Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
pandas / tests / base / test_ops.py
Size: Mime:
from datetime import datetime, timedelta
from io import StringIO
import sys

import numpy as np
import pytest

from pandas._libs.tslib import iNaT
from pandas.compat import PYPY
from pandas.compat.numpy import np_array_datetime64_compat

from pandas.core.dtypes.common import (
    is_datetime64_dtype,
    is_datetime64tz_dtype,
    is_object_dtype,
    needs_i8_conversion,
)

import pandas as pd
from pandas import (
    DataFrame,
    DatetimeIndex,
    Index,
    Interval,
    IntervalIndex,
    PeriodIndex,
    Series,
    Timedelta,
    TimedeltaIndex,
    Timestamp,
)
import pandas._testing as tm
from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin


class Ops:
    def _allow_na_ops(self, obj):
        """Whether to skip test cases including NaN"""
        if (isinstance(obj, Index) and obj.is_boolean()) or not obj._can_hold_na:
            # don't test boolean / integer dtypes
            return False
        return True

    def setup_method(self, method):
        self.bool_index = tm.makeBoolIndex(10, name="a")
        self.int_index = tm.makeIntIndex(10, name="a")
        self.float_index = tm.makeFloatIndex(10, name="a")
        self.dt_index = tm.makeDateIndex(10, name="a")
        self.dt_tz_index = tm.makeDateIndex(10, name="a").tz_localize(tz="US/Eastern")
        self.period_index = tm.makePeriodIndex(10, name="a")
        self.string_index = tm.makeStringIndex(10, name="a")
        self.unicode_index = tm.makeUnicodeIndex(10, name="a")

        arr = np.random.randn(10)
        self.bool_series = Series(arr, index=self.bool_index, name="a")
        self.int_series = Series(arr, index=self.int_index, name="a")
        self.float_series = Series(arr, index=self.float_index, name="a")
        self.dt_series = Series(arr, index=self.dt_index, name="a")
        self.dt_tz_series = self.dt_tz_index.to_series()
        self.period_series = Series(arr, index=self.period_index, name="a")
        self.string_series = Series(arr, index=self.string_index, name="a")
        self.unicode_series = Series(arr, index=self.unicode_index, name="a")

        types = ["bool", "int", "float", "dt", "dt_tz", "period", "string", "unicode"]
        self.indexes = [getattr(self, f"{t}_index") for t in types]
        self.series = [getattr(self, f"{t}_series") for t in types]

        # To test narrow dtypes, we use narrower *data* elements, not *index* elements
        index = self.int_index
        self.float32_series = Series(arr.astype(np.float32), index=index, name="a")

        arr_int = np.random.choice(10, size=10, replace=False)
        self.int8_series = Series(arr_int.astype(np.int8), index=index, name="a")
        self.int16_series = Series(arr_int.astype(np.int16), index=index, name="a")
        self.int32_series = Series(arr_int.astype(np.int32), index=index, name="a")

        self.uint8_series = Series(arr_int.astype(np.uint8), index=index, name="a")
        self.uint16_series = Series(arr_int.astype(np.uint16), index=index, name="a")
        self.uint32_series = Series(arr_int.astype(np.uint32), index=index, name="a")

        nrw_types = ["float32", "int8", "int16", "int32", "uint8", "uint16", "uint32"]
        self.narrow_series = [getattr(self, f"{t}_series") for t in nrw_types]

        self.objs = self.indexes + self.series + self.narrow_series

    def check_ops_properties(self, props, filter=None, ignore_failures=False):
        for op in props:
            for o in self.is_valid_objs:

                # if a filter, skip if it doesn't match
                if filter is not None:
                    filt = o.index if isinstance(o, Series) else o
                    if not filter(filt):
                        continue

                try:
                    if isinstance(o, Series):
                        expected = Series(getattr(o.index, op), index=o.index, name="a")
                    else:
                        expected = getattr(o, op)
                except (AttributeError):
                    if ignore_failures:
                        continue

                result = getattr(o, op)

                # these could be series, arrays or scalars
                if isinstance(result, Series) and isinstance(expected, Series):
                    tm.assert_series_equal(result, expected)
                elif isinstance(result, Index) and isinstance(expected, Index):
                    tm.assert_index_equal(result, expected)
                elif isinstance(result, np.ndarray) and isinstance(
                    expected, np.ndarray
                ):
                    tm.assert_numpy_array_equal(result, expected)
                else:
                    assert result == expected

            # freq raises AttributeError on an Int64Index because its not
            # defined we mostly care about Series here anyhow
            if not ignore_failures:
                for o in self.not_valid_objs:

                    # an object that is datetimelike will raise a TypeError,
                    # otherwise an AttributeError
                    err = AttributeError
                    if issubclass(type(o), DatetimeIndexOpsMixin):
                        err = TypeError

                    with pytest.raises(err):
                        getattr(o, op)

    @pytest.mark.parametrize("klass", [Series, DataFrame])
    def test_binary_ops_docs(self, klass):
        op_map = {
            "add": "+",
            "sub": "-",
            "mul": "*",
            "mod": "%",
            "pow": "**",
            "truediv": "/",
            "floordiv": "//",
        }
        for op_name in op_map:
            operand1 = klass.__name__.lower()
            operand2 = "other"
            op = op_map[op_name]
            expected_str = " ".join([operand1, op, operand2])
            assert expected_str in getattr(klass, op_name).__doc__

            # reverse version of the binary ops
            expected_str = " ".join([operand2, op, operand1])
            assert expected_str in getattr(klass, "r" + op_name).__doc__


class TestTranspose(Ops):
    errmsg = "the 'axes' parameter is not supported"

    def test_transpose(self):
        for obj in self.objs:
            tm.assert_equal(obj.transpose(), obj)

    def test_transpose_non_default_axes(self):
        for obj in self.objs:
            with pytest.raises(ValueError, match=self.errmsg):
                obj.transpose(1)
            with pytest.raises(ValueError, match=self.errmsg):
                obj.transpose(axes=1)

    def test_numpy_transpose(self):
        for obj in self.objs:
            tm.assert_equal(np.transpose(obj), obj)

            with pytest.raises(ValueError, match=self.errmsg):
                np.transpose(obj, axes=1)


class TestIndexOps(Ops):
    def setup_method(self, method):
        super().setup_method(method)
        self.is_valid_objs = self.objs
        self.not_valid_objs = []

    def test_none_comparison(self):

        # bug brought up by #1079
        # changed from TypeError in 0.17.0
        for o in self.is_valid_objs:
            if isinstance(o, Series):

                o[0] = np.nan

                # noinspection PyComparisonWithNone
                result = o == None  # noqa
                assert not result.iat[0]
                assert not result.iat[1]

                # noinspection PyComparisonWithNone
                result = o != None  # noqa
                assert result.iat[0]
                assert result.iat[1]

                result = None == o  # noqa
                assert not result.iat[0]
                assert not result.iat[1]

                result = None != o  # noqa
                assert result.iat[0]
                assert result.iat[1]

                if is_datetime64_dtype(o) or is_datetime64tz_dtype(o):
                    # Following DatetimeIndex (and Timestamp) convention,
                    # inequality comparisons with Series[datetime64] raise
                    with pytest.raises(TypeError):
                        None > o
                    with pytest.raises(TypeError):
                        o > None
                else:
                    result = None > o
                    assert not result.iat[0]
                    assert not result.iat[1]

                    result = o < None
                    assert not result.iat[0]
                    assert not result.iat[1]

    def test_ndarray_compat_properties(self):

        for o in self.objs:
            # Check that we work.
            for p in ["shape", "dtype", "T", "nbytes"]:
                assert getattr(o, p, None) is not None

            # deprecated properties
            for p in ["flags", "strides", "itemsize", "base", "data"]:
                assert not hasattr(o, p)

            with pytest.raises(ValueError):
                o.item()  # len > 1

            assert o.ndim == 1
            assert o.size == len(o)

        assert Index([1]).item() == 1
        assert Series([1]).item() == 1

    def test_value_counts_unique_nunique(self):
        for orig in self.objs:
            o = orig.copy()
            klass = type(o)
            values = o._values

            if isinstance(values, Index):
                # reset name not to affect latter process
                values.name = None

            # create repeated values, 'n'th element is repeated by n+1 times
            # skip boolean, because it only has 2 values at most
            if isinstance(o, Index) and o.is_boolean():
                continue
            elif isinstance(o, Index):
                expected_index = Index(o[::-1])
                expected_index.name = None
                o = o.repeat(range(1, len(o) + 1))
                o.name = "a"
            else:
                expected_index = Index(values[::-1])
                idx = o.index.repeat(range(1, len(o) + 1))
                # take-based repeat
                indices = np.repeat(np.arange(len(o)), range(1, len(o) + 1))
                rep = values.take(indices)
                o = klass(rep, index=idx, name="a")

            # check values has the same dtype as the original
            assert o.dtype == orig.dtype

            expected_s = Series(
                range(10, 0, -1), index=expected_index, dtype="int64", name="a"
            )

            result = o.value_counts()
            tm.assert_series_equal(result, expected_s)
            assert result.index.name is None
            assert result.name == "a"

            result = o.unique()
            if isinstance(o, Index):
                assert isinstance(result, type(o))
                tm.assert_index_equal(result, orig)
                assert result.dtype == orig.dtype
            elif is_datetime64tz_dtype(o):
                # datetimetz Series returns array of Timestamp
                assert result[0] == orig[0]
                for r in result:
                    assert isinstance(r, Timestamp)

                tm.assert_numpy_array_equal(
                    result.astype(object), orig._values.astype(object)
                )
            else:
                tm.assert_numpy_array_equal(result, orig.values)
                assert result.dtype == orig.dtype

            assert o.nunique() == len(np.unique(o.values))

    @pytest.mark.parametrize("null_obj", [np.nan, None])
    def test_value_counts_unique_nunique_null(self, null_obj):

        for orig in self.objs:
            o = orig.copy()
            klass = type(o)
            values = o._ndarray_values

            if not self._allow_na_ops(o):
                continue

            # special assign to the numpy array
            if is_datetime64tz_dtype(o):
                if isinstance(o, DatetimeIndex):
                    v = o.asi8
                    v[0:2] = iNaT
                    values = o._shallow_copy(v)
                else:
                    o = o.copy()
                    o[0:2] = pd.NaT
                    values = o._values

            elif needs_i8_conversion(o):
                values[0:2] = iNaT
                values = o._shallow_copy(values)
            else:
                values[0:2] = null_obj
            # check values has the same dtype as the original

            assert values.dtype == o.dtype

            # create repeated values, 'n'th element is repeated by n+1
            # times
            if isinstance(o, (DatetimeIndex, PeriodIndex)):
                expected_index = o.copy()
                expected_index.name = None

                # attach name to klass
                o = klass(values.repeat(range(1, len(o) + 1)))
                o.name = "a"
            else:
                if isinstance(o, DatetimeIndex):
                    expected_index = orig._values._shallow_copy(values)
                else:
                    expected_index = Index(values)
                expected_index.name = None
                o = o.repeat(range(1, len(o) + 1))
                o.name = "a"

            # check values has the same dtype as the original
            assert o.dtype == orig.dtype
            # check values correctly have NaN
            nanloc = np.zeros(len(o), dtype=np.bool)
            nanloc[:3] = True
            if isinstance(o, Index):
                tm.assert_numpy_array_equal(pd.isna(o), nanloc)
            else:
                exp = Series(nanloc, o.index, name="a")
                tm.assert_series_equal(pd.isna(o), exp)

            expected_s_na = Series(
                list(range(10, 2, -1)) + [3],
                index=expected_index[9:0:-1],
                dtype="int64",
                name="a",
            )
            expected_s = Series(
                list(range(10, 2, -1)),
                index=expected_index[9:1:-1],
                dtype="int64",
                name="a",
            )

            result_s_na = o.value_counts(dropna=False)
            tm.assert_series_equal(result_s_na, expected_s_na)
            assert result_s_na.index.name is None
            assert result_s_na.name == "a"
            result_s = o.value_counts()
            tm.assert_series_equal(o.value_counts(), expected_s)
            assert result_s.index.name is None
            assert result_s.name == "a"

            result = o.unique()
            if isinstance(o, Index):
                tm.assert_index_equal(result, Index(values[1:], name="a"))
            elif is_datetime64tz_dtype(o):
                # unable to compare NaT / nan
                tm.assert_extension_array_equal(result[1:], values[2:])
                assert result[0] is pd.NaT
            else:
                tm.assert_numpy_array_equal(result[1:], values[2:])

                assert pd.isna(result[0])
                assert result.dtype == orig.dtype

            assert o.nunique() == 8
            assert o.nunique(dropna=False) == 9

    def test_value_counts_inferred(self, index_or_series):
        klass = index_or_series
        s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"]
        s = klass(s_values)
        expected = Series([4, 3, 2, 1], index=["b", "a", "d", "c"])
        tm.assert_series_equal(s.value_counts(), expected)

        if isinstance(s, Index):
            exp = Index(np.unique(np.array(s_values, dtype=np.object_)))
            tm.assert_index_equal(s.unique(), exp)
        else:
            exp = np.unique(np.array(s_values, dtype=np.object_))
            tm.assert_numpy_array_equal(s.unique(), exp)

        assert s.nunique() == 4
        # don't sort, have to sort after the fact as not sorting is
        # platform-dep
        hist = s.value_counts(sort=False).sort_values()
        expected = Series([3, 1, 4, 2], index=list("acbd")).sort_values()
        tm.assert_series_equal(hist, expected)

        # sort ascending
        hist = s.value_counts(ascending=True)
        expected = Series([1, 2, 3, 4], index=list("cdab"))
        tm.assert_series_equal(hist, expected)

        # relative histogram.
        hist = s.value_counts(normalize=True)
        expected = Series([0.4, 0.3, 0.2, 0.1], index=["b", "a", "d", "c"])
        tm.assert_series_equal(hist, expected)

    def test_value_counts_bins(self, index_or_series):
        klass = index_or_series
        s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"]
        s = klass(s_values)

        # bins
        with pytest.raises(TypeError):
            s.value_counts(bins=1)

        s1 = Series([1, 1, 2, 3])
        res1 = s1.value_counts(bins=1)
        exp1 = Series({Interval(0.997, 3.0): 4})
        tm.assert_series_equal(res1, exp1)
        res1n = s1.value_counts(bins=1, normalize=True)
        exp1n = Series({Interval(0.997, 3.0): 1.0})
        tm.assert_series_equal(res1n, exp1n)

        if isinstance(s1, Index):
            tm.assert_index_equal(s1.unique(), Index([1, 2, 3]))
        else:
            exp = np.array([1, 2, 3], dtype=np.int64)
            tm.assert_numpy_array_equal(s1.unique(), exp)

        assert s1.nunique() == 3

        # these return the same
        res4 = s1.value_counts(bins=4, dropna=True)
        intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0])
        exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2]))
        tm.assert_series_equal(res4, exp4)

        res4 = s1.value_counts(bins=4, dropna=False)
        intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0])
        exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2]))
        tm.assert_series_equal(res4, exp4)

        res4n = s1.value_counts(bins=4, normalize=True)
        exp4n = Series([0.5, 0.25, 0.25, 0], index=intervals.take([0, 3, 1, 2]))
        tm.assert_series_equal(res4n, exp4n)

        # handle NA's properly
        s_values = ["a", "b", "b", "b", np.nan, np.nan, "d", "d", "a", "a", "b"]
        s = klass(s_values)
        expected = Series([4, 3, 2], index=["b", "a", "d"])
        tm.assert_series_equal(s.value_counts(), expected)

        if isinstance(s, Index):
            exp = Index(["a", "b", np.nan, "d"])
            tm.assert_index_equal(s.unique(), exp)
        else:
            exp = np.array(["a", "b", np.nan, "d"], dtype=object)
            tm.assert_numpy_array_equal(s.unique(), exp)
        assert s.nunique() == 3

        s = klass({}) if klass is dict else klass({}, dtype=object)
        expected = Series([], dtype=np.int64)
        tm.assert_series_equal(s.value_counts(), expected, check_index_type=False)
        # returned dtype differs depending on original
        if isinstance(s, Index):
            tm.assert_index_equal(s.unique(), Index([]), exact=False)
        else:
            tm.assert_numpy_array_equal(s.unique(), np.array([]), check_dtype=False)

        assert s.nunique() == 0

    def test_value_counts_datetime64(self, index_or_series):
        klass = index_or_series

        # GH 3002, datetime64[ns]
        # don't test names though
        txt = "\n".join(
            [
                "xxyyzz20100101PIE",
                "xxyyzz20100101GUM",
                "xxyyzz20100101EGG",
                "xxyyww20090101EGG",
                "foofoo20080909PIE",
                "foofoo20080909GUM",
            ]
        )
        f = StringIO(txt)
        df = pd.read_fwf(
            f, widths=[6, 8, 3], names=["person_id", "dt", "food"], parse_dates=["dt"]
        )

        s = klass(df["dt"].copy())
        s.name = None
        idx = pd.to_datetime(
            ["2010-01-01 00:00:00", "2008-09-09 00:00:00", "2009-01-01 00:00:00"]
        )
        expected_s = Series([3, 2, 1], index=idx)
        tm.assert_series_equal(s.value_counts(), expected_s)

        expected = np_array_datetime64_compat(
            ["2010-01-01 00:00:00", "2009-01-01 00:00:00", "2008-09-09 00:00:00"],
            dtype="datetime64[ns]",
        )
        if isinstance(s, Index):
            tm.assert_index_equal(s.unique(), DatetimeIndex(expected))
        else:
            tm.assert_numpy_array_equal(s.unique(), expected)

        assert s.nunique() == 3

        # with NaT
        s = df["dt"].copy()
        s = klass(list(s.values) + [pd.NaT])

        result = s.value_counts()
        assert result.index.dtype == "datetime64[ns]"
        tm.assert_series_equal(result, expected_s)

        result = s.value_counts(dropna=False)
        expected_s[pd.NaT] = 1
        tm.assert_series_equal(result, expected_s)

        unique = s.unique()
        assert unique.dtype == "datetime64[ns]"

        # numpy_array_equal cannot compare pd.NaT
        if isinstance(s, Index):
            exp_idx = DatetimeIndex(expected.tolist() + [pd.NaT])
            tm.assert_index_equal(unique, exp_idx)
        else:
            tm.assert_numpy_array_equal(unique[:3], expected)
            assert pd.isna(unique[3])

        assert s.nunique() == 3
        assert s.nunique(dropna=False) == 4

        # timedelta64[ns]
        td = df.dt - df.dt + timedelta(1)
        td = klass(td, name="dt")

        result = td.value_counts()
        expected_s = Series([6], index=[Timedelta("1day")], name="dt")
        tm.assert_series_equal(result, expected_s)

        expected = TimedeltaIndex(["1 days"], name="dt")
        if isinstance(td, Index):
            tm.assert_index_equal(td.unique(), expected)
        else:
            tm.assert_numpy_array_equal(td.unique(), expected.values)

        td2 = timedelta(1) + (df.dt - df.dt)
        td2 = klass(td2, name="dt")
        result2 = td2.value_counts()
        tm.assert_series_equal(result2, expected_s)

    def test_factorize(self):
        for orig in self.objs:
            o = orig.copy()

            if isinstance(o, Index) and o.is_boolean():
                exp_arr = np.array([0, 1] + [0] * 8, dtype=np.intp)
                exp_uniques = o
                exp_uniques = Index([False, True])
            else:
                exp_arr = np.array(range(len(o)), dtype=np.intp)
                exp_uniques = o
            codes, uniques = o.factorize()

            tm.assert_numpy_array_equal(codes, exp_arr)
            if isinstance(o, Series):
                tm.assert_index_equal(uniques, Index(orig), check_names=False)
            else:
                # factorize explicitly resets name
                tm.assert_index_equal(uniques, exp_uniques, check_names=False)

    def test_factorize_repeated(self):
        for orig in self.objs:
            o = orig.copy()

            # don't test boolean
            if isinstance(o, Index) and o.is_boolean():
                continue

            # sort by value, and create duplicates
            if isinstance(o, Series):
                o = o.sort_values()
                n = o.iloc[5:].append(o)
            else:
                indexer = o.argsort()
                o = o.take(indexer)
                n = o[5:].append(o)

            exp_arr = np.array(
                [5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.intp
            )
            codes, uniques = n.factorize(sort=True)

            tm.assert_numpy_array_equal(codes, exp_arr)
            if isinstance(o, Series):
                tm.assert_index_equal(
                    uniques, Index(orig).sort_values(), check_names=False
                )
            else:
                tm.assert_index_equal(uniques, o, check_names=False)

            exp_arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4], np.intp)
            codes, uniques = n.factorize(sort=False)
            tm.assert_numpy_array_equal(codes, exp_arr)

            if isinstance(o, Series):
                expected = Index(o.iloc[5:10].append(o.iloc[:5]))
                tm.assert_index_equal(uniques, expected, check_names=False)
            else:
                expected = o[5:10].append(o[:5])
                tm.assert_index_equal(uniques, expected, check_names=False)

    def test_duplicated_drop_duplicates_index(self):
        # GH 4060
        for original in self.objs:
            if isinstance(original, Index):

                # special case
                if original.is_boolean():
                    result = original.drop_duplicates()
                    expected = Index([False, True], name="a")
                    tm.assert_index_equal(result, expected)
                    continue

                # original doesn't have duplicates
                expected = np.array([False] * len(original), dtype=bool)
                duplicated = original.duplicated()
                tm.assert_numpy_array_equal(duplicated, expected)
                assert duplicated.dtype == bool
                result = original.drop_duplicates()
                tm.assert_index_equal(result, original)
                assert result is not original

                # has_duplicates
                assert not original.has_duplicates

                # create repeated values, 3rd and 5th values are duplicated
                idx = original[list(range(len(original))) + [5, 3]]
                expected = np.array([False] * len(original) + [True, True], dtype=bool)
                duplicated = idx.duplicated()
                tm.assert_numpy_array_equal(duplicated, expected)
                assert duplicated.dtype == bool
                tm.assert_index_equal(idx.drop_duplicates(), original)

                base = [False] * len(idx)
                base[3] = True
                base[5] = True
                expected = np.array(base)

                duplicated = idx.duplicated(keep="last")
                tm.assert_numpy_array_equal(duplicated, expected)
                assert duplicated.dtype == bool
                result = idx.drop_duplicates(keep="last")
                tm.assert_index_equal(result, idx[~expected])

                base = [False] * len(original) + [True, True]
                base[3] = True
                base[5] = True
                expected = np.array(base)

                duplicated = idx.duplicated(keep=False)
                tm.assert_numpy_array_equal(duplicated, expected)
                assert duplicated.dtype == bool
                result = idx.drop_duplicates(keep=False)
                tm.assert_index_equal(result, idx[~expected])

                with pytest.raises(
                    TypeError,
                    match=r"drop_duplicates\(\) got an unexpected keyword argument",
                ):
                    idx.drop_duplicates(inplace=True)

            else:
                expected = Series(
                    [False] * len(original), index=original.index, name="a"
                )
                tm.assert_series_equal(original.duplicated(), expected)
                result = original.drop_duplicates()
                tm.assert_series_equal(result, original)
                assert result is not original

                idx = original.index[list(range(len(original))) + [5, 3]]
                values = original._values[list(range(len(original))) + [5, 3]]
                s = Series(values, index=idx, name="a")

                expected = Series(
                    [False] * len(original) + [True, True], index=idx, name="a"
                )
                tm.assert_series_equal(s.duplicated(), expected)
                tm.assert_series_equal(s.drop_duplicates(), original)

                base = [False] * len(idx)
                base[3] = True
                base[5] = True
                expected = Series(base, index=idx, name="a")

                tm.assert_series_equal(s.duplicated(keep="last"), expected)
                tm.assert_series_equal(
                    s.drop_duplicates(keep="last"), s[~np.array(base)]
                )

                base = [False] * len(original) + [True, True]
                base[3] = True
                base[5] = True
                expected = Series(base, index=idx, name="a")

                tm.assert_series_equal(s.duplicated(keep=False), expected)
                tm.assert_series_equal(
                    s.drop_duplicates(keep=False), s[~np.array(base)]
                )

                s.drop_duplicates(inplace=True)
                tm.assert_series_equal(s, original)

    def test_drop_duplicates_series_vs_dataframe(self):
        # GH 14192
        df = pd.DataFrame(
            {
                "a": [1, 1, 1, "one", "one"],
                "b": [2, 2, np.nan, np.nan, np.nan],
                "c": [3, 3, np.nan, np.nan, "three"],
                "d": [1, 2, 3, 4, 4],
                "e": [
                    datetime(2015, 1, 1),
                    datetime(2015, 1, 1),
                    datetime(2015, 2, 1),
                    pd.NaT,
                    pd.NaT,
                ],
            }
        )
        for column in df.columns:
            for keep in ["first", "last", False]:
                dropped_frame = df[[column]].drop_duplicates(keep=keep)
                dropped_series = df[column].drop_duplicates(keep=keep)
                tm.assert_frame_equal(dropped_frame, dropped_series.to_frame())

    def test_fillna(self):
        # # GH 11343
        # though Index.fillna and Series.fillna has separate impl,
        # test here to confirm these works as the same

        for orig in self.objs:

            o = orig.copy()
            values = o.values

            # values will not be changed
            result = o.fillna(o.astype(object).values[0])
            if isinstance(o, Index):
                tm.assert_index_equal(o, result)
            else:
                tm.assert_series_equal(o, result)
            # check shallow_copied
            assert o is not result

        for null_obj in [np.nan, None]:
            for orig in self.objs:
                o = orig.copy()
                klass = type(o)

                if not self._allow_na_ops(o):
                    continue

                if needs_i8_conversion(o):

                    values = o.astype(object).values
                    fill_value = values[0]
                    values[0:2] = pd.NaT
                else:
                    values = o.values.copy()
                    fill_value = o.values[0]
                    values[0:2] = null_obj

                expected = [fill_value] * 2 + list(values[2:])

                expected = klass(expected, dtype=orig.dtype)
                o = klass(values)

                # check values has the same dtype as the original
                assert o.dtype == orig.dtype

                result = o.fillna(fill_value)
                if isinstance(o, Index):
                    tm.assert_index_equal(result, expected)
                else:
                    tm.assert_series_equal(result, expected)
                # check shallow_copied
                assert o is not result

    @pytest.mark.skipif(PYPY, reason="not relevant for PyPy")
    def test_memory_usage(self):
        for o in self.objs:
            res = o.memory_usage()
            res_deep = o.memory_usage(deep=True)

            if is_object_dtype(o) or (
                isinstance(o, Series) and is_object_dtype(o.index)
            ):
                # if there are objects, only deep will pick them up
                assert res_deep > res
            else:
                assert res == res_deep

            if isinstance(o, Series):
                assert (
                    o.memory_usage(index=False) + o.index.memory_usage()
                ) == o.memory_usage(index=True)

            # sys.getsizeof will call the .memory_usage with
            # deep=True, and add on some GC overhead
            diff = res_deep - sys.getsizeof(o)
            assert abs(diff) < 100

    def test_searchsorted(self):
        # See gh-12238
        for o in self.objs:
            index = np.searchsorted(o, max(o))
            assert 0 <= index <= len(o)

            index = np.searchsorted(o, max(o), sorter=range(len(o)))
            assert 0 <= index <= len(o)

    def test_validate_bool_args(self):
        invalid_values = [1, "True", [1, 2, 3], 5.0]

        for value in invalid_values:
            with pytest.raises(ValueError):
                self.int_series.drop_duplicates(inplace=value)

    def test_getitem(self):
        for i in self.indexes:
            s = pd.Series(i)

            assert i[0] == s.iloc[0]
            assert i[5] == s.iloc[5]
            assert i[-1] == s.iloc[-1]

            assert i[-1] == i[9]

            with pytest.raises(IndexError):
                i[20]
            with pytest.raises(IndexError):
                s.iloc[20]

    @pytest.mark.parametrize("indexer_klass", [list, pd.Index])
    @pytest.mark.parametrize(
        "indexer",
        [
            [True] * 10,
            [False] * 10,
            [True, False, True, True, False, False, True, True, False, True],
        ],
    )
    def test_bool_indexing(self, indexer_klass, indexer):
        # GH 22533
        for idx in self.indexes:
            exp_idx = [i for i in range(len(indexer)) if indexer[i]]
            tm.assert_index_equal(idx[indexer_klass(indexer)], idx[exp_idx])
            s = pd.Series(idx)
            tm.assert_series_equal(s[indexer_klass(indexer)], s.iloc[exp_idx])

    def test_get_indexer_non_unique_dtype_mismatch(self):
        # GH 25459
        indexes, missing = pd.Index(["A", "B"]).get_indexer_non_unique(pd.Index([0]))
        tm.assert_numpy_array_equal(np.array([-1], dtype=np.intp), indexes)
        tm.assert_numpy_array_equal(np.array([0], dtype=np.int64), missing)