Repository URL to install this package:
Version:
1.0.5 ▾
|
""" implement the TimedeltaIndex """
from datetime import datetime
import numpy as np
from pandas._libs import NaT, Timedelta, index as libindex
from pandas.util._decorators import Appender, Substitution
from pandas.core.dtypes.common import (
_TD_DTYPE,
is_float,
is_integer,
is_list_like,
is_scalar,
is_timedelta64_dtype,
is_timedelta64_ns_dtype,
pandas_dtype,
)
from pandas.core.dtypes.missing import is_valid_nat_for_dtype, isna
from pandas.core.accessor import delegate_names
from pandas.core.arrays import datetimelike as dtl
from pandas.core.arrays.timedeltas import TimedeltaArray, _is_convertible_to_td
from pandas.core.base import _shared_docs
import pandas.core.common as com
from pandas.core.indexes.base import Index, _index_shared_docs, maybe_extract_name
from pandas.core.indexes.datetimelike import (
DatetimeIndexOpsMixin,
DatetimelikeDelegateMixin,
DatetimeTimedeltaMixin,
)
from pandas.core.indexes.extension import inherit_names
from pandas.tseries.frequencies import to_offset
class TimedeltaDelegateMixin(DatetimelikeDelegateMixin):
# Most attrs are dispatched via datetimelike_{ops,methods}
# Some are "raw" methods, the result is not re-boxed in an Index
# We also have a few "extra" attrs, which may or may not be raw,
# which we don't want to expose in the .dt accessor.
_raw_properties = {"components", "_box_func"}
_raw_methods = {"to_pytimedelta", "sum", "std", "median", "_format_native_types"}
_delegated_properties = TimedeltaArray._datetimelike_ops + list(_raw_properties)
_delegated_methods = TimedeltaArray._datetimelike_methods + list(_raw_methods)
@inherit_names(
["_box_values", "__neg__", "__pos__", "__abs__"], TimedeltaArray, wrap=True
)
@inherit_names(
[
"_bool_ops",
"_object_ops",
"_field_ops",
"_datetimelike_ops",
"_datetimelike_methods",
"_other_ops",
],
TimedeltaArray,
)
@delegate_names(
TimedeltaArray, TimedeltaDelegateMixin._delegated_properties, typ="property"
)
@delegate_names(
TimedeltaArray,
TimedeltaDelegateMixin._delegated_methods,
typ="method",
overwrite=True,
)
class TimedeltaIndex(
DatetimeTimedeltaMixin, dtl.TimelikeOps, TimedeltaDelegateMixin,
):
"""
Immutable ndarray of timedelta64 data, represented internally as int64, and
which can be boxed to timedelta objects.
Parameters
----------
data : array-like (1-dimensional), optional
Optional timedelta-like data to construct index with.
unit : unit of the arg (D,h,m,s,ms,us,ns) denote the unit, optional
Which is an integer/float number.
freq : str or pandas offset object, optional
One of pandas date offset strings or corresponding objects. The string
'infer' can be passed in order to set the frequency of the index as the
inferred frequency upon creation.
copy : bool
Make a copy of input ndarray.
name : object
Name to be stored in the index.
Attributes
----------
days
seconds
microseconds
nanoseconds
components
inferred_freq
Methods
-------
to_pytimedelta
to_series
round
floor
ceil
to_frame
mean
See Also
--------
Index : The base pandas Index type.
Timedelta : Represents a duration between two dates or times.
DatetimeIndex : Index of datetime64 data.
PeriodIndex : Index of Period data.
timedelta_range : Create a fixed-frequency TimedeltaIndex.
Notes
-----
To learn more about the frequency strings, please see `this link
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.
"""
_typ = "timedeltaindex"
_engine_type = libindex.TimedeltaEngine
_comparables = ["name", "freq"]
_attributes = ["name", "freq"]
_is_numeric_dtype = True
_infer_as_myclass = True
# -------------------------------------------------------------------
# Constructors
def __new__(
cls,
data=None,
unit=None,
freq=None,
closed=None,
dtype=_TD_DTYPE,
copy=False,
name=None,
):
name = maybe_extract_name(name, data, cls)
if is_scalar(data):
raise TypeError(
f"{cls.__name__}() must be called with a "
f"collection of some kind, {repr(data)} was passed"
)
if unit in {"Y", "y", "M"}:
raise ValueError(
"Units 'M' and 'Y' are no longer supported, as they do not "
"represent unambiguous timedelta values durations."
)
if isinstance(data, TimedeltaArray):
if copy:
data = data.copy()
return cls._simple_new(data, name=name, freq=freq)
if isinstance(data, TimedeltaIndex) and freq is None and name is None:
if copy:
return data.copy()
else:
return data._shallow_copy()
# - Cases checked above all return/raise before reaching here - #
tdarr = TimedeltaArray._from_sequence(
data, freq=freq, unit=unit, dtype=dtype, copy=copy
)
return cls._simple_new(tdarr._data, freq=tdarr.freq, name=name)
@classmethod
def _simple_new(cls, values, name=None, freq=None, dtype=_TD_DTYPE):
# `dtype` is passed by _shallow_copy in corner cases, should always
# be timedelta64[ns] if present
if not isinstance(values, TimedeltaArray):
values = TimedeltaArray._simple_new(values, dtype=dtype, freq=freq)
else:
if freq is None:
freq = values.freq
assert isinstance(values, TimedeltaArray), type(values)
assert dtype == _TD_DTYPE, dtype
assert values.dtype == "m8[ns]", values.dtype
tdarr = TimedeltaArray._simple_new(values._data, freq=freq)
result = object.__new__(cls)
result._data = tdarr
result._name = name
# For groupby perf. See note in indexes/base about _index_data
result._index_data = tdarr._data
result._reset_identity()
return result
# -------------------------------------------------------------------
# Rendering Methods
@property
def _formatter_func(self):
from pandas.io.formats.format import _get_format_timedelta64
return _get_format_timedelta64(self, box=True)
# -------------------------------------------------------------------
@Appender(_index_shared_docs["astype"])
def astype(self, dtype, copy=True):
dtype = pandas_dtype(dtype)
if is_timedelta64_dtype(dtype) and not is_timedelta64_ns_dtype(dtype):
# Have to repeat the check for 'timedelta64' (not ns) dtype
# so that we can return a numeric index, since pandas will return
# a TimedeltaIndex when dtype='timedelta'
result = self._data.astype(dtype, copy=copy)
if self.hasnans:
return Index(result, name=self.name)
return Index(result.astype("i8"), name=self.name)
return DatetimeIndexOpsMixin.astype(self, dtype, copy=copy)
def _maybe_promote(self, other):
if other.inferred_type == "timedelta":
other = TimedeltaIndex(other)
return self, other
def get_value(self, series, key):
"""
Fast lookup of value from 1-dimensional ndarray. Only use this if you
know what you're doing
"""
if _is_convertible_to_td(key):
key = Timedelta(key)
return self.get_value_maybe_box(series, key)
try:
value = Index.get_value(self, series, key)
except KeyError:
try:
loc = self._get_string_slice(key)
return series[loc]
except (TypeError, ValueError, KeyError):
pass
try:
return self.get_value_maybe_box(series, key)
except (TypeError, ValueError, KeyError):
raise KeyError(key)
else:
return com.maybe_box(self, value, series, key)
def get_value_maybe_box(self, series, key: Timedelta):
values = self._engine.get_value(com.values_from_object(series), key)
return com.maybe_box(self, values, series, key)
def get_loc(self, key, method=None, tolerance=None):
"""
Get integer location for requested label
Returns
-------
loc : int
"""
if is_list_like(key) or (isinstance(key, datetime) and key is not NaT):
# GH#20464 datetime check here is to ensure we don't allow
# datetime objects to be incorrectly treated as timedelta
# objects; NaT is a special case because it plays a double role
# as Not-A-Timedelta
raise TypeError
if isna(key):
key = NaT
if tolerance is not None:
# try converting tolerance now, so errors don't get swallowed by
# the try/except clauses below
tolerance = self._convert_tolerance(tolerance, np.asarray(key))
if _is_convertible_to_td(key) or key is NaT:
key = Timedelta(key)
return Index.get_loc(self, key, method, tolerance)
try:
return Index.get_loc(self, key, method, tolerance)
except (KeyError, ValueError, TypeError):
try:
return self._get_string_slice(key)
except (TypeError, KeyError, ValueError):
pass
try:
stamp = Timedelta(key)
return Index.get_loc(self, stamp, method, tolerance)
except (KeyError, ValueError):
raise KeyError(key)
def _maybe_cast_slice_bound(self, label, side, kind):
"""
If label is a string, cast it to timedelta according to resolution.
Parameters
----------
label : object
side : {'left', 'right'}
kind : {'ix', 'loc', 'getitem'}
Returns
-------
label : object
"""
assert kind in ["ix", "loc", "getitem", None]
if isinstance(label, str):
parsed = Timedelta(label)
lbound = parsed.round(parsed.resolution_string)
if side == "left":
return lbound
else:
return lbound + to_offset(parsed.resolution_string) - Timedelta(1, "ns")
elif is_integer(label) or is_float(label):
self._invalid_indexer("slice", label)
return label
def _get_string_slice(self, key):
if is_integer(key) or is_float(key) or key is NaT:
self._invalid_indexer("slice", key)
loc = self._partial_td_slice(key)
return loc
def _partial_td_slice(self, key):
# given a key, try to figure out a location for a partial slice
if not isinstance(key, str):
return key
raise NotImplementedError
@Substitution(klass="TimedeltaIndex")
@Appender(_shared_docs["searchsorted"])
def searchsorted(self, value, side="left", sorter=None):
if isinstance(value, (np.ndarray, Index)):
if not type(self._data)._is_recognized_dtype(value):
raise TypeError(
"searchsorted requires compatible dtype or scalar, "
f"not {type(value).__name__}"
)
value = type(self._data)(value)
self._data._check_compatible_with(value)
elif isinstance(value, self._data._recognized_scalars):
self._data._check_compatible_with(value)
value = self._data._scalar_type(value)
elif not isinstance(value, TimedeltaArray):
raise TypeError(
"searchsorted requires compatible dtype or scalar, "
f"not {type(value).__name__}"
)
return self._data.searchsorted(value, side=side, sorter=sorter)
def is_type_compatible(self, typ) -> bool:
return typ == self.inferred_type or typ == "timedelta"
@property
def inferred_type(self) -> str:
return "timedelta64"
def insert(self, loc, item):
"""
Make new Index inserting new item at location
Parameters
----------
loc : int
item : object
If not either a Python datetime or a numpy integer-like, returned
Index dtype will be object rather than datetime.
Returns
-------
new_index : Index
"""
# try to convert if possible
if isinstance(item, self._data._recognized_scalars):
item = self._data._scalar_type(item)
elif is_valid_nat_for_dtype(item, self.dtype):
# GH 18295
item = self._na_value
elif is_scalar(item) and isna(item):
# i.e. datetime64("NaT")
raise TypeError(
f"cannot insert {type(self).__name__} with incompatible label"
)
freq = None
if isinstance(item, self._data._scalar_type) or item is NaT:
self._data._check_compatible_with(item, setitem=True)
# check freq can be preserved on edge cases
if self.size and self.freq is not None:
if item is NaT:
pass
elif (loc == 0 or loc == -len(self)) and item + self.freq == self[0]:
freq = self.freq
elif (loc == len(self)) and item - self.freq == self[-1]:
freq = self.freq
item = item.asm8
try:
new_i8s = np.concatenate(
(self[:loc].asi8, [item.view(np.int64)], self[loc:].asi8)
)
return self._shallow_copy(new_i8s, freq=freq)
except (AttributeError, TypeError):
# fall back to object index
if isinstance(item, str):
return self.astype(object).insert(loc, item)
raise TypeError(
f"cannot insert {type(self).__name__} with incompatible label"
)
TimedeltaIndex._add_logical_methods_disabled()
def timedelta_range(
start=None, end=None, periods=None, freq=None, name=None, closed=None
) -> TimedeltaIndex:
"""
Return a fixed frequency TimedeltaIndex, with day as the default
frequency.
Parameters
----------
start : str or timedelta-like, default None
Left bound for generating timedeltas.
end : str or timedelta-like, default None
Right bound for generating timedeltas.
periods : int, default None
Number of periods to generate.
freq : str or DateOffset, default 'D'
Frequency strings can have multiples, e.g. '5H'.
name : str, default None
Name of the resulting TimedeltaIndex.
closed : str, default None
Make the interval closed with respect to the given frequency to
the 'left', 'right', or both sides (None).
Returns
-------
rng : TimedeltaIndex
Notes
-----
Of the four parameters ``start``, ``end``, ``periods``, and ``freq``,
exactly three must be specified. If ``freq`` is omitted, the resulting
``TimedeltaIndex`` will have ``periods`` linearly spaced elements between
``start`` and ``end`` (closed on both sides).
To learn more about the frequency strings, please see `this link
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.
Examples
--------
>>> pd.timedelta_range(start='1 day', periods=4)
TimedeltaIndex(['1 days', '2 days', '3 days', '4 days'],
dtype='timedelta64[ns]', freq='D')
The ``closed`` parameter specifies which endpoint is included. The default
behavior is to include both endpoints.
>>> pd.timedelta_range(start='1 day', periods=4, closed='right')
TimedeltaIndex(['2 days', '3 days', '4 days'],
dtype='timedelta64[ns]', freq='D')
The ``freq`` parameter specifies the frequency of the TimedeltaIndex.
Only fixed frequencies can be passed, non-fixed frequencies such as
'M' (month end) will raise.
>>> pd.timedelta_range(start='1 day', end='2 days', freq='6H')
TimedeltaIndex(['1 days 00:00:00', '1 days 06:00:00', '1 days 12:00:00',
'1 days 18:00:00', '2 days 00:00:00'],
dtype='timedelta64[ns]', freq='6H')
Specify ``start``, ``end``, and ``periods``; the frequency is generated
automatically (linearly spaced).
>>> pd.timedelta_range(start='1 day', end='5 days', periods=4)
TimedeltaIndex(['1 days 00:00:00', '2 days 08:00:00', '3 days 16:00:00',
'5 days 00:00:00'],
dtype='timedelta64[ns]', freq=None)
"""
if freq is None and com.any_none(periods, start, end):
freq = "D"
freq, freq_infer = dtl.maybe_infer_freq(freq)
tdarr = TimedeltaArray._generate_range(start, end, periods, freq, closed=closed)
return TimedeltaIndex._simple_new(tdarr._data, freq=tdarr.freq, name=name)