Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
pandas / tests / plotting / test_boxplot_method.py
Size: Mime:
# coding: utf-8

import pytest
import itertools
import string
from distutils.version import LooseVersion

from pandas import Series, DataFrame, MultiIndex
from pandas.compat import range, lzip
import pandas.util.testing as tm
import pandas.util._test_decorators as td

import numpy as np
from numpy import random

import pandas.plotting as plotting

from pandas.tests.plotting.common import (TestPlotBase, _check_plot_works)


""" Test cases for .boxplot method """


def _skip_if_mpl_14_or_dev_boxplot():
    # GH 8382
    # Boxplot failures on 1.4 and 1.4.1
    # Don't need try / except since that's done at class level
    import matplotlib
    if LooseVersion(matplotlib.__version__) >= LooseVersion('1.4'):
        pytest.skip("Matplotlib Regression in 1.4 and current dev.")


@td.skip_if_no_mpl
class TestDataFramePlots(TestPlotBase):

    @pytest.mark.slow
    def test_boxplot_legacy1(self):
        df = DataFrame(np.random.randn(6, 4),
                       index=list(string.ascii_letters[:6]),
                       columns=['one', 'two', 'three', 'four'])
        df['indic'] = ['foo', 'bar'] * 3
        df['indic2'] = ['foo', 'bar', 'foo'] * 2

        _check_plot_works(df.boxplot, return_type='dict')
        _check_plot_works(df.boxplot, column=[
                          'one', 'two'], return_type='dict')
        # _check_plot_works adds an ax so catch warning. see GH #13188
        with tm.assert_produces_warning(UserWarning):
            _check_plot_works(df.boxplot, column=['one', 'two'],
                              by='indic')
        _check_plot_works(df.boxplot, column='one', by=['indic', 'indic2'])
        with tm.assert_produces_warning(UserWarning):
            _check_plot_works(df.boxplot, by='indic')
        with tm.assert_produces_warning(UserWarning):
            _check_plot_works(df.boxplot, by=['indic', 'indic2'])
        _check_plot_works(plotting._core.boxplot, data=df['one'],
                          return_type='dict')
        _check_plot_works(df.boxplot, notch=1, return_type='dict')
        with tm.assert_produces_warning(UserWarning):
            _check_plot_works(df.boxplot, by='indic', notch=1)

    @pytest.mark.slow
    def test_boxplot_legacy2(self):
        df = DataFrame(np.random.rand(10, 2), columns=['Col1', 'Col2'])
        df['X'] = Series(['A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B'])
        df['Y'] = Series(['A'] * 10)
        with tm.assert_produces_warning(UserWarning):
            _check_plot_works(df.boxplot, by='X')

        # When ax is supplied and required number of axes is 1,
        # passed ax should be used:
        fig, ax = self.plt.subplots()
        axes = df.boxplot('Col1', by='X', ax=ax)
        ax_axes = ax.axes if self.mpl_ge_1_5_0 else ax.get_axes()
        assert ax_axes is axes

        fig, ax = self.plt.subplots()
        axes = df.groupby('Y').boxplot(ax=ax, return_type='axes')
        ax_axes = ax.axes if self.mpl_ge_1_5_0 else ax.get_axes()
        assert ax_axes is axes['A']

        # Multiple columns with an ax argument should use same figure
        fig, ax = self.plt.subplots()
        with tm.assert_produces_warning(UserWarning):
            axes = df.boxplot(column=['Col1', 'Col2'],
                              by='X', ax=ax, return_type='axes')
        assert axes['Col1'].get_figure() is fig

        # When by is None, check that all relevant lines are present in the
        # dict
        fig, ax = self.plt.subplots()
        d = df.boxplot(ax=ax, return_type='dict')
        lines = list(itertools.chain.from_iterable(d.values()))
        assert len(ax.get_lines()) == len(lines)

    @pytest.mark.slow
    def test_boxplot_return_type_none(self):
        # GH 12216; return_type=None & by=None -> axes
        result = self.hist_df.boxplot()
        assert isinstance(result, self.plt.Axes)

    @pytest.mark.slow
    def test_boxplot_return_type_legacy(self):
        # API change in https://github.com/pandas-dev/pandas/pull/7096
        import matplotlib as mpl  # noqa

        df = DataFrame(np.random.randn(6, 4),
                       index=list(string.ascii_letters[:6]),
                       columns=['one', 'two', 'three', 'four'])
        with pytest.raises(ValueError):
            df.boxplot(return_type='NOTATYPE')

        result = df.boxplot()
        self._check_box_return_type(result, 'axes')

        with tm.assert_produces_warning(False):
            result = df.boxplot(return_type='dict')
        self._check_box_return_type(result, 'dict')

        with tm.assert_produces_warning(False):
            result = df.boxplot(return_type='axes')
        self._check_box_return_type(result, 'axes')

        with tm.assert_produces_warning(False):
            result = df.boxplot(return_type='both')
        self._check_box_return_type(result, 'both')

    @pytest.mark.slow
    def test_boxplot_axis_limits(self):

        def _check_ax_limits(col, ax):
            y_min, y_max = ax.get_ylim()
            assert y_min <= col.min()
            assert y_max >= col.max()

        df = self.hist_df.copy()
        df['age'] = np.random.randint(1, 20, df.shape[0])
        # One full row
        height_ax, weight_ax = df.boxplot(['height', 'weight'], by='category')
        _check_ax_limits(df['height'], height_ax)
        _check_ax_limits(df['weight'], weight_ax)
        assert weight_ax._sharey == height_ax

        # Two rows, one partial
        p = df.boxplot(['height', 'weight', 'age'], by='category')
        height_ax, weight_ax, age_ax = p[0, 0], p[0, 1], p[1, 0]
        dummy_ax = p[1, 1]

        _check_ax_limits(df['height'], height_ax)
        _check_ax_limits(df['weight'], weight_ax)
        _check_ax_limits(df['age'], age_ax)
        assert weight_ax._sharey == height_ax
        assert age_ax._sharey == height_ax
        assert dummy_ax._sharey is None

    @pytest.mark.slow
    def test_boxplot_empty_column(self):
        _skip_if_mpl_14_or_dev_boxplot()
        df = DataFrame(np.random.randn(20, 4))
        df.loc[:, 0] = np.nan
        _check_plot_works(df.boxplot, return_type='axes')

    @pytest.mark.slow
    def test_figsize(self):
        df = DataFrame(np.random.rand(10, 5),
                       columns=['A', 'B', 'C', 'D', 'E'])
        result = df.boxplot(return_type='axes', figsize=(12, 8))
        assert result.figure.bbox_inches.width == 12
        assert result.figure.bbox_inches.height == 8

    def test_fontsize(self):
        df = DataFrame({"a": [1, 2, 3, 4, 5, 6]})
        self._check_ticks_props(df.boxplot("a", fontsize=16),
                                xlabelsize=16, ylabelsize=16)


@td.skip_if_no_mpl
class TestDataFrameGroupByPlots(TestPlotBase):

    @pytest.mark.slow
    def test_boxplot_legacy1(self):
        grouped = self.hist_df.groupby(by='gender')
        with tm.assert_produces_warning(UserWarning):
            axes = _check_plot_works(grouped.boxplot, return_type='axes')
        self._check_axes_shape(list(axes.values), axes_num=2, layout=(1, 2))
        axes = _check_plot_works(grouped.boxplot, subplots=False,
                                 return_type='axes')
        self._check_axes_shape(axes, axes_num=1, layout=(1, 1))

    @pytest.mark.slow
    def test_boxplot_legacy2(self):
        tuples = lzip(string.ascii_letters[:10], range(10))
        df = DataFrame(np.random.rand(10, 3),
                       index=MultiIndex.from_tuples(tuples))
        grouped = df.groupby(level=1)
        with tm.assert_produces_warning(UserWarning):
            axes = _check_plot_works(grouped.boxplot, return_type='axes')
        self._check_axes_shape(list(axes.values), axes_num=10, layout=(4, 3))

        axes = _check_plot_works(grouped.boxplot, subplots=False,
                                 return_type='axes')
        self._check_axes_shape(axes, axes_num=1, layout=(1, 1))

    @pytest.mark.slow
    def test_boxplot_legacy3(self):
        tuples = lzip(string.ascii_letters[:10], range(10))
        df = DataFrame(np.random.rand(10, 3),
                       index=MultiIndex.from_tuples(tuples))
        grouped = df.unstack(level=1).groupby(level=0, axis=1)
        with tm.assert_produces_warning(UserWarning):
            axes = _check_plot_works(grouped.boxplot, return_type='axes')
        self._check_axes_shape(list(axes.values), axes_num=3, layout=(2, 2))
        axes = _check_plot_works(grouped.boxplot, subplots=False,
                                 return_type='axes')
        self._check_axes_shape(axes, axes_num=1, layout=(1, 1))

    @pytest.mark.slow
    def test_grouped_plot_fignums(self):
        n = 10
        weight = Series(np.random.normal(166, 20, size=n))
        height = Series(np.random.normal(60, 10, size=n))
        with tm.RNGContext(42):
            gender = np.random.choice(['male', 'female'], size=n)
        df = DataFrame({'height': height, 'weight': weight, 'gender': gender})
        gb = df.groupby('gender')

        res = gb.plot()
        assert len(self.plt.get_fignums()) == 2
        assert len(res) == 2
        tm.close()

        res = gb.boxplot(return_type='axes')
        assert len(self.plt.get_fignums()) == 1
        assert len(res) == 2
        tm.close()

        # now works with GH 5610 as gender is excluded
        res = df.groupby('gender').hist()
        tm.close()

    @pytest.mark.slow
    def test_grouped_box_return_type(self):
        df = self.hist_df

        # old style: return_type=None
        result = df.boxplot(by='gender')
        assert isinstance(result, np.ndarray)
        self._check_box_return_type(
            result, None,
            expected_keys=['height', 'weight', 'category'])

        # now for groupby
        result = df.groupby('gender').boxplot(return_type='dict')
        self._check_box_return_type(
            result, 'dict', expected_keys=['Male', 'Female'])

        columns2 = 'X B C D A G Y N Q O'.split()
        df2 = DataFrame(random.randn(50, 10), columns=columns2)
        categories2 = 'A B C D E F G H I J'.split()
        df2['category'] = categories2 * 5

        for t in ['dict', 'axes', 'both']:
            returned = df.groupby('classroom').boxplot(return_type=t)
            self._check_box_return_type(
                returned, t, expected_keys=['A', 'B', 'C'])

            returned = df.boxplot(by='classroom', return_type=t)
            self._check_box_return_type(
                returned, t,
                expected_keys=['height', 'weight', 'category'])

            returned = df2.groupby('category').boxplot(return_type=t)
            self._check_box_return_type(returned, t, expected_keys=categories2)

            returned = df2.boxplot(by='category', return_type=t)
            self._check_box_return_type(returned, t, expected_keys=columns2)

    @pytest.mark.slow
    def test_grouped_box_layout(self):
        df = self.hist_df

        pytest.raises(ValueError, df.boxplot, column=['weight', 'height'],
                      by=df.gender, layout=(1, 1))
        pytest.raises(ValueError, df.boxplot,
                      column=['height', 'weight', 'category'],
                      layout=(2, 1), return_type='dict')
        pytest.raises(ValueError, df.boxplot, column=['weight', 'height'],
                      by=df.gender, layout=(-1, -1))

        # _check_plot_works adds an ax so catch warning. see GH #13188
        with tm.assert_produces_warning(UserWarning):
            box = _check_plot_works(df.groupby('gender').boxplot,
                                    column='height', return_type='dict')
        self._check_axes_shape(self.plt.gcf().axes, axes_num=2, layout=(1, 2))

        with tm.assert_produces_warning(UserWarning):
            box = _check_plot_works(df.groupby('category').boxplot,
                                    column='height',
                                    return_type='dict')
        self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(2, 2))

        # GH 6769
        with tm.assert_produces_warning(UserWarning):
            box = _check_plot_works(df.groupby('classroom').boxplot,
                                    column='height', return_type='dict')
        self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))

        # GH 5897
        axes = df.boxplot(column=['height', 'weight', 'category'], by='gender',
                          return_type='axes')
        self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
        for ax in [axes['height']]:
            self._check_visible(ax.get_xticklabels(), visible=False)
            self._check_visible([ax.xaxis.get_label()], visible=False)
        for ax in [axes['weight'], axes['category']]:
            self._check_visible(ax.get_xticklabels())
            self._check_visible([ax.xaxis.get_label()])

        box = df.groupby('classroom').boxplot(
            column=['height', 'weight', 'category'], return_type='dict')
        self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))

        with tm.assert_produces_warning(UserWarning):
            box = _check_plot_works(df.groupby('category').boxplot,
                                    column='height',
                                    layout=(3, 2), return_type='dict')
        self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(3, 2))
        with tm.assert_produces_warning(UserWarning):
            box = _check_plot_works(df.groupby('category').boxplot,
                                    column='height',
                                    layout=(3, -1), return_type='dict')
        self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(3, 2))

        box = df.boxplot(column=['height', 'weight', 'category'], by='gender',
                         layout=(4, 1))
        self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(4, 1))

        box = df.boxplot(column=['height', 'weight', 'category'], by='gender',
                         layout=(-1, 1))
        self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(3, 1))

        box = df.groupby('classroom').boxplot(
            column=['height', 'weight', 'category'], layout=(1, 4),
            return_type='dict')
        self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(1, 4))

        box = df.groupby('classroom').boxplot(  # noqa
            column=['height', 'weight', 'category'], layout=(1, -1),
            return_type='dict')
        self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(1, 3))

    @pytest.mark.slow
    def test_grouped_box_multiple_axes(self):
        # GH 6970, GH 7069
        df = self.hist_df

        # check warning to ignore sharex / sharey
        # this check should be done in the first function which
        # passes multiple axes to plot, hist or boxplot
        # location should be changed if other test is added
        # which has earlier alphabetical order
        with tm.assert_produces_warning(UserWarning):
            fig, axes = self.plt.subplots(2, 2)
            df.groupby('category').boxplot(
                column='height', return_type='axes', ax=axes)
            self._check_axes_shape(self.plt.gcf().axes,
                                   axes_num=4, layout=(2, 2))

        fig, axes = self.plt.subplots(2, 3)
        with tm.assert_produces_warning(UserWarning):
            returned = df.boxplot(column=['height', 'weight', 'category'],
                                  by='gender', return_type='axes', ax=axes[0])
        returned = np.array(list(returned.values))
        self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
        tm.assert_numpy_array_equal(returned, axes[0])
        assert returned[0].figure is fig

        # draw on second row
        with tm.assert_produces_warning(UserWarning):
            returned = df.groupby('classroom').boxplot(
                column=['height', 'weight', 'category'],
                return_type='axes', ax=axes[1])
        returned = np.array(list(returned.values))
        self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
        tm.assert_numpy_array_equal(returned, axes[1])
        assert returned[0].figure is fig

        with pytest.raises(ValueError):
            fig, axes = self.plt.subplots(2, 3)
            # pass different number of axes from required
            with tm.assert_produces_warning(UserWarning):
                axes = df.groupby('classroom').boxplot(ax=axes)

    def test_fontsize(self):
        df = DataFrame({"a": [1, 2, 3, 4, 5, 6], "b": [0, 0, 0, 1, 1, 1]})
        self._check_ticks_props(df.boxplot("a", by="b", fontsize=16),
                                xlabelsize=16, ylabelsize=16)