿéûÿÿL‰Ï觉ýÿéîÿÿ蝉ýÿé?÷ÿÿ蓉ýÿé@ïÿÿL‰÷膉ýÿé!ïÿÿE1ÉE1À1íE1íHÇD$E1äA¿½ÇD$ÆOé—òÿÿèR‰ýÿ鉸ÿÿE1ÉE1ÀE1öE1íHÇD$E1äA¿½ÇD$ÈOébòÿÿL‰÷è‰ýÿéxøÿÿL‰ç荒ýÿI‰ÆH…À…E1ÉE1ÀÇD$<PA¿ÂéèþÿÿèãˆýÿéWîÿÿE1ÉE1ÀE1íA¿æÇD$íPéòÿÿM‰àE1öÇD$>PA¿Âé©þÿÿ褈ýÿéŠïÿÿE1ÉE1ÀE1íA¿æÇD$ðPéÃñÿÿM‰àÇD$@PA¿ÂémþÿÿL‰÷èeˆýÿépïÿÿE1ÉE1ÀE1íA¿ÇD$úQé„ñÿÿA¿æE1ÉE1ÀE1öÇD$òPE1íéeñÿÿE1ÉM‰àÇD$EPA¿Âéþÿÿ跊ýÿL‰ïèàýÿI‰ÆH‰„$ˆH…À…ÎëÿÿE1ÉE1ÀE1íA¿îÇD$ÿPéñÿÿE1ÉE1ÀE1íA¿îÇD$QéóðÿÿÇD$üQH‹¼$ Hƒ/„A¿E1ÉE1ÀE1íHDŽ$ é¹ðÿÿL‹Œ$ˆHDŽ$€M…É…ÃëÿÿE1ÀÇD$QA¿îé†ðÿÿÇD$
Rë‘L‹55†'M…ö„I‹}I9þ„ÌëÿÿL‰öèwýÿ…À„/L‹¬$€é¯ëÿÿfE1ÉE1ÀÇD$NQA¿õé'ðÿÿÇD$PQH‹¼$ Hƒ/„A¿õE1ÉE1ÀHDŽ$ éðïÿÿE1ÉE1À1íE1íHÇD$E1äA¿¹ÇD$œOéÆïÿÿÇD$^Qëèw†ýÿéÙþÿÿE1ÉE1íÇD$QA¿îé™ïÿÿE1ÉE1ÀE1íA¿ÇD$‘Ré}ïÿÿè8†ýÿéfÿÿÿE1ÉE1ÀÇD$ØQA¿õéZïÿÿH‹ó8%H5^`E1íA¿îH‹8èkŠýÿE1ÉE1ÀÇD$Qé(ïÿÿI‰ÄéÙøÿÿI‹EI‹N E1íE1öH5+mA¿îH‹P H‹ª6%H‹81ÀèpŽýÿÇD$QE1ÉE1ÀéÝîÿÿf.„AWAVAUATI‰ôUSHƒìXH‹È7%L‹-éu'H‹Â7%H‹nH‰|$HÇD$ H‰\$(H‰\$0L‰l$8H‰D$@H…Ò…“Hƒý‡éH6mHcªHÐÿàH‹q7%H‰D$M‹l$8I‹D$0H‰$I‹l$(M‹d$ Iƒ$HƒEH9Ý„ÁL‰î¿1ÀL‹5èƒ'èýÿI‰ÇH…À„·1ÒL‰÷H‰Æ誊ýÿIƒ/I‰Æ„½M…ö„”L‹=uy'H‹=„'L‰þèî…ýÿI‰ÂH…À„ÂHƒH‹5Ÿ{'L‰×L‰T$èڎýÿL‹T$H…ÀI‰Ç„QIƒ*„ºL‰þL‰÷è?ŽýÿI‰ÂI‹M…Ò„	HƒèI‰„óL;,7%”ÀL;j6%”ÂÂ…GI9Ú„>L‰×L‰T$葆ýÿL‹T$…ÀA‰ÇˆñIƒ*„%E…ÿ„-H‹t$H;5Ò6%A”ÀH;56%”ÀDÀ…ËH9Þ„ÂH‹|$è8†ýÿA‰øÿ„Ô
H‹D$Hƒì1ÉL‰çH‰îL‹ØLH(IƒARH‹T$L‰T$ÿ"‚'_AXH…ÀI‰ÇL‹T$„Ö
Iƒ*„„H9$„JIƒL‰ûIƒ.„±Iƒ/„€Iƒ,$„ÃHƒm„ÂHƒÄXH‰Ø[]A\A]A^A_ÄH‹15%H‰$H‰ÝH‰D$éÇýÿÿ„H‹5%H‰$H‰D$é¥ýÿÿH‹ù4%H‰D$éˆýÿÿ€H‹F@H‰D$énýÿÿfL‰÷èè„ýÿI‰ÅH‹5Žx'L‰÷Iƒíè"‚ýÿH‰D$ H…À… 	I‹l$€H…íHZ[H
J[HOÈŸÀHµ^¶ÀL
kYLOÊL…HƒìH‹ø2%UHÆ]H5É]H‹81À诊ýÿX¾³ZH
åZºjH=
p1ÛèÎÛýÿéÏþÿÿf„Iƒ*D¶ø…ÛýÿÿL‰×誁ýÿE…ÿ…ÓýÿÿL‹=rv'H‹='L‰þèë‚ýÿI‰ÃH…À„¯HƒH‹5”x'L‰ßL‰\$è׋ýÿL‹\$H…ÀI‰ÂI‹„ÃHƒèI‰„Ž	L‰ֺL‰÷L‰T$è1‹ýÿL‹T$H…ÀI‰Ç„ÐIƒ*„®	L;=4%”ÀL;=]3%”ÂÂu	I9ß…¥¶ÀIƒ/„¨	…À„¸	H‹L$H;
ä3%A”ÀH;
!3%”ÀDÀ…ÍH9Ù„ÄH‹|$èJƒýÿA‰øÿ„êH‹D$Hƒì1ÉH‰îL‰çL‹˜ØLH(IƒASH‹T$L‰\$ÿ<'Y^L‹\$H…ÀI‰ÇI‹„ŽHƒèI‰…
ýÿÿL‰ßèA€ýÿéýÿÿ@H‰ïè0€ýÿé1ýÿÿIƒ$Hƒ+„L‹5Úp'IƒIƒ,$„ÓL‰åM‰ôéûÿÿ„L‰ÿèèýÿé6ûÿÿE¶ÀéKüÿÿ€L‰×èÈýÿétûÿÿèk‚ýÿL‰ÿèCØýÿI‰ÂH…À…)ûÿÿ¾ºÉH
šXH=Çm»è…ÙýÿIƒ.…küÿÿE1ÿ„L‰÷èhýÿM…ÿ„OüÿÿIƒ/…EüÿÿL‰ÿèMýÿIƒ,$…=üÿÿL‰çè:ýÿé0üÿÿDL‰ÿL‰T$è#ýÿL‹T$éöúÿÿf„H

XºÂ¾1ÛH=.mèñØýÿéÜûÿÿ@IƒEH‹5L1%ºL‰ïèψýÿH‰ÁH…À„Û
H;Ì1%”ÂH;
1%”ÀÐu
H;$…¶ÒHƒ)„T	…Ò„´Iƒm„¡H‹Rs'H‹=ë}'H‰ÆH‰$èÇýÿH‰ÁH…À„[	HƒH‹5Px'H‰ÏH‰$贈ýÿH‹$H…ÀI‰Ã„”	Hƒ)„Z1ÀL‰þ¿L‰$èW†ýÿL‹$H…À„š	1ÒL‰ßH‰ÆL‰$H‰D$èäƒýÿH‹L$L‹$I‰ÂHƒ)„VI‹HƒèM…Ò„íI‰H…À„"H‹5ƒp'L‰×L‰$èˆýÿL‹$H…ÀH‰Á„‡	Iƒ*„=H‹5î|'H‰ϺH‰$è}‡ýÿH‹$H…ÀI‰ÂH‹„š	HƒèH‰„L;f0%”ÀL;¤/%”ÂÂu	I9Ú…¶ØIƒ*„…Û„õùÿÿIƒE1ÀL‰þ¿èS…ýÿH…À„”1ÒH‰ÆL‰ïH‰$èé‚ýÿH‹$H‰ÃHƒ)„ÀI‹EHƒèH…Û„˜I‰EH…À„’Iƒ.…ŸùÿÿéKýÿÿL‰×è°|ýÿéoùÿÿHƒý‡VúÿÿI‰ÖH¸dHcªHÐÿàH‹F@H‰D$@I‹D$8H‰D$8I‹D$0H‰D$0I‹D$(L‰÷H‰D$(I‹D$ H‰D$ è¿~ýÿI‰ÅHƒý‡HwdHcªHÐÿàfL‰çL‰åM‰ôè"|ýÿé4÷ÿÿDH‰ßè|ýÿéòûÿÿ1ɻA½ÉIƒ*u(E1ÛL‰×L‰\$H‰$èá{ýÿL‹\$H‹$M…ÛtIƒ+t|H…Ét
Hƒ)„†H
»TD‰ê‰ÞH=ãiè¦ÕýÿIƒ.»…/üÿÿé"üÿÿfH‰ÏH‰$è$~ýÿH‹$…	‰ØüÿÿI‰˻äIƒm„¯Iƒ+…š1ÉA½äL‰ßH‰$èE{ýÿH‹$éoÿÿÿ@H‰Ïè0{ýÿémÿÿÿM‰ûHƒèE1ÿ»A½ÉI‰H…À…Iÿÿÿ1ÉL‰ßH‰$èùzýÿH‹$é#ÿÿÿ»A½É1ÉE1ÿéàþÿÿH‹5¡,%ºL‰ïèĄýÿH‰ÁH…À„]	H;Á-%”ÂH;ÿ,%”ÀÐ…„H9Ù„{H‰ÏH‰$è'}ýÿH‹$…	ˆF	Hƒ)„o…Ò…ÛûÿÿH‹8o'H‹=Ñy'H‰ÆH‰$è­{ýÿI‰ÃH…À„ñ	HƒH‹5Fs'L‰ßL‰$蚄ýÿL‹$H…ÀH‰Á„&Iƒ+„…H‹51p'H‰ÏH‰$èm„ýÿH‹$H…ÀI‰Ã„~Hƒ)„›L‰޺L‰ïL‰$èσýÿL‹$H…ÀH‰Á„cIƒ+„H;
¾,%”ÂH;
ü+%”ÀÐ…ÉH9Ù„ÀH‰ÏH‰$è$|ýÿH‹$…	ˆ$Hƒ)„›Iƒm„…Ò…Øúÿÿé"öÿÿ@L‰ÿèè{ýÿ…À‰NøÿÿI‹M‰ûE1ÿ»JA½ËHƒèéþÿÿL‰×L‰$è´{ýÿL‹$…	ÉÍûÿÿ»'A½å1Ééùüÿÿ@E¶ÀéIøÿÿ€L‰ï‰$èÕxýÿ‹$élÿÿÿDH‹F L‰÷H‰D$ è'{ýÿI‰ÅM…íސH‹5p'L‰÷è\xýÿH…ÀtH‰D$(IƒíM…í~nH‹5k'L‰÷è:xýÿH…ÀtH‰D$0IƒíM…í~LH‹5Èp'L‰÷èxýÿH…ÀtH‰D$8IƒíM…í~*H‹5np'L‰÷èöwýÿH…À„“H‰D$@IƒíM…폁H‹D$0L‹d$ H‹l$(L‹l$8H‰$H‹D$@H‰D$éøòÿÿIƒm„E»õA½äéüÿÿf„H‰ÏL‰$èÄwýÿL‹$é‘ùÿÿL‰ßL‰T$è«wýÿL‹T$é[öÿÿL‰ßL‰$è”wýÿL‹$éÉùÿÿH‰ÏH‰D$è{wýÿL‹T$L‹$éùÿÿDL‰×è`wýÿéEöÿÿL‰×H‰$èLwýÿH‹$é®ùÿÿL‰ÿ‰D$è4wýÿ‹D$éCöÿÿL‹=ùk'H‹=’v'L‰þèrxýÿI‰ÂH…À„ýHƒH‹5+n'L‰×L‰T$è^ýÿL‹T$H…ÀI‰Ç„Iƒ*„,ºL‰þL‰÷èÀýÿI‰ÂI‹M…Ò„HƒèI‰„GL;°)%”ÀL;î(%”ÂÂ…{I9Ú„rL‰×L‰T$èyýÿL‹T$…ÀA‰ÇˆÓIƒ*„E…ÿ„H‹L$H;
V)%”ÀH;
”(%”ÂÂ…H9Ù„xH‹|$è¾xýÿA‰øÿ„zH‹D$Hƒì1ÉH‰îL‰çL‹ØLH(IƒARH‹T$L‰T$ÿ t'I‰ÇXZM…ÿL‹T$…‡òÿÿ1ɻ„A½ÎéÀùÿÿ‰D$è¯~ýÿD‹D$H…À„òÿÿE1ÿ¾)ºÊ@H
NH=ºcè}ÏýÿéÒùÿÿ„1ɻ,A½ÊécùÿÿfDH‰ÏL‰$èLuýÿL‹$éæ÷ÿÿH‰ω$è5uýÿ‹$é™öÿÿDL‰×è uýÿéì÷ÿÿ¶Òé—úÿÿD¶øé¢þÿÿ€è«wýÿH‹<$è‚ÍýÿH‰ÁH…À…öÿÿ¾ºåéGÿÿÿ€è{wýÿL‰ÿèSÍýÿI‰ÇH…À…&¾CºËéÿÿÿ„A½å»éÈøÿÿHƒèE1ÿ»EA½Ëéfùÿÿf„I‹A½å»HƒèéFùÿÿf„1ɻHA½ËéCøÿÿfDL‰ïè0týÿéa÷ÿÿH‰Ïè týÿé3÷ÿÿ»"A½åé
øÿÿ„H‰ω$èõsýÿ‹$é~ùÿÿDM‰ê»ãA½äéÚ÷ÿÿDHƒèI‰ËA½å»%馸ÿÿf„D¶Àé•ýÿÿL‰×èŸsýÿéÇüÿÿHT$ H‰éL‰÷LNOH5'è\ùýÿ…À‰Yûÿÿ¾šé‚ñÿÿf.„L‰ÿL‰T$èSsýÿL‹T$é¢üÿÿL‰×èAsýÿéáüÿÿH‹
h'H‹=¦r'H‰ÆH‰D$ètýÿI‰ÇH…À„éHƒH‹5"j'L‰ÿèr}ýÿI‰ÂI‹M…Ò„úHƒèI‰„rL‰ֺL‰÷L‰T$èÑ|ýÿL‹T$H…ÀI‰Ç„þIƒ*„YL;=¿%%”ÀL;=ý$%”ÂÂ…‰I9ß„€L‰ÿè)uýÿ…Àˆ¢Iƒ/„T…À„aH‹L$H;
s%%”ÀH;
±$%”ÂÂ…ÑH9Ù„ÈH‹|$èÛtýÿA‰øÿ„H‹D$Hƒì1ÉH‰îL‰çL‹˜ØLH(IƒASH‹T$L‰\$ÿµp'A[I‰ÇXL‹\$M…ÿI‹…ñÿÿHƒèA½Ð»°é¿öÿÿf¶ÒéRøÿÿHƒèA½Ì»Xé¡öÿÿ‰D$è«zýÿD‹D$H…À„ÿðÿÿE1ÿ¾UºÌéûûÿÿL‰ßH‰$èqýÿH‹$éf÷ÿÿI‹EM‰ë»@A½æHƒèéHöÿÿM‰ê»ëA½äéMõÿÿH‰ÏH‰$è<qýÿL‹$éP÷ÿÿI‰˻ìé¸õÿÿL‰ßH‰$èqýÿH‹$é\÷ÿÿ¶Àéˆþÿÿè´sýÿL‰ÿèŒÉýÿI‰ÂH…À…îùÿÿ¾oºÍéDñÿÿA½å»é¾õÿÿH‰ω$èÆpýÿ‹$éR÷ÿÿ1ɻqA½Íé±ôÿÿM‰ûHƒèE1ÿ»tA½Íéõÿÿ»vA½Í1ÉE1ÿé‚ôÿÿD¶ÀéEþÿÿL‰ÿL‰T$ègpýÿL‹T$éwýÿÿL‰×èUpýÿéšýÿÿèûrýÿH‹<$èÒÈýÿH‰ÁH…À…oM‰ê»óA½äé(ôÿÿL‰ÿ‰D$èpýÿ‹D$é—ýÿÿL‹=ßd'H‹=xo'L‰þèXqýÿI‰ÂH…À„õHƒH‹5aa'L‰×L‰T$èDzýÿL‹T$H…ÀI‰Ç„°Iƒ*„ŒºL‰þL‰÷è©yýÿI‰ÂI‹M…Ò„¹HƒèI‰„IL;–"%”ÀL;Ô!%”ÂÂ…oI9Ú„fL‰×L‰T$èûqýÿL‹T$…ÀA‰Çˆ¦Iƒ*„ðE…ÿ„‘H‹L$H;
<"%”ÀH;
z!%”ÂÂ…gH9Ù„^H‹|$è¤qýÿA‰ǃøÿ„÷H‹D$1ÉH‰îL‰çL‹ØLH(IƒAPE‰øARH‹T$L‰T$ÿ½m'AYAZH…ÀI‰ÇL‹T$…jëÿÿ1ɻÜA½Òé£òÿÿfD‰D$èwýÿD‹D$H…À„oøÿÿE1ÿ¾ºÎéßøÿÿM‰ê»øA½äéaòÿÿ»ûéäòÿÿM‰ê»ýA½äéDòÿÿM‰ë»@A½æéóÿÿè×pýÿH‹|$è­Æýÿ¾›ºÏI‰ÇH…À„wøÿÿéñúÿÿD¶øé®þÿÿM‰ûHƒèE1ÿ»A½ÏéÌòÿÿI‹M‰ûE1ÿ»¢A½ÏHƒèé¯òÿÿ1ɻ A½ÏéµñÿÿD¶øé¯þÿÿH‹=xb'èËÆýÿI‰ÇH…À„]H‹5_'H‰ÇèðwýÿI‰ÂI‹M…Ò„%HƒèI‰„:L‰ֺL‰÷L‰T$èOwýÿL‹T$H…ÀI‰Ç„Iƒ*„mL;== %”ÀL;={%”ÂÂ…II9ß„@L‰ÿè§oýÿ…ÀˆvIƒ/„;…À„fH‹L$H;
ñ%”ÀH;
/%”ÂÂ…<H9Ù„3H‹|$èYoýÿA‰ǃøÿ„AH‹D$E‰øH‰îL‰çL‹˜ØLH(IƒQ1ÉASH‹T$L‰\$ÿkk'^_L‹\$H…ÀI‰ÇI‹…ìÿÿHƒèA½Ô»é>ñÿÿL‰×èIlýÿéýÿÿL‰ÿL‰T$è7lýÿL‹T$é üÿÿL‰×è%lýÿégüÿÿ‰D$èuýÿD‹D$H…À„ÚùÿÿE1ÿ¾­ºÐégöÿÿè¢nýÿL‰ÿèzÄýÿ¾ÇºÑI‰ÂH…À„7ìÿÿéçûÿÿ¶ÀéÈþÿÿL‰×è¿kýÿé†þÿÿL‰ÿ‰D$è®kýÿ‹D$é°þÿÿ»ÎA½Ñ1ÉE1ÿé•ïÿÿD¶øéÚþÿÿH‹=X`'è«ÄýÿH…À„IH‹5û\'H‰ÇH‰D$èÎuýÿL‹T$H…ÀI‰Ç„Iƒ*„ûºL‰þL‰÷è3uýÿI‰ÂI‹M…Ò„ÂHƒèI‰„žL; %”ÀL;^%”ÂÂ…yI9Ú„pL‰×L‰T$è…mýÿL‹T$…ÀA‰Çˆ»Iƒ*„<E…ÿ„ÚH‹L$H;
Æ%”ÀH;
%”ÂÂ…°H9Ù„§H‹|$è.mýÿA‰ǃøÿ„qH‹D$E‰ø1ÉH‰îL‰çL‹ØLH(IƒASARH‹T$L‰T$ÿ7i'I‰ÇXZM…ÿL‹T$…öæÿÿ1ɻ4A½Öé/îÿÿL‰ÿL‰T$èjýÿL‹T$é¯üÿÿ1ɻÉA½ÑéîÿÿèürýÿH…À„ûúÿÿE1ÿ¾ÙºÒéQôÿÿM‰ûHƒèE1ÿ»ÌA½Ñé´îÿÿI‰Ãé‚ïÿÿA½äéöíÿÿM‰ê1ÉA½äé²íÿÿM‰ê»õA½äéŸíÿÿI‰ÃéèÿÿI‹M‰ûE1ÿ»úA½ÓHƒèéYîÿÿègrýÿH…À„±üÿÿE1ÿ¾ºÔé¼óÿÿM‰ûHƒèE1ÿ»õA½Óéîÿÿ¾óºÓé“óÿÿ1ɻøA½ÓéíÿÿèrýÿH…À„þÿÿE1ÿ¾1ºÖéaóÿÿD¶øéfþÿÿH‹=¹]'èÂýÿI‰ÇH…À„½H‹5AZ'H‰Çè1sýÿI‰ÂI‹M…Ò„…HƒèI‰„aL‰ֺL‰÷L‰T$èrýÿL‹T$H…ÀI‰Ç„)Iƒ*„L;=~%”ÀL;=¼%”ÂÂ…îI9ß„åL‰ÿèèjýÿ…Àˆ<Iƒ/„¶…À„RH‹L$H;
2%”ÀH;
p%”ÂÂ…(H9Ù„H‹|$èšjýÿA‰ǃøÿ„éH‹D$1ÉH‰îL‰çL‹˜ØLH(IƒAPE‰øASH‹T$L‰\$ÿ›f'AYAZL‹\$H…ÀI‰ÇI‹…MçÿÿHƒèA½Ø»`é|ìÿÿL‰×è‡gýÿé·üÿÿD¶øé¤üÿÿL‰ÿL‰T$èlgýÿL‹T$éKüÿÿM‰ûHƒèE1ÿ»$A½Õé5ìÿÿL‰×è@gýÿéøûÿÿ1ɻ!A½Õé.ëÿÿ¾ºÕé}çÿÿ»&A½Õ1ÉE1ÿé
ëÿÿèpýÿH…À„	ÿÿÿE1ÿ¾]ºØéUñÿÿD¶øéîþÿÿH‹=­['èÀýÿH…À„^H‹5X`'H‰ÇH‰D$è#qýÿL‹T$H…ÀI‰Ç„'Iƒ*„ºL‰þL‰÷èˆpýÿI‰ÂI‹M…Ò„×HƒèI‰„³L;u%”ÀL;³%”ÂÂ…ŽI9Ú„…L‰×L‰T$èÚhýÿL‹T$…ÀA‰ÇˆÐIƒ*„QE…ÿ„YH‹L$H;
%”ÀH;
Y%”ÂÂ…/H9Ù„&H‹|$èƒhýÿA‰ǃøÿ„ðH‹D$E‰øH‰îL‰çL‹ØLH(IƒQ1ÉARH‹T$L‰T$ÿ}d'^_H…ÀI‰ÇL‹T$…Lâÿÿ1ɻŒA½Úé…éÿÿL‰ÿ‰D$èteýÿ‹D$é5ýÿÿ¶Àé#ýÿÿL‰×è[eýÿéáüÿÿ1ɻPA½×éIéÿÿL‰ÿL‰T$è7eýÿL‹T$éˆüÿÿM‰ûHƒèE1ÿ»MA½×éêÿÿ¾Kº×étïÿÿI‹M‰ûE1ÿ»RA½×HƒèéÔéÿÿèâmýÿH…À„ÿÿÿE1ÿ¾‰ºÚé7ïÿÿD¶øéçþÿÿH‹5—['L‰÷èoýÿI‰ÇH…À„EH;¬%A”ÅH;é%”ÀDè…I9ß„L‰ÿègýÿA‰ŅÀˆåIƒ/„ÎE…턈H9_'„dL‰÷èQiýÿ…À…DH‹=_'L‰öèjnýÿI‰ÇM…ÿ„H‹=Ÿa'L‰þè/±ýÿH‰ÃI‹H…Û„âHƒèI‰„ÈH‰ßè;þÿHƒ+„œE1ÿ¾Ïºáé?îÿÿL‰×èÇcýÿé¢ýÿÿD¶øéýÿÿL‰ÿL‰T$è¬cýÿL‹T$é6ýÿÿM‰ûHƒèE1ÿ»|A½ÙéuèÿÿL‰×è€cýÿéãüÿÿ1ɻyA½Ùénçÿÿ¾wºÙé½ãÿÿ»~A½Ù1ÉE1ÿéJçÿÿH‰ßE1ÿè:cýÿ¾Ïºáé›íÿÿL‰ÿè#cýÿé+ÿÿÿM‰ûHƒèE1ÿ»ÊA½áéñçÿÿ¾ÈºáéeíÿÿL‰÷èÍjýÿ…À…¬þÿÿH‹=®]'L‰öèödýÿI‰Çé§þÿÿH‹5S'H‹=X`'1Òè©hýÿI‰ÇH…Àt|H‰ÇèÉ9þÿIƒ/tTE1ÿ¾µºÜéíÿÿL‰ÿè‰býÿé%þÿÿI‹M‰ûE1ÿ»¥A½ÛHƒèéTçÿÿE¶íéõýÿÿ¾£ºÛé¿ìÿÿL‰ÿE1ÿèDbýÿ¾µºÜé¥ìÿÿ¾±ºÜé–ìÿÿfDAWAVAUI‰õATUSHì˜H‹U%H‹nH‹
X'H‰<$HÇD$pHÇD$xH‰„$€H‰œ$ˆH…Ò…
Hƒý„¥Hƒý„—Hƒý„íHƒýH¾:H
®:HMȝÀHƒì¶ÀUHT=LDH‹i%H5B=L
÷=H‹81Àè!jýÿX¾êHZH
W:ºsH=¯OE1ÿè?»ýÿHĘL‰ø[]A\A]A^A_Ãf.„H‹^8I‹E0H‰D$M‹e(I‹m HÇD$@ºH‰ßHÇD$HHÇD$PHÇD$XHÇD$`HÇD$hHÇD$pHƒEHƒH‹5¤Y'H‰\$8è:iýÿ…ÀˆÊ	H‹|$8„·H‹5 V'ºèiýÿA‰ŅÀˆ‹H‹|$8Hƒ/„äHÇD$8E…í…ªHD$PLt$HLl$@L‰öH‰ÂH‰D$L‰ïè˜eýÿL‹=™T'H‹=¢_'L‰þè‚aýÿH…À„ÉHƒH‰D$XH‹5AW'H‰ÇèqjýÿH‰D$`H…À„ãH‹|$XHƒ/„¼1ÀL‰æ¿L‹|$`HÇD$XèhýÿH…À„ž1ÒL‰ÿH‰ÆH‰D$èœeýÿH‹L$I‰ÇHƒ)„¢H‹|$XL‰|$8H…ÿtHƒ/„ÁL‹|$8HÇD$XM…ÿ„šH‹|$`Hƒ/„SHÇD$`H‹|$8Hƒ/„+HÇD$8H‹|$@H…ÿt
Hƒ/„ÎHÇD$@H‹|$HH…ÿt
Hƒ/„¡HÇD$HH‹|$PH…ÿt
Hƒ/„tH‹5­O'1ÒL‰çHÇD$PèÒhýÿI‰ÇH‰D$XH…À„ÉH;Ê%”ÀL;=%”ÂÂu
L;=ò%…ô¶ÀIƒ/„·HÇD$X…À….H¿ÿÿÿÿÿÿÿèO_ýÿI‰ÇH‰D$XH…À„ÖºH‰ÆL‰çèNhýÿI‰ÇH‰D$`H…À„H‹|$XHƒ/„öHÇD$XH‹|$`H;=)%”ÀH;=g%”ÂÂ…¼H;=M%„¯è’`ýÿA‰DžÀˆßH‹|$`Hƒ/„HÇD$`E…ÿ…æI‹D$ö€³„”'L‰çèŒ]ýÿH‰D$ Hƒ|$ ÿ„ëH‹|$L‰öL‰êèëbýÿL‹%\R'H‹=õ\'L‰æèÕ^ýÿH…À„ÜHƒH‰D$XH‹5TW'H‰ÇèÄgýÿH‰D$8H…À„¦H‹|$XHƒ/„H‰î¿1ÀL‹d$8HÇD$XèZeýÿI‰ÅH…À„Ž1ÒL‰çH‰ÆèñbýÿIƒmI‰Ä„ÃH‹|$XL‰d$`H…ÿtHƒ/„*L‹d$`HÇD$XH‹|$8M…ä„~Hƒ/„tHÇD$8H‹D$`HƒmH‰D$„FH‹5×Q'H‹|$HÇD$`èìfýÿH‰D$`H…À„vH‹5'M'H9ð„nH‹
‡
%H9H„ºH‰Çè@fýÿH‰D$8H…À„jH‹t$`Hƒ.„CHÇD$`H‹|$8H;=%”ÀH;=\%”ÂÂu
H;=F%…ð¶èHƒ/„sHÇD$8…í…ÒH‹5[N'H‹|$è1fýÿH‰D$8H…À„!H‹5tL'H‰ǺèŸeýÿH‹|$8H‰D$`H…À„Î Hƒ/„ªHÇD$8H‹|$`H;=}%”ÀH;=»
%”ÂÂ…(H;=¡
%„èæ]ýÿH‹|$`A‰ąÀˆÅ Hƒ/„¼HÇD$`H‹-ôO'H‹=Z'E…ä…´H‰îèd\ýÿH…À„'HƒH‰D$XH‹5ûT'H‰ÇèSeýÿH‰D$pH…À„ƒ'H‹|$XHƒ/„¥!H‹5‡K'H‹|$1ÒHÇD$XèªdýÿH‰D$XH…À„¢'H¿ÿÿÿÿÿÿÿA½òJèg[ýÿH‹|$8H‰D$hH…À„ƒ#H‹|$ºH‰ÆèbdýÿH‰D$8H…À„(H‹|$hHƒ/„8#H‹|$XH‹t$8HÇD$hA½öJèWZýÿH‹|$8H‰D$hH…À„##H‹|$XHƒ/„F#HÇD$XH‹|$8Hƒ/„$#H‹t$h¿1ÀHÇD$8H‹l$pèbýÿI‰ÄH…À„Ø)1ÒH‰ïH‰Æè¥_ýÿIƒ,$H‰Å„)#H‹|$8H‰l$`H…ÿt
Hƒ/„š$HÇD$8H‹|$hHƒ/„Á"Hƒ|$`H‹|$8HÇD$hA½K„e"H‹|$pHƒ/„¿"HÇD$pH‹|$`H;=B%@”ÅH;=%”À@èuH;=h%tè±[ýÿ…Àˆ)H‹|$`@•ÅHƒ/„i#HÇD$`@¶íéé@Hƒ/„îHÇD$8énøÿÿ„H‹	%H‰D$éœ÷ÿÿ€L‰ÿè@[ýÿ…ÀˆÈL‹|$XéõùÿÿfDèƒXýÿéøÿÿfDèsXýÿé‚ùÿÿfDècXýÿéUùÿÿfDèSXýÿé(ùÿÿfDD¶øé]úÿÿ€è3XýÿéúÿÿfDè#Xýÿé:øÿÿfDèXýÿéËøÿÿfDèXýÿ飸ÿÿfDH‰ÏèðWýÿéQøÿÿèãWýÿéÿÿÿfDL‰ÿ‰D$èÌWýÿ‹D$é4ùÿÿè»Wýÿé5øÿÿfDHƒý‡ùõÿÿI‰ÔHì?HcªHÐÿàH‹F8H‰„$ˆI‹E0H‰„$€I‹E(L‰çH‰D$xI‹E H‰D$pèÎYýÿH‰ÃHƒý„õ~fHƒý„
Hƒýu)H…Û~-H‹5ûL'L‰çèëVýÿH…À„™H‰„$ˆHƒëH…ۏ„H‹„$€H‹l$pL‹d$xH‹œ$ˆH‰D$éÞõÿÿH…íuÎéú€A½,IA¾ðE1äE1ÿfDH‹|$8H…ÿt
Hƒ/„¤H‹|$XH…ÿt
Hƒ/„ H‹|$`H…ÿt
Hƒ/„œH‹|$hH…ÿt
Hƒ/„HH‹|$pH…ÿt
Hƒ/„DH
Y/D‰òD‰îH=°DèC°ýÿM…ÿt
Iƒ/„\E1ÿM…ätIƒ,$„é
H…í„ÙôÿÿHƒm…ÎôÿÿH‰ïèVýÿéÁôÿÿ½H‹|$PH…ÿtHƒ/uèæUýÿHÇD$PH‹|$HH…ÿtHƒ/uèÈUýÿHÇD$HH‹|$@H…ÿtHƒ/uèªUýÿHÇD$@…í…H‹-jJ'H‹=U'H‰îèãVýÿI‰ÇH…À„ÇHƒH‰D$hH‹5WO'L‰ÿèÏ_ýÿI‰ÇH‰D$pH…À„îH‹|$hHƒ/„ßHÇD$h¿è\ýÿI‰ÇH‰D$hH…À„óH‹L$HƒH‹D$hH‰H èäWýÿI‰ÇH‰D$`H…À„õH‹-ÄI'H‹=]T'H‰îè=VýÿI‰ÇH…À„HƒH‰D$8H‹5áK'L‰ÿè)_ýÿI‰ÇH‰D$XH…À„OH‹|$8Hƒ/uè˜TýÿH‹T$XH‹5ôL'HÇD$8H‹|$`èùSýÿ…ÀˆŒH‹|$XHƒ/uèaTýÿH‹T$`H‹t$hHÇD$XH‹|$pè4ZýÿI‰ÇH‰D$XH…À„dH‹|$pHƒ/uè#TýÿHÇD$pH‹|$hHƒ/uè
TýÿHÇD$hH‹|$`Hƒ/uèñSýÿH‹L$H‹l$XHÇD$`H‹H‰D$HƒèH‰uH‰ÏèÅSýÿH‹5NF'H‰ïHÇD$Xè^ýÿI‰ÇH‰D$XH…À„á
H‹@ö€³„wH‹5Ü%1ÒL‰ÿè
\ýÿ…Àˆ¢ƒø„9L‰ÿè±UýÿH‰D$Hƒ|$ÿ„€H‹|$XHƒ/„9HÇD$XH;-%…¯H‹EHƒ|$H‰D$„H¾ÿÿÿÿÿÿÿH‹E1Û1ÀëfH‹L$H‹ÁH‰ñL)ÙH9ʏ8IÓHƒÀH;D$uÚIƒûÿ„ H‹5ÙH'ºH‰ßL‰\$(èG[ýÿ…Àˆ'L‹\$(t
Iûÿɚ;H‹5„K'ºH‰ßL‰\$(è[ýÿ…ÀˆpL‹\$(tH¿ÿÿÿÿÿÿÿI9ûýL9\$ îH‹D$H;™%„L‹%G'H‹=­Q'L‰\$(L‰æèˆSýÿL‹\$(H…ÀI‰Ç„”HƒH‰D$XH‹5ßH'L‰ÿL‰\$(èj\ýÿI‰ÇH‰D$hH…À„ÿH‹|$XL‹\$(Hƒ/„-H‹t$1?L‰\$(HÇD$XL‹d$hèñYýÿL‹\$(H…ÀI‰Å„Û1ÒH‰ÆL‰çL‰\$(è~WýÿIƒmL‹\$(I‰Ç„%H‹|$XL‰|$`H…ÿtHƒ/„¡L‹|$`HÇD$XM…ÿ„èH‹|$hHƒ/„øHÇD$hH‹|$`H;=7%”ÀH;=u%”ÂÂ…IH;=[%„<L‰\$(è›SýÿA‰ąÀˆFH‹|$`L‹\$(Hƒ/„>HÇD$`E…ä…¿H‹D$H‹
6%H9H…N HƒH‰D$hH‹|$L‰\$èüOýÿI‰ÇH‰D$`H…À„ ¿èaWýÿI‰ÇH‰D$XH…À„å H‹D$`H‹|$hL‰þHÇD$`I‰G èQVýÿI‰ÇH‰D$`H…À„á H‹|$hL‹\$Hƒ/„)HÇD$hH‹|$XHƒ/„çHÇD$XL‹|$`HÇD$`L‹-ÎD'H‹=gO'L‰\$L‰îèBQýÿL‹\$H…ÀI‰Ä„7HƒH‰D$`H‹5Á@'L‰çL‰\$è$ZýÿH‰D$XH…À„«H‹|$`L‹\$Hƒ/„b¿L‰\$HÇD$`èZVýÿI‰ÄH‰D$`H…À„2IƒH‹D$`L‰x è7RýÿI‰ÄH‰D$hH…À„ÒL‹-D'H‹=°N'L‰îèPýÿL‹\$H…ÀI‰Ä„ÞHƒH‰D$pH‹5/F'L‰çL‰\$èrYýÿI‰ÄH‰D$8H…À„zH‹|$pL‹\$Hƒ/„H‹T$8H‹|$hL‰\$HÇD$pH‹5&G'è9Nýÿ…Àˆ)H‹|$8L‹\$Hƒ/„H‹T$hH‹t$`L‰\$HÇD$8H‹|$XèkTýÿI‰ÄH‰D$8H…À„GH‹|$XL‹\$Hƒ/„
HÇD$XH‹|$`Hƒ/„ÞHÇD$`H‹|$hHƒ/„éHƒ|$L‹d$8HÇD$hHÇD$8„¨H‹5Œ@'L‰çL‰\$è_XýÿH‰D$8H…À„çH‹|$è7MýÿH‰D$hH…À„¾H‹|$8H‰ÆèüNýÿH‰D$`H…À„!H‹|$8L‹\$Hƒ/„HÇD$8H‹|$hHƒ/„ÔHÇD$hL‹l$`I‹Eö€³„5$H‹5´ÿ$1ÒL‰ïL‰\$èÝUýÿL‹\$…Àˆ÷ ƒø„Ó L‰ïL‰\$èzOýÿL‹\$I‰ÅIƒýÿ„Ï H‹|$`Hƒ/„GHÇD$`L;%Iÿ$…ðH‹5ÜE'ºH‰ßL‰\$M‹t$èeUýÿ…ÀˆI H‹$H‹5ÂD'L‹\$H‹»Ø„ÃèWýÿH‰D$@H…À„–"H‹»ØH‹5·D'èúVýÿH‰D$hH…À„C!H‹5ÕK'1ÒH‰ÇHÇD$8èRRýÿH‹|$8L‹\$H‰D$`H…ÿt
Hƒ/„ÊHÇD$8Hƒ|$`„^"H‹|$hHƒ/„ÉHÇD$hH‹|$`Hƒ/„L‰\$HÇD$`èµPýÿH‹<$AQH‰ÃM‰éAVL‹\$HƒÇ(L‹D$0H‹L$(H‹T$ L‰ÞL‰\$èÒKýÿH‰ßA‰ÅèçOýÿH‹|$PAZA[L‹$H…ÿt@H‹5†;'1Òè‡QýÿH‹|$@L‹$H‰ÃHƒ/„pHÇD$@H…Û„#Hƒ+„Ÿ!AƒÅ„3Iƒ$L‰ãIƒ/twIƒ,$M‰ç…'õÿÿ€L‰çè0Kýÿé
õÿÿè#Kýÿé®ôÿÿfDèKýÿé²ôÿÿfDèKýÿéRôÿÿfDèóJýÿéVôÿÿfDèãJýÿéZôÿÿfD1ÛL‰ÿI‰ßèËJýÿé•ôÿÿfDè»JýÿéÞìÿÿfDH‹5:'H‹=:H'1Òè‹PýÿI‰ÇH‰D$8H…À„§
H‰Çè¢!þÿH‹|$8Hƒ/„sHÇD$8A½DIE1äE1ÿA¾ñé§óÿÿèûLýÿL‰ÿèӢýÿH‰D$XH…À…%êÿÿA½fIH‹|$8H…ÿt
Hƒ/„›HÇD$8H‹|$XH…ÿt
Hƒ/„nHÇD$XH‹|$`H…ÿt
Hƒ/„AH‹=bG'A¾ôHÇD$`è†Lýÿ…À„~ºôD‰îH=8H
¬"裣ýÿHT$XHt$`H|$8蟜ýÿ…ÀˆÿH‹5è8'H‹=G'1ÒèbOýÿH‰ÃH…À„ÍH‰ÇA½§IA¾öèr þÿHƒ+uH‰ßèDIýÿ@H‹T$PH‹t$HE1äE1ÿH‹|$@èFOýÿéaòÿÿèIýÿéßëÿÿfDA½hIéÖþÿÿDè›KýÿH‹|$8‰ŅÀ‰ÿìÿÿH‹l$A½UJA¾H…ÿtHƒ/uèÈHýÿHÇD$8H‰l$f.„H‹|$hH…ÿt
Hƒ/„<HÇD$hH‹|$pH…ÿt
Hƒ/„/HÇD$pH‹|$XH…ÿt
Hƒ/„"HÇD$XH‹|$`H…ÿt
Hƒ/„ÕHÇD$`H‹=ÍE'èðJýÿ…À„´D‰òD‰îH=ƒ6H
!è¢ýÿHT$hHt$pH|$`è›ýÿ…ÀˆsH‹|$`H…ÿt
Hƒ/„ÇHÇD$`H‹|$pH…ÿt
Hƒ/„ŠHÇD$pH‹|$hH…ÿt
Hƒ/„}H‹T$@H‹t$HHÇD$hH‹|$Pè¨MýÿH¿ÿÿÿÿÿÿÿèYHýÿI‰ÇH‰D$hH…À„H‹=y@'H‰Æè™QýÿI‰ÇH‰D$pH…À„4H‹|$hHƒ/„$
H‹t$p¿1ÀHÇD$hH‹µD'èXOýÿI‰ÇH…À„æ1ÒH‰ÆH‰ßèïLýÿIƒ/I‰Ä„L‰d$hM…ä„QH‹|$pHƒ/„ì
HÇD$pH‹|$hèâþÿH‹|$hHƒ/„À
HÇD$hH‹l$E1äE1ÿA½“KA¾éÎïÿÿfDA½—IA¾õé7ýÿÿ€H‹F L‰çH‰D$pèÏHýÿH‰ÃH‹5%;'L‰çè
FýÿH‰D$xH…À„—
HƒëH…ÛŽ%ïÿÿH‹5»8'L‰çèãEýÿH…À„àîÿÿH‰„$€HƒëéÊîÿÿf„èûEýÿéƒûÿÿfDL‰çèXHýÿH‰ÃH‹5þ>'L‰çHƒëè’EýÿH‰D$pH…À…hÿÿÿI‹méäÿÿA½ÇKA¾€H‹|$8E1äH…ÿ…áîÿÿéúîÿÿA½sJA¾éÑüÿÿA½?KA¾	H‹T$@H‹t$HE1äE1ÿH‹|$PèzKýÿH‹l$éîÿÿH‰ïèHEýÿé­èÿÿè;Eýÿé‚èÿÿfDL‰ïè(Eýÿé0èÿÿHÇD$8H‹|$XH…ÿ…~åÿÿA½wIéûÿÿfDA½ÂIA¾øé?ÿÿÿ€H‰÷èØDýÿé°èÿÿA½ÃIA¾øE1äE1ÿéùíÿÿf„è«DýÿéÌçÿÿfDè›DýÿéµúÿÿfDè‹DýÿéˆúÿÿfDè{Dýÿé[úÿÿfDèkDýÿéƒèÿÿfDè[DýÿéïÿÿfDH‹5©3'H‹=ÚA'1Òè+JýÿI‰ÇH‰D$XH…À„XH‰ÇèBþÿH‹|$XHƒ/„A½ÒIA¾ùE1ÿHÇD$XéNþÿÿfDA½2IA¾ðE1äE1ÿéíÿÿf„HÇD$8é¹þÿÿfH‰ÇèHEýÿf.xDz„XH‹±ö$HƒH‹t$`H‰D$8éaçÿÿfDA½äIA¾úéÏýÿÿ€èkCýÿé!ûÿÿfDè[CýÿéºúÿÿfDèKCýÿéÇúÿÿfDè;CýÿéÔúÿÿfDD¶àéñçÿÿ€E1äA½æIA¾úéLìÿÿ@A½èIA¾úE1äE1ÿé1ìÿÿH‹Aõ$HƒéHÿÿÿH¿ÿÿÿÿÿÿÿè±CýÿI‰ÇH‰D$`H…À„H‹=i7'H‰ÆèñLýÿI‰ÇH‰D$XH…À„/H‹|$`Hƒ/„ØH‹t$X¿1ÀHÇD$`H‹
@'è°JýÿI‰ÇH…À„
1ÒH‰ÆH‰ßèGHýÿIƒ/I‰Ä„·L‰d$`M…ä„kH‹|$XHƒ/„HÇD$XH‹|$`è:þÿH‹|$`Hƒ/„dHÇD$`A½ýIE1äE1ÿA¾ûé+ëÿÿH;D$tL‰ÿè¼Iýÿ…À„èÏJýÿH…À„(Iƒ/uL‰ÿè¸Aýÿ„è«JýÿH…À…ÒHÇD$ ÿÿÿÿéùãÿÿ@è;DýÿL‰çèšýÿH‰D$XH…À…äÿÿH‹|$8A½2JA¾釸ÿÿ€H‰îè°BýÿH…À„ŽHƒH‰D$8H‹58'H‰ÇèŸKýÿH‹|$8H‰D$XH…À„Hƒ/„ŒH‹5s9'H‹|$HÇD$8èhKýÿH‰D$8H…À„H‹-»5'H‹=T@'H‰îè4BýÿI‰ÄH…À„€HƒH‹5Í7'L‰çè%KýÿH‰D$hH…À„
Iƒ,$„…¿èrGýÿH‰D$pH…À„Æ
H‹T$8H‹|$XH‰ÆHÇD$8H‰P H‹T$hHÇD$hH‰P(1ÒèAFýÿH‰D$`H…À„ 
H‹|$pHƒ/„¹HÇD$pH‹|$XHƒ/„«HÇD$XH‹|$`H;=ó$”ÀH;=Uò$”ÂÂ…CH;=;ò$„6è€BýÿH‹|$`‰ŅÀˆÉ
Hƒ/„ÌHÇD$`…í„¶éÿÿH‹-‡4'H‹= ?'é—äÿÿH‰l$A½4JA¾éÚöÿÿf.„HÇD$`H‹|$XH…ÿ……âÿÿH‹|$8A½CJA¾é{öÿÿH‹¡ñ$HƒH‹t$`é£ûÿÿè3?ýÿél÷ÿÿfDè#?ýÿéy÷ÿÿfDè?ýÿé/÷ÿÿfDè?ýÿé½ëÿÿfDH‹|$8H‹l$A½PJA¾éöÿÿDèÓ>ýÿéLãÿÿfDA½RJA¾éöÿÿ€è[AýÿH‰ïè3—ýÿI‰ÇH‰D$hH…À…$éÿÿE1äH‹l$A½¥KA¾é¹çÿÿf„èk>ýÿé:ãÿÿfDE1äH‹l$A½§KA¾é‡çÿÿ€A½CJA¾éWõÿÿ€E1äH‹l$A½ªKA¾éOçÿÿ€è>ýÿéëùÿÿE1äH‹l$A½¯KA¾é%çÿÿH‹l$A½¶KE1äE1ÿA¾é	çÿÿD¶àéÚìÿÿèk@ýÿH‰ïèC–ýÿI‰ÇH‰D$8H…À…ÚèÿÿE1äH‹l$A½±KA¾éÝæÿÿHT$pH‰éL‰çLFH5Ö&èKÃýÿ…À‰Væÿÿ¾ÕHéÿÛÿÿH‹l$A½³KA¾é›÷ÿÿH‹|$L‰\$è”<ýÿI‰ÇH‰D$XH…À„›¿èùCýÿI‰ÇH‰D$`H…À„öH‹D$XL‹\$HÇD$XHÇD$`I‰G éæìÿÿE1äA½@IA¾ñé#æÿÿH‹l$A½¸KA¾é÷ÿÿè´<ýÿéúÿÿ¶èéÖüÿÿè¢<ýÿé’úÿÿè˜<ýÿéfúÿÿL‰ÿè‹<ýÿé<úÿÿè<ýÿéjûÿÿL‹=u;'M…ÿ„!
H‹}I9ÿ„4éÿÿL‰þè·Eýÿ…À…$éÿÿH‹EI‹O E1äH5#A½ÔKA¾E1ÿH‹P H‹í$H‹81ÀèÙDýÿéTåÿÿH‹
¥í$H‰L$H9ÈtL‰ÿèÛCýÿ…À„ãèîDýÿH…ÀuH‹Òì$H5ëH‹8èC@ýÿèËDýÿH…À…²HÇD$ÿÿÿÿédèÿÿ@H¿ÿÿÿÿÿÿÿè<ýÿI‰ÇH‰D$XH…À„oH‹=q-'H‰ÆèÁEýÿI‰ÇH‰D$`H…À„‹H‹|$XHƒ/„wH‹t$`¿1ÀHÇD$XL‹%Ý8'è€CýÿH‰ÃH…À„w1ÒH‰ÆL‰çèAýÿHƒ+I‰Ç„OL‰|$XM…ÿ„ H‹|$`Hƒ/„(HÇD$`H‹|$Xè
þÿH‹|$XHƒ/„üA½LA¾E1ÿHÇD$XéõÿÿH‹l$A½uJA¾éÐñÿÿè£:ýÿL‹\$(éÄèÿÿA½£IA¾öéHñÿÿA½LA¾E1äE1ÿé±ãÿÿH‹|$8H‹l$A½wJA¾é~ñÿÿL‰ïèN:ýÿL‹\$(éÉèÿÿL‰\$(è::ýÿL‹\$(éôèÿÿH‹!ì$H5ªH‹8èŠ>ýÿéEþÿÿè:ýÿéÒòÿÿH‹|$L‰\$(è\9ýÿI‰ÇH‰D$`H…À„ò
¿èÁ@ýÿI‰ÇH‰D$hH…À„)H‹D$L‹\$(HƒI‰G H‹D$`HÇD$hI‰G(HÇD$`é¡éÿÿL‰\$(è”9ýÿL‹\$(é®èÿÿH‹5Û('H‹=7'1Òèe?ýÿI‰ÇH‰D$XH…À„7H‰Çè|þÿH‹|$XHƒ/„IA½+LA¾E1ÿHÇD$Xéˆóÿÿè+9ýÿL‹\$ééÿÿè9ýÿéQÞÿÿL‰çè9ýÿénøÿÿA½fLA¾%E1äE1ÿé3âÿÿèî8ýÿé6òÿÿèä8ýÿé
òÿÿL‰ÿè×8ýÿéàñÿÿA½ÎIA¾ùéóÿÿL‰\$(è·8ýÿL‹|$`L‹\$(éKçÿÿHƒìH‹é$H5fL
jA¸H
“HHH‹81Àè/Aýÿ[¾ÅH]é	×ÿÿè>9ýÿI‰ÇH‰D$XH…À„•
H‹=Þ2'H‰Æè~BýÿI‰ÇH‰D$`H…À„a
H‹|$XHƒ/„ñH‹t$`¿1ÀHÇD$XL‹%š5'è=@ýÿH‰ÃH…À„
1ÒH‰ÆL‰çèÔ=ýÿHƒ+I‰Ç„L‰|$XM…ÿ„¦
H‹|$`Hƒ/„áHÇD$`H‹|$XèÇþÿH‹|$XHƒ/„µA½ŠLA¾&E1ÿHÇD$XéÓñÿÿèv7ýÿé=÷ÿÿèl7ýÿéK÷ÿÿH‹5°&'H‹=ñ4'1ÒèB=ýÿI‰ÇH‰D$XH…À„%	H‰ÇèYþÿH‹|$XHƒ/„˜A½ªLA¾)E1ÿHÇD$Xéeñÿÿè7ýÿé¾ÜÿÿE1Ûé+äÿÿèö6ýÿé*÷ÿÿH…ÿ„\
H‹l$A¾éîÿÿèÓ6ýÿL‹\$éìçÿÿèÄ6ýÿéÒÜÿÿèº6ýÿé°Üÿÿè°6ýÿé5ÝÿÿE1äA½óIA¾ûé×ßÿÿè’6ýÿL‹\$éëçÿÿèƒ6ýÿé7ÝÿÿL‰çèv6ýÿéÊÜÿÿA½õIA¾ûé¸ðÿÿL‰\$èV6ýÿL‹\$éèÿÿèG6ýÿL‹\$éççÿÿL‰\$è36ýÿL‹\$éèÿÿf„H‹
±ç$H‰L$H9ÈtL‰çèç=ýÿ…À„_èú>ýÿH…À…AôÿÿH‹Úæ$H5óH‹8èK:ýÿé&ôÿÿfDA½JA¾üE1äE1ÿéùÞÿÿèd8ýÿH‰ïè<ŽýÿH‰D$8H…À…`ôÿÿA½~JA¾éÝìÿÿèˆ5ýÿéÜÿÿL‰\$(è)8ýÿL‰çèŽýÿL‹\$(H…ÀI‰ÇH‰D$X…MãÿÿA½âLA¾.é¢ïÿÿE1äA½øIHÇD$`A¾ûémÞÿÿL‰\$è#5ýÿL‹\$éåÿÿH‹l$A½€JA¾é+ìÿÿèþ4ýÿL‹\$éÈäÿÿèï4ýÿé\ÛÿÿE1äA½äLA¾.éÞÿÿA½ƒJA¾éìÿÿHÇD$`H‹|$XH…ÿ…BãÿÿE1ÿA½óLA¾.éòîÿÿL‰\$è@7ýÿL‰ïèýÿL‹\$H…ÀI‰ÄH‰D$`…ªäÿÿA½9MA¾2é¡ÝÿÿE1äH‹l$A½yKA¾éˆÝÿÿèó6ýÿH‰ïèˌýÿI‰ÄH…À…kóÿÿH‹|$8H‹l$A½JA¾é<ëÿÿE1äH‹l$A½ƒKA¾
é;ÝÿÿA½;MA¾2éBîÿÿèå3ýÿéøÿÿè‹6ýÿH‰ïècŒýÿH‰D$XH…À…ÓØÿÿH‹|$8H‹l$A½ìJA¾éÒêÿÿA½öLA¾.E1äE1ÿéÓÜÿÿH‹|$8H…ÿtHƒ/„é	HÇD$8Iƒ,$A¾A½J…¯êÿÿL‰çèW3ýÿé¢êÿÿH‹|$8H‹l$A½îJA¾é_êÿÿA½>MA¾2éfÜÿÿE1äH‹l$HÇD$hA½ŽKA¾éDÜÿÿèÿ2ýÿé­ùÿÿH‹|$8H‹l$A½ñJA¾éêÿÿèÚ2ýÿéú÷ÿÿèÐ2ýÿéÎ÷ÿÿH‰ßèÃ2ýÿé¤÷ÿÿH‹|$8H‹l$A½³JA¾éËéÿÿH‹|$8H‹l$A½¾JA¾é°éÿÿA½JMA¾2E1äé´ÛÿÿA½CMA¾2é£ÛÿÿA½óLA¾.éªìÿÿA½ôJA¾é‘éÿÿL‰\$A¾2èá4ýÿL‰ïA½EM賊ýÿL‹\$H…ÀI‰ÄH‰D$p„MÛÿÿéòâÿÿH‹|$8H‹l$A½ËJA¾ééÿÿL‰\$èS<ýÿH‰D$@H…À„bH‹$H‹5ò)'H‹¸Øè.<ýÿH‰D$hH…À„žH‹5	1'1ÒH‰ÇHÇD$8è†7ýÿH‹|$8L‹\$H‰D$`H…ÿt
Hƒ/„HÇD$8Hƒ|$`„H‹|$hHƒ/„/HÇD$hH‹|$`Hƒ/„L‰\$HÇD$`èé5ýÿH‹<$M‰éQH‰ÃAVL‹\$HƒÇ(L‹D$0H‹L$(H‹T$ L‰ÞèŒ:ýÿH‰ßè$5ýÿH‹|$P^AXH…ÿ„ˆåÿÿH‹5Ä '1ÒèÅ6ýÿH‹|$@H‰D$HHƒ/„~HÇD$@H‹|$HH…ÿ„Hƒ/„ÅHÇD$Hé7åÿÿè0ýÿé^ùÿÿA½ÇLA¾-éÏêÿÿA½GMA¾2éºÙÿÿH‹|$L‰\$(è×9ýÿL‹\$(H…ÀI‰ÇH‰D$h…–ßÿÿE1äA½ MA¾1émÙÿÿè(0ýÿéøÿÿA½LMA¾2éfÙÿÿE1äA½ÉLA¾-é>ÙÿÿE1äA½"MA¾1é*Ùÿÿ1íé<ÖÿÿèÞ/ýÿéAøÿÿèÔ/ýÿéøÿÿH‰ßèÇ/ýÿéë÷ÿÿL‰\$è¸/ýÿL‹\$é¥âÿÿL‰\$è¤/ýÿL‹\$éâÿÿè•/ýÿL‹\$éñáÿÿA½$MA¾1éÒéÿÿH‹|$8H‹l$A½
KA¾釿ÿÿE1äA½)MA¾1鋨ÿÿH‹$â$H5	E1äA½ÔKA¾H‹8è–3ýÿéaØÿÿA½ñKA¾éhéÿÿA½ÉKA¾E1äE1ÿé9ØÿÿE1äA½MA¾/é%ØÿÿE1äA½óKA¾éØÿÿE1ÿA½øIA¾ûéý×ÿÿE1ÿA½þKHÇD$XA¾éøèÿÿL‰çèX2ýÿI‰ÇH…À„øÿÿH‹@L‹%Qà$L9àu5@ö€³„€ìÿÿL‰ÿèC.ýÿH‰D$ Iƒ/…­ÐÿÿL‰ÿèL.ýÿé ÐÿÿL‰ÿ蟳ýÿI‰ÇH…À„ƒìÿÿH‹@ëµA½'LA¾étèÿÿA½¦LA¾)écèÿÿA½|MA¾8é:×ÿÿA½zMA¾8é=×ÿÿE1ÿA½…LHÇD$XA¾&é$èÿÿE1äA½zLA¾'éøÖÿÿA½xLA¾'éÿçÿÿE1äA½MA¾/éÓÖÿÿE1ÿH‹l$A½ŽKA¾éºÖÿÿèu-ýÿL‹\$é'áÿÿL‰\$èa-ýÿL‹\$éOáÿÿL‰\$èM-ýÿL‹\$é#áÿÿè>-ýÿéxüÿÿL‰\$è/-ýÿL‹\$ééûÿÿL‰\$è-ýÿL‹\$é½ûÿÿè-ýÿL‹$é‚áÿÿL‹5ü+'M…ö„¬I‹|$I9þ„òßÿÿL‰öL‰\$è86ýÿL‹\$…À…ØßÿÿI‹D$I‹N H5A½MA¾9H‹P H‹”Ý$H‹81ÀèZ5ýÿéÕÕÿÿA½~MA¾8éÄÕÿÿA½—MA¾;é³Õÿÿèn,ýÿL‹\$éìúÿÿH‹UÞ$H5ÞH‹8è¾0ýÿL‹\$L‰\$è?5ýÿH…À…‡IƒÍÿL‹\$éßÿÿL‰ßè-ýÿH‰D$`H…À„ÏH‹=ƒ''H‰ÆèC6ýÿH‰D$hH…À„¡H‹|$`Hƒ/„ˆH‹t$hH‹=J)'HÇD$`èìxýÿH‰D$`H…À„OH‹|$hHƒ/„6HÇD$hH‹|$`è¼þÿH‹|$`Hƒ/„
HÇD$`A½NA¾Aé³ÔÿÿA½6NA¾Eé¢ÔÿÿA½FNH‹|$@Hƒ/„WHÇD$@A¾EéyÔÿÿA½¤MH‹|$@Hƒ/„sHÇD$@A¾<éPÔÿÿL‰ÿèÈ.ýÿI‰ÅH…À„	ïÿÿL‹%ÅÜ$L9`uPI‹Eö€³tXH‹53Ý$1ÒL‰ïèa3ýÿ…Àxzƒø„‰L‰ïè-ýÿH‰D$Iƒm…P×ÿÿL‰ïè¤*ýÿéC×ÿÿH‰Çè÷¯ýÿI‰ÅH…Àu éºîÿÿH;D$tL‰ïè[2ýÿ…À„òèn3ýÿH…ÀuH‹RÛ$H5kH‹8èÃ.ýÿIƒm…xîÿÿL‰ïè@*ýÿékîÿÿH‹,Ü$H5µH‹8è•.ýÿëÐA½…LA¾&éjäÿÿA½8Né«þÿÿA½¢MA¾<é6Óÿÿèñ)ýÿéŸþÿÿA½þKA¾é3äÿÿèÖ)ýÿé1ùÿÿA½²Mé“þÿÿH‰ßL‰$èº)ýÿL‹$éLÞÿÿè¬)ýÿéƒþÿÿA½zNA¾EéÖÒÿÿè‘)ýÿé
öÿÿA¾éåàÿÿL‰ïè9-ýÿI‰ÆH…À„úþÿÿL9`u$L‰÷è¿6þÿIƒ.H‰D$…™þÿÿL‰÷èH)ýÿéŒþÿÿH‰Ç蛮ýÿI‰ÆH…ÀuÌéÛþÿÿH;¿Ú$tL‰ïL‰\$èø0ýÿL‹\$…À„ëL‰\$è2ýÿL‹\$H…À…ªüÿÿH‹ÜÙ$H5õH‹8èM-ýÿL‹\$éŠüÿÿL‰ÿè‹,ýÿH‰ÁH…À„ëæÿÿL9`u;H‹AH‰ÏH‰L$ö€³t;è(ýÿH‹L$H‰D$ Hƒ)…-úÿÿH‰Ïèƒ(ýÿé úÿÿH‰Çè֭ýÿH‰ÁH…Àuµé£æÿÿè´!þÿH‹L$H‰D$ ëÃA½æMA¾<é‡ÑÿÿH‹ Û$H5‹A½MA¾9H‹8è•,ýÿé`ÑÿÿL‰ïèØ+ýÿL‹\$H…ÀI‰Æ„üþÿÿH‹ÐÙ$I9Fu1L‰÷L‰\$èM5þÿIƒ.L‹\$I‰Å…¹ÚÿÿL‰÷èÓ'ýÿL‹\$é§ÚÿÿL‰÷è!­ýÿL‹\$H…ÀI‰ÆuºéfûÿÿA½‚MA¾8éÞÐÿÿH‹‡Ø$H5 H‹8èø+ýÿé½åÿÿè~'ýÿéìûÿÿèt'ýÿéÀûÿÿA½NA¾AéžÐÿÿèY'ýÿénûÿÿA½NA¾CéƒÐÿÿA½NA¾CérÐÿÿfAWAVAUI‰ýATUH‰õSHìˆL‹5Ú'H‹^HÇD$pL‰t$xH…Ò…¿Hƒû„¡Hƒû„“H…ÛHõÿH
åÿHOÈŸÀHP¶ÀL
þLOÊL@HƒìH‹—×$SHŠH5hH‹81ÀèN/ýÿX¾SZH
„ÿºH=E1äèl€ýÿHĈL‰à[]A\A]A^A_ÀL‹v(H‹] HÇD$HH‰ßHÇD$PHÇD$XHÇD$`HÇD$hHÇD$pHƒIƒèÒ)ýÿH‰D$Hƒøÿ„cH‹-Ì'H‹=]%'H‰îè='ýÿI‰ÄH…À„qHƒH‹-ž'H‹=7%'H‰îè'ýÿH‰ÁH…À„“HƒH‰D$PH‹5ã'H‰Ïè0ýÿH‰ÁH‰D$XH…À„H‹|$PHƒ/„[H‰޿1ÀH‹l$XHÇD$Pè–-ýÿI‰ÇH…À„â1ÒH‰ÆH‰ïè-+ýÿIƒ/H‰Á„H‹|$PH…ÿt
Hƒ/„ìHÇD$PH…É„ÁH‹|$XHƒ/„{¿H‰L$HÇD$XèÃ+ýÿH‹L$H…ÀH‰D$P„àH‹T$XH…Òt
H‰P HÇD$XIƒ1ÒH‰ÆL‰çL‰p H‰H(è*ýÿH‰D$HH…À„"H‹|$PHƒ/„;HÇD$PIƒ,$„H‹D$HIƒ.H‰D$„óH‹{H‹5P#'HÇD$HH9÷„nè™-ýÿ…ÀtlH‹5v'H‰ßè–.ýÿH‰ÅH‰D$PH…À„L‹5×$L‹=_Ö$L9ð”ÀL9ý”ÂÂu
H;-@Ö$…ZD¶àHƒm„ÃHÇD$PE…ä…™H‹5Š'H9t$„H‹D$H‹ÛÔ$H9P„¡H‹|$ºè’-ýÿH‰ÅH‰D$XH…À„$L‹5ŠÖ$L9ð”ÂH;ÅÕ$”ÁD¶âÑuH;«Õ$tH‰Çèñ%ýÿA‰ąÀˆ¢H‹|$XHƒ/„×HÇD$XE…ä…I‹½ØH‹5'è‚-ýÿH‰ÅH…À„‘I‹½ØH‹5 'èc-ýÿH‰D$HH…À„¨H‹5>"'H‰Ç1ÒHÇD$Pè»(ýÿH‹|$PH‰D$XH…ÿtHƒ/„H‹D$XHÇD$PH…À„f H‹|$HHƒ/„HÇD$HH‹|$XHƒ/„ôHT$pHt$hHÇD$XH|$`è·'ýÿL‹d$IE(H‰D$IƒìM…äŽVL‰t$H‹|$L‰æèú)ýÿH‰ßI‰Åè*ýÿ…À„çL‰îH‰ßè,"ýÿH‰D$XH…À„ÿ$H‰ßèæ)ýÿ…À„6L‰æH‰ßè"ýÿH‰D$HH…À„|H‰ßL‹|$Xè¸)ýÿ…ÀtH‹Cö€³ „;L‰çèË*ýÿI‰ÆH…À„
L‰úH‰ÆH‰ßèA*ýÿIƒ.A‰Ç„üE…ÿˆæH‹|$XHƒ/„$H‰ßL‹|$HHÇD$XèF)ýÿ…ÀtH‹Cö€³ „L‰ïèY*ýÿI‰ÅH…À„©%L‰úH‰ÆH‰ßèÏ)ýÿIƒmA‰Ç„ÁH‹|$HE…ÿˆõHƒ/„9HÇD$HIƒì…¯þÿÿH‹|$`H…ÿt
Hƒ/„c%HÇD$`H‹|$hH…ÿt
Hƒ/„P%HÇD$hH‹|$pH…ÿt
Hƒ/„=%H‹5y'1ÒH‰ïHÇD$pèn&ýÿH‰D$pHƒm„%H‹l$pH…턊&Hƒm„%L‹%žÒ$L‹t$HÇD$pIƒ$éÒfDH‰L$è& ýÿH‹L$éûÿÿ@èÃ"ýÿH‰ïè›xýÿH‰ÁH‰D$PH…À…XúÿÿA½MSA¿AH‹|$H1íH…ÿtHƒ/„ÐM…ätIƒ,$„ØH…Ét
Hƒ)„	H‹|$PH…ÿt
Hƒ/„ÕH‹|$XH…ÿt
Hƒ/„ÑH
ŽøD‰úD‰îE1äH="èuyýÿH…ítHƒmt1H…ÛtHƒ+t6M…ö„éøÿÿIƒ.…ßøÿÿL‰÷èCýÿéÒøÿÿfDH‰ïè0ýÿëÅfDH‰ßè ýÿëÀfDèýÿé›ùÿÿfDH‰L$èþýÿH‹L$éÿÿÿ@L‰çH‰L$èãýÿH‹L$éÿÿÿf„èËýÿé!ÿÿÿfDè»ýÿé%ÿÿÿfDH‰Ïè¨ýÿéêþÿÿL‰ÿH‰D$è“ýÿH‹L$éYùÿÿf„H‰L$èvýÿH‹L$éqùÿÿ@L‰÷è`ýÿéúÿÿL‰çèPýÿéÜùÿÿèCýÿé»ùÿÿfDI‰ÔHƒû„3Hƒû„aH…Û…5÷ÿÿH‰×è€ ýÿH‹5'L‰çI‰Æè¾ýÿIƒîH‰D$pH…À„†M…ö»H‹\$pL‹t$xéŒ÷ÿÿ@H‹5'H‰ßè1(ýÿH‰D$HH…À„ÔH‹5l'H9ð„sH‹ÌÎ$H9P„:ºH‰Çè…'ýÿI‰ÄH…À„gH‹t$HL‹5}Ð$H‹M9ô”ÁHPÿ¶éH‰H…Ò„yHÇD$HL;%™Ï$”ÂL;%‡Ï$”ÀÂu„ÉuL‰çèÄýÿ‰ŅÀˆ}Iƒ,$„·…턯
H‹5'H‰ßèh'ýÿI‰ÄH…À„ÖL9ð@”ÅH;6Ï$”À@è…šL;%Ï$„L‰çè]ýÿ‰ŅÀˆ„Iƒ,$„…í„H
H‹éÎ$H‰D$ H9Ã…ËH‹CH‹5ˆ'H‰ßH‰D$èã&ýÿI‰ÄH…À„H‰ÇèO$ýÿ…À„—1öL‰çèmýÿH‰D$HH…À„âIƒ,$„\H‹l$HH‹Eö€³„¦H‰ïèöýÿI‰ÇIƒÿÿ„H‹|$HHƒ/„2H‹5['H‰ßHÇD$HèR&ýÿH‰D$HH…À„„H‹5'H‰Çè5&ýÿH‹|$HH‰ÅH…À„ÔHƒ/„rHÇD$HH‹Eö€³„}H‰ïèhýÿI‰ÆIƒþÿ„‚Hƒm„HH‹-A'H‹=Ú'H‰îèºýÿI‰ÄH…À„€HƒH‹5‹'L‰çè«%ýÿH‰D$HH…À„8Iƒ,$„ºL‰÷èúýÿI‰ÄH…À„‰¿èä!ýÿH‰ÁH‰D$PH…À„´L‰` èÊýÿI‰ÄH…À„PH‹-¯'H‹=H'H‰îè(ýÿH‰ÁH…À„éHƒH‹5É'H‰ÏH‰L$(è%ýÿH‹L$(H…ÀH‰D$X„MHƒ)„·
H‹T$XH‹5ã'L‰çèóýÿ…ÀˆmH‹|$XHƒ/„LH‹t$PH‹|$HL‰âHÇD$Xè1 ýÿH‰ÁH‰D$XH…À„WH‹|$HHƒ/„ñHÇD$HH‹|$PHƒ/„ùHÇD$PIƒ,$„ÕH‹l$XHÇD$XH;l$ …H‹EI‹½ØH‹5Ê'H‰D$0è0$ýÿH‰D$(H…À„bI‹½ØH‹5Ì'è$ýÿI‰ÄH…À„èH‹5ì'H‰Ç1ÒHÇD$PèiýÿH‹|$PH‰D$XH…ÿtHƒ/„‚H‹D$XHÇD$PH…À„2Iƒ,$„€H‹|$XHƒ/„gHT$pHt$hHÇD$XH|$`èrýÿL‹D$IƒèIƒþ„|M…ÀŽ…IE(M‰ÅH‰\$8H‹\$0H‰D$M¯ïLl$H‰l$0L‰Å€H‹|$H‰îè‹ ýÿH‹T$H‰ßI¯ÇL$L‰òL‰æè@ýÿL‰îL‰òL‰çè2ýÿL‰ïL‰òH‰Þè$ýÿM)ýHƒíu³H‹\$8H‹l$0H‹D$ Hƒ8H‰D$X„õHÇD$XH‹|$`H…ÿt
Hƒ/„ãHÇD$`H‹|$hH…ÿt
Hƒ/„¦HÇD$hH‹|$pH…ÿt
Hƒ/„L‹|$(H‹5â'1ÒHÇD$pL‰ÿè×ýÿH‰D$pI‹H‰D$HƒèI‰„zH‹|$pH…ÿ„pHƒ/„HÇD$pL‹d$ L‹t$Iƒ$é#øÿÿ„H‹|$HA½ASA¿=1íE1ä1ÉH…ÿ…÷ÿÿé±÷ÿÿf.„èýÿH‰ïèãoýÿH‰ÅH…À…ŒH‹|$HA½KSA¿Aë·@H‹5¹	'H‰ßè‘!ýÿH‰ÅH‰D$PH…À„jL9ð”ÀL9ý”ÂÂ…ôH;-EÉ$„çH‰ïè‡ýÿH‹l$PA‰ąÀˆ}Hƒm„ü
HÇD$PE…ä„ñòÿÿH‹-‹'H‹=$'H‰îèýÿI‰ÄH…À„VHƒH‹5U'L‰çèõ ýÿH‰ÁH‰D$XH…À„Iƒ,$„)	¿è?ýÿH‰D$HH…À„-HƒH‰X H‹
'HƒH‹T$HH‰B(H‹D$1ÒHƒH‹t$HH‹|$XH‰F0èýÿH‹|$HH‰ÅH‰D$PH…À„vHƒ/„
HÇD$HH‹|$XHƒ/„ï	HÇD$XL‹d$PHƒ+„Ç	H‹˜
'H‹=1'HÇD$PH‰ÞèýÿH‰ÅH…À„‡HƒH‰D$XH‹5Ì
'H‰ïèôýÿH‰D$HH…À„LH‹|$XHƒ/„H‹5 'L‰çHÇD$Xè¯ýÿH‰ÅH‰D$XH…À„ÓH‰ƿ1ÀH‹\$HèjýÿH‰ÅH…À„1ÒH‰ßH‰ÆèýÿHƒmH‰Ã„.H‹|$XH‰\$PHƒ/„UH‹l$PH‹|$HHÇD$XH…í„ÎHƒ/„êI‹½ØH‹5»'HÇD$HH‹l$PHÇD$PèýÿH‰D$H…À„
I‹½ØH‹5«'èîýÿH‰D$HH…À„H‹5É'H‰Ç1ÒHÇD$XèFýÿH‹|$XH‰D$PH…ÿtHƒ/„H‹D$PHÇD$XH…À„‰H‹|$HHƒ/„°HÇD$HH‹|$PHƒ/„ŽH|$pHT$`HÇD$PHt$hèBýÿL‰çèªýÿHƒøÿ„SHXÿH…ÛŽvIE(L‰t$ H‰D$H‹|$H‰ÞèxýÿI‰ÅH9Ø„EL‰çè„ýÿ…À„ŒL‰îL‰çè¡ýÿH‰D$PH…À„ªH‹5TÄ$H‰ÂH‰ïèýÿ…Àˆ`H‹|$PHƒ/„ôHÇD$PL‰çè)ýÿ…À„!H‰ÞL‰çèFýÿI‰ÆL‰t$PM…ö„aL‰çèýýÿ…ÀtI‹D$ö€³ „A
L‰ïèýÿI‰ÅH…À„L‰òH‰ÆL‰çè…ýÿIƒm„b…ÀˆôH‹|$PHƒ/„
HÇD$PL‰çè’ýÿ…ÀtI‹D$ö€³ „¦
H‰ßè¤ýÿI‰ÅH…À„MH‰êH‰ÆL‰çèýÿIƒm„¼…Àˆ,Hƒë…˜þÿÿH‹|$pH…ÿt
Hƒ/„VHÇD$pH‹|$hH…ÿt
Hƒ/„%HÇD$hH‹|$`H…ÿt
Hƒ/„H‹\$H‹5Û'1ÒHÇD$`H‰ßèÐýÿH‰D$`H‹H‰D$HƒèH‰„ÀH‹|$`H…ÿ„ÄHƒ/„ÕH‹÷Ã$L‰ãHÇD$`H‰D$ éåùÿÿH‰ïè(ýÿH‹l$PA‰ąÀ‰’íÿÿH‹|$HL‹t$A½ÌT1íA¿XéÞùÿÿH‰Çèàýÿf.Š‚…|H‹t$H¹½L‹56Ä$IƒM‰ôHƒ.„=HÇD$Héíóÿÿ€H‰Çèˆýÿf.Èz„8L‹5ñÃ$A¼IƒM‰÷L‰|$Xé„íÿÿf.„1ÿèÙýÿH‰ÅH…À„aH‰ÆL‰çèýÿHƒm…JôÿÿH‰ïH‰D$(èŠýÿH‹D$(é3ôÿÿA½OSA¿Aéðÿÿ€H‹L$PH…ÉtHƒ)„ÄHÇD$P1ÉA½^SA¿AéJðÿÿ„L‰ïèHýÿI‰ÇH…À„H
H‰ÆH‰ßèqýÿIƒ/…ûíÿÿL‰ÿH‰D$ èúýÿH‹D$ éäíÿÿA½€SA¿Aéñïÿÿ€L‰çèÐýÿé—óÿÿèÃýÿéÄóÿÿfDL‰çèÐýÿI‰ÇH…À„KH‰ÆH‰ßèùýÿIƒ/…¬íÿÿL‰ÿH‰D$ è‚ýÿH‹D$ é•íÿÿ„A½‹SA¿A1í1ÉéˆïÿÿH‹{H‹5M'H9þ„ëÿÿéëÿÿ€è3ýÿé„óÿÿfDH‰ïè ýÿé«óÿÿH‰ïèýÿé0ëÿÿD¶àé(øÿÿ€H‹F H‰×H‰D$pèWýÿI‰Æéóðÿÿ€H‰÷ˆL$èÌýÿ¶L$éqñÿÿfH‹F(H‰×H‰D$xH‹F H‰D$pèýÿH…ÀŽºðÿÿHT$pH‰ÙL‰çLvêH5d§&è_”ýÿ…À‰”ðÿÿ¾ûRéæçÿÿDL‰çè`ýÿé9óÿÿL‰çèPýÿé<ñÿÿèCýÿéÒìÿÿfD@¶íé|ñÿÿ€H‹5ñ'L‰çèÙ
ýÿH…À„sÿÿÿH‰D$xIFÿé\ÿÿÿfL‰ïèýÿI‰ÆH…À„H‰ÆL‰çèAýÿIƒ.…VúÿÿL‰÷H‰D$(èÊ
ýÿH‹D$(é?úÿÿè»
ýÿé½ìÿÿfDL‹=À$L‹5²À$E1äIƒM9÷A”Äé»üÿÿ€L‰÷è€
ýÿé÷ëÿÿL‰úL‰æH‰ßèÊýÿA‰ÇéÞëÿÿfè[
ýÿéêÿÿfDL‰ïèH
ýÿé2ìÿÿL‰çè8
ýÿéÊöÿÿL‹59À$¹½IƒM‰ôéôûÿÿH‰ßè(ýÿH…À„öH‰ÆL‰çH‰D$(èOýÿH‹L$(I‰ÆHƒ)…ºùÿÿH‰ÏèÕýÿé­ùÿÿH‰ÏèÈýÿé<òÿÿH‹-¹'H…í„êH‹{H9ý„ðÿÿH‰îèûýÿ…À…ðÿÿH‹CH‹M 1íH5âóA½¼SA¿GH‹P H‹[½$H‹81Àè!ýÿH‹|$HL‹t$éÕôÿÿfH‹|$H1íL‹t$A½ÆSA¿Hé¶ôÿÿL‰úL‰îH‰ßè‚ýÿA‰Çé	ëÿÿf.„èýÿéªñÿÿfDH‰ßèøýÿé,öÿÿèëýÿéöÿÿfDèÛýÿéßõÿÿfDH‰ïèÈýÿé÷ôÿÿH;D$(tH‰ïè”ýÿ…À„ùè§ýÿH…À„UHƒmuH‰ïèýÿ€èƒýÿIÇÇÿÿÿÿH…À„jïÿÿH‹|$HL‹t$A½ËS1íA¿HéÙóÿÿfDA½ÖSA¿IL‹t$1íéëÿÿ„è+ýÿéñÿÿfDL‰çèýÿéñÿÿèýÿéýðÿÿfDH‹|$HL‹t$A½ÊTA¿XéhóÿÿDL‹t$A½ØSA¿IéMóÿÿf.„L‹=½$L‹5½$H‹t$HIƒM9÷M‰ü”Á¶ééyùÿÿ„H‰Ïèˆ
ýÿé/úÿÿè{
ýÿéèÿÿfDèk
ýÿéÚçÿÿfDè[
ýÿéïôÿÿèQ
ýÿé÷ÿÿHÇD$HL‹t$A½ÈSA¿HéÉúÿÿH;D$(tL‰çèþýÿ…À„èèýÿH…À„QIƒ,$uL‰çèù	ýÿèôýÿH…À…½
IÇÆÿÿÿÿédîÿÿA½¡SA¿CéŠþÿÿèyýÿH‰ïèQbýÿH‰ÅH…À…H‹|$HL‹t$A½æSA¿Néòÿÿè•	ýÿé¡ôÿÿL‰çèˆ	ýÿéÛìÿÿM…ÀŽ	ñÿÿM‰ÄL‹t$H‰\$IƒÅ(M¯çH‹\$0H‰l$L‰ÅMôDH‰îL‰ïèýÿI¯ÇLðH‹H‰I‹$H‰H‹I‰$M)üHƒíuÑH‹\$H‹l$é¡ðÿÿH‹|$H1íL‹t$A½£SA¿CéxñÿÿL‹t$A½èSA¿Né{ùÿÿèÚýÿéôÿÿH‰ïèÍýÿéÅóÿÿèÃýÿéïÿÿL‰çè¶ýÿésïÿÿè¬ýÿéôõÿÿè¢ýÿéëåÿÿL‹t$A½¦SA¿C1Éé—èÿÿH‹|$H1íL‹t$A½ëSA¿NéëðÿÿH‹|$ è^ýÿéüïÿÿL‹t$A¼vVHÇD$HH‹|$PH…ÿt
Hƒ/„ÞHÇD$PH‹|$XH…ÿt
Hƒ/„˺lD‰æH=­öHÇD$XH
ùàèðaýÿHT$PHt$XH|$HèìZýÿ…Àˆ«H‹L$PH‹T$X¿1ÀH‹t$HèùýÿI‰ÅH…À„
1ÒH‰ÆH‰ïè
ýÿHƒmI‰Ä„§Iƒm„M…ä„é	M9ô”ÀL;%ɹ$”ÂÂ…¶L;%¯¹$„©L‰çèñ	ýÿIƒ,$‰Å„¢…íˆQ	H‹|$H…í„vH…ÿt
Hƒ/„ÓHÇD$HH‹|$XH…ÿt
Hƒ/„ÀHÇD$XH‹|$PH…ÿt
Hƒ/„­H‹T$pH‹t$hHÇD$PH‹|$`èéýÿL‹%¹$L‹t$Iƒ$éOçÿÿIƒ,$¶è…fÿÿÿL‰çèšýÿéQÿÿÿL‹t$H‹|$HA¼xVH…ÿ„.þÿÿHƒ/…$þÿÿèmýÿéþÿÿL‰ï‰D$(è\ýÿ‹D$(é‰óÿÿèNýÿéþÿÿèDýÿé+þÿÿL‹t$A½íSA¿Né;æÿÿA½’VH‹|$`H‹T$pA¿i1íH‹t$hè'ýÿH‹|$HL‹t$é{îÿÿL‰ïèðýÿédþÿÿH‰ïèãýÿéLþÿÿèÙýÿétìÿÿL‹t$H‹|$HHÇD$XA¼tVé1ÿÿÿL‰òL‰îL‰çèýÿéÙòÿÿL‰ï‰D$(è—ýÿ‹D$(é/óÿÿH‹|$H1íL‹t$A½òSA¿NéôíÿÿèlýÿéhñÿÿèbýÿéFñÿÿH‹|$HL‹t$A½VA¿féÅíÿÿèíýÿH‰ïèÅ]ýÿH‰ÅH…À…•H‹|$HL‹t$A½âTA¿Yé‘íÿÿL‹t$A¼zVéyþÿÿL‹t$A½ùSA¿N1ÉéøäÿÿH‰êH‰ÞL‰çè8ýÿétòÿÿè~ýÿH‰ïèV]ýÿH‰ÁH…À…êÿÿL‹t$A½ôSA¿Né¶äÿÿH‹|$HL‹t$A½V1íA¿fé
íÿÿè‚ýÿéwìÿÿèxýÿéPìÿÿL‹t$A½äTA¿YéoäÿÿèXýÿéìÿÿH‹|$(èIýÿéwìÿÿL‹t$A½öSA¿Né@äÿÿè)ýÿéçïÿÿA½UA¿YéÏøÿÿH‹5Dó&H‹=m'1Òèî	ýÿH‰ÅH‰D$XH…À„NH‰ÇèÛýÿH‹|$XHƒ/„HÇD$XH‹|$H1íA½)VL‹t$A¿gé3ìÿÿè«ýÿéñëÿÿH‹|$HL‹t$A½ÓTA¿XéìÿÿL‹t$A½UA¿YéøëÿÿH‹|$HL‹t$A½<VA¿iéÝëÿÿH‹|$HL‹t$A½ÕT1íA¿XéÀëÿÿA½>VHƒm„H‹|$HL‹t$A¿i1íé˜ëÿÿèÀýÿH‰ßè˜[ýÿH‰ÅH‰D$XH…À…díÿÿH‹|$HL‹t$L‰ãA½!UA¿Zé\ëÿÿL‹t$A½ûSA¿NéÕâÿÿL‹%¼'M…ä„|H‹}I9ü„ÊèÿÿL‰æèþýÿ…À…ºèÿÿH‹EI‹L$ H5æéA½
TA¿OH‹P H‹_³$H‹81Àè%ýÿH‹|$HL‹t$éÙêÿÿfDH‹|$HL‹t$A½TA¿Pé¸êÿÿA½LVéóþÿÿL‰ãA½#UA¿ZéÒöÿÿH‹|$H1íL‹t$A½­SA¿Cé|êÿÿL‹t$ »šUA½aH‹|$HH…ÿt
Hƒ/„ HÇD$HH‹|$PH…ÿt
Hƒ/„ïHÇD$PH‹|$XH…ÿt
Hƒ/„ÜD‰ê‰ÞH=7ðHÇD$XH
ƒÚèz[ýÿHT$XHt$HH|$PèvTýÿ…ÀˆcH‹L$XH‹T$H¿1ÀH‹t$Pèƒ	ýÿI‰ÅH…À„¢H‹|$1ÒH‰ÆèýÿH‹T$H‰ÃH‹H‰D$HƒèH‰„Iƒm„ëH…Û„mL9ó”ÀL9û”ÂÂ…³H;,³$„¦H‰ßènýÿHƒ+A‰Å„ŸE…íˆÎH‹|$PE…í„vH…ÿt
Hƒ/„BHÇD$PH‹|$HH…ÿt
Hƒ/„HÇD$HH‹|$XH…ÿt
Hƒ/„þH‹T$`H‹t$hL‰ãHÇD$XH‹|$pèaýÿH‹в$H‰D$ é„èÿÿHƒ+D¶è…jÿÿÿH‰ßèýÿéTÿÿÿL‰ïè
ýÿéÿÿÿH‰×èýÿéðþÿÿA½ÈUH‹|$pH‹T$`L‰ãA¿[H‹t$hèøýÿH‹|$HL‹t$éLèÿÿèÄÿüÿéþÿÿèºÿüÿéþÿÿè°ÿüÿéÖýÿÿA½TH‹T$(H‹H‰D$HƒèH‰„H‹|$HL‹t$H…ÿ„1A¿P1Éé‰ßÿÿH‹|$HL‹t$L‰ãA½&UA¿ZéÐçÿÿèHÿüÿé#øÿÿè>ÿüÿé6øÿÿè4ÿüÿéIøÿÿL‹t$A½¯SA¿C1Éé)ßÿÿA½%Tégÿÿÿ1ÛéêÿÿL‹t$L‰ãA½5UA¿ZéoçÿÿL‹t$ »˜UHÇD$PA½aéåüÿÿL‹t$ »¦UA½béÐüÿÿH‹T$PH‹t$XA½§Vè„ýÿHÇD$HHÇD$XHÇD$PéaøÿÿH‹|$HL‹t$L‰ãA½CUA¿[ééæÿÿH‹]éz×ÿÿL‹t$A½ÈSA¿HéãîÿÿA¿PM…ä„Þÿÿ1ÉA¿PéXÞÿÿL‹t$ »°UA½cé-üÿÿH‰ïèþüÿéÝúÿÿL‹t$ »¤UHÇD$PA½béüÿÿA½ŸVé½÷ÿÿA½EUH‹T$H‹H‰D$HƒèH‰„áH‹|$HL‹t$L‰ãA¿[é+æÿÿA½–Véz÷ÿÿA½SUë»A½›Vég÷ÿÿH‰×è‚ýüÿéòýÿÿ»hUA½\é„ûÿÿèhýüÿéåüÿÿè^ýüÿéøüÿÿèTýüÿé´üÿÿH‹|$HL‹t$A½£TA¿Pé·åÿÿH‹T$XH‹t$HA½ÝUèÿýÿHÇD$PHÇD$HHÇD$Xé
ýÿÿL‹t$H‹|$HA¼tVéeöÿÿA½ÕUéêüÿÿH‹|$èÕüüÿéÿÿÿèËüüÿéðøÿÿH‹Ÿ¯$H5
×A½¼SA¿GH‹8èýÿH‹|$HL‹t$éåÿÿA½ÌUé•üÿÿA½ÑUéŠüÿÿ€H‹	®$H‰T$(H9ÐtH‰ïè?ýÿ…À„ˆèRýÿH…À…ÁðÿÿH‹2­$H5KÖH‹8è£ýÿé¦ðÿÿI‰ìL‹t$A½ÛS1ÉA¿Ié%ÜÿÿH‹¤­$H‰T$(H9ÐtH‰ïèÚýÿ…À„“èíýÿH…À…ëñÿÿH‹ͬ$H5æÕH‹8è>ýÿéÐñÿÿL‹t$ »˜UA½aéËùÿÿL‹t$ »¤UA½bé¶ùÿÿH‹|$HL‹t$A½%VA¿géäÿÿL‹t$H‹|$HA¼zVéêôÿÿèjûüÿé“Úÿÿè`ûüÿé¦ÚÿÿèVûüÿé¹ÚÿÿH‰ïèIûüÿéÖÚÿÿH‰ïè<ûüÿéâÚÿÿH‹®$H5{ÕA½
TA¿OH‹8è…ÿüÿH‹|$HL‹t$é‰ãÿÿH‹|$èüúüÿé1éÿÿèòúüÿéÑèÿÿèèúüÿéäèÿÿèÞúüÿé èÿÿèÔúüÿé!éÿÿH‰ïè‡þüÿH‰ÅH…À„dþÿÿL‹5„¬$L9pu:fDH‹Eö€³„ÔîÿÿH‰ïèoúüÿI‰ÇHƒm…nÞÿÿH‰ïèyúüÿéaÞÿÿH‰ÇèÌýÿH‰ÅH…Àu¼é×îÿÿH‰ïèþüÿI‰ÄH…À„YþÿÿL‹5¬$L9pu5I‹D$ö€³„ÿïÿÿL‰çèúüÿI‰ÆIƒ,$…‘ÞÿÿL‰çèúüÿé„ÞÿÿH‰ÇèaýÿI‰ÄH…Àu»éûïÿÿH‹|$HL‹t$L‰ãA½÷UA¿[éYâÿÿH‹|$HL‹t$A½ÁVA¿ié>âÿÿI‰ÄéæÓÿÿH‰ïèkýüÿI‰ÄH…À„óíÿÿL9pu1I‹D$L‰çö€³t5ècùüÿI‰ÇIƒ,$…éþÿÿL‰çèmùüÿéÜþÿÿH‰ÇèÀ~ýÿI‰ÄH…Àu¿éµíÿÿèŽóýÿI‰ÇëÉH‹2ª$H5KÓH‹8è£ýüÿéíÿÿL‰çèæüüÿH‰ÁH…À„ïÿÿL9pu9H‹AH‰ÏH‰L$(ö€³t9èÚøüÿH‹L$(I‰ÆHƒ)…ÇþÿÿH‰ÏèàøüÿéºþÿÿH‰Çè3~ýÿH‰ÁH…Àu·é¾îÿÿèóýÿH‹L$(I‰ÆëÅH‹ ©$H5¹ÒH‹8èýüÿé”îÿÿI‰ÄéJÝÿÿI‰Äéøáÿÿff.„AW19AVI‰þAUI‰õATUSHìH”$@H‰×óH«H‹E«$D‹E…À„yI‹~H‹5Vö&H9÷„•èˆýÿ…À…ˆM‹^PA‹~tL‰t$pM‹†€M‹ŽˆI‹¶L‰\$x…ÿޱH\$p1ÀIÇÂÿÿÿÿH‰ÚI‹ÀH‰JI‹ÁH‰JPL‰ÑH…ötH‹ÆHƒÀH‰ŠHƒÂ9ÇÑL‰ðH‰\$(HÇD$ë6fDL;5á©$…+IƒI†pM‹žxL‰t$H‰D$(I‹†pH‰„$@I‹EH;E©$L‰œ$Ht
H;¼¨$…Æ	IƒE1ÀHÇ$1í1ÛHƒ<$L‰t$@ÇD$ÿÿÿÿI‰ÆÇD$‰l$…RH‹í¨$I9E…CL‰ïèûýÿL9ðŽB
L‰öL‰ïIƒÆè3ÿüÿI‰ÇH…À„×	H…Ût
Hƒ+„ L‰ÿèàõüÿ‰ÅÀ…>L;=ï¨$„iH‹5Úè&L‰ÿèúýÿH‰ÂH…À„þ
L‹%‡©$L9à”ÀH;¨$”ÁÁu
H;¬¨$…†¶À…cH‹HƒèH‰D$ H‰„ŒHÇD$ H‹5Vè&L‰ÿèŽýÿH‰ÂH…À„¢
L9à”ÀH;]¨$”ÁÁ…rH;C¨$„eH‰×H‰T$0è€øüÿH‹T$0…ÀˆC…À…NH‹HƒèH‰D$8H‰„wHÇD$8H‹5Þç&L‰ÿèýÿH‰ÂH…À„â
L9à”ÀH;ݧ$”ÁÁu
H;ǧ$…¶À…žH‹HƒèH‰D$0H‰„ÇHÇD$0H‹5‰ç&L‰ÿè©ÿüÿI‰ÄH…À„
Hƒ(„óH‹5Lç&L‰ÿè„ÿüÿI‰ÂH…À„XHƒ(„ÞH‹5/ç&L‰ÿL‰T$HèZÿüÿI‰ÀH…À„†Hƒ(L‹T$H„ÏH‹D$(L;§$L‹ŒèL‹\èPH‹Lè„3H‹D$0H‰ÃHÁû?ƒãH…ÀuR‹T$H‹=$ò&L‰D$hH5ÈãL‰T$`H‰L$XL‰\$PL‰L$Hè'÷ýÿL‹L$HL‹\$PƒøÿH‹L$XL‹T$`L‹D$h„D
L;%ަ$…h…Û„ÁHAÿH‰D$ H‹t$ I¯óL;g¦$…ºHÇÁÿÿÿÿf.„H+L$ L;D¦$t%H‹\$0H‰ÈH™H÷ûI‰ÜL¯ÛL¯àL9ᄉHH¸H…ÉHHÈHcD$L‰œĐH‰ŒÄPL‰ŒÄЋD$…ÀˆÀHcD$H´ÄЋD$‹t$M…ÉIðƒÀ‰D$‰t$é¥DH‹1¥$L‰ÿI9G…lèÿöüÿH‰ÃHƒûÿ„H‹D$(H‹ŒèL‹dèPH‹DèH…Ûˆ"H…ÛˆyH9Íp‹t$I¯܅öˆ@HcD$HœÄÐH…Éx&‹T$…Ò…òH‹„$HHH‰Œ$H€HƒÅHƒ<$L‰û‰l$„®ûÿÿL‰ïH‹$ÿÐI‰ÇH…À…ÖûÿÿL‹t$@è“ûüÿH…Àt&H‹·¤$H‰ÇH‹2èüõüÿ…À„¸èõüÿ€Iƒm„Ã	I‹~H‹5rð&H9÷t
è¨ûüÿ…À„J
Hƒ|$„ÛH‹D$A‹ŽdI‰ßH‹PH‹°Hÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$‹¼$Üè…ÞýÿHÄÐH‰ÅH…À„/H;‹£$„#H‹Vï&H…Û„H‹xH9û„H‰Þèpúüÿ…À…öH‹EH‹K H5YØI‰í»	½€H‹P H‹ѡ$H‹81Àè—ùüÿéïfH‰×H‰T$ ècóüÿH‹T$ …À‰cúÿÿI‰Խd»øé[@‹T$H‹=åí&H‰L$ H5šÌèDóýÿH‹L$ ƒøÿ…fýÿÿ½¤€A¼@è–òüÿ‰îD‰âH
ɉÃH=qß½èGJýÿ‰߻ìè{öüÿéSfDè+ùüÿH…À…º	H‹D$(HÇÃÿÿÿÿH‹ŒèL‹dèPH‹Dè@HÃH…Û‰ÛüÿÿéOÿÿÿ€H‹±¡$H‰×H9B…´H‰T$0èzóüÿH‹T$0H‰D$ Hƒ|$ ÿ„ôHƒ*…}ùÿÿH‰×è¢ïüÿépùÿÿDH‰ßèïüÿéÓøÿÿ¶À„²ùÿÿH‹F¡$H9BH‰×H‰T$0…èóüÿH‹T$0H‰D$8Hƒ|$8ÿ„¼Hƒ*…’ùÿÿH‰×è7ïüÿé…ùÿÿfHcD$HDŽÄPH‰ÆHDŽĐƒÆHDŽÄÐÿÿÿÿ‰t$é0üÿÿ„‹T$H‹=5ì&H5¶Ýè™ñýÿƒøÿ…üÿÿ½!ƒA¼ƒéUþÿÿHœ$HéÀûÿÿM9uŽL‰öL‰ïIƒÆè÷öüÿI‰ÇH…À…Ä÷ÿÿI‰߽æ~»êé–f„H‰×H‰T$0èñüÿH‹T$0…À‰èøÿÿI‰Խ»úIƒm„þIƒ,$„‰îH
ëÆ‰Ú1íH=ÊèHýÿHƒ|$tH‹t$H‹H‰$HƒèH‰„éM…ÿt
Iƒ/„êHÄH‰è[]A\A]A^A_ÃDHƒ|$ ˆLH;L$ ŽYH‹t$ I¯óL;ùŸ$…L…ÛHÇÀÿÿÿÿHEÈé‘ùÿÿI‰Խz»ùé5ÿÿÿfDL‰ïè0õüÿI‰ÅH…À„H‹@H‹€èH‰$H…À„HHÇÀÿÿÿÿéöÿÿL‰ïè8íüÿM…ä„üþÿÿIƒ,$…ñþÿÿL‰çèíüÿéäþÿÿ€H‰÷èíüÿé
ÿÿÿL‰ÿèøìüÿé	ÿÿÿI‰߽Þ~»êIƒm…¥þÿÿL‰ïèÐìüÿé˜þÿÿH‹‘ž$H‰×H9B…sH‰T$HèZðüÿH‹T$HH‰D$0Hƒ|$0ÿ„-Hƒ*…B÷ÿÿH‰×è‚ìüÿé5÷ÿÿDM9Ä…ßHÇD$ 1öL;­ž$„WøÿÿHƒ|$8ˆ»H‹D$8H9ÁHOÈé:øÿÿf.„H‰Çè(ìüÿé÷ÿÿH‰ÇH‰D$HèìüÿL‹T$Hé÷ÿÿf„H‰ÇL‰T$PH‰D$HèîëüÿL‹T$PL‹D$Hé÷ÿÿ€H´$Hé@øÿÿA‹~t…ÿ{óÿÿH‹už$1íH‹8è«ïüÿºÒH
`ľ\~H=†ÇèŽEýÿéŸýÿÿf„½b»øéŽþÿÿ½x»ùé~þÿÿH‹-yé&H…í„°I‹~H9ý„¸óÿÿH‰îè›ôüÿ…À…¨óÿÿI‹FH‹M H5„Ò1íH‹P H‹œ$H‹81ÀèÍóüÿºÕH
Âþs~H=èÆèðDýÿéýÿÿèóðüÿI‰ÄH…À„§úÿÿH‰ÇèîüÿIƒ,$H‰Ã…u÷ÿÿL‰çè¹êüÿéh÷ÿÿ@½Ž»úé¾ýÿÿ½¤»üé®ýÿÿH‹D$ H…Àˆ
H9ÁÀüÿÿL‰ÞH‰L$ H¯ñéþÿÿ„…Û…(öÿÿëÝèaðüÿH‹T$0H…À„¶H‰ÇH‰T$HH‰D$0èáíüÿH‹L$0H‹T$HH‰D$8Hƒ)…ÃúÿÿH‰ÏH‰T$0èêüÿH‹T$0é¬úÿÿè,ìüÿºFH
±Â¾å€‰ÃH=Ù½ËèØCýÿ‰߻èðüÿéäüÿÿE1ÿ½Ó~»êé‚ûÿÿD½±»ýé¾üÿÿL‹t$@é.÷ÿÿfDHL$8¸HHÈé}õÿÿDHL$ ‰´ûÿÿHÇD$ 1öé­ûÿÿD½¾»þéfüÿÿf„H|$pL‰ðHÇD$H‰|$(é½ñÿÿDH‰T$ è&ïüÿH‹T$ H…ÀtLH‰ÇH‰T$8H‰D$0èªìüÿH‹L$0H‹T$8H‰D$ Hƒ)…!ùÿÿH‰ÏH‰T$0èÔèüÿH‹T$0é
ùÿÿf.„H‰T$ è¶ñüÿH‹T$ H…À…¶HÇD$ ÿÿÿÿéæøÿÿL‰ïè’èüÿé0öÿÿH‰T$0èƒñüÿH‹T$0H…À…•HÇD$8ÿÿÿÿéùÿÿH‰T$0è]ñüÿH‹T$0H…À…HÇD$0ÿÿÿÿé­ûÿÿH‰T$0èGîüÿH‹T$0H…ÀI‰ÄtÃH‰ÇH‰T$HèÍëüÿIƒ,$H‹T$HH‰D$0…hûÿÿL‰çèèüÿH‹T$HéVûÿÿA‹Ždÿ´$1Ò1öÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$ÿ´$‹¼$ÜèYÔýÿHÄÐH‰ÅH…À„lH;_™$I‰ß„ìøÿÿH‹'å&H…Û„†H‹xH9û„ÏøÿÿH‰ÞèAðüÿ…À…¿øÿÿH‹EH‹K H5*ÎI‰í»½:€H‹P H‹¢—$H‹81ÀèhïüÿéÀùÿÿH‹y™$H5äÀH‹8èúêüÿºÕH
?¿¾s~H=eÂèm@ýÿé~øÿÿ½»ïévùÿÿH‹Z™$HzÂ1íI‰ßH5§ÕH‹81Àèõîüÿº
H
ê¾¾ýH=Âè@ýÿéøÿÿ½€»	éÑ÷ÿÿ½Õ~»êE1ÿéùÿÿI‰Խh»øé—÷ÿÿI‰Խ~»ùé…÷ÿÿI‰Խ”»úés÷ÿÿI‰߽ð~»êéÇøÿÿI‰߽0€»ée÷ÿÿH‹q˜$H5ܿI‰í»	½€H‹8èåéüÿéøÿÿH‹I˜$H5´¿I‰í»½:€H‹8è½éüÿéeøÿÿH‰ÁésñÿÿH;5‘â&AVAUATUS„ûH‰ð‹wtH‰ýH‰Çè*6þÿH‰ÃH…À„ÞL‹5W—$L9ð„ÞH‰ÇèvëüÿHƒø…ì1öH‰ßèBíüÿI‰ÄH…À„&¾H‰ßè)íüÿI‰ÅH‹M…í„JHƒèH‰„-L;%¶—$”ÀL;%ô–$”ÂÂu	M9ô…Œ¶À…H‹EL‰îH‰ïÿH…À„,H‹UH‰ÆH‰ïÿR(H‰ÃH…À„£Iƒ,$„…Iƒmt)H‰Ø[]A\A]A^ÃDH‰ûHƒH‰Ø[]A\A]A^ÃDL‰ïèäüÿH‰Ø[]A\A]A^Ã@L‰çè˜æüÿ…À‰gÿÿÿºš¾vnH
 ¼H=xÓ»èÎ=ýÿIƒ,$…{ÿÿÿL‰çè»ãüÿénÿÿÿfD½anHƒ+teH
_¼º—‰î1ÛH=.Óè‰=ýÿéCÿÿÿ@H‰ßèxãüÿéÆþÿÿL‰îH‰ïèåêÿÿH‰ÃH…À…ÿÿÿº›¾nédÿÿÿf.„H‰ßè8ãüÿë‘fD½Qnë„f„H‹	”$H5šÍ½hnH‹8èuçüÿéUÿÿÿ^½YnH…ÀˆEÿÿÿHƒøHq¿H
*ºHEÊH‰ÂH‹P”$H5)ÍH‹81Àèëüÿéÿÿÿf.„ºž¾£né»þÿÿH‹”$º½YnH5pÆH‹81Àè>ëüÿéÎþÿÿf„HƒèH‰t7Iƒ,$½cn…²þÿÿL‰çèOâüÿé¥þÿÿf.„º¾˜néKþÿÿH‰ßè(âüÿë¿fDAWAVI‰öAUATUSHì¸H‹U”$H‹nL‹%Ó&H‹ÃÓ&H‰|$(H‰„$H‹¯Ò&HDŽ$€HDŽ$ˆL‰¤$˜H‰D$XH‰„$ H‰œ$¨H…Ò…Y
Hƒýt~)HƒýtHƒý…‰H‹F@H‰D$XM‹f8M‹n0ëfDL‹-¹“$Hƒý…_I‹F(I‹n H‰$H‹$HƒEºH‰ßHƒHƒH‹5ƒÙ&è¾éüÿ…ÀˆF…PHƒ+„NL‹5çÕ&H‹=€à&L‰öè`âüÿI‰ÇH…À„ìHƒH‹5éÚ&L‰ÿèQëüÿI‰ÂH…À„Iƒ/„ë1ÀH‰î¿L‰T$è÷èüÿL‹T$H…ÀI‰Æ„ö1ÒL‰×H‰Æè‰æüÿIƒ.L‹T$H‰D$„ÅHƒ|$„á"Iƒ*„×Hƒm„¼H‹-5Õ&H‹=Îß&H‰îè®áüÿI‰ÂH…À„2HƒH‹57Ú&L‰×L‰T$èšêüÿL‹T$H…ÀI‰Ç„éIƒ*„‡H‹4$¿1Àè?èüÿI‰ÆH…À„;1ÒH‰ÆL‰ÿèÖåüÿIƒ.H‰D$„_Hƒ|$„™$Iƒ/„iH‹<$H‹H‰D$HƒèH‰„@L;-ñ‘$„ãH‹-lÔ&H‹=ß&H‰îèåàüÿH‰ÂH…À„ñHƒH‹5~Ö&H‰×H‰$èÒéüÿH‹$H…ÀI‰Æ„jHƒ*„Ø
I‹Eö€³…	L‰öL‰ïèéüÿIƒ.‰Å„…í…þIƒEH‹5ÔÑ&H‹|$èréüÿI‰ÇH…À„öH‰Çè¾âüÿH‰ÅHƒøÿ„yIƒ/„¿	Hƒý…ÝH‹5ŽÑ&H‹|$è,éüÿI‰ÇH…À„€H‰ÇèxâüÿI‰ÆHƒøÿ„3 Iƒ/„™Iƒþ„'
H‹5 Î&H‹=Ü&1ÒèbäüÿI‰ÆH…À„ðH‰Çè~µýÿIƒ.„¢*H‹D$ÇD$X@½–
H‰$1ÉE1ÉE1ÀE1äHÇD$(E1öHÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$HÇD$é¸f.„H‹5™Ï&ºH‰ßèLæüÿ…Àˆt„ŽüÿÿH‹5ßÖ&ºH‰ßè*æüÿA‰ƅÀˆ¯Hƒ+„eE…ö„füÿÿH‹5%Í&H‹=Û&1ÒèWãüÿI‰ÅH…À„Â#H‰Çès´ýÿIƒm„èH‰l$1ɽ†
E1ÉE1ÀE1äE1öE1íÇD$Xš?HÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$HÇD$é­€H‰ßèÀÜüÿé¥ûÿÿHÇD$(1ÉE1ÉE1ÀHÇD$HE1äE1öE1íHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$HÇD$ÇD$X®?H‰l$½Š
@M…ÿt
Iƒ/„ÁM…Òt
Iƒ*„êM…Àt
Iƒ(„M…Ét
Iƒ)„dH…Ét
Hƒ)„u‹t$XH
î´‰ê1ÛH=§ËèÚ5ýÿM…ítIƒm„‚M…öt
Iƒ.„ƒH‹L$H…ÉtH‹H‰D$XHƒèH‰„tH‹T$H…ÒtH‹H‰D$HƒèH‰„eH‹t$ H…ötH‹H‰D$HƒèH‰„VH‹L$0H…ÉtH‹H‰D$HƒèH‰„GH‹T$8H…ÒtH‹H‰D$HƒèH‰„˜H‹|$PH…ÿtH‹H‰D$HƒèH‰„‰H‹t$@H…ötH‹H‰D$HƒèH‰„zH‹L$HH…ÉtH‹H‰D$HƒèH‰„kH‹T$(H…ÒtH‹H‰D$HƒèH‰„¼M…ätIƒ,$„¼H‹t$H‹H‰D$HƒèH‰„ÊH‹<$H‹H‰D$HƒèH‰„™HĸH‰Ø[]A\A]A^A_Ã@L‰ÏL‰$è¬ÜüÿL‹$H‰ÃH‹5Ð&L‰ÏL‰$HƒëèÞÙüÿL‹$H…ÀH‰„$€…ØI‹nDHƒýH³H
³HMȝÀHƒì¶ÀUH¶LD@H‹¼Š$H5•µL
J¶H‹81ÀètâüÿX¾C?ZH
ª²º
H=bÉ1Ûè“3ýÿé-ÿÿÿfDH‰×è€Ùüÿé[þÿÿèsÙüÿémþÿÿfDH‰÷è`ÙüÿéyþÿÿH‰ÏèPÙüÿéˆþÿÿL‰ïè@ÙüÿéqýÿÿL‰÷è0ÙüÿépýÿÿH‰Ïè ÙüÿéýÿÿH‰×èÙüÿéŽýÿÿH‰÷èÙüÿéýÿÿH‰ÏèðØüÿé¬ýÿÿH‰×èàØüÿé7þÿÿL‰çèÐØüÿé7þÿÿH‹<$è¿ØüÿéYþÿÿf.„H‹|$è¦Øüÿé'þÿÿL‰ÏH‰L$`è“ØüÿH‹L$`é…üÿÿf„H‰ÏèxØüÿé~üÿÿL‰ÿL‰D$xH‰L$pL‰L$hL‰T$`èTØüÿL‹D$xH‹L$pL‹L$hL‹T$`é
üÿÿL‰×L‰D$pH‰L$hL‰L$`è!ØüÿL‹D$pH‹L$hL‹L$`éëûÿÿDL‰ÇH‰L$hL‰L$`èö×üÿH‹L$hL‹L$`éÔûÿÿ€L‰ÿH‰D$èÓ×üÿL‹T$éþöÿÿf„L‰÷è¸×üÿL‹T$é)÷ÿÿfDH‰ïè ×üÿé7÷ÿÿL‰×è×üÿé÷ÿÿL‰×è€×üÿél÷ÿÿL‰÷èp×üÿé”÷ÿÿèc×üÿé¶÷ÿÿfDL‰ÿèP×üÿéŠ÷ÿÿHƒý‡>ýÿÿI‰ÑH˜¿HcªHÐÿàH‹F@H‰„$ I‹F8H‰„$˜I‹F0H‰„$I‹F(L‰ÏL‰$H‰„$ˆI‹F H‰„$€èPÙüÿHƒýL‹$H‰Ã‡™HD¿HcªHÐÿà€1ÿèàüÿI‰ÅH…À…’÷ÿÿH‹D$1ÉE1ÉE1ÀE1äE1öHÇD$(½
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$H‰$HÇD$ÇD$Xó?é	úÿÿIƒ.uL‰÷èÖüÿ¿è`ßüÿI‰ÆH…À„èIƒEL‰ê1öH‰ÇM‰õèoÛüÿé×öÿÿf.„H‰l$ÇD$X|?HÇD$(½…
1ÉE1ÉHÇD$HE1ÀE1ÒE1ÿHÇD$@E1äE1öE1íHÇD$PHÇD$8HÇD$0HÇD$ HÇD$HÇD$H…Û„ùÿÿHƒ+…ùÿÿH‰ßL‰D$xH‰L$pL‰L$hL‰T$`è7ÕüÿL‹D$xH‹L$pL‹L$hL‹T$`éÞøÿÿfDL‰ÿèÕüÿé4öÿÿè³×üÿL‰÷è‹-ýÿI‰ÆH…À…;JH‰l$1ÉE1ÉE1ÀE1äE1íHÇD$(½Š
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$HÇD$ÇD$X¬?éWøÿÿf„H‰×èhÔüÿéõÿÿH‹5!Ç&H‹|$è¿ÞüÿI‰ÇH…À„SH‰Çè+Üüÿ…À„k1öL‰ÿèIÔüÿH‰D$Hƒ|$„í+Iƒ/„VH‹5ÏÆ&H‹|$èmÞüÿI‰ÇH…À„½H‰ÇèÙÛüÿ…À„1¾L‰ÿèôÓüÿI‰ÂM…Ò„˜,Iƒ/„&L‹t$L‰ֺL‰$L‰÷è¥ÝüÿL‹$H…ÀI‰Ç„ù I‹H‰$HƒèI‰„€Iƒ*„L;=€†$A”ÆL;=½…$”ÀDð…ÉL;=¢…$„¼L‰ÿèäÕüÿA‰ƅÀˆS"Iƒ/„ÌE…ö…ŸôÿÿH‹5çÅ&H‹|$è…ÝüÿI‰ÇH…À„ñH‰ÇèñÚüÿ…À„1öL‰ÿèÓüÿI‰ÂM…Ò„Š&Iƒ/„±H‹5šÅ&H‹|$L‰$è4ÝüÿL‹$H…ÀI‰Ç„×H‰ÇèœÚüÿL‹$…À„ 1öL‰ÿè¶ÒüÿL‹$H‰D$Hƒ|$„Ò'Iƒ/„÷H‹t$L‰׺L‰$èaÜüÿL‹$H…ÀI‰Ç„Iƒ*„_H‹t$H‹H‰$HƒèH‰„VL;=7…$”ÀL;=u„$”ÂÂ…â
L;=[„$„Õ
L‰ÿèÔüÿA‰ƅÀˆ>Iƒ/„HE…ö…RH‹5 Â&L‰ïè0ÓüÿI‰ÇH…À„"H‰Çè\ÑüÿI‰ÆH…À„¦Iƒ/„ÞH‹5gÄ&H‹|$èÜüÿI‰ÇH‰D$H…À„âH‰ÇèlÙüÿ…À„ôL‰ÿ1öèŠÑüÿI‰ÇM…ÿ„ˆ)H‹t$H‹H‰$HƒèH‰„L‰þL‰÷èúÖüÿƒøÿ„¡Iƒ/„§H‹5€Ã&H‹|$(è†ÛüÿH…ÀH‰$„31ÀL‰ö¿è:ÙüÿL‹$H…ÀI‰ÇH‰D$„ 1ÒL‰×H‰ÆL‰T$(èÃÖüÿL‹T$(H‰D$ I‹H‰$HƒèI‰„lHƒ|$ „*)Iƒ*„IL‹|$ H‹5ÃÃ&L‰ÿèûÚüÿI‰ÂH…À„¡ I‹H‰$HƒèI‰„§H‹5,Ã&H‹|$L‰$èÆÚüÿL‹$H…ÀI‰ÇH‰D$„'!H‰Çè)ØüÿL‹$…À„½1öL‰ÿèCÐüÿL‹$I‰ÀM…À„–.H‹t$H‹H‰$HƒèH‰„N¿L‰D$L‰$èÇÖüÿL‹$L‹D$H…ÀI‰Á„å"H‹[À&1ÒL‰ÎL‰×L‰L$ HƒI‰A M‰A(èÕüÿL‹$L‹L$ H…ÀH‰D$„˜#Iƒ)„dIƒ*„kH‹5cÉ&H‹|$èáÙüÿH…ÀH‰$„G$L‹=5Ä&H‹=ÎÎ&L‰þè®ÐüÿL‹$H…ÀI‰Á„á$HƒH‹5£Ç&L‰ÏL‰T$(L‰$è’ÙüÿL‹$L‹T$(H…ÀH‰D$ „8%Iƒ)„\H‹t$ 1?L‰$è,×üÿL‹$H…ÀI‰ÇH‰D$0„}%1ÒL‰×H‰ÆL‰T$8èµÔüÿL‹T$8H‰$I‹H‰D$(HƒèI‰„žH‹|$ H‹H‰D$(HƒèH‰„pHƒ<$„ì7Iƒ*„•H‹L$H‹H‰D$ HƒèH‰„nH‹5'À&ºH‰ßèÚÖüÿ…Àˆ²%„¬¿è‚×üÿI‰ÇH…À„Ì*H‹÷¿&1öL‰ÿHƒH‹ç¿&èŠÓüÿH‹=ƒÂ&1ÒL‰þèi$ýÿI‰ÂH…À„,Iƒ/„r$H‹5´¿&L‰×L‰T$ è'ýÿL‹T$ H…ÀH‰D$„“,Hƒ8„ã$Iƒ*„Ì$H‹D$H‹4$¿Hƒ1ÀèÏÕüÿI‰ÇH‰D$ H…À„f.H‹|$1ÒH‰Æè_ÓüÿI‰ÂI‹H‰D$(HƒèI‰„®$M…Ò„W6H‹|$H‹H‰D$ HƒèH‰„w$I‹BH;$L‰×t
H;•~$…É.L‰T$ èÓüÿL‹T$ Hƒø…1,1öL‰×L‰T$(èOÕüÿL‹T$(H…ÀH‰D$ „µ,L‰׾è/ÕüÿL‹T$(H…ÀH‰D$0„.L‰׾èÕüÿL‹T$(H…ÀH‰D$8„µ2Iƒ*„)'HÇD$HHÇD$@HÇD$PH‹5ÀÃ&ºL‰çèóÔüÿ…Àˆ«)HÇD$(H‹5ƒÅ&„JºH‰ßèÈÔüÿ…ÀˆÀ2„(H‹5C½&ºL‰çè¦Ôüÿ…Àˆ2t"H‹5¿&ºL‰çèˆÔüÿ…Àˆ_7…’0H‹5³½&ºH‰ßèfÔüÿ…Àˆ+7H‹=ŸÀ&„ñ$èì$ýÿI‰ÀH…À„¶2H‹5ÙÅ&H‰ÇH‰D$(èÖüÿL‹D$(H…ÀI‰Á„q2Iƒ(„.2H‹=RÀ&L‰L$(è $ýÿL‹L$(H…À„Þ6H‹5ÓÃ&H‰ÇL‰L$`H‰D$(è¹ÕüÿL‹T$(L‹L$`H…ÀI‰Ç„Î;Iƒ*„È6Hƒ|$8„š<H‹5þÅ&H‹|$8L‰L$(èwÕüÿL‹L$(H…ÀI‰Â„P<Hƒ|$0L‰L$h„î;H‹t$0H‰ÇH‰D$`è#ÒüÿL‹T$`L‹L$hH…ÀH‰D$(„ª;Iƒ*„œ7¿L‰L$`è‚ÑüÿL‹L$`H…ÀH‰Á„°>H‹D$(1ÒH‰ÎL‰ÿH‰L$(H‰A H‹D$8HƒH‰A(èYÐüÿH‹L$(L‹L$`H…ÀI‰À„Q>Hƒ)„7Iƒ/„è6¿L‰D$`L‰L$(èÑüÿL‹L$(L‹D$`H…ÀI‰Ç„ô>L‰@ H‹$HƒI‰G(èàÌüÿL‹L$(H…ÀI‰À„û>H‹l$XH‹5ã¼&H‰ÇL‰L$`H‰D$(H‰êèNÉüÿL‹D$(L‹L$`…Àˆ»>H‹5Ã&L‰ÇH‰êL‰L$Xè%ÉüÿL‹D$(L‹L$X…Àˆ
9L‰ÂL‰ÏL‰þL‰D$`èpÏüÿL‹L$XL‹D$`H…ÀH‰D$(„Å8Iƒ)„¤8Iƒ/„ƒ8Iƒ(„Ø9H‹|$(H;=N|$”ÀH;=Œ{$”ÂÂ…¡#H;=r{$„”#H‹|$(è²Ëüÿ…Àˆ¨6…À„6H‹53Â&ºH‰ßè~Ñüÿ…Àˆ·,„$Hƒ|$H„È4H‹D$HHƒI‰ÄH‹5©Ã&L‰çè)ÓüÿI‰ÇH…À„‡4H‹|$H‰ÆèpÈüÿI‰ÁH…À„d1Iƒ/„„&H‹|$L‰ÎL‰L$XèxÎüÿL‹L$XH…ÀH‰Ã„a2Iƒ)„J&H‹t$H‹H‰D$XHƒèH‰„T&L‰÷è[ÍüÿI‰ÇH…À„1H‹5ðº&H‰ÂH‰ßè
Ïüÿ…ÀˆÄ+Iƒ/„­+HƒH‰\$é(ìÿÿDL‰ÿèðÇüÿéZéÿÿH‹D$1ÉE1ÉE1ÀE1ÒE1ÿH‰ÓE1äHÇD$(E1�
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$H‰$HÇD$ÇD$X@éÿñÿÿDL‰ïèXÇüÿéêÿÿH‹F L‰ÏL‰$H‰„$€è¨ÉüÿL‹$H‰ÃH‹5
À&L‰ÏL‰$èÞÆüÿH‰„$ˆH…À„®L‹$HƒëH…Û@H‹„$ˆH‹¬$€H‹œ$¨L‹¬$H‰$H‹„$ L‹¤$˜H‰D$XéoåÿÿfH‹5I¹&L‰ÏL‰$èmÆüÿL‹$H…ÀtH‰„$HƒëH…Û~“H‹5ì¿&L‰ÏL‰$è@ÆüÿL‹$H…ÀtH‰„$˜HƒëH…ÛŽbÿÿÿH‹5¸&L‰ÏL‰$èÆüÿL‹$H…À„õH‰„$ HƒëHƒû„éH…ÛŽ#ÿÿÿH”$€H‰éL‰ÏLM¢H57^&èâKýÿ…À‰úþÿÿ¾*?éCìÿÿH‹D$1ÉE1ÉE1ÀE1äE1öHÇD$(½•
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$H‰$HÇD$ÇD$X@éTéÿÿH‹D$1ÉE1ÉE1ÀE1佖
HÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$H‰$HÇD$ÇD$X™@éÝèÿÿ€1ÿèÎüÿI‰ÆH…À„8
H‰ÆL‰ÿè:ÆüÿIƒ.I‰Â…áñÿÿL‰÷H‰$èÁÄüÿL‹$éÌñÿÿ„H‰l$1ÉE1ÉE1ÀE1äE1íHÇD$(½Š
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$HÇD$ÇD$X½?é	èÿÿf.„D¶ðé5òÿÿ€H‰ßèÄüÿéŽæÿÿè»ÆüÿH‰ïè“ýÿI‰ÆH…À…Y41ÉE1ÉE1ÀE1äHÇD$(E1�
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$HÇD$ÇD$XÊ?édçÿÿfD1ÿL‰$è•ÌüÿL‹$H…ÀI‰Æ„B
H‰ÆL‰ÿèºÄüÿIƒ.L‹$H‰D$…ºðÿÿL‰÷è?ÃüÿL‹$é©ðÿÿfD1ÉE1ÉE1ÀE1äHÇD$(E1öE1�
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$HÇD$ÇD$XÌ?鋿ÿÿ@1ÉE1ÉE1ÀE1ÒE1äE1íHÇD$(½‹
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$HÇD$ÇD$XÛ?éæÿÿ@H‰l$ÇD$X‚?é[ìÿÿfDL‰ÿL‰$èÂüÿL‹$é:ïÿÿL‰÷èÂüÿéãâÿÿH‹D$1ÉE1ÉE1ÀE1äE1öHÇD$(½“
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$H‰$HÇD$ÇD$XQ@édåÿÿfDL‰ÿL‰$ètÁüÿL‹$éôîÿÿH‹D$ÇD$XS@½“
H‰$1ÉE1ÉE1ÀE1ÒHÇD$(E1äE1öHÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$HÇD$é«äÿÿL‰×èàÀüÿé”îÿÿH‰÷èÐÀüÿéîÿÿ1ÿèáÉüÿI‰ÆH…À„Ÿ
H‰ÆL‰ÿè
ÂüÿIƒ.H‰D$…wìÿÿL‰÷è“ÀüÿéjìÿÿfDè3ÃüÿH‰ïèýÿI‰ÆH…À…Ð7H‹D$1ÉE1ÉE1ÀE1äE1íHÇD$(½Ž
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$H‰$HÇD$ÇD$X	@éÓãÿÿDH‹5‘¯&H‹=z½&1ÒèËÅüÿI‰ÆH…À„kH‰Çèç–ýÿIƒ.„~H‹D$ÇD$Xc@½”
H‰$édáÿÿfL‰ÿ蘿üÿé«íÿÿE¶öéNìÿÿ€1ÿè™ÈüÿH‰D$ H…À„H‹|$H‰Æè¾ÀüÿH‹L$ I‰ÇH‹H‰$HƒèH‰…ÛíÿÿH‰Ïè:¿üÿéÎíÿÿDH‹D$1ÉE1ÉE1ÀE1äE1öHÇD$(½•
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$H‰$HÇD$ÇD$Xu@é”âÿÿfD¿èÆÇüÿI‰ÆH…À„=H‰ÆL‰ÿèï¿üÿIƒ.I‰Â…±êÿÿL‰÷H‰$èv¾üÿL‹$éœêÿÿDH‹D$ÇD$Xw@½•
H‰$éûüÿÿHƒû… øÿÿH‹”V&L‰ÏL‰$H‹0èí½üÿL‹$H…ÀH‰Ã„ú÷ÿÿH‹„$ˆH‹¬$€L‹¬$L‹¤$˜H‰$H‹„$ H‰D$Xé”Üÿÿ€H‰l$ÇD$Xˆ?éûçÿÿfDL‰ÿè=üÿéìÿÿL‰ÿ谽üÿééÿÿH‰÷蠽üÿéVìÿÿH‰l$1ÉE1ÉE1ÀE1äE1öE1�
HÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$HÇD$ÇD$X½?éîàÿÿ€H‹D$1ÉE1ÉE1ÀE1äE1öHÇD$(½—
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$H‰$HÇD$ÇD$X¯@é|àÿÿfDL‰ÿL‰$茼üÿL‹$éÅèÿÿL‰ÿèx¼üÿéLëÿÿ1ÿL‰$è…ÅüÿL‹$H…ÀH‰D$ I‰Ç„½H‹|$H‰ÆL‰T$(螽üÿL‹T$(I‰ÀI‹H‰$HƒèI‰…ìÿÿH‹|$ L‰D$(L‰$è¼üÿL‹D$(L‹$éåëÿÿH‹|$L‰$èó»üÿL‹$éièÿÿL‰×èâ»üÿéfèÿÿH‹D$1ÉE1ÉE1ÀE1äE1öHÇD$(½—
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$H‰$HÇD$ÇD$X´@é2ßÿÿL‰ÿè[»üÿé'èÿÿL‰×èN»üÿéªêÿÿH‹|$L‰$è;»üÿL‹$é}êÿÿ1ÉE1ÉE1ÀE1ÒE1äE1öE1�
HÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$ÇD$XÛ?é„ÞÿÿH‹|$ L‰$趺üÿL‹$éBêÿÿHÇD$(1ÉE1ÉE1ÀHÇD$HE1ÒE1äHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$H‹D$ÇD$X±@½—
HÇD$H‰$éóÝÿÿH‹D$H‹\$1ÉE1ÉE1ÀE1äE1ö½—
HÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$H‰$HÇD$ÇD$X¹@éNäÿÿH‹D$ÇD$X¼@½—
H‰$éGøÿÿH‰l$1ÉE1ÉE1ÀE1äE1öHÇD$(½†
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$HÇD$ÇD$X–?éÝÿÿHÇD$(1ÉE1ÉE1ÀHÇD$HE1äHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$H‹D$ÇD$X¶@½—
HÇD$H‰$élÜÿÿH‰÷L‰D$ L‰$蛸üÿL‹D$ L‹$é“èÿÿH‹5¨&H‹=¶&1Òèh¾üÿI‰ÆH…À„+H‰Ç脏ýÿIƒ.„ÞH‹D$ÇD$XË@½˜
H‰$éÚÿÿL‰÷½”
è2¸üÿH‹D$ÇD$Xc@H‰$éÞÙÿÿH‹D$1ÉE1ÉE1ÀE1äE1íHÇD$(½
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$H‰$HÇD$ÇD$X+@é€ÛÿÿH‹D$1ÉE1ÉE1ÀE1äE1öHÇD$(½ž
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$H‰$HÇD$ÇD$XÝ@éÛÿÿL‰Ïè ·üÿL‹$é‹çÿÿL‰×è·üÿéˆçÿÿH‹D$1ÉE1ÉE1ÀE1ÒE1äHÇD$(½ž
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$H‰$HÇD$ÇD$Xß@éPÚÿÿH‹5ٮ&ºH‰ßè¿üÿ…ÀˆÃ¿„½贿üÿI‰ÂH…À„ªH‹©®&1öL‰×L‰T$HƒH‹”®&跻üÿL‹T$H‹=«ª&1ÒL‰Öè‘ýÿL‹T$H…ÀI‰Á„ÇIƒ*„†H‹5W®&L‰ÏL‰L$è¢ýÿL‹L$H…ÀH‰D$P„.Hƒ8„iIƒ)„RH‹D$PH‹4$¿Hƒ1Àèò½üÿI‰ÇH‰D$H‰ÆH…À„•H‹|$P1Ò肻üÿI‰ÁI‹H‰D$ HƒèI‰„ÛM…É„•-H‹t$PH‹H‰D$HƒèH‰„bI‹AH;<g$L‰ÏL‰L$t
H;³f$…谻üÿL‹L$Hƒø…Û1öL‰ÏL‰L$èr½üÿL‹L$H…ÀH‰D$(„`L‰ϾèR½üÿL‹L$L‹T$(H…ÀH‰D$ „ëIƒ)„L‰T$0HÇD$HHÇD$@HÇD$8HÇD$é+èÿÿH‹D$1ÉE1ÉE1ÀE1佟
HÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ H‰$HÇD$ÇD$Xì@éØÿÿH‹D$H‹\$1ÉE1ÉE1ÀE1ÒE1äE1öHÇD$(½•
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$H‰$HÇD$ÇD$X„@éLÞÿÿL‰÷誳üÿéQÕÿÿL‰ÏL‰$虳üÿL‹$éäÿÿH‹D$½Ÿ
1ÉE1ÉÇD$Xñ@E1ÀE1ÒE1äH‰$HÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$HÇD$éÖÖÿÿHÇD$(1ÉE1ÉE1ÀHÇD$HE1ÒE1äHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$H‹D$ÇD$X@½•
HÇD$H‰$é\ÖÿÿH‹D$H‹\$1ÉE1ÉE1ÀE1äE1ö½•
HÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$H‰$HÇD$ÇD$X‰@é·ÜÿÿL‰T$(è²üÿL‹T$(é|ãÿÿH‹|$0L‰T$(èú±üÿL‹T$(éIãÿÿH‰Ïèè±üÿé…ãÿÿL‰×è۱üÿé^ãÿÿH‹D$1ÉE1ÉE1ÀE1你
HÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$H‰$HÇD$ÇD$Xû@é=ÕÿÿHÇD$(H‹\$1ÉE1ÉHÇD$HE1ÀE1ÒE1ÿHÇD$@E1äHÇD$PHÇD$8HÇD$0H‹D$ÇD$Xî@½Ÿ
HÇD$H‰$HÇD$é€ÛÿÿH‹D$ÇD$XŒ@½•
H‰$éyïÿÿHÇD$(1ÉE1ÉE1ÀHÇD$HE1äHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ H‹D$ÇD$X	A½ 
HÇD$H‰$é,ÔÿÿH‹\$1ÉE1ÉE1ÀHÇD$(E1ÒE1äHÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$H‹D$ÇD$X†@½•
HÇD$H‰$éxÚÿÿH‹D$H‹\$ 1ÉE1ÉE1ÀE1ÿE1你
HÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$H‰$HÇD$ÇD$XAéùÙÿÿHƒìH‹D`$H
`ˆH5‹jL
ɋA¸Ho‹H‹81Àèæ·üÿY^¾?émÕÿÿH‹D$1ÉE1ÉE1ÀE1你
HÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ H‰$HÇD$ÇD$XAé{Òÿÿè÷·üÿI‰ÁH…À„ÛH‹ԧ&1öL‰ÏL‰L$HƒH‹¿§&èú³üÿL‹L$H‹=î¢&1ÒL‰ÎèÔýÿL‹L$H…ÀI‰À„4Iƒ)„
H‹5‚§&L‰ÇL‰D$èåýÿL‹D$H…ÀH‰D$@„ªHƒ8„VIƒ(„?H‹l$@H‹4$¿1ÀHƒEè4¶üÿI‰ÇH‰D$H…À„à1ÒH‰ÆH‰ïèƳüÿH‰D$HI‹H‰D$ HƒèI‰„Þ
Hƒ|$H„2&H‹L$@H‹H‰D$HƒèH‰„
HÇD$PHÇD$8HÇD$0HÇD$ HÇD$éíàÿÿH‹D$1ÉE1ÉE1ÀE1佔
HÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$H‰$HÇD$ÇD$X_@éËÐÿÿH‹D$1ÉE1你
HÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$H‰$HÇD$ÇD$X3AéKÐÿÿL‰÷½˜
èo¬üÿH‹D$ÇD$XË@H‰$éÎÿÿ1ÉE1ÉE1ÀE1äHÇD$(E1öHÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$é§ñÿÿH‹D$1ÉE1ÀE1äHÇD$(½ 
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ H‰$HÇD$ÇD$X>AébÏÿÿHÇD$(H‹\$1ÉE1ÉHÇD$HE1ÀE1ÿE1äHÇD$@HÇD$PHÇD$8HÇD$0H‹D$ÇD$XA½ 
HÇD$H‰$HÇD$é·ÕÿÿH‹D$1ÉE1ÉE1ÀE1佱
HÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ H‰$HÇD$ÇD$XMAéÎÿÿ1ÉE1ÉE1ÀE1äHÇD$(E1öHÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ éñÿÿL‰$è­üÿL‰ÿèÜýÿL‹$H…ÀH‰D$ …£!H‹D$1ÉL‹L$ E1ÀE1佱
HÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0H‰$HÇD$ÇD$XOAé¢ÍÿÿH‹D$1ÉE1ÀE1äHÇD$(½±
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0H‰$HÇD$ÇD$XQAé@ÍÿÿL‰ÿH‰D$èd©üÿL‹T$éwÛÿÿH‹\$ H‹H‰$HƒèH‰„·HÇD$(1ÉE1ÉE1ÀHÇD$HE1äHÇD$@HÇD$PHÇD$8H‹D$ÇD$XaA½±
HÇD$ H‰$HÇD$é«ÌÿÿL‰×èԨüÿé'ÛÿÿH‰ÇèǨüÿL‹T$ éÛÿÿL‰T$ 賨üÿL‹T$ éuÛÿÿH‹|$ L‰T$(蚨üÿL‹T$(é9ÛÿÿÇD$XnA½²
1ÉE1ÉE1ÀE1äHÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$é	Ìÿÿ1ÉE1ÉE1ÀE1ÒHÇD$(E1äE1öHÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ éõÿÿ1ÉE1ÉE1ÀE1ÒH‹\$E1äHÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ élöÿÿ1ÉE1ÉE1ÀE1äHÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$é¯öÿÿH‹\$1ÉE1ÉE1ÀHÇD$(E1äE1öHÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$éÎöÿÿèûÿüÿI‰ÀH…À„H‹5Ƞ&H‰ÇH‰D$(è±üÿL‹D$(H…ÀI‰Ç„ÊIƒ(„T
Hƒ|$0„H‹|$X読üÿI‰ÀH…À„³H‹|$01ÒH‰ÆH‰D$XèZ°üÿL‹D$XH…ÀH‰D$(„oIƒ(„ÌH‹l$(L‰ÿH‰îèMóüÿH‰ÁH‹EH‰D$XHƒèH‰E„‰H…É„EIƒ/„ãH;
	Y$@ӁH;
FX$”À@è…Ð	H;
+X$„Ã	H‰ÏH‰L$(èh¨üÿH‹L$(…	ň#Hƒ)„K…í…xH‹°X$HƒH‰D$(H‹D$(H;›X$”À¶ÀévÜÿÿL‰×H‰D$ès¥üÿL‹L$écïÿÿL‰×èa¥üÿHÇD$HHÇD$@HÇD$PéÊØÿÿH‹D$1ÉE1ÉE1ÀE1佘
HÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$H‰$HÇD$ÇD$XÇ@é¨ÈÿÿH‹5&ºH‰ßèF­üÿ…Àˆî„ÔHƒ|$ „„H‹=m™&èÀýüÿI‰ÇH…À„OH‹5ý–&H‰Çèå®üÿI‰ÁH…À„˜Iƒ/„ˆHƒ|$0„ÛH‹|$0L‰L$Xè«üÿL‹L$XH…ÀI‰Ä„¤L‰ÏH‰ÆèHñüÿIƒ,$L‹L$XH‰Á„Ü
H…É„/Iƒ)„²
H‹|$ H‰ÎH‰L$Xè@«üÿH‹L$XH…ÀI‰Ä„¶Hƒ)…
ÛÿÿH‰ÏèͣüÿéÛÿÿL‰ÏH‰D$軣üÿL‹D$éhõÿÿÇD$XëA½µ
éûÿÿH‹|$L‰L$ 萣üÿL‹L$ éîÿÿH‰Ïè~£üÿéãõÿÿL‰Ïèq£üÿé¡íÿÿH‰Çèd£üÿL‹L$é…íÿÿ1ÉE1ÉE1ÀE1äHÇD$(½³
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$ÇD$XxAéÓÆÿÿH‰÷L‰L$èè¢üÿL‹L$é‡íÿÿH‹|$èԢüÿéõÿÿL‰ÇèǢüÿé´ôÿÿH‰Ç躢üÿL‹D$é˜ôÿÿÇD$X’B½¿
1ÉE1ÉE1ÀE1äHÇD$(éhÆÿÿH‰ßL‰T$`E1佱
èu¢üÿH‹D$1ÉE1ÉE1ÀL‹T$`HÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$ H‰$HÇD$ÇD$XaAéâÅÿÿL‰Ïè¢üÿé©ÙÿÿL‰ÿH‰D$Xèù¡üÿL‹L$XéeÙÿÿH‰÷èç¡üÿéŸÙÿÿ1ÉE1ÉE1ÀE1äHÇD$(½³
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$ÇD$X}Aé=Åÿÿ1ÉE1ÉE1ÿH‹\$HÇD$(E1äHÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ éßõÿÿ1ÉE1ÉE1ÀE1äHÇD$(½³
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ ÇD$X€AéœÄÿÿ€H…ÀˆHƒøH?}H
øwL‰T$`HEÊH‰ÂH‹R$H5òŠH‹81ÀèH©üÿÇD$X¤A1ÉE1ÉE1=´
E1äHÇD$(L‹T$`HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ éöÃÿÿ1ÉE1ÉE1ÀE1äHÇD$(½´
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0ÇD$X´Aé£ÃÿÿHƒ|$ „¯H‹=™”&èìøüÿH‰ÁH…À„|H‹5)’&H‰ÇH‰D$XèªüÿH‹L$XH…ÀI‰Ç„<Hƒ)„NHƒ|$0„^H‹t$0L‰ÿèˆìüÿI‰ÁH…À„(Iƒ/„H‹|$ L‰ÎL‰L$X萦üÿL‹L$XH…ÀI‰Ä„ÉIƒ)…]ÖÿÿL‰ÏèŸüÿéPÖÿÿ1ÉE1ÉE1ÀE1ÒL‹|$E1äHÇD$(½´
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0ÇD$X›Aé}ÂÿÿL‰ÏL‰T$谞üÿL‹T$éÖéÿÿL‹|$ 1ÉE1ÉE1ÀE1佴
HÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$ ÇD$X¶AéÂÿÿL‰T$(è¦üÿL‹T$(H…ÀH‰D$ „?Iƒ*„(H‹t$ H‹FH‰÷H‹€èH‰D$(ÿÐI‰ÇH…À„…H‹|$ H‹D$(ÿÐI‰ÀH…À„¥H‹l$ H‰D$0H‹D$(H‰ïÿÐL‹D$0H…ÀH‰D$8„yH‰ïH‹D$(ÿоH‰ÇèKŠýÿL‹D$0…ÀˆòH‹EH‰D$(HƒèH‰E„EL‰D$0L‰|$ éæÐÿÿ1ÉE1ÉE1äÇD$XhBHÇD$(½º
HÇD$HHÇD$PHÇD$8HÇD$0HÇD$ HÇD$éýÀÿÿ1ÉE1äHÇD$(½º
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$ÇD$XeBéžÀÿÿ1ÉE1ÀE1äÇD$X`BHÇD$(½º
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$é<ÀÿÿL‰ÿèVœüÿéFÔÿÿH‰\$½Ù
1ÉE1ÉÇD$XTDE1ÀE1Òéï¿ÿÿÇD$XÁC1ÉE1ÉE1=Î
E1äéð¿ÿÿ@¶íéPöÿÿ1ÉE1ÉE1ÀL‹T$PE1佸
HÇD$(HÇD$HHÇD$@HÇD$8HÇD$0HÇD$ ÇD$XB逿ÿÿ1ÉE1ÀE1äÇD$XýAHÇD$(½¶
HÇD$HHÇD$@HÇD$8HÇD$0HÇD$ HÇD$é6¿ÿÿH‹5áŠ&H‹=â˜&1Òè3¡üÿH‰ÃH‰D$(H…À„–H‰ÇèJrýÿH‹H‰D$XHƒèH‰„]ÇD$XºB½Á
é`øÿÿ1ÉL‹L$@E1ÀE1äHÇD$(½»
HÇD$HHÇD$PHÇD$8HÇD$0HÇD$ ÇD$XƒB錾ÿÿ1ÉE1ÉE1ÀE1äHÇD$(½¶
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$ÇD$XõAé'¾ÿÿ1ÉE1ÀE1äÇD$XúAHÇD$(½¶
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ HÇD$鶽ÿÿL‹D$0L‹|$ 1ÉE1ÉE1佴
HÇD$(HÇD$HHÇD$@HÇD$PHÇD$0HÇD$ ÇD$X¸AéM½ÿÿÇD$X¤B½À
1ÉE1ÉE1ÀE1äéN½ÿÿÇD$X˜B1ÉE1ÉE1=¿
E1äé1½ÿÿL‰ÇH‰D$(èF™üÿL‹L$(é»ÍÿÿL‰Çè4™üÿéŸòÿÿH‹€K$HƒH‰D$(éƒóÿÿ1ÉE1äHÇD$(½Ä
ÇD$XØBéؼÿÿ1ÉE1ÉE1äÇD$XÖBHÇD$(½Ä
鵼ÿÿL‰ÿH‰D$XèʘüÿL‹L$XéaôÿÿÇD$XàC1ÉE1ÉE1=Ð
E1ä遼ÿÿÇD$X¤A1ÉE1ÉE1=´
E1äHÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ é¼ÿÿH‹ÀI$ºL‰T$`H5|H‹81Àèå üÿé˜÷ÿÿè۟üÿL‹L$H…ÀI‰Ç„¯Iƒ)„˜I‹GL‰ÿH‹èH‰T$ ÿÒI‰ÂH…À„J
H‹T$ H‰D$L‰ÿH‰T$(ÿÒL‹T$H…ÀH‰D$ „%
L‰ÿH‹T$(ÿҾH‰ÇèA„ýÿL‹T$…ÀˆIƒ/…ºâÿÿL‰ÿ肗üÿL‹T$é¨âÿÿH‹yJ$HösE1佯
H5ÆH‹81Àè üÿ1ÉE1ÉE1ÀE1ÒÇD$XBCHÇD$(éðºÿÿ1ÉE1ÀE1ÒÇD$XBD½Ø
éֺÿÿ1ÉE1ÉE1ÀH‰\$ÇD$XRD½Ù
éպÿÿ1ÉE1ÉE1ÀL‹|$E1佴
HÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ ÇD$X›AéVºÿÿ1ÉE1ÉE1ÀE1äHÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0éGíÿÿL‰ÏH‰L$XèC–üÿH‹L$Xé7òÿÿL‰çH‰D$`è,–üÿH‹L$`L‹L$XéòÿÿL‰ÿH‰L$(è–üÿH‹L$(éðÿÿ1ÉE1=Ø
ÇD$XEDé͹ÿÿ1ÉE1ÀE1äÇD$X0BHÇD$(½¸
HÇD$HHÇD$@HÇD$8HÇD$0HÇD$én¹ÿÿ1ÉE1ÀE1äÇD$X.BHÇD$(½¸
HÇD$HHÇD$@HÇD$8HÇD$0HÇD$ HÇD$é$¹ÿÿHH…ÀˆæHƒøH¸qH
qlL‰L$`HEÊH‰ÂH‹’F$H5kH‹81Àè]üÿÇD$X!B1ÉE1ÀE1佸
L‹L$`HÇD$(HÇD$HHÇD$@HÇD$8HÇD$0HÇD$ HÇD$選ÿÿÇD$XÌB½Ã
éîñÿÿÇD$XªBéÿúÿÿ1ÉE1ÀE1äÇD$XÛBHÇD$(½Ä
é?¸ÿÿL‰×L‰L$(èT”üÿL‹L$(é!ÉÿÿL‰ÿH‰D$Xè=”üÿL‹L$XéáôÿÿH‰Ïè+”üÿé¥ôÿÿ1ÉE1ÉE1ÀÇD$X@D½Ø
éê·ÿÿH‹
G$HÂmE1ä½Ï
H5WƒH‹81À襜üÿ1ÉE1ÉE1ÀÇD$XËC鮷ÿÿ1ÉE1ÉE1äÇD$X?CHÇD$(½Æ
鋷ÿÿ1ÉE1ÉE1äÇD$X=CHÇD$(½Æ
éh·ÿÿH‹|$(H‰L$Xè{“üÿH‹L$Xé^íÿÿL‰Çèi“üÿé'íÿÿH‰Ïè\“üÿé¨íÿÿL‰ÿL‰D$`L‰L$(èE“üÿL‹D$`L‹L$(é÷ÈÿÿH‰ÏL‰L$(H‰D$`è$“üÿL‹D$`L‹L$(éÌÈÿÿL‰×L‰L$`è“üÿL‹L$`éMÈÿÿH‹5„&ºL‰çèz›üÿ…ÀˆP„H‹=íƒ&èìüÿH‰ÁH…À„ÎH‹5åƒ&H‰ÇH‰D$Xè üÿH‹L$XH…ÀI‰Ç„ŽHƒ)t{H‹5‚&1ÒL‰ÿèx˜üÿI‰ÄH…ÀtEIƒ/t5Iƒ,$…mÉÿÿL‰çèg’üÿé`ÉÿÿÇD$XgC1ÉE1ÉE1=Ç
E1äé#¶ÿÿL‰ÿè=’üÿëÁ1ÉE1ÉE1ÀE1ÒÇD$X‰C½É
é޵ÿÿH‰Ïè’üÿéxÿÿÿE1ÉE1ÀE1ä½É
ÇD$X~CéԵÿÿE1ÉE1ÀE1ä½É
ÇD$X|C鹵ÿÿH‹5T&H‹=e&1Ò趗üÿI‰ÄH…ÀtSH‰ÇèÖhýÿIƒ,$t:ÇD$X¤C1ÉE1ÉE1=Ì
E1äépµÿÿÇD$XrC1ÉE1ÉE1=È
E1äéSµÿÿL‰çèm‘üÿë¼1ÉE1ÉE1ÀÇD$X C½Ì
é/µÿÿÇD$X!B1ÉE1ÀE1äHÇD$(½¸
HÇD$HHÇD$@HÇD$8HÇD$0HÇD$ HÇD$éִÿÿH‹qB$ºL‰L$`H5ÈtH‹81À薙üÿéÐûÿÿL‰ÿL‰D$XèĐüÿL‹D$XéfÇÿÿL‰ÏL‰D$X譐üÿL‹D$XéEÇÿÿ1ÉE1ÒE1äÇD$X#C½Ä
éI´ÿÿÇD$X"C½Ä
1ÉE1ÒE1äHÇD$(é&´ÿÿ1ÉE1=Ö
ÇD$X1Dé-´ÿÿE1ÉE1ÀE1ä½Ö
ÇD$XDé´ÿÿE1ÉE1ÀE1ä½Ö
ÇD$XDé÷³ÿÿH‹C$HalE1ä½Ö
H5dH‹81À貘üÿ1ÉE1ÉE1ÀÇD$XD黳ÿÿE1ÀE1ä½Ô
ÇD$XD飳ÿÿE1ÉE1ÀE1ÒE1äHÇD$(½Æ
ÇD$XTCé^³ÿÿI‰ÂéX¯ÿÿ½Æ
E1ÉE1ÀE1äÇD$XWCHÇD$(éP³ÿÿL‰ÇèjüÿéÆÿÿ1ÉE1ÀE1äÇD$XÝBHÇD$(½Ä
é³ÿÿH‹|$ L‰D$(è3üÿL‹D$(é¢ñÿÿE1ÉE1=Ô
ÇD$XDéï²ÿÿ1ÉE1ÀE1äÇD$XäB½Ä
鷲ÿÿH‰D$`H‹óA$HpkE1äH5B~½Ä
H‹81À苗üÿ1ÉE1ÀL‹T$`HÇD$(L‹L$hÇD$XãBéf²ÿÿ1ÉE1ÀE1äÇD$XáBHÇD$(½Ä
éC²ÿÿH‹„A$HÈjL‰L$`E1äH5Î}½Ä
H‹81Àè—üÿ1ÉE1ÀE1ÒHÇD$(L‹L$`ÇD$XàBéô±ÿÿ1ÉE1ÀE1ÒE1äÇD$X.D½Ö
éױÿÿH‹A$H•jE1ä½Ö
H5b}H‹81À谖üÿ1ÉE1ÉE1ÀE1ÒÇD$X!D阱ÿÿ1ÉE1ÉE1ÒE1äÇD$XEC½Æ
é{±ÿÿ1ÉE1ÉE1ÒE1äHÇD$(½Æ
ÇD$XCCéU±ÿÿ1íIƒ/„
L‰T$èßæüÿL‹T$…À…—HƒýHóiH‰êL‰T$`H
¤dH5±w½¸
HEÈH‹Á>$E1äH‹81Àèô•üÿ1ÉE1ÉE1ÀÇD$XFBL‹T$`HÇD$(HÇD$HHÇD$@HÇD$8HÇD$0HÇD$ HÇD$骰ÿÿÇD$XFB1ÉE1ÉE1=¸
E1äHÇD$(HÇD$HHÇD$@HÇD$8HÇD$0HÇD$ HÇD$éN°ÿÿL‰ÿL‰T$èrŒüÿL‹T$éßþÿÿL‰Ïè`Œüÿé[ôÿÿ1ÉE1ÀE1äÇD$X6BHÇD$(½¸
HÇD$HHÇD$@HÇD$8HÇD$0HÇD$ HÇD$éà¯ÿÿE1ÒE1äHÇD$(½Ä
ÇD$XC顯ÿÿH‹\$(E1ÀE1ÒE1äHÇD$(½Ä
ÇD$XCéR¶ÿÿH‹|$(½Á
詋üÿÇD$XºBéùèÿÿ1ÉE1ÉE1ÀE1äÇD$X¶B½Á
é]¯ÿÿL‹D$ ½¸
1ÉE1ÉÇD$X>BE1äHÇD$(HÇD$HHÇD$@HÇD$8HÇD$0HÇD$ HÇD$éá®ÿÿ1ÉE1äHÇD$(½Ä
ÇD$XCé߮ÿÿÇD$X!Césúÿÿ1ÉE1ÒE1äÇD$XCHÇD$(½Ä
鑮ÿÿ1ÉE1ÀE1ÒE1äÇD$XíC½Ô
ét®ÿÿI‰Ç鼩ÿÿL‹L$8H‹\$ 1ÉE1ÒÇD$XÈA½´
E1äHÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ éã´ÿÿ½H‹\$ H‹H‰D$(HƒèH‰„L‰D$ è€ãüÿL‹D$ …À…¡HƒýH”fH‰êL‰D$`H
EaH5Rt½´
HEÈH‹b;$E1äH‹81À蕒üÿ1ÉE1ÉE1ÒÇD$XÐAL‹D$`HÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ é<­ÿÿE1À1íé.ÿÿÿÇD$XÐA1ÉE1ÉE1ҽ´
E1äHÇD$(HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0HÇD$ é֬ÿÿH‰ßL‰D$(è	‰üÿL‹D$(éÕþÿÿL‰×è÷ˆüÿéËêÿÿ1ÉE1ÉE1ÀE1äHÇD$(½´
HÇD$HHÇD$@HÇD$PHÇD$8HÇD$0ÇD$X¾Aén¬ÿÿH‰Âé"©ÿÿI‰ÁéU¹ÿÿ1ÉE1=Ô
ÇD$XñCéV¬ÿÿH‹y;$HödL‰L$`E1äH5Ãw½Ô
H‹81Àè‘üÿ1ÉE1ÀL‹L$`ÇD$XðCé¬ÿÿ1ÉE1ÉE1ÀE1äÇD$XëC½Ô
éö«ÿÿH‹;$H`dE1ä½Ô
H5cwH‹81À豐üÿ1ÉE1ÉE1ÀÇD$XêC麫ÿÿ1ÉE1ÀL‹T$PE1äHÇD$(½¸
HÇD$HHÇD$@HÇD$8HÇD$0HÇD$ HÇD$ÇD$XBéM«ÿÿ1ÉL‹L$@E1ÀE1äHÇD$(½»
HÇD$PHÇD$8HÇD$0HÇD$ HÇD$ÇD$XƒBé«ÿÿf„AWAVI‰ÖAUATUSH‰óHìˆHƒHƒIƒH‹-Î{&H‰¼$˜H‹=_†&H‰îH‰L$ L‰D$L‰L$pHDŽ$ HDŽ$¨HDŽ$°HDŽ$¸HDŽ$ÀHDŽ$Èèè‡üÿH…À„ŸHƒI‰ÇH‰„$ H‹5i€&L‰ÿèѐüÿH‹¼$ I‰ÄH…À„=Hƒ/„[¿HDŽ$ è
üÿI‰ÇH‰„$ H…À„éHƒH‰X èìˆüÿI‰ÇH‰„$¨H…À„H‹I8$H‹5â~&H‰Çèb…üÿ…ÀˆêH‹”$¨H‹´$ L‰ç貋üÿI‰ÇH‰„$°H…À„Ö
Iƒ,$„£H‹¼$ Hƒ/„H‹¼$¨HDŽ$ Hƒ/„SHƒ+H‹„$°HDŽ$¨H‰„$„H‹5Žz&H‹¼$HDŽ$°蝏üÿI‰ÇH‰„$°H…À„9-H‹5Úu&H9ð„‰H‹26$I9G„ÐL‰ÿºèëŽüÿI‰ÇH‰„$¨H…À„_&H‹à7$H‹´$°H‰D$xHƒ.„H‹¼$¨H;|$xHDŽ$°”ÀH;=î6$”ÂÂ…H;=Ô6$„è‡üÿH‹¼$¨‰ÅÀˆg-Hƒ/„úHDŽ$¨…Û„ÿH´$ÀH¼$¸H”$È茉üÿH‹x&H‹=–ƒ&H‰Þèv…üÿH…À„­.HƒH‰„$°H‹52{&H‰ÇèbŽüÿH‰„$ H…À„¡6H‹¼$°Hƒ/„¯,H‹5z&H‹¼$HDŽ$°èŽüÿH‰ÃH…À„k7H‹5ü‚&1ÒH‰Ç肉üÿH‰„$°H…À„FHƒ+„7-H‹´$°¿1ÀH‹œ$ 蛋üÿH‰ÅH…À„ÇF1ÒH‰ßH‰Æè2‰üÿHƒmH‰Ã„t-H‹¼$°H‰œ$¨Hƒ/„ê,Hƒ¼$¨H‹¼$ HDŽ$°„wFHƒ/„=-H‹¼$¸L‹¼$¨HDŽ$ HDŽ$¨H…ÿt
Hƒ/„)H‹¼$ÀHDŽ$¸H…ÿt
Hƒ/„Û(H‹¼$ÈHDŽ$ÀH…ÿt
Hƒ/„¨(H‹51s&L‰ÿºHDŽ$ÈèPŒüÿI‰ÅH‰„$°H…À„'FH;D$x”ÀL;-…4$”ÂÂu
L;-o4$…y'¶ØIƒm„{,HDŽ$°…Û…?$H‹D$H;;4$„5H‰Ç譅üÿH‰ÃHƒøÿ„’IH‹-¡v&H‹=:&H‰îèƒüÿI‰ÅH…À„€JHƒH‰„$°H‹5t&L‰ïèŒüÿI‰ÅH‰„$¨H…À„>KH‹¼$°Hƒ/„Õ'H‹->v&H‹=׀&HDŽ$°H‰î諂üÿI‰ÄH…À„‰(HƒH‹5$y&L‰ç蜋üÿH‰ÅH…À„òKIƒ,$„µ4L‹-æu&H‹=€&L‰îè_‚üÿI‰ÄH…À„ãNHƒH‹5Àx&L‰çèP‹üÿI‰ÅH…À„ÃOIƒ,$„!D1ÀL‰î¿èúˆüÿH…À„°R1ÒH‰ÆH‰ïH‰$萆üÿH‹$I‰ÄHƒ)„_DL‰¤$°Iƒm„äCL‹¬$°M…í„rRHƒm„ DH‹5qx&H‹¼$°輊üÿI‰ÅH…À„]UH‹¼$°Hƒ/„EL‰î1?HDŽ$°H‹¬$¨èKˆüÿI‰ÄH…À„eY1ÒH‰ïH‰Æèâ…üÿIƒ,$H‰Å„EH‹¼$°H‰¬$ H…ÿt
Hƒ/„HHDŽ$°Iƒm„ƒDL‹¬$ M…í„WXH‹¼$¨Hƒ/„¥DH‹D$H‹5~&HDŽ$¨L‹¬$ HDŽ$ H‹xH9÷„º,譈üÿ…À…­,H‹Æ~&¿H‹¨(ÿhE1É1É1ÒA¸H‰ÆH‹|$ÿÕH‰$H‰„$ H…À„$hH‰„$¨HƒH‹¼$ Hƒ/„­MH‹„$¨H‹L$HDŽ$ H‰„$€H‹H‰$HƒèH‰„kMH‹„$€H;î0$HDŽ$¨…µiH‹¼$€H‹5Ås&H‹oèäˆüÿH‰$H‰„$¨H…À„ÁjH‹5o&H94$„¬`H‹$H‹
s/$H9H„¦WH‹<$ºè+ˆüÿH‰$H‰„$ H…À„ülH‹´$¨Hƒ.„7RH‹¼$ H;|$xHDŽ$¨”ÀH;=90$”ÂÂ…bFH;=0$„UFèd€üÿH‹¼$ A‰ąÀˆrHƒ/„ATHDŽ$ E…ä…C€H‹5p&H‹¼$€èî‡üÿH‰$H‰„$ H…À„GƒH‰ǺL‰þèY‡üÿH‹¼$ H‰$H‰„$¨H…À„؃Hƒ/„ŽZH‹¼$¨H;|$xHDŽ$ ”ÀH;=g/$”ÂÂ…XIH;=M/$„KIè’üÿH‹¼$¨A‰ąÀˆ‚‡Hƒ/„C_HDŽ$¨E…ä…Œ‰H‰ÞH‰ïÿ<{&H‹…q&H‹=|&òD$H‰Þèø}üÿH‰$H…À„ŒHƒH‰„$ H‹<$H‹5\s&è߆üÿH‹¼$ I‰ÄH…À„MHƒ/„ºdòD$HDŽ$ èJ{üÿH‰$H‰„$ H…À„(˜H‰ƿ1ÀèV„üÿH‰ÃH…À„U—1ÒH‰ÆL‰çèíüÿHƒ+H‰Å„jH‹¼$ H‰¬$¨Hƒ/„ôhH‹„$¨HDŽ$ H‰$H…À„—Iƒ,$„AkH‹¼$¨H;|$x”ÀH;=ë-$”ÂÂ…µVH;=Ñ-$„¨Vè~üÿH‹¼$¨‰ÅÀˆ±‘Hƒ/„1oHDŽ$¨…Û…؞H‹p&H‹=°z&H‰Þè|üÿI‰ÄH…À„ܝHƒH‹5aq&L‰ç聅üÿH‰$H‰„$ H…À„Iƒ,$„€H‹¼$ H‹5:n&èM…üÿH‹¼$ I‰ÄH…À„įHƒ/„C‡H‹5€k&1ÒH‹¼$€HDŽ$ 蝄üÿH‰$H‰„$ H…À„C°H‰ƿ1À蹂üÿH‰ÃH…À„!°1ÒH‰ÆL‰çèP€üÿHƒ+H‰Å„XˆH‹¼$ H‰¬$¨Hƒ/„4ˆH‹„$¨HDŽ$ H‰$H…À„†§Iƒ,$„û‡H‹¼$¨H;|$x”ÃH;=N,$”ÀØ…iH;=4,$„‚ièy|üÿ‰ÅÀˆ-«H‹¼$¨Hƒ/„÷ŒHDŽ$¨…Û…ȧòD$ò\czfT“zèžxüÿH‰$H‰„$¨H…À„)ÆH‹<$ºL‰îèhƒüÿI‰ÄH…À„KÅH‹¼$¨Hƒ/„[L;d$xHDŽ$¨”ÃL;%‡+$”ÀØ…t€L;%m+$„g€L‰çè¯{üÿ‰ÅÀˆh³Iƒ,$„—H‹„$€H‰D$…Û„8H‹5æh&H‹=ov&1ÒèÀ~üÿH‰$H…À„(áH‹$H‰ßè×OýÿH‹H‰D$HƒèH‰„GàH‹¼$ 1ÉE1äE1ÉH‹œ$1íƄ$€HDŽ$ˆHÇD$8ÇD$pGÇD$xˆHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$éÃèãwüÿé›ñÿÿfDHÇD$81ÉE1É1íHDŽ$ˆE1íH‹¼$ HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$pÇD$xbfDH…ÿt
Hƒ/„iM…ätIƒ,$„‰H‹¼$¨H…ÿt
Hƒ/„’H‹¼$°H…ÿt
Hƒ/„«H…ítHƒm„ËH…Ét
Hƒ)„ìM…Ét
Iƒ)„=‹T$x‹t$pH
¢O1íH=•fèÐüÿ€¼$€u H‹„$ˆH‹@H‹…ÒŽðƒ(„–M…ÿt
Iƒ/„—M…ítIƒm„—H‹$H…ÉtH‹H‰D$pHƒèH‰„‰H‹T$H…ÒtH‹H‰$HƒèH‰„{H‹t$ H…ötH‹H‰$HƒèH‰„mH‹L$0H…ÉtH‹H‰$HƒèH‰„?H‹T$8H…ÒtH‹H‰$HƒèH‰„1H‹t$HH…ötH‹H‰$HƒèH‰„#H‹L$hH…ÉtH‹H‰$HƒèH‰„H‹T$`H…ÒtH‹H‰$HƒèH‰„H‹t$@H…ötH‹H‰$HƒèH‰„ùH‹L$PH…ÉtH‹H‰$HƒèH‰„ëH‹T$XH…ÒtH‹H‰$HƒèH‰„ÝH‹t$(H…ötH‹H‰$HƒèH‰„ßH‹|$H…ÿtH‹H‰$HƒèH‰„ÑH…Ût
Hƒ+„ÒM…öt
Iƒ.„ÓH‹\$H…ÛtH‹H‰$HƒèH‰„uHĈH‰è[]A\A]A^A_ÃHƒ/¶Ø…ðÿÿè^tüÿHDŽ$¨…Û…ðÿÿH‹5g&H‹¼$è¦~üÿI‰ÇH‰„$¨H…À„Ê H‹t$pH‰ÇèuuüÿI‰ÇH‰„$°H…À„Ñ&H‹¼$¨Hƒ/„ßL‹¼$°H‹5¨d&HDŽ$¨HDŽ$°L9þ„oH‹è$$I9G„žºL‰ÿè¡}üÿI‰ÅH‰„$°H…À„m'H;D$x”ÀL;-Ö%$”¶ØÂ…6L;-¹%$„)L‰ïèûuüÿ‰ÅÀ‰H‹¼$ 1ÉE1äE1ÉH‹œ$1íE1íƄ$€HDŽ$ˆHÇD$8ÇD$pÇD$xnHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$éoûÿÿ€H‰Ïèˆrüÿé´üÿÿH‰×èxrüÿéÂüÿÿH‰÷èhrüÿéÐüÿÿH‰ÏèXrüÿéÞüÿÿH‰×èHrüÿéìüÿÿH‰÷è8rüÿéúüÿÿH‰Ïè(rüÿéýÿÿH‰×èrüÿéýÿÿH‰ßèrüÿé~ýÿÿH‰÷èøqüÿéýÿÿèëqüÿé%ýÿÿfDH‰ßèØqüÿé!ýÿÿL‰÷èÈqüÿé ýÿÿL‰ÿè¸qüÿé\ûÿÿL‰ïè¨qüÿé\ûÿÿH‰Ïè˜qüÿéjûÿÿH‰×èˆqüÿéxûÿÿH‰÷èxqüÿé†ûÿÿL‰Ïèhqüÿé¶úÿÿH‰Œ$˜L‰Œ$èKqüÿH‹Œ$˜L‹Œ$éDúÿÿfDH‰Œ$˜L‰Œ$èqüÿH‹Œ$˜L‹Œ$é+úÿÿfDH‰ïH‰Œ$˜L‰Œ$èèpüÿH‹Œ$˜L‹Œ$éúÿÿH‰ÏL‰Œ$èÀpüÿL‹Œ$é÷ùÿÿH‰Œ$˜L‰Œ$è›püÿH‹Œ$˜L‹Œ$émùÿÿfDL‰çH‰Œ$˜L‰Œ$èhpüÿH‹Œ$˜L‹Œ$éJùÿÿH‹D$x»HƒH‰„$°H‹¼$°Hƒ/„HDŽ$°…Û„îÿÿH‹åd&H‹=~o&H‰Þè^qüÿI‰ÅH…À„dHƒH‰„$¨H‹5¿c&L‰ïèGzüÿI‰ÅH‰„$ H…À„J;H‹¼$¨Hƒ/„A#L‰ö1?HDŽ$¨H‹œ$ èÎwüÿH‰ÅH…À„¡<1ÒH‰ÆH‰ßèeuüÿHƒmI‰Å„W2H‹„$¨L‰¬$°H‰$H…Àt!H‹$H‹H‰D$HƒèH‰„3L‹¬$°HDŽ$¨H‹¼$ M…í„´EHƒ/„æ1H‹5Ç_&H‹¼$°HDŽ$ H9þ„^7H‹ $H9G„s3ºèÇxüÿI‰ÅH‰„$ H…À„T>H‹¼$°Hƒ/„é1H‹¼$ H;|$xHDŽ$°”ÀH;=Ö $”ÂÂ…óH;=¼ $„æèqüÿH‹¼$ ‰ÅÀˆAHƒ/„õ1HDŽ$ …Û„:ìÿÿH‹5Z^&H‹=»k&1ÒètüÿI‰ÅH‰„$ H…À„ÂqH‰Çè EýÿH‹¼$ Hƒ/„«GH‹œ$1ÉE1É1íHDŽ$ E1íƄ$€HDŽ$ˆHÇD$8ÇD$pAÇD$xoHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$é*öÿÿH‰ßè(müÿéÖçÿÿèmüÿé£çÿÿfDèmüÿéuçÿÿfDL‰çèølüÿéPçÿÿH‹¼$ 1ÉE1É1íƄ$€E1íE1ÿHDŽ$ˆHÇD$8ÇD$pÇD$xbHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$éõÿÿfDH‰÷è0lüÿérçÿÿL‰ÿè°müÿf.ðlŠr
…l
H‹$H‹´$°HƒH‰D$xH‰„$¨é$çÿÿ€è‹nüÿH‰ïècÄüÿI‰ÇH‰„$ H…À…Oåÿÿ1ÉE1É1íHÇ$HDŽ$ˆE1íHÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$pÇD$xbéôÿÿ„1ÉE1É1íHÇ$HÇD$8E1íE1ÿHDŽ$ˆHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$p	ÇD$xbé>óÿÿfD‹0ºr$1ÀH=˜Mè{NýÿH‹„$ˆH‹@HéÊóÿÿf.„1ÉE1É1íHÇ$HDŽ$ˆE1íHÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$pÇD$xbépòÿÿf„H‹‰$H‰D$xHƒéwýÿÿH‹¼$ 1ÉE1É1íHDŽ$ˆE1íHÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$pÇD$xbé‘ñÿÿf„E1íIƒL;5ò$„Ô
H‹m]&H‹=h&H‰ÞèæiüÿI‰ÄH…À„è;HƒH‹5O\&L‰çè×rüÿH‰D$H‰„$¨H…À„Ç<Iƒ,$„I-¿èoüÿI‰ÄH…À„ƒ?IƒL‰p èküÿH‰D$H‰„$ H…À„›BH‹Þ\&H‹=wg&H‰ÞèWiüÿH‰ÅH…À„ØCHƒH‹5Ø^&H‰ïèHrüÿH‰ÁH…À„KHƒm„k1H‹5"`&H‹¼$ H‰ÊH‰$è&güÿH‹$…ÀˆÙBHƒ)„#2H‹”$ H‹¼$¨L‰æèhmüÿH‰D$H…À„¥MH‹¼$¨Hƒ/„‹3HDŽ$¨Iƒ,$„ˆ3H‹¼$ Hƒ/„l3HDŽ$ Iƒ.„kH‹\$ H‹D$xH9ÔÀH;Z$”ÂÂ…WH;@$„JH‰ßè‚iüÿ…ÀˆA3…À„rH‹D$H;$„ñ+H‹5_&H‰Çè!qüÿH‰D$H‰„$ H…À„ºJH‹5ôe&H‰Ç1ÒèzlüÿH‹¼$ H‰D$H…À„7KHƒ/„1H‹\$HDŽ$ H‰ßèAnüÿ…À„£-HÇÆÿÿÿÿH‰ßèZfüÿH‰ÁH…É„΄H‹|$H‰ÎH‰$è½füÿH‹$H…ÀH‰D$ H‰„$ „ŽNHƒ)„Û4H‹L$H‹œ$ H‹H‰$HƒèH‰„­4H‹5QY&H‹¼$˜HDŽ$ è(püÿH‰ÁH…À„àSH‰$L‰ö1?èÙmüÿH‹$H…ÀH‰D$ „XH‹l$ 1ÒH‰ÏH‰L$H‰îè`küÿH‹L$H‰D$0H‹EH‰$HƒèH‰E„9H‹D$0H‰„$ H…À„\ƒHƒ)„p9H‹„$ H‹5	X&H‰ßHDŽ$ H‰D$ èxoüÿH‰D$0H‰„$ H…À„”b¿èÈküÿH‰ÁH…À„×fH‹D$ H‰$HƒH‰A è¦güÿH‹$H…ÀI‰Ä„³nH‹¿W&H‹5PW&H‰ÇH‰$èdüÿH‹$…ÀˆžKH‹¼$ H‰ÎL‰âH‰$èijüÿH‹¼$ H‹$H…ÀH‰D$0H‰„$¨„ sHƒ/„IKHDŽ$ Hƒ)„&KIƒ,$„KH‹-ýX&H‹„$¨HDŽ$¨H‹=‚c&H‰îH‰„$€èZeüÿH‰D$HH…À„±uHƒH‰„$¨H‹5Ù]&H‹|$Hè?nüÿI‰ÄH…À„À{H‹¼$¨Hƒ/„P¿HDŽ$¨è{jüÿH‰D$HH‰„$¨H…À„ zH‹Œ$€HƒH‹„$¨H‰H èHfüÿH‰ÁH…À„€H‹­$H‹5F\&H‰ÇH‰$èÂbüÿH‹$…Àˆ‰lH‹-X&H‹= b&H‰$H‰îè|düÿH‹$H…ÀH‰D$H„h€HƒH‰„$ H‹|$HH‹5Z&H‰$èYmüÿH‹¼$ H‹$H…ÀH‰Å„ŽHƒ/„UoH‹5([&H‰ÏH‰êH‰$HDŽ$ è%büÿH‹$…Àˆ›ƒHƒm„.oH‹´$¨H‰ÊL‰çH‰$èghüÿH‹$H…ÀH‰D$0„¦‘Iƒ,$„ÊuH‹¼$¨Hƒ/„¦uHDŽ$¨Hƒ)„ƒuH‹Œ$€H‹H‰$HƒèH‰„ZuH‰\$HÇD$8HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HL;5$Ƅ$€„5DHÇD$(HDŽ$ˆH‹5éV&H‹¼$èlüÿH‰ÅH…À„«{H‹5IR&H9Æ„kOH‹¡$H9E„VºH‰ïèZküÿH‰ÁH…À„^wHƒm„!OH;L$x”ÃH;
Œ$”ÀØ…ƒMH;
r$„vMH‰ÏH‰$è°cüÿH‹$…	ÈÀxHƒ)„eS…Û…2SL;59$„Ü_H‹5$V&H‹|$0èBküÿH‰ÁH…À„¹ H‹5‡Q&H9ð„¥vH‹ß$H9A„L…H‰ϺH‰$è”jüÿH‹$H…ÀH‰Å„è®Hƒ)„\vH;l$x”ÃH;-Ã$”ÀØ…:vH;-©$„-vH‰ïèëbüÿ‰ÅÀˆç°Hƒm„v…Û„'_H‹=ÿT&èR¹üÿH‰ÅH…À„}°H‹5WX&H‰ÇèwjüÿH‰ÁH…À„ʱHƒm„IH‰$èÇbüÿH‹$H…ÀH‰Å„²H‹58X&H‹¼$H‰$è/jüÿH‹$H…ÀI‰Á„»±H‹5X&H‰ÂH‰ïH‰L$pH‰$è_üÿL‹$H‹L$p…Àˆ±Iƒ)„½ŒH‹5RO&H‰ÏH‰êH‰$èSeüÿH‹$H…ÀI‰Ä„-µHƒ)„F²Hƒm„©H‹t$0H‹¼$èŒ`üÿI‰ÁH…À„ªÉH‹5y^&H‰ÂL‰çH‰$èºgüÿL‹$…ÀˆNÉIƒ)„hL‰4$L‰åL‹t$Iƒ$H‹œ$L‰d$éAèÿÿH‹Œ$ˆH‹H‰D$pHƒèH‰…MèÿÿH‰Ïè«^üÿé@èÿÿfDH‹ñ$H‹¢$H‹´$°HƒH‰\$xéˆòÿÿ@H‹¼$ 1ÉE1äE1ÉHÇD$81íE1íH‹œ$HDŽ$ˆHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$p%ÇD$xcé–æÿÿfDH‹‰R&H‹="]&H‰Þè_üÿI‰ÅH…À„ã-HƒH‰„$ H‹5cQ&L‰ïèëgüÿH‹¼$ I‰ÅH‰„$¨H…À„Š.Hƒ/„õ L‰ö1?HDŽ$ H‹œ$¨èreüÿH‰ÅH…À„ú21ÒH‰ÆH‰ßè	cüÿHƒmI‰Å„í!H‹„$ L‰¬$°H‰$H…Àt!H‹$H‹H‰D$HƒèH‰„$L‹¬$°HDŽ$ M…í„l9H‹¼$¨Hƒ/„£!H‹5kM&H‹¼$°HDŽ$¨H9þ„&'H‹¯
$H9G„
%ºèkfüÿH‹¼$°I‰ÅH‰„$¨H…À„R4Hƒ/„U!H‹¼$¨H;|$xHDŽ$°”ÀH;=z$”ÂÂ…§H;=`$„šè¥^üÿH‹¼$¨‰ÅÀˆÇ5Hƒ/„9#HDŽ$¨…Û„ÞÙÿÿH‹5L&H‹=_Y&1Òè°aüÿI‰ÅH‰„$¨H…À„¾iH‰ÇèÄ2ýÿH‹¼$¨Hƒ/„§?H‹¼$ 1ÉE1äE1ÉH‹œ$1íHDŽ$¨E1íƄ$€HDŽ$ˆHÇD$8ÇD$päÇD$xjHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$é¤ãÿÿ@H‹K&H‰D$HƒIƒ.…•óÿÿL‰÷è¦ZüÿéˆóÿÿL‰ïè8]üÿL‹¬$°‰ÅÀ‰pØÿÿH‹¼$ 1ÉE1äE1ÉH‹œ$1íE1íƄ$€HDŽ$ˆHÇD$8ÇD$pµÇD$xiHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$é¤âÿÿ@èÃYüÿéN×ÿÿfDè³Yüÿé×ÿÿfDè£YüÿéèÖÿÿfDè“Yüÿé!Øÿÿè9\üÿH‰ßè²üÿI‰ÅH‰„$¨H…À…‡éÿÿH‹¼$ 1ÉE1äE1ÉHDŽ$ˆ1íH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$pÇD$xnéŽáÿÿèa[üÿH‰ïè9±üÿI‰ÅH…À…=³H‹¼$ 1ÉI‰ÄE1ÉHDŽ$ˆ1íH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$poÇD$xué¾àÿÿfDH‹¼$ 1ÉE1äE1ÉHÇD$81íE1íH‹œ$HDŽ$ˆHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$p#ÇD$xcéþßÿÿfDèWüÿéGÓÿÿfDèWüÿéãÿÿfDH‹¼$ 1ÉE1äE1ÉH‹œ$1íE1íE1ÿƄ$€HDŽ$ˆHÇD$8ÇD$p(ÇD$xcHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$éßÿÿH‰ßè8Vüÿé¼Òÿÿè+VüÿéÓÿÿfDèVüÿéîåÿÿfDL‰ÿè˜Wüÿf.ØVz„¨åÿÿ„H‹A$1ÛHƒH‹D$xH9/$H‹($”Ãé†åÿÿ„H‰ïè¸UüÿéÒÿÿè«Uüÿé¹ÒÿÿfD¶Àé¾îÿÿ„L‰ïèˆUüÿéxÓÿÿ¶Øé)çÿÿ„¶Øéuùÿÿ„èXüÿH‰ßèã­üÿH‰„$°H…À…AÑÿÿÇD$pCH‹¼$ H…ÿtHƒ/…=&èUüÿHDŽ$ H‹¼$¨H…ÿt
Hƒ/„›H‹¼$°HDŽ$¨H…ÿt
Hƒ/„ˆH‹=YR&HDŽ$°è€WüÿÇD$xf…À„ˆ‹t$pºfH= DH
-蔮üÿH”$°H´$ H¼$¨臧üÿ…ÀˆH‹5¨D&H‹=ùQ&1ÒèJZüÿH‰ÃH…À„F8H‰Çèf+ýÿHƒ+ÇD$p™ÇD$xh„ª@H‹¼$¸E1ä1íE1íH‹”$ÈH‹´$ÀE1ÿè ZüÿH‹¼$ 1ÉE1ÉH‹œ$Ƅ$€HDŽ$ˆHÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$é6ÜÿÿfDH‹¼$ 1ÉE1äE1ÉHÇD$81íE1íH‹œ$HDŽ$ˆHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$pÇD$xmévÛÿÿfDH‹-iG&H‹=R&H‰îèâSüÿH‰$H…À„ß7H‹$HƒH‰„$¨H‹5.I&H‹<$èÅ\üÿH‰ÅH…À„ý9H‹¼$¨Hƒ/„”H‹5˜J&H‹|$HDŽ$¨èŠ\üÿH‰$H‰„$¨H…À„Í;L‹%ÖF&H‹=oQ&L‰æèOSüÿH‰$H…À„ŽAHƒH‰„$°H‹5ŸI&H‹<$è6\üÿH‰ÁH…À„ÞDH‹¼$°Hƒ/„&¿H‰$HDŽ$°ènXüÿH‹$H…ÀI‰Ä„GHƒ¼$°tHDŽ$°H‹„$¨1ÒL‰æH‰ïI‰L$(I‰D$ HDŽ$¨è,WüÿH‰$H‰„$ H…À„cVIƒ,$„Ì*Hƒm„´*H‹¼$ H;|$x”ÀH;=R$”ÂÂ…zH;=8$„mè}SüÿH‹¼$ ‰ŅÀˆoYHƒ/„ö+HDŽ$ …í„hÑÿÿH‹-~E&H‹=P&H‰îè÷QüÿH‰$H…À„çzHƒH‹5ÿB&H‹<$èæZüÿI‰ÄH…À„zH‹$H‹H‰D$HƒèH‰„2^H‹-"E&H‹=»O&H‰îè›QüÿH‰$H…À„c„HƒH‹5H&H‹<$èŠZüÿH‰D$H‰„$¨H…À„LwH‹$H‹H‰D$HƒèH‰„–aH‹5LH&H‹|$èJZüÿH‰$H…À„ÈxH‹4$1?HDŽ$°H‹¬$¨èéWüÿH…À„Ў1ÒH‰ïH‰ÆH‰D$è~UüÿH‹L$H‰ÅHƒ)„jH‹¼$°H…ÿt
Hƒ/„RoHDŽ$°H‹$H‹H‰D$HƒèH‰„ø`H…í„iH‹¼$¨Hƒ/„‡iH‹56G&H‰ïHDŽ$¨èzYüÿH‰$H‰„$¨H…À„ž‘Hƒm„`iH‹´$¨¿1ÀèWüÿH‰ÅH…À„Ȑ1ÒH‰ÆL‰çè­TüÿHƒm„×nH‹¼$¨H‰„$ Hƒ/„iH‹„$ HDŽ$¨H‰$H…À„|Iƒ,$„aoIƒEH‹¼$ ºL‰îèRXüÿH‰ÅH…À„1ŒH;D$x”ÂH;$”ÀÐ…5^H;-u$„(^H‰ïè·PüÿA‰ąÀˆ_‘Hƒm„;nE…ä„‚hH‹„$ HƒH‹„$ H‰„$¨Iƒm„ÈmH‹¼$ Hƒ/„ÚmH‹„$¨H‰„$ HƒH‹¼$¨Hƒ/„ªmHDŽ$¨H‹¬$ Iƒm„~mHDŽ$ I‰íé!ÎÿÿfDè[Müÿé[øÿÿfDèKMüÿénøÿÿfDÇD$pEé!øÿÿH‹¼$ 1ÉE1äE1ÉHÇD$81íE1íH‹œ$HDŽ$ˆHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$pÇD$xméNÕÿÿfDèkLüÿéµÜÿÿfDL‰çèXLüÿé>ËÿÿÇD$p‰ÇD$xgéøÿÿH‹¼$ ÇD$pHéñöÿÿH‹¼$ 1ÉE1äE1ÉHDŽ$ˆ1íH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$pÇD$xnéAÔÿÿf„H‹|$ºL‰þèNUüÿH‰ÃH‰D$H‰„$ H…À„]8H‹D$xH9ÔÀH;{ý#”ÂÂ…`H;aý#„SH‹|$è¡Müÿ‰ÅÀˆƒ;H‹„$ H‰D$H‹L$H‹H‰$HƒèH‰„ÃHDŽ$ …Û…<H‹5~;&H‹|$1ÒèªTüÿH‰ÃH‰D$H‰„$ H…À„ÊHH‹D$xH9ÔÀH;×ü#”ÂÂ…êH;½ü#„ÝH‹|$èýLüÿ‰ÅÀˆ×NH‹„$ H‰D$H‹L$H‹H‰$HƒèH‰„ô#HDŽ$ …Û…'RH‹D$H;]ü#„m'H‹Ø>&H‹=qI&H‰ÞèQKüÿH‰D$H…À„h]HƒH‰„$¨H‹5¸B&H‹|$è6TüÿH‰ÁH…À„È^H‹¼$¨Hƒ/„t7H‹5i:&H‹|$ºH‰$HDŽ$¨è‚SüÿH‹$H…ÀH‰D$H‰„$¨„É]H‹t$1?H‰$è“QüÿH‹$H…ÀH‰Ã„Æc1ÒH‰ÏH‰Æè&OüÿHƒ+H‹$H‰Å„¬=H‹¼$¨H‰¬$ Hƒ/„ 7H‹„$ HDŽ$¨H‰D$H…À„’cHƒ)„w=H‹¼$ H‹t$1ÒèËRüÿH‹¼$ H‰ÁH…À„þhHƒ/„ŠGH;L$xHDŽ$ ”ÃH;
êú#”ÀØ…”,H;
Ðú#„‡,H‰ÏH‰$èKüÿH‹$…	È:mHƒ)„úJ…Û…ÞmH‹9&H‹|$HƒH‹5/A&H‰D$8èRüÿH‰D$H‰„$ H…À„£nH‹5pG&H‰Ç1ÒHDŽ$¨èêMüÿH‹¼$¨H‰D$(H…ÿt
Hƒ/„5\Hƒ|$(H‹¼$ HDŽ$¨„dtHƒ/„vTH‹\$HDŽ$ H‹H‰$HƒèH‰„DTH‹`<&H‹=ùF&H‰ÞèÙHüÿH‰ÁH…À„ûwHƒH‹5b8&H‰ÏH‰$èÆQüÿH‹$H…ÀH‰D$H‰„$ „'wHƒ)„X¿èNüÿH‰ÁH…À„ìrIƒL‰p H‰$èëIüÿH‹$H…ÀH‰D$H‰„$¨„æ‚H‹Â;&H‹=[F&H‰$H‰Þè7HüÿH‹$H…ÀH‰D$„éHƒH‹5Ú=&H‹|$H‰$èQüÿH‹$H…ÀI‰Ä„H‹\$H‹H‰$HƒèH‰„khH‹5ä>&H‹¼$¨L‰âH‰$èèEüÿH‹$…Àˆ~Iƒ,$„$hH‹¼$ H‹”$¨H‰ÎH‰$è%LüÿH‹¼$ H‹$H…ÀH‰D$H„
—Hƒ/„ÒgHDŽ$ Hƒ)„¯gH‹¼$¨Hƒ/„“gH‹5J9&H‹|$HHDŽ$¨è<PüÿH‰D$H‰„$¨H…À„@ŽH‹5E&H‹|$1Òè“KüÿH‰D$hH…À„xH‹¼$¨Hƒ/„[|HDŽ$¨1ÛHÇD$XHÇD$PHÇD$@HÇD$L‰<$L‰´$ˆL‰l$L‹l$8H‹t$1ÒL‰ïè,OüÿI‰ÄH…À„qŒH;D$x@”ÅH;h÷#”À@è…ÈZL;%M÷#„»ZL‰çèGüÿ‰ŅÀˆŽIƒ,$„t…í„—žH‹5K8&H‹¼$˜è.OüÿH‰„$¨H…À„žŽH‹|$L‰îè0EüÿI‰ÇH…À„/´¿èjKüÿH‰„$ H…À„³L‰x H‹¼$¨H‰Æ腑üÿH‹¼$ H‰D$`Hƒ/„5ŽHƒ|$`HDŽ$ „›ÆH‹¼$¨Hƒ/„çHDŽ$¨H…Ût
Hƒ+„¯‘H‹5Ê4&ºL‰ïèõMüÿI‰ÄH…À„@ÅH;D$x”ÃH;2ö#”ÀØ…ŸzL;%ö#„’zL‰çèZFüÿ‰ÅÀˆs­Iƒ,$„;Ž…Û„…1ÿè¶LüÿI‰ÆH…À„9ÈH‹Óõ#L‰îH‰ÇèèKüÿIƒ.H‰Ã„
ÈH…Û„xÇH‹|$hH‰ÞèµDüÿHƒ+I‰Ä„QÇM…ä„»ÆH‹4&H‹|$(L‰æèÛKüÿ…ÀˆÆIƒ,$„üÄH‹=é7&è<œüÿH‰„$¨H…À„$žH‹5¼;&H‰Çè\MüÿH‰„$ H…À„ƒH‹¼$¨Hƒ/„UH‹¼$ H‹t$(HDŽ$¨èˏüÿH‹¼$¨H‰ÃH…ÿt
Hƒ/„'HDŽ$¨H‹¼$ H…Û„÷°Hƒ/„ìŒH‹L$HDŽ$ H…ÉtH‹H‰D$ HƒèH‰„F±H‰ßè'Jüÿ…À„АHƒÎÿH‰ßèCBüÿI‰ÄM…䄝¥L‰æH‰ßè¬BüÿH‰„$ H…À„û¤Iƒ,$„#§H‹„$ Hƒ+H‰D$„ÿ¦H‹5º4&H‹|$HDŽ$ è,LüÿH‰„$ H…À„P¦¿èHüÿI‰ÄH…À„­¥H‹D$`HƒI‰D$ èbDüÿH‰„$¨H…À„¨H‹z4&H‹54&H‰ÇèÛ@üÿ…Àˆâ§H‹”$¨H‹¼$ L‰æè+GüÿH‰ÅH…À„3§H‹¼$ Hƒ/„§HDŽ$ Iƒ,$„ó¦H‹¼$¨Hƒ/„צH‹\$@HDŽ$¨H…ÛtH‹H‰D$ HƒèH‰„¼£H‹=š5&èí™üÿI‰ÇH…À„ñ¥H‹52&H‰ÇèKüÿH‰„$¨H…À„‚®Iƒ/„k®¿è]GüÿI‰ÇH…À„¿­HƒEH‰h èCCüÿI‰ÄH…À„­H‹T$xH‹5s3&H‰ÇèÃ?üÿ…Àˆc¬H‹¼$¨L‰âL‰þèFüÿH‰„$ H…À„¸«H‹¼$¨Hƒ/„œ«HDŽ$¨Iƒ/„y«Iƒ,$„VžH‹œ$ H‹CH;Áñ#H‰ß”ÂH;<ñ#”Àˆ”$€„|è-FüÿHƒø… œ1öH‰ßèùGüÿI‰ÄH…À„œH‰߾èàGüÿH‰ÃH…À„„™H‹¼$ Hƒ/„h™HDŽ$ H‹L$PH…ÉtH‹H‰D$ HƒèH‰„
¥H‹L$XH…ÉtH‹H‰D$ HƒèH‰„ȿH‹5™1&H‰ßèyIüÿI‰ÇH…À„
»H‹5V>&1ÒH‰ÇèÜDüÿH‰„$ H…À„ZºIƒ/„CºH‹¼$ Hƒ/„'ºH‹5x0&H‰ïHDŽ$ èIüÿI‰ÇH…À„`¹H‰ÞH‰Ç譋üÿH‰„$ H…À„³¸Iƒ/„œ¸H‹„$ HƒmH‰D$@„w¸H‹5ã0&H‹|$@HDŽ$ è­HüÿH‰„$ H…À„¾·H‰ÆL‰ïè!DüÿI‰ÇH…À„·H‹¼$ Hƒ/„ð¶H‹Lð#L‰þL‰ïHDŽ$ èUFüÿI‰ÆH…À„/¶H‹T$@H‰ÆH‹|$hH…Ò„
¶ènFüÿ‰ÅIƒ.„ïµ…íˆLµIƒ/„5µH‹5)0&H‹|$@èÿGüÿI‰ÇH…À„Z®H‰ÆL‰ïèøEüÿH‰„$ H…À„²­Iƒ/„›­H‹¬$ Iƒm„{­H‰\$XI‰íH‹\$`HDŽ$ L‰d$Péì÷ÿÿ€è=üÿéÎÿÿfDH‰ïè=üÿéœÍÿÿH‹¼$ H…ÿtHƒ/„D¿HDŽ$ Hƒ+ÇD$pV…¹çÿÿH‰ßèÃ<üÿé¬çÿÿfDè³<üÿé
ÎÿÿfDL‰çè <üÿéһÿÿL‰ïè<üÿé¼ÿÿ1ÛéM¹ÿÿÇD$pfH…ÿ…Bçÿÿéoçÿÿf.„è[<üÿéßÿÿfDèK<üÿéÎÿÿfDH‰ïè8<üÿéӻÿÿH‰Ïè(<üÿ锻ÿÿH‹<$è<üÿéàÌÿÿH‹¼$ 1ÉE1äE1ÉHDŽ$ˆ1íH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$p´ÇD$xié6Äÿÿèé<üÿf.)<z„H‹D$xHƒH‹¼$°H‰„$ é€ÌÿÿL‰ïè#;üÿép»ÿÿH‰ïè;üÿéÞÿÿè;üÿéٺÿÿè;üÿéSÞÿÿL‰çèõ:üÿéªÒÿÿèë:üÿé¡Þÿÿèá:üÿéQ»ÿÿL‰çèÔ:üÿéëºÿÿH‹5Ð1&H‹¼$˜è+EüÿH‰ÅH…À„B¿è…AüÿH‰ÁH…À„FH‹Z+&H‰$HƒH‰A IƒL‰y(èY=üÿH‹$H…ÀH‰D$H‰„$¨„½IH‹5è,&H‹|$L‰òH‰$èÇ9üÿH‹$…Àˆ°$H‹/&H‹=¥9&H‰$H‰Þè;üÿH‹$H…ÀI‰Ä„ZSHƒH‹5&1&L‰çH‰$èjDüÿH‹$H…ÀH‰D$H‰„$ „‰RIƒ,$„P*H‹¼$¨H‹”$ H‰$H‹5"2&è59üÿH‹¼$ H‹$…Àˆ/LHƒ/„#/H‹”$¨H‰ÎH‰ïH‰$HDŽ$ èd?üÿH‹$H…ÀH‰D$H‰„$ „§XHƒm„Â=Hƒ)„«=H‹¼$¨Hƒ/„"8H‹„$ HDŽ$¨HDŽ$ H‰D$0HÇD$8HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$ HÇD$éæÖÿÿ¶ØéÆíÿÿè«8üÿé½ÜÿÿHÇÇÿÿÿÿèºAüÿH‰D$ H…À„m,H‹\$ H‹|$H‰ÞèÚ9üÿH‰ÁH‹H‰$HƒèH‰…,ÒÿÿH‹|$ H‰$èU8üÿH‹$éÒÿÿH‹<$èC8üÿéeÛÿÿH‹¼$ 1ÉE1äE1ÉH‹œ$1íE1íƄ$€HDŽ$ˆHÇD$8ÇD$p`ÇD$xsHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$é\ÀÿÿH‹Õé#Hƒé<üÿÿD¶à麹ÿÿèö8üÿf.68z„0	H‹D$xHƒH‹¼$°H‰„$¨ééÚÿÿè37üÿéi·ÿÿèÙ9üÿH‰ï豏üÿI‰ÅH‰„$°H…À…kµÿÿH‹¼$ 1ÉE1äE1ÉHDŽ$ˆ1íH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$pjÇD$xué.¿ÿÿH‰ïH‰$èJ6üÿH‹$é€ÎÿÿH‹¼$ 1ÉE1äE1ÉHDŽ$ˆ1íH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$plÇD$xuéb¾ÿÿ¶Øé<ëÿÿH‰ßèz5üÿéMáÿÿ¶èé¢äÿÿH‰Ïèe5üÿéÐÍÿÿH‹±ç#HƒéþÿÿèK5üÿéÜÎÿÿH‹—ç#HƒH‹¼$°éöùÿÿH‹¼$ 1ÉE1ÉE1íHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$pqÇD$xuéQ½ÿÿ1ÉE1É1íHÇ$HDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$pÇD$xnéļÿÿèÈ3üÿékÌÿÿè¾3üÿéŠÌÿÿL‰çè±3üÿékÌÿÿD¶àéĶÿÿèž3üÿébáÿÿL‰4$H‹¼$ 1É1íL‹t$E1äH‹œ$Ƅ$€HDŽ$ˆE1ÉHÇD$8ÇD$p°ÇD$x‘HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$鹻ÿÿH‹„$¨HDŽ$°H‰$H…À…rÃÿÿH‹¼$ 1ÉE1äE1ÉHDŽ$ˆE1íH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$p*ÇD$xnéèºÿÿè»4üÿL‰ï蓊üÿI‰ÅH…À…XŽH‹¼$ 1ÉI‰ÄE1ÉHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$ptÇD$xuéºÿÿH‰Ïè:1üÿ鈲ÿÿè01üÿéI²ÿÿH‰Ïè#1üÿéFËÿÿH‰Ïè1üÿéËÿÿH‹¼$ 1ÉE1ÉHDŽ$ˆHÇD$8H‹œ$HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$pvÇD$xué7¹ÿÿ1ÉE1É1íHÇ$HDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$p-ÇD$xn骸ÿÿè^2üÿH‰ßè6ˆüÿI‰ÅH‰„$ H…À…Òÿÿ1ÉE1É1íHÇ$HDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$p¼ÇD$xiéݷÿÿHDŽ$ éÃÙÿÿ1ÉE1äE1É1íHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$p¾ÇD$xiéþ¶ÿÿH‹wà#HƒH‹¼$°éÉöÿÿH‰Ïè.üÿé0ãÿÿE1äéj­ÿÿH‹¼$ 1ÉE1äE1ÉHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$p†ÇD$xué¶ÿÿH‹œ$1ÉE1äE1ÉƄ$€1íE1íHDŽ$ˆHÇD$8ÇD$p0ÇD$xnHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$éjµÿÿè=/üÿH‰ßè…üÿI‰ÄH‰D$H…À…e®H‹¼$ 1ÉE1É1íHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ L‰4$Ƅ$€ÇD$pwÇD$xŒ饴ÿÿH‰÷èÅ+üÿ鼭ÿÿH‰Ïè¸+üÿ郯ÿÿH‹|$ H‰$è¥+üÿH‹$éLÆÿÿH‰$è“+üÿH‹$éâÙÿÿH‹¼$ 1ÉE1É1íHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ L‰4$Ƅ$€ÇD$pyÇD$xŒ黳ÿÿH‹¼$ 1ÉE1äE1ÉHDŽ$ˆ1íH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$p‰ÇD$xué³ÿÿH‹„$ HDŽ$°H‰$H…À…Íÿÿ1ÉE1ÉE1íH‹œ$HDŽ$ˆHÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$pÍÇD$xié]²ÿÿèa)üÿ鵫ÿÿ1ÉE1äE1É1íHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$p*ÇD$xn酱ÿÿH‹¼$ 1ÉE1É1íHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$L‰4$Ƅ$€ÇD$p|ÇD$xŒéհÿÿH‹¼$ 1ÉE1äE1ÉHDŽ$ˆ1íH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$pÐÇD$xié°ÿÿ1ÉE1É1íHÇ$HDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$p™ÇD$xu鑯ÿÿ1í鯦ÿÿH‰Çè(üÿf.K'z„îH‹D$xHƒH‹´$¨H‰„$ éO¨ÿÿH‰ïèU&üÿé?ÕÿÿL‰çèH&üÿé'Õÿÿè>&üÿéK¸ÿÿH‰Ïè1&üÿéÿÛÿÿH‹¼$ 1ÉE1äE1ÉH‹œ$1íE1íƄ$€HDŽ$ˆHÇD$8ÇD$pÓÇD$xiHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$éJ®ÿÿ1ÉE1É1íL‰4$HDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ Ƅ$€ÇD$pÇD$xŒ麭ÿÿ¶Øég©ÿÿèÆ$üÿéÔÿÿH‹¼$ L‰4$E1É1íH‹œ$Ƅ$€HDŽ$ˆHÇD$8ÇD$pˆÇD$xŒHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$éë¬ÿÿè¾&üÿH‰ßè–|üÿH‰ÅH‰D$H…À…^€H‹¼$ 1ÉE1ÉHDŽ$ˆHÇD$8H‹œ$HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ L‰4$Ƅ$€ÇD$pƒÇD$xŒé(¬ÿÿ1ÉE1É1íHÇ$HDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$pÍÇD$xi雫ÿÿèŸ"üÿéh¥ÿÿH‹|$H‹Gö€³„)yè_"üÿH‰D$ Hƒ|$ ÿ„ËTI‹Gö€³„EyL‰ÿè5"üÿH‰$Hƒ<$ÿ„£U‹´$À…ö…ž-H‹è&H‰D$(HƒH‹$Hû'ŽdH‹|$ èì"üÿH‰D$H‰„$ H…À„mgH‰ßèÎ"üÿH‰ÁH…À„¬fH‹t$(H‰ÇH‰D$è#üÿH‹L$H…ÀI‰Ä„blHƒ)„ÜHH‹¼$ ºL‰æè +üÿH‹¼$ H‰ÁH…À„ÙlHƒ/„¶HHDŽ$ Iƒ,$„ûWH;L$x”ÃH;
´Ó#”ÀØ…l;H;
šÓ#„_;H‰ÏH‰L$è×#üÿH‹L$…	ÈutHƒ)„ŠW…Û„dH‹— &fïÉfï?òÂ!òH*$ÿÐH‰D$0H…À„wuH‹D$0H‹5Ô&H‹XH‹„$˜H‹¸Øè,+üÿH‰D$H‰„$ÈH…À„ tH‹„$˜H‹5¿&H‹¸Øèû*üÿI‰ÄH…À„ZoH‹5Ø&H‰Ç1ÒHDŽ$ èR&üÿH‹¼$ H‰ÅH…ÿt
Hƒ/„jRHDŽ$ H…í„WIƒ,$„ÞVHƒm„àVèØ$üÿH‹4$H‹¼$˜H‰ÙH‰ŸH‰òH+T$ H…ÒHNÐèýuüÿH‰ïè$üÿH‹¼$ÈH…ÿtVH‹5¹&1Òèº%üÿH‹¼$ÈH‰D$Hƒ/„9VHƒ|$HDŽ$È„ØtH‹\$H‹H‰$HƒèH‰„ûUH‹t$L‰ÿè üÿI‰ÄH…À„)YH‹²Ñ#H‰ÇH‰ÖèÇ'üÿH‰ÃH‰D$ H…À„hXH‹|$0H‰Æè™ üÿH‰D$H‹H‰$HƒèH‰„ÇUH‹D$H‰„$ H…À„¡Iƒ,$„YGH‹¼$ H‹5è&è[)üÿH‹¼$ I‰ÄH…À„édHƒ/„øRH‹5&&L‰ç1ÒHDŽ$ è $üÿH‹¼$ H‰D$H…ÿt
Hƒ/„7VHƒ|$HDŽ$ „í¦Iƒ,$„b`H‹\$0HDŽ$ˆH‹H‰$HƒèH‰„0`H‹„$ˆH;Ð#”ÂH…À”À	ÂL;5{Ð#ˆ”$€„FH‹5ß&H‹|$L‰òèú$üÿ…Àˆ²šHÇD$HH‹D$HÇD$PH‰D$0HÇD$HÇD$XHÇD$hHÇD$@HÇD$`HÇD$8HÇD$ éú»ÿÿH‹óÏ#Hƒé(÷ÿÿèüÿ鳠ÿÿHDŽ$ˆHÇD$(H‹D$0H‹5g&H‹xH9÷t
è¹&üÿ…À„©»ÿÿH‹5&H‹|$0è°'üÿH‰ÁH…À„éEH‹5õ
&H‰$¿1Àè]%üÿH‹$H…ÀH‰Å„~E1ÒH‰ÏH‰ÆH‰$èì"üÿHƒmH‹$I‰Á„I)M…É„ëoHƒ)„!)H‹\$0H‹H‰$HƒèH‰„î(L‰L$0é»ÿÿH‹¼$ E1ÉL‰4$HDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$p…ÇD$xŒéà¤ÿÿÇD$p•ÇD$xhéËÇÿÿ¶Ûé‹ÓÿÿèæüÿéOÀÿÿL‰4$1ÉL‹t$E1ÉHDŽ$ˆ1íH‹œ$HÇD$8HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$pÅÇD$x“é4¤ÿÿL‰4$1ÉL‹t$E1äHÇD$8E1É1íH‹œ$HDŽ$ˆHÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$pÓÇD$x“én£ÿÿèAüÿH‰ïèsüÿH‰$H‰„$¨H…À…ÈÿÿH‹¼$ 1ÉE1äE1ÉHDŽ$ˆ1íH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$p±ÇD$xw面ÿÿH‹¼$ 1ÉE1É1íHDŽ$ˆH‹œ$HÇD$8HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$L‰4$Ƅ$€ÇD$pŠÇD$xŒéö¡ÿÿL‰çèüÿéå´ÿÿH‰Ïè	üÿéʹÿÿH‰$èûüÿH‹$饴ÿÿH‰\$E1ÉH‹¼$ 1íL‰4$H‹œ$L‹t$Ƅ$€HDŽ$ˆHÇD$8ÇD$pÇD$x–HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0é$¡ÿÿH‹¼$ 1ÉE1äE1ÉHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$p³ÇD$xwéo ÿÿè’üÿé<›ÿÿH‹ÞÉ#HƒH‹´$¨éñÿÿL‰4$E1ÉL‹t$1íHDŽ$ˆH‹œ$HÇD$8HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$Ƅ$€ÇD$pâÇD$x”éӟÿÿ1ÉE1É1íH‹œ$HDŽ$ˆHÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$pUÇD$xzé/ŸÿÿH‹¼$ 1ÉE1äE1ÉHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$p¶ÇD$xwécžÿÿL‰4$E1äL‹t$E1ÉH‹¼$ H‹œ$Ƅ$€HDŽ$ˆHÇD$8ÇD$p]ÇD$xšHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$鯝ÿÿH‹Ð&H‰$H…À„«cH‹„$€H‹xH9<$„!–ÿÿH‹4$èüÿ…À…–ÿÿH‹$H5ñûE1ä1íH‹œ$€H‹H H‹CH‹P H‹aÅ#H‹81Àè'üÿH‰\$1ÉE1ÉH‹¼$ H‹œ$Ƅ$€HDŽ$ˆHÇD$8ÇD$pdÇD$x|HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$鈜ÿÿè«üÿéõ¯ÿÿ¶Û露ÿÿH‹„$€1ÉE1äE1ÉH‹¼$ 1íHDŽ$ˆHÇD$8H‹œ$HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$H‰D$Ƅ$€ÇD$pnÇD$x~麛ÿÿèÝüÿé—ÿÿL‰4$1ÉL‹t$E1ÉHDŽ$ˆ1íH‹œ$HÇD$8HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$pÇD$xœé+›ÿÿH‰$è+üÿH‹$ézÈÿÿH‰ïH‰$èüÿH‹$éʰÿÿH‹D$xHƒH‰ÁHƒmtØ1ÛH;L$x”Ãéé°ÿÿH‰$èâüÿH‹$éÎÈÿÿH‰ßèÑüÿéܕÿÿH‰\$E1äE1É1íL‰4$L‹t$H‹¼$ HDŽ$ˆHÇD$8H‹œ$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$pïÇD$x•éò™ÿÿH‹„$€1ÉE1É1íHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$H‰D$Ƅ$€ÇD$ppÇD$x~é`™ÿÿL‰çèaüÿ鲔ÿÿ¶Û鍖ÿÿèÿüÿL‰çè×hüÿH‰$H‰„$°H…À…\¾ÿÿH‹¼$ 1ÉE1äE1ÉHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$p¸ÇD$xwé]˜ÿÿL‰çè}üÿH‹$éŸÕÿÿL‰4$H‹¼$ 1É1íL‹t$E1äH‹œ$Ƅ$€HDŽ$ˆE1ÉHÇD$8ÇD$p‚ÇD$xœHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$锗ÿÿH‹5µþ%H‹=F&1Òè—üÿH‰D$H‰„$ H…À„ÃNH‰Çè©åüÿH‹¼$ Hƒ/„-HDŽ$ 1ÉH‹œ$Ƅ$€HDŽ$ˆHÇD$8ÇD$p‘ÇD$xL‰4$L‹t$HÇD$E1É1íHÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$鵖ÿÿH‹D$0L‰4$H‹œ$L‹t$HÇD$HƒH‰Åé—ÿÿH‰Ïè‹
üÿ鎬ÿÿHÇD$8E1É1íHDŽ$ HDŽ$ˆHÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0H‰\$H‹œ$L‰4$L‹t$Ƅ$€HÇD$ÇD$pýÇD$x•éӕÿÿH‹¼$ E1äE1ÉHDŽ$ˆHÇD$8H‹œ$HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$pºÇD$xwé•ÿÿè$üÿéŐÿÿL‰4$H‹¼$ 1É1íL‹t$E1äE1ÉHDŽ$ˆHÇD$8H‹œ$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$Ƅ$€ÇD$pàÇD$x”éQ”ÿÿH‰ßèqüÿH‹$éCÂÿÿH‰Ïè`üÿé|ÂÿÿH‰ïèãüÿf.#z„6ùÿÿH‹”½#HƒH‰Áé/ùÿÿH‹„$€1ÉE1äE1ÉH‹œ$1íƄ$€H‰D$HDŽ$ˆHÇD$8ÇD$psÇD$x~HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$éL“ÿÿH‰$èk
üÿH‹$éËÐÿÿH‹¼$ E1ÉHDŽ$ˆHÇD$8H‹œ$HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$pÞÇD$xw銒ÿÿH‹=ƒþ%èÖbüÿH‰ÁH…À„TYH‹5Û&H‰ÇH‰D$èöüÿH‹L$H…ÀI‰Ä„°ŽHƒ)„AJ¿èAüÿH‰ÁH…À„tH‹D$H‰L$0HƒH‰A èüÿH‹L$0H…ÀH‰D$H‰„$ „©H‹=ôý%èGbüÿH‹L$0H…ÀH‰D$H‰„$¨„§’H‹5&H‹|$H‰L$0èVüÿH‹L$0H…ÀH‰Å„ؑH‹¼$¨Hƒ/„áIH‹5$&H‹¼$ H‰êH‰L$HDŽ$¨èüÿH‹L$…ÀˆWHƒm„ŠIH‹”$ H‰ÎL‰çH‰L$è[üÿH‹L$H…ÀH‰D$0„=ŽIƒ,$„=IHƒ)„&IH‹¼$ Hƒ/„WGfïÀò

	H‹D$0HDŽ$ òH*D$ òYåH‹@H‰D$8f/ÁƒGòH,ÐH‰ÐH‹=»ü%HÑèH	ÐH‰ÂHÁêH	ÐH‰ÂHÁêH	ÐH‰ÂHÁêH	ÐH‰ÂHÁêH	ÐH‰ÂHÁê H	ÐH‰D$@HXèÍ`üÿH‰D$H‰„$ H…À„«…H‹50ÿ%H‰ÇèèüÿH‹¼$ H‰ÁH…À„ì„Hƒ/„YFH‰ßH‰L$HHDŽ$ è
üÿH‹L$HH…ÀH‰D$H‰„$ „
†HƒÏÿH‰L$èèüÿH‹L$H…ÀI‰Ä„‡H‹=Øû%H‰L$Hè&`üÿH‹L$HH…ÀH‰D$H‰„$¨„R†H‹5Tø%H‹|$H‰L$Hè5üÿH‹L$HH…ÀH‰D$H‰„$°„sbH‹¼$¨Hƒ/„Mb¿H‰L$HDŽ$¨è]
üÿH‹L$H…ÀI‰Á„ÁhHƒ¼$¨tHDŽ$¨H‹„$ 1ÒL‰ÎH‰ÏM‰a(I‰A H‹„$°L‰L$HI‰A0H‰L$HDŽ$ HDŽ$°èúüÿH‹L$L‹L$HH…ÀH‰Å„±yIƒ)„yHƒ)„yyH¼$à194H;-¸#H‰|$ó«„2yH‹}H‹5Ú&H9÷„ÿzèüÿ…À…òzH
eò%1Ҿ=H‰ïèæëüÿL¤$°H‰ÃH…À„Kw‹Htƒù…
zH
·áH(ò%HDŽ$ØH‰Œ$¸¹H”$ÐL¤$°HÁá.H‰„$°HDŽ$ÀH‰”$ÈL‰¤$ÐHDŽ$ÐHDŽ$ØHDŽ$àHDŽ$èH‰Œ$ðë3H‹”$ÈHJH‰Œ$ÈH‹HH‰JH‹”$ÈHÇBH‹@H‹€x\StÇH‹sxL‰çèH„üÿH…À„NvH‰ßH‹WhL‹
Qñ%‰ÐL9È…ÂxHƒ`~SH‹‡€H‹HƒùŽyH‹‡ˆH…À„FyH;…"yH‹‡H…ÀtHƒ8‰íxH‹‡ˆH…À…­u1ÉH‹T$H…۾•Áè¥SüÿƒÀ„¶u¹4L‰çH‹t$ó¥H‹„$°¹4H‹|$L‰æó¥H‰„$ˆH…À„´zHƒm„œzH‹„$˜H‹5›û%H‹œ$èH‹¸Øè÷
üÿH‹Œ$ˆH;
ȵ#H‰D$H‰„$È”„$€H…À„ÃyH‹„$˜H‹5sû%H‹¸Øè¯
üÿH‰ÁH…À„yH‹5Œ&1ÒH‰ÇH‰D$è
	üÿH‹L$H…ÀH‰Å„¨xHƒ)„‘xHƒm„’uè²üÿH‹l$8M‰ñM‰îH‰D$H‹„$˜I‰íH‰ÝH‹\$@L‹$$HƒÀ(L+d$ H‰D$HL9$$Ž©tH‹|$HL‰âE1À1É1öL‰L$@èjüÿL‹L$@H‰ÂH!ÚëH9È„ösHƒÂH!ÚHtÕH‹HƒùÿuâH‰I‰EIƒÄIƒÅë¡H‰\$1ÉE1É1íL‰4$L‹t$HDŽ$ˆH‹œ$HÇD$8HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$Ƅ$€ÇD$p
ÇD$x–龊ÿÿL‰4$1ÉL‹t$E1ÉHDŽ$ˆ1íH‹œ$HÇD$8HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$p£ÇD$xŸéŠÿÿH‰$èüÿH‹$éd¸ÿÿèüÿéÔÇÿÿH‹5Àò%H‹¼$ècüÿI‰ÁH…À„¦SH‹=¸õ%H‰$èZüÿL‹$H…ÀH‰Å„JSH‹5¸ú%H‰ÇL‰$è$üÿL‹$H…ÀH‰Á„NHƒm„ -¿H‰L$xL‰$èfüÿL‹$H‹L$xH…ÀH‰Å„‚=H‹D$0H‰L$xL‰$HƒH‰E è6üÿL‹$H‹L$xH…ÀI‰ÄH‰„$°„=H‹=
õ%H‰L$xL‰$èTYüÿL‹$H‹L$xH…ÀI‰Ä„²<H‹5÷%H‰ÇH‰L$xL‰$èg
üÿL‹$H‹L$xH…ÀH‰„$ „š€Iƒ,$„§=H‹¼$°H‹5+ø%H‰L$xH‹”$ L‰$è-ÿûÿL‹$H‹L$x…ÀH‹¼$ ˆ7=Hƒ/„=H‹”$°H‰ÏH‰îL‰L$xH‰$HDŽ$ èRüÿH‹$L‹L$xH…ÀH‰„$ „p€Hƒ)„°<Hƒm„<H‹¼$°Hƒ/„l<¿L‰$HDŽ$°èçüÿL‹$H…ÀH‰ÅH‰„$°„ÛH‹„$ L‰$HDŽ$ H‰E è®üÿL‹$H…ÀH‰ÅH‰„$ „l}H‹T$pH‹5zø%H‰Çè"þûÿL‹$…ÀˆW=H‹”$ H‹´$°L‰ÏL‰$èjüÿL‹$H…ÀH‰Å„¶{Iƒ)„=H‹¼$°Hƒ/„ø<H‹¼$ HDŽ$°Hƒ/„Ð<L‰4$H‹œ$L‹t$HDŽ$ HÇD$éu‡ÿÿH‰\$E1äE1É1íL‰4$L‹t$H‹¼$ HDŽ$ˆHÇD$8H‹œ$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$Ƅ$€ÇD$pÇD$x–é4†ÿÿH‰ÏèTýûÿéù´ÿÿH‹5pí%H‹=Ùú%1Òè*üÿH‰$H‰„$ H…À„ØJH‰Çè=ÔüÿH‹¼$ Hƒ/„H‹„$€1ÉE1É1íH‹œ$HDŽ$ H‰D$Ƅ$€HDŽ$ˆHÇD$8ÇD$p‚ÇD$xHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$é=…ÿÿ1ÉE1É1íHÇ$HDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$p=ÇD$xo鑄ÿÿH‰Ïè’ûûÿéHÂÿÿH‰ïè…ûûÿH‹$é-ÂÿÿL‰4$H‹¼$ 1É1íL‹t$E1äH‹œ$Ƅ$€HDŽ$ˆE1ÉHÇD$8ÇD$p¤ÇD$xŸHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$霃ÿÿ1ÉE1ÉHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$péÇD$xwé	ƒÿÿH‹„$€1ÉE1É1íHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$H‰D$Ƅ$€ÇD$p”ÇD$x€éh‚ÿÿL‰çèiùûÿés~ÿÿH‹„$€1ÉE1äE1ÉHDŽ$ˆ1íH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$H‰D$Ƅ$€ÇD$p–ÇD$x€鈁ÿÿ¶Ûé£ÿÿL‰4$1ÉL‹t$E1äH‹¼$ E1ÉHDŽ$ˆHÇD$8H‹œ$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇD$Ƅ$€ÇD$pQÇD$xšéʀÿÿH‹5ãç%H‹=|õ%1ÒèÍýûÿH‰D$H‰„$ H…À„t>H‰ÇèßÎüÿH‹¼$ Hƒ/„ L‰4$1ÉL‹t$H‹œ$HDŽ$ Ƅ$€HDŽ$ˆHÇD$8ÇD$p³ÇD$x é1éÿÿH‹œ$1ÉE1äE1ÉƄ$€1íHDŽ$ˆHÇD$8ÇD$pîÇD$xwHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$é…ÿÿH‹„$€H‰\$E1É1íL‰4$H‹¼$ L‹t$H‰D$0H‹œ$Ƅ$€HDŽ$ˆHÇD$8ÇD$p/ÇD$x˜HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HéÛ~ÿÿH‰\$E1É1íH‹¼$ L‰4$L‹t$HDŽ$ˆH‹œ$HÇD$8HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$Ƅ$€ÇD$pÇD$x–é5~ÿÿH‹„$€1ÉE1äE1ÉH‹¼$ 1íH‹œ$Ƅ$€H‰D$HDŽ$ˆHÇD$8ÇD$p˜ÇD$x€HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$éq}ÿÿH‹Bå%H‰D$(Hƒé]ÒÿÿL‰4$E1äL‹t$E1ÉH‹¼$ HDŽ$ˆHÇD$8H‹œ$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇD$Ƅ$€ÇD$pSÇD$xšé¨|ÿÿH‰ßL‰$èÄóûÿL‹$L‰L$0é’ÿÿH‰ÏL‰$èªóûÿL‹$éÊÖÿÿH‰ïH‰Œ$˜H‰$èóûÿH‹Œ$˜L‹$é’Öÿÿèwóûÿé³xÿÿH‰$èióûÿH‹$限ÿÿH‰ïH‰$èTóûÿH‹$齐ÿÿH‰ßèCóûÿ鯫ÿÿè9óûÿ逫ÿÿH‹5Mã%H‹=¾ð%1ÒèùûÿH‰$H‰„$¨H…À„A2H‹<$è!ÊüÿH‹¼$¨Hƒ/„H‹„$€1ÉE1äE1ÉHDŽ$¨H‹¼$ 1íH‰D$H‹œ$Ƅ$€HDŽ$ˆHÇD$8ÇD$p§ÇD$xHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$é÷zÿÿH‰ÏèòûÿéaÿÿL‰çè
òûÿéøwÿÿèòûÿéÂwÿÿH‰ßèóñûÿé›wÿÿH‹¼$ 1ÉE1äE1ÉHDŽ$ˆ1íH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$pàÇD$xjézÿÿH‰\$E1É1íH‹œ$L‰4$L‹t$HDŽ$ˆHÇD$8HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$Ƅ$€ÇD$pÇD$x–ézyÿÿL‰4$E1äL‹t$E1ÉH‹¼$ HDŽ$ˆHÇD$8H‹œ$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$p[ÇD$xšéÏxÿÿD¶âéâ¡ÿÿè™òûÿH‰ßèqHüÿH‰$H‰„$ H…À…MsÿÿH‹„$€1ÉE1É1íHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$H‰D$Ƅ$€ÇD$pÂÇD$xƒéxÿÿH‰ÏèïûÿéܧÿÿH‹„$€1ÉE1É1íHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$H‰D$Ƅ$€ÇD$pÄÇD$xƒé-wÿÿH‰ÏèMîûÿé]žÿÿH‰Ïè@îûÿéûžÿÿèæðûÿH‰ïè¾FüÿH‰D$HH‰„$¨H…À…8ŠÿÿH‹„$€L‰4$1É1íH‰\$L‹t$E1äE1ÉH‹¼$ H‰D$0HDŽ$ˆH‹œ$HÇD$8HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$Ƅ$€ÇD$p#ÇD$x˜éJvÿÿL‰4$E1äL‹t$E1ÉH‹œ$Ƅ$€HDŽ$ˆHÇD$8ÇD$pcÇD$xšHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$éžuÿÿèÁìûÿéÿrÿÿH‰Ïè´ìûÿ陊ÿÿH‰Ïè§ìûÿépŠÿÿH‰$è™ìûÿH‹$éHŠÿÿL‰çH‰$è„ìûÿH‹$é!Šÿÿè&ïûÿH‰ßèþDüÿH‰D$H‰„$¨H…À…¢ÿÿL‰4$H‹¼$ 1É1íL‹t$E1äE1ÉHDŽ$ˆHÇD$8H‹œ$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$pÐÇD$x£étÿÿè¤ëûÿécÿÿL‰4$E1äL‹t$E1ÉH‹¼$ 1íHDŽ$ˆHÇD$8H‹œ$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$pÕÇD$x£éÊsÿÿL‰4$E1äL‹t$E1ÉH‹¼$ 1íHDŽ$ˆHÇD$8H‹œ$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇD$Ƅ$€ÇD$pÒÇD$x£ésÿÿ@¶íéN¥ÿÿH‰ïè+êûÿéð‰ÿÿ¶Ûé݉ÿÿH‰Ïèêûÿ闉ÿÿH‹D$xHƒH‰ÅHƒ)tá1ÛH;l$x”Ã鯉ÿÿL‰4$E1äL‹t$E1ÉH‹¼$ H‹œ$HÇD$ÇD$p»#ÇD$xéé‹rÿÿH‹„$€1ÉE1äE1ÉH‹¼$ 1íH‹œ$Ƅ$€H‰D$HDŽ$ˆHÇD$8ÇD$pÙÇD$xƒHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$éÇqÿÿèêèûÿé›oÿÿH‹„$€L‰4$1É1íH‰\$E1ÉL‹t$H‹¼$ H‰D$0HDŽ$ˆH‹œ$HÇD$8HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$Ƅ$€ÇD$p(ÇD$x˜éqÿÿL‰4$E1äL‹t$E1ÉH‹¼$ H‹œ$1íÇD$p¾#ÇD$xéHÇD$éÛpÿÿH‹„$€L‰4$1É1íH‰\$E1ÉL‹t$H‹¼$ H‰D$0HDŽ$ˆH‹œ$HÇD$8HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$Ƅ$€ÇD$p%ÇD$x˜é/pÿÿL‰4$E1ÉL‹t$HDŽ$ˆH‹œ$HÇD$8HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$p`ÇD$xšéžoÿÿH‰$è^éûÿH‰ßè6?üÿH‹$H…ÀI‰Ä…‰¬ÿÿL‰4$E1ÉL‹t$H‹¼$ HDŽ$ˆHÇD$8H‹œ$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇD$Ƅ$€ÇD$p^ÇD$xšé½nÿÿ¶ÛéµÄÿÿL‰4$1ÉL‹t$E1äH‹¼$ E1ÉHÇD$H‹œ$ÇD$p¹#ÇD$xéévnÿÿè™åûÿéo–ÿÿèåûÿéò–ÿÿH‰ïè‚åûÿ铖ÿÿ1íéQœÿÿIƒEL‰¬$¨鈗ÿÿH‰Ïè\åûÿéەÿÿL‰4$E1ÉL‹t$1íHDŽ$ˆH‹œ$HÇD$8HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$pãÇD$x£é¬mÿÿ1íé¾hÿÿH‹„$€1ÉE1É1íHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$H‰D$Ƅ$€ÇD$pÖÇD$xƒéälÿÿH‹„$€1ÉE1É1íHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$H‰D$Ƅ$€ÇD$pÇÇD$xƒé3lÿÿH‹„$€H‰\$E1É1íL‰4$L‹t$H‹¼$ H‰D$0HDŽ$ˆH‹œ$HÇD$8HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$Ƅ$€ÇD$p-ÇD$x˜ézkÿÿH‰$èIåûÿH‰ïè!;üÿH‹$H…ÀH‰D$HH‰„$ …yÿÿH‹„$€L‰4$1íE1ÉH‰\$L‹t$HDŽ$ˆH‹œ$HÇD$8HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hH‰D$0HÇD$Ƅ$€ÇD$p0ÇD$x˜éÅjÿÿHÇD$8E1É1íHDŽ$ˆHÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$ é_ÔÿÿèráûÿéöÒÿÿL‰çèeáûÿéfhÿÿL‰4$E1äL‹t$E1ÉH‹¼$ 1íHDŽ$ˆHÇD$8H‹œ$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$pàÇD$x”é‹iÿÿL‰4$E1ÉL‹t$HDŽ$ˆH‹œ$HÇD$8HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$peÇD$xšé
iÿÿèàûÿ餐ÿÿL‰ïèàûÿé+’ÿÿL‰ïèôßûÿéu’ÿÿèêßûÿéL’ÿÿèàßûÿé’ÿÿH‰ïH‰$èÏßûÿH‹$é‘ÿÿH‰ïè¾ßûÿ鸑ÿÿL‰4$E1äL‹t$E1ÉHDŽ$ˆ1íH‹œ$HÇD$8HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇD$Ƅ$€ÇD$pæÇD$x£éãgÿÿL‰çèßûÿ钐ÿÿH‹„$€H‰\$E1ÉL‰4$H‹¼$ L‹t$H‰D$0H‹œ$Ƅ$€HDŽ$ˆHÇD$8ÇD$p5ÇD$x˜HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$Hé.gÿÿèQÞûÿéc˜ÿÿH‰ÏèDÞûÿéD˜ÿÿH‰$è6ÞûÿH‹$é˜ÿÿL‰çH‰$è!ÞûÿH‹$éǗÿÿH‰ßH‰$èÞûÿH‹$逗ÿÿèþÝûÿéîàÿÿH‹„$€1ÉE1É1íHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$H‰D$Ƅ$€ÇD$püÇD$x…é/fÿÿèóßûÿH‰ßèË5üÿI‰ÄH…À…bÿÿH‹„$€1ÉE1É1íH‹¼$ HDŽ$ˆHÇD$8H‹œ$HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$H‰D$Ƅ$€ÇD$púÇD$x…éFeÿÿH‹5Ì%H‹=øÙ%1ÒèIâûÿH‰$H‰„$¨H…À„M5H‹<$è[³üÿH‹¼$¨Hƒ/„-H‹„$€1ÉE1äE1ÉHDŽ$¨H‹¼$ 1íH‰D$H‹œ$Ƅ$€HDŽ$ˆHÇD$8ÇD$pèÇD$x„HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$é1dÿÿH‰ÏH‰$èÝÜûÿf.ÜH‹$z„(ñÿÿH‹Š#HƒH‰Åé!ñÿÿL‰4$E1äL‹t$E1ÉH‹¼$ 1íH‹œ$Ƅ$€HDŽ$ˆHÇD$8ÇD$pèÇD$x£HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$éHcÿÿH‹5YÊ%H‹=ú×%1ÒèKàûÿH‰D$H…À„aCH‹\$H‰ßè`±üÿH‹H‰$HƒèH‰„4L‰4$H‹¼$ 1É1íL‹t$E1äH‹œ$Ƅ$€HDŽ$ˆE1ÉHÇD$8ÇD$p÷ÇD$x¤HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$éLbÿÿL‰4$1ÉL‹t$E1ÉHDŽ$ˆ1íH‹œ$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$pÇD$x¦éÐaÿÿH‰ÏèÑØûÿé·ÿÿH‰D$èÂØûÿH‹L$é6·ÿÿH‹$E1É1íH‹¼$ HDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇ$Ƅ$€ÇD$pÇD$xxéã`ÿÿH‹D$L‰t$HÇD$8H‰D$0HÇD$ HÇD$HÇD$hHÇD$HHÇD$XHÇD$PHÇD$@HÇD$`é3ºÿÿL‰çèž×ûÿ隸ÿÿè”×ûÿéâßÿÿH‹؉#L‹t$E1äE1ÉH‹¼$ H‹œ$HÇD$ÇD$p£#ÇD$xæH‰$é#`ÿÿH‹”‰#E1äE1É1íL‹t$H‹¼$ HÇD$H‹œ$ÇD$p•#ÇD$xæH‰$éÝ_ÿÿH‹¼$ 1ÉE1É1íHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$pÇD$xxé1_ÿÿH‹,$H‹¼$ 1ÉE1ÉHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$pûÇD$xxé{^ÿÿèNØûÿH‰ïè&.üÿH‰$H…À……ÿÿH‹¼$ 1ÉE1äE1ÉHDŽ$ˆ1íH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$pùÇD$xxé²]ÿÿèÕÔûÿéááÿÿH‹„$€L‰4$E1ÉH‰\$L‹t$HDŽ$ˆH‹œ$HÇD$8HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HH‰D$0HÇD$Ƅ$€ÇD$p2ÇD$x˜é]ÿÿH‹D$(L‰4$E1äE1ÉL‹t$H‹¼$ 1íHDŽ$ˆHÇD$XH‹œ$HÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$H‰D$HÇD$(HÇD$Ƅ$€ÇD$p3ÇD$x§éQ\ÿÿH‰ïL‰$H‰D$xèhÓûÿH‹L$xL‹$éÁÒÿÿL‰4$1ÉL‹t$E1äE1É1íHDŽ$ˆH‹œ$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇD$Ƅ$€ÇD$p!ÇD$x¦é”[ÿÿL‰ÏH‰$è°ÒûÿH‹$é.sÿÿH‰ïH‰$è›ÒûÿH‹$é¢rÿÿH‹„$€1ÉE1É1íHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$H‰D$Ƅ$€ÇD$pÇD$x…éÈZÿÿH‹5êÁ%H‹=kÏ%1Òè¼×ûÿH‰$H‰„$¨H…À„…<H‹<$èΨüÿH‹¼$¨Hƒ/„`<H‹„$€1ÉE1äE1ÉHDŽ$¨H‹¼$ 1íH‰D$H‹œ$Ƅ$€HDŽ$ˆHÇD$8ÇD$p"ÇD$x†HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$é¤YÿÿL‰çèÄÐûÿéå‹ÿÿH‹„$€H‰\$E1É1íL‰4$L‹t$H‹¼$ H‰D$0HDŽ$ˆH‹œ$HÇD$8HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$Ƅ$€ÇD$p7ÇD$x˜éíXÿÿH‹D$(L‰4$E1É1íL‹t$HDŽ$ˆHÇD$XH‹œ$HÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ H‰D$HÇD$(HÇD$Ƅ$€ÇD$p0ÇD$x§éiXÿÿèÒûÿH‰ßèõ'üÿH‰ÁH…À…ð‡ÿÿH‹D$(L‰4$E1äE1ÉL‹t$H‹¼$ 1íHDŽ$ˆHÇD$XH‹œ$HÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$H‰D$HÇD$(HÇD$Ƅ$€ÇD$p.ÇD$x§ézWÿÿH‹„$€1ÉE1äE1ÉH‹¼$ 1íH‹œ$Ƅ$€H‰D$HDŽ$ˆHÇD$8ÇD$pÇD$x…HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$é¶VÿÿèÙÍûÿ錭ÿÿL9àtH‰ßè§Õûÿ…À„?&èºÖûÿH…À„~&Hƒ+uH‰ßè£ÍûÿèžÖûÿHÇD$ ÿÿÿÿH…À„«ÿÿL‰4$H‹¼$ 1É1íL‹t$E1äH‹œ$Ƅ$€HDŽ$ˆE1ÉHÇD$8ÇD$p· ÇD$x·HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$é¬UÿÿL9àtH‰ßè§Ôûÿ…À„¿$èºÕûÿH…À„ö$Hƒ+uH‰ßè£ÌûÿèžÕûÿHÇ$ÿÿÿÿH…À„GªÿÿL‰4$H‹¼$ 1É1íL‹t$E1äH‹œ$Ƅ$€HDŽ$ˆE1ÉHÇD$8ÇD$pÁ ÇD$x¸HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$é­TÿÿèÐËûÿéþ¬ÿÿèvÎûÿH‰ïèN$üÿH‰$H…À…‡{ÿÿH‹¼$ 1ÉE1É1íHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$pþÇD$xxéÝSÿÿH‹„$€1ÉE1É1íHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$H‰D$Ƅ$€ÇD$pÿÇD$x…é$Sÿÿ1íéòOÿÿH‹„$€1ÉE1É1íHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$H‰D$Ƅ$€ÇD$pÇD$x…é{RÿÿH‰ÏèŒÉûÿéi¨ÿÿH‰ßèÉûÿéø©ÿÿèuÉûÿ齩ÿÿL‰çH‰L$ècÉûÿH‹L$éî§ÿÿH‹|$ èOÉûÿé*ªÿÿL‰çèBÉûÿé©ÿÿH‰ïè5Éûÿé©ÿÿ¶Ûéx…ÿÿè#Éûÿ雃ÿÿÇD$p9!H‹¼$ÈHƒ/„±L‰4$H‹¼$ 1É1íL‹t$H‹œ$E1ÉHDŽ$ÈƄ$€HDŽ$ˆHÇD$8ÇD$xÂHÇD$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$ HÇD$é5QÿÿèXÈûÿ鿩ÿÿèNÈûÿéEÿÿÿH‹D$(L‰4$E1É1íL‹t$H‹¼$ Ƅ$€H‰D$H‹œ$HDŽ$ˆÇD$p?ÇD$x§HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$émPÿÿH‹D$(H‹l$L‰4$E1ÉL‹t$H‹¼$ HDŽ$ˆHÇD$XH‹œ$HÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$H‰D$HÇD$(HÇD$Ƅ$€ÇD$p<ÇD$x§é¶OÿÿHÇD$81ÉE1É1íHDŽ$ HDŽ$ˆHÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$L‰4$H‹œ$L‹t$Ƅ$€HÇD$ÇD$p”!ÇD$xÆé'OÿÿL‰4$H‹¼$ 1É1íL‹t$E1ÉHDŽ$ˆHÇD$8H‹œ$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$ HÇD$HÇD$Ƅ$€ÇD$p’!ÇD$xÆéuNÿÿH‹„$€1ÉE1É1íH‹¼$ H‹œ$Ƅ$€H‰D$HDŽ$ˆHÇD$8ÇD$p8ÇD$x‡HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$é´MÿÿH‰$èƒÇûÿH‰ßè[üÿH‹$H…ÀH‰D$…ø}ÿÿH‹D$(L‰4$E1äE1ÉL‹t$H‹¼$ 1íHDŽ$ˆHÇD$XH‹œ$HÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ H‰D$HÇD$(HÇD$Ƅ$€ÇD$p:ÇD$x§éãLÿÿH‹D$(L‰4$E1äE1ÉL‹t$H‹¼$ 1íHDŽ$ˆHÇD$XH‹œ$HÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ H‰D$HÇD$(HÇD$Ƅ$€ÇD$p8ÇD$x§é5LÿÿL‰4$H‹¼$ L‹t$H‹œ$HÇD$ÇD$p@$ÇD$xøéþKÿÿL‰4$H‹¼$ L‹t$H‹œ$HÇD$ÇD$p>$ÇD$xøéÇKÿÿL‰4$E1äL‹t$H‹¼$ H‹œ$HÇD$ÇD$p9$ÇD$xøéKÿÿL‰$è¬ÂûÿL‹$é‚ÃÿÿH‰ïL‰$è—ÂûÿL‹$é[ÃÿÿH‰ÏL‰$è‚ÂûÿL‹$é;ÃÿÿH‰L$xL‰$èkÂûÿH‹L$xL‹$éÓÂÿÿL‰4$E1äL‹t$H‹œ$ÇD$pE$ÇD$xøHÇD$éKÿÿL‰çè#ÂûÿH‹L$xL‹$éCÂÿÿH‹¼$ 1ÉM‰ìE1ÉHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$p*ÇD$xxé8Jÿÿè[Áûÿé&ÃÿÿèQÁûÿéþÂÿÿL‰ÏèDÁûÿéßÂÿÿL‰4$H‹¼$ 1É1íL‹t$H‹œ$E1äÇD$pS$ÇD$xøHÇD$éÙIÿÿH‰D$è÷ÀûÿH‹L$铹ÿÿò\ÁòH,ÐHºú?éí¸ÿÿèÕÀûÿ韸ÿÿ1íéMqÿÿH‹„$€1ÉE1äE1ÉH‹¼$ 1íHDŽ$ˆHÇD$8H‹œ$HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$H‰D$Ƅ$€ÇD$p£ÇD$xéåHÿÿL‰4$E1äL‹t$E1ÉH‹¼$ 1íHÇD$H‹œ$ÇD$på#ÇD$xìé¦HÿÿL‰4$1ÉL‹t$E1ÉHDŽ$ˆ1íH‹œ$HÇD$8HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$pÇD$xé!HÿÿH‰Ïè"¿ûÿ鲵ÿÿH‰Ïè¿ûÿéͶÿÿL‰çH‰L$è¿ûÿH‹L$鬶ÿÿH‰ïH‰L$èì¾ûÿH‹L$é_¶ÿÿH‰L$èؾûÿH‹L$é¶ÿÿH‹¼$ 1ÉE1ÉHDŽ$ˆHÇD$8H‹œ$HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$Ƅ$€ÇD$pÇD$xxéôFÿÿH‰ßè¾ûÿéßÿÿL‰çè¾ûÿ鑟ÿÿ1ÀéIoÿÿ1ÉE1É1íH‹œ$HDŽ$ˆHÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$p%ÇD$xxé>FÿÿH‹¼$ 1ÉE1ÉHDŽ$ˆHÇD$8H‹œ$HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$pÇD$xxé…EÿÿH‹¼$ M‰ì1ÉE1ÉH‹œ$Ƅ$€HDŽ$ˆHÇD$8ÇD$p+ÇD$xxHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$éÐDÿÿH‹|$E1ä1íèé»ûÿL‰4$1ÉL‹t$H‹¼$ E1ÉH‹œ$Ƅ$€HDŽ$ˆHÇD$8ÇD$p÷ÇD$x¤HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$éDÿÿL‰4$E1äL‹t$E1ÉH‹¼$ 1íHDŽ$ˆHÇD$8H‹œ$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇD$Ƅ$€ÇD$pþ ÇD$x¾éaCÿÿL‰4$1ÉL‹t$E1ÉHDŽ$ˆ1íH‹œ$HÇD$8HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$pü ÇD$x¾éåBÿÿL‰4$1ÉL‹t$E1ÉHDŽ$ˆ1íH‹œ$HÇD$8HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$ HÇD$HÇD$Ƅ$€ÇD$p—!ÇD$xÆé+BÿÿL‰4$1ÉL‹t$E1ÉHDŽ$ˆ1íH‹œ$HÇD$8HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$p¯ÇD$x é¦AÿÿL‹´$ˆL‹<$1É1íH‹D$(L‰l$8E1ÉL‹l$H‰\$`L‰4$L‹t$H‹¼$ H‰D$HDŽ$ˆH‹œ$HÇD$0HÇD$ HÇD$(HÇD$Ƅ$€ÇD$plÇD$x©éõ@ÿÿH‹D$(L‰4$1ÉE1äL‹t$H‹¼$ E1É1íHDŽ$ˆH‹œ$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$0HÇD$ HÇD$H‰D$HÇD$(HÇD$Ƅ$€ÇD$p^ÇD$x¨éN@ÿÿH‹D$(L‰4$1ÉE1äL‹t$H‹¼$ E1É1íHDŽ$ˆH‹œ$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$0HÇD$ H‰D$HÇD$(HÇD$Ƅ$€ÇD$pPÇD$x¨é§?ÿÿL‹´$ˆL‹<$1É1íH‹D$(L‰l$8E1ÉL‹l$H‰\$`L‰4$H‹¼$ L‹t$H‰D$H‹œ$Ƅ$€HDŽ$ˆÇD$pmÇD$x©HÇD$HÇD$(HÇD$0HÇD$ é?ÿÿè8¶ûÿérÿÿL‰Ïè+¶ûÿé2WÿÿH‰ïè¶ûÿéÛVÿÿè¶ûÿéÁqÿÿL‹´$ˆL‹<$1É1íH‰D$ H‹D$(E1äE1ÉL‰l$8H‹¼$ L‹l$L‰4$H‰\$`L‹t$H‰D$H‹œ$HDŽ$ˆHÇD$0HÇD$(HÇD$Ƅ$€ÇD$pxÇD$xªéV>ÿÿèyµûÿé
sÿÿèoµûÿé¡rÿÿL‰çèbµûÿé¸qÿÿL‰4$E1É1íL‹t$H‹¼$ HDŽ$ˆHÇD$8H‹œ$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇD$Ƅ$€ÇD$p!ÇD$x¾é‹=ÿÿL‰4$E1ÉL‹t$1íHDŽ$ˆH‹œ$HÇD$8HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇD$Ƅ$€ÇD$p!ÇD$x¾éé<ÿÿH‹„$€1ÉE1É1íH‹¼$ HDŽ$ˆHÇD$8H‹œ$HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$H‰D$Ƅ$€ÇD$p6ÇD$x‡é(<ÿÿH‹„$€1ÉE1äE1ÉH‹¼$ 1íHDŽ$ˆHÇD$8H‹œ$HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$H‰D$Ƅ$€ÇD$p4ÇD$x‡él;ÿÿL‰4$E1äL‹t$H‹¼$ H‹œ$HÇD$ÇD$p6$ÇD$xøé2;ÿÿH‰ßèR²ûÿéDnÿÿH‹„$€1ÉE1É1íHDŽ$ˆH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$H‰D$Ƅ$€ÇD$p~ÇD$xé“:ÿÿL‰4$E1äL‹t$E1ÉH‹¼$ H‹œ$HÇD$ÇD$pç#ÇD$xìé7:ÿÿHƒÏÿèvºûÿI‰ÆH…À„^H‰ÆH‰ß蟲ûÿIƒ.I‰Ä…oÿÿL‰÷è*±ûÿéoÿÿÇD$p+!éèÿÿH‹ñc#H5\‹E1ä1íH‹8èmµûÿH‹„$€1ÉE1ÉH‹¼$ HDŽ$ˆHÇD$8H‹œ$HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$H‰D$Ƅ$€ÇD$pdÇD$x|é9ÿÿL‰4$E1äL‹t$E1ÉH‹¼$ 1íHDŽ$ˆHÇD$8H‹œ$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇD$Ƅ$€ÇD$p¾!ÇD$xÉéq8ÿÿL‰4$1ÉL‹t$E1äH‹¼$ E1ÉHÇD$H‹œ$ÇD$p÷#ÇD$xòé28ÿÿL‰4$1ÉL‹t$E1äH‹¼$ H‹œ$E1ÉÇD$pê#ÇD$xìHÇD$éó7ÿÿè¯ûÿéèÒÿÿH‹D$(L‰4$E1äE1ÉL‹t$1íHDŽ$ˆHÇD$XH‹œ$HÇD$PHÇD$@HÇD$`HÇD$hHÇD$0HÇD$ HÇD$H‰D$HÇD$(HÇD$Ƅ$€ÇD$pAÇD$x§éC7ÿÿL‰4$H‹¼$ E1äL‹t$H‹œ$ÇD$p$ÇD$xòHÇD$é	7ÿÿL‰4$E1äL‹t$E1ÉH‹¼$ H‹œ$HÇD$ÇD$pù#ÇD$xòéÌ6ÿÿL‰4$E1äL‹t$H‹¼$ H‹œ$HÇD$ÇD$pþ#ÇD$xòé’6ÿÿL‰4$E1äL‹t$E1ÉH‹¼$ H‹œ$HÇD$ÇD$pü#ÇD$xòéU6ÿÿL‰4$H‹¼$ 1ÉE1äL‹t$H‹œ$HÇD$ÇD$p4$ÇD$xøé6ÿÿL‰4$H‹¼$ 1É1íL‹t$E1äHÇD$H‹œ$ÇD$p2$ÇD$xøéÛ5ÿÿH‰Ïèû¬ûÿé­MÿÿH‹?_#L‹t$E1ä1íH‹¼$ H‹œ$HÇD$ÇD$p£#ÇD$xæH‰$é‹5ÿÿL‰4$E1äL‹t$E1ÉH‹¼$ 1íH‹œ$Ƅ$€HDŽ$ˆHÇD$8ÇD$p!ÇD$x¾HÇD$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$éÞ4ÿÿL‰4$H‹¼$ 1É1íL‹t$E1äE1ÉHDŽ$ˆHÇD$8H‹œ$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$ HÇD$Ƅ$€ÇD$p)!ÇD$xÂéA4ÿÿL‰4$H‹¼$ 1É1íL‹t$E1äE1ÉHDŽ$ˆHÇD$8H‹œ$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$ HÇD$HÇD$Ƅ$€ÇD$p!ÇD$xÀé›3ÿÿL‰4$H‹¼$ 1É1íL‹t$E1äE1ÉHDŽ$ˆHÇD$8H‹œ$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$ HÇD$Ƅ$€ÇD$p|!ÇD$xÂéþ2ÿÿL‰4$E1ÉL‹t$H‹¼$ H‹œ$HÇD$ÇD$p$ÇD$xòéÄ2ÿÿL‹´$ˆL‹<$1É1íH‰D$ H‹D$(E1äE1ÉL‰l$8H‹¼$ L‹l$L‰4$H‰\$L‹t$H‰D$H‹œ$HDŽ$ˆHÇD$0HÇD$(HÇD$Ƅ$€ÇD$pÚÇD$x®é32ÿÿL‹%ìZ#L9àtH‹|$è%±ûÿ…Àtnè<²ûÿH…À…ÛÿÿH‹Z#H55ƒH‹8荭ûÿéuÛÿÿL‹%©Z#L9àtL‰ÿèä°ûÿ…À„’è÷±ûÿH…À…KÜÿÿH‹×Y#H5ð‚H‹8èH­ûÿé0ÜÿÿH‹|$艬ûÿH‰ÃH…Àt€H‹-ŠZ#H9hu5H‹Cö€³„ÏÚÿÿH‰ßè{¨ûÿH‰D$ Hƒ+…†ÿÿH‰ß脨ûÿé†ÿÿH‰Çè×-üÿH‰ÃH…Àu»éÇÚÿÿL‰ÿè"¬ûÿH‰ÃH…À„ZÿÿÿH‹-Z#H9hu4H‹Cö€³„dÛÿÿH‰ßè¨ûÿH‰$Hƒ+…хÿÿH‰ßè¨ûÿéąÿÿH‰Çèm-üÿH‰ÃH…Àu¼é]ÛÿÿH‰ß踫ûÿI‰ÄH…À„-ÛÿÿH9huQI‹D$L‰çö€³t5谧ûÿH‰$Iƒ,$u™L‰ç轧ûÿëH‹¤X#H5½H‹8è¬ûÿéïÚÿÿèë üÿH‰$ëÉH‰Çèí,üÿI‰ÄH…ÀuŸéÏÚÿÿH‰ßè8«ûÿI‰ÄH…À„­ÙÿÿH9huZI‹D$L‰çö€³t=è0§ûÿH‰D$ Iƒ,$…ªþÿÿL‰çè8§ûÿéþÿÿH‹X#H55H‹8荫ûÿégÙÿÿèc üÿH‰D$ ëÁH‰Çèd,üÿI‰ÄH…Àu–éFÙÿÿH‹„$€1ÉE1äE1ÉH‹¼$ 1íHDŽ$ˆHÇD$8H‹œ$HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$H‰D$Ƅ$€ÇD$päÇD$x„é/ÿÿH‹D$HL‰l$8L‹<$L‹l$H‰\$`HƒL‹´$ˆH‰D$0H‹D$(HÇD$ H‰D$é(Dÿÿèõ¥ûÿéŽfÿÿH‰D$0H‹D$(1ÉE1ÉL‹´$ˆL‹<$L‰l$8H‰l$@L‹l$1íL‰4$L‹t$H‹¼$ H‰D$HDŽ$ˆH‹œ$HÇD$ HÇD$(HÇD$ÇD$p) ÇD$x°éB.ÿÿèe¥ûÿéÏbÿÿI‰Äé$ÿÿL‹´$ˆL‹<$1É1íH‰D$ H‹D$(E1ÉL‰l$8L‹l$L‰4$L‹t$H‰D$H‹œ$HDŽ$ˆHÇD$0HÇD$(HÇD$Ƅ$€ÇD$p¾ÇD$x­éÎ-ÿÿL‹´$ˆL‹<$1É1íH‰D$ E1äH‹D$(E1ÉL‰l$8H‹¼$ L‹l$L‰4$HÇD$0L‹t$H‰D$H‹œ$HDŽ$ˆHÇD$(HÇD$Ƅ$€ÇD$p¼ÇD$x­é#-ÿÿH‰L$èA¤ûÿH‹L$韝ÿÿL‰4$E1É1íL‹t$H‹¼$ HDŽ$ˆHÇD$8H‹œ$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$ HÇD$Ƅ$€ÇD$p"ÇD$xÏéw,ÿÿI‰Äé¨"ÿÿH‹l$é¦;ÿÿH‹D$(L‹<$L‰l$81ÉL‹´$ˆL‹l$H‰l$@1íH‹¼$ E1ÉHDŽ$ˆL‰4$H‹œ$L‹t$H‰D$HÇD$0HÇD$ HÇD$(HÇD$ÇD$p' ÇD$x°éÛ+ÿÿL‰l$8L‹<$L‹l$L‹´$ˆ¨H…Àˆ(HƒøH_H
zHEÊH‰ÂH‹>T#E1äH5H‹81Àèj«ûÿH‹D$(L‰4$1ÉH‰l$@L‹t$E1É1íH‹¼$ H‰D$H‹œ$ÇD$p HDŽ$ˆÇD$x°HÇD$HÇD$(HÇD$0HÇD$ é+ÿÿèñ©ûÿH‰„$¨H…À„ÙH‹¼$ Hƒ/„½H‹¼$¨HDŽ$ H‹GL‹¸èAÿ×I‰ÄH…À„»H‹¼$¨Aÿ×H‰ÃH…À„âH‹¼$¨Aÿ׾H‰ÇèQŽüÿ…Àx3H‹¼$¨Hƒ/tHDŽ$¨é8bÿÿL‰ç膡ûÿéaÿÿè|¡ûÿëÛH‹D$(L‹<$H‰ÙE1ÉL‹´$ˆL‰l$8H‰l$@L‹l$1íL‰4$H‹¼$ L‹t$H‰D$H‹œ$Ƅ$€HDŽ$ˆÇD$p7 ÇD$x°HÇD$HÇD$(HÇD$0HÇD$ é¿)ÿÿL‰l$8L‹<$»L‹l$L‹´$ˆH‹¼$¨Hƒ/„_HDŽ$¨è	úûÿ…À„™H‹D$(H‰l$@1ÉE1ÉL‰4$1íL‹t$H‹¼$ H‰D$H‹œ$Ƅ$€HDŽ$ˆÇD$p? ÇD$x°HÇD$HÇD$(HÇD$0HÇD$ éý(ÿÿL‰l$8L‹<$1ÛL‹l$L‹´$ˆé<ÿÿÿHƒûH‰|H‰ÚH
?wH5LŠHEÈH‹aQ#H‹81À藨ûÿH‹D$(L‰4$1ÉH‰l$@L‹t$E1É1íH‹¼$ H‰D$H‹œ$Ƅ$€HDŽ$ˆÇD$p? ÇD$x°HÇD$HÇD$(HÇD$0HÇD$ é3(ÿÿèVŸûÿé—þÿÿèLŸûÿé9ýÿÿH‰D$ H‹D$(1ÉE1äL‹´$ˆL‹<$E1ÉL‰l$8H‰l$@L‹l$1íL‰4$L‹t$H‹¼$ H‰D$HDŽ$ˆH‹œ$HÇD$0HÇD$(HÇD$Ƅ$€ÇD$p/ ÇD$x°éŽ'ÿÿH‹D$(H‰l$@1ÉE1äL‰4$E1É1íL‹t$H‹¼$ H‰D$H‹œ$ÇD$p HDŽ$ˆÇD$x°HÇD$HÇD$(HÇD$0HÇD$ é'ÿÿH‹¸O#ºH5‚E1äH‹81ÀèߦûÿH‹D$(L‰4$1ÉH‰l$@L‹t$E1É1íH‹¼$ H‰D$H‹œ$ÇD$p HDŽ$ˆÇD$x°HÇD$HÇD$(HÇD$0HÇD$ éƒ&ÿÿL‰4$1íL‹t$H‹¼$ HDŽ$ˆHÇD$8H‹œ$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$ HÇD$HÇD$Ƅ$€ÇD$p5"ÇD$xÏéå%ÿÿH‰ßèûÿé7\ÿÿL‹´$ˆL‹<$1É1íH‰D$ E1ÉH‹D$(L‰l$8L‹l$H‰\$H‹œ$L‰4$L‹t$HDŽ$ˆHÇD$0H‰D$HÇD$(HÇD$Ƅ$€ÇD$pÜÇD$x®éa%ÿÿL‹´$ˆL‹<$1É1íH‹D$(L‰l$8E1ÉL‹l$H‰\$L‰4$L‹t$H‹¼$ H‰D$HDŽ$ˆH‹œ$HÇD$ HÇD$0HÇD$(HÇD$Ƅ$€ÇD$pÚÇD$x®éÀ$ÿÿL‹´$ˆL‹<$1É1íH‹D$(E1ÉL‰l$8L‰4$L‹l$L‹t$H‰D$H‹¼$ HDŽ$ˆHÇD$0H‹œ$HÇD$ HÇD$(HÇD$Ƅ$€ÇD$pëÇD$x¯é3$ÿÿL‹´$ˆL‹<$1É1íH‰D$ H‹D$(E1ÉL‰l$8L‹l$L‰4$L‹t$H‰D$H‹œ$HDŽ$ˆHÇD$0HÇD$(HÇD$Ƅ$€ÇD$péÇD$x¯éÑ#ÿÿH‰ßèҚûÿéôXÿÿL‰çèŚûÿéÐXÿÿH‰ÁH‹D$(L‹<$E1äL‹´$ˆL‰l$8E1ÉL‹l$H‰l$@1íL‰4$L‹t$H‹¼$ H‰D$HDŽ$ˆH‹œ$HÇD$0HÇD$ HÇD$(HÇD$Ƅ$€ÇD$p ÇD$x°é#ÿÿH‰Ïè"šûÿéæZÿÿèšûÿéYÿÿL‰çèšûÿéYÿÿèšûÿéßXÿÿH‹D$(L‹<$L‰l$81ÉL‹´$ˆL‹l$E1ÉHDŽ$ˆH‹¼$ H‰D$L‰4$L‹t$H‹œ$Ƅ$€HÇD$0HÇD$ HÇD$(HÇD$ÇD$póÇD$x¯éI"ÿÿL‹´$ˆL‹<$1É1íH‹D$(L‰l$8E1ÉL‹l$L‰4$H‹¼$ L‹t$H‰D$H‹œ$Ƅ$€HDŽ$ˆÇD$pòÇD$x¯HÇD$HÇD$(HÇD$0HÇD$ é¼!ÿÿL‹´$ˆL‹<$1É1íH‰D$ E1ÉH‹D$(L‰l$8H‹¼$ L‹l$L‰4$HÇD$0L‹t$H‰D$H‹œ$HDŽ$ˆHÇD$(HÇD$Ƅ$€ÇD$pðÇD$x¯é3!ÿÿH‹<$E1ä1íèM˜ûÿH‹¼$ 1ÉE1ÉH‹œ$Ƅ$€HDŽ$ˆHÇD$8ÇD$pGÇD$xˆHÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇ$és ÿÿH‹¼$ 1ÉE1äE1ÉHDŽ$ˆ1íH‹œ$HÇD$8HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$pCÇD$xˆéÄÿÿL‰4$H‹¼$ 1É1íL‹t$E1äE1ÉHDŽ$ˆHÇD$8H‹œ$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$póÇD$x¤éÿÿL‹´$ˆL‹<$1É1íH‹D$(L‰l$8E1ÉL‹l$L‰4$H‹¼$ L‹t$H‰D$H‹œ$Ƅ$€HDŽ$ˆÇD$pœÇD$x«HÇD$HÇD$(HÇD$0HÇD$ éˆÿÿL‰4$H‹¼$ 1É1íL‹t$H‹œ$L‰d$E1äÇD$p$ÇD$xóéNÿÿL‰4$H‹¼$ 1É1íL‹t$H‹œ$L‰d$E1äÇD$p$ÇD$xóéÿÿè7•ûÿé–ÃÿÿH‹„$€1ÉE1äE1ÉH‹¼$ 1íHDŽ$ˆHÇD$8H‹œ$HÇD$HÇD$(HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$H‰D$Ƅ$€ÇD$pÇD$x†éNÿÿL‰ÿèn”ûÿézTÿÿèd”ûÿéZTÿÿL‹´$ˆH‰D$ L‰ùE1ÉH‹D$(L‹<$L‰l$8H‰l$@L‹l$1íL‰4$H‹œ$L‹t$H‰D$HDŽ$ˆHÇD$0HÇD$(HÇD$Ƅ$€ÇD$p ÇD$x°é¿ÿÿH‹D$(L‰ùL‰l$8E1ÉL‹<$L‹l$H‰l$@1íL‹´$ˆH‹¼$ H‰D$H‹œ$Ƅ$€L‰4$L‹t$HDŽ$ˆÇD$p ÇD$x°HÇD$HÇD$(HÇD$0HÇD$ éÿÿH‹D$(L‰ùL‰l$8E1ÉL‹<$L‹l$H‰l$@1íL‹´$ˆH‰D$H‹¼$ HDŽ$ˆL‰4$L‹t$H‹œ$Ƅ$€HÇD$0HÇD$ HÇD$(HÇD$ÇD$p ÇD$x°éŠÿÿH‰ÁH‹D$(L‹<$E1äL‹´$ˆL‰l$8E1ÉL‹l$H‰l$@1íL‰4$L‹t$H‹¼$ H‰D$HDŽ$ˆH‹œ$HÇD$0HÇD$ HÇD$(HÇD$Ƅ$€ÇD$p ÇD$x°éôÿÿL‰ÿè’ûÿéˆQÿÿH‰D$ H‹D$(L‰ùE1äL‹´$ˆL‹<$E1ÉL‰l$8H‰l$@L‹l$1íL‰4$L‹t$H‹¼$ H‰D$HDŽ$ˆH‹œ$HÇD$0HÇD$(HÇD$Ƅ$€ÇD$p ÇD$x°éUÿÿL‹´$ˆL‹<$1É1íH‹D$(H‰\$0E1äE1ÉL‰l$8L‹l$L‰4$L‹t$H‰D$H‹œ$HDŽ$ˆHÇD$ HÇD$(HÇD$Ƅ$€ÇD$pÍÇD$x­éÑÿÿH‰Ïèñûÿé­NÿÿL‹´$ˆL‰ùE1É1íH‰D$ H‹D$(L‹<$L‰4$L‰l$8L‹t$L‹l$H‰\$`H‰D$H‹œ$HDŽ$ˆHÇD$0HÇD$(HÇD$Ƅ$€ÇD$p|ÇD$xªé\ÿÿL‹´$ˆH‰ÁH‹D$(L‰l$8L‹<$L‹l$H‰\$`1íL‰4$E1äL‹t$E1ÉH‹¼$ H‰D$HDŽ$ˆH‹œ$HÇD$0HÇD$ HÇD$(HÇD$Ƅ$€ÇD$pzÇD$xªé§ÿÿL‰ïèǏûÿéxRÿÿL‰ÿ躏ûÿéXRÿÿL‹´$ˆL‰ùE1É1íH‰D$ H‹D$(L‹<$L‰4$L‰l$8L‹t$L‹l$H‰\$XL‰d$PH‹œ$HDŽ$ˆHÇD$0H‰D$HÇD$(HÇD$Ƅ$€ÇD$p” ÇD$x´é ÿÿH‰ÁH‹D$(L‹<$E1ÉL‹´$ˆL‰l$81íL‹l$H‰\$XL‰d$PE1äH‹¼$ L‰4$L‹t$H‰D$H‹œ$HDŽ$ˆHÇD$0HÇD$ HÇD$(HÇD$Ƅ$€ÇD$p’ ÇD$x´éfÿÿL‰àH!ØHTÅHƒ:ÿtHƒÀH!ØHTÅHƒ:ÿuîL‰"M‰eé÷‹ÿÿH;„JŠÿÿHƒéŽ@ŠÿÿH‹Å?#H5£jH‹8覒ûÿH…Ût
Hƒ+„pHDŽ$àHDŽ$èéŠÿÿƒ¼$ÀM‰õM‰Î…JH‹|$è’ûÿH‹¼$ÈH…ÿ„ H‹5¼}%1Ò轓ûÿH‹¼$ÈH‰„$ÀHƒ/„îH‹„$ÀHDŽ$ÈH‰D$H…ÀtGH‹\$H‹H‰$HƒèH‰t(H‹D$0HDŽ$ÀH‰D$éoÿÿH‰ïè]ûÿéaŠÿÿH‰ßèPûÿëÎL‰4$H‹¼$ 1É1íL‹t$E1äE1ÉHÇD$8HÇD$XH‹œ$HÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$ HÇD$ÇD$pH#ÇD$xÐéÿÿèûÿéÿÿÿH‹D$0H‰D$é`nÿÿH‹L$8H‹t$ ºH‹¼$˜è âûÿé•þÿÿL¤$°¹4H‹t$H‰¬$àL‰çó¥銈ÿÿH‰Ïè_Œûÿéz†ÿÿL‰ÏH‰L$èMŒûÿH‹L$éY†ÿÿL‰4$H‹¼$ E1äL‹t$HDŽ$ˆHÇD$8H‹œ$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$ HÇD$HÇD$Ƅ$€ÇD$pC"ÇD$xÏé|ÿÿH
ébH"hIƒùL‹[x%H‰ÎHGðHƒúHOÈPH‹ô<#VH5Ü{H‹81Àè"”ûÿZYé%ýÿÿ1ÛH‹Ò<#ºH5v{L¤$°H‹81Àèô“ûÿéùüÿÿH‹¨<#1ÒH5O|H‹81ÀèՓûÿéÚüÿÿH‹‰<#H5ò{H‹8èjûÿé¿üÿÿHƒ¿„ۆÿÿH‹`<#H5™{H‹8èAûÿé–üÿÿH‹‡H…À„ †ÿÿ鑆ÿÿH‰ß诊ûÿéƒüÿÿH‹µhH=lw%èwÒûÿ…À„ó„ÿÿ‹Mtƒù…(ÿÿÿH‰ï1ÛL¤$°éõ…ÿÿH‰ÏèiŠûÿéb‡ÿÿÇD$pf"H‹¼$ÈHƒ/„”L‰4$E1äL‹t$E1ÉHDŽ$È1íH‹¼$ H‹œ$HÇD$8ÇD$xÐHÇD$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$ HÇD$éŽÿÿH‰$證ûÿH‹$éZÿÿÿÇD$pX"é;ÿÿÿL‰4$H‹¼$ 1É1íL‹t$E1äE1ÉHÇD$8HÇD$XH‹œ$HÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$ HÇD$ÇD$pV"ÇD$xÐéæÿÿH‰ïè‰ûÿéW…ÿÿL‰4$E1äL‹t$E1ÉH‹¼$ HÇD$8HÇD$XH‹œ$HÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$ HÇD$HÇD$Ƅ$€ÇD$pH"ÇD$xÏéCÿÿL‰ÿècˆûÿé¾JÿÿH‹D$(L‰ùL‰l$8E1ÉL‹<$L‹l$H‰\$X1íL‹´$ˆL‰d$PE1äH‹¼$ H‰D$L‰4$H‹œ$L‹t$Ƅ$€HDŽ$ˆÇD$pˆ ÇD$x³HÇD$HÇD$(HÇD$0HÇD$ é›ÿÿL‰÷軇ûÿéJÿÿ聑ûÿ‰ÅéîIÿÿH‰D$ H‹D$(L‰ùE1ÉL‹´$ˆL‹<$L‰l$81íL‹l$H‰\$XL‰d$PE1äH‹¼$ L‰4$H‹œ$L‹t$H‰D$HDŽ$ˆHÇD$0HÇD$(HÇD$Ƅ$€ÇD$pˆ ÇD$x³éëÿÿè‡ûÿéIÿÿH‰ÁH‹D$(L‹<$E1ÉL‹´$ˆL‰l$81íL‹l$H‰\$XL‰d$PE1äH‹¼$ L‰4$L‹t$H‰D$H‹œ$HDŽ$ˆHÇD$0HÇD$ HÇD$(HÇD$Ƅ$€ÇD$p… ÇD$x³éFÿÿL‹´$ˆL‹<$1É1íH‰D$ E1ÉH‹D$(L‰l$8L‹l$H‰\$XH‹œ$L‰4$L‹t$HDŽ$ˆL‰d$PHÇD$0H‰D$HÇD$(HÇD$Ƅ$€ÇD$pƒ ÇD$x³éÚÿÿH‰ïèۅûÿé|GÿÿL‰ÿè΅ûÿéWGÿÿL‹´$ˆH‰D$ L‰ùE1ÉH‹D$(L‹<$L‰l$8H‰\$XL‹l$H‰l$@H‹œ$1íL‰4$L‹t$HDŽ$ˆL‰d$PHÇD$0H‰D$HÇD$(HÇD$Ƅ$€ÇD$pv ÇD$x²é/ÿÿH‰ÁH‹D$(L‹<$E1ÉL‹´$ˆL‰l$8H‰\$XL‹l$L‰d$PH‹¼$ E1äH‰l$@1íH‹œ$L‰4$L‹t$HDŽ$ˆHÇD$0HÇD$ H‰D$HÇD$(HÇD$Ƅ$€ÇD$ph ÇD$x²ép
ÿÿ蓄ûÿéÏEÿÿL‰ÿ膄ûÿé°EÿÿL‹´$ˆH‰D$ L‰ùE1ÉH‹D$(L‹<$L‰l$8H‰\$XL‹l$H‰l$@H‹œ$1íL‰4$L‹t$HDŽ$ˆL‰d$PHÇD$0H‰D$HÇD$(HÇD$Ƅ$€ÇD$p\ ÇD$x±éçÿÿH‰ÁH‹D$(L‹<$E1ÉL‹´$ˆL‰l$8H‰\$XL‹l$L‰d$PH‹¼$ E1äH‰l$@1íH‹œ$L‰4$L‹t$HDŽ$ˆHÇD$0HÇD$ H‰D$HÇD$(HÇD$Ƅ$€ÇD$pN ÇD$x±é(ÿÿH‹D$L‰4$1ÉE1äL‹t$E1É1íH‹¼$ H‰D$0H‹œ$HÇD$8ÇD$pk#ÇD$xâHÇD$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$ HÇD$éŒÿÿL‰4$H‹¼$ 1ÉE1äL‹t$H‹œ$HÇD$ÇD$pT$ÇD$xøéPÿÿL‰4$E1äL‹t$E1ÉHDŽ$ˆ1íH‹œ$HÇD$8HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$ HÇD$HÇD$Ƅ$€ÇD$p"ÇD$xÏé´
ÿÿL‰4$1ÉL‹t$E1ÉHDŽ$ˆ1íH‹œ$HÇD$8HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$ HÇD$Ƅ$€ÇD$p"ÇD$xÏéA
ÿÿL‰4$1ÉL‹t$H‹œ$HÇD$ÇD$pQ$ÇD$xøé
ÿÿL‰4$E1ÉL‹t$1íHDŽ$ˆH‹œ$HÇD$8HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$ HÇD$Ƅ$€ÇD$p	"ÇD$xÏé€	ÿÿL‰4$E1É1íL‹t$H‹¼$ HDŽ$ˆHÇD$8H‹œ$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$ HÇD$Ƅ$€ÇD$p
"ÇD$xÏéÉÿÿL‰4$E1É1íL‹t$H‹¼$ HDŽ$ˆHÇD$8H‹œ$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$ HÇD$HÇD$Ƅ$€ÇD$p"ÇD$xÏé(ÿÿH‰ÏèHûÿé+@ÿÿL‰4$H‹œ$L‹t$ÇD$pB$HÇD$ÇD$xøéûÿÿL‰4$H‹¼$ 1ÉE1äL‹t$H‹œ$HÇD$ÇD$pL$ÇD$xøé°ÿÿL‰4$H‹œ$L‹t$ÇD$pG$HÇD$ÇD$xøé ÿÿL‹´$ˆL‹<$1É1íH‹D$(E1ÉL‰l$8L‰4$L‹l$L‹t$H‰D$H‹¼$ HDŽ$ˆHÇD$0H‹œ$HÇD$ HÇD$(HÇD$Ƅ$€ÇD$p›ÇD$x«éôÿÿL‰çè~ûÿé÷:ÿÿL‹d$éÿÿHÇD$81ÉE1É1íHDŽ$ˆHÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$ é.·ÿÿè }ûÿé²@ÿÿL‹´$ˆL‹<$1É1íH‹D$(E1ÉL‰l$8L‰4$L‹l$L‹t$H‰\$`H‰D$H‹œ$HDŽ$ˆHÇD$0HÇD$ HÇD$(HÇD$Ƅ$€ÇD$pŽÇD$xªéÿÿL‹´$ˆL‹<$1É1íH‹D$(L‰l$8E1ÉL‹l$L‰4$H‹¼$ L‹t$H‰D$H‹œ$Ƅ$€HDŽ$ˆÇD$p©ÇD$x¬HÇD$HÇD$(HÇD$0HÇD$ é\ÿÿL‹´$ˆL‹<$1É1íH‹D$(E1ÉL‰l$8L‰4$L‹l$L‹t$H‰D$H‹¼$ HDŽ$ˆHÇD$0H‹œ$HÇD$ HÇD$(HÇD$Ƅ$€ÇD$p§ÇD$x¬éÏÿÿH‰ßèï{ûÿé¢8ÿÿL‹´$ˆL‹<$1É1íH‹D$(H‰\$0E1äE1ÉL‰l$8H‹¼$ L‹l$L‰4$HÇD$ L‹t$H‰D$H‹œ$HDŽ$ˆHÇD$(HÇD$Ƅ$€ÇD$p§ÇD$x¬é6ÿÿL‰÷èV{ûÿéæ7ÿÿL‹´$ˆL‹<$1É1íH‰D$ E1äH‹D$(E1ÉL‰l$8H‹¼$ L‹l$L‰4$HÇD$0L‹t$H‰D$H‹œ$HDŽ$ˆHÇD$(HÇD$Ƅ$€ÇD$p§ÇD$x¬éÿÿL‰4$E1É1íL‹t$H‹¼$ HDŽ$ˆHÇD$8H‹œ$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇD$Ƅ$€ÇD$pÀ!ÇD$xÉéóÿÿL‰4$E1É1íL‹t$H‹¼$ HDŽ$ˆHÇD$8H‹œ$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$ HÇD$HÇD$Ƅ$€ÇD$pÑ!ÇD$xÉéRÿÿL‰4$E1ÉL‹t$1íHDŽ$ˆH‹œ$HÇD$8HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$pÈ!ÇD$xÉéÈÿÿL‰4$E1É1íL‹t$H‹¼$ HDŽ$ˆHÇD$8H‹œ$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇD$Ƅ$€ÇD$pÃ!ÇD$xÉéÿÿL‰4$E1ÉL‹t$H‹¼$ H‹œ$Ƅ$€HDŽ$ˆHÇD$8ÇD$pÏ!ÇD$xÉHÇD$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$égÿÿL‰4$1ÉL‹t$E1ÉHDŽ$ˆ1íH‹œ$HÇD$8HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$ HÇD$Ƅ$€ÇD$p¦!ÇD$xÆéäÿþÿL‰4$E1ÉL‹t$H‹¼$ HDŽ$ˆHÇD$8H‹œ$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$HÇD$Ƅ$€ÇD$pÌ!ÇD$xÉé-ÿþÿL‰4$E1É1íL‹t$H‹¼$ HDŽ$ˆHÇD$8H‹œ$HÇD$XHÇD$PHÇD$@HÇD$`HÇD$hHÇD$HHÇD$0HÇD$ HÇD$Ƅ$€ÇD$pÊ!ÇD$xÉéŒþþÿ@AWI‰ÿAVAUATUH‰õSH‰ÓHƒìHL‹%â'#L‹
›(#L‹5Lf%L‹nHÇD$HÇD$8L‰d$L‰L$ L‰d$(L‰t$0H…Ò…áIƒý‡GHÐ]JcªHÐÿà€H‹^HH‰\$8L‹u@L‰t$0L‹E8L‰D$(H‹M0H‰L$ L‹m(L‰l$H‹m H‰l$H…Û„	L9Ë”ÀH;<'#”ÂÂuML9ãtHH‰ßH‰L$L‰$ègwûÿL‹$H‹L$ƒøÿ‰ÃtWHƒìH‰îM‰ñL‰êSL‰ÿèíþÿY^HƒÄH[]A\A]A^A_öØëÔM‰àékÿÿÿM‰àL‰ÉM‰åéoÿÿÿfM‰àL‰ÉéYÿÿÿDè[}ûÿL‹$H‹L$H…Àt–¾¯é¡H‰ßè¨vûÿI‰ÆH‹5žn%H‰ßIƒîèâsûÿL‹
+'#H…ÀH‰D$…HL‹mf„M…íHMH
MHOÈŸÀHmP¶ÀL
#KLOÊLD€HƒìH‹³$#AUH8PH5ƒOH‹81Àèi|ûÿX¾¶ZH
ŸLºH=cèŠÍûÿHƒÄH1À[]A\A]A^A_Ãf„Iƒý‡fÿÿÿH\JcªHÐÿàfDH‹FHH‰D$8H‹E@H‰D$0H‹E8H‰D$(H‹E0H‰D$ H‹E(H‰ßH‰D$H‹E H‰D$è‚uûÿIƒýL‹
&#I‰Æ‡nH¿[JcªHÐÿàfD»é'þÿÿH‹5ge%H‰ßèrûÿL‹
Ø%#H…ÀtH‰D$IƒîM…öŽõH‹5âe%H‰ßèbrûÿL‹
«%#H…ÀtH‰D$ IƒîM…öŽÈH‹5Õf%H‰ßè5rûÿL‹
~%#H…ÀtH‰D$(IƒîM…öŽ›H‹5 l%H‰ßèrûÿL‹
Q%#H…ÀtH‰D$0IƒîM…ö~rH‹5ßd%H‰ßèßqûÿL‹
(%#H…À„„H‰D$8IƒþuyH‹l$L‹l$H‰ÃH‹L$ L‹D$(L‹t$0éòüÿÿH‹F H‰ßH‰D$è?tûÿL‹
Ø$#I‰ÆM…öÞþÿÿH‹l$H‹\$8L‹l$H‹L$ L‹D$(L‹t$0éŸüÿÿf„H…À~ÏHT$L‰éH‰ßL÷MH5B%èM÷ûÿ…Àx*H‹l$H‹\$8L‹l$H‹L$ L‹D$(L‹t$0L‹
T$#éEüÿÿ¾–é“ýÿÿDH‰øHƒìH‹?ÿPfïÀÁè	ó*ÀóY€ºHƒÄÐf.„H‹GH‹?ÿà€H…ö~3ATL$òUH‰ýSH‰ÓDH‹}HƒÃÿUòCøL9ãuë[]A\ÃfDÀH…ö~CATL$²UH‰ýSH‰ÓDH‹}HƒÃÿUfïÀÁè	ó*ÀóYê¹óCüL9ãuØ[]A\ÃÀAUL-Ç}ATL%¾…UH-¶SH‰ûHƒì(H‹;ÿSfïÉH‰ÆHÁèHÁîòH*È@¶ÎòAYÌH‰ÊH9D͇H‹;H‹C@„ö„„ƒêòA\ÍòL$HcÒòADÕò\$ò\Ãò$ÿÐòL$òD$f(áfW%ٺf(Äèppûÿò$òYT$ò\$òL$òXÓf/†MÿÿÿHƒÄ(f(Á[]A\A]Ã@ÿÐò
6pò\Èf(Áè‘rûÿò
ñ¸HƒÄ([]ò\ÈA\A]f(ÁÃfDH…ö~3ATL$òUH‰ýSH‰ÓDH‰ïHƒÃèÜpûÿòCøL9ãuê[]A\ÃDÀAVI‰þAUL-bpATL%YtUH-QxSHƒìI‹>AÿVfïɉÆÁè	Ñîó*È@¶ÎóAYŒH‰Ê9D‡ˆI‹>I‹F@„ö„ƒêóA\óL$HcÒóAD•ó\$ó\ÃóD$ÿÐóL$‰Ã(éW-‘¹Áë	(Åè†sûÿfïÒó\$óL$ó*ÓóYª·óYT$óXÓ/†KÿÿÿHƒÄ(Á[]A\A]A^ÀÿÐfïÉóv·Áè	ó*ÈóY
c·ó\Áèzuûÿó
Z·HƒÄ[]ó\ÈA\A]A^(ÁÃ@f.„H…ö~3ATL$²UH‰ýSH‰ÓDH‰ïHƒÃèLtûÿóCüL9ãuê[]A\ÃDÀH…ö~KATL$òUH‰ýSH‰ÓDH‹}HƒÃÿUò
nò\Èf(ÁèxpûÿfW`¸òCøL9ãuÎ[]A\ÐÃDf.„H…ö~kATL$²UH‰ýSH‰ÓDH‹}HƒÃÿUfïÀò
¹mÁè	ó*ÀóYR¶óZÀò\Èf(ÁèpûÿòZÀWö·óCüL9ãu´[]A\ÀÃDf.„AWAVI‰þAUL-¦ATL%÷­UH½ÿÿÿÿÿÿSHäHƒì(éI‹>I‹F…Ò„ЃêòËòL$HcÒòÓò\$ò\Ãò$ÿÐòL$ò%ԵòD$òYáf(ÄòYÁèÍlûÿò$òYT$ò\$òL$òXÓf/ÂwAI‹>AÿVfïÉI‰Ç¶ÈIÁï	H‰ÊL‰þH!îòH*ÎòAYLÍöÄtfW
նI94̆CÿÿÿHƒÄ(f(Á[]A\A]A^A_ÄI‹>I‹FÿÐò5Glò\ðf(Æè¢nûÿò
µI‹>òYÈò$AÿVò=lò\øf(Çèunûÿò$fWX¶f(ÑòXÀòYÑf/Âv–òX
ƴA÷Ç„fÿÿÿfW
)¶éYÿÿÿ@H…ö~3ATL$òUH‰ýSH‰ÓDH‰ïHƒÃè,sûÿòCøL9ãuê[]A\ÃDÀAVI‰þAUL-"”ATL%˜UH-SHƒì錀I‹>I‹F…Ò„؃êóTHcÒóD•óT$ó\ÂóD$ÿÐò%´fïÉóZL$‰ÃòYáÁë	f(ÄòYÁèõjûÿfïÉóT$ó*ËóY
³óYL$óXÊóZÉf/ÁwCI‹>AÿVfï	öÈÁë	H‰Êó*ÃóAYDóD$öÄt
WµóD$A9Œ†8ÿÿÿóD$HƒÄ[]A\A]A^ÃDI‹>I‹FÿÐfïÀó5³Áè	ó*ÀóYü²ó\ð(Æèqûÿóô²I‹>óYÐóT$AÿVfïÉóϲÁè	ó*ÈóY
¼²ó\ÁèÓpûÿóT$(ÈW
c´(ÂóYÂóXÉ/ȆoÿÿÿóX—²óT$€ç„@ÿÿÿW1´óT$é.ÿÿÿfDH…ö~3ATL$²UH‰ýSH‰ÓDH‰ïHƒÃè<pûÿóCüL9ãuê[]A\ÃDÀf.pi‹Rfïÿf.Ç‹4SH‰ûHƒì0ò=LiòD$f/ø†ä@H‹;ÿSH‰ßòD$èjûÿò
iòl$òT$ò\Íf/Êr.ò
þhòD$f(Âò^Íèkûÿò\$f/Ør§HƒÄ0[ÐòD$òÊhòL$ ò\Âò^D$èkûÿòt$òL$ f(Ðf(ÆòT$òYÂò\Èf(Áò
‡hò^Îè¦jûÿòT$ò\$ò\Úf/Ø‚,ÿÿÿHƒÄ0[ÃfDò|$ò\=:±ò:±òYÇò|$(fïÿf.øòQȇò5hò^ñòt$@H‰ßèoûÿfïäf(ÈòD$òYÁòXîgf/àsØf(ÐòL$H‹;òYÐòYÂòD$ÿSòL$ò¼°ò=´gf(ÙòYÙòYÓòYÓò\úf/øwZòL$ è÷iûÿòD$òD$èæiûÿòL$ ò=x°òhgò\T$òYùòXÐòYT$(òYÏòXÊf/L$†0ÿÿÿòD$(òYD$HƒÄ0[ÃfD…ÆýÿÿfïÀÃD…¨ýÿÿéhûÿòL$èúoûÿòL$éÑþÿÿDf.„.¯‹‹fïÿ.Ç‹nSH‰ûHƒì ó5f¯óD$ót$ó5V¯/ð†ùf„H‹;ÿSfïÒH‰ßÁè	ó*ÐóYT$óT$è[lûÿó
¯ól$óT$ó\Í/Êr.ó
ú®óD$(Âó^Íèlûÿó\$/Ør™HƒÄ [ÃóD$óƮóL$ó\Âó^D$èÍlûÿót$óL$(Ð(ÆóT$óYÂó\È(Áó
†®ó^Îè™kûÿóT$ó\$ó\Ú/Ø‚ ÿÿÿHƒÄ [Ãf.„ól$ó\-V®fïöóN®óYÅól$.ðóQȇ2ó=®ó^ùó|$ó=®ó|$€H‰ßèðkûÿfïä(ÈóD$óYÁóXۭ/àsÚ(ÐóL$H‹;óYÐóYÂóD$ÿSóL$fïÀó¿­Áè	ó=œ­(Ùó*ÀóYÙóYD$óYÓóYÓó\ú/øwYóL$è‹kûÿóD$óD$èzkûÿóL$ó5l­óH­ó\T$óYñóXÐóYT$óYÎóXÊ/L$†%ÿÿÿóD$óYD$HƒÄ [Ã…ŒýÿÿfïÀÃD…oýÿÿé-jûÿóL$èÂiûÿóL$é¸þÿÿ€H‰øHƒìH‹?ÿPHƒÄHÑèÐf.„H‰øHƒìH‹?ÿPHƒÄÑèÃff.„ë¾@f.„H‹GH‹?ÿà€f.Àcº›ÀE„À…Uf.Ŭ›ÂD„À…?USHƒì(ò-±¬f/èƒÿf(Ð1íf(Êò%mcHæcòn¬òYÊHPÀò^áò
b¬ëòHƒèòYÌòXËH9ÂuëòD$f(ÂòL$òT$è€eûÿòT$òL$ò5,¬f/t$ò^Êf(Úò\ö«òYØòX
¬òXËò\ÊrFH…í~AHƒÅ»fò\ÀbòL$HƒÃf(ÂòT$èeûÿòL$H9ëòT$ò\ÈuÊHƒÄ(f(Á[]Àf(ÍfïÒò\ÈòH,éòH*ÕòXÐéèþÿÿf„fïÉf(ÁÀHƒìòL$ò$è¼iûÿòL$òYÁòX$HƒÄÄHƒìòD$ècûÿòYD$HƒÄÃfDHƒìH‰øH‹?òL$ò$ÿPòL$òYÁòX$HƒÄÃ@HƒìòL$èbûÿòL$HƒÄòYÁÃfHƒìóL$èdûÿóL$HƒÄóYÁÃfSH‰ûHƒì ò5xaòD$f/ðòL$rf/ñsBòD$H‰ßèªaûÿH‰ßò$òD$è—aûÿò$HƒÄ [òXÁò^Èf(ÁÃfïäf/ÄwnH‹;ÿSH‹;ò$ÿSò$ò
aò^L$òD$f(ÃècûÿòT$ò
Ý`ò^L$ò$f(ÂèñbûÿòX$ò=¼`f/ør˜ëŒ@ò<$HƒÄ [ò^øf(ÇÃDHƒìòY”©èß`ûÿHƒÄòXÀÃfDSH‰ûHƒìò$òD$èHgûÿò$H‰ßf(ÐòYÑf(Áò$è*gûÿò\$ò$HƒÄ[òYÃò^Ðf(ÂÃf.„SH‰ûHƒìè“gûÿH‰ßòD$è…gûÿòL$HƒÄ[ò^Èf(ÁÐHƒìòD$èÑ`ûÿò^D$èÆ_ûÿò\Æ_HƒÄÃf„fïÉf.ÁzufïÀÀHƒìòD$è‰`ûÿò
‰_ò^L$HƒÄé¢aûÿfHƒìòD$èa`ûÿfW¹©èT_ûÿò
T_f(Ñò^L$HƒÄò\Ðf(ÂéaaûÿSH‰ûHƒìò$òL$ë
fïÒf/ÂwFH‹;ÿSf/¨ræò
¨ò\Èò\Èf(ÁèUaûÿòYD$ò$HƒÄ[ò\Øf(ÃÃ@òXÀè/aûÿòYD$òX$HƒÄ[Ã@f.„SH‰ûHƒìò$òL$DH‹;ÿSò‚^òz^ò\Ðf/Úf(ÂvÜèÏ`ûÿfW·¨èÂ`ûÿòYD$ò$$HƒÄ[ò\àf(ÄÃf„SH‰ûHƒìò$òL$DH‹;ÿSfïÒf/Âvðò
^ò\Èò^Áèc`ûÿòYD$òX$HƒÄ[ÃfHƒìè·dûÿHƒÄéÎ]ûÿ@f.„HƒìH‰øH‹?ò$ÿPò
®]ò\Èf(Áè	`ûÿòYѦfïÒf.ÐòQÈwò$HƒÄòYÁÃòL$èjfûÿòL$ëßfSH‰ûHƒì òD$èÝdûÿòL$H‰ßòY
L¦òD$f(ÁòL$è‡]ûÿòL$fïäf(Øf.áòQÑw"f.ãòL$òYÊòQÓw5f(ÁHƒÄ ò^Â[ÃòD$f(ÁòT$èØeûÿfïäò\$òT$ë·f(ÃòT$òL$è±eûÿòT$òL$ë¨UH‰ýSHƒìXf/ץò$sxò<$f.=“\zu1ÛHƒÄXH‰Ø[]Ãò$fW»¦1ÛèT\ûÿò
T\òD$ë@HƒÃò$H‹}ÿUò$òYÈf/L$wßHƒÄXH‰Ø[]ÃDf(àòQèfïÀf.Äòl$‡ò$èZ^ûÿòD$(òD$òY&¥òX&¥f(ðòD$òY¥f(Îò\
 ¥ò\5Фf(àò¥ò\%ü¤ò^Áò
¥f(ìòd$0òXìòl$HòXì¤òD$8òæ¤ò^Æò\ÈòL$@H‹}ÿUH‹}f(Ðò\I¤òT$ÿUòT$ò
2¤òD$f(ÂfTP[ò\ÈòD$Hò^ÁòL$òXD$òYÂòX$òX}¤èPcûÿòL$f/
r¤òH,Øò\$rò|$@f/ûƒ@þÿÿH…Ûˆ\ÿÿÿò-L¤f/év
f/Ù‡Dÿÿÿf(ÃòL$ èõ\ûÿòD$òD$8èä\ûÿòL$ òl$0òD$òD$òYÉò^éòXÅè»\ûÿòL$HCòXL$ò\ÈfïÀòH*ÀòL$fïÉòH*ËòYL$(ò\$òL$èy_ûÿòL$ò\Èf/L$‚£þÿÿHƒÄXH‰Ø[]Ãf(Äèàbûÿéçýÿÿf.„òÐYSH‰ûò\Ñò^Ñf(Êè£^ûÿH‰ß[éÊZûÿf.„AVfïÉAUòH*ÎI‰ÕATI‰ôUSH‰ûHìЋòD$x…Àt
H9r„š	òiYòt$xM‰eAÇEf(úòAuò\þòt$Hf/þò|$@†C	ò\$Hòl$@òT$òYËòA]òAm òXÙòL$òA](f(Ãò$è[aûÿòL$ò$òYL$@òH,èfïÀòT$I‰m0f(áòL$`òQÉf.ć 	òY
W¢ò-ßXò5W¢f(ÁòL$@òY
=¢ò\Áf(àf(ÈfTåf.ô‡KfïÀò5o¡òH*Åf(þòXÎòt$ òXøf(áòL$òXþ¡òAM8f(ïòA}@ò¼$€ò\éòXÏf(ùòL$pòAMPò
͡òl$0ò^ÈòáòAmHòXÁòL$HòYÍfD(ÀòD$8òAEXf(Ãò\Åf(ëò\éf(Îò^ÅòYÈòXÊòYÈf(ÇòY|$@ò\Ãf(éòL$Xò^ÇòAM`òYðf(ÎòXÊòYÈfA(ÀòAXÀòXÐfA(Àò^ÅòL$hòAMhòYÔòT$òAUpòD^ÁòXÂf(èòD$PòAExfA(ÀòXÅòD$òA…€@H‹;ÿSòL$H‹;òYÈò$ÿSò$f/L$f(Іˆf/L$‡òt$ò|$8fïÛòH*Ýò\ÎòY×f(Áò^Çf(Êò£VòXÊòT$(òXD$0ò\ØòX\$ fT¹Vò^Þò\Ëf/Êò$‡ZÿÿÿèÍ^ûÿò$òT$(òL,èM‰îI)îL‰òHÁú?H‰ÐL1ðH)ÐHƒø~#òD$`òYD$ fïÛòH*Øò\Âf/ÇæIT$fïÀòd$Hò^d$@òH*ÂòYÄI9í/Œqf/ʇÏþÿÿM)ìòt$xf/t$ MGìHÄÐ[]L‰èA\A]A^ÐfïÀA¾f.ЛÀDDðf/L$Pwkf(ÂòL$(ò$èïWûÿò^D$XòXD$0èÞ]ûÿòL,èM…íˆXþÿÿE„ö…OþÿÿòL$(ò\L$ò$òYÊòBUòYL$Xéâþÿÿ€f(ÂòL$(ò$è„Wûÿòt$pò^D$hò\ðf(Æèk]ûÿòL,èM9ìŒåýÿÿE„öò$òL$(…Ñýÿÿò\L$PòYÊòÏTòYL$héoþÿÿ@HUI9ÕŒÊþÿÿIE€fïÛf(øòH*ÚHƒÂò^ûf(ßò\ÜòYÓH9ÂuÚé”þÿÿDIUH9ꏂþÿÿHE€fïÛf(èòH*ÚHƒÂò^ëf(Ýò\Üò^ÓH9ÂuÚéLþÿÿDf(Óò^üòl$`H‰ÂòXóH÷ÚH¯Âf(ÅòXÅòYÓòXàò^Ýò^ÕòXT$ òYÓfïÛòH*Øò^Øf(ÁòT$(ò$è-Vûÿò$òT$(f(èf(Ãò\Âf/ŇÅýÿÿòXÓòl$(f/ꇀüÿÿIEfEïÒfïÉòL*ÐHEfEïäòH*ÈID$fïäH)èòL*àL‰àL)èfE(êòD”$˜f(ÁHƒÀf(ñòŒ$¨òA^ÂòH*àòEYêfE(ôòD¤$òYñòEYôfD(Ìò$$òDYÌòD¬$Èò´$ÀòD´$¸òDŒ$°è;UûÿòD¤$ò„$ˆòD¤$ fA(ìò^,$f(ÅèUûÿòT$@ò4$òD”$˜òYt$Hò„$òAYÒf(Æò^ÂèÕTûÿò%]œò]œL‰àòDAœH)èò´$ÀòŒ$¨f(üòD´$¸òD¬$ÈfA(ÓòDŒ$°òD¤$ ò^ÖòD”$˜òDœò\úf(×f(ûò^Öò\úòà›f(êò^þò\ïf(ýf(ìò^þf(÷ò=ěfD(ÿòD\þfïöòH*ðòXt$ òY´$òD^ùòŒ$ˆòYŒ$€òXñfïÉòI*ÎòYÈf(ÆòXÁfA(ËòA^ÎòE^øò\éf(Íf(ëòA^ÎòAXÇò\éf(Íf(êòA^Îò\éf(Íf(ìòA^ÎfD(÷òD\ñfA(ËòA^ÍòE^Ùò\éf(Íf(ëòA^ÍòA\ãòA^áò\éf(Íf(êòA^Íò\ÜòA^Ùò\éf(Íf(ïòA^Íò\ÓòE^ôò\éf(Íòl$(òA^ÊfE(æòE^àòA^ÑòAXÄòA^Èò\úòXÁf(Ïò^$òA^ÈòXÁf/è‡SùÿÿéúÿÿfDò¼$€òD$òYÂò\øf(ÇòXÁèœXûÿòL,èéKúÿÿfòH,ÀfïäfUèòH*àf(ôòÂðf(ÎfTÊò\áf(ÌfVÍé÷ÿÿ@f(âò|$Hò\çòd$@é¤öÿÿf.BŠ[öÿÿ…Uöÿÿòz8òròb H‹j0ò|$òz@òYÎòt$Hò5ž˜ò¼$€òzHòd$@ò|$0òzPòYÌòt$ ò|$pòzXò|$8òz`ò|$XòzhòL$`ò|$hòzpò|$òzxò|$Pòº€ò|$éøÿÿf(Äò\$ò$èûWûÿòT$ò\$ò$é6öÿÿDAUI‰ÕATI‰ôUH‰ýSHƒìH‹òD$…Àt
H9r„OòT$ò=±NfïÉM‰eòI*ÌAÇEò\úòAUòA} f(ÇòL$ò|$èßPûÿòL$òYÁòL$ èZNûÿòT$òL$ ò\$òD$òYÑòAEfïÀòYÚòAUXòX*Nf.ÃòQã‡ÜòY%T—òXÔf/ц.òH,ÙI‰]0H‹}ÿUòd$1Àf/Äf(Ìw!ëbf.„H‹}ÿUòL$1Àf/ÁvCHƒÀH9Ã|âL‰âfïÒò\ÁH)ÂHƒÂòH*ÒòYT$òYÊfïÒòH*ÐòYT$ò^Êf/Áw½HƒÄH[]A\A]ÃDf.BЦþÿÿ… þÿÿòZ H‹Z0ò\$òZò\$éCÿÿÿf(ÃòT$8òd$0òL$(ò\$ èVûÿòd$0òY%Q–òT$8òL$(ò\$ òXÔf/чëþÿÿf(ÃòT$ èÚUûÿòT$ @òH,ÚéÍþÿÿfDH…ö„fïÉ”Áf.Á›ÀEDÀujòª•fïÉòH*Îf/ÐròYÈò§–f/ÑrIé$Uûÿ@òpLSH‰óò\ÐòYÊf(Âòx–f/Ñr"èõTûÿH)ÃH‰Ø[ÃD1ÀÃDé›Lûÿè“LûÿH)ÃH‰Ø[Ðf.„SH‰ûHƒì òD$f(ÁòL$è£Kûÿ…À…»òL$fïíf.Í‹·ò×Kòd$f/àv[ò\àH‰ßòL$f(ÄèRûÿH‰ßòD$è/SûÿòL$fïöf(Ðf.ñòQÙ‡|òXÓf(ÂòYÂòXD$HƒÄ [ÃòY
p”H‰ßf(ÁètLûÿfïÀH‰ßHÀòH*ÀòXD$HƒÄ [é%RûÿDòX•HƒÄ [Ãf…CÿÿÿòD$HƒÄ H‰ß[é÷QûÿòD$f(Áò\$èòSûÿò\$òT$é^ÿÿÿSH‰ûHƒìò$f(ÊòD$èRûÿò$$H‰ßf(ÈòYÌf(Äò$è–Qûÿò\$ò$HƒÄ[òYÃò^Èf(ÁÃf„f(Øf(ÁSH‰ûòXÁf(ëHƒì ò^èòL$ò\$ò,$èÞQûÿò\$òL$òY
r”f(ÓòYÐòYÐòYÊf(ÂòYÂòXÁfïÉf.ÈòQàwUò\ÔòY$ò\$H‹;òXÓò$ÿSò\$ò$f(Ëf(óòXÊò^ñf/ðsòYÛò^Úf(ÓHƒÄ f(Â[Ãò\$òT$òd$è¤Rûÿò\$òT$òd$ë€SH‰ûHƒì@òD$8f(ÁòL$ è#Iûÿ…À…«ò›If/D$ ‡wò—“òt$ f/Ɔò?Ifïíòl$òD$ò^ÆòXÆòD$0ë0€f(ùò^øf(ÇèoKûÿòXD$òL$ò\Áf/D$syH‹;ÿSòY“è´Kûÿò\$0H‹;f(ËòYÈòXÃòXL$f(áòL$ ò^àò\Üòd$(òYËòL$ÿSòL$ò®‘ò\ÑòYÑò\Ðf/T$‚^ÿÿÿH‹;ÿSòD$òD$(è§Kûÿò
_‘f/L$vfWŸ’òT$8ò
’òXÐf(ÂfTaHòT$òXS’è¾Jûÿòl$òT$ò\:’f/êv.fWL’HƒÄ@[ÃfDH‹;ÿSòXÀò\ÖGòY’HƒÄ@[Ãòè‘HƒÄ@[Ãfò|$ òڑò-¢GòYÇòl$òYÇfïÿò|$òXÅf.øòQÈwYòXL$òt$f(ÁòXÁf.ðòQÐwNò\Êòt$ f(Áf(ÎòXÎò^Áf(ÈòYÈòXÀòXL$ò^ÈòL$0é4þÿÿòL$èPûÿòL$ë”òL$(òT$è÷OûÿòL$(òT$ë“f„SH‰ûHƒì0ò5ØFòD$ ò\ðf(Æè-IûÿòD$(H‹;ÿSf/D$ òD$ƒºH‹;ÿSòYD$(èŽFûÿòŽFòT$ò\Øf(ÃòYÃf/Âr~f(ÂòT$ò\$èÉHûÿò\$òD$f(Ãè´HûÿòL$ò^Èò:FòXÁè™NûÿòH,ÀH…ÀžÁŽaÿÿÿòT$fïöf.Ö›ÂEфÒ…EÿÿÿHƒÄ0[ÃfDf/Ӹré¸ëâ@f.„HƒìòÌEH‰øH‹?òD$ò\Øò$ÿPòL$¸ò$f/Ávf(ÑfòYËHƒÀòXÑf/ÂwîHƒÄÃf„HƒìH‰øH‹?ò$ÿPò^Eò\Ðf(Âè¹GûÿòIEò\$òD$f(ÃèGûÿòL$ò^Èf(ÁèŠNûÿHƒÄòH,ÀÃf/ŽréaKûÿéËCûÿf.„SH‰ûHƒì ò\èDf(ÈòD$òöèùFûÿòD$H‹;ÿSH‹;ò$ÿSò%¯Dò\$$òD$ò
”Dò^L$f(ÄèµFûÿò
½Dò=5Žf(Ðf(ØfTÁf.øv7òH,ÂfïÀò%ZDfUËòH*Àf(ðòÂòf(ÖfTÔò\Âf(ÐfVÑf/LD‡^ÿÿÿò=Df/ú‡Lÿÿÿf(ÇòL$ò$ò^ÂòXÇè FûÿòL$ò$f(Øò\áCòl$òYÊò^ÅòYËf(Ýò\ÃCò^Ëf/Á‚íþÿÿHƒÄ òH,Â[Ãff(éf(ÚHƒì8H‰øò\èò\ØH‹?òT$òL$òD$(f(õò\$ò^óòl$ ò4$ÿPò4$ò\$òL$òT$f/ðr3òl$ fïÉòd$(òYÝòYÃf.ÈòQÐwHòXÔHƒÄ8f(ÂÃ@f(úò\ùò
Cò\ÈfïÀòYßòYÙf.ÃòQËw*ò\ÑHƒÄ8f(ÂÃòd$ò$èÁKûÿòd$ò$ë›f(ÃòT$ò$è KûÿòT$ò$ëµ1ÀH…ö„•ATI‰ôIÑìUH‰õI	ôSH‰ûL‰àHÁèI	ÄL‰àHÁèL	àI‰ÄIÁìL	àI‰ÄIÁìI	ÄL‰àHÁè I	ĸÿÿÿÿH9ÆwfDH‹;ÿSD!àH9Årò[]A\ÃDH‹;ÿSL!àH9ÅsèH‹;ÿSL!àH9ÅräëØf.„ÃDf.„AWAVAUATI‰ôUSHƒìH…Òtt¸ÿÿÿÿI‰þI‰ÍH‰ÕH‰óH‹?H9ÂwqI‹F„A‰ÔE„À…âJ‰L$ÿÐD‹l$A‰ÄM¯åE9åv$‰è1Ò÷ÐA÷õA‰×A9ÔsI‹>AÿVA‰ÄM¯åE9çwíIÁì IÜHƒÄL‰à[]A\A]A^A_Ã@I‹FHƒúÿ„¢E„ÀuTLbÿÐI÷äH‰ÆH‰×I9Äv+H÷Õ1ÒH‰èI÷ôI‰ÕH9ÖsfDI‹>AÿVI÷äH‰×I9ÅwîH‰øL$ëDI‹>I‹FÿÐL!èH9ÅrïL$épÿÿÿfDI‹>I‹FÿÐD!èD9àwïL$éPÿÿÿfDÿЉÀIÄé>ÿÿÿ@ÿÐIÄé0ÿÿÿfDAWAVAUATUS‰óHƒì…ÒteI‰þA‰̉ÕA‰õH‹?I‹Fƒúÿ„E„ÀucJ‰L$ÿÐD‹d$‰ÃI¯ÜA9Üv%‰è1Ò÷ÐA÷ôA‰×9ÓsI‹>AÿV‰ÃI¯ÜA9ßwîHÁë DëHƒÄ‰Ø[]A\A]A^A_ÃfDI‹>I‹FÿÐD!à9ÅrðA\ëÒf„ÿÐÃëÃf.„AW‰ðAVAUATUSHƒìH‹l$Pf…Ò„ðL‰ËA‰õI‰üE‹	fƒúÿ„A‰×A‰ÎE„À…¯DrE…É… ‰T$H‹?AÿT$‹T$‰EÇ·ME·þA¯ÏfA9Ά¡÷Ò·™A÷ÿA‰Öf9Ñr(é‹I‹<$AÿT$‰EÇ·MA¯ÏfA9Îvh‹…ÀtÚÁmƒ+ëãf„I‹<$AÿT$‰EÇ·ED!ðfA9ÇsD‹E…ÉtÙÁmƒ+·ED!ðfA9ÇräDèHƒÄ[]A\A]A^A_ÃHƒÄÁé[AD
]A\A]A^A_Ãf„E…Éu;H‹?AÿT$‰EÇ·EHƒÄ[]DèA\A]A^A_Ã@Ámƒ+éíþÿÿ@Ámƒ+ëÍ€AW‰ðAVAUATUSHƒìH‹l$P„Ò„ÞL‰ËA‰ôI‰ýE‹	€úÿ„þA‰×A‰ÎE„À…ŸDzE…É…‰T$H‹?AÿU‹T$‰EÇD‰øöe‰ÁA8dž™÷ÒA¶ÿ¶™÷ÿA‰Ö8Ñr$遐I‹}AÿU‰EÇD‰øöe‰ÁA8Ævb‹…ÀtÜÁmƒ+ëäI‹}AÿU‰EǶED!ðA8ÇsD‹E…ÉtÛÁmƒ+¶ED!ðA8ÇråDàHƒÄ[]A\A]A^A_ÃfDHƒÄfÁé[A]A\A]A^A_Ãf„E…Éu;H‹?AÿU‰EǶEHƒÄ[]DàA\A]A^A_ÃDÁmƒ+éúþÿÿ@Ámƒ+ëÌ€U‰ðSHƒìH‹l$ „ÒtA‹…ÀtÑmAƒ)‹EƒàHƒÄ[]Ã@H‰øL‰ËH‹?ÿP‰EÇëØf„H…Òu#IÉH…ÉŽQfDI‰1IƒÁL9ÈuôÃAW¸ÿÿÿÿI‰ÿAVAUI‰ÕATUH‰õSHƒìH9‡“„ME„À…ìH…É~nIÉDbL‰ËH‰$‰ÐM‰æ÷ЉD$DI‹?AÿW‰ÁI¯ÌD9ñs(‹D$1ÒA÷öA‰Õ9ÑsfDI‹?AÿW‰ÁI¯ÌA9ÍwîHÁé HƒÃHéH‰KøH9$u±HƒÄ[]A\A]A^A_ÃfHƒúÿ„~E„À…ÝH…É~×IÉLbL‰ËI÷ÕH‰$fDI‹?AÿWI÷äI‰ÁI‰ÒL9às%L‰è1ÒI÷ôI‰ÖI9ÑsI‹?AÿWI÷äI‰ÒI9ÆwîL‰ÐHƒÃHèH‰CøH;$u²élÿÿÿÃ@H…ÉŽ^ÿÿÿL‰ËM$É„I‹?HƒÃAÿWHèH‰CøI9Üuéé3ÿÿÿ@H…ÉŽ&ÿÿÿL‰ËM$ÉI‹?HƒÃAÿW‰ÀHèH‰CøI9ÜuçéÿÿÿfI‰ÔIÑìI	ÔL‰àHÁèI	ÄL‰àHÁèI	ÄL‰àHÁèI	ÄL‰àHÁèI	ÄL‰àHÁè I	ÄH…ÉŽ»þÿÿL‰ËM4ÉDI‹?AÿWL!àI9ÅrñHèHƒÃH‰CøL9óuáé‹þÿÿ@I‰ÔIÑìI	ÔL‰àHÁèI	ÄL‰àHÁèI	ÄL‰àHÁèI	ÄL‰àHÁèI	ÄH…ÉŽMþÿÿL‰ËM4É€I‹?AÿWD!àA9ÅrñHèHƒÃH‰CøL9óuáéþÿÿff.„…Òu$I‰H…ÉŽ»€A‰1IƒÁL9ÈuôÃAWI‰ÿAVAUA‰ÕATU‰õSHƒìƒúÿ„‰E„À…¸H…É~hI‰A÷ÕDbL‰ËH‰$M‰æD‰l$I‹?AÿW‰ÁI¯ÌA9Îv(‹D$1ÒA÷öA‰Õ9ÑsfDI‹?AÿW‰ÁI¯ÌA9ÍwîHÁé HƒÃé‰KüH;$u³HƒÄ[]A\A]A^A_ÃÃH…É~èL‰ËM$‰@I‹?HƒÃAÿWè‰CüL9ãuëHƒÄ[]A\A]A^A_Ã@‰ÐI‰ÄIÑìI	ÄL‰àHÁèI	ÄL‰àHÁèI	ÄL‰àHÁèI	ÄL‰àHÁèA	ÄH…ÉŽyÿÿÿL‰ËM4‰DI‹?AÿWD!àA9ÅrñèHƒÃ‰CüI9ÞuãHƒÄ[]A\A]A^A_Ã@AWAVAUATU‰õSHƒìf…Òu+IIH…É~ffA‰)IƒÁL9ÈuóHƒÄ[]A\A]A^A_Ã@I‰ÿfƒúÿ„ÓE„À…H…É~ÒDrII÷ÒE1ÀH‰$·ÂE·æL‰Ë1ÿ‰D$E…À…‰I‹?AÿWA¸‰Ç·ÈA¯ÌfD9ñsJ‹D$™A÷üA‰Õf9Ñs:E…Àt€ÁïE1	ùA¯ÌfA9ÍvI‹?AÿW·ȉÇA¯ÌfA9ÍwØA¸ÁéHƒÃéf‰KþH;$„(ÿÿÿE…À„zÿÿÿÁïE1	ùë‚„H…ÉŽÿÿÿL‰ËM$I1Ò1Àë+f.„I‹?AÿWºLHƒÃf‰KþI9Ü„Ìþÿÿ…ÒtÛÁè1Òëà@·ÂA‰ÖI‰ÄIÑìI	ÄL‰àHÁèI	ÄL‰àHÁèI	ÄL‰àHÁèA	ÄH…ÉއþÿÿM,IL‰Ë1É1À€…Ét@ÁèD‰â1É!ÂfA9ÖsI‹?AÿWD‰â!ÂfA9Ör޹êHƒÃf‰SþI9ÝuÂHƒÄ[]A\A]A^A_Ðf.„AWAVAUA‰õATUSHƒì„Òu+I	H…É~fEˆ)IƒÁI9ÁuôHƒÄ[]A\A]A^A_ÃDI‰þ€úÿ„ôE„À…;H…É~Ò¶ÂL‰ËI,	E1ɉD$Db1ÿE…É…¸fDI‹>AÿVA¹‰ÇD‰à@öç‰ÁA8Ävt¸ÿ+D$E¶ܙA÷ûA‰×8Ñr<ëZf.„I‹>AÿV‰ÇD‰à@öç‰ÁA8džvÁïD‰àA¹@öç‰ÁA8Çv E…ÉtËÁïD‰àAƒé@öç‰ÁA8Çw瀉ÈHƒÃfÁèDèˆCÿH9Ý„ÿÿÿE…É„NÿÿÿÁïAƒééQÿÿÿfH…ÉŽãþÿÿL‰ËI,	1Ò1Àë+f.„I‹>AÿVºALHƒÃˆKÿH9Ý„«þÿÿ…ÒtÛÁèƒêëß¶ÂA‰ÔH‰ÅHÑíH	ÅH‰èHÁèH	ÅH‰èHÁè	ÅH…ÉŽqþÿÿM<	L‰Ë1É1Àë)„I‹>AÿV‰ê!ÂA8ÔsPÁè‰ê¹!ÂA8Ôs…ÉtÛÁè‰êƒé!ÂA8Ôrí@DêHƒÃˆSÿI9ßuÚHƒÄ[]A\A]A^A_Ãf.„DêHƒÃ¹ˆSÿI9ßu­ëÑf.„A¹éµþÿÿDH…É~kAVE1ÀI‰þ1ÀAUA‰ÕATA‰ôUI,	SL‰Ëë!@I‹>AÿVA¸‰CáˆHƒÃH9ÝtD‰áE„ítíE…ÀtÖÑèAƒèëÛfD[]A\A]A^ÀÃDf.„AWI‰÷AVAUATUH‰ÕSHƒì(L‰D$Iƒø~rL‰ÀI‰üI‰ÎM‰ÍHƒè1Ûò
ÿ2H‰D$ëòL$òA\ÞHƒÃH;\$t?òAÞL‰þL‰êL‰çòL$ò^ÁèË:ûÿI)ÇH‰DÝM…ÿ¾HƒÄ([]A\A]A^A_ÃH…ö~ìH‹D$L‰|ÅøHƒÄ([]A\A]A^A_ÐAWAVAUATUSHƒìXM…ÀA”ÂM…ÉH‹œ$”ÀAÂuH…öu1ÀHƒÄX[]A\A]A^A_ÃfI‰þL‰ÍL‰D$I‰ÕH<õH‰L$HI‰ôH‰T$èø7ûÿI‰ÇH…À„ÉE1À1ÒM…í„•H‹t$H‹|$H@H‹×H…É~KÇIÈKÇ@H‰HƒÀH9ÈuôHƒÂH9ÖuÓL‰àH‹|$HÁè?LàI‰ýHÑøH‰D$ H9øŒPH‹D$H¯èH‰l$0H…í„ËHÁàH‰\$1íH‰D$(KïH‰D$8ID$ÿH‰D$@fDE1äM…íttH‰,$L‰ýI‰ßH‹\$@f„H‰ÞL‰÷L)æèB8ûÿJ‹tåLàHDÅH‹H‰0J‰LåIƒÄM9åuÑL‰ûH‹L$8I‰ïH‹,$L‰ø€H‹HƒÀHêHƒÓH9ÁuìH‹|$ H9|$8H‹|$(Hl$H|$H;l$0‚^ÿÿÿL‰ÿèf/ûÿHƒÄX1À[]A\A]A^A_ÃDH‹t$H…ötØH‹L$H‹|$H1Àf.„H‹ÇH+ÁH‰ÁHƒÀH9Æuëë‘L‰àHÁè?LàHÑøH‰D$ H;D$}’M‰åL+l$é£þÿÿ¸ÿÿÿÿéèýÿÿf„M…ÀA”ÂM…É”ÀAÂ…"H…ö„H‰ðAWI‰÷AVHÁè?M)ÇAUHðATHÑøUSHƒìXL9ÀMMøL¯ÊH‰D$(L‰|$ L‰L$8M…É„ÀH‰ÐH‰ýL‰D$0I‰ÏH<ÕHƒèH‰T$H‹œ$H‰t$HH‰|$@HÇD$H‰D$fDL‹t$ M…öŽ”E1íHƒ|$L‹d$Hwëx„IƒÅL9l$teK‹4ïL‰ñH‰ïI)ôL‰âèð3ûÿI)ÆJ‰ëM…öÔH‹L$0H9L$(|VH‹|$H\$@H|$H‹D$H;D$8r…HƒÄX[]A\A]A^A_ÃfDÀH‹D$L‰tÃøH‹|$0H9|$(}²Hƒ|$tÅH‹L$1ÀI‹ÇH+ÃH‰ÃHƒÀH9Áwë뉐AWAVAUATI‰üUH‰ÍHSH‰óHƒìXHƒý	~
HA÷H9菢I‰ÍI‰ÎI‰ßIÁí?I)îIÍIÑýL9íLNõH9ËœÂH…ÛŸÂu@ëCHƒéL‰çH‰ÎH‰L$èL5ûÿH‹L$L9øœÀIƒî¶ÀI)ÇL9ù@ŸÆM…ÿŸÀ@„ÆtM…öÀL‰øL)ðI9ÏLDøL)ûL9íLNûHƒÄXL‰ø[]A\A]A^A_ÀI‰ÍH‰ÐfïÀI‰ÖfïÉfïÛfïöI)íI9íòH*ÉLOíH9ÖHNÆHMÖòH*ÀH‰D$H‰ÈòI*ÝL)èf(Ðò^Ñf(ÂòYÃòXvòD$(fïÀòH*ÀHAÿòYÃòYÂfïÒòH*Òò^ÑfïÉòH*ÈòYÂò^ÁòXOvf.ðòQȇ½f(ÁIEfïÒHƒÁòY™wòL$òX“wH‰T$ òD$0fïÀòH*ÀH‹D$HƒÀòH*ÐòYÂfïÒòH*Ñò^ÂèC5ûÿòL,øL‰ÿè†0ûÿH‹|$òD$L)ÿès0ûÿòd$L‰îL)þòXàH‰÷òd$èU0ûÿH‹T$ òXD$L)êI<òD$H‰T$8è30ûÿH‹|$òd$òL$òY
êvòXàI9ýòXL$(H‰øINÅò~,HƒÀòd$@fïäf(ÑòH*àfTÓf(Áòd$ ò%Ñuf.â‡Wò\$ ò]Øò\$ €I‹<$AÿT$I‹<$òD$AÿT$òL$fïÛò\ÖtòYD$0òL$ò^ÁòXD$(f/Øwºf/D$ s²è
4ûÿòL,øL‰ÿèP/ûÿH‹|$òD$L)ÿè=/ûÿòl$L‰èL)øòXèH‰ÇH‰D$Hòl$è/ûÿH‹D$8òXD$J<8òD$è/ûÿòXD$òT$@òL$ò\ÐòZuò\ÁòYÁò\òtf/Ðs=f(ÁòT$ò\ÂòYÁf/ú*ƒüþÿÿf(ÁèS-ûÿòT$òXÀf/ЂßþÿÿL9óLO|$HL)ûL9íLOûé¾üÿÿ€òH,ÁfïÒò%§*fUÙòH*Ðf(úòÂùf(ÇfTÄò\Ðf(ÂfVÃémþÿÿH‰L$ òL$H‰T$è_3ûÿH‹L$ òL$H‹T$éýÿÿf.„Hƒÿ}HãtòøÃDfïÉHƒìòH*Ïf(ÁòL$è|,ûÿòL$òžxò%þ)òYÑf(Üò^áòYÑò^Úò‚xò\ÓòÞròXÙòYÔòXnxHƒÄòYÃò\ÁòXÂÐHƒìHƒÄÃ'bool''complex long double''signed char''unsigned char''short''unsigned short''int''unsigned int''long''unsigned long''long long''unsigned long long''char''float''double'a structPython objecta pointera stringendunparseable format string'complex double''complex float''long double'__pyx_capi__name '%U' is not definedcannot import name %Snumpy/random/_generator.c%s (%s:%d)stringsourceExpected %.16s, got %.200s'NoneType' is not iterable_generator.pyxat leastat mostbetanoncentral_fnoncentral_chisquarestandard_cauchystandard_tvonmisesparetoweibullpowerlaplacegumbellogisticlognormalrayleighwaldnegative_binomialpoissonzipflogseriesexactlyView.MemoryView.Enum.__init__BitGeneratoran integer is requiredView.MemoryView._err_dimtupledefault_rngMissing type objectView.MemoryView._errView.MemoryView._err_extentsDimension %d is not directView.MemoryView._unellipsifyuniformstandard_exponentialrandomstandard_normal__pyx_unpickle_Enum__cinit__standard_gammatriangularpermutation__init__.pxdnumpy.PyArray_MultiIterNew2numpy.PyArray_MultiIterNew3formatmultinomialnumpy.PyArray_MultiIterNew1dirichletintegersmultivariate_hypergeometricshuffleView.MemoryView.memview_sliceIndex out of bounds (axis %d)memviewsliceobjmultivariate_normalvhubuffer dtypeBuffer not C contiguous.choice%d.%d%sbuiltinscython_runtime__builtins__4294967296complexnumpyflatiterbroadcastndarrayufuncnumpy.random.bit_generatorSeedSequenceSeedlessSequencenumpy.random._commondoubleLEGACY_POISSON_LAM_MAXuint64_tMAXSIZE_rand_uint64_rand_uint32_rand_uint16_rand_uint8_rand_bool_rand_int64_rand_int32_rand_int16_rand_int8check_constraintcheck_array_constraintdouble (double *, npy_intp)kahan_sumdouble_fillfloat_fillvalidate_output_shapecontdisccont_fcont_broadcast_3discrete_broadcast_iiinumpy.core._multiarray_umath_ARRAY_API_ARRAY_API not found_ARRAY_API is NULL pointernumpy.import_arraygetbuffer(obj, view, flags)init numpy.random._generatorbase__reduce_cython____setstate_cython__Tstridessuboffsetsndimitemsizenbytesis_c_contigis_f_contigcopycopy_fortrannumpy.random._generator.Enumnumpy.random._generator.arraymemview__getattr___bit_generator__getstate____setstate____reduce__@fûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ0fûÿ€gûÿ€gûÿpgûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ`gûÿPgûÿ€gûÿ€gûÿ@gûÿ€gûÿ€gûÿ0gûÿ gûÿgûÿ€gûÿ€gûÿgûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿ€gûÿðfûÿèfûÿÐfûÿ€gûÿ¸fûÿ fûÿfûÿ€fûÿ€gûÿ€gûÿpfûÿ€gûÿ€gûÿ€gûÿ`fûÿPfûÿ€gûÿ`fûÿ—ûÿûÿûÿ—ûÿûÿûÿûÿûÿûÿ —ûÿ€—ûÿûÿûÿp—ûÿûÿûÿp—ûÿp—ûÿp—ûÿûÿûÿûÿûÿûÿûÿûÿûÿûÿûÿûÿûÿûÿûÿûÿûÿ—ûÿ—ûÿp—ûÿûÿ€—ûÿ°—ûÿ —ûÿ€—ûÿûÿûÿp—ûÿûÿûÿûÿ—ûÿp—ûÿûÿ—ûÿ›ûÿ,›ûÿ,›ûÿ›ûÿ,›ûÿ,›ûÿ,›ûÿ,›ûÿ,›ûÿ›ûÿ›ûÿ,›ûÿ,›ûÿ›ûÿ,›ûÿ,›ûÿ,˜ûÿ,˜ûÿ›ûÿ,›ûÿ,›ûÿ,›ûÿ,›ûÿ,›ûÿ,›ûÿ,›ûÿ,›ûÿ,›ûÿ,›ûÿ,›ûÿ,›ûÿ,›ûÿ,›ûÿ,›ûÿ,›ûÿúšûÿ›ûÿ›ûÿ,›ûÿ›ûÿ›ûÿúšûÿúšûÿ,›ûÿ,›ûÿúšûÿ,›ûÿ,›ûÿ,›ûÿúšûÿúšûÿ,›ûÿúšûÿ¨˜ûÿø™ûÿø™ûÿ¨˜ûÿø™ûÿø™ûÿø™ûÿø™ûÿø™ûÿ¸™ûÿ¨™ûÿø™ûÿø™ûÿ¨™ûÿø™ûÿø™ûÿ¸—ûÿ¸—ûÿ¸—ûÿø™ûÿø™ûÿø™ûÿø™ûÿø™ûÿø™ûÿø™ûÿø™ûÿø™ûÿø™ûÿø™ûÿø™ûÿø™ûÿø™ûÿø™ûÿø™ûÿ¨˜ûÿ¨˜ûÿ™ûÿø™ûÿx™ûÿșûÿ¸™ûÿ¨™ûÿø™ûÿø™ûÿ¨™ûÿø™ûÿø™ûÿø™ûÿ¨˜ûÿ¸—ûÿø™ûÿ¨˜ûÿԗûÿ$™ûÿ$™ûÿԗûÿ$™ûÿ$™ûÿ$™ûÿ$™ûÿ$™ûÿšûÿü™ûÿ$™ûÿ$™ûÿԙûÿ$™ûÿ$™ûÿԙûÿԙûÿԙûÿ$™ûÿ$™ûÿ$™ûÿ$™ûÿ$™ûÿ$™ûÿ$™ûÿ$™ûÿ$™ûÿ$™ûÿ$™ûÿ$™ûÿ$™ûÿ$™ûÿ$™ûÿ$™ûÿԗûÿԗûÿšûÿ$™ûÿ4šûÿä™ûÿšûÿü™ûÿ$™ûÿ$™ûÿԙûÿ$™ûÿ$™ûÿ$™ûÿԗûÿԙûÿ$™ûÿԗûÿ`œûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿˆ›ûÿ ›ûÿ ›ûÿˆ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿˆ›ûÿ`žûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ šûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿžûÿ ›ûÿPûÿ@žûÿ`žûÿœûÿ@žûÿ ›ûÿœûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿœûÿœûÿ ›ûÿ ›ûÿœûÿ ›ûÿ ›ûÿœûÿ ›ûÿœûÿ ›ûÿ ›ûÿ˜ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿhûÿ ›ûÿ ›ûÿ ›ûÿ@žûÿ ›ûÿ ›ûÿ ›ûÿœûÿœûÿœûÿ ›ûÿœûÿœûÿœûÿœûÿ ›ûÿ ›ûÿœûÿ ›ûÿ ›ûÿ ›ûÿœûÿœûÿ ›ûÿțûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿ¨œûÿ ›ûÿ ›ûÿ ›ûÿ ›ûÿøœûÿè±ûÿð³ûÿڲûÿѲûÿȲûÿdŽüÿtŽüÿ„Žüÿ̌üÿ”Žüÿ“üÿ“üÿb‘üÿY‘üÿP‘üÿôºüÿ|¾üÿ.½üÿ%½üÿ½üÿðØüÿ¨Ùüÿ’Öüÿ‰Öüÿ€Öüÿ„ÿüÿô	ýÿÖýÿÍýÿÄýÿDýÿ¨CýÿBýÿBýÿùAýÿðAýÿƒDýÿ¤CýÿÅCýÿæCýÿDýÿ¬•ýÿ•ýÿ4•ýÿL•ýÿԒýÿd•ýÿ\•ýÿŸýÿq›ýÿg›ýÿ]›ýÿT›ýÿO•ýÿŸýÿ6ŸýÿXŸýÿzŸýÿÀÑýÿ@Ñýÿ8Àýÿ,Àýÿ ÀýÿT=þÿLPþÿ˜@þÿŒ@þÿ€@þÿt@þÿO=þÿSPþÿPþÿìPþÿQþÿp£ÿÿð¢ÿÿ£ÿÿè¢ÿÿR¢ÿÿI¢ÿÿ@¢ÿÿ£ÿÿt¥ÿÿ(¤ÿÿ¤ÿÿ¤ÿÿ
¤ÿÿ¤ÿÿ£ÿÿs¥ÿÿ~¤ÿÿ«¤ÿÿؤÿÿ¥ÿÿUnsupported dtype %r for standard_gammaUnsupported dtype %r for standard_normalFormat string allocated too short.unable to allocate shape and strides.sum(colors) must not exceed the maximum value of a 64 bit signed integer (%d)probabilities are not non-negativenumpy.core.umath failed to importno default __reduce__ due to non-trivial __cinit__negative dimensions are not allowedmethod must be one of {'eigh', 'svd', 'cholesky'}method must be "count" or "marginals".mean and cov must have same lengthgot differing extents in dimension %d (got %d and %d)covariance is not positive-semidefinite.cov must be 2 dimensional and squarecolors must be a one-dimensional sequence of nonnegative integers not exceeding %d.check_valid must equal 'warn', 'raise', or 'ignore'both ngood and nbad must be less than %da must be a positive integer unless nosamples are takena cannot be empty unless no samples aretakenWhen method is "marginals", sum(colors) must be less than 1000000000.Unsupported dtype %r for standard_exponentialUnsupported dtype %r for integersUnable to convert item to objectProviding a dtype with a non-native byteorder is not supported. If you require platform-independent byteorder, call byteswap when required.Out of bounds on buffer access (axis %d)Non-native byte order not supportedInvalid mode, expected 'c' or 'fortran', got %sInvalid bit generator. The bit generator must be instantiated.Insufficient memory for multivariate_hypergeometric with method='count' and sum(colors)=%dIndirect dimensions not supportedIncompatible checksums (%s vs 0xb068931 = (name))Generator.standard_normal (line 869)Generator.standard_gamma (line 1041)Generator.standard_exponential (line 309)Generator.standard_cauchy (line 1524)Generator.noncentral_f (line 1298)Generator.noncentral_chisquare (line 1444)Generator.negative_binomial (line 2841)Generator.multivariate_normal (line 3344)Generator.multivariate_hypergeometric (line 3699)Generator.hypergeometric (line 3120)Format string allocated too short, see comment in numpy.pxdFewer non-zero entries in p than sizeEmpty shape tuple for cython.arrayCannot take a larger sample than population when replace is FalseCannot create writable memory view from read-only memoryviewCannot assign to read-only memoryviewCan only create a buffer that is contiguous in memory.Buffer view does not expose strides
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        continuous probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Zipf distribution is

        .. math:: p(x) = \frac{x^{-a}}{\zeta(a)},

        where :math:`\zeta` is the Riemann Zeta function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 2. # parameter
        >>> s = np.random.default_rng().zipf(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy import special  # doctest: +SKIP

        Truncate s values at 50 so plot is interesting:

        >>> count, bins, ignored = plt.hist(s[s<50],
        ...         50, density=True)
        >>> x = np.arange(1., 50.)
        >>> y = x**(-a) / special.zetac(a)  # doctest: +SKIP
        >>> plt.plot(x, y/max(y), linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> a = 5. # shape
        >>> s = rng.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(rng.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and dispersion (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Dispersion of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the dispersion,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and dispersion
        >>> s = np.random.default_rng().vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        unknown dtype code in numpy.pxd (%d)
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than high.  The default value is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        integers : Discrete uniform distribution, yielding integers.
        random : Floats uniformly distributed over ``[0, 1)``.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.
        If ``high`` < ``low``, the results are officially undefined
        and may eventually raise an error, i.e. do not rely on this
        function to behave when passed arguments satisfying that
        inequality condition.

        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.default_rng().uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.default_rng().triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ?

        We have 10 degrees of freedom, so is the sample mean within 95% of the
        recommended value?

        >>> s = np.random.default_rng().standard_t(10, size=100000)
        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727

        Calculate the t statistic, setting the ddof parameter to the unbiased
        value so the divisor in the standard deviation will be degrees of
        freedom, N-1.

        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(s, bins=100, density=True)

        For a one-sided t-test, how far out in the distribution does the t
        statistic appear?

        >>> np.sum(s<t) / float(len(s))
        0.0090699999999999999  #random

        So the p-value is about 0.009, which says the null hypothesis has a
        probability of about 99% of being true.

        
        standard_normal(size=None, dtype=np.float64, out=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.

        Notes
        -----
        For random samples from :math:`N(\mu, \sigma^2)`, use one of::

            mu + sigma * gen.standard_normal(size=...)
            gen.normal(mu, sigma, size=...)

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.standard_normal()
        2.1923875335537315 #random

        >>> s = rng.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = rng.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from :math:`N(3, 6.25)`:

        >>> 3 + 2.5 * rng.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        shuffle(x, axis=0)

        Modify a sequence in-place by shuffling its contents.

        The order of sub-arrays is changed but their contents remains the same.

        Parameters
        ----------
        x : array_like
            The array or list to be shuffled.
        axis : int, optional
            The axis which `x` is shuffled along. Default is 0.
            It is only supported on `ndarray` objects.

        Returns
        -------
        None

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> arr = np.arange(10)
        >>> rng.shuffle(arr)
        >>> arr
        [1 7 5 2 9 4 3 6 0 8] # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.shuffle(arr, axis=1)
        >>> arr
        array([[2, 0, 1], # random
               [5, 3, 4],
               [8, 6, 7]])
        
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> rng = np.random.default_rng()
        >>> values = hist(rng.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = rng.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        
        random(size=None, dtype=np.float64, out=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` multiply
        the output of `random` by `(b-a)` and add `a`::

          (b - a) * random() + a

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.random()
        0.47108547995356098 # random
        >>> type(rng.random())
        <class 'float'>
        >>> rng.random((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * rng.random((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a < 1.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = rng.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats  # doctest: +SKIP
        >>> rvs = rng.power(5, 1000000)
        >>> rvsp = rng.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + Generator.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        
        permutation(x, axis=0)

        Randomly permute a sequence, or return a permuted range.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.
        axis : int, optional
            The axis which `x` is shuffled along. Default is 0.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> rng.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        >>> rng.permutation("abc")
        Traceback (most recent call last):
            ...
        numpy.AxisError: axis 0 is out of bounds for array of dimension 0

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.permutation(arr, axis=1)
        array([[0, 2, 1], # random
               [3, 5, 4],
               [6, 8, 7]])

        
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.


        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.default_rng().pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        numpy.core.multiarray failed to import
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        :meth:`normal` is more likely to return samples lying close to the
        mean, rather than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.default_rng().normal(mu, sigma, 1000)

        Verify the mean and the variance:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.1  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from N(3, 6.25):

        >>> np.random.default_rng().normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.

            .. versionchanged:: 1.14.0
               Earlier NumPy versions required dfnum > 1.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> rng = np.random.default_rng()
        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = rng.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = rng.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.

            .. versionchanged:: 1.10.0
               Earlier NumPy versions required dfnum > 1.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> rng = np.random.default_rng()
        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(rng.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(rng.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval (0, 1].

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution. Must satisfy 0 < p <= 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.default_rng().negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        
        multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (standard deviation, or "width,"
        squared) of the one-dimensional normal distribution.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.
        method : { 'svd', 'eigh', 'cholesky'}, optional
            The cov input is used to compute a factor matrix A such that
            ``A @ A.T = cov``. This argument is used to select the method
            used to compute the factor matrix A. The default method 'svd' is
            the slowest, while 'cholesky' is the fastest but less robust than
            the slowest method. The method `eigh` uses eigen decomposition to
            compute A and is faster than svd but slower than cholesky.

            .. versionadded:: 1.18.0

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

          - Spherical covariance (`cov` is a multiple of the identity matrix)
          - Diagonal covariance (`cov` has non-negative elements, and only on
            the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.default_rng().multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> rng = np.random.default_rng()
        >>> x = rng.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        We can use a different method other than the default to factorize cov:
        >>> y = rng.multivariate_normal(mean, cov, (3, 3), method='cholesky')
        >>> y.shape
        (3, 3, 2)

        The following is probably true, given that 0.6 is roughly twice the
        standard deviation:

        >>> list((x[0,0,:] - mean) < 0.6)
        [True, True] # random

        
        multivariate_hypergeometric(colors, nsample, size=None,
                                    method='marginals')

        Generate variates from a multivariate hypergeometric distribution.

        The multivariate hypergeometric distribution is a generalization
        of the hypergeometric distribution.

        Choose ``nsample`` items at random without replacement from a
        collection with ``N`` distinct types.  ``N`` is the length of
        ``colors``, and the values in ``colors`` are the number of occurrences
        of that type in the collection.  The total number of items in the
        collection is ``sum(colors)``.  Each random variate generated by this
        function is a vector of length ``N`` holding the counts of the
        different types that occurred in the ``nsample`` items.

        The name ``colors`` comes from a common description of the
        distribution: it is the probability distribution of the number of
        marbles of each color selected without replacement from an urn
        containing marbles of different colors; ``colors[i]`` is the number
        of marbles in the urn with color ``i``.

        Parameters
        ----------
        colors : sequence of integers
            The number of each type of item in the collection from which
            a sample is drawn.  The values in ``colors`` must be nonnegative.
            To avoid loss of precision in the algorithm, ``sum(colors)``
            must be less than ``10**9`` when `method` is "marginals".
        nsample : int
            The number of items selected.  ``nsample`` must not be greater
            than ``sum(colors)``.
        size : int or tuple of ints, optional
            The number of variates to generate, either an integer or a tuple
            holding the shape of the array of variates.  If the given size is,
            e.g., ``(k, m)``, then ``k * m`` variates are drawn, where one
            variate is a vector of length ``len(colors)``, and the return value
            has shape ``(k, m, len(colors))``.  If `size` is an integer, the
            output has shape ``(size, len(colors))``.  Default is None, in
            which case a single variate is returned as an array with shape
            ``(len(colors),)``.
        method : string, optional
            Specify the algorithm that is used to generate the variates.
            Must be 'count' or 'marginals' (the default).  See the Notes
            for a description of the methods.

        Returns
        -------
        variates : ndarray
            Array of variates drawn from the multivariate hypergeometric
            distribution.

        See Also
        --------
        hypergeometric : Draw samples from the (univariate) hypergeometric
            distribution.

        Notes
        -----
        The two methods do not return the same sequence of variates.

        The "count" algorithm is roughly equivalent to the following numpy
        code::

            choices = np.repeat(np.arange(len(colors)), colors)
            selection = np.random.choice(choices, nsample, replace=False)
            variate = np.bincount(selection, minlength=len(colors))

        The "count" algorithm uses a temporary array of integers with length
        ``sum(colors)``.

        The "marginals" algorithm generates a variate by using repeated
        calls to the univariate hypergeometric sampler.  It is roughly
        equivalent to::

            variate = np.zeros(len(colors), dtype=np.int64)
            # `remaining` is the cumulative sum of `colors` from the last
            # element to the first; e.g. if `colors` is [3, 1, 5], then
            # `remaining` is [9, 6, 5].
            remaining = np.cumsum(colors[::-1])[::-1]
            for i in range(len(colors)-1):
                if nsample < 1:
                    break
                variate[i] = hypergeometric(colors[i], remaining[i+1],
                                           nsample)
                nsample -= variate[i]
            variate[-1] = nsample

        The default method is "marginals".  For some cases (e.g. when
        `colors` contains relatively small integers), the "count" method
        can be significantly faster than the "marginals" method.  If
        performance of the algorithm is important, test the two methods
        with typical inputs to decide which works best.

        .. versionadded:: 1.18.0

        Examples
        --------
        >>> colors = [16, 8, 4]
        >>> seed = 4861946401452
        >>> gen = np.random.Generator(np.random.PCG64(seed))
        >>> gen.multivariate_hypergeometric(colors, 6)
        array([5, 0, 1])
        >>> gen.multivariate_hypergeometric(colors, 6, size=3)
        array([[5, 0, 1],
               [2, 2, 2],
               [3, 3, 0]])
        >>> gen.multivariate_hypergeometric(colors, 6, size=(2, 2))
        array([[[3, 2, 1],
                [3, 2, 1]],
               [[4, 1, 1],
                [3, 2, 1]]])
        
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        Parameters
        ----------
        n : int or array-like of ints
            Number of experiments.
        pvals : sequence of floats, length p
            Probabilities of each of the ``p`` different outcomes.  These
            must sum to 1 (however, the last element is always assumed to
            account for the remaining probability, as long as
            ``sum(pvals[:-1]) <= 1)``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        Examples
        --------
        Throw a dice 20 times:

        >>> rng = np.random.default_rng()
        >>> rng.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]])  # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> rng.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3],
               [2, 4, 3, 4, 0, 7]])  # random

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        Now, do one experiment throwing the dice 10 time, and 10 times again,
        and another throwing the dice 20 times, and 20 times again:

        >>> rng.multinomial([[10], [20]], [1/6.]*6, size=(2, 2))
        array([[[2, 4, 0, 1, 2, 1],
                [1, 3, 0, 3, 1, 2]],
               [[1, 4, 4, 4, 4, 3],
                [3, 3, 2, 5, 5, 2]]])  # random

        The first array shows the outcomes of throwing the dice 10 times, and
        the second shows the outcomes from throwing the dice 20 times.

        A loaded die is more likely to land on number 6:

        >>> rng.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26])  # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> rng.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62])  # random

        not like:

        >>> rng.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

        
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 < ``p`` < 1.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range (0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability mass function for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.default_rng().logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a) * count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = rng.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> rng = rng
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + rng.standard_normal(100)
        ...    b.append(np.product(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.default_rng().logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

        
        integers(low, high=None, size=None, dtype=np.int64, endpoint=False)

        Return random integers from `low` (inclusive) to `high` (exclusive), or
        if endpoint=True, `low` (inclusive) to `high` (inclusive). Replaces
        `RandomState.randint` (with endpoint=False) and
        `RandomState.random_integers` (with endpoint=True)

        Return random integers from the "discrete uniform" distribution of
        the specified dtype. If `high` is None (the default), then results are
        from 0 to `low`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is 0 and this value is
            used for `high`).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is np.int64.
        endpoint : bool, optional
            If true, sample from the interval [low, high] instead of the
            default [low, high)
            Defaults to False

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        Notes
        -----
        When using broadcasting with uint64 dtypes, the maximum value (2**64)
        cannot be represented as a standard integer type. The high array (or
        low if high is None) must have object dtype, e.g., array([2**64]).

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.integers(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])  # random
        >>> rng.integers(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> rng.integers(5, size=(2, 4))
        array([[4, 0, 2, 1],
               [3, 2, 2, 0]])  # random

        Generate a 1 x 3 array with 3 different upper bounds

        >>> rng.integers(1, [3, 5, 10])
        array([2, 2, 9])  # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> rng.integers([1, 5, 7], 10)
        array([9, 8, 7])  # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7],
               [ 1, 16,  9, 12]], dtype=uint8)  # random

        References
        ----------
        .. [1] Daniel Lemire., "Fast Random Integer Generation in an Interval",
               ACM Transactions on Modeling and Computer Simulation 29 (1), 2019,
               http://arxiv.org/abs/1805.10941.

        
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative and
            less than 10**9.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative and
            less than 10**9.
        nsample : int or array_like of ints
            Number of items sampled.  Must be nonnegative and less than
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        multivariate_hypergeometric : Draw samples from the multivariate
            hypergeometric distribution.
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        The arguments `ngood` and `nbad` each must be less than `10**9`. For
        extremely large arguments, the algorithm that is used to compute the
        samples [4]_ breaks down because of loss of precision in floating point
        calculations.  For such large values, if `nsample` is not also large,
        the distribution can be approximated with the binomial distribution,
        `binomial(n=nsample, p=ngood/(ngood + nbad))`.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution
        .. [4] Stadlober, Ernst, "The ratio of uniforms approach for generating
               discrete random variates", Journal of Computational and Applied
               Mathematics, 31, pp. 181-189 (1990).

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = rng.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = rng.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = rng.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = rng.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.default_rng().geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 #random

        
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.default_rng().gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.default_rng().f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        
        choice(a, size=None, replace=True, p=None, axis=0, shuffle=True)

        Generates a random sample from a given 1-D array

        Parameters
        ----------
        a : {array_like, int}
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated from np.arange(a).
        size : {int, tuple[int]}, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn from the 1-d `a`. If `a` has more
            than one dimension, the `size` shape will be inserted into the
            `axis` dimension, so the output ``ndim`` will be ``a.ndim - 1 +
            len(size)``. Default is None, in which case a single value is
            returned.
        replace : bool, optional
            Whether the sample is with or without replacement
        p : 1-D array_like, optional
            The probabilities associated with each entry in a.
            If not given the sample assumes a uniform distribution over all
            entries in a.
        axis : int, optional
            The axis along which the selection is performed. The default, 0,
            selects by row.
        shuffle : bool, optional
            Whether the sample is shuffled when sampling without replacement.
            Default is True, False provides a speedup.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if p is not 1-dimensional, if
            a is array-like with a size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size.

        See Also
        --------
        integers, shuffle, permutation

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> rng = np.random.default_rng()
        >>> rng.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to rng.integers(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> rng.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> rng.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to rng.permutation(np.arange(5))[:3]

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> rng.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.default_rng().chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random

        
        bytes(length)

        Return random bytes.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : str
            String of length `length`.

        Examples
        --------
        >>> np.random.default_rng().bytes(10)
        ' eh\x85\x022SZ\xbf\xa4' #random

        
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = rng.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(rng.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 38%.

        When method is 'count', sum(colors) must not exceed %dGenerator.permutation (line 4256)Generator.multinomial (line 3548)Axis argument is only supported on ndarray objects
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.default_rng().wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        <strided and direct or indirect>
        standard_gamma(shape, size=None, dtype=np.float64, out=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is
            not None, it must have the same shape as the provided size and
            must match the type of the output values.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.default_rng().standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        standard_exponential(size=None, dtype=np.float64, method='zig', out=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        method : str, optional
            Either 'inv' or 'zig'. 'inv' uses the default inverse CDF method.
            'zig' uses the much faster Ziggurat method of Marsaglia and Tsang.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.default_rng().standard_exponential((3, 8000))

        
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              http://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.default_rng().standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        Parameters
        ----------
        lam : float or array_like of floats
            Expectation of interval, must be >= 0. A sequence of expectation
            intervals must be broadcastable over the requested size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        Notes
        -----
        The Poisson distribution

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> rng = np.random.default_rng()
        >>> s = rng.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = rng.poisson(lam=(100., 500.), size=(100, 2))

        
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.default_rng().laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        -------
        ValueError
            If any value in ``alpha`` is less than or equal to zero

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               http://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.default_rng().dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        Unsupported dtype %r for randomGenerator.triangular (line 2597)Generator.standard_t (line 1589)unable to allocate array data.probabilities do not sum to 1a must an array or an integerGenerator.logseries (line 3263)Generator.lognormal (line 2348)Generator.geometric (line 3069)Generator.dirichlet (line 3915)Generator.chisquare (line 1376)Generator.vonmises (line 1683)Generator.rayleigh (line 2460)Generator.logistic (line 2268)Generator.binomial (line 2697)nsample must be nonnegative.itemsize <= 0 for cython.arraya and p must have same sizeGenerator.weibull (line 1864)Generator.shuffle (line 4114)Generator.poisson (line 2917)Generator.laplace (line 2064)Generator.integers (line 362)nsample must be an integermean must be 1 dimensionalRange exceeds valid boundsGenerator.uniform (line 762)Generator.pareto (line 1766)Generator.gumbel (line 2149)probabilities contain NaNnsample must not exceed %dInvalid shape in axis %d: %d.Generator.random (line 155)Generator.power (line 1963)Generator.normal (line 939)Generator.gamma (line 1132)Generator.choice (line 518)Generator.zipf (line 2989)Generator.wald (line 2529)Generator.bytes (line 489)Cannot index with type '%s'p must be 1-dimensionalnumpy.random._generator<contiguous and indirect><MemoryView of %r at 0x%x><MemoryView of %r object>numpy.core.multiarray<contiguous and direct>Generator.f (line 1210)<strided and indirect>normalize_axis_indexNotImplementedError<strided and direct>nsample > sum(colors)ngood + nbad < nsamplecline_in_traceback__pyx_unpickle_Enumascontiguousarraymay_share_memorysum(pvals[:-1]) > 1.0standard_normal__setstate_cython____pyx_PickleError_poisson_lam_maxdtype_is_objectallocate_bufferView.MemoryView__generator_ctorRuntimeWarning__reduce_cython____pyx_getbuffer_generator.pyxcount_nonzerobit_generatorOverflowErrorstringsourcesearchsortedreturn_index__pyx_checksumRuntimeErrordefault_rngcheck_validPickleErrorMemoryErrorImportError__pyx_vtable____pyx_resultnumpy.dualmode > rightlogical_orless_equalleft == rightissubdtypeempty_likeValueErrorIndexError__reduce_ex____pyx_statemarginalsleft > modeenumerateTypeErrorGeneratorwarningsswapaxessubtract__setstate__reversed__reduce____pyx_typepickleoperatoritemsizeisscalarisnativeisfiniteintegers__getstate__floatingendpointcholeskyallcloseEllipsistobytesstridesshuffle__rmatmul__reshapereplacensamplememviewinteger__imatmul__greaterfortranfloat64float32capsule at 0x{:X}asarrayalpha <= 0updateunpackuniqueuint64uint32uint16structreducerandom_picklenamemethod__matmul____import__ignoreformatencodedoublecumsumcompatcolorsastypearangezerosuint8statestartsigmashapescalerightravelrangeraisepvals_pcg64numpyngoodkappaisnanint64int32int16indexflagsfinfoerrorequal__enter__emptydtypedfnumdfdencount__class__arrayalphaPCG64ASCIIwarn__test__takestopstepsqrtsortsizesideseedrtolprodpacknoncndimnbad__name__modemean__main__longlocklessleftitemintpint8highfull__exit__eigh__dict__copybool_baseaxisatolzigtolsvd__str__outobj__new__maxlowloclamepsdotcovanyalladd<u4npmuiddf)(xpncbaTOBuffer dtype mismatch, expected %s%s%s but got %sBuffer dtype mismatch, expected '%s' but got %s in '%s.%s'Does not understand character buffer dtype format string ('%c')memviewslice is already initialized!Unable to initialize pickling for %s%.200s.%.200s is not a type object%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObject%s.%s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObject%.200s does not export expected C variable %.200sC variable %.200s.%.200s has wrong signature (expected %.500s, got %.500s)%.200s does not export expected C function %.200sC function %.200s.%.200s has wrong signature (expected %.500s, got %.500s)View.MemoryView.memoryview.__str__View.MemoryView.memoryview.size.__get__View.MemoryView.memoryview.nbytes.__get__View.MemoryView.memoryview.itemsize.__get__View.MemoryView.memoryview.ndim.__get__View.MemoryView.memoryview.suboffsets.__get__View.MemoryView.memoryview.shape.__get__View.MemoryView.memoryview.assign_item_from_objectView.MemoryView._memoryviewslice.assign_item_from_objectView.MemoryView.memoryview.setitem_indexedView.MemoryView.array.memview.__get__View.MemoryView.array.__getattr__View.MemoryView.array.__getitem__numpy.random._generator.Generator.__reduce__numpy.random._generator.Generator.__setstate__numpy.random._generator.Generator.__getstate__numpy.random._generator.Generator.__str__View.MemoryView.array.__setitem__Subscript deletion not supported by %.200sUnexpected format string character: '%c'Expected a dimension of size %zu, got %zuExpected %d dimensions, got %dPython does not define a standard format string size for long double ('g')..Buffer dtype mismatch; next field is at offset %zd but %zd expectedBig-endian buffer not supported on little-endian compilerBuffer acquisition: Expected '{' after 'T'Cannot handle repeated arrays in format stringExpected a dimension of size %zu, got %dExpected a comma in format string, got '%c'Expected %d dimension(s), got %dUnexpected end of format string, expected ')'__int__ returned non-int (type %.200s).  The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__%.4s__ returned non-%.4s (type %.200s)%s() got multiple values for keyword argument '%U'%.200s() keywords must be strings%s() got an unexpected keyword argument '%U'%.200s() takes %.8s %zd positional argument%.1s (%zd given)numpy.random._generator.Generator.betanumpy.random._generator.Generator.exponentialnumpy.random._generator.Generator.normalnumpy.random._generator.Generator.gammanumpy.random._generator.Generator.fnumpy.random._generator.Generator.noncentral_fnumpy.random._generator.Generator.chisquarenumpy.random._generator.Generator.noncentral_chisquarenumpy.random._generator.Generator.standard_cauchynumpy.random._generator.Generator.standard_tnumpy.random._generator.Generator.vonmisesnumpy.random._generator.Generator.paretonumpy.random._generator.Generator.weibullnumpy.random._generator.Generator.powernumpy.random._generator.Generator.laplacenumpy.random._generator.Generator.gumbelnumpy.random._generator.Generator.logisticnumpy.random._generator.Generator.lognormalnumpy.random._generator.Generator.rayleighnumpy.random._generator.Generator.waldnumpy.random._generator.Generator.negative_binomialnumpy.random._generator.Generator.poissonnumpy.random._generator.Generator.zipfnumpy.random._generator.Generator.geometricnumpy.random._generator.Generator.logseriescalling %R should have returned an instance of BaseException, not %Rraise: exception class must be a subclass of BaseExceptionnumpy.random._generator.Generator.__init__View.MemoryView.array.__reduce_cython__View.MemoryView.array.__setstate_cython__View.MemoryView.memoryview.__reduce_cython__View.MemoryView.memoryview.__setstate_cython__View.MemoryView.memoryview.strides.__get__View.MemoryView._memoryviewslice.__reduce_cython__View.MemoryView._memoryviewslice.__setstate_cython__PyObject_GetBuffer: view==NULL argument is obsoleteView.MemoryView.array.__getbuffer__View.MemoryView.memoryview.__getbuffer__Acquisition count is %d (line %d)View.MemoryView.array.get_memviewView.MemoryView.memoryview_cwrapperView.MemoryView.memoryview.is_slicetoo many values to unpack (expected %zd)View.MemoryView.memoryview_fromsliceView.MemoryView.memoryview_copy_from_sliceView.MemoryView.memoryview.__repr__numpy.random._generator.Generator.__repr__View.MemoryView.Enum.__reduce_cython__View.MemoryView.memoryview.convert_item_to_objectView.MemoryView._memoryviewslice.convert_item_to_objectvalue too large to convert to intcan't convert negative value to size_t'NoneType' object is not subscriptablehasattr(): attribute name must be stringView.MemoryView.__pyx_unpickle_Enum__set_stateView.MemoryView.Enum.__setstate_cython__numpy.random._generator._check_bit_generatornumpy.random._generator.default_rnginteger division or modulo by zerovalue too large to perform divisionView.MemoryView.pybuffer_indexView.MemoryView.memoryview.get_item_pointerCannot convert %.200s to %.200sView.MemoryView.get_slice_from_memviewView.MemoryView.memoryview.is_f_contigView.MemoryView.memoryview.is_c_contigView.MemoryView.assert_direct_dimensionsView.MemoryView.memoryview.setitem_slice_assign_scalarCannot transpose memoryview with indirect dimensionsView.MemoryView.transpose_memsliceView.MemoryView.memoryview_copyView.MemoryView.memoryview.T.__get__View.MemoryView.copy_data_to_tempView.MemoryView.memoryview_copy_contentsCannot copy memoryview slice with indirect dimensions (axis %d)View.MemoryView.array_cwrapperView.MemoryView.memoryview.copy_fortranView.MemoryView.memoryview.copynumpy.random._generator.Generator.bytesnumpy.random._generator.Generator.uniformneed more than %zd value%.1s to unpack'NoneType' object is not iterableView.MemoryView.memoryview.__setitem__numpy.random._generator.Generator.standard_exponentialnumpy.random._generator.Generator.randomnumpy.random._generator.Generator.standard_normalView.MemoryView.__pyx_unpickle_EnumView.MemoryView.memoryview.__cinit__numpy.random._generator.Generator.standard_gammaView.MemoryView.memoryview.setitem_slice_assignmentnumpy.random._generator.Generator.triangularnumpy.random._generator.Generator.permutationnumpy.random._generator.Generator.hypergeometricnumpy.random._generator.Generator.binomialView.MemoryView.array.__cinit__Argument '%.200s' has incorrect type (expected %.200s, got %.200s)Argument '%.200s' must not be Noneobject of type 'NoneType' has no len()expected bytes, NoneType foundnumpy.random._generator.Generator.multinomialnumpy.random._generator.Generator.dirichletnumpy.random._generator.Generator.integersnumpy.random._generator.Generator.multivariate_hypergeometricnumpy.random._generator.Generator.shuffleAll dimensions preceding dimension %d must be indexed and not slicedView.MemoryView.slice_memviewsliceStep may not be zero (axis %d)local variable '%s' referenced before assignmentView.MemoryView.memoryview.__getitem__numpy.random._generator.Generator.multivariate_normalnumpy.random._generator.Generator.choiceBuffer has wrong number of dimensions (expected %d, got %d)Item size of buffer (%zu byte%s) does not match size of '%s' (%zu byte%s)Buffer exposes suboffsets but no stridesBuffer and memoryview are not contiguous in the same dimension.Buffer not compatible with direct access in dimension %d.compiletime version %s of module '%.100s' does not match runtime version %sinvalid vtable found for imported typenumpy.random._bounded_integersPyObject *(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *)int (double, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)int (PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)PyObject *(void *, bitgen_t *, PyObject *, PyObject *, PyObject *)PyObject *(PyObject *, PyArrayObject *)PyObject *(void *, void *, PyObject *, PyObject *, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *)PyObject *(void *, void *, PyObject *, PyObject *, int, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)PyObject *(void *, bitgen_t *, PyObject *, PyObject *, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *)PyObject *(void *, void *, PyObject *, PyObject *, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)_ARRAY_API is not PyCapsule objectmodule compiled against ABI version 0x%x but this version of numpy is 0x%xmodule compiled against API version 0x%x but this version of numpy is 0x%xFATAL: module compiled as unknown endianFATAL: module compiled as little endian, but detected different endianness at runtimenumpy.random._generator._memoryviewsliceInternal class for passing memoryview slices to Pythonnumpy.random._generator.memoryviewnumpy.random._generator.Generator
    Generator(bit_generator)

    Container for the BitGenerators.

    ``Generator`` exposes a number of methods for generating random
    numbers drawn from a variety of probability distributions. In addition to
    the distribution-specific arguments, each method takes a keyword argument
    `size` that defaults to ``None``. If `size` is ``None``, then a single
    value is generated and returned. If `size` is an integer, then a 1-D
    array filled with generated values is returned. If `size` is a tuple,
    then an array with that shape is filled and returned.

    The function :func:`numpy.random.default_rng` will instantiate
    a `Generator` with numpy's default `BitGenerator`.

    **No Compatibility Guarantee**

    ``Generator`` does not provide a version compatibility guarantee. In
    particular, as better algorithms evolve the bit stream may change.

    Parameters
    ----------
    bit_generator : BitGenerator
        BitGenerator to use as the core generator.

    Notes
    -----
    The Python stdlib module `random` contains pseudo-random number generator
    with a number of methods that are similar to the ones available in
    ``Generator``. It uses Mersenne Twister, and this bit generator can
    be accessed using ``MT19937``. ``Generator``, besides being
    NumPy-aware, has the advantage that it provides a much larger number
    of probability distributions to choose from.

    Examples
    --------
    >>> from numpy.random import Generator, PCG64
    >>> rg = Generator(PCG64())
    >>> rg.standard_normal()
    -0.203  # random

    See Also
    --------
    default_rng : Recommended constructor for `Generator`.
    
        Gets the bit generator instance used by the generator

        Returns
        -------
        bit_generator : BitGenerator
            The bit generator instance used by the generator
        ð¿ð?˜ð?333333ó?àCš™™™™™¹?:Œ0âŽyE>ÿÿÿÿÿÿÿUUUUUUµ?lÁlÁf¿  J?88C¿$ÿ+•K?<™ٰj_¿¤A¤Az?—SˆBž¿…8–þÆ?5gGö¿€?/*p?3…f?(_?xY?յS?¹ôN?Ž¡J?¥F?DïB?Qt??u+<?Û
9?6?Ó?3?n‡0?ëé-?Äd+?Ñõ(?6›&?XS$?Í"?Yö?âÞ?mÕ?Ù?é?Æ?i+?q\?V—?™Û?Æ(
?s~?>Ü	?ÊA?Į?Ü"?ʝ?G?§?ðiþ>l‘û>7Äø>êö>*Jó>œœð>ìøí>Ì^ë>ïÍè>Fæ>çÆã>7Pá>ÁáÞ>K{Ü>Ú>‚Å×>ÇuÕ>;-Ó>±ëÐ>û°Î>ð|Ì>eOÊ>4(È>8Æ>LìÃ>N×Á>ȿ>•¾½>œº»>¼¹>Ú·>Ùε>ô߳>ö±>°>ñ0®>ƒU¬>¹~ª>|¬¨>¸ަ>Y¥>IP£>w¡>Ðҟ>Bž>ºeœ>)µš>~™>©_—>šº•>C”>”{’>€á>øJ>﷍>X(Œ>'œŠ>N‰>͇>x†>bŒ„>xƒ>¬—>õ!€>’^}>;z>Хw>@Òt>wr>b<o>ñyl>½i>²g>ÂSd>3§a>óÿ^>ô]\>&ÁY>z)W>â–T>P	R>·€O>ýL>5~J>3H>õŽE>nC>’²@>VK>>®è;>ŽŠ9>ë07>»Û4>óŠ2>ˆ>0>pö->¢²+>s)>»7'>%>†Í">˜ž >¼s>éL>*>=>Tð>TÙ>4Æ>í¶>y«
>ϣ>éŸ	>>L£>‡ª>lµ>å‡ÿ=+¬û=×÷=0
ô=ØCð=‰„ì=8Ìè=Ûå=hpá=ÓÌÝ=0Ú=šÖ=ê
Ó=n‚Ï=¢Ì=|…È=ôÅ=£Á=œ;¾=¼ں=Z€·=o,´=óް=ߗ­=.Wª=ا=×è£=%» =½“=™rš=´W—=	C”=“4‘=M,Ž=4*‹=D.ˆ=y8…=ÏH‚=†¾~=¥÷x=õ<s=rŽm=ìg=ãUb=ÑË\=ÞMW=
ÜQ=TvL=»G=AÏA=æ<=¬X7=–/2=©-=è(=Yý"==ì=9=£e=…ž
=Ðã=“5=¶'ù<týï<ƒìæ<õÝ<7Õ<8SÌ<C©Ã<»<\¤²<íIª<Ž
¢<‘æ™<Oޑ<+ò‰<"‚<ïßt<ɵe<ÓÇV<SH<·¥9<˜t+<ƅ<OÛ<‘w<ºê;OÑ;ú$¸;¾ԟ;ë9ˆ;œÅb;HÄ6;]£;«]É:X}:âî9e'‹5ìÄ2’µV2­™Œ27©2ˆ„Â2ÆÙ2Æfï2‚ß3ن3À3Hœ3®(&3Åo.3z63oN>3ËòE3lM3F¾T3/í[3ßûb3íi34Ãp3f€w3“&~3·[‚3Bš…3œψ3gü‹37!3“>’3÷T•3Õd˜3—n›3Ÿrž3Fq¡3ãj¤3Ã_§31Pª3r<­3Æ$°3k	³3›êµ3Œȸ3q£»3|{¾3ÛPÁ3¹#Ä3CôÆ3žÂÉ3òŽÌ3dYÏ3"Ò3+éÔ3®×3ürÚ3ö5Ý3Í÷ß3¸â3xå3”7è3ðõê3«³í3àpð3¤-ó3êõ37¦ø31bû3þ3ùl4ðÊ4ù(4‡4hå4áC4’¢4ƒ
4¿`4MÀ47 4…€4?á4nB4¤4L4i4aÌ4T04í”45ú42`4îÆ4p. 4¿–!4åÿ"4èi$4ÑÔ%4¨@'4t­(4>*4Š+4ëù,4ßj.4ðÜ/4'P14Ä24):44±54&)74™¢84c:4™;4$=4+–>4®@4¶˜A4KC4v¡D4B(F4¸°G4à:I4ÆÆJ4rTL4ïãM4GuO4„Q4²R4Ú4T4ÎU4EiW4ŸY4 ¦Z4ÔG\4Çë]4’_4š:a4”åb4ÿ’d4èBf4\õg4jªi4bk4‹m4ºÙn4¾™p4¤\r4}"t4Yëu4H·w4[†y4¥X{46.}4 4¼q€4§a4]S‚4æFƒ4N<„4 3…4å,†4+(‡4{%ˆ4ã$‰4o&Š4,*‹4'0Œ4m84
CŽ4P4•_4›q‘47†’4{“4w·”4>ԕ4àó–4s˜4<™4¶dš4›4­¿œ4$ò4(Ÿ4a 4–ž¡4lߢ4$¤4Ål¥4„¹¦4x
¨4Ä_©4ˆ¹ª4ê¬4{­4 ã®4EP°4©±4{:³4귴4);¶4nķ4îS¹4çéº4–†¼4<*¾4տ4‰‡Á4ÈAÃ4.Å4ÏÆ4עÈ4ÚÊ4ˆfÌ4RWÎ4²RÐ4*YÒ4FkÔ4œ‰Ö4δØ4‹íÚ44Ý4§Šß4²ðá4¢gä4ðæ4kŒé4¤<ì4…ï4“ßñ4yÕô4æ÷4uû4ò_þ4ç5Œ°5Ž5Œ5@5ó
5ø5å]5^é5­Ÿ5‡5q§5v
5»¼!5¾Î%5ÂV*5×s/5;S55‡:<5ÿœD5àNO5ó^5ÉNv5QHqoõMֻaÝnj DotTrùotoùuÓ$w'xîÍx,jyíy7\z׻zô{ÜW{S˜{»Ñ{.|Œ3|Ž]|ȃ|¸¦|ÆÆ|Iä|Œÿ|Í}C0}F}„Z}›m}‚}S}( }¯}-½}‚Ê}"×}ã}|î}Mù}™~i
~Æ~¶~B(~o0~C8~Ä?~öF~ßM~T~âZ~a~ìf~›l~r~]w~v|~`~ †~¶Š~$~m“~“—~•›~wŸ~:£~ަ~fª~ѭ~#±~Z´~y·~€º~q½~KÀ~Ã~ÁÅ~^È~éÊ~aÍ~ÇÏ~Ò~`Ô~”Ö~¹Ø~ÎÚ~ÕÜ~ÎÞ~¸à~–â~fä~*æ~âç~é~-ë~Áì~Jî~Éï~=ñ~§ò~ô~\õ~¨ö~ë÷~$ù~Uú~}û~œü~²ý~Áþ~Çÿ~Å»ª‘pHâ¤`	Â	i
	£6ÂH
È
A´!ˆèB–ä+m¨Ý5XtŠš¤§¤›‹tW3	ØŸ`Ìw·K×\Ø
L
·sÃ


G	{¤ÂÖßÜͲ‹Vÿ~þ~Ãü~dû~öù~xø~êö~Kõ~šó~Öñ~ÿï~î~ì~ýé~Ïç~‰å~)ã~®à~Þ~aÛ~ŒØ~•Õ~{Ò~;Ï~ÓË~AÈ~Ä~‘À~m¼~¸~z³~¤®~ˆ©~"¤~kž~]˜~ï‘~‹~ԃ~|~Ås~áj~Ua~W~÷K~ó?~æ2~¬$~~÷~
ñ}Ü}€Ä}	ª}Œ}ši}ÉA}}—Û|Q˜|øD|¼Ú{3N{˜Šz‡eyÙww7msð?7ˆåEî?ñÿP¦Ðì?'{ë{åë?*æ!ë?çúb¥ºvê?›mU—Þé?9ªUÄ1Té?/ÒÓv£Ôè?¸Åxè]è?&1$-Šîç?~Ô	›n…ç?cK©[»!ç?Æ„IÃÂæ?\Omúgæ?f¯§Áíæ?u¬Li=½å?s‡ڂ˜lå?š‰xºå?¯øQÁfÓä?iàŽûjŠä?%ᨯ™Cä?€‹±+Ëþã?ÑáDܻã?Ùݧ­zã?cE#;ã?^ÚEã#ýâ?$O¶˜Àâ?½2m…â?£PŒ"ŽKâ?È>ºêâ?‰{‡sÛá?%;Ç¥á?îoÎmÎoá?œ3¼‡;á?ÃJ9á?++ØÕà?*ÐTˆ[¤à?};î1¹sà?HeÒëèCà?$ó`±âà?vE!þ=Íß?úſŽ-rß?MBëцß?–K=ÀÞ?QÓ}6EiÞ?ü7áu“Þ?!§ˆ¿Ý?zí¹}ÙkÝ?~é½Ý?’à@ÜÁÈÜ?`ûƒÙÜxÜ?ƒ¥Ð*Ü?µî®8ÜÛ?ˆ™QiÛ?o€T”“CÛ?_ï(4°øÚ?åöýָ®Ú?@£j§eÚ?ô!u vÚ?’7ZiÖÙ?¨{	òÙ?šŸìIÙ?]TŒÙ?9]·çÀØ?Œ?¼„‰}Ø?8aDµé:Ø?Yζiù×?€Ɲҷ×?ãr^sSw×?ꍰ0‚7×?žd>[øÖ?œéä%۹Ö?Ÿ
Əþ{Ö?ä'HBÂ>Ö?vXï#Ö?lî1&ÆÕ?ï©:l°ŠÕ?磽!×OÕ?õ‰ލÕ?ù&×ÛÔ?Óڋ«¢Ô?タ+	jÔ?âAëî1Ô?N¡0ZúÓ?…²«0HÃÓ?ï}±G·ŒÓ?ÝÐü(¥VÓ?5$1Æ!Ó?pB9 õëÒ?b"®FS·Ò?)vEW(ƒÒ?ývG}rOÒ?ÿ~ñ/Ò?Û	{÷^éÑ?Z¼šáý¶Ñ?‚…Ñ?ï‘âބSÑ?ºŸºÌi"Ñ?l¦ÙR¸ñÐ?3SønÁÐ?>éNŒ‘Ð?Ґ]ðbÐ?,|y€õ2Ð?jG“«>Ð?T“ÿLҫÏ?~>–\çOÏ?›àèºôÎ?ò@YHšÎ?§ƒ/֎@Î?9O"HŒçÍ?¸îã>Í?ý1´ ¢7Í?ŸÐö8¶àÌ?ÎOxŠÌ?]æ4Ì?5D9gþßË?¥är|¾‹Ë?>ïܸ$8Ë?[ëB/åÊ?I<ÀKܒÊ?¼\ß*AÊ?ÅäÑðÉ?#>䠟É?¡’æžÆOÉ?y»%d†É?ÕbPŸޱÈ?ùŒÄÍcÈ?æç”PRÈ?®…ÈjÉÇ?þFŸ¹}Ç?9(¹Q1Ç?ê„îcæÆ?(ڦ^w›Æ?¬Ñ0U^QÆ?1j°úÐÆ?¶ÂT	ξÅ?õx.BTvÅ?IŒmb.Å?ú¶<X÷æÄ?–0˜Ø Ä?ÆÌ-ɰYÄ?šj8ÓÄ?©ø…wÎÃ?ÉՔ&‰Ã?¯úßBEÃ?n}¾ªgÃ?4Ï…
¾Â?@™`r*{Â?xè»{Æ8Â?eÊ=¯ÝöÁ?fÖ1 oµÁ?x®ðæytÁ?/qÉ ý3Á? ìï÷óÀ?/¶T{i´À?¾¥·îPuÀ?nz­6À?ê˦üð¿?f…u¿?<îóú¾?̹ŽF¾?ûºaõz¾?˜“­‘½?×M‘‡½?Wý€k[£¼?¯.ô.¼?&qWš¹»?He5TF»?eTe±CӺ?·8Ù=]aº?(ôFÐMð¹?pk3G€¹?¹t刯¹?;SZƒ¢¸?ºÄ;,`4¸?ó¦׀sǷ?<†W[·?¶„Hð¶? ¶0܍…¶?÷ÞÊ\Þ¶?>»‘íû²µ?6ÐY¹åJµ?)ِòšã´?\˜CÓ}´?±%d´?žŸ›™w²³?çÆSN³?э”vöê²?pÎaˆ²?Œ,Q’&²?@£o¨‰ű?’SuFe±?PÊV‡È±?;‡§°?Èõ×I°?v–iºÐׯ?4èD™ô¯?å².¥žg®?X1Iα­?Jyƒý¬?é!d¼J¬?…پz™«?„€j»éª?8ñG;ª?L|{‚ʎ©?mw€n—ã¨?k9:è9¨?ž«´¼‘§?R¯¶yë¦?A &ÇòE¦?ÊÒÅU¢¥?ëŖò<¥?k&«_¤?ÿÿG #?®?~#£?ÀVÉ#‡¢?Ôó_´ì¡?¡³ŸÐS¡?QÖ|z¼ ?îú
Y²& ?˜¯Çö$Ÿ?htQz®ÿ?3Tݜ?pXúP¡¾›?›N’æ梚?H*gŠ™?g™ìS(u˜?–ü‡Ú1c—?w@¢r‹T–?Q«¦=I•?¾ð‡ÎQA”?„]1%Ò<“?2:¹áÉ;’?__rTE>‘?ð	RD?ÎljÞý›Ž?W'n¹¶Œ?-ÉBUú؊?½§hê‰?õtªæ¶4‡?Ëä“n…?boQx°ƒ?qv³íiû?ù×_)òN€?Å]túQW}?6H—Ôé#z? 6ì7Ÿw?ý"ãΗús?C@Wi=q?Ḱ³Xl?ÿþ¡óˆØf?$£á¨k”a?%>Tµ+Y?¹ü÷
²O?KŸ2Ã=?Á]¿”ìdÑ<A]‹X`<+M[I²Öj<º[©5“q<s*Jåæ"u<€zÂûPx<̷yïÑ8{<˜½m·Øì}<<\ÆIð;€<pöÖ$Ûp<3&ڐ˜‚<Ên=þˆ³ƒ<!þÆń<ÃJøͅ<½+§ð@φ<ÐÚÍɇ<o`ÓTY¾ˆ<Ò7"U€­‰<R]¾ȗŠ<ģÝݥ}‹<‰?Œ×{_Œ<6|ñM¢=<ZsñxfŽ<ªO_ÏðŽ<	2h]Òď<XujívK<ü€›GH³<¯õI‡ó‘< ßK댑<çI>é&ä‘<.ÿ8eÒG’<h#ឪ’<KÚ&¥š“<‚mâÒm“< b!ÑSΓ<HgpÊ(.”<ç5_\”<“Íkøë”<Mox)J•<ý¾¸=ާ•<Ï.Ýǘ–<àhm-a–<D©úbS½–<»yy—<sy#nt—<r~|oϗ<™ÕþS*˜<ìá+/w„˜<*ÅÐPˆޘ<D¢ý½S8™<8­Bޑ™<¿ÿu,ë™<Jˆ¾BDš<aҖS%š<É$òDØõš<›—Ly_N›<‰?³¾¦›<™þY“ùþ›<ŸÒpšWœ<ÛZÂ+¯œ<ûæðŽò<kØñ½^<WBju¶<þ1|÷ž<Dσ´ež<bâåA½ž<Ÿ”âÆŸ<µþW+FlŸ<¡©eÂß<Ù<šŸ
 <b±
ö]9 <øvre <rK»㐠<7q­¼ <f/z |è <¬9R¡<¾}po0@¡<ûwál¡<–#=©	˜¡<ƒR=Ýġ<âĩð¡<±Ó'¢<)£³MH¢<ŸÐ;ƒt¢<ª͋tɠ¢<];¥d!͢<!Œù¢<vû|
&£<¡ŠªR£<ð…šF£<üïÏL¬£<m3ÀÝأ<Ä	Oôͤ<ÐlFæ×2¤<§lq”ü_¤<ăÈü<¤<¤kšº¤<êEËôè¤<ûف®¥<øµ,ÄgC¥<'o1¼Aq¥<ùœNk=Ÿ¥<5“Ô[ͥ<&ÏVúû¥<.sã*¦<Œ›\–‘X¦<îëÓE‡¦<ß<~ ¶¦<¦YË$å¦<û©PS§<úa¬C§<0ÑwÑ1s§<
$±v䢧<÷}kÅҧ<wrÎÌÕ¨<*æߺ3¨<çaY‰c¨<T¤Ï.”¨<”`ÌHŨ<þóö¨<ásŽ\'©<Š‚5²ØX©<ô»@9ŽŠ©<]ÇÚ}¼©<QéÝܨî©<-YЊ!ª<ÆV5¶Sª<óÐ2›†ª<zeß9ª<ÿ¬ʝ(íª<µ‹nÖÓ «<B%ÏøÃT«<¶O2{úˆ«<&Ûx½«<…ý-@ò«<-àBNS'¬<¤±ꂲ\¬<û##Ø_’¬<l¥•ó\Ȭ<€q탫þ¬<­ò0AM5­<þ£íCl­<
¥S‘£­<5ÒJ7ۭ<›P&´7®<R¤|”K®<#ôšO„®<xvJk½®<h‘[üèö®<¼ nË0¯<Ð^Q˜k¯<åáï³ƥ¯<Ø	Ý
äà¯<Ôùz7°<9ï4,°<£$’žkJ°<Û&ÏÜh°<­:ω‡°<È3÷s¦°<o”©œŰ<·ÏïPå°<Îïf¯±<J’jœ$±<+:oìÍD±<ÁąEe±<ž®o݆±< x¢§
§±<Z*x¦aȱ<p3›ªê±<¢ôð“ò²<PåOR3.²<º;@æÆP²<¦ÚÇa¯s²<+SBé<QÛE´‡º²<p-–|޲<eY&Yγ<Ч*'³<eÉ;³–L³<V¨Œør³<CQ4œõ—³<ƒ‹zD¾³<ÐޭŒå³<­îõé/´<øB½ÉÒ3´<,É…í[´<2”Әƒ„´<L¡]§˜­´<'±{0״<•¹Oµ<²ª¬qø+µ<Z§ø1Wµ<aDLý‚µ<á8úa¯µ<ž½ˆdܵ<y—
¶<”.{$U8¶<2ôÃ`Og¶<îH—Jý–¶<{š/eǶ<%ô±ø¶<Ò\Î}*·<Ãq½â<]·<ùqkµҐ·<Óv}Gŷ<né£ú·<þÀ,ñ0¸<Bsh9h¸<«[i΅ ¸<•6;‚âٸ<DuóÒZ¹<*ü4ûO¹<؍ñЌ¹<êÙ$:êʹ<xñI>V
º<;LèC%Kº<ꆭÂhº<ÄE؂3Ѻ<
¶»<ê‘P±]»<^Úvґ¦»<wïKÞTñ»<§àÂA>¼<ôÈÈBôŒ¼<©òì޼<Å8'k1½<ì;ìo”‡½<ŸñN¯Pà½<`	nò;¾<Có*¯š¾<JêPgÂü¾<§÷‘—nb¿<åÆöCþ˿<.ìb³âÀ<ïŽõ‹VÀ<N¥ËÍQÀ< H]x1ÐÀ<¦’C¨Á<*DugxVÁ<Ö³¼ŸÁ<|úɠ¼ëÁ<Ÿ‘Y¶+=Â<¥ªI®õ“Â<ðDŠãðÂ<^÷Ì'îTÃ<a¸ÈÇNÁÃ<bäf—7Ä<ÑQGÍ׹Ä<ösÏ<ØJÅ<ÒsázîÅ<r¿KmgªÆ</ÆêÖP‡Ç<íò染È<…{H
ÜéÉ<üqÚQžÃË<ƒ»~)ÙÉÎ<Ɨ$'R~1œ×[}<?Žõn®°2·›|D÷'Ñeˆ•r9\-þ²kÕ[~p,Ý4Éȝ¬ß	6xÔq{3¢·|‹Zlo	B{>®¯
—žðN±õ®Ve´½ÃΙ‡ðöÕˆVn®æÐ6Ênô¤ÔÝvK¶–§ãz÷ñicp%Eò t¨Q®)2U¹±1ÁWQ9Linëâ?úˆ×23F:¿L"3\L‡QÀìÃ	¡V–™	Ùf[ŒÐ‚à_rWDÝdx–…ö	hæ+*Åkôä2=Ko:ñq rÖ	M—ÈuÀ\Çxô?AŸ{ŠŸFS~8â;æ€b‘­=Zƒ¹V`±…bB²‰í‡út“uЬ9=ºŒJÐEÌŽ>ñàXƒ–½‘دG¬w“Úd‹O •’8cx¸–’ˆ–A˜€ºFẙi¼&›zqV…œØÏYםΡagŸÀ6	X 83:뇡üÄko­¢‚Îɣ¢jî_ۤ|	Mªä¥‚gä^å¦Ä¥Üݧt¨æ|Ψî_Γ·©X¸­p™ª2‚X^t«„t£H¬蟿‚­W;ޭlò ®~°$\¯z[°ô߁İúñ¶Pp±:–²ž²J¨ß+º²N!X³¾ɦñ³֬ᆴü“ÇóµªýÅ¥µXþ7(.¶
Ɉ³¶˜µ?5·¨}Üh³·ºÖ.¸öG{¥¸tš•¹rº…й&oyaø¹†âî=cºìA/˺D‘´H0»⤮œ’»žÈ<ò»”)Ò9O¼Ô@ᣩ¼žTнœrÞûV½j֋ª½@?˷ú½ÞdsI¾^iÉ@•¾(±†0߾taÞö&¿⊂žl¿Ä©1°¿°ýºñ¿ˆEA1À²T[ÏnÀ&‹mªÀŠi™#äÀdŠ)ùÁB}õQÁJw†Á´tž}¸ÁBê éÁÞÕîÂþƒ<
EÂÂO†vpÂc/šÂF€é<´ÆҢèÂì"Ae
Üއ0ÃÆ~RÃøfßúqÆ(*QÃú—t­ÃH3DÈÃ@«ÌäáèMŽ÷ùÃ`P¸}Ähýwx%Äƿµè8Ä*ÏJÄèGô+[ÄElÿiIJPIwĸû+	ƒÄöE>Äҙç•İ0ݝÄ2´y‘¢ÄüŽŽ¦ÄŒûëø¨ÄžêΩÄ4úA©Ä (N­¦Ät.Ȱ¢Äâ-æÄô-…̕ÄÀ^&܌Äz#ì;‚ÄæޖæuÄ‚~ÖgÄ6XÄ .pmFĘË3Än
ËÄ��ÄbËH²íÃ<Y>ÄÒô‘޵ÃLa™õ–Ã’EZvÃp“óRÃ(²Á-Èx½_Ãbò˿ÜžŸ¹ӰÂðüŒ‚ÂdñyÚQžӶ¬ÂVgŒñèÁ<»7–°ÁÍ܆uÁ¶Öt®7Á$»ööÀ¤MH³À𯋉lÀdó’ "À¸rqտŽH)݄¿
Æ/Å0¿ÆwپÚ}2€}¾¦K	¾D5zº½&ø¹§R½ Æcæ¼äM,}u¼ª·c¿ÿ»¢æ?ò„»ŒѠÙ»¬p5º¶’¿ó¹ü«Ô.b¹J3ʸT[vv+¸\‰[œ…·”UÕ@ضBiÙ÷"¶à7oLeµÒi¿¿ž´FçÈγ>œSÏô²R(D2²–Z> ±ÂáB0$°¦yÄ1¯ágW®r-¿ެ
@樫(ÿ™óaª¢foe©<P³š§òÑ&¦ê‹Ô{¤”ÀœƢó}ôô 
¾k3Ÿ¼ùy+ñœīD¸š¸/x[U˜x?ЫÕòñΩý’äšÚüø…sž¹Œ–Gì*‰ŽÛùE…š6Ãý€&é9xB|Ì*X£w$ q*5·4‚jfâ¨cÄãOfZrÎNrPÚo\fÇD¢YŠ£å6
4P4&{>æËWú®öˆ¡ŒÓ°-¦¢|&‹ÇaY°¬+öÝÀèäÙMÛ€?V#z?£ºu?øq?}›n?„k?L¢h?ée?öRc?çØ`?Zw^?*+\?ÔñY?RÉW?ø¯U?_¤S?X¥Q?߱O?ÉM?3êK?ŽJ?ŽGH?ª‚F?jÅD?`C?(`A?j·??Ô>?x<?øà:?0O9?†Â7?Å:6?»·4?993?¿1?%I0?C×.?Mi-?!ÿ+? ˜*?«5)?'Ö'?úy&?!%?CË#?Šx"?Ì(!?õÛ?ñ‘?­J??$Ä?¾„?ØG?c
?QÕ?”Ÿ?!l?ë:?å?ß?@´?‹‹
?Üd?)@?i
?’ü?Ý?À?4¥?±‹?îs?å]?I?ä6?¼Kþ>í,ü>Nú>Ôø÷>qãõ>Ñó>ÇÁñ>jµï>ú«í>k¥ë>µ¡é>Πç>¬¢å>F§ã>“®á>Œ¸ß>'ÅÝ>\ÔÛ>#æÙ>uú×>JÖ>š*Ô>_FÒ>’dÐ>+…Î>$¨Ì>wÍÊ>õÈ>Ç>JKÅ>ÅyÃ>|ªÁ>iݿ>…¾>ÍI¼>;ƒº>ʾ¸>tü¶>5<µ>	~³>êq>Ô°>ÂO®>±™¬>œåª>~3©>Tƒ§>ե>Í(¤>g~¢>çՠ>G/Ÿ>„Š>›ç›>‰Fš>J§˜>Ü	—>:n•>bԓ>Q<’>¦>x>ª~>—í‹>>^Š>šЈ>«D‡>lº…>Ü1„>ùª‚>À%>\D>„@|>ó?y>¥Bv>–Hs>ÁQp>#^m>¸mj>|€g>m–d>†¯a>ÄË^>$ë[>£
Y>=3V>ð[S>º‡P>–¶M>ƒèJ>~H>…UE>”B>«Î?>Ç=>åS:>›7>"å4>=22>T‚/>dÕ,>m+*>m„'>cà$>N?">,¡>ý>Àm>tØ>F>­¶>1*>¥ 
>>Y–>š>ʗ>ë>öIý=ù_ø=à{ó=«î=^Åé=úòä=ƒ&à=ü_Û=gŸÖ=ÊäÑ='0Í=„È=åØÃ=P6¿=˙º=\¶=	s±=Ûè¬=Ød¨=
ç£=yoŸ=/þš=6“–=š.’=fЍ=§x‰=i'…=½܀=a1y=ª¶p=xIh=ðé_==˜W=ˆTO=G=Ü÷>=Nß6=’Õ.=èÚ&=–ï=ç=-H=L=Äÿ<אð<̀á<ú”Ò<ŽÎÃ<Ø.µ<X·¦<Äi˜<HŠ<R©x<i$]< B<²\'<‘,
<ç;Gõ´;øP„;úü*;.0¥:ÜIú4_hÜ2z…3Êå+3ç@3aQ3i`3{am3A’y3‘i‚3*¨‡35•Œ3=‘3r©•3þá™3öì3|ϡ3ڍ¥3«+©3¬¬3ް3“^³3•¶3׶¹3iż3-¿3c®Â3%‹Å3uYÈ3<Ë3LÎÍ3gvÐ3;Ó3k¥Õ3‹-Ø3$¬Ú3´!Ý3±Žß3ˆóá3Pä3P¦æ3øôè3é<ë3p~í3չï3^ïñ3Jô3ÖIö3<oø3³ú3m«ü3œÂþ3·j4r4Uw4³z45|4ì{4ëy4Bv4q48j	4õa
4FX49M4Û@
4834]$4U4,4ìð4 Ý4SÉ4´4۝4Æ4Ïn4V4w<4$"44Vë4ëÎ4ޱ45”4÷u4,W 4Ù7!4"4¼÷"4ýÖ#4ҵ$4@”%4Mr&4P'4_-(4p
)47ç)4ºÃ*4 +4|,4éW-4—3.4/4~ê/4ÃÅ04ï 14|24W34244
54è54Ã64"ž74@y84sT94¿/:4*;4¸æ;4nÂ<4Rž=4hz>4´V?4=3@4A4íA4qÊB4¨C4†D4udE4-CF4K"G4ÑH4ÇáH41ÂI4£J4v„K4\fL4ÍHM4Ì+N4aO4‘óO4bØP4ٽQ4ý£R4ԊS4crT4²ZU4ÆCV4§-W4ZX4èY4UðY4ªÝZ4îË[4(»\4_«]4›œ^4åŽ_4C‚`4¿va4alb40cc47[d4~Te4Of4òJg42Hh4ÙFi4ñFj4…Hk4 Kl4MPm4˜Vn4^o48hp4¦sq4å€r4s4
¡t4´u4Év4Càw4”ùx4 z4ù2{40S|4Ùu}4›~4ÎÂ4¢v€4@
4L¥4Ò>‚4àق4vƒ4Ä„4¸´„4lV…4ïù…4RŸ†4¦F‡4ÿï‡4p›ˆ4
I‰4ëø‰4"«Š4Ê_‹4üŒ4ÓЌ4l4åLŽ4`4þԏ4坐4<j‘4-:’4æ
“4˜å“4vT4»¡•4¢†–4np—4g_˜4ÛS™4 Nš4”N›4Uœ4¬c4>yž4ݖŸ4%½ 4Áì¡4r&£4k¤4»¥4(§4û„¨4‹ª4«4.­4Qä®4N³°4tž²4ª´4\۶4H9¹4«̻4p¡¾4ÈÁ4~XÅ4wÉ4p_Î4ä~Ô4úÀÜ4¤Ýé4ì™wõE`¨m´r¯’u\zw8Êxk¿y5zz/
{ԃ{—å{ˆ7|3}|&¹|Hí|}C}‹g}ۇ}ü¤}a¿}g×}]í}ƒ~~4%~5~ÕC~“Q~g^~ij~ªu~>€~2Š~•“~rœ~դ~Ƭ~N´~u»~CÂ~¼È~èÎ~ÌÔ~kÚ~Ëß~ïä~Üé~”î~ó~t÷~ û~£ÿ~6Ê
<ÄÜÚ½‡ :#×%](Ð*.-z/³1Ü3ó5û7ó9Ü;·=„?EAøBŸD:FÊGNIÈJ8LMùNLP•QÕR
T=UdV„WœX¬YµZ¸[³\¨]–^~__`;abàbªcod.eèeœfLgögœh<iÙipjk‘kl l!mžmnŒnünhoÑo5p–pópLq¡qòq?r‰rÏrsPs‹sÃsös'tSt|t¡tÃtàtûtu$u3u?uFuJuKuGu?u4u$uuùtÞt¾tštrtEttßs¥sfs#sÚrr:rãq†q#q»pMpÙo_oßnXnËm7mœlùkOkœjâiiThg¡f¸eÆdÈcÀb«aŠ`]_!^Ø\[ZžXWuUÄSþQ"P/N"LúI¶GSEÏB(@Z=d:A7í3e0¤,¤(_$Îê©ä	Fü~>ô~¨ë~7â~È×~/Ì~7¿~°~
 ~
~w~G]~“>~Y~,ë}6°}b}¹ô|ÒO|06{ÒÒxð?‡ðyÉjDï?©l[T·î?wð'à?î?•Þ§oÓí?ò¼W’pí?Ü¡xIí?ë-§¨3½ì?x©Î^jì?êºîÙì?‚ÜáNëÎë?Rõ:e…ë?Ý4‚:>ë?¢èl?*ùê?%zñþµê?áÉPՋtê?¯õýª4ê?Øeî;öé?$"¹é?ÁzaWF}é?Gz‘Bé?Oq1½ñé?¨
æOUÐè?ߺH­˜è?¬¼7üëaè?nÏV,è?Ëâ Kíöç?XhœwšÂç?հ <ç?VØp\ç?m?ôå)ç?îzêºPøæ?‰ZcžXÇæ?*;Q^÷–æ?#ã’*'gæ?U˜â7æ?e&€˜$	æ?jÿJoèÚå?‰\Ȭ)­å?L&äå?FžðSå?ÕleZµ&å?g¶ èÄúä?ÀNIO?Ïä?xRÜr!¤ä?Pß_hyä?y6IJOä?ã_5Š%ä?‚[X™~ûã?£1¯>Òã?Íb¦U©ã?ÕÚ+Àã?éPõ‹„Xã?5:pɗ0ã?ï8dýúã?î;êU¬áâ?J•תºâ?͓Žò“â?í)„mâ?„ېZ]Gâ?ò÷/©|!â? –’©àûá?i™Tþ‡Öá?Ñ?Wq±á?P<›p›Œá?Ú9†há?œ©^­Cá?81H’á?Y2¢³ûà? BAØà?®Ùp¦´à?]™v‘à?6<ðÌ}nà?.?¦¯¼Kà?*‚‹á1)à?Äʸ…Üà?¡½{ŒwÉß?Ê©§…ß?óz/Ë)Bß?•~qÿÞ?T½ n¼Þ?ÅÃNj#zÞ?…›_ê88Þ?	:vG­öÝ?±V2µÝ?3Þ&d­tÝ?€¡64Ý?m[®´ôÜ?H¨ÀsU´Ü?Ç×»ètÜ?¸,oÒ5Ü?ja|÷Û?‘mq֤¸Û?x‹zÛ?Ê1³bÄ<Û?R…¡žNÿÚ?žZ_:)ÂÚ?€ؤJS…Ú?MÀ êËHÚ?>„F9’Ú?ߓ^¥ÐÙ?ÆÀ„•Ù?“ŸàۮYÙ?Ë3›£Ù?ñ¹üáãØ?ˆ‘Þ?i©Ø?¶Z¬¨8oØ?Ù
ªO5Ø?ٸ­û×?°ô¯PÂ×?ëR’¯9‰×?í±ÇigP×?La©;Ù×?ªL†ŽßÖ?!ވ­†§Ö?âË%ÁoÖ?å{7=8Ö?ÈҀtúÖ?DÂvCøÉÕ?¾îÖ6“Õ?=p³\Õ?í;SÂo&Õ?’m¿ŽjðÔ?¢œW£ºÔ?Ôj­Ÿ…Ô?þ$ÃïÌOÔ?z5ѼÔ?ÛҎÐèåÓ?®Cñ|P±Ó?yhó|Ó?žÑù%ÑHÓ?/öZMéÓ?f!w;áÒ?Ý?–>ǭÒ?±MAŒzÒ?‰ÞŠGÒ?žÌ÷yÀÒ?ö.âÑ?PðÂ9կÑ?èTTí²}Ñ?gî4»ÇKÑ?#$ÏOÑ?Ä	‡Y•èÐ?ÚB²ˆM·Ð?6C;†Ð?ÙéB"_UÐ?~tÇö·$Ð?œ߉‹èÏ?52¸ŒˆÏ?Ҙélþ'Ï?DœɤTÈÎ?Ý<(²iÎ?„qE8
Î?
ÇUīÍ?OQ²ø¶MÍ?Ìo^ŠðÌ?Sßq™͒Ì?Gطð5Ì?¡¾zxÙË?ª1‡zd}Ë?:ÑÌR´!Ë?W¢gÆÊ?~&~kÊ?=~-2÷Ê?ZþҿҶÉ?'|j_]É?iút¿¯É?[’‘°ªÈ?8šŠRÈ?uqbÕùÇ?#£hÓø¡Ç?¦µzœ|JÇ?G–~`óÆ?\ò!>¤œÆ?œñ­¢GFÆ?ùƒøvJðÅ?l󈬚Å?5hȩmEÅ?Á㭍ðÄ?-ÎõlœÄ?ÕuÂéGÄ?®1i‹%ôÃ?î×調 Ã?ˆ«´¸MÃ?e*|„ûÂ?zèÂ?·^ƒ¢ÕVÂ?4<%FÂ?B}u’´Á?c-¨å@cÁ?¹n¢ËÁ?º	R=³ÂÀ?…¿¸KùrÀ?*}T#À?,"kË>©¿?R)ÿ¿?K¥šò{o¾?èvaµӽ?命¹«8½?
t;I_ž¼?hм?3âòxÿk»?3öÊéìӺ?†bê3™<º?[Ü¦¹?« ¤u0¹?R(¿{¸?Öï>Êæ·?vªZ9S·?LJisk6?M…$a.¶?¤ftWµ?®+ú›µ?"@á|´?†š&#ïí³?p>ÙäÅ_³?1›ÏfҲ?‘
ÝDÓE²?}‰—¾º±?òÐ/±?%–,�?—ä0ž—°?5nl+,&¯?Q²GÕ®?bñ­þ.	­?,*(>ý«?p_8óª?cU)ùê©?«µh*àã¨?'¯wûާ?dИ³éۦ?ԭò<²ڥ?]']ۤ?Ëî˜Îòݣ?—ô=è|â¢?¼jŸé¡?€–.˜ñ ?ĥׁøŸ?uŒ‚Ûž?	̓0œ?øë"NŸRš?
Á¶Ñy˜?‚¿ôڥ–?d°ûòê֔?^«8
“?0`4I‘?IÝrO*?¬O'¤‹?x¤
Aˆ?àÏB–ë„?’/•)’¥?7hìø`á|?]¸٨žv?ý±°Šp?g°ÁCŸ_e?÷¹¶¦T?yÙx;IÏ<Æöý㍋<´[,<¯P’<a;D8¹|•<§/èü˜<¼ÐL.#š<÷a8/Mœ<trtZ/¬<ÃÕL-H2Ÿ<­»Ž'2M <C];õ <w6A—¦’¡<õz¢'¢<€Øc8.µ¢<õ‘WÀ?<£</±¢^½£<U›ÿï9¤<§þ=6»±¤<tÓbu%¥<–Χ€•¥<ê~ÙÏ1¦<=|£aÒk¦<p’¢Ҧ<¦øFÓÚ6§<w*³­˜§<CõF­Eø§<w
CSÌU¨<šv{žd±¨<˜ÏN©.©<ê,‚Gc©<FÅ8Žɹ©<,§¤Ü̪<YÍwmgbª<0n­´ª<œlm±«<)zB‡„U«<:ŸRŽ6¤«<2‚¿*Öñ«<óNYùp>¬<a;2¥Ь<‹&rþÉԬ<H·€Ÿ­<ä)g­<ø#ί­<Svñ©:÷­<þíҵë=®<oz3郮<΂ù½:ɮ<&bð„ç
¯<ˆöØTöQ¯<®ׇžm•¯<¬.ú}Sد<ì4BàV
°<š9õ@.°<ü¥žêN°< r[Vo°<ôq†°<a¼„}¯°<ÌKf=ϰ<kKÈî°<î•2 ±<¾1G-±<A‘ŽŸ>L±< Ŀk±<4Úx§‰±<ˆmîQ¨±<Ë*øøfƱ<.ÔӋä±<Ÿ @™Š²<éÆÄre ²<Ãé}>²<ûk©´[²<Óf*y²<×ǁ–²<Ú.¸b»³²<S¸ábØв<Ž©ËèÙí²<×Hn
Á
³<0¹ôáŽ'³<¡^&pDD³<ÕRʺâ`³<jX¾j}³<d²²oݙ³<=¸¿;¶³<àV˜†ҳ<ƒZr޾î³<tžàqå
´<]t¦-û&´<¤0<èC´<]ÇÊs÷^´<6Ãfžßz´</H2º–´<]A��<ܳ¬Iδ<¦8ê´<bU^﫵<Z‹
òM!µ<OfjÕæ<µ<ȲNwXµ<x_Utµ<…Ɓµ<Y$#ýªµ<=s}ÑrƵ<ӌ/{ãáµ<8^ŸÈOýµ<ã`¸¶<¢°¢è4¶<&·O¶<r–ÉWâj¶<71±ƒB†¶<±²P)¢¡¶<»C³è½¶<RÓ(abض<Tøa1Äó¶<ëh‹÷'·<ÆiQŽ*·<ÜîpÜ÷E·<så5ea·<IôïúÖ|·<“½ºÈM˜·<	‹<ʳ·<û"ÛóLϷ<çÞsŒÖê·<ꆤg¸<v†ÈÚ"¸<Ÿ‰΢=¸<½õÑNY¸<Å~zou¸<-÷G_и<CÀ’ެ¸<œ¡«eȸ<'jDQIä¸<µs):¹<Gƒ(Ü8¹<ü
ïF8¹<Š¢ybT¹<îÕp»Žp¹<1*.‰ˌ¹<¿™?“©¹<,ÙՌyŹ<to+ìá¹<JÒú&rþ¹<’6ù9º<[Ȣ!»7º<ˆ»žTº<¤©JrZqº<=1 dLŽº<ñŸ>V«º<ÎõZÍxȺ<6³‹á´åº<¡ÃO»<[˜šð| »<à 
>»<=ÎAµ[»<'‰?¹}y»<<÷åñd—»<n%…Ûkµ»<¢À.k“ӻ<ƒ®›Üñ»< ìlH¼<-zðå×.¼<
nŒM¼<‡ìfl¼<¦ëàf‹¼<«¢6½ª¼<Ö;Çáɼ<7àh0^é¼<n‹2	½< ï7Û(½<GÆ3ÞH½<#ñç–i½<¥û×ôs‰½<pn ™	ª½<IüøÒʽ<7.R•Ñë½<ÒIû
¾<öFêÄt.¾<ˆÑYP¾<%þ—/r¾<
¿*K!”¾<o÷¶¾<:§v#پ<©ìaü¾<!SŠ2¿<mM·¤B¿<hÉ _f¿<‚—‰fŠ¿<¿"q»®¿<…ç/Ò`ӿ<öÁYø¿<u ÓGÔÀ<Gɏ¨!À<«©ƒ©4À<Çõ>NÚGÀ<~³­ö;[À<h&§#ÐnÀ<.c˜‚À<T¢è—–À<ÄÀquͪÀ<HÔîÑ=¿À<0=ª4êÓÀ<“eÏÔèÀ<¶Ÿ¦ïÿýÀ<Ap nÁ<5]»›!)Á<m	Äi?Á<;.`HdUÁ<óî;ùkÁ<aÒt߂Á<¬ëNVšÁ<Ž/w­±Á<”¦q©œÉÁ<9®äûëáÁ<ÙâŸúÁ<Ì¼Â<îÓozG-Â<$œ¬¤EGÂ<àXvǼaÂ<.Y¨ú²|Â<xwÍ.˜Â<R
*S7´Â<—ۖ1ÔÐÂ<õx©±
îÂ<î®VÒìÃ<£¤h^{*Ã<£®ÄIÃ<@¨3zÒiÃ<
AV’³ŠÃ<úˆ®pu¬Ã<¦³'ÏÃ<uô`ªÛòÃ<Ú幜¤Ä<”^T˜=Ä<:§DÎdÄ<¼CœubÄ<'Zks·Ä<‰Í
%ãÄ<A¬éSŸÅ<B~:R@Å<äJ©±qÅ<ٍq‹%Å<þÐ:$ŠÜÅ<L†ÏiÆ<êj{ÎSÆ<Ã埾@•Æ<2â	kÛÆ<4z_ð('Ç<s	V•yÇ<ŒÎÖô-ÔÇ<4ò)9È<|ª¿«È<–Do”à.É<«W@îËÉ<Zw”x܏Ê<±ýx8˜Ë<3­	‚´;Í<jï%€=ó¨Æû˜¾B½úT£
êîÁ~öQ~÷ÓéU²¹Ê~KïªDú
GËÿaí7\%a•FO–£ä¥a¤–SuzpšD(ì²|ÓWcñ†Þ%ƒW¦ÚÐMÇ$—	õÛ©túõ`£øK[Þo¨ÜTÓ`ñ¬¹gû°ÆtSŸ´wþf#ì·å¡éìºí«½Wlÿ`0ÀH¢7‚ÂÑ[âz¦Ä1îz—¢Æ¤–(©zÈ…ÞK^2Ê#éÌËÄ9øMÍ™ìMµÎ0É¿ÐæÄÖMFÑPôâ¨rÒÉðOŽÓx´™šÔS’¸˜Õ왎	Ö2èȩn×è{THØŒ,­‹Ùҭ§ÝÙŒ^p™Ú .À]MÛÐü[\ùÛ}š¹ëÜr;ݐ/4ˆÒÝdŸ6dcÞNQpîÞ.´¦tß@í™eôßò$¼äoàX¢%ÂæàL¸(<Yá™?¼ŒÇáªÛé1â‘څ˜â†AµûâJU3[ã*Й·ã­žéä4wÔFgä\	LӺä$•Үåx¼N÷Yåäȥ剆>ïåxÙo6æxÕÆu{æªf¾æòôåUÿæ§Y>ç9ž>‚{ç¢ppã¶çCBwðçŒðS(è:5û^èd„ܓè¼ÎðAÇèöN}8ù蛇Ì)éêˆÓ	Y颚“û†éfHq¬³éն”&ßé|æ«s	ê¤fñœ2ê,•2«Zêtզêðޗ§ê Ùó…Ìê<æexðêì/vëJ*þ…5ë´b1®Vëú„âôvë æ_–ë|Ïô´ëÐIô¸Òë>.n±ïëè½ãìZ±R'ìӯBì–ñ)ý[ìôîl@uì´Pҍì‘¶¥ìþ'Äð¼ìûT„Óì³Ȉtéì·‘Äþì(…5wíI„'íL/$;ínX­ûMíÝØT`íèOArí‚©äWƒíÈ,¤”í·…+¤í´jtȳíRfAßÂíRn¤qÑíӊ<ß퀙ííÔúíÄK®îZÙÀîàWî$eKs)î¼ä
4î<›¸=>îô‚)îG'QîA@éYî.´(5bîñ—Xjîz>lqî‚{2Xxîº{Ï~î²JH҄îCc¶`ŠîQÈÌzîÚ%~ ”îê)¨Q˜î\HœîôsrUŸî®Ìb'¢î¬Bkƒ¤îq-üh¦îúÖnקî
úΨî;3èK©îd)P©î^À٨îTv‰ç§î$Hx¦îƒž¢Š¤îÚä"¢î$ 5.Ÿî.¯&¼›îäò$ŗî:
<G“îuU@Žîzœ6®ˆîý=Ž‚îˆ¸§Þ{îÿ7ÿ›tî^½©Ãlî~žRdîˆ(£E[î¶WN™QîÏJGîP,áS<îØ*à²0î‚­b$îZ<¸^îG*¢	îÌIã'ûíl!vêëí~"äÛíÓ9ÎËíô,d¹íÉ8éܦíé7r“í6¨8í+9Òií®Sí"¤ÞA<íØ/jç#íDæ/s
í4þÚï츷Ôì´n•·ìÁ0¶˜ìx©
yìþ1õWìbɆf5ì5³´LìÐoŽ”ëë’¶ )ÄëÜîõšëB…Éáoëž­ÓBëK-°ëéYâêW"™®®ê&㎍xêåsýÏ?êöٍLê;V/ÖÅé¤G©;„é(GG?éÖÅv½öèæèÄ]ªèê±zàYè@©öèÀ3‚H«ç¥juLç¢*èæث¶ }æ~08ŸæB÷8s”å€r—påXô6ԋä7ý¿ù㜱î5]ãþä/µâWU™âƒx‚<á°gîÄhàªq+°‚ߪþ~ŇÞý;Æ	uÝ¿)åFÜ‚.øøÚuº²á…ÙÏHïæ×e½­ÖðâIÔ¬Ǵ§¡Ñžvâβ^بË"-ÍnÒÇí"/+Ã:¸e½4TĶt(*X@¬˜E—žü¤Hú‰,0ð÷ÅfJ3KZ4€?ÉNö@SŒ¾¤Ýi@«ªª>Aޓ=?ƒ»~)ÙÉ@Áè lªƒѿ3­	‚´;
@à¿UUUUUUÕ?"@mÅþ²{ò ?à?…8–þÆ?5gGö¿@@´¾dÈñgí?À$@=
ףp=@˜nƒÀÊí?[¶Ö	m™?h‘í|?5®?333333@rŠŽäòò?$—ÿ~ûñ?B>è٬ú@rù鷯í?…ëQ¸…Û?ìQ¸…ë±?9´Èv¾ŸŠ?Âõ(\@ffffff@0Cš™™™™™.@€4@ôýÔxé&Á?@ä?UUUUUUÅ?€a@ÀX@€`@à|@¸Ê@€MA>@ø@-DTû!	@ñh㈵øä>-DTû!@€€˜3?Írû?q¼ÓëÃì?0@ï9úþB.æ? *ú«ü?ù,’|§l	@ÉyD<d&@ÊÏ:'Q@0Ì-óá!@
·ü‚Ž5%@Ï÷§!‰š)@M•u5.@t:?—€1@CÕºü3@Î2;œZ6@B*ßó09@FÓ?¦6æ;@„ÿ«>@:5/?¦À@@RîÕò2B@…96S«C@¾wízõ*E@©r4d¨°F@O¨«O<H@Ej…‹§ÍI@NrdK@çeÍ"vM@”g|q¡N@ïO~¶®#P@@3ñøP@1r‘SsÐQ@åÐY‹ ªR@@Zžýæ…S@„ ”›µcT@JÎ:c|CU@º–HG,%V@Xá·W@Xg²yîW@–=$Á(ÕX@£WR÷ö½Y@˜–Ân¨Z@¢+p\…”[@¡œ†0‚\@î>fq]@Oºîb^@ñœ¦+NT_@ŸݭC÷#`@©¤~{ž`@kbbç¯a@Y¥SȐ•a@Ãn“b@1ëÝIb@5cèa
c@Û“ø‹‹c@ͦ3š˜
d@¯\>Šd@‡ànz
e@sÚ9J‹e@FGGʪf@yyuð™Žf@IJC g@YÜ&ÿ”g@¹oF¦h@¡® ·›h@aÇçQL i@½¤áãa¥i@	F~xö*j@&—P±j@¯×Ùö”7k@!¶ß+›¾k@÷VÌøFl@‘¥Îl@¶·¸„tVm@pZ ÷Nßm@ïk9išhn@HQñOUòn@ƒaÆ,~|o@b4nʼnp@+e‹ÿ	Ip@còÛ¿Žp@)±V¨Ôp@*“øÅq@6GãÇaq@¬á�§q@>m#FJîq@ÕFKæ.5r@b)ÇÿC|r@WÐr‰Ãr@V…]ý
s@r‰ Rs@GIÑýqšs@÷
>6qâs@j£B±*t@A=ðört@fIw|»t@d¯'Í-u@X¦+{
Mu@ìÄ#
–u@ZGDßu@í;# (v@b”‡´%rv@¶iv{Իv@ŸØ¬w@¾÷ç«Ow@\&Áәw@}6û-#äw@h͙.x@þÄk?7yx@–'ûÃx@_Ã*åy@³ÈÑìôYy@Ì1¸*¥y@^TT„ðy@,{»L<z@:I$®¦‡z@À|*&nÓz@µ
dY{@룴hk{@
aö™·{@Íúf¯î|@&"™ùeP|@
4ŠŠÿœ|@ê0h»é|@¸÷“^˜6}@™—ƒ}@¤Þ)ó¶Ð}@L§¹÷~@€v@UUUUUUµ?µ¾dÈñgí?;ìüˆ¯øÿ»øÿ$Y»øÿL&Åøÿ„
BÅøÿH¥Åøÿp÷Èøÿ¼âÉøÿáÊøÿXàËøÿ„Dèóøÿ0øóøÿDôøÿX(ôøÿlõøÿ€xõøÿœÈõøÿÔØõøÿè(öøÿ	Höøÿ	Xöøÿ,	xöøÿ@	èöøÿT	høøÿh	¸ùøÿ 	ˆúøÿØ	(ûøÿ$
hûøÿ<
¨ûøÿX
(üøÿ
˜üøÿ¬
8ýøÿÌ
¨ýøÿä
þøÿ¬¸ÿøÿÐ(ùÿ8ùÿˆùÿ8ØùÿÀ˜ùÿ 
èùÿ¤
ØùÿÈ
˜ùÿøùÿ ùÿxùÿ8¸ùÿp	ùÿ¨h	ùÿÔ¸	ùÿè	ùÿ08
ùÿLˆ
ùÿxhùÿØùÿ\ˆùÿ¨¨ùÿðøùÿHùÿ(Hùÿxxùÿ´ùÿ˜ùÿ(ùÿTxùÿp8ùÿ´HùÿÈ ùÿØ#ùÿX˜$ùÿX%ùÿĨ(ùÿ(¨)ùÿ|ø)ùÿ´˜*ùÿÌH0ùÿdè5ùÿäh6ùÿx8ùÿpØ;ùÿ¨>ùÿ¨(BùÿLˆEùÿèèHùÿ”ÈLùÿL˜OùÿäøRùÿ8UùÿXùÿ´h[ùÿ`8^ùÿøaùÿ Øcùÿ(!XgùÿÌ!Øjùÿp"Xnùÿ#Øqùÿ¸#¨tùÿD$xùÿð$X{ùÿŒ%~ùÿ&Ȁùÿ˜&ˆƒùÿ$'H†ùÿ°'¨‡ùÿ(؈ùÿt(ŒùÿÜ(˜Œùÿ)ùÿ4)˜ùÿ`)ŽùÿŒ)ȏùÿÈ)Hùÿô)Ȑùÿ *ø’ùÿp*¸”ùÿ *ˆ•ùÿÄ*˜•ùÿØ*è–ùÿ8+h˜ùÿ¨+(ùÿì+¸ùÿ,h¤ùÿX,h¥ùÿè,H¦ùÿ-˜§ùÿP-ةùÿÀ-Ȫùÿì-¸«ùÿ.x®ùÿˆ.H³ùÿÔ.¸µùÿ/¸»ùÿd/(¼ùÿ€/è¼ùÿ¤/è½ùÿÈ/è¾ùÿô/ÂùÿD0ÈÂùÿd0ÈùÿÀ0(Ïùÿ1˜ÐùÿP1(Òùÿ„18Òùÿ˜1ØÓùÿÌ1èÓùÿà1¨×ùÿ02˜Ùùÿp2xÚùÿ¼2ˆÜùÿ3ðùÿˆ3öùÿ¬4øùÿô4øùÿ5øùùÿP5úùÿd5˜úÿÌ5úÿ6¸úÿÐ6h$úÿ7Ø-úÿÀ7ø5úÿL8>úÿØ88Húÿ€9Púÿì9HPúÿ:YúÿÈ:eúÿì;Ø|úÿÀ<¨”úÿ=˜²úÿì=HÑúÿ\>(ãúÿÜ>8ûÿL?ø*ûÿ¬?hNûÿ¬@X‰ûÿ@A¸ûÿœAHËûÿÈBhÎûÿ,Ch)üÿœCØ:ýÿüCX?ýÿÐDˆ?ýÿèD˜?ýÿüDØ?ýÿ,E(@ýÿ\EHAýÿ¨EˆAýÿØEÈBýÿ0FCýÿ`FhCýÿFèCýÿÀFˆEýÿGÈEýÿ<G˜Gýÿ€GØGýÿ°GhJýÿìG(Mýÿ(HHMýÿ@HhMýÿXHxMýÿlHˆMýÿ€HOýÿ´H8OýÿÌHXOýÿäHˆOýÿüH¨OýÿIÈOýÿ,I¸PýÿXIØPýÿpI8QýÿIhQýÿ°I˜QýÿÈIØQýÿàIRýÿøI¨Rýÿ$JSýÿDJhSýÿdJˆSýÿ|JèSýÿ˜J¨Týÿ¼JxWýÿK¨Wýÿ KhbýÿhKˆdýÿ¤K8eýÿÈKhfýÿLÈfýÿ(L¸gýÿLLhjýÿ„Lxkýÿ¨LØkýÿÀL8lýÿØLXlýÿìL¨mýÿM¸nýÿ4MhoýÿhMÈpýÿ´MˆqýÿNsýÿ|N˜týÿøNètýÿ$O¨wýÿˆO(yýÿP8{ýÿxP˜}ýÿÜP~ýÿQÈ~ýÿ€QýÿèQ˜‚ýÿHR‡ýÿ˜RzRx$x§øÿ€FJw€?;*3$"D°ëøÿX¬ëøÿ
l¨ëøÿ€´ëøÿ픐ìøÿXD{
A4°ÔìøÿEBŒD†D ƒd
GBIAABèììøÿ
üèìøÿHDi
Cíøÿ,(íøÿ
@$íøÿT0íøÿohŒíøÿx4|øîøÿC\ŒA†A ƒGABHÃÆÌF ƒ†Œ4´ðøÿÊA†DƒD }
CAFI
CACHì¨ðøÿ™BEŽB B(ŒA0†A8ƒDPN
8A0A(B BBBG8üðøÿ;lNP$ñøÿ7Aƒb
M4lHñøÿwA†DƒD K
CAHI
CAC¤ñøÿgAƒ
PÀäñøÿ‘DX
LdàdòøÿhFa<ø¼òøÿiA†KƒD0d
AAJV
AAHDCA$8ܯøÿQA†DƒA HAA\`°øÿÍ	AƒYQ E(F0F8A@AHAPAXA`NÿQ B(F0F8A@AHAPAXA`NL Àdòøÿ”AƒG0ó
AD4äàóøÿdA†GƒD0h
AAJV
AAHôøÿ0ôøÿP(ƒg„LHõøÿGBBŽE E(ŒA0†A8ƒDp`xL€dxApI
8A0A(B BBBHT
8A0A(B BBBBN8K0A(B BBB\Ôöøÿ¹BEŽE B(ŒD0†A8ƒD`W
8A0A(B BBBHn8A0A(B BBB`4pöøÿGBBŽE E(ŒD0†A8ƒD`š
8C0A(B BBBCK
8F0A(B BBBF˜š·øÿAT
EA ¸<÷øÿéAƒG0‹
ADDÜøøÿ´BBŽF B(ŒA0†A8ƒD`—8A0A(B BBB4$€øøÿ[BBŒA †A(ƒH0F(A ABB$\ò¶øÿcA†IƒC SAAH„-·øÿRBBŽB B(ŒD0†A8ƒD`68A0A(B BBBPÐ3ºøÿëBŽEH ŒD(†D0ƒG€xˆHfˆA€Z0D(A BBBD$ʺøÿÿBEŽE L(ŒD0†A8ƒB@Ó8C0A(B BBBDl»øÿÿBEŽE L(ŒD0†A8ƒB@Ó8C0A(B BBB\´P÷øÿBŽBE ŒD(†A0ƒO
(D BBBII
(D BBBE{(A EBB4øøÿeBŒD†D ƒE
GBHAAB4L8øøÿ5BŒD†D ƒY
GBDAAB4„@øøÿQA†DƒD ^
CAEM
CAG(¼høøÿMA†GƒD X
DAG8èŒøøÿABŽEE ŒA(†A0ƒe(C BBB$	 øøÿ.Aƒ\
CID	°øøÿADR
J(`	äøøÿPA†DƒD Q
DAAŒŒ	ùøÿ×BBŽE E(ŒA0†C8ƒFp¢
8A0A(B BBBDL
8A0A(B BBBBëxT€AˆBB˜A A¨A°A¸AÀIpP
XýøÿhBŒA†A ƒD0—
 AABEv
 AABFe
 CABEHp
tþøÿªBBŽB B(ŒA0†A8ƒDPY
8D0A(B BBBDD¼
ØÿøÿBŒH†D ƒS
ABDL
ABI@
ABE°ùÿID R
J äùÿID R
JL<ùÿúBBŒA †A(ƒG@“
(A ABBJŠ
(C ABBF8ŒÈùÿ.BBŒA †A(ƒI@Í
(A ABBFHȼùÿŒBBŽE G(ŒA0†A8ƒIP"
8D0A(B BBBF	ùÿ„Dj
B40t	ùÿŒA†DƒG u
AAEq
CAChÌ	ùÿAD O
E@„
ùÿ²A†DƒD0n
AAGV
AAHg
CAEÈ|
ùÿ@Üx
ùÿ²A†DƒD0n
AAGV
AAHg
CAEH 
ô
ùÿÄBBŽB J(ŒA0†A8ƒD@z
8D0A(B BBBC4l
xùÿ¿A†DƒD0I
AADz
CAJ0¤
ùÿ²AƒD r
AHV
AIg
CF`Ø
ŒùÿFBBŒA †D(ƒD0:
(D ABBHl
(D ABBCÌ
(D ABBKP<xùÿüBŒA†A ƒD0N
 CABDL
 CABFo
 CABC4$ùÿGBŒD†D ƒQ
ABBYGBÈ<ùÿ—tb”àÄùÿ§QBŽB B(ŒA0†A8ƒG`°ÃÆÌÍÎÏH`ƒ†ŒŽ@
8A0A(B BBBFT
8F0A(B BBBE\
8F0A(B BBBA|xÜùÿ›BBŽE B(ŒA0†K8ƒK`%
8A0A(B BBBG‡
8A0A(B BBBG|
8A0A(B BBBJ øüùÿ|Aƒ~
Ae
KdXùÿBEŽE B(ŒA0†D8ƒH€g
8A0A(B BBBDa
8F0A(B BBBA¨„ ùÿVBBŽB B(ŒD0†D8ƒDpXxZ€BˆFF˜B F¨A°B¸FÀJpi
8A0A(B BBBAjxD€kxFp^
8A0A(B BBBF¥xW€_xApˆ0´"ùÿÏBŽBB ŒA(†D0ƒDPeXL``XFP^
0A(A BBBDNXe`BhApAxB€AˆDB˜F QPg
0A(A BBBJ ¼ø$ùÿqBŽBB ŒD(†A0ƒD`th_pBxA€AˆBF˜A E¨A°Q`S
0A(A BBBGV
0A(A BBBJshLp`hF`\
0C(A BBBE˜`Ô'ùÿ[BBŽB B(ŒD0†D8ƒDp‚xH€YxFp^
8A0A(B BBBKSxZ€BˆFF˜B F¨A°B¸FÀJpe
8A0A(B BBBK¨ü˜*ùÿVBBŽB B(ŒD0†D8ƒDpXxZ€BˆFF˜B F¨A°B¸FÀJpi
8A0A(B BBBAjxD€kxFp^
8A0A(B BBBF¥xW€_xAp´¨L-ùÿÖBBŽB B(ŒD0†A8ƒGp\x`€BˆFA˜E F¨A°B¸FÀJpi
8A0A(B BBBFMxD€kxFp^
8A0A(B BBBF¯xW€_xApNxV€`xGp”`t0ùÿÏBBŽB B(ŒD0†D8ƒD`JhepBxA€AˆBA˜D B¨F°Q`k
8A0A(B BBBA@hHpYhF`^
8A0A(B BBBD¨ø¬2ùÿVBBŽB B(ŒD0†D8ƒDpXxZ€BˆFF˜B F¨A°B¸FÀJpi
8A0A(B BBBAjxD€kxFp^
8A0A(B BBBF¥xW€_xApˆ¤`5ùÿ6BŽBB ŒA(†D0ƒDPeXH`YXFP^
0A(A BBBGOXe`BhApBxB€AˆBB˜A JPa
0A(A BBBD”07ùÿÏBBŽB B(ŒD0†D8ƒD`JhepBxA€AˆBA˜D B¨F°Q`k
8A0A(B BBBA@hHpYhF`^
8A0A(B BBBD¨ÈL9ùÿVBBŽB B(ŒD0†D8ƒDpXxZ€BˆFF˜B F¨A°B¸FÀJpi
8A0A(B BBBAjxD€kxFp^
8A0A(B BBBF¥xW€_xAp”t<ùÿÏBBŽB B(ŒD0†D8ƒD`JhepBxA€AˆBA˜D B¨F°Q`k
8A0A(B BBBA@hHpYhF`^
8A0A(B BBBD”8>ùÿÏBBŽB B(ŒD0†D8ƒD`JhepBxA€AˆBA˜D B¨F°Q`k
8A0A(B BBBA@hHpYhF`^
8A0A(B BBBD”¤p@ùÿÏBBŽB B(ŒD0†D8ƒD`JhepBxA€AˆBA˜D B¨F°Q`k
8A0A(B BBBA@hHpYhF`^
8A0A(B BBBD <¨BùÿqBŽBB ŒD(†A0ƒD`th_pBxF€AˆBF˜A E¨F°Q`U
0A(A BBBCV
0A(A BBBBshLp`hF`\
0C(A BBBE à„EùÿqBŽBB ŒD(†A0ƒD`th_pBxF€AˆBF˜A E¨F°Q`U
0A(A BBBCV
0A(A BBBBshLp`hF`\
0C(A BBBE „`HùÿqBŽBB ŒD(†A0ƒD`th_pBxF€AˆBF˜A E¨F°Q`U
0A(A BBBCV
0A(A BBBBshLp`hF`\
0C(A BBBE (<KùÿqBŽBB ŒD(†A0ƒD`th_pBxF€AˆBF˜A E¨F°Q`U
0A(A BBBCV
0A(A BBBBshLp`hF`\
0C(A BBBEˆÌNùÿÏBŽBB ŒA(†D0ƒDPeXL``XFP^
0A(A BBBDNXe`BhApAxB€AˆDB˜F QPg
0A(A BBBJ¨X\PùÿVBBŽB B(ŒD0†D8ƒDpXxZ€BˆFF˜B F¨A°B¸FÀJpi
8A0A(B BBBAjxD€kxFp^
8A0A(B BBBF¥xW€_xAp˜SùÿPBŽBE ŒD(†D0ƒD`\hDpkhF`^
0A(A BBBDYhZpFxF€BˆFA˜E F¨A°Q`k
0A(A BBBH•hWp_hA`| ÄUùÿ¯BBŒD †D(ƒDPeXL``XFP^
(A ABBESXa`AhApBxA€HˆEF˜A JPe
(A ABBFˆ ôWùÿ¹BŽBE ŒD(†D0ƒDPkXH`YXFP^
0A(A BBBCTXa`AhApBxA€DˆBF˜A QPe
0A(A BBBKˆ¬(Zùÿ¹BŽBE ŒD(†D0ƒDPkXH`YXFP^
0A(A BBBCTXa`AhApBxA€DˆBF˜A QPe
0A(A BBBKˆ8\\ùÿ¹BŽBE ŒD(†D0ƒDPkXH`YXFP^
0A(A BBBCTXa`AhApBxA€DˆBF˜A QPe
0A(A BBBKLĐ^ùÿWBŽBB ŒA(†D0ƒG@x
0A(A BBBFtHWP_HF@p  _ùÿ%BBŒA †A(ƒG0`
(D ABBJm
(D ABBJD
(A ABBFU
(A ABBEdˆ \`ùÿ4BŽBB ŒA(†D0ƒGPà
0A(A BBBFd
0A(A BBBDDXW`_XFP(ð 4cùÿwA†CƒD L
CAH(!ˆcùÿwA†CƒD L
CAH(H!ÜcùÿwA†CƒD L
CAH(t!0dùÿwA†CƒD L
CAH8 !„dùÿ¢BBŒA †A(ƒD@æ
(A ABBJ(Ü!øeùÿwA†CƒD L
CAH("LfùÿwA†CƒD L
CAHL4" fùÿ.BBŒA †A(ƒD@¿
(A ABBA±
(F ABBD,„"€hùÿ²BŒA†A ƒµ
ABD ´"jùÿÍAƒG°ÃAØ"¼jùÿ
\ì"¸jùÿKBBŒI †A(ƒD@q
(A ABBG
(C ABBIv
(A ABBDlL#¨kùÿ{BŽBH ŒD(†A0ƒF@}
0A(A BBBD
0C(A BBBGv
0A(A BBBB@¼#¸lùÿºBŒA†D ƒG`v
 AABHf
 AABF$4qùÿ‰D W
EL$¨qùÿ­BBŽB B(ŒA0†A8ƒGðK
8D0A(B BBBGŒl$xùÿùA†DƒG0A8F@FHFPFXF`FhFpFxF€CˆCC˜C C¨C°C¸CÀCÈCÐCØCàCèCðCøB€L0I
AAG,ü$xxùÿ×BŒA†A ƒn
CBI4,%(yùÿFA†AƒG@¸
AAEQ
AAEld%@zùÿ6BŽBB ŒD(†A0ƒD@æ
0A(A BBBCP
0C(A BBBFf
0A(A BBBB(Ô%|ùÿèAƒG l
AKV
AI(&Ô|ùÿèAƒG l
AKV
AIl,&˜}ùÿ¸BŽBE ŒA(†A0ƒD@
0A(A BBBE‚
0A(A BBBFe
0C(A BBBAHœ&èùÿÊBBŽB J(ŒA0†A8ƒDP>
8D0A(B BBBG<è&l„ùÿcBŽBB ŒD(†D0ƒ$
(F BBBBL('œ†ùÿûBDŽB B(ŒD0†A8ƒI€–
8D0A(B BBBEx'LŒùÿaDZ
B ”' Œùÿ¼YƒG g
AA ¸'<ùÿüAƒG ^
AI(Ü'ŽùÿúAƒG h
DLa
AFL(ìŽùÿ'BŽBB ŒA(†A0ƒ[
(A BBBFp
(C BBBGX(̑ùÿ¢Du
Gs
EXx(\’ùÿABBŒA †A(ƒDPOXH`YXFP^
(D ABBIi
(D ABBFHÔ(P—ùÿBBŽB B(ŒA0†D8ƒG`å
8D0A(B BBBJ@ )žùÿiA†DƒG x
DAGL
DAGj
DAI0d)@ŸùÿAƒJÀ5
AGR
AEnA˜)œ ùÿ0¬)˜ ùÿ AƒJÀE
AGR
AEnAà)¢ùÿLô)¢ùÿ»BBŽE B(ŒD0†G8ƒGà_
8A0A(B BBBJ<D*p¥ùÿîBŽBB ŒD(†A0ƒN
(F BBBKH„* §ùÿÞBŽBB ŒA(†A0ƒ»
(C BBBDA(F BBBDÐ*´§ùÿA†AƒN€³
AAKY
AAE»
CAA€+|©ùÿqBEŽB B(ŒA0†A8ƒM 
8A0A(B BBBAe¨A°f¨A o¨E°W¨A _¨A°u¨B  œ+x¼ùÿBDŽJ B(ŒD0†A8ƒJÀ~
8A0A(B BBBGóÈMÐGØGàGèGðGøG€GˆGG˜G G¨G°G¸GÀGÈGÐGØGàGèGðGøG€GˆGH˜H H¨H°H¸HÀHÈHÐHØHàEèEðEøE€EˆEE˜E E¨E°E¸EÀEÈEÐEØDàSÀDÀ,dÁùÿéA†HƒJ†˜H K˜A
AAAdCA-ÃùÿD-ÃùÿÑA†HƒJÀ†ÈKÐKÈAÀò
AADdCAd- Äùÿdx-œÄùÿŽBBŽB B(ŒA0†D8ƒDPƒ
8A0A(B BBBBH
8C0A(B BBBDHà-ÄËùÿs
BBŽB B(ŒD0†A8ƒDpB
8D0A(B BBBH´,.øÕùÿ BBŽB B(ŒA0†A8ƒDœ˜o B¨A°F¸BÀAÈBÐBØAàR?˜L `˜F^
8D0A(B BBBHŠ˜F S¨A°F¸BÀAÈBÐBØAàUHä.àæùÿªBBŽB B(ŒD0†A8ƒDPj
8C0A(B BBBI 0/Díùÿd	BEŽB E(ŒA0†A8ƒDpÙ
8A0A(B BBBI¼
8A0A(B BBBJsxL€`xFp\
8C0A(B BBBCi
8C0A(B BBBKˆÔ/öùÿBBŽB B(ŒA0†A8ƒDp«
8A0A(B BBBE{xL€`xFp\
8C0A(B BBBCs
8A0A(B BBBCˆ`0¤ýùÿBBŽB B(ŒA0†A8ƒDp«
8A0A(B BBBE{xL€`xFp\
8C0A(B BBBCs
8A0A(B BBBC¤ì08úÿ
BBŽB B(ŒA0†A8ƒGpF
8A0A(B BBBAÃ
8A0A(B BBBAtxV€_xFpw
8A0A(B BBBH©xW€_xApNxV€`xGph”1°úÿÍBBŽE E(ŒA0†A8ƒDp¥xE€kxFp;
8D0A(B BBBI4xW€_xAp2úÿ;DvÀ2<úÿ¸BEŽB B(ŒA0†A8ƒDp{xo€BˆAA˜B A¨D°B¸FÀOpb
8A0A(B BBBG‘
8A0A(B BBBE–xH€YxFp\
8C0A(B BBBKâxB€LxAp Ü28úÿ÷BBŽB B(ŒD0†D8ƒG€ˆGG˜G G¨G°G¸GÀGÈGÐDØDàDèDðDøD€DˆDD˜D D¨D°D¸DÀDÈCÐGØGàGèGðGøG€GˆGG˜G D¨D°D¸DÀDÈDÐDØDàDèDðDøD€DˆDD˜C L€W
8A0A(B BBBCÐ4)úÿËBBŽB B(ŒA0†A8ƒG<˜f B¨B°B¸BÀBÈBÐOO˜D k˜F^
8D0A(B BBBCa˜F S¨A°A¸BÀAÈBÐBØAàYõ
˜W _˜A×˜V `˜GTÔ4@úÿÌBBŽB B(ŒA0†D8ƒDppxH€YxFp^
8D0A(B BBBEÐ,5ˆWúÿèBBŽB B(ŒA0†A8ƒG l¨D°k¨F ^
8D0A(B BBBCU¨K°M¸EÀBÈFÐBØBàFèBðY B¨f°F¸BÀBÈFÐBØBàR ¨W°_¨A }¨V°`¨G l6¤túÿ­BBŽB E(ŒA0†A8ƒGÀéÈEÐkÈFÀa
8D0A(B BBBGÙÈVÐ`ÈGÀ|p6ä’úÿ×BBŽE B(ŒA0†D8ƒD ¸¨E°l¨F h
8D0A(B BBBH~¨W°_¨F U¨V°a¨G lð6D¤úÿ)BBŽB B(ŒD0†A8ƒGðiøD€køFða
8D0A(B BBBHøV€`øGð\`7äÌúÿ³BBŽB B(ŒA0†D8ƒGð±øH€YøFða
8D0A(B BBBFüÀ7Dëúÿj#BBŽB B(ŒD0†A8ƒDü˜Y Q˜Ba
8D0A(B BBBIјH Y˜FS˜Y Q˜Aa
˜Y T˜Aµ˜Y R˜D˜E R˜B2˜D Q˜A˜B T˜Az˜E R˜Bþ˜D Q˜AÀ8´
ûÿî:BBŽB E(ŒA0†A8ƒGÐ|ØDàlØFÐb
8D0A(B BBBK1ØHàwØBÐ
ØWà_ØFÐGØEànØBÐXT9Hûÿ¤.BBŽB E(ŒA0†D8ƒGÀkÈHÐYÈFÀb
8D0A(B BBBH(°9dvûÿ@BIŽE E(ŒA0†A8ƒGÐRØGàGèGðGøG€GˆGG˜G G¨G°G¸GÀGÈGÐGØGàGèGðGøG€GˆGG˜G SÐk
8D0A(B BBBFèØKàGèGðGøG€GˆGG˜G G¨G°G¸GÀGÈGÐGØGàGèGðGøG€GˆGG˜G SÐ`Ü:xˆûÿIŽBB ŒA(†A0ƒô
(A BBBFK
(A BBBFL
(A BBBEl@;4‹ûÿ÷ZBBŽE B(ŒA0†A8ƒGð²
8D0A(B BBBEeøD€løFðR*øW€_øAð\°;ÄåûÿlBBŽE B(ŒA0†A8ƒJÀ‹
8D0A(B BBBAõèÈHÐRÈAÀ„<Ôöüÿ{BEŽB B(ŒA0†D8ƒG€æˆJIˆA€D
8A0A(B BBBAƈIYˆF€\
8C0A(B BBBJH˜<T‡øÿ/'RŽON ŒA(†A0ƒG°(
0A(A BBBAä<€úüÿ%G]ü<˜úüÿ	,=”úüÿ9GŒE†D ƒ^ABGÃÆÌ,@=¤úüÿIGŒE†D ƒqABDÃÆÌHp=ÄúüÿBIŒH †H(ƒGP·
(E ABBEc(A AFB,¼=˜ûüÿ9GŒE†D ƒ_ABFÃÆÌTì=¨ûüÿ2BŽEI ŒH(†H0ƒD@¹
0D(A BBBHr0A(A FBB,D>üüÿ9GŒE†D ƒ_ABFÃÆÌ,t> üüÿQGŒE†D ƒ{ABBÃÆÌ,¤>ÐüüÿqGŒE†D ƒUABHÃÆÌHÔ> ýüÿœBBŽE I(ŒH0†K8ƒK`É
8E0A(B BBBI, ?tþüÿ9GŒE†D ƒ_ABFÃÆÌ@P?„þüÿÊBŽEI ŒH(†H0ƒD@Þ
0A(A BBBF,”?ýÿ9GŒE†D ƒ_ABFÃÆÌ8Ä? ýÿ]ƒG@y
ABx
AG(AGÃ[@ƒ8@týÿ¹[ƒG0™
ADt
AKCADÃ[0ƒ<@øýÿGJT@ýÿGJl@ýÿ€@ýÿ	0”@ýÿyr†AƒD@
EAHhÃÆÈ@Lýÿ(D cà@dýÿD Uø@lýÿ,D gA„ýÿD U(AŒýÿD U(@A”ýÿëAƒG0J
AMAlAXýÿDQ„A`ýÿSAƒG }A¤A ýÿ/AƒG ]AÄA°ýÿ'D bÜAÈýÿ>\ ]ôAðýÿ?D n(Býÿ‚AƒG R
AMXA8B|ýÿgAƒG UAXBÌýÿNAƒG DAxBüýÿDIB	ýÿ^D B
E ¬BH	ýÿ½AƒG0e
EADÐBä	ýÿÅA†DƒDpf
DADM
DAF!
DAAClýÿ&IƒXD4C€ýÿ»
BŽFJ ŒD(†A0ƒJ€Â
0A(A EBBB8|CøýÿBEŒD †D(ƒDpY
(A ABBF ¸CÜýÿ¥YƒiFÃPƒL<ÜChýÿ/AƒG0›
ADm
AJL
ACP
DEDXýÿWAƒG AA <D˜ýÿðIƒO0§
EA4`Ddýÿ§AƒGP 
AG^
AAL
AC ˜DÜýÿAƒG@à
AG¼DÈýÿWD RÔDýÿ`D VìDXýÿ EdýÿNAƒG0?F $E ýÿ
L@ƒ
Ir
E0HE|!ýÿ¡MŒG†G ƒT
ABFhÃÆÌH|Eø!ýÿZBBŽB B(ŒD0†A8ƒDP}
8D0A(B BBBEHÈE#ýÿ¶BBŽB B(ŒA0†A8ƒFPm
8C0A(B BBBGxF€#ýÿ‰BDŽB B(ŒA0†A8ƒDP
8A0A(B BBBDD
8D0F(B BBBJ^
8A0A(E BBBExF”$ýÿyBDŽB B(ŒA0†A8ƒDPï
8A0A(B BBBGD
8E0E(B BBBJ]
8A0A(E BBBF(G˜%ýÿGA†CƒD a
AAE`8G¼%ýÿ´jJŽB E(ŒA0†D8ƒDP
8A0A(B BBBCƒÃÆÌÍÎÏEPƒ†ŒŽˆœG(ýÿ|jEŽB E(ŒA0†C8ƒDPƒ8A0A(B BBBAÃÆÌÍÎÏDPƒ†ŒŽi
8A0A(B BBBEi8A0A(B BBB`(H)ýÿBBŽB B(ŒA0†C8ƒDPa
8A0A(B BBBEº8A0A(B BBB`ŒH¸*ýÿ[BBŽB E(ŒA0†A8ƒDP_
8A0A(B BBBFÛ
8A0A(B BBBK<ðH´,ýÿqGŽJE ŒD(†E0ƒB(A BBBHÃÆÌÍÎ`0Iô,ýÿ¯BEŽB B(ŒA0†D8ƒD`r
8A0A(B BBBAS8A0A(B BBBd”I@-ýÿGBBŽB B(ŒA0†A8ƒDe
8A0A(B BBBCŽ
8C0A(B BBBF\üI(/ýÿdEŽI E(ŒD0†A8ƒDç8A0A(B BBBGÃÆÌÍÎÏHƒ†ŒŽL\JH0ýÿfBBŽB B(ŒD0†H8ƒG 
8D0A(B BBBH¬Jh4ýÿ“` f àÿÈk(þ;
䓸k(Àk(õþÿoðЀ
Fp((˜ªx4 v	þÿÿo84ÿÿÿoðÿÿo2ùÿÿo¢Ðk(æ»ö»¼¼&¼6¼F¼V¼f¼v¼†¼–¼¦¼¶¼Ƽּæ¼ö¼½½&½6½F½V½f½v½†½–½¦½¶½ƽֽæ½ö½¾¾&¾6¾F¾V¾f¾v¾†¾–¾¦¾¶¾ƾ־æ¾ö¾¿¿&¿6¿F¿V¿f¿v¿†¿–¿¦¿¶¿ƿֿæ¿ö¿ÀÀ&À6ÀFÀVÀfÀvÀ†À–À¦À¶ÀÆÀÖÀæÀöÀÁÁ&Á6ÁFÁVÁfÁvÁ†Á–Á¦Á¶ÁÆÁÖÁæÁöÁÂÂ&Â6ÂFÂVÂfÂvÂ†Â–Â¦Â¶ÂÆÂÖÂæÂöÂÃÃ&Ã6ÃFÃVÃfÃvÃ†Ã–Ã¦Ã¶ÃÆÃÖÃæÃöÃÄÄ&Ä6ÄFÄVÄfÄvĆĖĦĶįÄÖÄæÄöÄÅÅ&Å6ÅFÅVÅfÅvņŖŦŶůÅÖÅæÅöÅÆÆ&Æ6ÆFÆVÆfÆvÆ†Æ–Æ¦Æ¶ÆÆÆÖÆæÆöÆÇÇ&Ç6ÇFÇConstruct a new Generator with the default BitGenerator (PCG64).

    Parameters
    ----------
    seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
        A seed to initialize the `BitGenerator`. If None, then fresh,
        unpredictable entropy will be pulled from the OS. If an ``int`` or
        ``array_like[ints]`` is passed, then it will be passed to
        `SeedSequence` to derive the initial `BitGenerator` state. One may also
        pass in a`SeedSequence` instance
        Additionally, when passed a `BitGenerator`, it will be wrapped by
        `Generator`. If passed a `Generator`, it will be returned unaltered.

    Returns
    -------
    Generator
        The initialized generator object.

    Notes
    -----
    If ``seed`` is not a `BitGenerator` or a `Generator`, a new `BitGenerator`
    is instantiated. This function does not manage a default global instance.
    
        permutation(x, axis=0)

        Randomly permute a sequence, or return a permuted range.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.
        axis : int, optional
            The axis which `x` is shuffled along. Default is 0.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> rng.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        >>> rng.permutation("abc")
        Traceback (most recent call last):
            ...
        numpy.AxisError: axis 0 is out of bounds for array of dimension 0

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.permutation(arr, axis=1)
        array([[0, 2, 1], # random
               [3, 5, 4],
               [6, 8, 7]])

        
        shuffle(x, axis=0)

        Modify a sequence in-place by shuffling its contents.

        The order of sub-arrays is changed but their contents remains the same.

        Parameters
        ----------
        x : array_like
            The array or list to be shuffled.
        axis : int, optional
            The axis which `x` is shuffled along. Default is 0.
            It is only supported on `ndarray` objects.

        Returns
        -------
        None

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> arr = np.arange(10)
        >>> rng.shuffle(arr)
        >>> arr
        [1 7 5 2 9 4 3 6 0 8] # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.shuffle(arr, axis=1)
        >>> arr
        array([[2, 0, 1], # random
               [5, 3, 4],
               [8, 6, 7]])
        
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        -------
        ValueError
            If any value in ``alpha`` is less than or equal to zero

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               http://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.default_rng().dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        
        multivariate_hypergeometric(colors, nsample, size=None,
                                    method='marginals')

        Generate variates from a multivariate hypergeometric distribution.

        The multivariate hypergeometric distribution is a generalization
        of the hypergeometric distribution.

        Choose ``nsample`` items at random without replacement from a
        collection with ``N`` distinct types.  ``N`` is the length of
        ``colors``, and the values in ``colors`` are the number of occurrences
        of that type in the collection.  The total number of items in the
        collection is ``sum(colors)``.  Each random variate generated by this
        function is a vector of length ``N`` holding the counts of the
        different types that occurred in the ``nsample`` items.

        The name ``colors`` comes from a common description of the
        distribution: it is the probability distribution of the number of
        marbles of each color selected without replacement from an urn
        containing marbles of different colors; ``colors[i]`` is the number
        of marbles in the urn with color ``i``.

        Parameters
        ----------
        colors : sequence of integers
            The number of each type of item in the collection from which
            a sample is drawn.  The values in ``colors`` must be nonnegative.
            To avoid loss of precision in the algorithm, ``sum(colors)``
            must be less than ``10**9`` when `method` is "marginals".
        nsample : int
            The number of items selected.  ``nsample`` must not be greater
            than ``sum(colors)``.
        size : int or tuple of ints, optional
            The number of variates to generate, either an integer or a tuple
            holding the shape of the array of variates.  If the given size is,
            e.g., ``(k, m)``, then ``k * m`` variates are drawn, where one
            variate is a vector of length ``len(colors)``, and the return value
            has shape ``(k, m, len(colors))``.  If `size` is an integer, the
            output has shape ``(size, len(colors))``.  Default is None, in
            which case a single variate is returned as an array with shape
            ``(len(colors),)``.
        method : string, optional
            Specify the algorithm that is used to generate the variates.
            Must be 'count' or 'marginals' (the default).  See the Notes
            for a description of the methods.

        Returns
        -------
        variates : ndarray
            Array of variates drawn from the multivariate hypergeometric
            distribution.

        See Also
        --------
        hypergeometric : Draw samples from the (univariate) hypergeometric
            distribution.

        Notes
        -----
        The two methods do not return the same sequence of variates.

        The "count" algorithm is roughly equivalent to the following numpy
        code::

            choices = np.repeat(np.arange(len(colors)), colors)
            selection = np.random.choice(choices, nsample, replace=False)
            variate = np.bincount(selection, minlength=len(colors))

        The "count" algorithm uses a temporary array of integers with length
        ``sum(colors)``.

        The "marginals" algorithm generates a variate by using repeated
        calls to the univariate hypergeometric sampler.  It is roughly
        equivalent to::

            variate = np.zeros(len(colors), dtype=np.int64)
            # `remaining` is the cumulative sum of `colors` from the last
            # element to the first; e.g. if `colors` is [3, 1, 5], then
            # `remaining` is [9, 6, 5].
            remaining = np.cumsum(colors[::-1])[::-1]
            for i in range(len(colors)-1):
                if nsample < 1:
                    break
                variate[i] = hypergeometric(colors[i], remaining[i+1],
                                           nsample)
                nsample -= variate[i]
            variate[-1] = nsample

        The default method is "marginals".  For some cases (e.g. when
        `colors` contains relatively small integers), the "count" method
        can be significantly faster than the "marginals" method.  If
        performance of the algorithm is important, test the two methods
        with typical inputs to decide which works best.

        .. versionadded:: 1.18.0

        Examples
        --------
        >>> colors = [16, 8, 4]
        >>> seed = 4861946401452
        >>> gen = np.random.Generator(np.random.PCG64(seed))
        >>> gen.multivariate_hypergeometric(colors, 6)
        array([5, 0, 1])
        >>> gen.multivariate_hypergeometric(colors, 6, size=3)
        array([[5, 0, 1],
               [2, 2, 2],
               [3, 3, 0]])
        >>> gen.multivariate_hypergeometric(colors, 6, size=(2, 2))
        array([[[3, 2, 1],
                [3, 2, 1]],
               [[4, 1, 1],
                [3, 2, 1]]])
        
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        Parameters
        ----------
        n : int or array-like of ints
            Number of experiments.
        pvals : sequence of floats, length p
            Probabilities of each of the ``p`` different outcomes.  These
            must sum to 1 (however, the last element is always assumed to
            account for the remaining probability, as long as
            ``sum(pvals[:-1]) <= 1)``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        Examples
        --------
        Throw a dice 20 times:

        >>> rng = np.random.default_rng()
        >>> rng.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]])  # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> rng.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3],
               [2, 4, 3, 4, 0, 7]])  # random

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        Now, do one experiment throwing the dice 10 time, and 10 times again,
        and another throwing the dice 20 times, and 20 times again:

        >>> rng.multinomial([[10], [20]], [1/6.]*6, size=(2, 2))
        array([[[2, 4, 0, 1, 2, 1],
                [1, 3, 0, 3, 1, 2]],
               [[1, 4, 4, 4, 4, 3],
                [3, 3, 2, 5, 5, 2]]])  # random

        The first array shows the outcomes of throwing the dice 10 times, and
        the second shows the outcomes from throwing the dice 20 times.

        A loaded die is more likely to land on number 6:

        >>> rng.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26])  # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> rng.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62])  # random

        not like:

        >>> rng.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

        
        multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (standard deviation, or "width,"
        squared) of the one-dimensional normal distribution.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.
        method : { 'svd', 'eigh', 'cholesky'}, optional
            The cov input is used to compute a factor matrix A such that
            ``A @ A.T = cov``. This argument is used to select the method
            used to compute the factor matrix A. The default method 'svd' is
            the slowest, while 'cholesky' is the fastest but less robust than
            the slowest method. The method `eigh` uses eigen decomposition to
            compute A and is faster than svd but slower than cholesky.

            .. versionadded:: 1.18.0

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

          - Spherical covariance (`cov` is a multiple of the identity matrix)
          - Diagonal covariance (`cov` has non-negative elements, and only on
            the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.default_rng().multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> rng = np.random.default_rng()
        >>> x = rng.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        We can use a different method other than the default to factorize cov:
        >>> y = rng.multivariate_normal(mean, cov, (3, 3), method='cholesky')
        >>> y.shape
        (3, 3, 2)

        The following is probably true, given that 0.6 is roughly twice the
        standard deviation:

        >>> list((x[0,0,:] - mean) < 0.6)
        [True, True] # random

        
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 < ``p`` < 1.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range (0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability mass function for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.default_rng().logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a) * count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative and
            less than 10**9.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative and
            less than 10**9.
        nsample : int or array_like of ints
            Number of items sampled.  Must be nonnegative and less than
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        multivariate_hypergeometric : Draw samples from the multivariate
            hypergeometric distribution.
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        The arguments `ngood` and `nbad` each must be less than `10**9`. For
        extremely large arguments, the algorithm that is used to compute the
        samples [4]_ breaks down because of loss of precision in floating point
        calculations.  For such large values, if `nsample` is not also large,
        the distribution can be approximated with the binomial distribution,
        `binomial(n=nsample, p=ngood/(ngood + nbad))`.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution
        .. [4] Stadlober, Ernst, "The ratio of uniforms approach for generating
               discrete random variates", Journal of Computational and Applied
               Mathematics, 31, pp. 181-189 (1990).

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = rng.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = rng.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.default_rng().geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 #random

        
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        continuous probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Zipf distribution is

        .. math:: p(x) = \frac{x^{-a}}{\zeta(a)},

        where :math:`\zeta` is the Riemann Zeta function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 2. # parameter
        >>> s = np.random.default_rng().zipf(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy import special  # doctest: +SKIP

        Truncate s values at 50 so plot is interesting:

        >>> count, bins, ignored = plt.hist(s[s<50],
        ...         50, density=True)
        >>> x = np.arange(1., 50.)
        >>> y = x**(-a) / special.zetac(a)  # doctest: +SKIP
        >>> plt.plot(x, y/max(y), linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        Parameters
        ----------
        lam : float or array_like of floats
            Expectation of interval, must be >= 0. A sequence of expectation
            intervals must be broadcastable over the requested size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        Notes
        -----
        The Poisson distribution

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> rng = np.random.default_rng()
        >>> s = rng.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = rng.poisson(lam=(100., 500.), size=(100, 2))

        
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval (0, 1].

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution. Must satisfy 0 < p <= 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.default_rng().negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = rng.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(rng.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 38%.

        
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.default_rng().triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.default_rng().wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> rng = np.random.default_rng()
        >>> values = hist(rng.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = rng.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = rng.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> rng = rng
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + rng.standard_normal(100)
        ...    b.append(np.product(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.default_rng().logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

        
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = rng.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = rng.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.default_rng().laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a < 1.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = rng.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats  # doctest: +SKIP
        >>> rvs = rng.power(5, 1000000)
        >>> rvsp = rng.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + Generator.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> a = 5. # shape
        >>> s = rng.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(rng.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.


        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.default_rng().pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and dispersion (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Dispersion of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the dispersion,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and dispersion
        >>> s = np.random.default_rng().vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ?

        We have 10 degrees of freedom, so is the sample mean within 95% of the
        recommended value?

        >>> s = np.random.default_rng().standard_t(10, size=100000)
        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727

        Calculate the t statistic, setting the ddof parameter to the unbiased
        value so the divisor in the standard deviation will be degrees of
        freedom, N-1.

        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(s, bins=100, density=True)

        For a one-sided t-test, how far out in the distribution does the t
        statistic appear?

        >>> np.sum(s<t) / float(len(s))
        0.0090699999999999999  #random

        So the p-value is about 0.009, which says the null hypothesis has a
        probability of about 99% of being true.

        
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              http://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.default_rng().standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.

            .. versionchanged:: 1.10.0
               Earlier NumPy versions required dfnum > 1.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> rng = np.random.default_rng()
        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(rng.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(rng.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.default_rng().chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random

        
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.

            .. versionchanged:: 1.14.0
               Earlier NumPy versions required dfnum > 1.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> rng = np.random.default_rng()
        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = rng.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = rng.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.default_rng().f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.default_rng().gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        standard_gamma(shape, size=None, dtype=np.float64, out=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is
            not None, it must have the same shape as the provided size and
            must match the type of the output values.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.default_rng().standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        :meth:`normal` is more likely to return samples lying close to the
        mean, rather than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.default_rng().normal(mu, sigma, 1000)

        Verify the mean and the variance:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.1  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from N(3, 6.25):

        >>> np.random.default_rng().normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        standard_normal(size=None, dtype=np.float64, out=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.

        Notes
        -----
        For random samples from :math:`N(\mu, \sigma^2)`, use one of::

            mu + sigma * gen.standard_normal(size=...)
            gen.normal(mu, sigma, size=...)

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.standard_normal()
        2.1923875335537315 #random

        >>> s = rng.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = rng.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from :math:`N(3, 6.25)`:

        >>> 3 + 2.5 * rng.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than high.  The default value is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        integers : Discrete uniform distribution, yielding integers.
        random : Floats uniformly distributed over ``[0, 1)``.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.
        If ``high`` < ``low``, the results are officially undefined
        and may eventually raise an error, i.e. do not rely on this
        function to behave when passed arguments satisfying that
        inequality condition.

        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.default_rng().uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        
        choice(a, size=None, replace=True, p=None, axis=0, shuffle=True)

        Generates a random sample from a given 1-D array

        Parameters
        ----------
        a : {array_like, int}
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated from np.arange(a).
        size : {int, tuple[int]}, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn from the 1-d `a`. If `a` has more
            than one dimension, the `size` shape will be inserted into the
            `axis` dimension, so the output ``ndim`` will be ``a.ndim - 1 +
            len(size)``. Default is None, in which case a single value is
            returned.
        replace : bool, optional
            Whether the sample is with or without replacement
        p : 1-D array_like, optional
            The probabilities associated with each entry in a.
            If not given the sample assumes a uniform distribution over all
            entries in a.
        axis : int, optional
            The axis along which the selection is performed. The default, 0,
            selects by row.
        shuffle : bool, optional
            Whether the sample is shuffled when sampling without replacement.
            Default is True, False provides a speedup.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if p is not 1-dimensional, if
            a is array-like with a size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size.

        See Also
        --------
        integers, shuffle, permutation

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> rng = np.random.default_rng()
        >>> rng.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to rng.integers(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> rng.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> rng.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to rng.permutation(np.arange(5))[:3]

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> rng.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        
        bytes(length)

        Return random bytes.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : str
            String of length `length`.

        Examples
        --------
        >>> np.random.default_rng().bytes(10)
        ' eh\x85\x022SZ\xbf\xa4' #random

        
        integers(low, high=None, size=None, dtype=np.int64, endpoint=False)

        Return random integers from `low` (inclusive) to `high` (exclusive), or
        if endpoint=True, `low` (inclusive) to `high` (inclusive). Replaces
        `RandomState.randint` (with endpoint=False) and
        `RandomState.random_integers` (with endpoint=True)

        Return random integers from the "discrete uniform" distribution of
        the specified dtype. If `high` is None (the default), then results are
        from 0 to `low`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is 0 and this value is
            used for `high`).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is np.int64.
        endpoint : bool, optional
            If true, sample from the interval [low, high] instead of the
            default [low, high)
            Defaults to False

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        Notes
        -----
        When using broadcasting with uint64 dtypes, the maximum value (2**64)
        cannot be represented as a standard integer type. The high array (or
        low if high is None) must have object dtype, e.g., array([2**64]).

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.integers(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])  # random
        >>> rng.integers(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> rng.integers(5, size=(2, 4))
        array([[4, 0, 2, 1],
               [3, 2, 2, 0]])  # random

        Generate a 1 x 3 array with 3 different upper bounds

        >>> rng.integers(1, [3, 5, 10])
        array([2, 2, 9])  # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> rng.integers([1, 5, 7], 10)
        array([9, 8, 7])  # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7],
               [ 1, 16,  9, 12]], dtype=uint8)  # random

        References
        ----------
        .. [1] Daniel Lemire., "Fast Random Integer Generation in an Interval",
               ACM Transactions on Modeling and Computer Simulation 29 (1), 2019,
               http://arxiv.org/abs/1805.10941.

        
        standard_exponential(size=None, dtype=np.float64, method='zig', out=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        method : str, optional
            Either 'inv' or 'zig'. 'inv' uses the default inverse CDF method.
            'zig' uses the much faster Ziggurat method of Marsaglia and Tsang.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.default_rng().standard_exponential((3, 8000))

        
        exponential(scale=1.0, size=None)

        Draw samples from an exponential distribution.

        Its probability density function is

        .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),

        for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter,
        which is the inverse of the rate parameter :math:`\lambda = 1/\beta`.
        The rate parameter is an alternative, widely used parameterization
        of the exponential distribution [3]_.

        The exponential distribution is a continuous analogue of the
        geometric distribution.  It describes many common situations, such as
        the size of raindrops measured over many rainstorms [1]_, or the time
        between page requests to Wikipedia [2]_.

        Parameters
        ----------
        scale : float or array_like of floats
            The scale parameter, :math:`\beta = 1/\lambda`. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized exponential distribution.

        References
        ----------
        .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and
               Random Signal Principles", 4th ed, 2001, p. 57.
        .. [2] Wikipedia, "Poisson process",
               https://en.wikipedia.org/wiki/Poisson_process
        .. [3] Wikipedia, "Exponential distribution",
               https://en.wikipedia.org/wiki/Exponential_distribution

        
        beta(a, b, size=None)

        Draw samples from a Beta distribution.

        The Beta distribution is a special case of the Dirichlet distribution,
        and is related to the Gamma distribution.  It has the probability
        distribution function

        .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1}
                                                         (1 - x)^{\beta - 1},

        where the normalization, B, is the beta function,

        .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1}
                                     (1 - t)^{\beta - 1} dt.

        It is often seen in Bayesian inference and order statistics.

        Parameters
        ----------
        a : float or array_like of floats
            Alpha, positive (>0).
        b : float or array_like of floats
            Beta, positive (>0).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` and ``b`` are both scalars.
            Otherwise, ``np.broadcast(a, b).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized beta distribution.

        
        random(size=None, dtype=np.float64, out=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` multiply
        the output of `random` by `(b-a)` and add `a`::

          (b - a) * random() + a

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.random()
        0.47108547995356098 # random
        >>> type(rng.random())
        <class 'float'>
        >>> rng.random((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * rng.random((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        `¯*8µ*0±*@·*˜¶*`¯*ȯ*`¯*`¯*8µ*˜²*0±*ð²*8´*`¯*8µ*µ*@·*`¯*°*(±* ¶*ˆ¯*ð²*8´*`¯*`¯*8µ*0±*0³*ȯ*`¯*˜¯*`¯*8µ*0±*˜¯*ȯ*`¯*hµ*xµ*`¯*hµ*xµ*ر*`¯*ˆµ*`¯*ˆµ*ر*`¯*`¯*ˆµ*`¯*p²*€³*`¯*@·*`¯*@·*`¯*@·*`¯*0³*ȯ*`¯*0³*ȯ*`¯*0³*ȯ*`¯*2*p¯*`¯*ȯ*`¯*2*ȯ*`¯*X³*€²*è¯*`¯*H²*(±*`¯*H²*(±*`¯*p³*`¯*@·*`¯*(±*`¯*ø±*(²* ±*`¯*(±*`¯*2*°µ*`¯*0¶*x®*˜²*H²*¨°*`¯*ðµ* ±*`¯*˜²*ð¶*`¯*ح* ¶*ح* ¶*x¶*˜¯*³*˜´*€²*ø¶*0²*@±*¸´*0µ*°¯*p°*°*x°*º*܌º*€83º*³$º*27ø¹*€²&ð¹*@²=è¹*àƒà¹*à±Bع*ˆŠ	й* ±#ȹ*`±&9* ±<¸¹*@¦#°¹*P‰
¨¹* € ¹*˜¹* € ¹*`ƒˆ¹*€ €¹*à„x¹*@ƒp¹*à h¹*`‚`¹*à°%X¹* P¹*€H¹*€€@¹*À 8¹*  0¹*@8"(¹* °2 ¹*`°*¹* °(¹*à¯+¹* ¯#¹* ƒø¸*@‚ð¸*8"è¸*`à¸*ƒظ*à‚и*`€ȸ*@8*`¯&¸¸* ¯*°¸*à®%¨¸* ®% ¸*!˜¸*À~!¸* ‚ˆ¸*@€€¸* ƒx¸* p¸*€ƒh¸*0ˆ`¸*`®2X¸*àˆP¸* ®"H¸*-[@¸*€­?8¸*@­00¸*(¸* ˆ ¸*`„¸*€„¸*­$¸*@…¸*+Žø·*,)ð·*‡è·*֌à·*ˆط* ¬Œз*‚ȷ*à‡
7*‡¸·*)ް·*@‰
¨·*à«! ·* «"˜·* ~ ·*`«.ˆ·*¦)€·*%(x·*Јp·*ð†h·*À77`·*«FX·*ŽP·*ŽH·*Ž@·*'Ž8·*'Ž0·*(·**- ·*p·*€ª8·*Ž·*Ž·*xŠ	ø¶*à†ð¶*Ќè¶*8‹à¶*üض*ó‹ж*ʌȶ*0‹6*†¸¶*ì‹°¶* ‹¨¶*¶ ¶*±˜¶*%ސ¶*%Žˆ¶*¬€¶* )x¶*€‡p¶*€‡h¶*¦`¶*@ª)X¶* (sP¶*#ŽH¶*#Ž@¶*‹8¶*‹0¶*ˆ(¶*ª4 ¶* ¶*€q¶*hŠ	¶*hŠ	¶*
øµ*ðµ*å‹èµ* ©Tàµ*ދص*е*@„ȵ*¡5*ºŒ¸µ*p‡°µ*ø¨µ*`©% µ* ©)˜µ*׋µ*ð‡ˆµ*Ž€µ*Žxµ*´Œpµ*´Œhµ*®Œ`µ*®ŒXµ*˜	Pµ*`s1Hµ*ô@µ*Ћ8µ*¨Œ0µ*І(µ*‘ µ*‘µ*¢Œµ*µ*ɋµ*XŠ	ø´*˜Œ
ð´*0‰
è´*ðà´*‹Œش*…Œд*ˆ	ȴ*`
4*Œ¸´*yŒ°´*‹¨´*‹ ´*HŠ	˜´*‹´*‹ˆ´*‹€´*x´*@û	p´*‡h´*`‡`´*àôJX´*8Š
P´*à¨6H´*øŠ@´* â)8´*|0´*П(´*Ž ´*»‹´*èŠ´*°‹´*sŒ´*mŒø³*gŒð³*aŒè³*wà³*àŠس*(Š	г* ÃÔȳ*r3*Š	¸³*[Œ°³*Š	¨³*ø‰	 ³*°ˆ˜³*m³*è‰	ˆ³*à€€³*UŒx³*UŒp³*ìh³*ì`³* f¥X³*hP³* ‰H³* ˆ@³*c8³*ˆ0³*è(³*è ³*^³*€ˆ³* ·d³* ¦é³* ›ï
ø²*Yð²*äè²*P	à²*‰
ز* ‹в*àȲ* †2*F¸²*F°²* ¨#¨²*à ²*؊˜²*•‹²*`¨'ˆ²* ¨2€²*Ax²*pˆ
p²*Žh²*Ž`²*`Ž<
X²*ÀzP²* g‰H²*!Ž@²*!Ž8²*8	0²*‹(²*2 ²*2²*-²*ÀZB²*à§$²*؍ø±*OŒð±*OŒè±* …à±* §3ر*(б*(ȱ*P²
1*ÀC=¸±*5¤°±* …¨±*Ž ±*Њ˜±*Њ±*ˆ±*€±* ‚x±*€…p±*IŒh±* „`±*À4'X±*`§"P±*`ˆH±* „@±*ԍ8±*؉	0±*Ѝ(±*Ž ±*ޱ*„±*#±*À%ð±*BŒø°*  ð°*ˆ‹è°*ˉà°*À]Êذ*°†а*ÀÇȰ* §#0*€‚¸°*P°°*¨°*<Œ °*<Œ˜°*†°*Їˆ°*P‡€°*Pˆ
x°*‰p°*	h°*à…`°*@ˆX°*6ŒP°*{‹H°*€#@°*0Œ8°**Œ0°*`	(°*t‹ °*°‰°*0‡°*ðˆ°*Ȋ°*
ø¯*
ð¯* ‰	è¯*$Œà¯*$Œد*°ŠЯ*ȯ*Œ/*Œ¸¯*°‡
°¯*¨¯*‰
 ¯*p†˜¯*Œ¯*Œˆ¯*¨Š€¯*@ÿx¯*p¯*Œh¯*Œ`¯*
X¯*P¯*H¯*ÀTø@¯*@Ot8¯*`CÂ0¯*`†(¯*€ö¦ ¯* éÖ¯*Œ¯*Œ¯*ûŒ¯*öŒø®*ȍð®*`…è®* C!à®*…خ* ŠЮ* ‡
Ȯ*m‹.*€‰	¸®*&N°®*@†¨®*Í ®*͘®*p‰	®*ñŒˆ®*èŒ	€®*˜Šx®*¿p®*@àY	h®*Ž`®*f‹X®*_‹P®*X‹H®*Œ@®*08®*€¦&0®*`ÖÙ	(®*Q‹ ®* Ö%®*J‹®*C‹®* Ê÷®*À8D
ø­*âŒð­*âŒè­*`‰	à­* ½ôح*ŽЭ*ú‹ȭ*»-*@³Ð	ô›ÿÿÿÿÿÿÿÿ ª*€µX²à³°D°µÀ°±@—*à–*P\ÿ› œœœœèµp`
à³€™*P™*°@™*DP€›*à™*€T@ŸP×*Pp*œÀæÿ››",œ`š4œ ?œ@ DœðMœÐHœ Tœ à`œpÞlœ@qœPœ`™œà™~œ °@Dppž*’ œ:œ`Λœx0@ * *ð5 *¡*  *Ý0+ð40¹œp*\€+Hœ`˜œà˜¶àp¸ 1D8¶Àð £* £* •`ʙ<͜Сܜà0éœ 0öœP,½— :€H*ô•ÀD@C*±— H<*¨—°0€6*–˜@7 )*NœP (*N™ G * —`À*ė@B	*͗ðJ@ú)ò—\`î)û—pN@ã)–ÐQ Ö)ù•0UàÉ)–YÀÁ)–à[·)–@_®)+–€a ¡)6–Pd •)?–°g †)F–€j y)N–Pm@l)T– p€_)\– s@M)c– wÀA)l– zÀ0)v– ~ ')–ð€@)˜Pqà)–à¾À)„–P„`ù(–– ‡€ð(ž–PŠ æ(±˜@à(¬˜ð  Í(£–Џ Â(™°Ú¯(d˜pï!(Ÿ˜°Z Ž(Œ˜€à‚(»˜ •À~(˜ ‰ y(ԗ`J—Ïàu()šUGCC: (GNU) 4.4.7 20120313 (Red Hat 4.4.7-23)GCC: (GNU) 8.3.1 20190311 (Red Hat 8.3.1-3)Èð€Ð284x4˜ª	;
лPÇä“
”H8¸k(Àk(Èk(Ðk(°m(p(àu( ª*ñÿXÿ*ñÿ70K@
fPpíš`Xͼ*0¼*ÀEK
Ž H p·
Û Ào0x<°COÊiЙ”p;¨°7¾ðwópg*à‘E€	h_ð	iyPÇQ•8²*¤¡ÇÍ	¾@¸*ê0­*÷ط*#(­*2h­*G˜­*S ­*b ·*‹­*›·*Ç­*×(·*­*±*6ø¬*F0·*mð¬*}0*¢è¬*²Ȱ*Þà¬**ج*'à¹*SЬ*c²*Ȭ*Ÿȹ*Ë,*Û¸¬*ë°¬*ûз*!¨¬*1P³*F ¬*Vx²*l˜¬*|H³*’¬*¢è±*Àˆ¬*Ј²*ü€¬*¨²*2x¬*B¨µ*np¬*~°²*ªh¬*º­*Ê(¶*ö`¬*	Hº*#	 µ*O	X¬*_	P¬*o	°®*Š	H¬*š	²*Æ	@¬*Ö	±*ü	8¬*
ˆ±*3
0¬*C
`·*o
(¬*
x±*
 ¬*­
è¶*À
¬*Ð
¬*à
º*¬*9*G¸*s¸¹*¡`±*̬*ÜX±*й*4ø«*Dˆ³*kð«*{8®*§è«*·@®*àà«*ðº*
ث*,
à±*X
Ы*h
ȫ*x
ø¹*¤
+*´
¨·*à
¸«*ð
ð¹*°«*,º*X¨«*h «*x`­*ˆ˜«*˜«*¨P¸*Ôˆ«*䀫*ôx«*°¯*(¼*%µ*;h´*Tè®*~p«*Žð®*¬h«*¼à®*Ü`«*ìص*
X«*е*@P«*P€°*e˜°*x°*“°*ªp°*½h°*ÙЮ*ñ`
”
:*0€º*@Ndbp{€P“Ð
G¬ ¹ÒàGånÑ0é* ´fà[¢ŠÑc²`°*ÇíÑRÚX´*í°* °*°*,¨¯*? ¯*Y?Õëj*Öÿ~)×ÿ“@ P¼*¨PeÅÀ5èQ,`MA@¼*I°As.ŽH¼*–0A§€P¸Ð×Ëð»*Ü8¼*ñøµ*°h'ˆ¶*6¶*F¸*h ªŒ­*˜Ð¾`¯*ÍðIõ@ I úC".hÀ#Œ‘Ȯ*¢±*±P)„ßà)Œp*A"À*²a ²*s€+‹+²£P,Äàp´*ùð°*
x¶*"¯*2p¶*J 0¿ˆà0²Æ 1FÿX·*
P·*ð4ü8ð5GP@6—~à6§œ<›µ0B|ê°BÀDVJH·*X¸­*h¶*t8·*€8»*¥@·*±˜¶*½àO* Ô HϨ­*"/*2P*Iȯ*YðJq’0³*  Q* ·pN[*ÿ˜¯*€Q* &ÐQVZpµ*j`µ*zhµ*Šxµ*š Q* ±0UÖðб*ÿÀQ*(ر*%YÏa€µ*nˆµ*{ðQ*’à[VÙ R* ð@_62@R*I€aφPR*PdVØx³*èh²*õp²*€³*€R* )°gÏb R*y€jϳÀR*ÊPmÏ àR*  pqS (³*a S* x  sq±  S* È  wq!@S* ! zqV!h¯*f!¸²*u!2*„!p¯*”!`S* «! ~Ïæ!€S*ý!ð€V4" S* K"P„P" ±*›"@²*§"0»*Ì"H²*Ø"(±*ä" T* û" ‡¯5#h³*C#@T*Z#p³*h#PйŸ#`T*¶#¹ò#€T*	$Џ¹E$ÐT*\$’Ww$0²*ˆ$0V*Ÿ$ð“%¸$ •4ò$@¶*% ³*%hº*,%ðU*C%`˜wk%Xº*ƒ%à˜w­%`™wÚ%à™w	&`š¢0&œwb&œw–&.¬&H¶*¸&ˆ´*Ê&@Ÿ²å&¡Í'С
G'à¡K_'øº*u'0£{Š'°¤º¤'p©‰Á'ª­Ü'ðº*÷'°°ù(°±×?(²Fa(à³6{(`º*Œ( ¸*¯( ¶èÎ(·èñ(¸¸+)ø®*9)˜´*J)°¶*]):Ê‹)Xµ*š)x­*®)¿cÇ) ¼*Û)Âû*®**ش*$*ÈaQ*pȼe*0Éüx*0ÊúŽ*0Ë'­*®*¾*`΢î*ÏA +8¶*2+»*d+è·*t+`V*‹+`Ô­+ø·*Ù+ º*ò+pÛi,àܐh,pÞ…,€Þ Ð, àí,0à»-ðãî/-àåÞH-Àæi-Ðèqˆ-P´*´-@º*Î-Püï-»*.`éL.Pj.`Ñ®.@Ä.PŽü.س*/¨±*/X®*-/8µ*=/¸¶*N/h®*\/€®*n/à
s
{/(º*’/è¹*¶/` ð/X¼*ü/.*0·*03*00ð²*>08´*M0Pº*i0àP* €0*ª¢0°0d	é0P­*ô0ȭ*1à»*1¨´*-1P»*Y1°´*k1H»*–10±*¤1˜²*µ1·*á1 P*(ø1 :12X­*<2˜·*f2ÀO* }2@B¿2@­*Ë2ˆ·*ù2Q* 3`J
D3²*R3»*i3à·*3è°*’3`¸*¾3€V* Õ3€TÍí3¼*4@±*4¸´*$40µ*>4@V* U4P\;s4¼*’4\¸Ó48­*ß4(»*5€·*45@Q*(K5Pe÷u5²*„5PqËÁ5à¶*Ï5H´*á5à´*ñ5 »*"6ÀS*(96X³*H6€²*W6è¯*g6 ‰Ì¥6à³*·6ض*È6ˆ¯*Ú6ȶ*ì6°±*7ȳ*7ح*&7Ȳ*A7ж*Q7ÐU*h7 ¶*w7ð è¸7p­*Í7`¶*ù7ø±*	8˜±*8 ²**8ð±*:8 T*(Q8@³*`8·*n8»*¥8(²*´8 ±*Æ8ྭ9h»*29µ*B9ð³*R9д*a9ø´*q9`»*¨9@»*Þ9ػ*û9T* :Ý×%:¼*9:P¶*E:´*W:¸*c:µ*t:º*„:8¸*°:0¸*Õ:³*è:ø¶*;V*0;pï)W; °*g;X»*‘;8±*¤;´*´;Э*Ä;è³*Ó;¨°*ã;@U* ú;€³6<8³*K<в*Y<°­*i<µ*~<ð¶*Ž<U*¥<л*À<@7j#û<H­*=ø³*=˜»*M= »*„=àµ*•=ø²*¤=µ*·=´*Ç=»*þ=`P*0>ˆ»*K>P®*\>Ȼ*”>;*Ì>`®*Ý>¸»*?H®*%?°»*\?h¶*k?¨»*¡?°³*´? ·*à?°Zî:.@à²*B@5*R@6*n@¨³*@èµ*­@ðµ*¾@€±*ã@ ³*ø@`U*(A¸®*;Ah·*fAH¸*’A •¤.ÌAخ*ÞA˜®*ñA°U*B8º**BPÄ@>B¯*NB¯*]B¯*lB×‰B°Ú÷ZÏBð­*ÞB ®*ìB ­*C µ*C¶*"C0¯*<C°*NC@µ*_C¨®*mCP±*‚C ´*“CX°*£C·*¶CHµ*ÄC¸·*ÐCЯ*ßC¨¶*îC°µ*üC0¶*Dx®* DU*87D(µ*FD¶*YDP¯*hDè­*{Dø­*ŠD°5lÃDȵ*ÒD˜³*áD4*ñDè´*ÿD¸³*E³*$E(°*5E°°*DE˜µ*UEP°*fE¸¯*}Eà¯*Ex¯*œE ´*¯E¸µ*ÇE8°*×E(®*èEø¯*ÿEX¯*F®*Fˆ­**F€´*9F ©*hTF€­*aF G{šF°*¬F P*8ÃF*pÓF V*>äFè²*óF@°*Gx·*G(´*%G°·*9Gð·*QG7*jG(¸*€Gð¯*“G¸*±Gȷ*ÈGh¸*ÞG0º*øGð´*Hع*HX¸*4H€¡* eHèº*¤àº*Vyغ*vHк*mHȺ*H@«*´H°¹*ÈH8«*ÛH`ž* òH`œ* I«*8'I —* CI**8aI@•* ‚I€»*³Ix»*ëIp»*Jp±*$Jh±*DJ±*TJذ*nJH±*J€©* ÄJH°*ïJظ*K@¯*>K¸¸*jKг*•KX¹*¼KX¶*çK ¹*L¶*6L¹*[L0®*†L¸*¬L(¯*×L¨¸*M¸±*.M¹*SM8¯*}M°¸*©Mx´*ÔMx¹*ùMȴ*$N€¹*EN1*pN¹*œN ¶*ÇN˜¹*ðNȱ*O¹*GOH¯*qO8*O ¯*ÈO ¸*òO®*Pˆ¸*EP±*pPø¸*–Pà­*ÁPx¸*èPа*Qà¸*8Q`³*bQP¹*‰Q@´*´Qh¹*ÚQ³*RH¹*-R³*XR@¹*R0°*¬Rи*ÔR®*þR€¸*"Sp®*MS˜¸*wS€¶*¢S¨¹*ÊS²*õS¹*!Tà°*KTè¸*rT-*Tp¸*ÁT`´*ìTp¹*U0´*@U`¹*lU³*—U8¹*ÀUP²*ëU ¹*V`²*BV0¹*mVX²*˜V(¹*ÄVPµ*îVˆ¹*W€¯*BWȸ*iWø°*”Wð¸*¿Wˆ®*ÎWˆ°*æW`ª*@öWp·*X`©* FX
܌TX
€83|X
³$¥X
27ÎX
€²&÷X
@²= Y
àƒAY
à±BjY
ˆŠ	{Y
 ±#¤Y
`±&ÍY
 ±<öY
@¦#!Z
P‰
3Z
 €XZ
yZ
 € ŸZ
`ƒÁZ
€ çZ
à„[
@ƒ'[
à M[
`‚p[
à°%™[
 ½[
€á[
€€\
À ,\
  R\
@8"z\
 °2£\
`°*Ì\
 °(õ\
à¯+]
 ¯#G]
 ƒi]
@‚Œ]
8"´]
`Ø]
ƒú]
à‚^
`€A^
@e^
`¯&Ž^
 ¯*·^
à®%à^
 ®%	_
!0_
À~!W_
 ‚z_
@€Ÿ_
 ƒÀ_
 ä_
€ƒ`
0ˆ`
`®2B`
àˆU`
 ®"~`
-[§`
€­?Ð`
@­0ù`
a
 ˆ/a
`„Oa
€„na
­$—a
@…³a
+޽a
,)æa
‡üa
֌
b
ˆb
 ¬ŒGb
‚jb
à‡
b
‡–b
)Ž b
@‰
²b
à«!Ûb
 «"c
 ~ +c
`«.Tc
¦)c
%(ªc
Ј½c
ð†Õc
À77ýc
«F&d
Ž1d
Ž<d
ŽGd
'ŽQd
ud
*-žd
pÄd
€ª8íd
Žùd
Že
xŠ	e
à†.e
Ќ<e
8‹Le
üXe
ó‹ge
ʌue
0‹…e
†Ÿe
ì‹®e
 ‹¾e
¶Ëe
±Øe
%Žâe
¬ïe
 )f
€‡-f
¦:f
@ª)cf
 (s‹f
#ޕf
‹¥f
ˆ¹f
ª4âf
 
g
€q2g
hŠ	Cg

Qg
lg
å‹{g
 ©T¤g
ދ³g
Ñg
@„ñg
¡þg
ºŒh
p‡"h
ø.h
`©%Wh
 ©)€h
׋h
ð‡£h
ޮh
´Œ¼h
®ŒÊh
˜	×h
`s1þh
ô
i
Ћi
¨Œ'i
І?i
‘Li
¢ŒZi
mi
ɋ|i
XŠ	i
˜Œ
›i
0‰
­i
ð¹i
‹ŒÇi
…ŒÕi
ˆ	âi
`

j
Œj
yŒ&j
‹6j
‹Fj
HŠ	Wj
‹fj
‹vj
ƒj
@û	«j
‡Âj
`‡Øj
àôJk
8Š
k
à¨6:k
øŠJk
 â)rk
|k
П§k
޲k
»‹Ák´*Ók
èŠãk´*ôk
°‹l
sŒl
mŒl
gŒ-l
aŒ;l
wHl
àŠXl
(Š	il
 ÃÔ‘l
ržl
Š	¯l
[Œ½l
Š	Îl
ø‰	ßl
°ˆòl
mÿl
è‰	m
à€4m
UŒBm
ìNm
 f¥um
h‚m
 ‰”m
 ˆ§m
c´m
ˆÇm
èÓm
^àm
€ˆóm
 ·dn
 ¦éCn
 ›ï
kn
Yxn
䍄n
P	‘n
‰
£nز*´n
 ‹Ãn
àÏn
 †èn
Fõn
 ¨#o
àAo
؊Qo
•‹`o
`¨'‰o
 ¨2²o
A¿o
pˆ
Òo
ŽÝo
`Ž<
p
Àz-p
 g‰Up
!Ž_p
8	lp
‹{p
2ˆp
-•p
ÀZB½p
à§$æp
؍òp
OŒq
 …q
 §3Dq
(Qq
P²
yq
ÀC=¡q
5¤Éq
 …æq
Žñq
Њr
$r
Hr
 ‚jr
€……r
IŒ“r
 „±r
À4'Ùr
`§"s
`ˆs
 „5s
ԍAs
؉	Rs
Ѝ^s
Žhs
„ˆs
#•s
À%ð½s
BŒËs
  ós
ˆ‹t
ˉt
À]Ê:t
°†Rt
ÀÇzt
 §#£t
€‚Åt
Pët
øt
<Œu
†u
Ї3u
P‡Iu
Pˆ
\u
‰nu
	u
à…™u
@ˆ¬u
6μu
{‹Éu
€#ñu
0Œÿu
*Œ
v
`	5v
t‹Dv
°‰Uv
0‡kv
ðˆ}v
Ȋv

v

²v
 ‰	Ãv
$ŒÑvد*ãv
°Šóv
w
Œw
°‡
#w
0w
‰
Aw
p†Yw
Œgw
¨Šww
@ÿŸw
¬w
μw

Çw
Ôw
áw
ÀTøx
@Ot/x
`CÂVx
`†nx
€ö¦–x
 éÖ¾x
ŒÌx
ŒÚx
ûŒçx
öŒôx
ȍy
`…y
 C!By
…_y
 Šoy
 ‡
„y
m‹“y
€‰	¤y
&NÍy
@†åy
Íñy
p‰	z
ñŒz
èŒ	z
˜Š,z
¿8z
@àY	`z
Žkz
f‹zz
_‹‰z
X‹˜z
Œ¦z
0Ìz
€¦&õz
`ÖÙ	{
Q‹,{ ®*W{
 Ö%{
J‹Ž{
C‹{
 Ê÷Å{
À8D
ì{
âŒù{
`‰	
|
 ½ô2|
Ž<|
ú‹J|
»V|
@³Ð	~| ª* Œ|@—*`«|à–*PÊ|€™*Pê|P™*	}@™*'}€›*à@}à™*Y}ž*`l}@ *P‡} *¡} *º}¡*€Î}  *Pâ} £*À~ £*xJ~€H*#„~@C*@¼~<*5û~€6*tC )*Ô (*s¸ *qòÀ*Ù	-€	*¦p€@ú)¤ª€`î)Âì€@ã)	% Ö)
ZàÉ)=šÀÁ)ׁ·)²
‚®)øb‚ ¡)Ö ‚ •)÷܂ †)ðƒ y)ôQƒ@l)ÇŠƒ€_)¥Ń@M))ÿƒÀA)d;„À0)éx„ ')	´„@)D
ì„à)Y	*…À)f…`ù(B«…€ð(Êæ… æ(Ð	†@à(J[† Í(Ÿ† Â(ï
چ¯(‰!‡!(<
`‡ Ž(¯‡à‚(1ì‡À~('ˆ y(fˆàu(¥˜ˆñÿ£ˆpÿ¥ˆ ÿ¸ˆàÿΈ ª*݈Àk(‰ ‰¸k(/‰ñÿ?‰
@ÊI‰
@ÒS‰
@Ú]‰
@¾f‰
@Âo‰
@Æx‰
@ö‚‰
@þŒ‰
@î–‰
@柉
@ꨉ
@ⱉpYՉ
à½P܉ñÿð‰ñÿŠñÿ Šñÿ/Š
@ð˜ˆñÿ7Šø^ñÿEŠÈk(RŠÐk([ŠHnŠª*zŠp(Š¥Š»ŠˊîŠþŠ`^‚
‹"‹6‹H‹Z‹à€Gw‹ˆ‹ x`£‹¹‹ˋ݋à]>ì‹ý‹ ]SŒ "Œ<ŒLŒ_ŒmŒ‹G–Œ²ŒnjՌäŒûŒÀc&-€]/DYr†£²ɍڍòŽO9'ŽBŽUŽcŽ TyŽª*€Žðc»
•ެŽƎݎ@ª*°v0MdÐ_^tˆŸ¯pLˏ叠[,ôð`Őä“	1F0´ap…™¬¿p…ڐò‘‘+‘`Н>‘P‘a‘`_Nq‘€‘Ž‘£‘ LI‘ۑ°{Zñ‘þ‘’#’°Y7’K’[’l’°V¹„’ðy
–’§’}¶ƒْð’“ “ ^?-“A“€‡[
”[“i“|“°rW“°Oq·“Ǔדç“ù“	””/”B”Y”h”u”ƒ”˜”ª”`yޔP““ë”ú”•*•>•K•\ëW•l•€•’•­•¾• ͕€[à•ò•––"–àŽf8–J–[–n–Ð[{–‹–¥–½– K%זç–ö–——ÐYy(—(Ø/':—P—e—x——¡—ð[°— xN¼—Ηà—ô—ÐM2˜"˜6˜°]'D˜R˜`¼*W˜j˜pY€˜˜˜«˜ÀwWØט0`½é˜ú˜™#™7™G™t§W™ðƒ|r™RÊ‹™Y¡™ÐK	¹™י陪*õ™ššP[(#š]4šFšYšM9zš{¡Ššsð–š­š€q/ܚîš›› ›0Pœ7›I›W›m›ˆ›POQ­›[ϛ°_à›Ð}‰ÿ›œ!œ8œÐp¥HœÀY	Tœð^gbœqœŒœàK9©œºœ͜âœàS9'7Dà‰q]p°nŠ ¤¸˝`øžž9žKž^žnž„ž€x•ž¬ž¾žӞåžøžŸ+Ÿ<Ÿ"XŸ	;^ŸÐQ9zŸ‰Ÿ/usr/lib/../lib64/crti.ocall_gmon_start_generator.c__pyx_array___len____pyx_MemviewEnum___repr____pyx_memoryview___len____pyx_get_best_slice_order__pyx_tp_new_5numpy_6random_10_generator_Generator__pyx_vtabptr_5numpy_6random_10_generator_Generator__pyx_empty_tuple__pyx_tp_traverse_5numpy_6random_10_generator_Generator__pyx_getprop_5numpy_6random_10_generator_9Generator_bit_generator__pyx_tp_new_Enum__pyx_tp_traverse_Enum__pyx_getprop___pyx_memoryview_base__pyx_getprop___pyx_memoryviewslice_base__pyx_bisect_code_objects__Pyx_BufFmt_DescribeTypeChar__pyx_typeinfo_cmp__pyx_tp_clear_memoryview__pyx_memoryview_refcount_objects_in_slice__pyx_tp_clear_Enum__pyx_tp_dealloc_Enum__pyx_tp_clear_5numpy_6random_10_generator_Generator__pyx_tp_dealloc_5numpy_6random_10_generator_Generator__Pyx_BufFmt_RaiseExpected__Pyx_BufFmt_ExpectNumber__Pyx_PyObject_CallOneArg__Pyx_setup_reduce_is_named__pyx_n_s_name__Pyx_InitCachedConstants__pyx_kp_u_Invalid_bit_generator_The_bit_ge__pyx_tuple___pyx_kp_u_Providing_a_dtype_with_a_non_nat__pyx_tuple__8__pyx_int_4294967296__pyx_int_0__pyx_tuple__9__pyx_kp_u_a_must_an_array_or_an_integer__pyx_tuple__10__pyx_kp_u_a_must_be_a_positive_integer_unl__pyx_tuple__11__pyx_kp_u_a_cannot_be_empty_unless_no_samp__pyx_tuple__12__pyx_kp_u_p_must_be_1_dimensional__pyx_tuple__13__pyx_kp_u_a_and_p_must_have_same_size__pyx_tuple__14__pyx_kp_u_probabilities_contain_NaN__pyx_tuple__15__pyx_kp_u_probabilities_are_not_non_negati__pyx_tuple__16__pyx_kp_u_probabilities_do_not_sum_to_1__pyx_tuple__17__pyx_kp_u_Cannot_take_a_larger_sample_than__pyx_tuple__18__pyx_kp_u_negative_dimensions_are_not_allo__pyx_tuple__19__pyx_kp_u_Fewer_non_zero_entries_in_p_than__pyx_tuple__20__pyx_tuple__21__pyx_tuple__22__pyx_kp_u_Range_exceeds_valid_bounds__pyx_tuple__23__pyx_kp_u_left_mode__pyx_tuple__26__pyx_kp_u_mode_right__pyx_tuple__27__pyx_kp_u_left_right__pyx_tuple__28__pyx_kp_u_ngood_nbad_nsample__pyx_tuple__29__pyx_kp_u_method_must_be_one_of_eigh_svd_c__pyx_tuple__30__pyx_kp_u_mean_must_be_1_dimensional__pyx_tuple__31__pyx_kp_u_cov_must_be_2_dimensional_and_sq__pyx_tuple__32__pyx_kp_u_mean_and_cov_must_have_same_leng__pyx_tuple__33__pyx_slice__34__pyx_kp_u_check_valid_must_equal_warn_rais__pyx_tuple__35__pyx_builtin_RuntimeWarning__pyx_kp_u_covariance_is_not_positive_semid__pyx_tuple__36__pyx_tuple__37__pyx_kp_u_sum_pvals_1_1_0__pyx_tuple__38__pyx_kp_u_method_must_be_count_or_marginal__pyx_tuple__39__pyx_kp_u_nsample_must_be_an_integer__pyx_tuple__40__pyx_kp_u_nsample_must_be_nonnegative__pyx_tuple__41__pyx_kp_u_When_method_is_marginals_sum_col__pyx_tuple__42__pyx_kp_u_nsample_sum_colors__pyx_tuple__43__pyx_kp_u_alpha_0__pyx_tuple__44__pyx_tuple__45__pyx_kp_u_Axis_argument_is_only_supported__pyx_tuple__46__pyx_kp_u_Format_string_allocated_too_shor__pyx_kp_u_Non_native_byte_order_not_suppor__pyx_kp_u_Format_string_allocated_too_shor_2__pyx_kp_u_numpy_core_multiarray_failed_to__pyx_tuple__50__pyx_kp_u_numpy_core_umath_failed_to_impor__pyx_kp_s_Empty_shape_tuple_for_cython_arr__pyx_tuple__52__pyx_kp_s_itemsize_0_for_cython_array__pyx_tuple__53__pyx_kp_s_unable_to_allocate_shape_and_str__pyx_tuple__54__pyx_kp_s_unable_to_allocate_array_data__pyx_tuple__55__pyx_kp_s_Can_only_create_a_buffer_that_is__pyx_tuple__56__pyx_kp_s_no_default___reduce___due_to_non__pyx_tuple__57__pyx_tuple__58__pyx_kp_s_Cannot_assign_to_read_only_memor__pyx_tuple__59__pyx_kp_s_Unable_to_convert_item_to_object__pyx_tuple__60__pyx_kp_s_Cannot_create_writable_memory_vi__pyx_tuple__61__pyx_kp_s_Buffer_view_does_not_expose_stri__pyx_tuple__62__pyx_tuple__63__pyx_int_neg_1__pyx_tuple__64__pyx_tuple__65__pyx_kp_s_Indirect_dimensions_not_supporte__pyx_tuple__66__pyx_tuple__67__pyx_tuple__68__pyx_n_s_seed__pyx_empty_bytes__pyx_n_s_default_rng__pyx_kp_s_generator_pyx__pyx_kp_s_strided_and_direct_or_indirect__pyx_tuple__71__pyx_kp_s_strided_and_direct__pyx_tuple__72__pyx_kp_s_strided_and_indirect__pyx_tuple__73__pyx_kp_s_contiguous_and_direct__pyx_tuple__74__pyx_kp_s_contiguous_and_indirect__pyx_tuple__75__pyx_n_s_pyx_result__pyx_n_s_pyx_PickleError__pyx_n_s_pyx_state__pyx_n_s_pyx_checksum__pyx_n_s_pyx_type__pyx_n_s_pyx_unpickle_Enum__pyx_kp_s_stringsource__pyx_tp_dealloc_memoryview__pyx_memoryview_thread_locks_used__pyx_memoryview_thread_locks__pyx_sq_item_array__pyx_sq_item_memoryview__Pyx_init_memviewslice_copy_strided_to_strided__pyx_memoryview__slice_assign_scalar__Pyx_GetException__Pyx_PyObject_GetAttrStr_ClearAttributeError__pyx_tp_dealloc_array__pyx_f_5numpy_6random_10_generator_9Generator__shuffle_raw__pyx_f_5numpy_6random_10_generator_9Generator__shuffle_int__Pyx_SetVtable__pyx_n_s_pyx_vtable__Pyx_setup_reduce__pyx_n_s_getstate__pyx_n_s_reduce_ex__pyx_n_s_reduce_2__pyx_n_s_reduce_cython__pyx_n_s_setstate__pyx_n_s_setstate_cython__Pyx_ImportType__Pyx_ImportVoidPtr__Pyx_ImportFunction__Pyx_Import__pyx_m__pyx_tp_traverse_memoryview__pyx_tp_traverse__memoryviewslice__pyx_setprop_5numpy_6random_10_generator_9Generator__bit_generator__Pyx_GetBuiltinName__pyx_b__pyx_memoryview_refcount_copying.part.22__Pyx__GetModuleGlobalName__pyx_d__Pyx_IterFinish__Pyx_ImportFrom__Pyx_AddTraceback__pyx_code_cache__pyx_cython_runtime__pyx_n_s_cline_in_traceback__pyx_memoryview___str____pyx_n_s_base__pyx_n_s_class__pyx_kp_s_MemoryView_of_r_object__pyx_getprop___pyx_memoryview_size__pyx_int_1__pyx_getprop___pyx_memoryview_nbytes__pyx_n_s_size__pyx_getprop___pyx_memoryview_itemsize__pyx_getprop___pyx_memoryview_ndim__pyx_getprop___pyx_memoryview_suboffsets__pyx_getprop___pyx_memoryview_shape__pyx_memoryview_assign_item_from_object__pyx_n_s_struct__pyx_n_s_pack__pyx_memoryviewslice_assign_item_from_object__pyx_memoryview_setitem_indexed__pyx_getprop___pyx_array_memview__pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getattr____pyx_n_s_memview__pyx_array___getattr____pyx_array___getitem____pyx_pw_5numpy_6random_10_generator_9Generator_11__reduce____pyx_n_s_generator_ctor__pyx_n_s_pickle__pyx_n_s_bit_generator__pyx_n_s_state__pyx_n_u_bit_generator__pyx_pw_5numpy_6random_10_generator_9Generator_9__setstate____pyx_pw_5numpy_6random_10_generator_9Generator_7__getstate____pyx_pw_5numpy_6random_10_generator_9Generator_5__str____pyx_kp_u__2__pyx_kp_u__3__pyx_mp_ass_subscript_array__pyx_tp_getattro_array__Pyx_BufFmt_TypeCharToAlignment.constprop.68__Pyx_BufFmt_ProcessTypeChunk__Pyx_BufFmt_CheckString__Pyx_PyNumber_IntOrLongWrongResultType.constprop.71__Pyx_ParseOptionalKeywords.constprop.72__pyx_pw_5numpy_6random_10_generator_9Generator_15beta__pyx_kp_u__5__pyx_float_0_0__pyx_n_u_b__pyx_n_u_a__pyx_f_5numpy_6random_7_common_cont__pyx_n_s_a__pyx_n_s_b__pyx_pyargnames.13662__pyx_pw_5numpy_6random_10_generator_9Generator_17exponential__pyx_float_1_0__pyx_n_u_scale__pyx_pyargnames.13720__pyx_n_s_scale__pyx_pw_5numpy_6random_10_generator_9Generator_31normal__pyx_n_s_loc__pyx_pyargnames.14910__pyx_pw_5numpy_6random_10_generator_9Generator_35gamma__pyx_n_u_shape__pyx_n_s_shape__pyx_pyargnames.15055__pyx_pw_5numpy_6random_10_generator_9Generator_37f__pyx_n_u_dfden__pyx_n_u_dfnum__pyx_n_s_dfnum__pyx_n_s_dfden__pyx_pyargnames.15116__pyx_pw_5numpy_6random_10_generator_9Generator_39noncentral_f__pyx_n_u_nonc__pyx_pyargnames.15176__pyx_n_s_nonc__pyx_pw_5numpy_6random_10_generator_9Generator_41chisquare__pyx_n_u_df__pyx_n_s_df__pyx_pyargnames.15237__pyx_pw_5numpy_6random_10_generator_9Generator_43noncentral_chisquare__pyx_pyargnames.15293__pyx_pw_5numpy_6random_10_generator_9Generator_45standard_cauchy__pyx_pyargnames.15350__pyx_pw_5numpy_6random_10_generator_9Generator_47standard_t__pyx_pyargnames.15402__pyx_pw_5numpy_6random_10_generator_9Generator_49vonmises__pyx_n_u_kappa__pyx_n_u_mu__pyx_n_s_mu__pyx_n_s_kappa__pyx_pyargnames.15458__pyx_pw_5numpy_6random_10_generator_9Generator_51pareto__pyx_pyargnames.15516__pyx_pw_5numpy_6random_10_generator_9Generator_53weibull__pyx_pyargnames.15571__pyx_pw_5numpy_6random_10_generator_9Generator_55power__pyx_pyargnames.15626__pyx_pw_5numpy_6random_10_generator_9Generator_57laplace__pyx_n_u_loc__pyx_pyargnames.15682__pyx_pw_5numpy_6random_10_generator_9Generator_59gumbel__pyx_pyargnames.15745__pyx_pw_5numpy_6random_10_generator_9Generator_61logistic__pyx_pyargnames.15808__pyx_pw_5numpy_6random_10_generator_9Generator_63lognormal__pyx_n_u_sigma__pyx_n_u_mean__pyx_n_s_mean__pyx_n_s_sigma__pyx_pyargnames.15871__pyx_pw_5numpy_6random_10_generator_9Generator_65rayleigh__pyx_pyargnames.15933__pyx_pw_5numpy_6random_10_generator_9Generator_67wald__pyx_pyargnames.15991__pyx_pw_5numpy_6random_10_generator_9Generator_73negative_binomial__pyx_n_u_p__pyx_n_u_n__pyx_f_5numpy_6random_7_common_disc__pyx_n_s_n__pyx_n_s_p__pyx_pyargnames.16466__pyx_pw_5numpy_6random_10_generator_9Generator_75poisson__pyx_n_u_lam__pyx_pyargnames.16524__pyx_n_s_lam__pyx_pw_5numpy_6random_10_generator_9Generator_77zipf__pyx_pyargnames.16581__pyx_pw_5numpy_6random_10_generator_9Generator_79geometric__pyx_pyargnames.16636__pyx_pw_5numpy_6random_10_generator_9Generator_83logseries__pyx_pyargnames.16867__pyx_MemviewEnum___init____pyx_n_s_name_2__pyx_pyargnames.19267__Pyx_Raise.constprop.73__pyx_pw_5numpy_6random_10_generator_9Generator_1__init____pyx_n_s_capsule__pyx_n_s_lock__pyx_builtin_ValueError__pyx_pyargnames.13354__pyx_pw___pyx_array_1__reduce_cython____pyx_builtin_TypeError__pyx_pw___pyx_array_3__setstate_cython____pyx_pw___pyx_memoryview_1__reduce_cython____pyx_pw___pyx_memoryview_3__setstate_cython____pyx_getprop___pyx_memoryview_strides__pyx_pw___pyx_memoryviewslice_1__reduce_cython____pyx_pw___pyx_memoryviewslice_3__setstate_cython____pyx_array_getbuffer__pyx_n_u_c__pyx_n_u_fortran__pyx_memoryview_getbuffer__pyx_fatalerror.constprop.79__pyx_getprop_5numpy_6random_10_generator_9Generator__bit_generator__pyx_array_get_memview__pyx_memoryview_type__pyx_memoryview_new__pyx_memoryview_is_slice__Pyx_IternextUnpackEndCheck__pyx_memoryview_fromslice__pyx_memoryviewslice_type__pyx_memoryview_copy_object_from_slice__pyx_tp_clear__memoryviewslice__pyx_tp_dealloc__memoryviewslice__pyx_memoryview___repr____pyx_builtin_id__pyx_kp_s_MemoryView_of_r_at_0x_x__Pyx_PyInt_As_int64_t.part.14__Pyx_PyInt_As_Py_intptr_t.part.13__pyx_pw_5numpy_6random_10_generator_9Generator_3__repr____pyx_n_s_str__pyx_n_s_format__pyx_kp_u_at_0x_X__pyx_pw___pyx_MemviewEnum_1__reduce_cython____pyx_n_s_dict__pyx_int_184977713__pyx_memoryview_err_dim__pyx_empty_unicode__pyx_memoryview_convert_item_to_object__pyx_n_s_unpack__pyx_n_s_error__pyx_memoryviewslice_convert_item_to_object__Pyx_PyInt_As_long__Pyx_PyInt_As_int__Pyx_PyInt_As_size_t__pyx_unpickle_Enum__set_state__pyx_n_s_update__pyx_pw___pyx_MemviewEnum_3__setstate_cython____pyx_pw_5numpy_6random_10_generator_1default_rng__pyx_n_u_capsule__pyx_ptype_5numpy_6random_10_generator_Generator__pyx_n_s_PCG64__pyx_pyargnames.18486__pyx_memoryview_get_item_pointer__pyx_kp_s_Out_of_bounds_on_buffer_access_a__pyx_builtin_IndexError__pyx_memoryview_get_slice_from_memoryview__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig__pyx_memoryview_is_f_contig__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig__pyx_memoryview_is_c_contig__pyx_memoryview_setitem_slice_assign_scalar__pyx_memoryview_err__pyx_memslice_transpose__pyx_getprop___pyx_memoryview_T__pyx_memoryview_copy_contents__pyx_kp_s_got_differing_extents_in_dimensi__pyx_builtin_MemoryError__pyx_memoryview_copy_new_contig__pyx_array_type__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran__pyx_memoryview_copy_fortran__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy__pyx_memoryview_copy__pyx_pw_5numpy_6random_10_generator_9Generator_23bytes__pyx_n_s_integers__pyx_n_s_np__pyx_n_s_uint32__pyx_n_s_dtype__pyx_n_s_astype__pyx_kp_u_u4__pyx_n_s_tobytes_unellipsify__pyx_builtin_Ellipsis__pyx_kp_s_Cannot_index_with_type_s__pyx_pw_5numpy_6random_10_generator_9Generator_27uniformPyArray_API__pyx_n_s_subtract__pyx_n_s_all__pyx_n_s_isfinite__pyx_n_s_low__pyx_n_s_high__pyx_builtin_OverflowError__pyx_pyargnames.14684__pyx_mp_ass_subscript_memoryview__pyx_pw_5numpy_6random_10_generator_9Generator_19standard_exponential__pyx_k__6__pyx_n_u_zig__pyx_ptype_5numpy_dtype__pyx_n_s_float64__pyx_f_5numpy_6random_7_common_double_fill__pyx_n_s_float32__pyx_f_5numpy_6random_7_common_float_fill__pyx_n_s_out__pyx_n_s_method__pyx_kp_u_Unsupported_dtype_r_for_standard__pyx_pyargnames.13779__pyx_pw_5numpy_6random_10_generator_9Generator_13random__pyx_k__4__pyx_kp_u_Unsupported_dtype_r_for_random__pyx_pyargnames.13584__pyx_pw_5numpy_6random_10_generator_9Generator_29standard_normal__pyx_k__24__pyx_kp_u_Unsupported_dtype_r_for_standard_2__pyx_pyargnames.14832__pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum__pyx_n_s_new__pyx_MemviewEnum_type__pyx_n_s_PickleError__pyx_n_s_pickle_2__pyx_kp_s_Incompatible_checksums_s_vs_0xb0__pyx_pyargnames.21226__pyx_tp_new_memoryview__pyx_vtabptr_memoryview__pyx_n_s_obj__pyx_n_s_flags__pyx_n_s_dtype_is_object__pyx_pyargnames.19388__pyx_tp_new__memoryviewslice__pyx_vtabptr__memoryviewslice__pyx_pw_5numpy_6random_10_generator_9Generator_33standard_gamma__pyx_k__25__pyx_f_5numpy_6random_7_common_cont_f__pyx_kp_u_Unsupported_dtype_r_for_standard_3__pyx_pyargnames.14974__pyx_memoryview_setitem_slice_assignment__pyx_n_s_ndim__pyx_pw_5numpy_6random_10_generator_9Generator_69triangular__pyx_n_s_any__pyx_n_s_greater__pyx_n_s_equal__pyx_f_5numpy_6random_7_common_cont_broadcast_3__pyx_pyargnames.16051__pyx_n_s_left__pyx_n_s_mode__pyx_n_s_right__pyx_pw_5numpy_6random_10_generator_9Generator_95permutation__pyx_n_s_integer__pyx_n_s_arange__pyx_n_s_shuffle__pyx_n_s_asarray__pyx_n_s_normalize_axis_index__pyx_n_s_intp__pyx_n_s_x__pyx_n_s_may_share_memory__pyx_n_s_array__pyx_pyargnames.18292__pyx_n_s_axis__pyx_pw_5numpy_6random_10_generator_9Generator_81hypergeometric__pyx_int_1000000000__pyx_kp_u_both_ngood_and_nbad_must_be_less__pyx_n_s_ngood__pyx_n_u_nsample__pyx_n_u_nbad__pyx_n_u_ngood__pyx_pyargnames.16693__pyx_n_s_less__pyx_n_s_add__pyx_f_5numpy_6random_7_common_discrete_broadcast_iii__pyx_n_s_nbad__pyx_n_s_nsample__pyx_pw_5numpy_6random_10_generator_9Generator_71binomial__pyx_f_5numpy_6random_7_common_check_constraint__pyx_n_s_empty__pyx_n_s_int64__pyx_n_s_exit__pyx_n_s_enter__pyx_f_5numpy_6random_7_common_check_array_constraint__pyx_f_5numpy_6random_7_common_validate_output_shape__pyx_ptype_5numpy_broadcast__pyx_pyargnames.16224__pyx_tp_new_array__pyx_vtabptr_array__pyx_n_s_c__pyx_n_s_fortran__pyx_n_b_O__pyx_n_s_encode__pyx_n_s_ASCII__pyx_kp_s_Invalid_mode_expected_c_or_fortr__pyx_kp_s_Invalid_shape_in_axis_d_d__pyx_n_s_itemsize__pyx_n_s_allocate_buffer__pyx_pyargnames.18896__pyx_pw_5numpy_6random_10_generator_9Generator_87multinomial__pyx_n_u_pvals__pyx_f_5numpy_6random_7_common_kahan_sum__pyx_n_s_operator__pyx_n_s_index__pyx_n_s_zeros__pyx_n_s_int8__pyx_n_s_pvals__pyx_pyargnames.17223__pyx_pw_5numpy_6random_10_generator_9Generator_91dirichlet__pyx_n_s_less_equal__pyx_n_s_max__pyx_float_0_1__pyx_n_s_empty_like__pyx_n_s_alpha__pyx_pyargnames.17741__pyx_ptype_5numpy_ndarray__pyx_pw_5numpy_6random_10_generator_9Generator_21integers__pyx_k__7__pyx_n_s_int32__pyx_f_5numpy_6random_17_bounded_integers__rand_int32__pyx_f_5numpy_6random_17_bounded_integers__rand_int64__pyx_n_s_compat__pyx_n_s_long__pyx_n_s_endpoint__pyx_n_s_int16__pyx_f_5numpy_6random_17_bounded_integers__rand_int16__pyx_pyargnames.13870__pyx_f_5numpy_6random_17_bounded_integers__rand_int8__pyx_n_s_uint64__pyx_f_5numpy_6random_17_bounded_integers__rand_uint64__pyx_f_5numpy_6random_17_bounded_integers__rand_uint32__pyx_n_s_uint16__pyx_f_5numpy_6random_17_bounded_integers__rand_uint16__pyx_n_s_uint8__pyx_f_5numpy_6random_17_bounded_integers__rand_uint8__pyx_n_s_bool__pyx_f_5numpy_6random_17_bounded_integers__rand_bool__pyx_n_s_isnative__pyx_kp_u_Unsupported_dtype_r_for_integers__pyx_pw_5numpy_6random_10_generator_9Generator_89multivariate_hypergeometric__pyx_n_u_marginals__pyx_n_u_count__pyx_n_s_ascontiguousarray__pyx_n_s_isscalar__pyx_kp_u_colors_must_be_a_one_dimensional__pyx_n_s_colors__pyx_kp_u_nsample_must_not_exceed_d__pyx_n_s_issubdtype__pyx_pyargnames.17464__pyx_kp_u_sum_colors_must_not_exceed_the_m__pyx_kp_u_When_method_is_count_sum_colors__pyx_kp_u_Insufficient_memory_for_multivar__pyx_pw_5numpy_6random_10_generator_9Generator_93shuffle__pyx_n_s_strides__pyx_n_s_swapaxes__pyx_pyargnames.17983__pyx_builtin_NotImplementedError__pyx_memview_slice__pyx_n_s_start__pyx_n_s_stop__pyx_n_s_step__pyx_memoryview___getitem____pyx_pw_5numpy_6random_10_generator_9Generator_85multivariate_normal__pyx_n_u_warn__pyx_n_u_svd__pyx_float_1eneg_8__pyx_n_u_eigh__pyx_n_u_cholesky__pyx_n_s_standard_normal__pyx_n_s_reshape__pyx_n_s_double__pyx_n_s_svd__pyx_n_s_numpy_dual__pyx_n_u_ignore__pyx_n_u_raise__pyx_n_s_allclose__pyx_n_s_dot__pyx_n_s_T__pyx_n_s_rtol__pyx_n_s_atol__pyx_n_s_cov__pyx_n_s_check_valid__pyx_n_s_tol__pyx_pyargnames.16926__pyx_n_s_eigh__pyx_n_s_cholesky__pyx_n_s_sqrt__pyx_n_s_warnings__pyx_n_s_warn__pyx_pf_5numpy_6random_10_generator_9Generator_24choice__pyx_n_s_copy__pyx_n_s_item__pyx_n_s_finfo__pyx_n_s_eps__pyx_n_s_isnan__pyx_n_s_logical_or__pyx_n_s_reduce__pyx_n_s_prod__pyx_n_s_cumsum__pyx_n_s_random__pyx_n_s_searchsorted__pyx_n_u_right__pyx_n_s_side__pyx_n_s_floating__pyx_n_s_count_nonzero__pyx_n_s_ravel__pyx_n_s_unique__pyx_n_s_return_index__pyx_n_s_sort__pyx_n_s_take__pyx_int_20__pyx_n_s_full__Pyx_TypeInfo_nn_uint64_t__pyx_int_50__pyx_pw_5numpy_6random_10_generator_9Generator_25choice__pyx_n_s_replace__pyx_pyargnames.14098__pyx_moduledef__pyx_string_tab__pyx_n_s_main__pyx_n_s_range__pyx_n_s_ValueError__pyx_n_s_id__pyx_n_s_TypeError__pyx_n_s_OverflowError__pyx_n_s_RuntimeWarning__pyx_n_s_MemoryError__pyx_n_s_reversed__pyx_n_s_NotImplementedError__pyx_n_s_RuntimeError__pyx_n_s_ImportError__pyx_builtin_ImportError__pyx_n_s_enumerate__pyx_n_s_Ellipsis__pyx_n_s_IndexError__pyx_type_5numpy_6random_10_generator_Generatorgenericindirect_contiguous__pyx_vtable_5numpy_6random_10_generator_Generator__pyx_n_s_Generator__pyx_vtable_array__pyx_type___pyx_array__pyx_type___pyx_MemviewEnum__pyx_vtable_memoryview__pyx_type___pyx_memoryview__pyx_vtable__memoryviewslice__pyx_type___pyx_memoryviewslice__pyx_vp_5numpy_6random_7_common_POISSON_LAM_MAX__pyx_vp_5numpy_6random_7_common_LEGACY_POISSON_LAM_MAX__pyx_vp_5numpy_6random_7_common_MAXSIZE__pyx_n_s_numpy__pyx_n_s_numpy_core_multiarray__pyx_n_s_pcg64__pyx_n_s_poisson_lam_max__pyx_n_s_numpy_random__generator__pyx_mdef_5numpy_6random_10_generator_1default_rng__pyx_kp_u_random_size_None_dtype_np_float__pyx_kp_u_Generator_random_line_155__pyx_kp_u_standard_exponential_size_None__pyx_kp_u_Generator_standard_exponential_l__pyx_kp_u_integers_low_high_None_size_Non__pyx_kp_u_Generator_integers_line_362__pyx_kp_u_bytes_length_Return_random_byte__pyx_kp_u_Generator_bytes_line_489__pyx_kp_u_choice_a_size_None_replace_True__pyx_kp_u_Generator_choice_line_518__pyx_kp_u_uniform_low_0_0_high_1_0_size_N__pyx_kp_u_Generator_uniform_line_762__pyx_kp_u_standard_normal_size_None_dtype__pyx_kp_u_Generator_standard_normal_line_8__pyx_kp_u_normal_loc_0_0_scale_1_0_size_N__pyx_kp_u_Generator_normal_line_939__pyx_kp_u_standard_gamma_shape_size_None__pyx_kp_u_Generator_standard_gamma_line_10__pyx_kp_u_gamma_shape_scale_1_0_size_None__pyx_kp_u_Generator_gamma_line_1132__pyx_kp_u_f_dfnum_dfden_size_None_Draw_sa__pyx_kp_u_Generator_f_line_1210__pyx_kp_u_noncentral_f_dfnum_dfden_nonc_s__pyx_kp_u_Generator_noncentral_f_line_1298__pyx_kp_u_chisquare_df_size_None_Draw_sam__pyx_kp_u_Generator_chisquare_line_1376__pyx_kp_u_noncentral_chisquare_df_nonc_si__pyx_kp_u_Generator_noncentral_chisquare_l__pyx_kp_u_standard_cauchy_size_None_Draw__pyx_kp_u_Generator_standard_cauchy_line_1__pyx_kp_u_standard_t_df_size_None_Draw_sa__pyx_kp_u_Generator_standard_t_line_1589__pyx_kp_u_vonmises_mu_kappa_size_None_Dra__pyx_kp_u_Generator_vonmises_line_1683__pyx_kp_u_pareto_a_size_None_Draw_samples__pyx_kp_u_Generator_pareto_line_1766__pyx_kp_u_weibull_a_size_None_Draw_sample__pyx_kp_u_Generator_weibull_line_1864__pyx_kp_u_power_a_size_None_Draws_samples__pyx_kp_u_Generator_power_line_1963__pyx_kp_u_laplace_loc_0_0_scale_1_0_size__pyx_kp_u_Generator_laplace_line_2064__pyx_kp_u_gumbel_loc_0_0_scale_1_0_size_N__pyx_kp_u_Generator_gumbel_line_2149__pyx_kp_u_logistic_loc_0_0_scale_1_0_size__pyx_kp_u_Generator_logistic_line_2268__pyx_kp_u_lognormal_mean_0_0_sigma_1_0_si__pyx_kp_u_Generator_lognormal_line_2348__pyx_kp_u_rayleigh_scale_1_0_size_None_Dr__pyx_kp_u_Generator_rayleigh_line_2460__pyx_kp_u_wald_mean_scale_size_None_Draw__pyx_kp_u_Generator_wald_line_2529__pyx_kp_u_triangular_left_mode_right_size__pyx_kp_u_Generator_triangular_line_2597__pyx_kp_u_binomial_n_p_size_None_Draw_sam__pyx_kp_u_Generator_binomial_line_2697__pyx_kp_u_negative_binomial_n_p_size_None__pyx_kp_u_Generator_negative_binomial_line__pyx_kp_u_poisson_lam_1_0_size_None_Draw__pyx_kp_u_Generator_poisson_line_2917__pyx_kp_u_zipf_a_size_None_Draw_samples_f__pyx_kp_u_Generator_zipf_line_2989__pyx_kp_u_geometric_p_size_None_Draw_samp__pyx_kp_u_Generator_geometric_line_3069__pyx_kp_u_hypergeometric_ngood_nbad_nsamp__pyx_kp_u_Generator_hypergeometric_line_31__pyx_kp_u_logseries_p_size_None_Draw_samp__pyx_kp_u_Generator_logseries_line_3263__pyx_kp_u_multivariate_normal_mean_cov_si__pyx_kp_u_Generator_multivariate_normal_li__pyx_kp_u_multinomial_n_pvals_size_None_D__pyx_kp_u_Generator_multinomial_line_3548__pyx_kp_u_multivariate_hypergeometric_col__pyx_kp_u_Generator_multivariate_hypergeom__pyx_kp_u_dirichlet_alpha_size_None_Draw__pyx_kp_u_Generator_dirichlet_line_3915__pyx_kp_u_shuffle_x_axis_0_Modify_a_seque__pyx_kp_u_Generator_shuffle_line_4114__pyx_kp_u_permutation_x_axis_0_Randomly_p__pyx_kp_u_Generator_permutation_line_4256__pyx_n_s_test__pyx_n_s_pyx_getbuffer__pyx_t_4.21738__pyx_n_s_View_MemoryView__pyx_mdef_15View_dot_MemoryView_1__pyx_unpickle_Enum__pyx_k_ASCII__pyx_k_Axis_argument_is_only_supported__pyx_k_Buffer_view_does_not_expose_stri__pyx_k_Can_only_create_a_buffer_that_is__pyx_k_Cannot_assign_to_read_only_memor__pyx_k_Cannot_create_writable_memory_vi__pyx_k_Cannot_index_with_type_s__pyx_k_Cannot_take_a_larger_sample_than__pyx_k_Ellipsis__pyx_k_Empty_shape_tuple_for_cython_arr__pyx_k_Fewer_non_zero_entries_in_p_than__pyx_k_Format_string_allocated_too_shor__pyx_k_Format_string_allocated_too_shor_2__pyx_k_Generator__pyx_k_Generator_binomial_line_2697__pyx_k_Generator_bytes_line_489__pyx_k_Generator_chisquare_line_1376__pyx_k_Generator_choice_line_518__pyx_k_Generator_dirichlet_line_3915__pyx_k_Generator_f_line_1210__pyx_k_Generator_gamma_line_1132__pyx_k_Generator_geometric_line_3069__pyx_k_Generator_gumbel_line_2149__pyx_k_Generator_hypergeometric_line_31__pyx_k_Generator_integers_line_362__pyx_k_Generator_laplace_line_2064__pyx_k_Generator_logistic_line_2268__pyx_k_Generator_lognormal_line_2348__pyx_k_Generator_logseries_line_3263__pyx_k_Generator_multinomial_line_3548__pyx_k_Generator_multivariate_hypergeom__pyx_k_Generator_multivariate_normal_li__pyx_k_Generator_negative_binomial_line__pyx_k_Generator_noncentral_chisquare_l__pyx_k_Generator_noncentral_f_line_1298__pyx_k_Generator_normal_line_939__pyx_k_Generator_pareto_line_1766__pyx_k_Generator_permutation_line_4256__pyx_k_Generator_poisson_line_2917__pyx_k_Generator_power_line_1963__pyx_k_Generator_random_line_155__pyx_k_Generator_rayleigh_line_2460__pyx_k_Generator_shuffle_line_4114__pyx_k_Generator_standard_cauchy_line_1__pyx_k_Generator_standard_exponential_l__pyx_k_Generator_standard_gamma_line_10__pyx_k_Generator_standard_normal_line_8__pyx_k_Generator_standard_t_line_1589__pyx_k_Generator_triangular_line_2597__pyx_k_Generator_uniform_line_762__pyx_k_Generator_vonmises_line_1683__pyx_k_Generator_wald_line_2529__pyx_k_Generator_weibull_line_1864__pyx_k_Generator_zipf_line_2989__pyx_k_ImportError__pyx_k_Incompatible_checksums_s_vs_0xb0__pyx_k_IndexError__pyx_k_Indirect_dimensions_not_supporte__pyx_k_Insufficient_memory_for_multivar__pyx_k_Invalid_bit_generator_The_bit_ge__pyx_k_Invalid_mode_expected_c_or_fortr__pyx_k_Invalid_shape_in_axis_d_d__pyx_k_MemoryError__pyx_k_MemoryView_of_r_at_0x_x__pyx_k_MemoryView_of_r_object__pyx_k_Non_native_byte_order_not_suppor__pyx_k_NotImplementedError__pyx_k_O__pyx_k_Out_of_bounds_on_buffer_access_a__pyx_k_OverflowError__pyx_k_PCG64__pyx_k_PickleError__pyx_k_Providing_a_dtype_with_a_non_nat__pyx_k_Range_exceeds_valid_bounds__pyx_k_RuntimeError__pyx_k_RuntimeWarning__pyx_k_T__pyx_k_TypeError__pyx_k_Unable_to_convert_item_to_object__pyx_k_Unsupported_dtype_r_for_integers__pyx_k_Unsupported_dtype_r_for_random__pyx_k_Unsupported_dtype_r_for_standard__pyx_k_Unsupported_dtype_r_for_standard_2__pyx_k_Unsupported_dtype_r_for_standard_3__pyx_k_ValueError__pyx_k_View_MemoryView__pyx_k_When_method_is_count_sum_colors__pyx_k_When_method_is_marginals_sum_col__pyx_k__2__pyx_k__3__pyx_k__5__pyx_k_a__pyx_k_a_and_p_must_have_same_size__pyx_k_a_cannot_be_empty_unless_no_samp__pyx_k_a_must_an_array_or_an_integer__pyx_k_a_must_be_a_positive_integer_unl__pyx_k_add__pyx_k_all__pyx_k_allclose__pyx_k_allocate_buffer__pyx_k_alpha__pyx_k_alpha_0__pyx_k_any__pyx_k_arange__pyx_k_array__pyx_k_asarray__pyx_k_ascontiguousarray__pyx_k_astype__pyx_k_at_0x_X__pyx_k_atol__pyx_k_axis__pyx_k_b__pyx_k_base__pyx_k_binomial_n_p_size_None_Draw_sam__pyx_k_bit_generator__pyx_k_bool__pyx_k_both_ngood_and_nbad_must_be_less__pyx_k_bytes_length_Return_random_byte__pyx_k_c__pyx_k_capsule__pyx_k_check_valid__pyx_k_check_valid_must_equal_warn_rais__pyx_k_chisquare_df_size_None_Draw_sam__pyx_k_choice_a_size_None_replace_True__pyx_k_cholesky__pyx_k_class__pyx_k_cline_in_traceback__pyx_k_colors__pyx_k_colors_must_be_a_one_dimensional__pyx_k_compat__pyx_k_contiguous_and_direct__pyx_k_contiguous_and_indirect__pyx_k_copy__pyx_k_count__pyx_k_count_nonzero__pyx_k_cov__pyx_k_cov_must_be_2_dimensional_and_sq__pyx_k_covariance_is_not_positive_semid__pyx_k_cumsum__pyx_k_default_rng__pyx_k_df__pyx_k_dfden__pyx_k_dfnum__pyx_k_dict__pyx_k_dirichlet_alpha_size_None_Draw__pyx_k_dot__pyx_k_double__pyx_k_dtype__pyx_k_dtype_is_object__pyx_k_eigh__pyx_k_empty__pyx_k_empty_like__pyx_k_encode__pyx_k_endpoint__pyx_k_enter__pyx_k_enumerate__pyx_k_eps__pyx_k_equal__pyx_k_error__pyx_k_exit__pyx_k_f_dfnum_dfden_size_None_Draw_sa__pyx_k_finfo__pyx_k_flags__pyx_k_float32__pyx_k_float64__pyx_k_floating__pyx_k_format__pyx_k_fortran__pyx_k_full__pyx_k_gamma_shape_scale_1_0_size_None__pyx_k_generator_ctor__pyx_k_generator_pyx__pyx_k_geometric_p_size_None_Draw_samp__pyx_k_getstate__pyx_k_got_differing_extents_in_dimensi__pyx_k_greater__pyx_k_gumbel_loc_0_0_scale_1_0_size_N__pyx_k_high__pyx_k_hypergeometric_ngood_nbad_nsamp__pyx_k_id__pyx_k_ignore__pyx_n_s_imatmul__pyx_k_imatmul__pyx_n_s_import__pyx_k_import__pyx_k_index__pyx_k_int16__pyx_k_int32__pyx_k_int64__pyx_k_int8__pyx_k_integer__pyx_k_integers__pyx_k_integers_low_high_None_size_Non__pyx_k_intp__pyx_k_isfinite__pyx_k_isnan__pyx_k_isnative__pyx_k_isscalar__pyx_k_issubdtype__pyx_k_item__pyx_k_itemsize__pyx_k_itemsize_0_for_cython_array__pyx_k_kappa__pyx_k_lam__pyx_k_laplace_loc_0_0_scale_1_0_size__pyx_k_left__pyx_k_left_mode__pyx_k_left_right__pyx_k_less__pyx_k_less_equal__pyx_k_loc__pyx_k_lock__pyx_k_logical_or__pyx_k_logistic_loc_0_0_scale_1_0_size__pyx_k_lognormal_mean_0_0_sigma_1_0_si__pyx_k_logseries_p_size_None_Draw_samp__pyx_k_long__pyx_k_low__pyx_k_main__pyx_k_marginals__pyx_n_s_matmul__pyx_k_matmul__pyx_k_max__pyx_k_may_share_memory__pyx_k_mean__pyx_k_mean_and_cov_must_have_same_leng__pyx_k_mean_must_be_1_dimensional__pyx_k_memview__pyx_k_method__pyx_k_method_must_be_count_or_marginal__pyx_k_method_must_be_one_of_eigh_svd_c__pyx_k_mode__pyx_k_mode_right__pyx_k_mu__pyx_k_multinomial_n_pvals_size_None_D__pyx_k_multivariate_hypergeometric_col__pyx_k_multivariate_normal_mean_cov_si__pyx_k_n__pyx_k_name__pyx_k_name_2__pyx_k_nbad__pyx_k_ndim__pyx_k_negative_binomial_n_p_size_None__pyx_k_negative_dimensions_are_not_allo__pyx_k_new__pyx_k_ngood__pyx_k_ngood_nbad_nsample__pyx_k_no_default___reduce___due_to_non__pyx_k_nonc__pyx_k_noncentral_chisquare_df_nonc_si__pyx_k_noncentral_f_dfnum_dfden_nonc_s__pyx_k_normal_loc_0_0_scale_1_0_size_N__pyx_k_normalize_axis_index__pyx_k_np__pyx_k_nsample__pyx_k_nsample_must_be_an_integer__pyx_k_nsample_must_be_nonnegative__pyx_k_nsample_must_not_exceed_d__pyx_k_nsample_sum_colors__pyx_k_numpy__pyx_k_numpy_core_multiarray__pyx_k_numpy_core_multiarray_failed_to__pyx_k_numpy_core_umath_failed_to_impor__pyx_k_numpy_dual__pyx_k_numpy_random__generator__pyx_k_obj__pyx_k_operator__pyx_k_out__pyx_k_p__pyx_k_p_must_be_1_dimensional__pyx_k_pack__pyx_k_pareto_a_size_None_Draw_samples__pyx_k_pcg64__pyx_k_permutation_x_axis_0_Randomly_p__pyx_k_pickle__pyx_k_pickle_2__pyx_k_poisson_lam_1_0_size_None_Draw__pyx_k_poisson_lam_max__pyx_k_power_a_size_None_Draws_samples__pyx_k_probabilities_are_not_non_negati__pyx_k_probabilities_contain_NaN__pyx_k_probabilities_do_not_sum_to_1__pyx_k_prod__pyx_k_pvals__pyx_k_pyx_PickleError__pyx_k_pyx_checksum__pyx_k_pyx_getbuffer__pyx_k_pyx_result__pyx_k_pyx_state__pyx_k_pyx_type__pyx_k_pyx_unpickle_Enum__pyx_k_pyx_vtable__pyx_k_raise__pyx_k_random__pyx_k_random_size_None_dtype_np_float__pyx_k_range__pyx_k_ravel__pyx_k_rayleigh_scale_1_0_size_None_Dr__pyx_k_reduce__pyx_k_reduce_2__pyx_k_reduce_cython__pyx_k_reduce_ex__pyx_k_replace__pyx_k_reshape__pyx_k_return_index__pyx_k_reversed__pyx_k_right__pyx_n_s_rmatmul__pyx_k_rmatmul__pyx_k_rtol__pyx_k_scale__pyx_k_searchsorted__pyx_k_seed__pyx_k_setstate__pyx_k_setstate_cython__pyx_k_shape__pyx_k_shuffle__pyx_k_shuffle_x_axis_0_Modify_a_seque__pyx_k_side__pyx_k_sigma__pyx_k_size__pyx_k_sort__pyx_k_sqrt__pyx_k_standard_cauchy_size_None_Draw__pyx_k_standard_exponential_size_None__pyx_k_standard_gamma_shape_size_None__pyx_k_standard_normal__pyx_k_standard_normal_size_None_dtype__pyx_k_standard_t_df_size_None_Draw_sa__pyx_k_start__pyx_k_state__pyx_k_step__pyx_k_stop__pyx_k_str__pyx_k_strided_and_direct__pyx_k_strided_and_direct_or_indirect__pyx_k_strided_and_indirect__pyx_k_strides__pyx_k_stringsource__pyx_k_struct__pyx_k_subtract__pyx_k_sum_colors_must_not_exceed_the_m__pyx_k_sum_pvals_1_1_0__pyx_k_svd__pyx_k_swapaxes__pyx_k_take__pyx_k_test__pyx_k_tobytes__pyx_k_tol__pyx_k_triangular_left_mode_right_size__pyx_k_u4__pyx_k_uint16__pyx_k_uint32__pyx_k_uint64__pyx_k_uint8__pyx_k_unable_to_allocate_array_data__pyx_k_unable_to_allocate_shape_and_str__pyx_k_uniform_low_0_0_high_1_0_size_N__pyx_k_unique__pyx_kp_u_unknown_dtype_code_in_numpy_pxd__pyx_k_unknown_dtype_code_in_numpy_pxd__pyx_k_unpack__pyx_k_update__pyx_k_vonmises_mu_kappa_size_None_Dra__pyx_k_wald_mean_scale_size_None_Draw__pyx_k_warn__pyx_k_warnings__pyx_k_weibull_a_size_None_Draw_sample__pyx_k_x__pyx_k_zeros__pyx_k_zig__pyx_k_zipf_a_size_None_Draw_samples_f__pyx_methods__pyx_methods__memoryviewslice__pyx_getsets__memoryviewslice__pyx_tp_as_sequence_memoryview__pyx_tp_as_mapping_memoryview__pyx_tp_as_buffer_memoryview__pyx_methods_memoryview__pyx_getsets_memoryview__pyx_methods_Enum__pyx_tp_as_sequence_array__pyx_tp_as_mapping_array__pyx_tp_as_buffer_array__pyx_methods_array__pyx_getsets_array__pyx_methods_5numpy_6random_10_generator_Generator__pyx_getsets_5numpy_6random_10_generator_Generator__pyx_doc_5numpy_6random_10_generator_9Generator_12random__pyx_doc_5numpy_6random_10_generator_9Generator_14beta__pyx_doc_5numpy_6random_10_generator_9Generator_16exponential__pyx_doc_5numpy_6random_10_generator_9Generator_18standard_exponential__pyx_doc_5numpy_6random_10_generator_9Generator_20integers__pyx_doc_5numpy_6random_10_generator_9Generator_22bytes__pyx_doc_5numpy_6random_10_generator_9Generator_24choice__pyx_doc_5numpy_6random_10_generator_9Generator_26uniform__pyx_doc_5numpy_6random_10_generator_9Generator_28standard_normal__pyx_doc_5numpy_6random_10_generator_9Generator_30normal__pyx_doc_5numpy_6random_10_generator_9Generator_32standard_gamma__pyx_doc_5numpy_6random_10_generator_9Generator_34gamma__pyx_doc_5numpy_6random_10_generator_9Generator_36f__pyx_doc_5numpy_6random_10_generator_9Generator_38noncentral_f__pyx_doc_5numpy_6random_10_generator_9Generator_40chisquare__pyx_doc_5numpy_6random_10_generator_9Generator_42noncentral_chisquare__pyx_doc_5numpy_6random_10_generator_9Generator_44standard_cauchy__pyx_doc_5numpy_6random_10_generator_9Generator_46standard_t__pyx_doc_5numpy_6random_10_generator_9Generator_48vonmises__pyx_doc_5numpy_6random_10_generator_9Generator_50pareto__pyx_doc_5numpy_6random_10_generator_9Generator_52weibull__pyx_doc_5numpy_6random_10_generator_9Generator_54power__pyx_doc_5numpy_6random_10_generator_9Generator_56laplace__pyx_doc_5numpy_6random_10_generator_9Generator_58gumbel__pyx_doc_5numpy_6random_10_generator_9Generator_60logistic__pyx_doc_5numpy_6random_10_generator_9Generator_62lognormal__pyx_doc_5numpy_6random_10_generator_9Generator_64rayleigh__pyx_doc_5numpy_6random_10_generator_9Generator_66wald__pyx_doc_5numpy_6random_10_generator_9Generator_68triangular__pyx_doc_5numpy_6random_10_generator_9Generator_70binomial__pyx_doc_5numpy_6random_10_generator_9Generator_72negative_binomial__pyx_doc_5numpy_6random_10_generator_9Generator_74poisson__pyx_doc_5numpy_6random_10_generator_9Generator_76zipf__pyx_doc_5numpy_6random_10_generator_9Generator_78geometric__pyx_doc_5numpy_6random_10_generator_9Generator_80hypergeometric__pyx_doc_5numpy_6random_10_generator_9Generator_82logseries__pyx_doc_5numpy_6random_10_generator_9Generator_84multivariate_normal__pyx_doc_5numpy_6random_10_generator_9Generator_86multinomial__pyx_doc_5numpy_6random_10_generator_9Generator_88multivariate_hypergeometric__pyx_doc_5numpy_6random_10_generator_9Generator_90dirichlet__pyx_doc_5numpy_6random_10_generator_9Generator_92shuffle__pyx_doc_5numpy_6random_10_generator_9Generator_94permutation__pyx_doc_5numpy_6random_10_generator_default_rngcrtstuff.cderegister_tm_clones__do_global_dtors_auxcompleted.7182__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entrydistributions.cfe_doublewe_doubleke_doublefe_floatwe_floatke_floatwi_doubleki_doublefi_doublewi_floatki_floatfi_floatrandom_positive_int64.localalias.11a.9939random_mvhg_count.crandom_mvhg_marginals.crandom_hypergeometric.clogfactorial.clogfact__FRAME_END____dso_handle_DYNAMIC__GNU_EH_FRAME_HDR__TMC_END___GLOBAL_OFFSET_TABLE_PyPyFloat_FromDoublePyPyObject_IsSubclassPyPyIndex_CheckPyPyImport_ImportModuleLevelObjectPyPyOS_snprintfrandom_laplace_PyPy_EllipsisObjectPyPyLong_FromSize_tPyPyExc_TypeErrorfree@@GLIBC_2.2.5random_buffered_bounded_boolPyPyDict_SetItemrandom_geometric_inversionPyPyExc_BaseExceptionPyPySequence_ListPyPyErr_SetObjectrandom_weibullPyPyDict_GetItemrandom_f_ITM_deregisterTMCloneTablePyPyNumber_MatrixMultiplyPyPyLong_AsLongPyPyModule_GetDict_PyPy_Deallocrandom_multivariate_hypergeometric_countPyPyExc_NotImplementedErrorPyPySequence_GetItemPyPyNumber_OrPyPyMem_MallocPyPyDict_GetItemStringPyPyObject_SetAttrStringrandom_negative_binomialrandom_standard_cauchy__isnan@@GLIBC_2.2.5PyPyThread_allocate_lockPyPyNumber_SubtractPyPyNumber_InPlaceTrueDividePyPyFloat_Typevsnprintf@@GLIBC_2.2.5exp@@GLIBC_2.2.5PyPyImport_ImportModulePyPyLong_FromLongrandom_standard_exponential_fill_fPyPyErr_NormalizeExceptionPyPyFloat_AsDoublePyPyDict_Nextrandom_standard_gamma_edatarandom_binomial_btpePyPyNumber_FloorDividePyPyExc_ZeroDivisionErrorPyPyUnicode_FromFormat__pyx_module_is_main_numpy__random___generatorrandom_logseriesPyPyObject_GetItemPyPyUnicode_InternFromStringPyPyUnicode_FromStringrandom_rayleighPyPyFloat_AS_DOUBLEPyPyDict_SetItemStringPyPyCapsule_Newrandom_standard_exponentialPyPyObject_GenericGetAttrrandom_uniformrandom_poisson_finistrlen@@GLIBC_2.2.5PyPyUnicode_ComparePyPyThread_free_lockrandom_bounded_uint64_fillPyPyTuple_TypePyPyNumber_RemainderPyPyGILState_EnsurePyPyUnicode_DecodePyPyExc_ValueErrorrandom_bounded_uint16_fillPyPyLong_AsUnsignedLongPyPyObject_GetAttrStringPyPyDict_SizePyPyList_SetSlicerandom_multinomialPyPyObject_IsTruePyPyCapsule_Typerandom_logisticPyPyBytes_TypePyPyErr_ClearPyPyExc_RuntimeErrorrandom_standard_uniform_fill_fPyPyErr_ExceptionMatchesrandom_bounded_uint64PyPyDict_Newpow@@GLIBC_2.2.5PyPyLong_FromStringrandom_positive_intPyPyBytes_AS_STRINGPyPyObject_Hashlog@@GLIBC_2.2.5random_standard_gamma_frandom_triangularPyPyDict_DelItemrandom_buffered_bounded_uint32PyPyErr_WarnFormatPyPyExc_AttributeErrorfmod@@GLIBC_2.2.5PyPyErr_GivenExceptionMatchesrandom_powerPyPyCapsule_IsValidrandom_bounded_uint8_fillPyPyLong_TypePyPyLong_AsSsize_trandom_noncentral_frandom_standard_exponential_inv_fill_fPyPyNumber_LongPyPyObject_SizePyPyErr_RestorePyPyObject_MallocPyPyErr_SetNoneacos@@GLIBC_2.2.5PyPyExc_BufferErrorPyPyBuffer_ReleasePyPyEval_RestoreThreadPyPyType_ReadyPyPyMem_FreePyPyList_TypePyPyObject_GetBufferPyPyErr_SetStringPyPyExc_OverflowErrorrandom_buffered_bounded_uint8logfactorialPyPyBytes_Sizememcpy@@GLIBC_2.2.5PyPyBytes_FromStringAndSizePyPyEval_SaveThreadPyPyCode_Newrandom_betaPyPyImport_AddModulePyPyCapsule_GetNamePyPyUnicode_CheckPyPyExc_DeprecationWarningPyPyList_AsTuple__gmon_start__random_exponentialexpf@@GLIBC_2.2.5PyPyObject_NotPyPyErr_FetchPyPyErr_GetExcInforandom_hypergeometricPyPyList_SET_ITEMPyPyErr_NoMemoryPyPyObject_HasAttrrandom_gammaPyPyList_AppendPyPyLong_FromUnsignedLongPyPyErr_WriteUnraisablerandom_standard_uniform_fPyPyObject_CallPyPyNumber_AddPyPyNumber_IndexPyPyErr_SetExcInforandom_loggamPyInit__generatorPyPyExc_StopIterationPyPyGILState_Releasesqrtf@@GLIBC_2.2.5PyPySequence_SetItemPyPyThreadState_Getrandom_gamma_frandom_zipfPyPySequence_Sizepowf@@GLIBC_2.2.5malloc@@GLIBC_2.2.5random_standard_exponential_fPyPyMem_ReallocPyPyNumber_Absoluterandom_paretoPyPyTuple_New_endPyPyObject_SetAttrrandom_positive_int64PyPyUnicode_DecodeASCIIPyPyModule_GetNamerandom_geometric_searchPyPyNumber_Negativerandom_standard_t_PyPy_NoneStructPyPyCapsule_GetPointer_PyPy_FalseStructPyPyNumber_MultiplyPyPyObject_Freerandom_vonmisesrandom_bounded_uint32_fillrandom_standard_normal_frandom_positive_int32random_standard_uniformPyPyUnicode_FromStringAndSizePyPyExc_NameError__bss_startPyPyBool_Typelogf@@GLIBC_2.2.5random_normalrandom_chisquarePyPyExc_ExceptionPyPyObject_GetIterrandom_standard_exponential_fillrandom_intervalrandom_waldPyPyUnicode_CheckExactPyPySequence_Checkrandom_noncentral_chisquarePyPyType_ModifiedPyPyModule_Create2PyPyErr_PrintExPyPyTuple_Packrandom_standard_normalPyPySequence_ITEMPyPySlice_NewPyPyNumber_InPlaceAddPyPyObject_RichCompareBoolrandom_standard_exponential_inv_fillPyPyBaseObject_TypePyPyFrame_Newrandom_lognormalrandom_buffered_bounded_uint16PyPyObject_SetItemPyPyErr_FormatPyPyExc_AssertionErrorrandom_binomialrandom_uintrandom_gumbelPyPyErr_WarnExPyPyNumber_InPlaceMultiplyrandom_standard_uniform_fillPyPyErr_OccurredPyPyTraceBack_HerePyPyLong_FromSsize_trandom_standard_normal_fill_ffloor@@GLIBC_2.2.5PyPyExc_SystemErrorPyPy_FatalErrorPyPyList_Newrandom_bounded_bool_fillPyPyType_IsSubtyperandom_binomial_inversion_ITM_registerTMCloneTablePyPyExc_ImportErrorPyPySequence_Tuplerandom_multivariate_hypergeometric_marginalsPyPyCFunction_NewExPyPy_OptimizeFlagPyPyException_SetTracebacksqrt@@GLIBC_2.2.5PyPyObject_DelItemPyPy_GetVersionPyPyObject_IsInstancerandom_geometricPyPyObject_RichComparePyPyList_GET_SIZEPyPyBytes_FromStringceil@@GLIBC_2.2.5PyPyUnicode_FormatPyPyImport_GetModuleDictPyPyExc_UnboundLocalError_PyPy_TrueStruct__cxa_finalize@@GLIBC_2.2.5_initrandom_standard_normal_fillPyPySlice_TypePyPyObject_GetAttr.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.data.rel.ro.dynamic.got.got.plt.data.bss.commentÈÈ$.öÿÿoðð8€€P@ÐÐFHÿÿÿo22Uþÿÿo8484@dx4x4 vnB˜ª˜ª(x;;sлл€~PÇPǔÌ„ä“ä“	Š””Hx ’HHì 88ÄJª¸k(¸k¶Àk(ÀkÂÈk(ÈkÏÐk(ÐkàØ°m(°mPÝp(pÐæàu(àu(4 ì ª*ª
@ ñ0ª
Yhª
ó	h:œŸÚú