Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
pandas / tests / groupby / test_timegrouper.py
Size: Mime:
""" test with the TimeGrouper / grouping with datetimes """

import pytest
import pytz

from datetime import datetime
import numpy as np
from numpy import nan

import pandas as pd
from pandas import (DataFrame, date_range, Index,
                    Series, MultiIndex, Timestamp, DatetimeIndex)
from pandas.compat import StringIO
from pandas.util import testing as tm
from pandas.util.testing import assert_frame_equal, assert_series_equal


class TestGroupBy(object):

    def test_groupby_with_timegrouper(self):
        # GH 4161
        # TimeGrouper requires a sorted index
        # also verifies that the resultant index has the correct name
        df_original = DataFrame({
            'Buyer': 'Carl Carl Carl Carl Joe Carl'.split(),
            'Quantity': [18, 3, 5, 1, 9, 3],
            'Date': [
                datetime(2013, 9, 1, 13, 0),
                datetime(2013, 9, 1, 13, 5),
                datetime(2013, 10, 1, 20, 0),
                datetime(2013, 10, 3, 10, 0),
                datetime(2013, 12, 2, 12, 0),
                datetime(2013, 9, 2, 14, 0),
            ]
        })

        # GH 6908 change target column's order
        df_reordered = df_original.sort_values(by='Quantity')

        for df in [df_original, df_reordered]:
            df = df.set_index(['Date'])

            expected = DataFrame(
                {'Quantity': 0},
                index=date_range('20130901 13:00:00',
                                 '20131205 13:00:00', freq='5D',
                                 name='Date', closed='left'))
            expected.iloc[[0, 6, 18], 0] = np.array([24, 6, 9], dtype='int64')

            result1 = df.resample('5D') .sum()
            assert_frame_equal(result1, expected)

            df_sorted = df.sort_index()
            result2 = df_sorted.groupby(pd.Grouper(freq='5D')).sum()
            assert_frame_equal(result2, expected)

            result3 = df.groupby(pd.Grouper(freq='5D')).sum()
            assert_frame_equal(result3, expected)

    @pytest.mark.parametrize("should_sort", [True, False])
    def test_groupby_with_timegrouper_methods(self, should_sort):
        # GH 3881
        # make sure API of timegrouper conforms

        df = pd.DataFrame({
            'Branch': 'A A A A A B'.split(),
            'Buyer': 'Carl Mark Carl Joe Joe Carl'.split(),
            'Quantity': [1, 3, 5, 8, 9, 3],
            'Date': [
                datetime(2013, 1, 1, 13, 0),
                datetime(2013, 1, 1, 13, 5),
                datetime(2013, 10, 1, 20, 0),
                datetime(2013, 10, 2, 10, 0),
                datetime(2013, 12, 2, 12, 0),
                datetime(2013, 12, 2, 14, 0),
            ]
        })

        if should_sort:
            df = df.sort_values(by='Quantity', ascending=False)

        df = df.set_index('Date', drop=False)
        g = df.groupby(pd.Grouper(freq='6M'))
        assert g.group_keys

        import pandas.core.groupby.groupby
        assert isinstance(g.grouper, pandas.core.groupby.groupby.BinGrouper)
        groups = g.groups
        assert isinstance(groups, dict)
        assert len(groups) == 3

    def test_timegrouper_with_reg_groups(self):

        # GH 3794
        # allow combinateion of timegrouper/reg groups

        df_original = DataFrame({
            'Branch': 'A A A A A A A B'.split(),
            'Buyer': 'Carl Mark Carl Carl Joe Joe Joe Carl'.split(),
            'Quantity': [1, 3, 5, 1, 8, 1, 9, 3],
            'Date': [
                datetime(2013, 1, 1, 13, 0),
                datetime(2013, 1, 1, 13, 5),
                datetime(2013, 10, 1, 20, 0),
                datetime(2013, 10, 2, 10, 0),
                datetime(2013, 10, 1, 20, 0),
                datetime(2013, 10, 2, 10, 0),
                datetime(2013, 12, 2, 12, 0),
                datetime(2013, 12, 2, 14, 0),
            ]
        }).set_index('Date')

        df_sorted = df_original.sort_values(by='Quantity', ascending=False)

        for df in [df_original, df_sorted]:
            expected = DataFrame({
                'Buyer': 'Carl Joe Mark'.split(),
                'Quantity': [10, 18, 3],
                'Date': [
                    datetime(2013, 12, 31, 0, 0),
                    datetime(2013, 12, 31, 0, 0),
                    datetime(2013, 12, 31, 0, 0),
                ]
            }).set_index(['Date', 'Buyer'])

            result = df.groupby([pd.Grouper(freq='A'), 'Buyer']).sum()
            assert_frame_equal(result, expected)

            expected = DataFrame({
                'Buyer': 'Carl Mark Carl Joe'.split(),
                'Quantity': [1, 3, 9, 18],
                'Date': [
                    datetime(2013, 1, 1, 0, 0),
                    datetime(2013, 1, 1, 0, 0),
                    datetime(2013, 7, 1, 0, 0),
                    datetime(2013, 7, 1, 0, 0),
                ]
            }).set_index(['Date', 'Buyer'])
            result = df.groupby([pd.Grouper(freq='6MS'), 'Buyer']).sum()
            assert_frame_equal(result, expected)

        df_original = DataFrame({
            'Branch': 'A A A A A A A B'.split(),
            'Buyer': 'Carl Mark Carl Carl Joe Joe Joe Carl'.split(),
            'Quantity': [1, 3, 5, 1, 8, 1, 9, 3],
            'Date': [
                datetime(2013, 10, 1, 13, 0),
                datetime(2013, 10, 1, 13, 5),
                datetime(2013, 10, 1, 20, 0),
                datetime(2013, 10, 2, 10, 0),
                datetime(2013, 10, 1, 20, 0),
                datetime(2013, 10, 2, 10, 0),
                datetime(2013, 10, 2, 12, 0),
                datetime(2013, 10, 2, 14, 0),
            ]
        }).set_index('Date')

        df_sorted = df_original.sort_values(by='Quantity', ascending=False)
        for df in [df_original, df_sorted]:

            expected = DataFrame({
                'Buyer': 'Carl Joe Mark Carl Joe'.split(),
                'Quantity': [6, 8, 3, 4, 10],
                'Date': [
                    datetime(2013, 10, 1, 0, 0),
                    datetime(2013, 10, 1, 0, 0),
                    datetime(2013, 10, 1, 0, 0),
                    datetime(2013, 10, 2, 0, 0),
                    datetime(2013, 10, 2, 0, 0),
                ]
            }).set_index(['Date', 'Buyer'])

            result = df.groupby([pd.Grouper(freq='1D'), 'Buyer']).sum()
            assert_frame_equal(result, expected)

            result = df.groupby([pd.Grouper(freq='1M'), 'Buyer']).sum()
            expected = DataFrame({
                'Buyer': 'Carl Joe Mark'.split(),
                'Quantity': [10, 18, 3],
                'Date': [
                    datetime(2013, 10, 31, 0, 0),
                    datetime(2013, 10, 31, 0, 0),
                    datetime(2013, 10, 31, 0, 0),
                ]
            }).set_index(['Date', 'Buyer'])
            assert_frame_equal(result, expected)

            # passing the name
            df = df.reset_index()
            result = df.groupby([pd.Grouper(freq='1M', key='Date'), 'Buyer'
                                 ]).sum()
            assert_frame_equal(result, expected)

            with pytest.raises(KeyError):
                df.groupby([pd.Grouper(freq='1M', key='foo'), 'Buyer']).sum()

            # passing the level
            df = df.set_index('Date')
            result = df.groupby([pd.Grouper(freq='1M', level='Date'), 'Buyer'
                                 ]).sum()
            assert_frame_equal(result, expected)
            result = df.groupby([pd.Grouper(freq='1M', level=0), 'Buyer']).sum(
            )
            assert_frame_equal(result, expected)

            with pytest.raises(ValueError):
                df.groupby([pd.Grouper(freq='1M', level='foo'),
                            'Buyer']).sum()

            # multi names
            df = df.copy()
            df['Date'] = df.index + pd.offsets.MonthEnd(2)
            result = df.groupby([pd.Grouper(freq='1M', key='Date'), 'Buyer'
                                 ]).sum()
            expected = DataFrame({
                'Buyer': 'Carl Joe Mark'.split(),
                'Quantity': [10, 18, 3],
                'Date': [
                    datetime(2013, 11, 30, 0, 0),
                    datetime(2013, 11, 30, 0, 0),
                    datetime(2013, 11, 30, 0, 0),
                ]
            }).set_index(['Date', 'Buyer'])
            assert_frame_equal(result, expected)

            # error as we have both a level and a name!
            with pytest.raises(ValueError):
                df.groupby([pd.Grouper(freq='1M', key='Date',
                                       level='Date'), 'Buyer']).sum()

            # single groupers
            expected = DataFrame({'Quantity': [31],
                                  'Date': [datetime(2013, 10, 31, 0, 0)
                                           ]}).set_index('Date')
            result = df.groupby(pd.Grouper(freq='1M')).sum()
            assert_frame_equal(result, expected)

            result = df.groupby([pd.Grouper(freq='1M')]).sum()
            assert_frame_equal(result, expected)

            expected = DataFrame({'Quantity': [31],
                                  'Date': [datetime(2013, 11, 30, 0, 0)
                                           ]}).set_index('Date')
            result = df.groupby(pd.Grouper(freq='1M', key='Date')).sum()
            assert_frame_equal(result, expected)

            result = df.groupby([pd.Grouper(freq='1M', key='Date')]).sum()
            assert_frame_equal(result, expected)

    @pytest.mark.parametrize('freq', ['D', 'M', 'A', 'Q-APR'])
    def test_timegrouper_with_reg_groups_freq(self, freq):
        # GH 6764 multiple grouping with/without sort
        df = DataFrame({
            'date': pd.to_datetime([
                '20121002', '20121007', '20130130', '20130202', '20130305',
                '20121002', '20121207', '20130130', '20130202', '20130305',
                '20130202', '20130305'
            ]),
            'user_id': [1, 1, 1, 1, 1, 3, 3, 3, 5, 5, 5, 5],
            'whole_cost': [1790, 364, 280, 259, 201, 623, 90, 312, 359, 301,
                           359, 801],
            'cost1': [12, 15, 10, 24, 39, 1, 0, 90, 45, 34, 1, 12]
        }).set_index('date')

        expected = (
            df.groupby('user_id')['whole_cost']
              .resample(freq)
              .sum(min_count=1)  # XXX
              .dropna()
              .reorder_levels(['date', 'user_id'])
              .sort_index()
              .astype('int64')
        )
        expected.name = 'whole_cost'

        result1 = df.sort_index().groupby([pd.Grouper(freq=freq),
                                           'user_id'])['whole_cost'].sum()
        assert_series_equal(result1, expected)

        result2 = df.groupby([pd.Grouper(freq=freq), 'user_id'])[
            'whole_cost'].sum()
        assert_series_equal(result2, expected)

    def test_timegrouper_get_group(self):
        # GH 6914

        df_original = DataFrame({
            'Buyer': 'Carl Joe Joe Carl Joe Carl'.split(),
            'Quantity': [18, 3, 5, 1, 9, 3],
            'Date': [datetime(2013, 9, 1, 13, 0),
                     datetime(2013, 9, 1, 13, 5),
                     datetime(2013, 10, 1, 20, 0),
                     datetime(2013, 10, 3, 10, 0),
                     datetime(2013, 12, 2, 12, 0),
                     datetime(2013, 9, 2, 14, 0), ]
        })
        df_reordered = df_original.sort_values(by='Quantity')

        # single grouping
        expected_list = [df_original.iloc[[0, 1, 5]], df_original.iloc[[2, 3]],
                         df_original.iloc[[4]]]
        dt_list = ['2013-09-30', '2013-10-31', '2013-12-31']

        for df in [df_original, df_reordered]:
            grouped = df.groupby(pd.Grouper(freq='M', key='Date'))
            for t, expected in zip(dt_list, expected_list):
                dt = pd.Timestamp(t)
                result = grouped.get_group(dt)
                assert_frame_equal(result, expected)

        # multiple grouping
        expected_list = [df_original.iloc[[1]], df_original.iloc[[3]],
                         df_original.iloc[[4]]]
        g_list = [('Joe', '2013-09-30'), ('Carl', '2013-10-31'),
                  ('Joe', '2013-12-31')]

        for df in [df_original, df_reordered]:
            grouped = df.groupby(['Buyer', pd.Grouper(freq='M', key='Date')])
            for (b, t), expected in zip(g_list, expected_list):
                dt = pd.Timestamp(t)
                result = grouped.get_group((b, dt))
                assert_frame_equal(result, expected)

        # with index
        df_original = df_original.set_index('Date')
        df_reordered = df_original.sort_values(by='Quantity')

        expected_list = [df_original.iloc[[0, 1, 5]], df_original.iloc[[2, 3]],
                         df_original.iloc[[4]]]

        for df in [df_original, df_reordered]:
            grouped = df.groupby(pd.Grouper(freq='M'))
            for t, expected in zip(dt_list, expected_list):
                dt = pd.Timestamp(t)
                result = grouped.get_group(dt)
                assert_frame_equal(result, expected)

    def test_timegrouper_apply_return_type_series(self):
        # Using `apply` with the `TimeGrouper` should give the
        # same return type as an `apply` with a `Grouper`.
        # Issue #11742
        df = pd.DataFrame({'date': ['10/10/2000', '11/10/2000'],
                           'value': [10, 13]})
        df_dt = df.copy()
        df_dt['date'] = pd.to_datetime(df_dt['date'])

        def sumfunc_series(x):
            return pd.Series([x['value'].sum()], ('sum',))

        expected = df.groupby(pd.Grouper(key='date')).apply(sumfunc_series)
        result = (df_dt.groupby(pd.Grouper(freq='M', key='date'))
                  .apply(sumfunc_series))
        assert_frame_equal(result.reset_index(drop=True),
                           expected.reset_index(drop=True))

    def test_timegrouper_apply_return_type_value(self):
        # Using `apply` with the `TimeGrouper` should give the
        # same return type as an `apply` with a `Grouper`.
        # Issue #11742
        df = pd.DataFrame({'date': ['10/10/2000', '11/10/2000'],
                           'value': [10, 13]})
        df_dt = df.copy()
        df_dt['date'] = pd.to_datetime(df_dt['date'])

        def sumfunc_value(x):
            return x.value.sum()

        expected = df.groupby(pd.Grouper(key='date')).apply(sumfunc_value)
        with tm.assert_produces_warning(FutureWarning,
                                        check_stacklevel=False):
            result = (df_dt.groupby(pd.TimeGrouper(freq='M', key='date'))
                      .apply(sumfunc_value))
        assert_series_equal(result.reset_index(drop=True),
                            expected.reset_index(drop=True))

    def test_groupby_groups_datetimeindex(self):
        # #1430
        periods = 1000
        ind = DatetimeIndex(start='2012/1/1', freq='5min', periods=periods)
        df = DataFrame({'high': np.arange(periods),
                        'low': np.arange(periods)}, index=ind)
        grouped = df.groupby(lambda x: datetime(x.year, x.month, x.day))

        # it works!
        groups = grouped.groups
        assert isinstance(list(groups.keys())[0], datetime)

        # GH 11442
        index = pd.date_range('2015/01/01', periods=5, name='date')
        df = pd.DataFrame({'A': [5, 6, 7, 8, 9],
                           'B': [1, 2, 3, 4, 5]}, index=index)
        result = df.groupby(level='date').groups
        dates = ['2015-01-05', '2015-01-04', '2015-01-03',
                 '2015-01-02', '2015-01-01']
        expected = {pd.Timestamp(date): pd.DatetimeIndex([date], name='date')
                    for date in dates}
        tm.assert_dict_equal(result, expected)

        grouped = df.groupby(level='date')
        for date in dates:
            result = grouped.get_group(date)
            data = [[df.loc[date, 'A'], df.loc[date, 'B']]]
            expected_index = pd.DatetimeIndex([date], name='date')
            expected = pd.DataFrame(data,
                                    columns=list('AB'),
                                    index=expected_index)
            tm.assert_frame_equal(result, expected)

    def test_groupby_groups_datetimeindex_tz(self):
        # GH 3950
        dates = ['2011-07-19 07:00:00', '2011-07-19 08:00:00',
                 '2011-07-19 09:00:00', '2011-07-19 07:00:00',
                 '2011-07-19 08:00:00', '2011-07-19 09:00:00']
        df = DataFrame({'label': ['a', 'a', 'a', 'b', 'b', 'b'],
                        'datetime': dates,
                        'value1': np.arange(6, dtype='int64'),
                        'value2': [1, 2] * 3})
        df['datetime'] = df['datetime'].apply(
            lambda d: Timestamp(d, tz='US/Pacific'))

        exp_idx1 = pd.DatetimeIndex(['2011-07-19 07:00:00',
                                     '2011-07-19 07:00:00',
                                     '2011-07-19 08:00:00',
                                     '2011-07-19 08:00:00',
                                     '2011-07-19 09:00:00',
                                     '2011-07-19 09:00:00'],
                                    tz='US/Pacific', name='datetime')
        exp_idx2 = Index(['a', 'b'] * 3, name='label')
        exp_idx = MultiIndex.from_arrays([exp_idx1, exp_idx2])
        expected = DataFrame({'value1': [0, 3, 1, 4, 2, 5],
                              'value2': [1, 2, 2, 1, 1, 2]},
                             index=exp_idx, columns=['value1', 'value2'])

        result = df.groupby(['datetime', 'label']).sum()
        assert_frame_equal(result, expected)

        # by level
        didx = pd.DatetimeIndex(dates, tz='Asia/Tokyo')
        df = DataFrame({'value1': np.arange(6, dtype='int64'),
                        'value2': [1, 2, 3, 1, 2, 3]},
                       index=didx)

        exp_idx = pd.DatetimeIndex(['2011-07-19 07:00:00',
                                    '2011-07-19 08:00:00',
                                    '2011-07-19 09:00:00'], tz='Asia/Tokyo')
        expected = DataFrame({'value1': [3, 5, 7], 'value2': [2, 4, 6]},
                             index=exp_idx, columns=['value1', 'value2'])

        result = df.groupby(level=0).sum()
        assert_frame_equal(result, expected)

    def test_frame_datetime64_handling_groupby(self):
        # it works!
        df = DataFrame([(3, np.datetime64('2012-07-03')),
                        (3, np.datetime64('2012-07-04'))],
                       columns=['a', 'date'])
        result = df.groupby('a').first()
        assert result['date'][3] == Timestamp('2012-07-03')

    def test_groupby_multi_timezone(self):

        # combining multiple / different timezones yields UTC

        data = """0,2000-01-28 16:47:00,America/Chicago
1,2000-01-29 16:48:00,America/Chicago
2,2000-01-30 16:49:00,America/Los_Angeles
3,2000-01-31 16:50:00,America/Chicago
4,2000-01-01 16:50:00,America/New_York"""

        df = pd.read_csv(StringIO(data), header=None,
                         names=['value', 'date', 'tz'])
        result = df.groupby('tz').date.apply(
            lambda x: pd.to_datetime(x).dt.tz_localize(x.name))

        expected = Series([Timestamp('2000-01-28 16:47:00-0600',
                                     tz='America/Chicago'),
                           Timestamp('2000-01-29 16:48:00-0600',
                                     tz='America/Chicago'),
                           Timestamp('2000-01-30 16:49:00-0800',
                                     tz='America/Los_Angeles'),
                           Timestamp('2000-01-31 16:50:00-0600',
                                     tz='America/Chicago'),
                           Timestamp('2000-01-01 16:50:00-0500',
                                     tz='America/New_York')],
                          name='date',
                          dtype=object)
        assert_series_equal(result, expected)

        tz = 'America/Chicago'
        res_values = df.groupby('tz').date.get_group(tz)
        result = pd.to_datetime(res_values).dt.tz_localize(tz)
        exp_values = Series(['2000-01-28 16:47:00', '2000-01-29 16:48:00',
                             '2000-01-31 16:50:00'],
                            index=[0, 1, 3], name='date')
        expected = pd.to_datetime(exp_values).dt.tz_localize(tz)
        assert_series_equal(result, expected)

    def test_groupby_groups_periods(self):
        dates = ['2011-07-19 07:00:00', '2011-07-19 08:00:00',
                 '2011-07-19 09:00:00', '2011-07-19 07:00:00',
                 '2011-07-19 08:00:00', '2011-07-19 09:00:00']
        df = DataFrame({'label': ['a', 'a', 'a', 'b', 'b', 'b'],
                        'period': [pd.Period(d, freq='H') for d in dates],
                        'value1': np.arange(6, dtype='int64'),
                        'value2': [1, 2] * 3})

        exp_idx1 = pd.PeriodIndex(['2011-07-19 07:00:00',
                                   '2011-07-19 07:00:00',
                                   '2011-07-19 08:00:00',
                                   '2011-07-19 08:00:00',
                                   '2011-07-19 09:00:00',
                                   '2011-07-19 09:00:00'],
                                  freq='H', name='period')
        exp_idx2 = Index(['a', 'b'] * 3, name='label')
        exp_idx = MultiIndex.from_arrays([exp_idx1, exp_idx2])
        expected = DataFrame({'value1': [0, 3, 1, 4, 2, 5],
                              'value2': [1, 2, 2, 1, 1, 2]},
                             index=exp_idx, columns=['value1', 'value2'])

        result = df.groupby(['period', 'label']).sum()
        assert_frame_equal(result, expected)

        # by level
        didx = pd.PeriodIndex(dates, freq='H')
        df = DataFrame({'value1': np.arange(6, dtype='int64'),
                        'value2': [1, 2, 3, 1, 2, 3]},
                       index=didx)

        exp_idx = pd.PeriodIndex(['2011-07-19 07:00:00',
                                  '2011-07-19 08:00:00',
                                  '2011-07-19 09:00:00'], freq='H')
        expected = DataFrame({'value1': [3, 5, 7], 'value2': [2, 4, 6]},
                             index=exp_idx, columns=['value1', 'value2'])

        result = df.groupby(level=0).sum()
        assert_frame_equal(result, expected)

    def test_groupby_first_datetime64(self):
        df = DataFrame([(1, 1351036800000000000), (2, 1351036800000000000)])
        df[1] = df[1].view('M8[ns]')

        assert issubclass(df[1].dtype.type, np.datetime64)

        result = df.groupby(level=0).first()
        got_dt = result[1].dtype
        assert issubclass(got_dt.type, np.datetime64)

        result = df[1].groupby(level=0).first()
        got_dt = result.dtype
        assert issubclass(got_dt.type, np.datetime64)

    def test_groupby_max_datetime64(self):
        # GH 5869
        # datetimelike dtype conversion from int
        df = DataFrame(dict(A=Timestamp('20130101'), B=np.arange(5)))
        expected = df.groupby('A')['A'].apply(lambda x: x.max())
        result = df.groupby('A')['A'].max()
        assert_series_equal(result, expected)

    def test_groupby_datetime64_32_bit(self):
        # GH 6410 / numpy 4328
        # 32-bit under 1.9-dev indexing issue

        df = DataFrame({"A": range(2), "B": [pd.Timestamp('2000-01-1')] * 2})
        result = df.groupby("A")["B"].transform(min)
        expected = Series([pd.Timestamp('2000-01-1')] * 2, name='B')
        assert_series_equal(result, expected)

    def test_groupby_with_timezone_selection(self):
        # GH 11616
        # Test that column selection returns output in correct timezone.
        np.random.seed(42)
        df = pd.DataFrame({
            'factor': np.random.randint(0, 3, size=60),
            'time': pd.date_range('01/01/2000 00:00', periods=60,
                                  freq='s', tz='UTC')
        })
        df1 = df.groupby('factor').max()['time']
        df2 = df.groupby('factor')['time'].max()
        tm.assert_series_equal(df1, df2)

    def test_timezone_info(self):
        # see gh-11682: Timezone info lost when broadcasting
        # scalar datetime to DataFrame

        df = pd.DataFrame({'a': [1], 'b': [datetime.now(pytz.utc)]})
        assert df['b'][0].tzinfo == pytz.utc
        df = pd.DataFrame({'a': [1, 2, 3]})
        df['b'] = datetime.now(pytz.utc)
        assert df['b'][0].tzinfo == pytz.utc

    def test_datetime_count(self):
        df = DataFrame({'a': [1, 2, 3] * 2,
                        'dates': pd.date_range('now', periods=6, freq='T')})
        result = df.groupby('a').dates.count()
        expected = Series([
            2, 2, 2
        ], index=Index([1, 2, 3], name='a'), name='dates')
        tm.assert_series_equal(result, expected)

    def test_first_last_max_min_on_time_data(self):
        # GH 10295
        # Verify that NaT is not in the result of max, min, first and last on
        # Dataframe with datetime or timedelta values.
        from datetime import timedelta as td
        df_test = DataFrame(
            {'dt': [nan, '2015-07-24 10:10', '2015-07-25 11:11',
                    '2015-07-23 12:12', nan],
             'td': [nan, td(days=1), td(days=2), td(days=3), nan]})
        df_test.dt = pd.to_datetime(df_test.dt)
        df_test['group'] = 'A'
        df_ref = df_test[df_test.dt.notna()]

        grouped_test = df_test.groupby('group')
        grouped_ref = df_ref.groupby('group')

        assert_frame_equal(grouped_ref.max(), grouped_test.max())
        assert_frame_equal(grouped_ref.min(), grouped_test.min())
        assert_frame_equal(grouped_ref.first(), grouped_test.first())
        assert_frame_equal(grouped_ref.last(), grouped_test.last())

    def test_nunique_with_timegrouper_and_nat(self):
        # GH 17575
        test = pd.DataFrame({
            'time': [Timestamp('2016-06-28 09:35:35'),
                     pd.NaT,
                     Timestamp('2016-06-28 16:46:28')],
            'data': ['1', '2', '3']})

        grouper = pd.Grouper(key='time', freq='h')
        result = test.groupby(grouper)['data'].nunique()
        expected = test[test.time.notnull()].groupby(grouper)['data'].nunique()
        tm.assert_series_equal(result, expected)

    def test_scalar_call_versus_list_call(self):
        # Issue: 17530
        data_frame = {
            'location': ['shanghai', 'beijing', 'shanghai'],
            'time': pd.Series(['2017-08-09 13:32:23', '2017-08-11 23:23:15',
                               '2017-08-11 22:23:15'],
                              dtype='datetime64[ns]'),
            'value': [1, 2, 3]
        }
        data_frame = pd.DataFrame(data_frame).set_index('time')
        grouper = pd.Grouper(freq='D')

        grouped = data_frame.groupby(grouper)
        result = grouped.count()
        grouped = data_frame.groupby([grouper])
        expected = grouped.count()

        assert_frame_equal(result, expected)