Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
scipy / sparse / csgraph / _traversal.pypy36-pp73-x86_64-linux-gnu.so
Size: Mime:
ELF>`3@HB@8@t¶t¶ `½`½!`½!(@`C x½x½!x½!ÐÐÈÈÈ$$Påtdªªª44QåtdRåtd`½`½!`½!  GNUV»ƒ¸à1lÑñ{;é•Xn-yðŒccõ.&"AŶ¤Á+Ww r¥Õ‰•5¡è_…®ÛËÛiv‹i¤˜X¸ËHAÚÊOý½èŽ3ò€ö- M ‘\¦íÿ³vI8,OöÚ³m‚ÿ¯í[º|U ÆÒȈ˜., q_#î>F"ã\5M__gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Jv_RegisterClassesPyPyExc_ValueErrorPyPyErr_FormatPyPyObject_GetAttrStringPyPyExc_TypeErrorPyPyOS_snprintfPyPyErr_WarnEx_PyPy_DeallocPyPyObject_GetAttrPyPyExc_NameErrorPyPyExc_SystemErrorPyPyErr_SetStringPyPyType_IsSubtypePyPyExc_AttributeErrorPyPyErr_ExceptionMatchesPyPyExc_ImportErrorPyPyObject_GetItemPyPyErr_ClearPyPyThreadState_GetPyPyFrame_NewPyPyTraceBack_HerePyPyUnicode_FromStringPyPyCode_NewPyPyMem_ReallocPyPyErr_FetchPyPyObject_Not_PyPy_FalseStruct_PyPy_TrueStructPyPyErr_RestorePyPyUnicode_FromFormatPyPyObject_SetAttrPyPyMem_MallocPyPyList_NewPyPyModule_GetDictPyPyDict_NewPyPyImport_ImportModuleLevelObjectPyPyDict_NextPyPyUnicode_CheckPyPyUnicode_ComparePyPyErr_OccurredPyPyExc_DeprecationWarningPyPyErr_WarnFormatPyPyObject_RichCompareBoolPyPyLong_AsUnsignedLongPyPyExc_OverflowErrorPyPyBytes_TypePyPyUnicode_CheckExactPyPyNumber_LongPyPyLong_TypePyPyObject_GetBufferPyPyBuffer_ReleasePyPyErr_PrintExPyPyErr_WriteUnraisable_PyPy_NoneStructPyPyExc_IndexErrorPyPyExc_StopIterationPyPyLong_AsLongPyPyTuple_PackPyPyObject_CallPyPyLong_FromLongPyPyTuple_NewPyPyDict_SetItemPyPyNumber_InPlaceMultiplyPyPyNumber_InPlaceAddPyPySequence_CheckPyPySequence_GetItemPyPyExc_BaseExceptionPyPyObject_IsSubclassPyPyErr_SetObjectPyPyDict_SizePyPyDict_GetItemPyPyLong_FromSsize_tPyPyObject_IsTruePyPySlice_NewPyPyList_TypePyPyTuple_TypePyPyObject_GetIterPyPySequence_SizePyPySequence_ITEMPyInit__traversalPyPy_GetVersionPyPyBytes_FromStringAndSizePyPyUnicode_FromStringAndSizePyPyModule_Create2PyPyImport_AddModulePyPyObject_SetAttrStringPyPyUnicode_InternFromStringPyPyObject_HashPyPyUnicode_DecodePyPyImport_GetModuleDictPyPyDict_GetItemStringPyPyDict_SetItemStringPyPyImport_ImportModulePyPyList_SET_ITEMPyPyCFunction_NewExlibpthread.so.0libc.so.6GLIBC_2.2.5ƒui	`½!€Nh½!@N€Â!€Â!`ï!xÿ!hï!ÿ!pï!0ÿ!xï!Hþ! ï!xÿ!¨ï!ÿ!°ï!0ÿ!¸ï!Hþ!àï!xÿ!èï!0ÿ!ðï!ˆÿ!øï!Pþ! ð!xÿ!(ð!ÿ!0ð!0ÿ!@ð!xÿ!Hð!ÿ!Pð!0ÿ!`ð!"hð!wžˆð!"ð! m°ð!"¸ð! lØð!"àð!qžñ!øÿ!ñ!x(ñ!ðÿ!0ñ!`mPñ!èÿ!Xñ!hxñ!àÿ!€ñ!¹ž ñ!Øÿ!¨ñ!¸Èñ!Ðÿ!Ðñ!ðñ!Èÿ!øñ!`›ò!Àÿ! ò!€œ@ò!¸ÿ!Hò! ‰hò!°ÿ!pò!ò!¨ÿ!˜ò!`œ¸ò! ÿ!Àò! œàò!˜ÿ!èò!ó!ÿ!ó!@›0ó!ˆÿ!8ó!¨Xó!€ÿ!`ó! m€ó!xÿ!ˆó!ž¨ó!pÿ!°ó!؝Ðó!hÿ!Øó!˜øó!`ÿ!ô!X ô!Xÿ!(ô! xHô!Pÿ!Pô!à›pô!Hÿ!xô!˜ô!@ÿ! ô!€nÀô!8ÿ!Èô!œèô!0ÿ!ðô!èõ!(ÿ!õ!kž8õ! ÿ!@õ!ež`õ!ÿ!hõ!±žˆõ!ÿ!õ!ž°õ!ÿ!¸õ!žØõ!ÿ!àõ!0žö!øþ!ö!ø(ö!ðþ!0ö!&žPö!èþ!Xö!_žxö!àþ!€ö!ˆ ö!Øþ!¨ö!øœÈö!Ðþ!Ðö!èœðö!Èþ!øö!ž÷!Àþ! ÷!Yž@÷!¸þ!H÷!¨žh÷!°þ!p÷!H÷!¨þ!˜÷!˜ž¸÷! þ!À÷! ›à÷!˜þ!è÷!àlø!þ!ø!ȝ0ø!ˆþ!8ø!¶žXø!€þ!`ø!Sž€ø!xþ!ˆø!@n¨ø!pþ!°ø! lÐø!hþ!Øø!8øø!`þ!ù!Mž ù!Xþ!(ù! œHù!Pþ!Pù!pù!Hþ!xù!@œ˜ù!@þ! ù!(Àù!8þ!Èù!€›èù!0þ!ðù! nú!(þ!ú!`l8ú! þ!@ú!Gž`ú!þ!hú!žˆú!þ!ú!ˆž°ú!þ!¸ú!AžØú!þ!àú!û!øý!û!àm(û!ðý!0û!؜Pû!èý!Xû!}žxû!àý!€û!;žü!´dü!›(ü!`ü!`ü!ðchü!ð xü!Ë!€ü!dˆü!PU˜ü! Â!Àü!)dÈü!ðXØü!@Ó!àü!dèü!$øü!`Ý!ý!Ûcý!àãý!€æ! ý!¿dH¿!P¿!X¿!	`¿!h¿!p¿!!x¿!'€¿!(ˆ¿!,¿!/˜¿!4 ¿!5¨¿!;°¿!A¸¿!B?!Cȿ!Eп!Rؿ!Xà¿![è¿!\ð¿!`ø¿!aÀ! À!(À!0À!8À!@À!HÀ!
PÀ!XÀ!`À!
hÀ!pÀ!xÀ!€À!ˆÀ!À!˜À! À!¨À!°À!¸À!ÀÀ!ÈÀ!ÐÀ!ØÀ!àÀ!èÀ! ðÀ!"øÀ!#Á!$Á!%Á!&Á!) Á!*(Á!+0Á!-8Á!.@Á!0HÁ!1PÁ!2XÁ!3`Á!6hÁ!7pÁ!8xÁ!9€Á!:ˆÁ!<Á!=˜Á!> Á!?¨Á!@°Á!D¸Á!FÀÁ!GÈÁ!HÐÁ!IØÁ!JàÁ!KèÁ!LðÁ!MøÁ!NÂ!OÂ!PÂ!QÂ!S Â!T(Â!U0Â!V8Â!W@Â!YHÂ!ZPÂ!]XÂ!^`Â!_hÂ!bHƒìH‹%‘!H…ÀtÿÐHƒÄÃÿ5r‘!ÿ%t‘!@ÿ%r‘!héàÿÿÿÿ%j‘!héÐÿÿÿÿ%b‘!héÀÿÿÿÿ%Z‘!hé°ÿÿÿÿ%R‘!hé ÿÿÿÿ%J‘!héÿÿÿÿ%B‘!hé€ÿÿÿÿ%:‘!hépÿÿÿÿ%2‘!hé`ÿÿÿÿ%*‘!h	éPÿÿÿÿ%"‘!h
é@ÿÿÿÿ%‘!hé0ÿÿÿÿ%‘!hé ÿÿÿÿ%
‘!h
éÿÿÿÿ%‘!héÿÿÿÿ%ú!héðþÿÿÿ%ò!héàþÿÿÿ%ê!héÐþÿÿÿ%â!héÀþÿÿÿ%ڐ!hé°þÿÿÿ%Ґ!hé þÿÿÿ%ʐ!héþÿÿÿ%!hé€þÿÿÿ%º!hépþÿÿÿ%²!hé`þÿÿÿ%ª!héPþÿÿÿ%¢!hé@þÿÿÿ%š!hé0þÿÿÿ%’!hé þÿÿÿ%А!héþÿÿÿ%‚!héþÿÿÿ%z!héðýÿÿÿ%r!h éàýÿÿÿ%j!h!éÐýÿÿÿ%b!h"éÀýÿÿÿ%Z!h#é°ýÿÿÿ%R!h$é ýÿÿÿ%J!h%éýÿÿÿ%B!h&é€ýÿÿÿ%:!h'épýÿÿÿ%2!h(é`ýÿÿÿ%*!h)éPýÿÿÿ%"!h*é@ýÿÿÿ%!h+é0ýÿÿÿ%!h,é ýÿÿÿ%
!h-éýÿÿÿ%!h.éýÿÿÿ%ú!h/éðüÿÿÿ%ò!h0éàüÿÿÿ%ê!h1éÐüÿÿÿ%â!h2éÀüÿÿÿ%ڏ!h3é°üÿÿÿ%ҏ!h4é üÿÿÿ%ʏ!h5éüÿÿÿ%!h6é€üÿÿÿ%º!h7épüÿÿÿ%²!h8é`üÿÿÿ%ª!h9éPüÿÿÿ%¢!h:é@üÿÿÿ%š!h;é0üÿÿÿ%’!h<é üÿÿÿ%Š!h=éüÿÿÿ%‚!h>éüÿÿÿ%z!h?éðûÿÿÿ%r!h@éàûÿÿÿ%j!hAéÐûÿÿÿ%b!hBéÀûÿÿÿ%Z!hCé°ûÿÿÿ%R!hDé ûÿÿÿ%J!hEéûÿÿÿ%B!hFé€ûÿÿÿ%:!hGépûÿÿÿ%2!hHé`ûÿÿÿ%*!hIéPûÿÿÿ%"!hJé@ûÿÿÿ%¢Œ!fAVAUI‰õATUH‰ÖSI‰ÔH‰ÍE‰ÆHìÐèüÿÿH…À„·H‰ÃH‹@ö€³€u H‹¥‹!H5ŽkL‰áL‰êH‹81ÀèÖþÿÿëzL‹K(I9ér
E…öu(I9ét#H‹’‹!H5ƒkI‰èL‰áL‰êH‹81Àè þÿÿëDAÿÎuNI9évII‰æHƒìHÎkAQL‰éI‰éM‰à¾ÈL‰÷1Àèœúÿÿ1Ò1ÿL‰öèpþÿÿ…ÀZYyHÿuH‰ßèÝúÿÿ1ÛHÄÐH‰Ø[]A\A]A^ÃUSH‰õHƒìèÚþÿÿH…ÀH‰Ãu.H‹‹!H‹8èãûÿÿ…ÀtH‹`‹!H5ç.H‰êH‹81ÀèôýÿÿH‰ØZ[]ÃH…öAVI‰þAUATUSu1ÿè6þÿÿH…ÀH‰ÃI‰Äu
E1äéƒI‰ô1ÛH‹=ßË!è2úÿÿH…ÀI‰Åt+è…ûÿÿH…ÀH‰ÅtE1ÀL‰áH‰ÂL‰îL‰÷è©ùÿÿH…ÛI‰Äuë&H…Ût¯E1ä1íH‹HPÿH…ÒH‰uH‰ßèîùÿÿH…ítH‹EHPÿH…ÒH‰UuH‰ïèÐùÿÿ[L‰à]A\A]A^ÃH‹UË!H…ÀtHÿÃATUHÄ.SA¸¹¾1ÀHìàHl$Ld$H‰ïèùÿÿèyýÿÿH’.H‰~1ÀL‰çèùÿÿŠD$8D$u
ŠD$8D$
tbH\$LtH1tM‰áH‰é¾ÈH‰ß1ÀèÄøÿÿ1ÿºH‰Þè•üÿÿ…Ày'H¥-ÇlÊ!Ç^Ê!A,H‰OÊ!é,1ÿèsûÿÿH…ÀH‰QÊ!u'Hk-Ç2Ê!Ç$Ê!E,H‰Ê!éòH=°,1öèrúÿÿH…ÀH‰Ê!u'H*-ÇñÉ!ÇãÉ!F,H‰ÔÉ!é±H=o,1öèûÿÿH…Àu'Hð,Ç·É!Ç©É!G,H‰šÉ!éwH=îÄ!¾õèûÿÿH…ÀH‰²É!u'H¬,ÇsÉ!ÇeÉ!k,H‰VÉ!é‰H‰ÇèÙ÷ÿÿH…ÀH‰oÉ!u'Hq,Ç8É!Ç*É!m,H‰É!éøHÿH=Ï,è—ùÿÿH…ÀH‰%É!u'H/,ÇöÈ!ÇèÈ!o,H‰ÙÈ!é¶HÿH=–,èUùÿÿH…ÀH‰ÛÈ!u'Hí+Ç´È!ǦÈ!q,H‰—È!étHÿH‹°È!H5\,H‹=²È!HS¸!èN÷ÿÿ…Ày_Hž+ÇeÈ!ÇWÈ!s,H‰HÈ!é%ŠC 
C!H‹{ta€{"t0èl÷ÿÿH‰EH‹H‹8H…ÿ„ƒèøÿÿHÿÀtyHƒÃ(H‹+H…íuÀë>H‹SH‹sH…ÒtHÿÎ1Éèj÷ÿÿH‰Eë¼HÿÎè,ùÿÿH‰Eë®H‹CHpÿè9øÿÿH‰Eë›HƒÏÿèºöÿÿH…ÀH‰Å!tHÇÇñØÿÿè¢öÿÿH…ÀH‰èÄ!u$HÊ*Ç‘Ç!ǃÇ!u,H‰tÇ!ëTH«Ä!ƒ8„ÍH‹“Å!H‹5|Å!H‹=…Ç!èˆøÿÿ…À‰«Ht*Ç;Ç!Ç-Ç!z,H‰Ç!Hƒ=NÇ!tLHƒ=<Ç!tH‹
Ç!‹	Ç!H=Þp‹5øÆ!è;H‹=Ç!H…ÿt7HÿHÇ	Ç!u'èjõÿÿë èùÿÿH…ÀuH‹†!H5˜pH‹8è÷ÿÿH‹ÙÆ!HÄà[]A\Ãè@ùÿÿH…ÀH‰Ãu'H¼)ǃÆ!ÇuÆ!~,H‰fÆ!éCÿÿÿH5ÒoH‰Çè"õÿÿH…ÀuAH‹~Æ!H5·oH‰ßè—õÿÿ…Ày'Hg)Ç.Æ!Ç Æ!€,H‰Æ!éîþÿÿH‹=]Å!è0H…ÀH‰–Å!u'H()ÇïÅ!\ÇáÅ!Ú*H‰ÒÅ!é¯þÿÿH‹=¦Ã!èñH…Àu'Hð(Ç·Å!~Ç©Å!Û*H‰šÅ!éwþÿÿH‹=öÄ!è¹H…Àu'He)ÇÅ!XÇqÅ!Ü*H‰bÅ!é?þÿÿH‹=ÎÄ!èH…Àu'H-)ÇGÅ!Ç9Å!Ý*H‰*Å!éþÿÿH‹5Ä!1?èÂöÿÿH…ÀH‰PÂ!u'H:(ÇÅ!\ÇóÄ!î*H‰äÄ!éÁýÿÿH‹5øÂ!1?è|öÿÿH…Àu'H¨(ÇÂÄ!Ç´Ä!ù*H‰¥Ä!é‚ýÿÿH‹5±Â!1?è=öÿÿH…Àu'Hi(ǃÄ!ÇuÄ!+H‰fÄ!éCýÿÿH‹5ÊÃ!1?èþõÿÿH…Àu'H*(ÇDÄ!2Ç6Ä!+H‰'Ä!éýÿÿH‹5«Ã!1?è¿õÿÿH…Àu'Hë'ÇÄ!XÇ÷Ã!+H‰èÃ!éÅüÿÿH‹5dÃ!1?è€õÿÿH…Àu'H¬'ÇÆÃ!pǸÃ!%+H‰©Ã!é†üÿÿH‹5•Á!1?èAõÿÿH…Àu'Hm'LJÃ!ÇyÃ!0+H‰jÃ!éGüÿÿH‹5NÁ!1?èõÿÿH…Àu'H.'ÇHÃ!Ç:Ã!;+H‰+Ã!éüÿÿH‹
'Â!H‹ÈÁ!1ÀL‹
WÁ!L‹ØÀ!¿H‹5ôÁ!ÿ5æÁ!ÿ5 Á!è›ôÿÿH…ÀZYu'H&ÇßÂ!ÇÑÂ!F+H‰ÂÂ!éŸûÿÿH‹ÎÂ!L‹
¿Â!Hƒì1É1öA¸¿AQjÿ5²Á!ÿ5À!RRPRRºèýòÿÿHƒÄPH…Àu'H¨%ÇoÂ!ÇaÂ!I+H‰RÂ!é/ûÿÿL‹
.À!L‹OÀ!1ÀH‹
æÀ!H‹·À!¿H‹5Á!èÎóÿÿH…Àu'HM%ÇÂ!{ÇÂ!R+H‰÷Á!éÔúÿÿH‹Â!L‹
ôÁ!Hƒì1É1öA¸¿AQj{ÿ5Á!ÿ5A¿!RRPRRºè2òÿÿHƒÄPH…Àu'HÝ$ǤÁ!{Ç–Á!U+H‰‡Á!édúÿÿL‹
c¿!L‹„¿!1ÀH‹
À!H‹ì¿!¿H‹5PÀ!èóÿÿH…Àu'H‚$ÇIÁ!ÁÇ;Á!^+H‰,Á!é	úÿÿH‹8Á!L‹
)Á!Hƒì1É1öA¸¿AQhÁÿ5!ÿ5s¾!RRPRRºèdñÿÿHƒÄPH…Àu'H$ÇÖÀ!ÁÇÈÀ!a+H‰¹À!é–ùÿÿH=p$è˜ïÿÿH…ÀH‰Ãu'HŽ$Ç›À!	ǍÀ!Ÿ+H‰~À!é[ùÿÿH¨#H5.$A¸¹hH‰ßè8óÿÿH…Àu'HA$ÇNÀ!	Ç@À!¨+H‰1À!é'HÿuH‰ßè¿îÿÿH=$èïÿÿH…ÀH‰Ãu'Hì#ÇÀ!ÎÇø¿!ª+H‰é¿!鯸ÿÿH#H5Ô#A¸¹hH‰Çè£òÿÿH…Àu'HŸ#ǹ¿!ÎÇ«¿!­+H‰œ¿!é’H”#H5‡#A¸¹P
H‰ßèVòÿÿH…Àu'HR#Çl¿!åÇ^¿!¯+H‰O¿!éEHP#H5:#A¸¹8H‰ßè	òÿÿH…Àu'H#Ç¿!éÇ¿!±+H‰¿!éøH
#H5í"A¸¹XH‰ßè¼ñÿÿH…ÀH‰z¾!u'H±"Ç˾!òǽ¾!³+H‰®¾!é¤HÁ"H5™"A¸¹ÈH‰ßèhñÿÿH…Àu$Hd"Ç~¾!–Çp¾!µ+H‰a¾!ëZHÿukH‰ßèòìÿÿëaHÿMuH‰ïèâìÿÿH‹5#½!H‰ßèòÿÿH…ÀH‰Å…šH[!Ç"¾!
Ǿ!¹,H‰¾!Hÿ…ÞöÿÿH‰ßè”ìÿÿéÑöÿÿH‹=è»!1öèòÿÿH…ÀH‰Åu'H
!ÇԽ!
Çƽ!œ,H‰·½!é”öÿÿH‹5³»!H‹=Խ!H‰êèìëÿÿ…Ày)HÌ Ç“½!
Ç…½!ž,1ÛH‰t½!é|
HÿMuH‰ïèìÿÿ¿èÇïÿÿH…ÀH‰Åu'Hƒ ÇJ½!
Ç<½!¨,H‰-½!é
öÿÿH‹	¼!H‰Ç1öHÿèäíÿÿH‹m»!¾H‰ïHÿèÍíÿÿH‹F»!¾H‰ïHÿè¶íÿÿH‹7»!¾H‰ïHÿèŸíÿÿH‹=ˆº!H‰îèãðÿÿH…ÀH‰Ã…dþÿÿHèǯ¼!
Ç¡¼!¶,H‰’¼!éš	H‹5n»!H‹=¯¼!H‰ÂèÇêÿÿ…Ày'H§Çn¼!
Ç`¼!»,H‰Q¼!éY	HÿMuH‰ïèÞêÿÿH‹5—º!H‰ßèðÿÿH…ÀH‰Åu'H[Ç"¼!
Ǽ!½,H‰¼!éûýÿÿH‹5Yº!H‹="¼!H‰Âè:êÿÿ…Ày'HÇá»!
Çӻ!¿,H‰Ļ!éÌHÿMuH‰ïèQêÿÿH‹5ú¹!H‰ßèzïÿÿH…ÀH‰Åu'HÎÇ•»!
LJ»!Á,H‰x»!énýÿÿH‹5¼¹!H‹=•»!H‰Âè­éÿÿ…Ày'HÇT»!
ÇF»!Ã,H‰7»!é?HÿMuH‰ïèÄéÿÿH‹5u¹!H‰ßèíîÿÿH…ÀH‰Åu'HAÇ»!
Çúº!Å,H‰ëº!éáüÿÿH‹57¹!H‹=»!H‰Âè éÿÿ…Ày'HÇǺ!
ǹº!Ç,H‰ªº!é²HÿMuH‰ïè7éÿÿHÿuH‰ßè*éÿÿ¿èðìÿÿH…ÀH‰Ãu'H¬Çsº!Çeº!Ò,H‰Vº!é3óÿÿH‹º·!1öH‰ÇHÿè
ëÿÿH‹=޷!H‰ÞèQîÿÿH…ÀH‰Åu'HZÇ!º!Ǻ!×,H‰º!éúûÿÿHÿuH‰ßè’èÿÿH‹5[·!H‰ïè»íÿÿH…ÀH‰Ãu'HÇֹ!Çȹ!Ú,H‰¹¹!éÁH‹5·!H‹=ֹ!H‰Âèîçÿÿ…Ày'HÎÇ•¹!LJ¹!Ü,H‰x¹!é€HÿuH‰ßèèÿÿHÿMuH‰ïèøçÿÿ¿è¾ëÿÿH…ÀH‰Åu'HzÇA¹!Ç3¹!ç,H‰$¹!éòÿÿH‹ð¶!1öH‰ÇHÿèÛéÿÿH‹=¼¶!H‰îèíÿÿH…ÀH‰Ãu'H(Çï¸!Çá¸!ì,H‰Ҹ!éÚHÿMuH‰ïè_çÿÿH‹5¶!H‰ßèˆìÿÿH…ÀH‰Åu'HÜÇ£¸!Ç•¸!ï,H‰†¸!é|úÿÿH‹5R¶!H‹=£¸!H‰Âè»æÿÿ…Ày'H›Çb¸!ÇT¸!ñ,H‰E¸!éMHÿMuH‰ïèÒæÿÿHÿuH‰ßèÅæÿÿH‹=&¶!è9
H…ÀH‰Ãu'H/Ç¸!Çþ·!û,H‰ï·!éÌðÿÿH‹5s¶!H‰Çè›êÿÿH…ÀH‰Åu'HñÇη!Ç7!ý,H‰±·!é§ùÿÿHÿuH‰ßè?æÿÿH‹50·!H‹=w!H‰êèÙåÿÿ…Ày)H£Ç€·!Çr·!-1ÛH‰a·!éiHÿMuH‰ïèîåÿÿH‹=Oµ!èb	H…ÀH‰Åu'HXÇ5·!Ç'·!
-H‰·!éõïÿÿH‹5tµ!H‰ÇèÄéÿÿH…ÀH‰Ãu'HÇ÷¶!Çé¶!-H‰ڶ!éâHÿMuH‰ïègåÿÿH‹5@¶!H‹=é¶!H‰Úèåÿÿ…Ày'HËǨ¶!Çš¶!-H‰‹¶!選ÿÿHÿuH‰ßèåÿÿH‹"´!H=ë²!1öèôèÿÿH…ÀH‰Ãu'HÇW¶!ÇI¶!-H‰:¶!éïÿÿH‹5Nµ!H‹=W¶!H‰Âèoäÿÿ…Ày'HOǶ!Ƕ!-H‰ùµ!éï÷ÿÿHÿuH‰ßè‡äÿÿH‹³!H=9²!1öèbèÿÿH…ÀH‰Ãu'HþÇŵ!{Ç·µ!%-H‰¨µ!é…îÿÿH‹5ܴ!H‹=ŵ!H‰ÂèÝãÿÿ…Ày'H½Ç„µ!{Çvµ!'-H‰gµ!é]÷ÿÿHÿuH‰ßèõãÿÿH‹þ²!H=‡±!1öèÐçÿÿH…ÀH‰Ãu'HlÇ3µ!ÁÇ%µ!1-H‰µ!éóíÿÿH‹5ҳ!H‹=3µ!H‰ÂèKãÿÿ…Ày'H+Çò´!ÁÇä´!3-H‰մ!éËöÿÿHÿuH‰ßècãÿÿè®äÿÿH…ÀH‰Ãu'HêDZ´!Ç£´!;-H‰”´!éqíÿÿH‹ ³!H‹5‘³!H‰ÇèÉâÿÿ…Ày'H©Çp´!Çb´!=-H‰S´!éIöÿÿH‹³!H‹5p³!H‰ßèˆâÿÿ…Ày'HhÇ/´!Ç!´!>-H‰´!éöÿÿH‹Ʋ!H‹5·²!H‰ßèGâÿÿ…Ày'H'Çî³!Çà³!?-H‰ѳ!éÇõÿÿH‹³!H‹5³!H‰ßèâÿÿ…Ày'HæÇ­³!ÇŸ³!@-H‰³!é†õÿÿH‹\²!H‹5M²!H‰ßèÅáÿÿ…Ày'H¥Çl³!Ç^³!A-H‰O³!éEõÿÿH‹5Ӱ!H‹=l³!H‰Úè„áÿÿ…Ày'HdÇ+³!dz!B-H‰³!éõÿÿHÿ…XìÿÿH‰ßè˜áÿÿéKìÿÿHÿMuH‰ïè…áÿÿH…Û…×ôÿÿé¹ëÿÿ€H=ѯ!Hѯ!UH)øH‰åHƒøvH‹†q!H…Àt	]ÿàfD]Ã@f.„H=‘¯!H5Н!UH)þH‰åHÁþH‰ðHÁè?HÆHÑþtH‹Áq!H…Àt]ÿàf„]Ã@f.„€=Y¯!u'Hƒ=§q!UH‰åtH‹="t!èíäÿÿèHÿÿÿ]Æ0¯!óÃ@f.„H=én!Hƒ?ué^ÿÿÿfDH‹1q!H…ÀtéUH‰åÿÐ]é@ÿÿÿ@€ÿs@¶Ç‡RHHc‚HÐÿàfHIÄHÌH:…öHDÂÃH¬H3…öHDÂÃH¥Hô…öHDÂÃHÃH'ÄH,ÄH”ÄH#ÄH}ÄH®Ã„H¶Ã„H½Ã„HÃÄHÄH
ÄH¯Ã„HÓÄH ÄHáÄA‰ðAƒèx_IcȉðHÁá9T|KE…ÀtK1öë€~9pA9ð~'D‰Á)ñ‰ÈÁèÈÑøðHcÈHÁá‹L9Ê}×A‰ÀA9ðÙ9ʟ¶ÒÐóËO1À9ʟ¶ÒÐëê€HƒìL‹GM…Àt{M‹I9ùtC‹w@¾DèïýÿÿI‹PðH5,NH‹
I‹M‹IH‹L‹H‰ÁH‹‚n!H‹81ÀHƒÄéœáÿÿ@H‹L$H‹‹w@¾DèŸýÿÿH5¨MI‰ÁM‰ÐL‰Òë¼DLøH
¾ëÍ„H‹¾HЀù	w5HJ¾Rƒè0rÐ@€þ	wfD€HƒÁDBоrÐ@€þ	véH‰ÃHƒì¾ÐH‹×m!H5°NH‹81Àèîàÿÿ¸ÿÿÿÿHƒÄÃ@USH‰þH‰ýHƒìH‹=å®!èxáÿÿH…ÀH‰ÃtHƒÄH‰Ø[]ÃfDH‹ám!H5[H‰êH‹81Àè•àÿÿHƒÄH‰Ø[]Ðf.„H…öATUStI‰üH‹?H‰óH9þu9½‰è[]A\ÃDH‹™m!H51íH‹8èÞÿÿ‰è[]A\Ãf„è›àÿÿ…	Åu¼I‹$H‹K H5NH‹P H‹Ãl!H‹81Àèàÿÿë›Df.„SH‰þH‰ûH‹=®!èýÜÿÿH…ÀtHƒ[Ãfè‹ÝÿÿH‰ß[éâþÿÿfAWAVI‰þAUATI‰ÍUS‰ó‰ÕHƒì8è“Þÿÿ…ÛI‰Ä…A‰ï1ÛE…ÿ„¢L‹
+­!M…É„’‹
­!D‰úL‰ÏL‰L$‰Ή$èïüÿÿ9$~rL‹L$H˜HÁàIÁE;yu^I‹HƒH‹X­!1ÉL‰çH‰ÞèßÿÿH…ÀI‰Ä„Ÿ‰h0H‰ÇèTßÿÿHƒ+„òIƒ,$uL‰çè‹ÛÿÿHƒÄ8[]A\A]A^A_Ã@L‰ïè ÜÿÿH…ÀI‰Åt݅Û…xL‰÷èÜÿÿI‰ÆM…ö„ŒH‹½¬!L‹
®¬!HƒìE1À1É1Ò1ö1ÿAQUAVAUPPPPPèþÜÿÿH‰ÃI‹EHƒÄPHƒèH…ÀI‰E„ÊIƒ.„°H…Û„dÿÿÿH‹¬!E…ÿH‰$„ÿÿÿH…À„§D‹5۫!H‹<$D‰úD‰öè¼ûÿÿLcèE9îD;5½«!…¶AƒÆ@H‹<$IcöHÁæèÝÿÿH…ÀH‰$„³þÿÿD‰5«!D‹5„«!IcÍHÁáH‰~«!E9õšH$IcÆD‰òHÁàH$H‹pðH‹xøƒêHƒèH‰pH‰xA9Õ|äEND‰yH‰D‰
*«!HƒéBþÿÿHƒ=ˆ«!„ÞHT$(Ht$ H|$èÜÿÿH‹5oª!H‹=`«!èûÝÿÿH…ÀI‰Ç„_H‰Çè×Ûÿÿ…ÀI‹thHƒèH…ÀI‰u>H‹Mj!H‰ÐL‰ÿH‰T$H‰$è™ÙÿÿH‹$H‹T$H9ÐtH;Tj!tJH‰ÇèŠÛÿÿ…Àt>H‹T$(H‹t$ H‹|$èòÚÿÿé5ýÿÿDHƒèH…ÀI‰„H‹ái!H9
j!tÂH‹T$(H‹t$ H‹|$è´ÚÿÿA‰ßA÷ßéöüÿÿf„Hƒ+…{ýÿÿH‰ßèþØÿÿHƒÄ8[]A\A]A^A_ÀHiJH=F
L‰ö‰Ù1ÀèNÙÿÿI‰ÆéqýÿÿfDIƒm…*ýÿÿL‰ïè­Øÿÿéýÿÿ„IcÍHÁáH$D;y„®D;5˜©!…%þÿÿéÖýÿÿf„è›ÙÿÿH‹i!H‹5å¨!H‹=֩!èñÚÿÿéÖþÿÿ@L‰÷è@ØÿÿéCýÿÿL‰ïè0Øÿÿé)ýÿÿ¿èAØÿÿH…À„IüÿÿH‰)©!Ç©!@Ç
©!D‰xH‰HƒéüÿÿH‹$IÁåLéé±ýÿÿH‹9H‰Hƒ/…þûÿÿèÈ×ÿÿéôûÿÿHÁéýÿÿH‹„h!H‹Mh!éþýÿÿH‰ßè ×ÿÿéüÿÿf.„AWAVI‰ÿAUATI‰ÔUSHÎH‰õHƒìHHD$(Lt$0L‰D$HÇD$(HÇD$0H‰D$HD$8HÇD$8H‰D$@H‹T$H‹t$L‰ñL‰ÿè“×ÿÿ…À„H‹H‹|$(H…ÒtH;:H‰Øuë|@H9:tsHƒÀH‹H…ÒuïèêØÿÿ…À„H‹H…Àt}I‰ÝëDtWIƒÅI‹EH…ÀtdH‹8H‹t$(H9÷t=è×ÿÿ…ÀyÛèFÚÿÿH…ÀtӸÿÿÿÿHƒÄH[]A\A]A^A_ÃDH‹T$0H)èI‰é?ÿÿÿL‰èH‹L$0H)èIƒ}I‰…%ÿÿÿH9ÝuëJfD„›HƒÅH9ët5H‹EH‹t$(H‹8H9÷„‚è÷Öÿÿ…ÀyÓè¾ÙÿÿH…À…tÿÿÿHƒÅH9ëuËH‹L$(H‹T$H5HH‹f!H‹81ÀèZÙÿÿHƒÄH¸ÿÿÿÿ[]A\A]A^A_ÃH‹÷e!H‹T$H5«GH‹81Àè)Ùÿÿ¸ÿÿÿÿéÿÿÿH‹|$(H‰ùH‹T$H5KGëžf„SH‹GH‰ûö€³t7H‹H H‹ìe!H­G¾H‹81ÀèÎÖÿÿ‰ÂH‰؅ÒtHƒ+t-1À[ÃL‹@ H‹ee!H5H1É1ÒH‹81Àè˜ØÿÿHƒ+uÓH‰ßèÕÿÿ1ÀëÉfDSH‰ûHƒìH‹Gö€³„H‹5e!1Òè9Øÿÿ…Àx3ƒøtH‰ßèÈÕÿÿ‰ÁH9Áu1HƒÄ[ÃH‹1e!H5HH‹8èrÖÿÿHƒÄ¸ÿÿÿÿ[ÀHƒøÿtbH‹e!H5¤GH‹8èDÖÿÿ¸ÿÿÿÿë¬DH;Ád!t	è:×ÿÿ…Àt=èØÿÿH…ÀuªH‹}d!H5ÅH‹8èÖÿÿƒÈÿémÿÿÿfDèÓ×ÿÿH…Àt”éwÿÿÿH‰ßè¡ÕÿÿH…ÀH‰Ãt³H‹rd!H9Cu4@H‰ßèðþÿÿH‹3HVÿH…ÒH‰…ÿÿÿH‰߉D$èáÓÿÿ‹D$éÿÿÿH‰ßè@þÿÿH…ÀH‰Ã„ÿÿÿëºfGÁ<4wiH
B¶ÀHcHÈÿàfD¸Ãf.„¸Ãf.„¸Ãf.„¸Ãf.„¸Ãf.„HƒìH‹c!@¾×H5²FH‹81Àè Öÿÿ1ÀHƒÄÃf„¾WD1Ò„ÖAWAVAUATUSH‰ûHƒì(H‹GH‹(H‹uHƒ~„ó€ús„²€úp„©¶GG1ÿ„À„‹NXA¿…É~#ƒéHFA¿HLÎ @L¯8HƒÀH9ÁuóÆCGHÇC0B¾‹{@<1‡±H
Þ
¶ÀHcHÈÿàfDH…ÒHÇC…gÆCDÇC@1ÀHƒÄ([]A\A]A^A_óÃf.„ƒ~XH‹K0¿”CGH‹uL‹FL9Á„9ÿÿÿL‰ÂH5ªEé,DA¿é^ÿÿÿDˆT$IGÿL-ÙL5þ
H‹MH‰D$¶CF<@„D<^„BÁ<4‡u¶ÀIc†Lðÿàf„A¼f.„H‹Q¶A\L9â„<C„<Ht€|$H…hL9â…_H‹CH‹MH‹S HHH9Ñ…^LáM…ÿt	L¯d$LáH‹C0H‰K HPÿH‰S0H9Ý„¤þÿÿH‹MH‹CH}H…ÉH‰8„Ü€y\Su)H‹qHƒ>„àH‹}(H‹HLXL‰[H‰pHùH‰HH…Ò„eþÿÿH‹C‹{@¾SDH‹(¶CFH‹M<@…æþÿÿr¾@€þ1‡a@¶öIctµLîÿæH‹QA¼¶A\L9â…úþÿÿf„:D$„ÿÿÿ<C…çþÿÿH‹IH…É„ÞþÿÿH‹CH‹UHPHpH‰sH‰HH‰PH‹S0éWÿÿÿ@ƒÿMäIƒäüIƒÄé…þÿÿDƒÿMäIƒäøIƒÄémþÿÿDH‹)`!H5ÒCH‰L$E1äH‹8èŠÑÿÿ¶CFH‹L$<@…8þÿÿ¾{DH‰L$èêûÿÿH…ÀH‰Æ„ÞH‹{ 1ÒH‹L$H‰øH÷öH…Òt
HþH)ÖH‰s Hƒ{8…óýÿÿ¾{DH‰L$è¥ûÿÿH‹L$H‰C8é×ýÿÿ€A¼éÅýÿÿDA¼éµýÿÿDH‹q_!H5šBH‰L$E1äH‹81Àè€Òÿÿ¶CFH‹L$éBÿÿÿÆD$HéýÿÿÆD$Ié
ýÿÿƒÿàƒÀCˆD$éöüÿÿÆD$UéìüÿÿH‹_!H5:BH‹81Àè(ÒÿÿH‹C‹{@¾SDÆD$H‹(é¼üÿÿA¼éÕþÿÿDA¼éÅþÿÿDA¼éµþÿÿDƒÿMäIƒäðIƒÄ éþÿÿDA¼éþÿÿDƒÿMäIƒäøIƒÄéuþÿÿDƒÿMäIƒäüIƒÄé]þÿÿDHHðH‹hðH‰Kéòüÿÿ€H‰ýéãüÿÿ„H‰ßèhïÿÿ¸ÿÿÿÿé”ûÿÿfDH5BH‹^!H‹81Àè0Ñÿÿ¸ÿÿÿÿélûÿÿH‹÷]!‹VX‰ùH5{AH‹81Àè	Ñÿÿ¸ÿÿÿÿéEûÿÿDf.„AWAVAUATI‰ýUSH4Hƒì(HD$Hl$H‰t$H‰$¶€ú}‡¶ÂHcƒHØÿàDI‹EHƒÆIƒ}(H‹H‹H‰t$D‹`X…6L‰ïèîùÿÿƒøÿ„GH‹t$E1öA¿¶„Étz€ù)tu€ù wL‰øH¿>HÓàH…øuÝH‰ïèéîÿÿƒøÿ„E9ô~I‹UIcÎH‹H‹H‹TÊHcÈH9Ñ…[H‹t$¶€ù,t	€ù)…Ç€ù,„^AƒÆ„Éu†E9ô…݄Ʉ\AÆEGIÇE(„HƒÆH‰t$¶€ú}†òþÿÿH‹<$èOîÿÿƒøÿ„hH˜I‰E(H‹t$éÁþÿÿfDE1äL‰ïèåøÿÿƒøÿ„>I‹E(H‹t$I‰E0A¶EEHƒÆAˆEF¶FÿE‰e@H‰t$IÇE(AˆEDéoþÿÿ@E1äA8UDuªE;e@u¤A¶EEA8EFu™HƒÆI‹E(IÇE(IE0H‰t$é3þÿÿ„A€}DtIƒ}„fL‰ïèFøÿÿƒøÿ„ŸIƒ}…JH‹D$HƒÄ([]A\A]A^A_ÃfDL‰ïèøÿÿƒøÿ„iI‹E(IE A¶EEIÇE(IÇE0AÆEDAˆEFH‹D$HpH‰t$é™ýÿÿfDHƒÆL‰ïI‹]8H‰t$è³÷ÿÿƒøÿ„H…ÛAÆED„jÿÿÿI‹M 1ÒH‰ÈH÷óH…Ò„UÿÿÿHËH)ÓI‰] éFÿÿÿ„HƒÆAÆEE=H‰t$é(ýÿÿDHFH‰D$¶VJš€ùv	€úd…ôH‰ÆA¼éþÿÿ@HFM‹e(IÇE(M‹u8H‰D$€~{…ÿL‰ïèýöÿÿƒøÿtZH‹D$M…äAÆEDIÇE0IÇE8HpH‰t$„ôE1ÿë€IƒÇM9ü„ÛH‹t$L‰ïèFüÿÿH…ÀH‰ÆuÞ1ÀHƒÄ([]A\A]A^A_ÃDHFH‰D$¶H‰ÆAˆUEé;üÿÿH‹ÑY!H5>H‹8è:Ëÿÿ1ÀHƒÄ([]A\A]A^A_Ãf„HFH‰D$€~:tHƒÆDH‰t$H‰ðHƒÆ€~ÿ:uîHpH‰t$éÓûÿÿ„HFH‰D$¶NH‰ÆéüÿÿL‰ïè€êÿÿ1Àë„@M…öH‰t$„•ûÿÿM‰u8éŒûÿÿH‹!Y!H5Ò=H‹8èŠÊÿÿ1ÀéKÿÿÿH‹Y!H5>¾ÑH‹81ÀèÌÿÿH…À…|üÿÿ1ÀéÙþÿÿDI‹EH5>D‰ñH‹H‹‹PXH‹ºX!H‹81ÀèØËÿÿëÁH‹§X!H5Ð;ºZH‹81Àè¹Ëÿÿ1ÀéÊþÿÿ‰ÁH‹X!H5b=H‹81Àè˜ËÿÿëH‹gX!H5è<H‹8èÐÉÿÿ1Àé‘þÿÿH‹JX!H5³=H‹8è³Éÿÿ1Àétþÿÿff.„USH‰ýH‰÷H‰îH‰ËHƒìXHÇEèqÉÿÿƒøÿ„P‹M$ƒù…ÜH‰#HÇCHš•!€=ï•!SH5üHÇD$H‰$H‰\$H‰çH‰t$HÇD$ HKÆD$E@ÆD$F@HÇD$(HÇD$0ÆD$DÇD$@ÆD$GHÇD$8u)@H‹@H‰ÊHÇAHƒÁH‰AðH‹€x\StàH‰T$H‹u(èzùÿÿH…ÀtBH‹UL‹
ú”!L9Ê…±1ÀHƒ}@tXHƒÄX[]ÐH‹W!H5ª<ºH‹81Àè#ÊÿÿHƒ}¸ÿÿÿÿtÏH †!H9E@„²H‰ïè.ÈÿÿHƒÄX¸ÿÿÿÿ[]ÃfHy†!H‰]@HƒÄX[]ÃfDH—!HZ†!HÇEHÇEH‰U8H‰U0H‰]@HƒÄX[]ÀHJûH
)úIƒùL‹”!H‰ÆHBñHƒúHMÈH‹IV!HƒìVH5<H‹81Àè[ÉÿÿXZé1ÿÿÿHÇE@éAÿÿÿ€SH‰ûHƒì H|$HT$Ht$èÔÇÿÿH‹|$H…ÿtHƒH‹t$H…ötHƒH‹T$H…ÒtHƒèÇÿÿ¿è{ÈÿÿH‰ßè#ÆÿÿH‹T$H‹t$H‰ÃH‹|$èìÆÿÿH…Ût'H‰ßèÇÿÿHƒ+t	HƒÄ [ÃH‰ßè8ÅÿÿHƒÄ [ÃfH‹=ÁU!èdÇÿÿHƒÄ [Ã@f.„AWAVI‰ÊAUATM‰ÏUSI‰ԉûL‰ÅHì8H…öL‹-U!HÇD$xHÇD$pHDŽ$¸HDŽ$°HDŽ$˜HDŽ$HDŽ$Ø	HDŽ$Ð	HDŽ$øHDŽ$ðHDŽ$HDŽ$„L9î„vLt$`H|$xH‰L$º<L‰ñèRüÿÿƒøÿH‹”$¨L‹T$„ÔH‹M9ìH‰D$„vM…ä„mLt$`H¼$¸º<L‰æL‰T$L‰ñèüÿÿƒøÿH‹”$èL‹T$„ªH‹M…ÒH‰D$„sM9ê„jLt$`H¼$˜º<L‰ÖL‰ñè³ûÿÿƒøÿH‹”$È„’H‹L9íH‰D$ „zH…í„qLt$`H¼$Ø	º<H‰îL‰ñèkûÿÿƒøÿH‹”$
„zH‹M…ÿH‰D$(„	M9ï„Lt$`H¼$øº=L‰þL‰ñè#ûÿÿƒøÿH‹”$(
„BL9¬$pL‹"„QHƒ¼$p„BLt$`H‹´$pH¼$º=L‰ñèÐúÿÿƒøÿH‹”$H„M…äL‹:ŽCH‹„$Ø	L‹Œ$øL‹´$¸L‹D$xL‹”$ÇD$H‰D$0H‹„$˜A‰H‰D$81ÀA‰ÅD‰èL9àƒ@A‹<D_L9\$Ž}‰ýH;l$C‹4žƒlA‹®9ðƒºH‹L$‰ÂH9ÑvEH‰l$HƒÀL‰\$@H‰ÍA‹9Ót‰ÑL9ùƒáIЁ9ñØÿÿ„!9ð„i‰ƒÀH9êrËH‹HR!H5i81ÒLt$`H‹81ÀèÅÿÿH4öÇû’!«Çí’!SH‰ޒ!fDHt$XH|$PL‰òè†ÃÿÿHƒ|$xtHW!H9„$¸„H|$xèßÂÿÿHƒ¼$˜t"H-!H9„$Ø„H¼$˜è²ÂÿÿHƒ¼$¸t"H!H9„$ø„bH¼$¸è…ÂÿÿHƒ¼$Ø	t"HӀ!H9„$
„MH¼$Ø	èXÂÿÿHƒ¼$øt"H¦€!H9„$8
„8H¼$øè+ÂÿÿHƒ¼$t"Hy€!H9„$X„#H¼$èþÁÿÿH‹T$`H‹t$XH‹|$PèÚÁÿÿH=»6ènúÿÿ1ÀHÄ8[]A\A]A^A_Ãf.„H9‘!H€!HDŽ$øHDŽ$
H‰”$0
H‰”$(
H‰„$8
éëüÿÿDHñ!HÊ!M9ìHDŽ$€H‰„$¸H‹H‰”$°H‰”$¨H‰D$…ŠûÿÿH®!H‡!M…ÒHDŽ$¸HDŽ$ÀH‰„$øH‹H‰”$ðH‰”$èH‰D$…ûÿÿH_!H8!L9íHDŽ$˜HDŽ$ H‰„$ØH‹H‰”$ÐH‰”$ÈH‰D$ …†ûÿÿH!Hé~!HDŽ$Ø	HDŽ$à	H‰”$
H‰”$
H‰„$
ézûÿÿ@D‹\$M9܆BC‰™ƒD$‰9éÁüÿÿfH©!H‚~!HDŽ$HDŽ$ H‰”$PH‰”$HH‰„$Xé®ûÿÿDHÜòÇ£!ŒÇ•!ÄH‰†!é©üÿÿH´òÇ{!ŒÇm!ÉH‰^!éüÿÿf„H„òÇK!ŒÇ=!ÎH‰.!éQüÿÿf„HTòǏ!ŒÇ
!ÓH‰þŽ!é!üÿÿf„HDŽ$øéüÿÿ€HDŽ$
é¢üÿÿ€HDŽ$8
é·üÿÿ€HDŽ$XéÌüÿÿ€HDŽ$¸éÖûÿÿ€HDŽ$Øéèûÿÿ€H‹‰M!H5ª31ÒLt$`H‹81ÀèQÀÿÿHuñÇ<Ž!®Ç.Ž!H‰Ž!éBûÿÿf.„HDñÇŽ!ŒÇý!ØH‰î!éûÿÿf„HñÇۍ!ŒÇ͍!ÝH‰¾!éáúÿÿf„H‹ÙL!H5ú21ÒLt$`H‹81À衿ÿÿHÅðÇŒ!£Ç~!ùH‰o!é’úÿÿf.„H‹‰L!H5ª21ÒLt$`H‹81ÀèQ¿ÿÿHuðÇ<!¨Ç.!&H‰!éBúÿÿf.„H‹9L!H5Z21ÒLt$`H‹81Àè¿ÿÿH%ðÇìŒ!ªÇތ!9H‰ό!éòùÿÿf.„L‹\$@H‹l$HL9\$(ŽÇH;l$(H‹D$0B‹4˜ƒNH‹D$0‹¨9ðƒîH‹L$ ‰ÂH9цL‰D$@ƒÀL‹\$8I‰ÈëD9ð„º‰ƒÀL9ƒÚA‹“9Ótâ‰ÑL9ùƒ
IЁ9ñØÿÿuˋl$I9ì†A‰©ƒD$‰9뱐H‹9K!H5Z11ÒLt$`H‹81Àè¾ÿÿH%ïÇì‹!ªÇދ!AH‰ϋ!éòøÿÿf.„H‹éJ!H5
11ÒLt$`H‹81À豽ÿÿHÕîÇœ‹!¯ÇŽ‹!H‰‹!颸ÿÿf.„H‹™J!H5º01ÒLt$`H‹81Àèa½ÿÿH…îÇL‹!´Ç>‹!áH‰/‹!éRøÿÿH‹SJ!H5t01ÒLt$`H‹81Àè½ÿÿH?îÇ‹!·ÇøŠ!
H‰éŠ!éøÿÿH‹
J!H5.01ÒLt$`H‹81ÀèռÿÿHùíÇ
!³Ç²Š!ÇH‰£Š!éÆ÷ÿÿL‹D$@AƒÅD;l$‚ÞöÿÿM…ÀD‰èt'Hy!H9”$¸„ÁH|$x‰D$蟺ÿÿ‹D$Hƒ¼$˜t*Héx!H9”$Ø„ H¼$˜‰D$èjºÿÿ‹D$Hƒ¼$¸t*H´x!H9”$ø„|H¼$¸‰D$è5ºÿÿ‹D$Hƒ¼$Ø	t*Hx!H9”$
„XH¼$Ø	‰D$èºÿÿ‹D$Hƒ¼$øt*HJx!H9”$8
„4H¼$ø‰D$è˹ÿÿ‹D$Hƒ¼$„Ü÷ÿÿHx!H9”$X„¦H¼$‰D$蒹ÿÿ‹D$é­÷ÿÿH‹rH!H5“.1ÒLt$`H‹81Àè:»ÿÿH^ìÇ%‰!³Ç‰!ÏH‰‰!é+öÿÿH‹,H!H5M.1ÒLt$`H‹81ÀèôºÿÿHìÇ߈!¸Çш!H‰ˆ!éåõÿÿHDŽ$XéIÿÿÿHDŽ$¸é.þÿÿHDŽ$ØéOþÿÿHDŽ$øésþÿÿHDŽ$
é—þÿÿHDŽ$8
é»þÿÿ€AWAVM‰ÇAUATI‰ÍUSI‰ԉûHì¸H;5eG!HÇD$8HÇD$0HDŽ$XHDŽ$PHDŽ$xHDŽ$pHDŽ$˜	HDŽ$	„íH…ö„äLt$ H|$8º<L‰ñèmîÿÿƒøÿH‹T$h„ÿL;%ÐF!H‹*„åM…ä„ÜLt$ H¼$Xº<L‰æL‰ñè)îÿÿƒøÿH‹”$ˆ„èL;-‰F!L‹"„ìM…í„ãLt$ H¼$xº=L‰îL‰ñèâíÿÿƒøÿH‹”$¨„ÑM…ÿL‹*„óL;=6F!„æLt$ H¼$˜	º=L‰þL‰ñè›íÿÿƒøÿH‹”$È	„ºM…íL‹
ŽÞL‹”$xL‹¼$X1ÀL‹D$8L‹´$˜	A‰ÃÇD$A‰D‰ØL9èƒõA‹<‚GI9ÄŽ5A‹4‡‰øL9àƒ†A‹‡9ðƒo‰ÂH9Õv=ƒÀL‰|$A‹9Ót‰ÑL9Ƀ¨Iށ9ñØÿÿ„`9ð„0‰ƒÀH9êrËH‹?E!H5`+1ÒLt$ H‹81Àè¸ÿÿH+éÇò…!Çä…!àH‰Յ!Ht$H|$L‰ò胶ÿÿHƒ|$8tHTt!H9D$x„±H|$8èߵÿÿHƒ¼$Xt"H-t!H9„$˜„WH¼$X貵ÿÿHƒ¼$xt"Ht!H9„$¸„H¼$x腵ÿÿHƒ¼$˜	t"HÓs!H9„$Ø	„H¼$˜	èXµÿÿH‹T$ H‹t$H‹|$è4µÿÿH=…*èÈíÿÿ1ÀHĸ[]A\A]A^A_Ã@L;%D!H’„!Hks!HÇD$@H‰T$pH‰T$hH‰D$xH‹*…ýÿÿL;-ÛC!H\„!H5s!HDŽ$XHDŽ$`H‰”$H‰”$ˆH‰„$˜L‹"…ýÿÿH„!Hîr!M…ÿHDŽ$xHDŽ$€H‰”$°H‰”$¨H‰„$¸L‹*…
ýÿÿH˃!H¤r!HDŽ$˜	HDŽ$ 	H‰”$Ð	H‰”$È	H‰„$Ø	éýÿÿ€D‹|$M9C‰ºƒD$‰9é‚ýÿÿf.„HÔæÇ›ƒ!dǍƒ![H‰~ƒ!é¤ýÿÿf„H¤æÇkƒ!dÇ]ƒ!`H‰Nƒ!étýÿÿf„HtæÇ;ƒ!dÇ-ƒ!eH‰ƒ!éDýÿÿf„HDæÇƒ!dÇý‚!jH‰î‚!éýÿÿf„H‹	B!H5*(1ÒLt$ H‹81ÀèѴÿÿHõåǼ‚!~Ç®‚!ÎH‰Ÿ‚!éÅüÿÿf.„H‹¹A!H5Ú'1ÒLt$ H‹81À聴ÿÿH¥åÇl‚!‚Ç^‚!H‰O‚!éuüÿÿf.„HDŽ$¸éÝüÿÿ€HDŽ$˜é˜üÿÿ€HDŽ$Ø	éÚüÿÿ€HÇD$xéAüÿÿf.„H‹	A!H5*'1ÒLt$ H‹81ÀèѳÿÿHõäǼ!wÇ®!†H‰Ÿ!éÅûÿÿf.„H‹¹@!H5Ú&1ÒLt$ H‹81À聳ÿÿH¥äÇl!|Ç^!³H‰O!éuûÿÿf.„H‹i@!H5Š&1ÒLt$ H‹81Àè1³ÿÿHUäǁ!~ǁ!ÆH‰ÿ€!é%ûÿÿf.„L‹|$AƒÃD;\$‚KúÿÿM…ÀD‰Øt,Hmo!H9T$x„'H|$8‰D$èô°ÿÿL‹¼$X‹D$M…ÿt*H<o!H9”$˜„H¼$X‰D$轰ÿÿ‹D$Hƒ¼$xt*Ho!H9”$¸„­H¼$x‰D$舰ÿÿ‹D$Hƒ¼$˜	„?ûÿÿHÎn!H9”$Ø	tjH¼$˜	‰D$èS°ÿÿ‹D$éûÿÿf.„H‹)?!H5J%1ÒLt$ H‹81Àèñ±ÿÿHãÇÜ!ƒÇÎ!H‰¿!éåùÿÿHDŽ$Ø	ëˆHDŽ$¸éBÿÿÿHÇD$xéËþÿÿHDŽ$˜éîþÿÿff.„AWAVI‰ÒAUATI‰ÏUS‰ýM‰ÅM‰ÌHì˜H‹‚>!HDŽ$¸HDŽ$°HDŽ$ø	HDŽ$ð	H9ÞHDŽ$ØHDŽ$ÐHDŽ$
HDŽ$
HDŽ$8HDŽ$0HDŽ$XHDŽ$PHDŽ$xHDŽ$pHDŽ$˜HDŽ$„¹H…ö„°L´$€H¼$¸H‰T$º<L‰ñèåÿÿƒøÿH‹”$èL‹T$„0H‹M…ÒH‰D$„ªI9Ú„¡L´$€H¼$ø	º<L‰ÖL‰ñèÆäÿÿƒøÿH‹”$(
„ÅH‹M…ÿH‰D$„®I9ß„¥L´$€H¼$غ<L‰þL‰ñè{äÿÿƒøÿH‹”$„ªH‹M…íH‰D$(„²I9Ý„©L´$€H¼$
º<L‰îL‰ñè0äÿÿƒøÿH‹”$H
„H‹M…äH‰D$0„>I9Ü„5L´$€H¼$8º=L‰æL‰ñèåãÿÿƒøÿH‹”$h„	H9œ$ÐH‹H‰D$„^Hƒ¼$ЄOL´$€H‹´$ÐH¼$Xº=L‰ñèŠãÿÿƒøÿH‹”$ˆ„éH9œ$ØH‹H‰D$8„KHƒ¼$Ø„<L´$€H‹´$ØH¼$xº=L‰ñè/ãÿÿƒøÿH‹”$¨„¾H9œ$àH‹H‰D$ „øHƒ¼$à„éL´$€H‹´$àH¼$˜º=L‰ñèÔâÿÿƒøÿH‹”$È„“Hƒ|$I‹D$(H‹:H‹ެHƒ|$ H‹œ$8H‰\$@‰+ŽáL‹´$xH9ýA‰.ƒ	‰D$\H‹„$
1ÒL‹”$˜L‹¼$ø	H‹œ$¸ÇD$XH‰D$HH‹„$ØAǪH‰D$PH‹„$XH‰D$`¸E‹$–Al$H9l$ŽÿE‰åL;l$E‹¯ƒ=	C‹¯D9Úƒ…	‰ÑH9L$†Û‹‹H9ÏH‰Î†tLO
Aƒ8tBH‰l$hH‹l$ƒÂD9Úƒ<	‰ÑH9郙‹‹H9ÏH‰Î†2LO
Aƒ8uȃD$XHcT$XH9T$ ޹A‰ÃL;\$A‰4–ƒðH9L$8H‹l$@B‰t†m
ƒÀ9D$\H‹L$`F‰$	AÇ„ï	H9T$ ùþÿÿH‹…9!H5¦1ÒL´$€H‹81ÀèJ¬ÿÿHnÝÇ5z!aÇ'z!)H‰z!é+HÉy!H¢h!HDŽ$8HDŽ$@H‰”$pH‰”$hH‰„$xé¹üÿÿDHy!HZh!M…ÒHDŽ$ÀH‰„$øH‹H‰”$ðH‰”$èH‰D$…VûÿÿH>y!Hh!M…ÿHDŽ$ø	HDŽ$
H‰„$8
H‹H‰”$0
H‰”$(
H‰D$…RûÿÿHïx!HÈg!M…íHDŽ$ØHDŽ$àH‰„$H‹H‰”$H‰”$H‰D$(…NûÿÿH x!Hyg!HDŽ$
HDŽ$ 
H‰”$P
H‰”$H
H‰„$X
éEûÿÿ@HYx!H2g!HDŽ$XHDŽ$`H‰”$H‰”$ˆH‰„$˜é¤ûÿÿDHx!Hêf!HDŽ$xHDŽ$€H‰”$°H‰”$¨H‰„$¸é·ûÿÿDHDÛÇx!LÇýw!—H‰îw!fDHt$xH|$pL‰ò薨ÿÿHƒ¼$˜t"Hdf!H9„$Ø„®H¼$˜èé§ÿÿHƒ¼$¸t"H7f!H9„$ø„™H¼$¸輧ÿÿHƒ¼$Øt"H
f!H9„$„„H¼$Ø菧ÿÿHƒ¼$ø	t"HÝe!H9„$8
„oH¼$ø	èb§ÿÿHƒ¼$
t"H°e!H9„$X
„ZH¼$
è5§ÿÿHƒ¼$8t"Hƒe!H9„$x„EH¼$8è§ÿÿHƒ¼$Xt"HVe!H9„$˜„0H¼$XèۦÿÿHƒ¼$xt"H)e!H9„$¸„H¼$x讦ÿÿH‹”$€H‹t$xH‹|$p臦ÿÿH=èßÿÿ1ÀHĘ[]A\A]A^A_ÀHdÙÇ+v!LÇv!œH‰v!é!þÿÿf„H4ÙÇûu!LÇíu!¡H‰Þu!éñýÿÿf„HÙÇËu!Lǽu!¦H‰®u!éÁýÿÿf„H‹É4!H5ê1ÒL´$€H‹81À莧ÿÿH²ØÇyu!fÇku!oH‰\u!éoýÿÿ€H	u!Hâc!HDŽ$˜HDŽ$ H‰”$ÐH‰”$ÈH‰„$Øé
ùÿÿDHDŽ$ØéAýÿÿ€HDŽ$øéVýÿÿ€HDŽ$ékýÿÿ€HDŽ$8
é€ýÿÿ€HDŽ$X
é•ýÿÿ€HDŽ$xéªýÿÿ€HDŽ$˜é¿ýÿÿ€HDŽ$¸éÔýÿÿ€H‹q3!H5’1ÒL´$€H‹81Àè6¦ÿÿHZ×Ç!t!eÇt!_H‰t!éüÿÿ€H,×Çós!LÇås!«H‰Ös!ééûÿÿH×ÇËs!Lǽs!°H‰®s!éÁûÿÿf„HÔÖÇ›s!LǍs!µH‰~s!é‘ûÿÿf„H¤ÖÇks!LÇ]s!ºH‰Ns!éaûÿÿf„H‹i2!H5Š1ÒL´$€H‹81Àè.¥ÿÿHRÖÇs!ZÇs!ÖH‰ür!éûÿÿ€H‹2!H5:1ÒL´$€H‹81ÀèޤÿÿHÖÇÉr![Ç»r!éH‰¬r!é¿úÿÿ€H‹É1!H5ê1ÒL´$€H‹81À莤ÿÿH²ÕÇyr!^Çkr!H‰\r!éoúÿÿ€H‹y1!H5š1ÒL´$€H‹81Àè>¤ÿÿHbÕÇ)r!dÇr!EH‰r!éúÿÿ€H‹)1!H5J1ÒL´$€H‹81Àèî£ÿÿHÕÇÙq!dÇËq!MH‰¼q!éÏùÿÿ€H‹l$hH9l$0ŽeL;l$0H‹L$H‹©ƒ-H‹L$HF‹©D9Ú†­D‰ÙH9L$(† H‹t$P‹ŽH9ÏH‰Î†ÕLO
A‹(…ítFL‹l$PH‹l$(AƒÃD9Ú†aD‰ÙH9͆VA‹LH9ÏH‰Î†ŽLO
Aƒ8uăD$XHcT$XH9T$ ŽA‰ÃL;\$A‰4–ƒ·H9L$8H‹l$@B‰t‡@öÿÿH‹í/!H51ÒL´$€H‹81À貢ÿÿHÖÓǝp!{Ǐp!…H‰€p!铸ÿÿM…Òt*H_!H9”$Ø„ÖH¼$˜‰D$荠ÿÿ‹D$Hƒ¼$¸t*H×^!H9”$ø„²H¼$¸‰D$èX ÿÿ‹D$Hƒ¼$Øt*H¢^!H9”$„ŽH¼$؉D$è# ÿÿ‹D$Hƒ¼$ø	t*Hm^!H9”$8
„jH¼$ø	‰D$èîŸÿÿ‹D$Hƒ¼$
t*H8^!H9”$X
„FH¼$
‰D$蹟ÿÿ‹D$Hƒ¼$8t*H^!H9”$x„"H¼$8‰D$脟ÿÿ‹D$Hƒ¼$Xt*HÎ]!H9”$˜„‡H¼$X‰D$èOŸÿÿ‹D$Hƒ¼$x„³øÿÿH•]!H9”$¸„=H¼$x‰D$èŸÿÿ‹D$鄸ÿÿH‹ö-!H51ÒL´$€H‹81À軠ÿÿHßÑǦn!tǘn!%H‰‰n!éœöÿÿH‹­-!H5Î1ÒL´$€H‹81Àèr ÿÿH–ÑÇ]n!uÇOn!5H‰@n!éSöÿÿH‹d-!H5…1ÒL´$€H‹81Àè) ÿÿHMÑÇn!sÇn!H‰÷m!é
öÿÿH‹-!H5<1ÒL´$€H‹81ÀèàŸÿÿHÑÇËm!jǽm!ŸH‰®m!éÁõÿÿH‹Ò,!H5ó1ÒL´$€H‹81À藟ÿÿH»ÐÇ‚m!kÇtm!¯H‰em!éxõÿÿH‹‰,!H5ª1ÒL´$€H‹81ÀèNŸÿÿHrÐÇ9m!sÇ+m!H‰m!é/õÿÿH‹@,!H5a1ÒL´$€H‹81ÀèŸÿÿH)ÐÇðl!lÇâl!¿H‰Ól!éæôÿÿ9D$\„Lüÿÿƒl$X‹L$Xƒùÿ„:üÿÿHcÑéCòÿÿHDŽ$¸é²ýÿÿHDŽ$˜éhýÿÿHDŽ$ØéüÿÿHDŽ$øé=üÿÿHDŽ$éaüÿÿHDŽ$8
é…üÿÿHDŽ$X
é©üÿÿHDŽ$xéÍüÿÿH‹K+!H5l1ÒL´$€H‹81ÀèžÿÿH4ÏÇûk!zÇík!uH‰Þk!éñóÿÿH‹+!H5#1ÒL´$€H‹81ÀèǝÿÿHëÎDzk!yǤk!eH‰•k!é¨óÿÿAWAVI‰ÒAUATM‰ÇUS‰ýI‰ÌM‰ÍHì(H‹¢*!HDŽ$ˆHDŽ$€HDŽ$¨HDŽ$ H9ÞHDŽ$È	HDŽ$À	HDŽ$èHDŽ$àHDŽ$HDŽ$HÇD$hHÇD$`„H…ö„vLt$PH¼$ˆH‰T$º<L‰ñèoÑÿÿƒøÿH‹”$¸L‹T$„©H‹M…ÒH‰D$„sI9Ú„jLt$PH¼$¨º<L‰ÖL‰ñè"ÑÿÿƒøÿH‹”$Ø„‘H‹M…äH‰D$„zI9Ü„qLt$PH¼$È	º=L‰æL‰ñèÚÐÿÿƒøÿH‹”$ø	„yH‹M…ÿH‰D$„I9ß„xLt$PH¼$èº=L‰þL‰ñè’ÐÿÿƒøÿH‹”$
„aH‹I9ÝH‰D$ „M…í„Lt$PH¼$º=L‰îL‰ñèJÐÿÿƒøÿH‹”$8„)H9œ$`L‹*„8Hƒ¼$`„)Lt$PH‹´$`H|$hº=L‰ñèúÏÿÿƒøÿH‹”$˜„	Hƒ|$I‹D$(L‹
H‹Ž"H‹œ$È	M…íH‰\$(‰+ŽZL‹¤$L9ÍA‰,$ƒ•L‹T$hH‹Œ$è1ÒL‹´$¨H‹œ$ˆÇD$0ÇD$4AǪH‹l$H‰L$8E‹<”H‹L$AWH9ÑŽŽE‹–D‰úH9ʃÎA‹–A9Ó†‰ÑH9Ív7‹‹I9ÉH‰Î†»LK<ƒ?„VƒÂA9Ó†Ú‰ÑH9érÉH‹\'!H5}
1ÒLt$PH‹81Àè$šÿÿHHËÇh!6Çh!>H‰òg!fHt$HH|$@L‰ò螘ÿÿHƒ|$htHoV!H9„$¨„ñH|$hè÷—ÿÿHƒ¼$ˆt"HEV!H9„$È„ßH¼$ˆèʗÿÿHƒ¼$¨t"HV!H9„$è„:H¼$¨蝗ÿÿHƒ¼$È	t"HëU!H9„$
„%H¼$È	èp—ÿÿHƒ¼$èt"H¾U!H9„$(
„H¼$èèC—ÿÿHƒ¼$t"H‘U!H9„$H„ûH¼$è—ÿÿH‹T$PH‹t$HH‹|$@èò–ÿÿH=³è†Ïÿÿ1ÀHÄ([]A\A]A^A_ÃfHYf!H2U!HDŽ$HDŽ$H‰”$@H‰”$8H‰„$HéäüÿÿDHf!HêT!M…ÒHDŽ$H‰„$ÈH‹H‰”$ÀH‰”$¸H‰D$…ûÿÿHÎe!H§T!M…äHDŽ$¨HDŽ$°H‰„$èH‹H‰”$àH‰”$ØH‰D$…†ûÿÿHe!HXT!M…ÿHDŽ$È	HDŽ$Ð	H‰„$
H‹H‰”$
H‰”$ø	H‰D$…ûÿÿH0e!H	T!HDŽ$èHDŽ$ðH‰”$ 
H‰”$
H‰„$(
ésûÿÿ@Héd!HÂS!HÇD$hHÇD$pH‰”$ H‰”$˜H‰„$¨éÊûÿÿH$ÈÇëd! ÇÝd!€H‰Îd!éÙüÿÿf„HôÇÇ»d! Ç­d!…H‰žd!é©üÿÿf„HÄÇÇ‹d! Ç}d!ŠH‰nd!éyüÿÿf„H”ÇÇ[d! ÇMd!H‰>d!éIüÿÿf„HDŽ$èéµüÿÿ€HDŽ$
éÊüÿÿ€HDŽ$(
éßüÿÿ€HDŽ$Héôüÿÿ€HDŽ$¨éþûÿÿ€HDŽ$Èéüÿÿ€H‹É"!H5ê1ÒLt$PH‹81À葕ÿÿHµÆÇ|c!7Çnc!NH‰_c!éjûÿÿf.„H„ÆÇKc! Ç=c!”H‰.c!é9ûÿÿf„HTÆÇc! Ç
c!™H‰þb!é	ûÿÿf„H‹"!H5:1ÒLt$PH‹81Àèá”ÿÿHÆÇÌb!,Ǿb!µH‰¯b!éºúÿÿf.„H‹É!!H5ê1ÒLt$PH‹81À葔ÿÿHµÅÇ|b!-Çnb!ÈH‰_b!éjúÿÿf.„H‹y!!H5š1ÒLt$PH‹81ÀèA”ÿÿHeÅÇ,b!0Çb!êH‰b!éúÿÿf.„H‹)!!H5J1ÒLt$PH‹81Àèñ“ÿÿHÅÇÜa!5ÇÎa!$H‰¿a!éÊùÿÿf.„H‹Ù !H5ú1ÒLt$PH‹81À術ÿÿHÅÄÇŒa!5Ç~a!,H‰oa!ézùÿÿf.„;D$4„Õƒl$0‹t$0ƒþÿ„¿HcT$0I9Տ’øÿÿH‹_ !H5€1ÒLt$PH‹81Àè'“ÿÿHKÄÇa!3Ça!H‰õ`!éùÿÿƒD$0HcT$0I9ÕH‰T$Ž•D‹\$4H‹T$L;\$A‰4”ƒÂH9L$ H‹T$(B‰4š†ƒD$4H‹L$8‹t$4F‰<9ðÇtH‹T$éá÷ÿÿ‹D$4M…Òt'HO!H9”$¨„H|$h‰D$虐ÿÿ‹D$Hƒ¼$ˆt*HãN!H9”$È„÷H¼$ˆ‰D$èdÿÿ‹D$Hƒ¼$¨t*H®N!H9”$è„ÓH¼$¨‰D$è/ÿÿ‹D$Hƒ¼$È	t*HyN!H9”$
„¯H¼$È	‰D$èúÿÿ‹D$Hƒ¼$èt*HDN!H9”$(
„6H¼$è‰D$èŏÿÿ‹D$Hƒ¼$„¾øÿÿHN!H9”$H„¦H¼$‰D$茏ÿÿ‹D$éøÿÿH‹l!H51ÒLt$PH‹81Àè4‘ÿÿHXÂÇ_!;Ç_!~H‰_!é
÷ÿÿH‹&!H5G1ÒLt$PH‹81ÀèîÿÿHÂÇÙ^!<ÇË^!ŽH‰¼^!éÇöÿÿHDŽ$HéIÿÿÿH‹Ï!H5ð1ÒLt$PH‹81À藐ÿÿH»ÁÇ‚^!=Çt^!žH‰e^!épöÿÿHDŽ$(
é¹þÿÿHDŽ$¨é×ýÿÿHDŽ$ÈéøýÿÿHDŽ$èéþÿÿHDŽ$
é@þÿÿf.„HƒìH…ÿuè2ÿÿ1ÒH…ÀuC‰ÐHƒÄÃ@Hƒ/uèuŒÿÿH‹¶!H5÷ºH‹81ÀèȏÿÿºÿÿÿÿHƒÄ‰ÐÃ@H‹É!H‹8èyÿÿ…:ÿÿÿÿt¥è[ÿÿ1Ò뜀SH‰ûHƒìH‹Gö€³tCèæ‹ÿÿHcÈH9ÈuHƒÄ[ÄHƒøÿtZH‹S!H5œH‹8蔍ÿÿ¸ÿÿÿÿëÏDH;!t	芎ÿÿ…Àt2èQÿÿH…ÀuØH‹Í!H5ÀH‹8èVÿÿƒÈÿ듐è+ÿÿH…Àtœë°H‰ßèüŒÿÿH…ÀH‰Ãt¾H‹Í!H9Cu7€H‰ßè8ÿÿÿH‹3HVÿH…ÒH‰…GÿÿÿH‰߉D$è9‹ÿÿ‹D$é2ÿÿÿH‰ß蘵ÿÿH…ÀH‰ÃuÀéGÿÿÿf.„AWAVI‰ñAUATI‰ÕUSI‰ÌL‰ÃHìHL‹5„!HDŽ$ˆHDŽ$€HDŽ$¨HDŽ$ L9÷HDŽ$è	HDŽ$à	HDŽ$ÈHDŽ$ÀHDŽ$
HDŽ$
HDŽ$(HDŽ$ „óH…ÿ„êH„$¨L|$pH‰t$º<H‰þL‰ùH‰ÇèEÂÿÿƒøÿH‹”$ØL‹L$„M…ÉH‹*„áM9ñ„ØL|$pH¼$è	º<L‰ÎL‰ùèýÁÿÿƒøÿH‹”$
„|H‹M9õH‰D$„èM…í„ßL|$pH¼$Ⱥ<L‰îL‰ùèµÁÿÿƒøÿH‹”$ø„dH‹M…äH‰D$„ïM9ô„æL|$pH¼$
º<L‰æL‰ùèmÁÿÿƒøÿH‹”$8
„LH‹L9óH‰D$(„ÓH…Û„ÊL|$pH¼$(º=H‰ÞL‰ùè%ÁÿÿƒøÿH‹”$X„´
H‹C(H‹5áX!H‰ßL‹"H‹H‰D$èöŒÿÿH…ÀI‰Å„º
H‹5{W!1?èNjÿÿH…ÀI‰Ç„›1ÒH‰ÆL‰ïèîŠÿÿI‹HQÿH…ÒI‰uL‰ÿH‰D$ 肈ÿÿH‹D$ H…À„dI‹MHQÿH…ÒI‰U„	H‹HQÿH…ÒH‰„üL9ó„CL|$pH¼$ˆº=H‰ÞL‰ùèFÀÿÿƒøÿH‹”$¸„í
H‹D$L‹:Hƒ…	D$ŽhH‹„$è	E1í1ÒL‹´$¨L‹Œ$(L‹”$ˆH‰D$ H‹„$
H‰D$8H‹„$ÈH‰D$@HEH‰D$0H‹D$HƒÀH‰D$HD‰èM‰õA‰ÆI9ԉ׎þAƒ<‘ÿ„CHƒÂ9T$àE‰õHƒ¼$ˆt"HdG!H9„$È„’H¼$ˆèéˆÿÿHƒ¼$¨t"H7G!H9„$è„vH¼$¨輈ÿÿHƒ¼$Èt"H
G!H9„$„ZH¼$È菈ÿÿHƒ¼$è	t"HÝF!H9„$(
„>H¼$è	èbˆÿÿHƒ¼$
t"H°F!H9„$H
„¼H¼$
è5ˆÿÿHƒ¼$(„üHF!H9„$h„œH¼$(èˆÿÿéÕ€HqW!HJF!HDŽ$(HDŽ$0H‰”$`H‰”$XH‰„$hé!ýÿÿDH¤º1ÛÇiW!Ç[W!0L|$pH‰GW!I‹EHƒèH…ÀI‰E„BHt$hH|$`L‰úèà‡ÿÿHƒ¼$ˆt"H®E!H9„$È„ÈH¼$ˆè3‡ÿÿHƒ¼$¨t"HE!H9„$è„ËH¼$¨è‡ÿÿHƒ¼$Èt"HTE!H9„$„†H¼$ÈèنÿÿHƒ¼$è	t"H'E!H9„$(
„)H¼$è	謆ÿÿHƒ¼$
t"HúD!H9„$H
„äH¼$
è†ÿÿHƒ¼$(t"HÍD!H9„$h„ŸH¼$(èR†ÿÿH‹T$pH‹t$hE1íH‹|$`è+†ÿÿH=|ü迾ÿÿH…ÛtHƒ+uH‰ßè|„ÿÿHÄHD‰è[]A\A]A^A_ÀHyU!HRD!M…ÉHDŽ$°H‰”$àH‰”$ØH‰„$èH‹*…úÿÿH;U!HD!M9õHDŽ$è	HDŽ$ð	H‰„$(
H‹H‰”$ 
H‰”$
H‰D$…úÿÿHìT!HÅC!M…äHDŽ$ÈHDŽ$ÐH‰„$H‹H‰”$H‰”$øH‰D$…úÿÿHT!HvC!HDŽ$
HDŽ$
H‰”$@
H‰”$8
H‰„$H
éúÿÿI9׎OAÇ’þÿÿÿH‰T$XHcÏH…Ɉ^I9ÏŽuI9ÌE‹ŠŽdH‰ȃÇE‰4…ÿHcÇH‰D$PˆHcÇH9D$ŽH‹t$ H…ɋ†ˆOH9L$ŽRH‰ÈH‹t$ ‹4†9ò~]ƒêLcÆ)òH‹t$0JDLÆHÖH‰ÂH)êˆ9H9ÕŽ<IcT•H…ÒI‰Ðˆ¿I9׎¿I’ƒ:ÿ„HƒÀH9Æu»…ÿˆÃH‹t$PH9t$(ŽÃH‹D$8H‹t$PH…ɋ°ˆóH9L$(ŽóH‹D$8‹<ˆ9ú~gL‹D$Hc÷Jÿ)ùL‰ÀHðHt$HHñL‰ÆL‹D$@H‰ÂH)òˆ”H9ÖŽ—IcH…ÒH‰×ˆÓI9׎ÓI’ƒ:ÿ„HƒÀH9Èu¼Aƒûþ…"H‹T$XAƒÆéúÿÿ@L‰ï舁ÿÿé±ûÿÿH¶ÇÛR!ÇÍR!ú1ÛH‰¼R!é…ûÿÿ€HäµÇ«R!ǝR!ÿ1ÛH‰ŒR!éUûÿÿ€H´µÇ{R!ÇmR!1ÛH‰\R!é%ûÿÿ€H„µÇKR!Ç=R!	1ÛH‰,R!éõúÿÿ€L‰øHȈE‹‚L‰àHȉŸýÿÿH‹-!H5N÷1ÒL|$pH‹81ÀèõƒÿÿHµÇàQ!!ÇÒQ!ËH‰ÃQ!éŒúÿÿfDH…ÀH‰Â‰ÄýÿÿH‹Õ!H5öö1ÒL|$pH‹81À蝃ÿÿHtLjQ!&ÇzQ!þH‰kQ!é4úÿÿfDHQ!Hò?!HDŽ$ˆHDŽ$H‰”$ÀH‰”$¸H‰„$Èé¨÷ÿÿDLú‰AýÿÿH‹8!H5Yö1ÒL|$pH‹81ÀèƒÿÿH$´ÇëP!'ÇÝP! H‰ÎP!é—ùÿÿf„D‰E‰ÃéôüÿÿDH‰ÇèHÿÿé÷öÿÿL‰ïH‰D$ è3ÿÿH‹D$ éÊöÿÿf„HDŽ$héPúÿÿ€HDŽ$H
éúÿÿ€HDŽ$(
éÆùÿÿ€HDŽ$Èé'ùÿÿ€HDŽ$éiùÿÿ€HDŽ$èé$ùÿÿ€H‹!H5:õ1ÒL|$pH‹81ÀèáÿÿH³ÇÌO!ǾO!tH‰¯O!éxøÿÿf.„HԲÇ›O!ǍO!1ÛH‰|O!éEøÿÿ€H¤²ÇkO!Ç]O!"1ÛL|$pH‰GO!éøÿÿfH‹D$HD$P‰ðúÿÿH‹Y!H5zô1ÒL|$pH‹81Àè!ÿÿHE²ÇO!%ÇþN!ÞH‰ïN!é¸÷ÿÿf.„H‹D$Hȉ±úÿÿH‹û
!H5ô1ÒL|$pH‹81ÀèÀÿÿHç±Ç®N!%Ç N!éH‰‘N!éZ÷ÿÿ@H¼±IƒHDŽ$ˆÇsN!ÇeN!IL‰óH‰SN!é÷ÿÿfDH‹q
!H5’ó1ÒL|$pH‹81Àè9€ÿÿH]±Ç$N!ÇN!‘H‰N!éÐöÿÿfH‹)
!H5Jó1ÒL|$pH‹81ÀèñÿÿH±ÇÜM!ÇÎM!¸H‰¿M!éˆöÿÿf.„H…ÀH‰Â‰iúÿÿH‹Í!H5îò1ÒL|$pH‹81Àè•ÿÿH¹°Ç€M!+ÇrM!k H‰cM!é,öÿÿfDLú‰-úÿÿH‹x!H5™ò1ÒL|$pH‹81Àè@ÿÿHd°Ç+M!,ÇM!~ H‰M!é×õÿÿf„D‰A‰ûéàùÿÿE1íéôÿÿH‹t$(Ht$P‰=ùÿÿH‹!H5'ò1ÒL|$pH‹81ÀèÎ~ÿÿHò¯Ç¹L!*Ç«L!K H‰œL!éeõÿÿHL$(‰
ùÿÿH‹µ!H5Öñ1ÒL|$pH‹81Àè}~ÿÿH¡¯ÇhL!*ÇZL!V H‰KL!éõÿÿHDŽ$H
é3ôÿÿHDŽ$héSôÿÿHDŽ$Èé]óÿÿHDŽ$èéyóÿÿHDŽ$é•óÿÿHDŽ$(
é±óÿÿD‰ßéN÷ÿÿ„AWAVAUATI‰ôUSH‰ÓHìÈHƒH…ÿHDŽ$¨HDŽ$°HDŽ$¸HDŽ$èHDŽ$àHDŽ$h
HDŽ$`
HDŽ$¨HDŽ$ HDŽ$ˆHDŽ$€HDŽ$HDŽ$HDŽ$(HDŽ$ HDŽ$H
HDŽ$@
H‹-
!„I
H9ï„@
H„$HŒ$к<H‰þH‰Çèp±ÿÿƒøÿH‹”$8„_H‹M…äH‰D$„A
I9ì„8
HŒ$ÐH¼$(º<L‰æè(±ÿÿƒøÿH‹”$X„_
H‹H9ëH‰D$ „H
HŒ$ÐH¼$H
º=H‰Þèé°ÿÿƒøÿ„P
H‹„$x
Hƒ¼$h
L¤$`
H‹H‰D$(H‹C(‹‰D$t'L=Œ8!L9¼$¨
„fL¤$`
I|$èzÿÿHŒ$ÐI|$º=H‰Þèr°ÿÿ…ÀH‹”$˜
ˆrLcd$H‹HƒH‰D$0L‰çè‰xÿÿH…ÀI‰Å„¿è£zÿÿH…ÀI‰Æ„?L‰h ¿è‰zÿÿH…ÀI‰Å„%L‰p è4yÿÿH…ÀI‰Æ„°H‹±H!H‹=ZI!H‰ÆH‰D$èMxÿÿH…ÀI‰Ç„ÉHƒH‹5®G!L‰úL‰÷èKwÿÿ…Àˆ[
Iƒ/„©H‹=ŠH!L‰òL‰îèÇyÿÿH…ÀH‰D$„™Iƒm„.Iƒ.„Hƒ¼$èt"L=B7!L9¼$(„¬H¼$èèÇxÿÿH9l$„¼
H‹t$HŒ$ÐH¼$èº=è¯ÿÿ…ÀH‹”$ˆ}H‹L‰çH‰D$8è=wÿÿH…ÀI‰Ç„Q¿èWyÿÿH…ÀI‰Æ„KL‰x ¿è=yÿÿH…ÀI‰Ç„QL‰p èèwÿÿH…ÀI‰Æ„|L‹%eG!H‹=H!L‰æèwÿÿH…ÀI‰Å„ŠHƒH‹5gF!L‰êL‰÷èvÿÿ…Àˆ¬Iƒm„aH‹=BG!L‰òL‰þèxÿÿH…ÀI‰Å„$Iƒ/„‰Iƒ.„oHƒ¼$ˆt"L=ý5!L9¼$È„ŸH¼$ˆè‚wÿÿI9í„iHŒ$ÐH¼$ˆº=L‰îèܭÿÿ…ÀH‹”$¸ˆ“Hƒ¼$¨H‹H‰D$@t"L=’5!L9¼$è„tH¼$¨èwÿÿH9l$„DH‹t$HŒ$ÐH¼$¨º=èm­ÿÿ…ÀH‹”$؈ýH‹D$L‹:H‹5&E!HƒH‰ÇèByÿÿH…ÀI‰Æ„ËH‹5ÇC!1?èxÿÿH…ÀI‰Ä„D1ÒH‰ÆL‰÷è:wÿÿI‹4$HVÿH…ÒI‰$„EH…À„I‹6HVÿH…ÒI‰„‰H‹0HVÿH…ÒH‰„fH‹5—D!H‰ßè·xÿÿH…ÀI‰Æ„[H‹5<C!1?èˆwÿÿH…ÀI‰Ä„1ÒH‰ÆL‰÷è¯vÿÿI‹4$HVÿH…ÒI‰$uL‰çH‰D$HèAtÿÿH‹D$HH…À„ÈI‹6HVÿH…ÒI‰„°H‹0HVÿH…ÒH‰„H‹5þC!H‹|$èxÿÿH…ÀI‰Æ„®H‹5¡B!1?èívÿÿH…ÀI‰Ä„È1ÒH‰ÆL‰÷èvÿÿI‹4$HVÿH…ÒI‰$uL‰çH‰D$Hè¦sÿÿH‹D$HH…À„I‹6HVÿH…ÒI‰„]H‹0HVÿH…ÒH‰„:H‹5cC!L‰ïèƒwÿÿH…ÀI‰Æ„­H‹5B!1?èTvÿÿH…ÀI‰Ä„Œ1ÒH‰ÆL‰÷è{uÿÿI‹4$HVÿH…ÒI‰$uL‰çH‰D$Hè
sÿÿH‹D$HH…À„SI‹6HVÿH…ÒI‰„7H‹0HVÿH…ÒH‰„‹D$pÿ…	´$˜ŽPH‹„$(L‹”$E1öL‹Œ$ˆH‰l$xL‹¤$h
L‹œ$¨H‰D$HH‹„$èL‰ÕL‹T$0‰t$\ÇD$XþÿÿÿÇD$TH‰D$`H‹„$H
H‰D$pH‹D$HƒÀH‰D$hL‰øM‰ÏI‰ÁM9ÖIc֍—Cƒ<´ÿ„êIƒÆD9t$ÞH‹l$xH‹5Ë@!H‰ßè›uÿÿH…ÀH‰D$„ H9l$…–Hƒ¼$H
L=â1!„†L9¼$ˆ
…kL¤$@
HDŽ$ˆ
I|$èPsÿÿH9l$„OL´$ÐH‹t$IƒÄº=L‰çL‰ñ褩ÿÿ…Àˆ€Hƒ+„nHc¼$˜èÅqÿÿH…ÀI‰Ä„<!H‹|$H‰ÆèŒtÿÿH…ÀI‰Æ„t"Iƒ,$„‡I9î…
"Hƒ¼$H
L=1!„,L9¼$ˆ
…L¤$@
HDŽ$ˆ
I|$èŠrÿÿI9î„÷L¼$ÐIƒÄº=L‰öL‰çL‰ùèâ¨ÿÿ…Àˆ@"H‹L$H‹H‰D$HƒèH…ÀH‰„üD‹¼$˜D+|$\Hƒ¼$èt"H~0!H9„$(„‘ H¼$èèrÿÿHƒ¼$t"HQ0!H9„$H„¸!H¼$èÖqÿÿHƒ¼$(t"H$0!H9„$h„H H¼$(è©qÿÿHƒ¼$H
t"H÷/!H9„$ˆ
„, H¼$H
è|qÿÿHƒ¼$h
t"HÊ/!H9„$¨
„ H¼$h
èOqÿÿHƒ¼$ˆt"H/!H9„$È„ôH¼$ˆè"qÿÿHƒ¼$¨„úHl/!H9„$è„ÔH¼$¨èñpÿÿL‹d$L‰l$L‰t$L‰åéf.„HI@!H"/!M…äHDŽ$H‰„$HH‹H‰”$@H‰”$8H‰D$…¿õÿÿH@!Hß.!H9ëHDŽ$(HDŽ$0H‰„$hH‹H‰”$`H‰”$XH‰D$ …¸õÿÿL%·?!L=.!H‹©?!HDŽ$H
Hƒ¼$h
L‰¤$€
L‰¤$x
L‰¼$ˆ
H‹S(H‰D$(HDŽ$P
‹‰D$tL9¼$¨
„H¼$h
èÄoÿÿHDŽ$h
HDŽ$p
H%?!L‰¤$ 
L‰¤$˜
L‰¼$¨
é¦õÿÿ„Ht¢Ç;?!ŠÇ-?!©H‰?!H‰\$HÇD$E1ä1Û1íH”$ÐH´$ÈH¼$Àè¬oÿÿHƒ¼$èt"Hz-!H9„$(„ÔH¼$èèÿnÿÿHƒ¼$t"HM-!H9„$H„¿H¼$èÒnÿÿHƒ¼$(t"H -!H9„$h„ªH¼$(è¥nÿÿHƒ¼$H
t"Hó,!H9„$ˆ
„•H¼$H
èxnÿÿHƒ¼$h
t"HÆ,!H9„$¨
„ðH¼$h
èKnÿÿHƒ¼$ˆt"H™,!H9„$È„ÛH¼$ˆènÿÿHƒ¼$¨t"Hl,!H9„$è„~H¼$¨èñmÿÿH‹”$ÐH‹´$ÈE1ÿH‹¼$ÀèÁmÿÿH=ºäèU¦ÿÿH…ítHƒm„%H…Ût
Hƒ+„öM…ätIƒ,$„öHƒ|$tH‹\$H‹H‰D$HƒèH…ÀH‰„±H‹L$H‹H‰D$HƒèH…ÀH‰uH‰Ïè°kÿÿHÄÈD‰ø[]A\A]A^A_ÃH, Çó<!ŠÇå<!®H‰Ö<!é³ýÿÿH ÇË<!ŠÇ½<!³H‰®<!é‹ýÿÿf„L‰÷è8kÿÿéßóÿÿL‰ïè(kÿÿéÅóÿÿH‰ßèkÿÿéBÿÿÿH‰ßèkÿÿéýþÿÿL‰çèøjÿÿéýþÿÿH‰ïèèjÿÿéÎþÿÿHDŽ$èéqþÿÿ€HDŽ$¨
éÿýÿÿ€HDŽ$Èéþÿÿ€HDŽ$(éýÿÿ€HDŽ$Hé0ýÿÿ€HDŽ$héEýÿÿ€HDŽ$ˆ
éZýÿÿ€H̞Ç“;!¥Ç…;!ò1íH‰t;!I‹EE1äH‰\$HÇD$HƒèH…ÀI‰EtpIƒ.t}M…ÿ„:üÿÿIƒ/…0üÿÿL‰ÿèÑiÿÿé#üÿÿ@H\žÇ#;!¥Ç;!äH‰\$HÇD$E1äH‰õ:!1íIƒm…ßûÿÿE1ÿE1öL‰ïèziÿÿM…öt‰Iƒ.uƒL‰÷ègiÿÿévÿÿÿfHy:!HR)!HDŽ$èHDŽ$ðH‰”$ H‰”$H‰„$(é0òÿÿDL¤$`
HDŽ$¨
I|$èšjÿÿH9ë……ðÿÿL%
:!éÁúÿÿDL‰ÿèØhÿÿéJñÿÿH”$¸H´$°H¼$¨èÓjÿÿHÌ9!H‹”$¸H‹´$°H‹¼$¨HDŽ$h
H‰„$ 
H‰„$˜
Hq(!HDŽ$p
H‰„$¨
èèiÿÿHìœHDŽ$¸HDŽ$°HDŽ$¨Ç9!¤H‰|9!Çz9!ÖéOúÿÿDHœœÇc9!¥ÇU9!âH‰\$HÇD$E1äH‰59!1íé%úÿÿfDH\œÇ#9!¥Ç9!éE1ÿH‰\$HÇD$H‰õ8!E1ä1íé™ýÿÿHDŽ$(éCðÿÿ€H”$¨H´$°H¼$¸1íèqiÿÿHj8!H‹”$¨H‹´$°H‹¼$¸HDŽ$èH‰„$ H‰„$H'!HDŽ$ðH‰„$(è†hÿÿHŠ›L‹|$HDŽ$¨HDŽ$°HDŽ$¸H‰8!Ç!8!¥Ç8!H‰\$E1äHÇD$é²üÿÿDL‰çH‰D$HèƒfÿÿH‹D$Hé¤ñÿÿf„H›ÇË7!¦Ç½7!H‹l$H‰©7!뜀H‰Çè8fÿÿéñÿÿL‰÷H‰D$Hè#fÿÿH‹D$Hé`ñÿÿH”$¸H´$°H¼$¨E1äèhÿÿH7!H‹”$¸H‹´$°H‹¼$¨HDŽ$ˆH‰„$ÀH‰„$¸H·%!HDŽ$H‰„$Èè.gÿÿH2šH‹l$HDŽ$¸HDŽ$°HDŽ$¨H‰Ç6!ÇÉ6!¦Ç»6!8H‰\$HÇD$é­ûÿÿH”$¨H´$°H¼$¸E1äè@gÿÿH96!H‹”$¨H‹´$°H‹¼$¸HDŽ$¨H‰„$àH‰„$ØHÞ$!HDŽ$°H‰„$èèUfÿÿHY™H‹l$HDŽ$¨HDŽ$°HDŽ$¸H‰î5!Çð5!§Çâ5!SL‰l$H‰\$éÂöÿÿHÿ˜ÇÆ5!¯Ç¸5!H‰©5!L‹d$L‰l$E1ÿH‰\$L‰åé=úÿÿ€H¼˜Çƒ5!¥Çu5!îH‰\$HÇD$E1äH‰U5!1íé[úÿÿfDèeÿÿH‹|$èi†ÿÿH…ÀI‰Ç… ìÿÿHa˜Ç(5!¥Ç5!ð1íH‰	5!éùÿÿ@H4˜Çû4!¦Çí4!#H‹l$H‰Ù4!é`ùÿÿ@H‰4!Hb#!HDŽ$ˆHDŽ$H‰”$ÀH‰”$¸H‰„$ÈéíÿÿDHA4!H#!HDŽ$¨HDŽ$°H‰”$àH‰”$ØH‰„$èé¨íÿÿDL‰ïèØbÿÿé’ìÿÿHd—Ç+4!¥Ç4!ôE1ÿ1íH‰	4!鐸ÿÿ@L‰÷è˜bÿÿé„ìÿÿL‰ÿèˆbÿÿéjìÿÿH—H‹l$ÇÖ3!¦ÇÈ3!H‰\$E1äH‰±3!HÇD$éšôÿÿM9΍ÒL;t$@Cdzþÿÿÿ	CÇ·þÿÿÿL‰´$L‰ÞL‹t$M‰ËHcÂI‰ñH…ÀH‰„$€ˆûL9Ѝç	H4…I4ƒ9ÿ„òL9؍–A‹41…ö‰´$ˆx-HcŒ$ˆH;L$@ãH…ÀAǏþÿÿÿˆ7	L9؍:	H;D$@AǁÿÿÿÿL9ÐALJÿÿÿÿÖH‰MrE‹Œ…öHcΈ—H9L$ Ž—H‹t$HH…4މt$0ˆ‡	H9D$ ŽH‹t$H‹<†9|$0ŽHcÏDŽ$œLñH‰ÎL)öˆêI9öŽíHctµH…öˆYL9֍YA‹4´D9Æ}A‰ðDŽ$œƒÇHƒÁ9|$0°H…Àˆ¿L9Ѝ6ƒ¼$œE‰„…	H;D$8Æ‹t$XH‹D$`H‹Œ$€‰T$XHc”$ˆ‰4ˆƒúþ„FHcÂéUþÿÿ„Hä”H‹l$Ǧ1!¦Ç˜1!H‰\$E1äH‰1!HÇD$é!öÿÿH¤”Çk1!¦Ç]1!H‹l$H‰I1!é9ùÿÿ@èaÿÿL‰çèc‚ÿÿH…ÀI‰Å…aéÿÿH[”H‹l$Ç1!¦Ç1!!H‰\$E1äH‰ø0!HÇD$é˜õÿÿf.„H‰Çèx_ÿÿéfëÿÿL‰÷H‰D$Hèc_ÿÿH‹D$Hé9ëÿÿf„HDŽ$ÈéPéÿÿ€H‰Çè0_ÿÿé¹ëÿÿL‰÷H‰D$Hè_ÿÿH‹D$HéŒëÿÿHDŽ$èé{éÿÿH““H‹l$ÇU0!¦ÇG0!%H‰\$E1äH‰00!HÇD$éÐôÿÿH‰Çèº^ÿÿéÜëÿÿL‰÷H‰D$Hè¨^ÿÿH‹D$Hé²ëÿÿH‹'ï H5HÕ1ÒH‹81ÀèôaÿÿL‹d$H“ÇÚ/!½ÇÌ/!ÿL‰l$H‰¸/!H‰\$L‰åé¢ðÿÿL‹d$HڒÇ¡/!ªÇ“/!_L‰l$H‰/!H‰\$L‰åéiðÿÿH…ÉH‰Î‰ýÿÿH‹î H5°Ô1ÒH‹81Àè\aÿÿL‹d$H{’ÇB/!èÇ4/!L‰l$H‰ /!H‰\$L‰åé
ðÿÿHG’Ç/!ªÇ/!mH‰ñ.!éCùÿÿLÖ‰§üÿÿH‹î H5-Ô1ÒH‹81ÀèÙ`ÿÿL‹d$Hø‘Ç¿.!èDZ.!L‰l$H‰.!H‰\$L‰åé‡ïÿÿL‹d$H¿‘dž.!¯Çx.!‚L‰l$H‰d.!H‰\$L‰åéNïÿÿH‰ÁLшéIŒƒ9ÿ„üH‰ÁLÙˆA‹4‰…ö‰´$ˆ‰ûÿÿAljÿÿÿÿH‹L$@HÁˆ=AǏÿÿÿÿH‰ÁLщ-ûÿÿH‹í H5?Ó1ÒH‹81Àèë_ÿÿL‹d$H
‘ÇÑ-!æÇÃ-!ÛL‰l$H‰¯-!H‰\$L‰åé™îÿÿL‹d$Hѐǘ-!¶ÇŠ-!¥L‰l$H‰v-!H‰\$L‰åé`îÿÿHÇd-!¶ÇV-!³H‰G-!é™÷ÿÿ‹t$T‰1ƒÆ‰t$Tr…öHcΈ4H9L$ Ž4H‹t$HH…ŽˆÉH9D$ ŽÔH‹t$HH‹¼$€‹4¾9ñŽ…ùÿÿHcþƒéL‰œ$ˆJ7H|$h)ñL‰Œ$€HùH‰L$0H‰ÁL)ñxRI9Î~UHcLH…ÉH‰ÎˆÐL9эRAƒ<ŒÿH<„ HƒÀH9D$0u»L‹œ$ˆL‹Œ$€éœúÿÿH…ÀH‰Áy«H‹†ë H5§Ñ1ÒH‹81ÀèS^ÿÿL‹d$HrÇ9,!ÊÇ+,!¦L‰l$H‰,!H‰\$L‰åéíÿÿL‹d$H9Ç,!·Çò+!¿L‰l$H‰Þ+!H‰\$L‰åéÈìÿÿH‰ÏL׈Aƒ<¼ÿ…5ÿÿÿH‹¼$ˆL‹„$€HÏM¸E‹Aƒûÿ„½H‹|$@HÏIc<¿ƒÿþ‰¼$œtL‹Œ$ˆIùH…ÿIHùL‹Œ$€E‰¹AƒûþtL‹L$@IcûH…ÿNIHûD‹œ$œE‰¿H…ÉA‰ˆYAǏþÿÿÿH‹L$@HÑH…ÒHHÑA‰4—HcÖé‡þÿÿH@ŽÇ+!·Çù*!ÍH‰ê*!é<õÿÿL‹„$€IøH‰ÏE‹Aƒûÿ…<ÿÿÿA‰ë–H‹îé H5Ð1ÒH‹81Àè»\ÿÿL‹d$HڍÇ¡*!ÀÇ“*!L‰l$H‰*!H‰\$L‰åéiëÿÿH‹›é H5¼Ï1ÒH‹81Àèh\ÿÿL‹d$H‡ÇN*!ÁÇ@*!/L‰l$H‰,*!H‰\$L‰åéëÿÿHL$ ‰i÷ÿÿH‹=é H5^Ï1ÒH‹81Àè
\ÿÿL‹d$H)Çð)!çÇâ)!îL‰l$H‰Î)!H‰\$L‰åé¸êÿÿH‰ÁLÙ‰–ûÿÿH‹Þè H5ÿÎ1ÒH‹81Àè«[ÿÿL‹d$HʌÇ‘)!âǃ)!¬L‰l$H‰o)!H‰\$L‰åéYêÿÿH‹‹è H5¬Î1ÒH‹81ÀèX[ÿÿL‹d$HwŒÇ>)!ÄÇ0)!VL‰l$H‰)!H‰\$L‰åéêÿÿH‹L$ HÁˆˆH‹t$H‹<Ž9|$0vöÿÿH‰ÂLÒˆE‰”J<ƒl$TH…L$XH‰úH‰|$0HIÐI4”ƒùþ„ÄH…ÀˆûL9ЍþHcÑH…ÒˆEL9ҍ÷	‹>A9<”Œ‘H;T$8f	H‹L$`H;T$(L‘A‹AÇÿÿÿÿKL‹D$p‹|$\ƒl$TA‰<ë‡H‹oç H5Í1ÒH‹81Àè<ZÿÿL‹d$H[‹Ç"(!ËÇ(!¹L‰l$H‰(!H‰\$L‰åéêèÿÿHL$ ‰ÌúÿÿH‹ç H52Í1ÒH‹81ÀèÞYÿÿL‹d$HýŠÇÄ'!ÉǶ'!†L‰l$H‰¢'!H‰\$L‰åéŒèÿÿH‹¾æ H5ßÌ1ÒH‹81Àè‹YÿÿL‹d$HªŠÇq'!ßÇc'!sL‰l$H‰O'!H‰\$L‰åé9èÿÿH‹t$ HÆH‰´$€‰,úÿÿH‹Uæ H5vÌ1ÒH‹81Àè"YÿÿL‹d$HAŠÇ'!ÉÇú&!‘L‰l$H‰æ&!H‰\$L‰åéÐçÿÿA‰HL$@éûÿÿH‹õå H5Ì1ÒH‹81ÀèÂXÿÿL‹d$Há‰Ç¨&!ãÇš&!¿L‰l$H‰†&!H‰\$L‰åépçÿÿH‹¢å H5ÃË1ÒH‹81ÀèoXÿÿL‹d$HމÇU&!çÇG&!ùL‰l$H‰3&!H‰\$L‰åéçÿÿH‹Oå H5pË1ÒH‹81ÀèXÿÿL‹d$H;‰Ç&!áÇô%!L‰l$H‰à%!H‰\$L‰åéÊæÿÿ‹„$˜‰D$\éIâÿÿH¼$H
èöUÿÿHo%!HDŽ$H
HDŽ$P
L‰¼$ˆ
H‰”$€
H‰”$x
éžâÿÿL‰ÈL‹´$M‰ÙI‰ÃéÚáÿÿH‰ßèüSÿÿé…âÿÿH¼$H
èŠUÿÿH%!HDŽ$H
HDŽ$P
L‰¼$ˆ
H‰”$€
H‰”$x
éôâÿÿL‰çè¦SÿÿélâÿÿH‹|$è—SÿÿéõâÿÿH…	L$XˆÐH;D$(Ø‹D$\H‹L$pH‹´$€Hc”$ˆ‰±ƒè‰D$\ééòÿÿHƒ|$0‰üÿÿH‹Ïã H5ðÉ1ÒH‹81ÀèœVÿÿL‹d$H»‡Ç‚$!ñÇt$!~L‰l$H‰`$!H‰\$L‰åéJåÿÿI‰ÐMЈ¯‹>C9<„ŒIÿÿÿH‹L$8HшH‹|$`HT$(LA‹AÇÿÿÿÿ‰µûÿÿH‹8ã H5YÉ1ÒH‹81ÀèVÿÿL‹d$H$‡Çë#!öÇÝ#!ÍL‰l$H‰É#!H‰\$L‰åé³äÿÿH‹D$H‹5X#!Hxè7uÿÿ…À„Hƒ¼$H
L¤$@
„ƒàÿÿL=!!L9¼$ˆ
„EàÿÿL¤$@
I|$è¡SÿÿéWàÿÿH”$¸H´$°H¼$¨èÿSÿÿH9ë„tL‰ñº=H‰ÞL‰çèã‰ÿÿƒÀ„¢H‹”$¸H‹´$°H‹¼$¨è-SÿÿH1†HDŽ$¸HDŽ$°HDŽ$¨ÇÔ"!H‰Á"!Ç¿"!GL‹d$L‰l$H‰\$L‹l$L‰åé¨çÿÿL‹d$HʅÇ‘"!ǃ"!4L‰l$H‰o"!H‰\$L‰åéYãÿÿL9Ѝ‰E‰„éqùÿÿH‰ÁLÑxxƒ¼$œE‰Œ…WùÿÿHD$8H‰„$€‰:ðÿÿH‹Lá H5mÇ1ÒH‹81ÀèTÿÿL‹d$H8…Çÿ!!ûÇñ!!L‰l$H‰Ý!!H‰\$L‰åéÇâÿÿH‹ùà H5Ç1ÒH‹81ÀèÆSÿÿL‹d$Hå„Ǭ!!ìÇž!!QL‰l$H‰Š!!H‰\$L‰åétâÿÿH±„L‹d$Çs!!Çe!!TL‰l$H‰Q!!H‹D$L‰åH‰D$é6âÿÿHDŽ$(é^ßÿÿHDŽ$hé§ßÿÿHDŽ$ˆ
éÃßÿÿHDŽ$¨
éßßÿÿHDŽ$ÈéûßÿÿHDŽ$èéàÿÿL‹d$L‰l$L‰t$L‰åéBãÿÿH{ !HDŽ$H
HDŽ$P
H‰„$€
H‰„$x
H,!H‰„$ˆ
éeýÿÿH‹5  !I~èÿqÿÿ…À„¨Hƒ¼$H
L¤$@
„ÞÿÿL=é!L9¼$ˆ
„ÓÝÿÿI|$èqPÿÿéëÝÿÿH`ƒL‰l$M‰åL‹d$Ç !H‰ !H‹D$Ç !VL‰åH‰D$éøäÿÿHDŽ$Hé7ÞÿÿH”$¨H´$°H¼$¸è}PÿÿH9l$„ÐH‹t$L‰ùº=L‰çè]†ÿÿƒÀ„OH‹”$¨H‹´$°H‹¼$¸è§OÿÿH«‚HDŽ$¨HDŽ$°HDŽ$¸ÇN!H‰;!Ç9!jL‹d$H‹D$E1ÿL‰l$L‰åH‰D$éÀãÿÿH‹;Þ H5\Ä1ÒH‹81ÀèQÿÿL‹d$H'‚Çî!óÇà!§L‰l$H‰Ì!H‰\$L‰åé¶ßÿÿHóÇº!Ǭ!YH‰!égÿÿÿH‹ÁÝ H5âÃ1ÒH‹81ÀèŽPÿÿL‹d$H­Çt!ñÇf!ˆL‰l$H‰R!H‰\$L‰åé<ßÿÿH‹¼$¸H…ÿtHƒ/uèÍLÿÿH‹¼$°H…ÿtHƒ/uèµLÿÿH‹¼$¨H…ÿtHƒ/uèLÿÿH‹ÞÜ H5¿ÄH‹8èGNÿÿékþÿÿH›!HDŽ$H
HDŽ$P
H‰„$€
H‰„$x
HL!H‰„$ˆ
éþÿÿHӀÇš!ÇŒ!6H‰}!éÁúÿÿH‹¼$¨H…ÿtHƒ/uèLÿÿH‹¼$°H…ÿtHƒ/uèèKÿÿH‹¼$¸H…ÿtHƒ/uèÐKÿÿH‹Ü H5òÃH‹8èzMÿÿéúÿÿHD$(H‰„$€‰(øÿÿH‹+Ü H5LÂ1ÒH‹81ÀèøNÿÿL‹d$H€ÇÞ!øÇÐ!êL‰l$H‰¼!H‰\$L‰åé¦ÝÿÿDf.„AWAVAUATUSH‰õHƒìXH‹øÛ L‹=é!H…ÒHÇD$0H‰D$8L‰|$@H‰D$H… H‹FHƒø„rŽ\Hƒø„zHƒø…aH‹F8H‰D$L‹}0L‹e(L‹m IƒEH‹5W!L‰ÿIƒ$èÊNÿÿH…ÀH‰Ã„†H‹5!1ÒH‰ÇèÝLÿÿH…ÀH‰Å„Y	Hƒ+„çH‹58!ºH‰ïè³Mÿÿ…ÀˆÛ	…H‹MHQÿH…ÒH‰U„ H‹5Ù!L‰ÿèQNÿÿH…ÀH‰Ã„¥
H‹5–!1ÒH‰ÇèdLÿÿH…ÀI‰Ç„ÈHƒ+„öH‹5¿!ºL‰ÿè:Mÿÿ…ÀˆòI‹HQÿH…ÒI‰„×…À…ÿH‹!H‹=I!H‰ÞèAJÿÿH…ÀH‰Å„íHƒ¿è'LÿÿH…ÀI‰Æ„3IƒEL‰h Iƒ$L‰`(èÄJÿÿH…ÀI‰Ç„HH‹5i!L‰ïèyMÿÿH…ÀH‰Ã„H‹5N!H‰ÂL‰ÿèëHÿÿ…Àˆ}Hƒ+„‰H‹ÂÙ H‹5[!L‰ÿèÃHÿÿ…Àˆ;L‰úL‰öH‰ïèMKÿÿH…ÀH‰D$„O
Hƒm„üIƒ.„âIƒ/„ÈIƒm„­H‹-&!H‹=G!H‰îè?IÿÿH…ÀH‰Ã„HƒH‹5˜!H‰ßè°LÿÿH…ÀI‰Ç„„Hƒ+„z
H‹5s!H‹|$è‰LÿÿH…ÀH‰Ã„H‰Çè5Kÿÿ…À„u1öH‰ßèSHÿÿI‰ÆM…ö„GHƒ+„Å
¿è³JÿÿH…ÀH‰Ã„WL‰p è^IÿÿH…ÀI‰Æ„‚L‹-Û!H‹=„!L‰îè|HÿÿH…ÀH‰Å„àHƒH‹5Ý!H‰êL‰÷èzGÿÿ…ÀˆáHƒm„§L‰òH‰ÞL‰ÿèùIÿÿH…ÀH‰D$„Iƒ/„‘Hƒ+„§Iƒ.„H‹5n!H‹|$èŒKÿÿH…ÀH‰Ã„^H‹5	!1?è]JÿÿH…ÀH‰Å„n1ÒH‰ÆH‰ßè„IÿÿI‰ÅH‹EHPÿH…ÒH‰U„ìM…í„@H‹HPÿH…ÒH‰„°I‹EHPÿH…ÒI‰U„‹L;%´× ”ÀL;%z× ”ÂÂu
L;%d× …†¶À„Ó	H‹5Œ!H‹|$èÊJÿÿH…ÀH‰Ã„õL‹-/× L9è…¡H‹5W!H‹|$èJÿÿH…ÀI‰Æ„UL9è…¼L9l$…H‹T$L‰öH‰ßèÝËÿÿHƒ+‰D$ „ÇI‹E1ÉHƒèH…ÀI‰„šH‹L$H;
íÖ ”ÀH;
³Ö ”ÂÂu	L9é…»
¶ÀL‰L$Hc|$ „~èIFÿÿH…ÀI‰ÇL‹L$„‘¿L‰L$èYHÿÿH…ÀH‰ÃL‹L$„H‹L$L‰x L‹l$H‹H‰D$HƒÀH‰H‰K(éêfH‹
YÖ HƒøH‰L$I‰Ì„°úÿÿH#zH5ŠzH
zL
byH…ÀHOÊŸÂLOÎHƒì¶ÒPH‹fÕ LDRH5¾HæyH‹81Àè‘HÿÿHµyÇ|!Çn!¾H‰Z!XZH
ŒyH=B¾º1ÛèŽhÿÿHƒÄXH‰Ø[]A\A]A^A_Ã@H‹aÕ HƒIƒ,$„I‰Üéãúÿÿf.„H‰ßè˜DÿÿéjûÿÿH‰ßèˆDÿÿéúÿÿH‹IÕ H‰D$é¤ùÿÿ€H‹1Õ H‰D$éˆùÿÿ€H‹5A!ºH‰ïèŒGÿÿ…Àˆt
H‹MHQÿH…ÒH‰U„ÿ…À„×ùÿÿH‹5¸!H‹=	!1ÒèRFÿÿH…ÀH‰Ã„¢
L‹5Ô H‹xI‹6ècCÿÿ…À…“H‹Cö€³€„:
öƒ³@„-
1ÿèFFÿÿH…ÀI‰ÇtQ1ÒH‰ÆH‰ßèñEÿÿIƒ/H‰ÅuL‰ÿèCÿÿH…ít.H‹}I‹6èÿBÿÿ…À„åH‰îH‰ßè,CÿÿHƒmuH‰ïè]CÿÿHƒ+„S
HçwÇ®!\Ç !ZE1ÉHÇD$H‰…!é@H‰ï‰D$èCÿÿ‹D$éìþÿÿH‰ßèCÿÿéýøÿÿL‰ÿ‰D$èìBÿÿ‹D$éùÿÿH‹^Hƒû‡ÑI‰ÔHˆHcšHÐÿà€H‹F8H‰D$HH‹E0H‰D$@H‹E(H‰D$8H‹E H‰D$0L‰çèœCÿÿHƒûI‰Å„‰ŽYHƒû„ŸHƒûu&M…í~*H‹5!L‰çè%BÿÿH…À„ø
H‰D$HIƒíM…íæ
H‹D$HL‹l$0L‹d$8L‹|$@H‰D$éY÷ÿÿ@H¬vÇs![Çe!1E1ÉHÇD$H‰J!f.„H‹
9!‹?!H=$»‹5.!L‰L$èleÿÿH‹D$L‹L$H…Àt}H‹1ÛH‹L$HƒèH…ÀH‰t/M…ÉtIƒ)t<IƒmtDIƒ,$…œüÿÿL‰çèrAÿÿéüÿÿDH‰ÏL‰L$è[AÿÿL‹L$ë½@L‰ÏèHAÿÿIƒmu¼L‰ïè9Aÿÿë²€1Ûë•@H¼uI‰ÞÇ€![Çr!?E1ÉHÇD$H‰W!E1ÿ1ÛfIƒ.t:M…ÿtIƒ/tGH…Û„öþÿÿHƒ+…ìþÿÿH‰ßL‰L$è¿@ÿÿL‹L$éÕþÿÿDL‰÷L‰L$è£@ÿÿL‹L$ë²@L‰ÿL‰L$è‹@ÿÿL‹L$ë¥@HuÇÛ![ÇÍ!BHÇD$H‰µ!Hƒm…Q1ÛE1ÿE1öE1ÉH‰ïL‰L$è2@ÿÿM…öL‹L$…4ÿÿÿé5ÿÿÿ€L‰ïè@ÿÿéF÷ÿÿL‰ÿè@ÿÿé+÷ÿÿL‰÷èð?ÿÿé÷ÿÿH‰ïèà?ÿÿé÷öÿÿ1ÿè‘CÿÿH…ÀH‰Å„ÕH‰ÆH‰ßèJ@ÿÿHƒmI‰Æ…l÷ÿÿH‰ïè¤?ÿÿé_÷ÿÿ€L‰çI‰Üè?ÿÿéÁõÿÿ„HtÇÛ!_ÇÍ!lE1ÉHÇD$H‰²!émýÿÿDH‹{H‰Þèü>ÿÿéÚûÿÿ€H‰ïè(?ÿÿéøÿÿH…Û…ÔüÿÿH‹5h!L‰çIƒíèÔ>ÿÿH…ÀH‰D$0„·M…í޳üÿÿH‹5ö!L‰çè®>ÿÿH…ÀtH‰D$8IƒíM…펍üÿÿH‹5(!L‰çèˆ>ÿÿH…À„KüÿÿH‰D$@Iƒíé8üÿÿH4sÇû!bÇí!Ä1ÛE1ÉHÇD$H‰Ð!Hƒm…uýÿÿé!þÿÿL‰ïèX>ÿÿéh÷ÿÿH‰ßèH>ÿÿéC÷ÿÿHÔrI‰Þǘ!_ÇŠ!zE1ÉHÇD$H‰o!1Ûéýÿÿ„H‰ßèø=ÿÿéyõÿÿH„rÇK!_Ç=!}L‰ýHÇD$H‰"!éhýÿÿDèã>ÿÿH‰ßè;`ÿÿH…À…™H6rÇý!bÇï!›E1ÉHÇD$H‰Ô!éûÿÿ€H‰ßè`=ÿÿé.õÿÿHìqdz!bÇ¥!HÇD$H‰!éÓüÿÿ„H´qÇ{!cÇm!­1ÛE1ÉHÇD$H‰P!é{þÿÿH‹5¡
!H‹|$è÷@ÿÿH…ÀH‰Ã„QH‹5¬!H‰ÇèÜ@ÿÿH…ÀH‰Å„eHƒ+„
H‹5!1ÒH‰ïèå>ÿÿH…ÀI‰Á„Hƒm„H‹5O!H‹|$L‰L$ èˆ@ÿÿH…ÀI‰ÆL‹L$ „'	L‹-èÌ L9è…r	H‹5!H‹|$L‰L$ èQ@ÿÿH…ÀH‰ÃL‹L$ „	L9è…
H‹5è!L‰ÏL‰L$ è#@ÿÿH…ÀH‰ÅL‹L$ „¼	L9è…!H‹5²!L‰ÏL‰L$ èõ?ÿÿH…ÀI‰ÇL‹L$ „Ð
L9è…›L9l$…9L‹D$L‰ùH‰êH‰ÞL‰÷L‰L$(腰ÿÿIƒ.‰D$ L‹L$(„xHƒ+„WHƒm„uIƒ/…:õÿÿL‰ÿL‰L$(èV;ÿÿL‹L$(é#õÿÿ@HÜoÇ£!cÇ•!¯E1ÉHÇD$H‰z!é¥üÿÿDH‰ïè;ÿÿéLóÿÿL‰ÿèø:ÿÿébóÿÿL‰÷èè:ÿÿéfóÿÿH‰ßèØ:ÿÿéLóÿÿHdoÇ+!cÇ!»1ÛE1ÉHÇD$H‰!é+üÿÿèÃ;ÿÿH‰ïè]ÿÿH…ÀH‰Ã…àñÿÿHoÇÚ!fÇÌ!ÓE1ÉHÇD$L‹l$H‰¬!égøÿÿ€L‰çèX;ÿÿ…À‰móÿÿHÄnÇ‹!iÇ}!	L‹l$E1ÉH‰f!é!øÿÿH”nÇ[!fÇM!ÕE1ÉHÇD$L‹l$H‰-!ééøÿÿ„HTnÇ![Ç
!HHÇD$H‰õ
!é;ùÿÿH‹±É H5š²H‹8è:;ÿÿéöÿÿDèË9ÿÿH…ÀH‰ÃL‹L$„çH‹D$L‹l$H‹é ÷ÿÿ„HÔmÇ›
!fǍ
!ØE1ÉHÇD$H‰r
!L‹l$é#øÿÿ„H‰ßèø8ÿÿé õÿÿH„mÇK
!fÇ=
!ÚE1ÉHÇD$H‰"
!ë®HTmÇ
!fÇ
!ÝE1ÉHÇD$L‹l$H‰í	!é˜÷ÿÿ„HmÇÛ	!fÇÍ	!âE1ÉHÇD$H‰²	!é;ÿÿÿDH‰ÏL‰L$è[9ÿÿ…ÀL‹L$‰.òÿÿHÂllj	!uÇ{	!²	L‹l$H‰g	!é"öÿÿfè+9ÿÿL‰ïèƒZÿÿH…ÀH‰D$…ÒHylÇ@	!fÇ2	!äE1ÉL‹l$H‰	!éÆöÿÿHJlÇ	!cÇ	!±E1ÉHÇD$H‰è!éùÿÿHlÇÞ!fÇÐ!èE1ÉL‹l$H‰¹!édöÿÿHT$0LlH5ø H‰ÙL‰çè¦_ÿÿ…À‰ôôÿÿHÂklj!Ç{!ï¾ïH‰g!é
òÿÿH–kÇ]!gÇO!÷E1ÉL‹l$H‰8!éóôÿÿHgkI‰ÞÇ+!gÇ!	L‹l$E1ÉH‰!1ÛE1ÿé¬õÿÿH‰ßè”6ÿÿééùÿÿL‰÷L‰L$(è‚6ÿÿL‹L$(éOðÿÿH‰ßèp6ÿÿé,ðÿÿH‰ïH‰D$ è^6ÿÿL‹L$ éÖùÿÿHèjǯ!\Ç¡!VE1ÉHÇD$H‰†!éAôÿÿH‰ßL‰L$(è6ÿÿL‹L$(é’úÿÿL‰÷è6ÿÿL‹L$(évúÿÿH‰ïL‰L$(èë5ÿÿL‹L$(étúÿÿHujÇ<!fÇ.!æL‹l$E1ÉHÇD$H‰!é9÷ÿÿH=jÇ!jÇö!	E1ÉL‹l$H‰ß!éšóÿÿHjÇÕ!nÇÇ!P	E1ÉL‹l$H‰°!ékóÿÿHßiǦ!nǘ!R	H‰ÝL‹l$H‰!éÇôÿÿH°iÇw!kÇi!&	H‰ÝL‹l$H‰R!é˜ôÿÿH‹-î!H…í„H‹xH9ý„BîÿÿH‰îè¨8ÿÿ…À…2îÿÿH‹CH‹M H5¦H‹P H‹ÎÄ H‹81Àè8ÿÿH0iÇ÷!jÇé!	H‰ÝL‹l$H‰Ò!éôÿÿHiÇÈ!nǺ!a	L‹l$H‰ëH‰£!é_óÿÿH‹-?!H…í„ÛH‹D$H‹xH9ý„¿íÿÿH‰îèô7ÿÿ…À…¯íÿÿH‹D$H‹M H5d¥H‹@H‹P H‹Ä H‹81ÀèS7ÿÿHwhÇ>!lÇ0!1	H‰!!H‰ÝL‹l$1ÛE1ÿE1Éé<õÿÿH‹-­!H…í„.H‹xH9ý„'íÿÿH‰îèg7ÿÿ…À…íÿÿI‹FH‹M H5ؤH‹P H‹Ã H‹81ÀèË6ÿÿHïgǶ!kǨ!(	H‰™!ésÿÿÿ@HÄgÇ‹!oÇ}!n	L‹l$H‰i!é$ñÿÿH˜gÇ_!pÇQ!y	L‹l$E1ÿH‰:!éåñÿÿH‹Ö!H…Û„H‹xH9û„qöÿÿH‰ÞL‰L$ è‹6ÿÿ…ÀL‹L$ …WöÿÿI‹FH‹K H5÷£L‰L$H‹P H‹§Â H‹81Àèå5ÿÿL‹L$HgÇË!oǽ!p	L‹l$1ÛE1ÿH‰¤!éOñÿÿH‹Eé¿ìÿÿHÊfÇ‘!qǃ!„	L‹l$E1ÿH‰l!éñÿÿH‹-!H…í„¿H‹xH9ý„ÓõÿÿH‰îL‰L$ è½5ÿÿ…ÀL‹L$ …¹õÿÿH‹CH‹M H5)£L‰L$H‹P H‹ÙÁ H‹81Àè5ÿÿL‹L$H6fÇý!pÇï!{	L‹l$E1ÿH‰Ø!éƒðÿÿHfÇÎ!xÇÀ!Ý	L‹l$H‰¬!égïÿÿHÛeÇ¢!vÇ”!½	L‹l$H‰€!é;ïÿÿH¯eÇv!vÇh!¿	H‰Y!éâ÷ÿÿHˆeÇO!rÇA!	L‹l$H‰-!éXòÿÿH‹5É!HxL‰L$ è£Sÿÿ…ÀL‹L$ …½ôÿÿH:eÇ!qÇó!†	L‹l$E1ÿH‰Ü!éòÿÿH‹D$H‹5s!L‰L$ HxèMSÿÿ…ÀL‹L$ … ôÿÿHädÇ«!sǝ!š	L‹l$H‰‰!é´ñÿÿ@H‹5!!HxL‰L$ èûRÿÿ…ÀL‹L$ …CôÿÿH’dÇY!rÇK!‘	L‹l$H‰7!ébñÿÿH‹ƒÀ H5dH‹8è|1ÿÿéûÿÿH‹hÀ H5ëcL‰L$H‹8è\1ÿÿL‹L$é"ýÿÿH‹³¿ H‹MH5P¨H‰ÚH‹81Àèã2ÿÿéìÿÿH‹À H5¢cH‹8è1ÿÿéøûÿÿH‹À H5‡cH‹8èý0ÿÿéUûÿÿH‹é¿ H5lcL‰L$H‹8èÝ0ÿÿL‹L$éqýÿÿH‹l$é-çÿÿH‰Åé`åÿÿH‰Øé‚éÿÿE1ÉéíÿÿAWAVAUATI‰ýUSHƒì8H…ÒH‰t$„A	H‹BL‹rH‰D$ IƒEH‹ˆý H‹=A!H‰Þè9/ÿÿH…ÀH‰Å„U	Hƒ¿è1ÿÿH…ÀI‰Ç„‹	IƒEL‰h IƒL‰p(è½/ÿÿH…ÀH‰Ã„	
H‹ú¾ H‹5“þ H‰Çèû-ÿÿ…Àˆ3
H‰ÚL‰þH‰ïè…0ÿÿH…ÀH‰D$„O
Hƒm„üIƒ/„ÂHƒ+„ÊIƒm„õH‹5öü H‹|$è2ÿÿH…ÀI‰Ä„0
H‰Çè¸0ÿÿ…À„@1öL‰çèÖ-ÿÿH‰ÃH…Û„Iƒ,$„7H‹Cö€³„^H‰ßèv-ÿÿHcÐLcèH9Ð…'Aƒýÿ„}Hƒ+„H‹-Ôü H‹=õþ H‰îèí-ÿÿH…ÀH‰Ã„¡HƒH‹5Fý H‰ßè^1ÿÿH…ÀI‰Ä„úHƒ+„ÐL‰ïè€-ÿÿH…ÀI‰Â„¿H‰D$è•/ÿÿH…ÀI‰ÇL‹T$„$L‰P è;.ÿÿH…ÀH‰Ã„WH‹¸ý H‹=aþ H‰ÆH‰D$èT-ÿÿH…ÀH‰Å„¸HƒH‹5µü H‰êH‰ßèR,ÿÿ…ÀˆãHƒm„—H‰ÚL‰þL‰çèÑ.ÿÿH…ÀH‰D$„ÃIƒ,$„ Iƒ/„†Hƒ+„lH‹D$H;༠…	H‹£û H‹=Äý H‰Þè¼,ÿÿH…ÀH‰Å„x	HƒH‹5ü H‰ïè-0ÿÿH…ÀH‰Ã„¡Hƒm„vL‰ïèN,ÿÿH…ÀI‰Ä„¿èh.ÿÿH…ÀI‰Ç„ÌL‰` è-ÿÿH…ÀH‰Å„÷L‹-ü H‹=9ý L‰îè1,ÿÿH…ÀI‰Ä„
HƒH‹5’û L‰âH‰ïè/+ÿÿ…ÀˆyIƒ,$„Ô
H‰êL‰þH‰ßè®-ÿÿH…ÀI‰Ä„Hƒ+„(
Iƒ/„
Hƒm„#
L;%Ļ …ŸH‹5û H‹|$è5/ÿÿH…ÀI‰Â„H‹5²ù H‰D$(¿1Àè.ÿÿH…ÀH‰ÃL‹T$(„
1ÒL‰×H‰ÆL‰T$(è-ÿÿH‰ÅH‹L‹T$(HPÿH…ÒH‰„CH…í„×I‹HPÿH…ÒI‰„'
H‹EHPÿH…ÒH‰U„
H‹5sú L‰çè“.ÿÿH…ÀI‰Â„ÎH‹5ù H‰D$(¿1Àè_-ÿÿH…ÀH‰ÃL‹T$(„Ô1ÒL‰×H‰ÆL‰T$(è|,ÿÿH‰ÅH‹L‹T$(HPÿH…ÒH‰„¹H…턞I‹HPÿH…ÒI‰„¥H‹EHPÿH…ÒH‰U„€L;5©º ”ÀL;5oº ”ÂÂu
L;5Yº …“¶À„`	H‹\$H‹Cö€³„ÒH‹53º 1ÒH‰ßèÙ,ÿÿ…Àˆôƒø„cH‰ßè`*ÿÿ‰‰ÃH9Ð…ƒûÿ„ÍH‹5+ù H‹|$èi-ÿÿH…ÀI‰Â„FH;ι …H‹5ùø H‹|$L‰T$è:-ÿÿH…ÀH‰ÅL‹T$„ÁH;š¹ …H‹L$L‰ÖM‰àH‰ê‰ßL‰T$èòqÿÿL‹T$A‰ÅIƒ*„®H‹EE1ÒHƒèH…ÀH‰E„H‹L$ H;
|¹ ”ÀH;
B¹ ”ÂÂu
H;
,¹ …Ž
¶ÀL‰T$D‰ï„Óè6,ÿÿH…ÀH‰ÃL‹T$„H‹ö¸ H‰ÆL‰T$H‰×è~+ÿÿHƒ+H‰ÅL‹T$„ÕH…í„ÞH‹|$H‰îL‰T$è±(ÿÿHƒmH‰ÃL‹T$u
H䕏
(ÿÿL‹T$H…Û„§¿L‰T$è}*ÿÿH…ÀH‰ÅL‹T$„|H‰X Iƒ$L‰`(H‹L$M‰åH‹I‰ÎH‰D$HƒèH…ÀH‰…€@L‰÷L‰T$è›'ÿÿL‹T$é`1ÿèI+ÿÿH…ÀH‰Å„ÅH‰ÆL‰çè(ÿÿHƒmH‰Ã…¡ùÿÿH‰ïè\'ÿÿé”ùÿÿ€L‰ÿèH'ÿÿHƒ+…6ùÿÿH‰ßè6'ÿÿIƒm….ùÿÿë!f„H‰ïè'ÿÿIƒ/…üøÿÿë¼@L‰ïè'ÿÿéþøÿÿH‰ïèð&ÿÿé\úÿÿH‰ßèà&ÿÿé‡úÿÿL‰ÿèÐ&ÿÿémúÿÿL‰çèÀ&ÿÿéSúÿÿHL[Çø LÇø BE1ÒE1íE1öH‰í÷ DM…ätIƒ,$„ÀH‹
Ñ÷ ‹×÷ H=4 ‹5Æ÷ L‰T$èJÿÿM…öL‹T$„¦I‹1íHƒèH…ÀI‰„‰þÿÿM…ítIƒmtUM…ÒtIƒ*t:H‹D$H‹HQÿH‰L$H…ÒH‰uH‰Çèù%ÿÿHƒÄ8H‰è[]A\A]A^A_ÀL‰×èØ%ÿÿë¼fDL‰ïL‰T$èÃ%ÿÿL‹T$ë—@L‰çL‰T$è«%ÿÿL‹T$é)ÿÿÿ1íéhÿÿÿf„H‹Y¶ H‰D$ I‰Æé¸öÿÿ@L‰çèp%ÿÿé¼÷ÿÿH‰ßè`%ÿÿéè÷ÿÿH‰ßèP%ÿÿé#øÿÿès&ÿÿH‰ßèËGÿÿH…À…–HÆYL‰l$Ljö KÇzö $E1ÒE1íH‰eö E1öé…þÿÿDHŒYL‰l$ÇNö KÇ@ö &E1ä1ÛH‰,ö E1ÒE1íE1öHƒmu E1ÿH‰ïL‰T$è¬$ÿÿM…ÿL‹T$tIƒ/t,H…Û„þÿÿHƒ+…þÿÿH‰ßL‰T$è|$ÿÿL‹T$éêýÿÿfL‰ÿL‰T$èc$ÿÿL‹T$ëÀ@HìXdzõ KÇ¥õ .H‰–õ L‰l$E1äE1ÒE1íE1öHƒm…xÿÿÿé\ÿÿÿDH¤XL‰l$Çfõ KÇXõ 0E1äE1ÒH‰Cõ E1íE1öë¶HlXÇ3õ KÇ%õ 1H‰õ é{ÿÿÿHDXÇõ LÇýô @E1ÒE1íE1öH‰åô éýÿÿH‰ïèx#ÿÿé}÷ÿÿH‰ßèh#ÿÿL‹T$(髸ÿÿfDH‰ßèP#ÿÿL‹T$(é5ùÿÿfDH‹Aô H…Û„Ð
H‹D$H‹xH9û„ÜöÿÿH‰Þèö&ÿÿ…À…ÌöÿÿH‹D$H‹K H5f”H‹@H‹P H‹³ H‹81ÀèU&ÿÿHyWÇ@ô NÇ2ô gH‹l$E1ä1ÛH‰ô E1ÒE1íE1öéèýÿÿèÓ#ÿÿH‰ßè+EÿÿH…À…îH&WÇíó OÇßó rE1ÒL‹t$E1íH‰Åó éèûÿÿH‰ïèX"ÿÿésøÿÿL‰×èH"ÿÿéNøÿÿL‹%‰² L9àtH‰ßèü$ÿÿ…À„hè¿%ÿÿH…ÀuH‹;² H5ƒVH‹8èÄ#ÿÿ@è›%ÿÿH…ÀIÇÅÿÿÿÿ„nôÿÿHVÇFó LÇ8ó EE1ÒE1íE1öH‰ ó E1äé%ýÿÿ„èÛ"ÿÿH‰ïè3DÿÿH…À…°H.VÇõò NÇçò PE1ÒE1íE1öH‰Ïò éòúÿÿf.„Hƒøÿ„ŠH‹¿± H5™H‹8è#ÿÿé;ÿÿÿHÌUÇ“ò NÇ…ò RE1ÒE1íE1öH‰mò éuüÿÿ„H”UÇ[ò NÇMò UE1íE1öH‰8ò éKúÿÿHdUL‰ÓÇ(ò NÇò WE1ÒE1íH‰ò E1öé
üÿÿDL‰çè ÿÿéõÿÿHUÇãñ NÇÕñ \E1íE1öH‰Àñ E1Òé¶ûÿÿ„H‹5	ñ H‹|$è_$ÿÿH…ÀI‰Â„
H‹5ï H‰ÇH‰D$(è?$ÿÿH…ÀI‰ÇL‹T$(„	Iƒ*„¾H‹5uñ 1ÒL‰ÿèC"ÿÿH…ÀI‰Â„ž	Iƒ/„ÈH‹\$H‹Cö€³„Ö
H‹5`° 1ÒH‰ßL‰T$è#ÿÿ…ÀL‹T$ˆƒø„ÕH‰ßèƒ ÿÿ‰ÂA‰ÅL‹T$H9Ð…gAƒýÿ„Ù
H‹5Gï H‹|$L‰T$è€#ÿÿH…ÀH‰ÅL‹T$„/
H;௠…&H‹5ï H‹|$L‰T$èL#ÿÿH…ÀI‰ÇL‹T$„Ë
H;¬¯ …ŸH‹5ßî L‰×L‰T$è#ÿÿH…ÀH‰ÃL‹T$„HH;z¯ …&H‹5¥î L‰×L‰T$èè"ÿÿH…ÀI‰ÆL‹T$„ÍH;H¯ …|L‰T$HƒìH‰ÙATL‹L$(L‰úD‰ïM‰ðH‰îèvYÿÿA‰ÅH‹EHƒèH‰EH…ÀZYL‹T$„ÜIƒ/„»Hƒ+„šIƒ.…‘õÿÿL‰÷L‰T$è<ÿÿL‹T$ézõÿÿfL‰ÿè(ÿÿéåòÿÿH‰ßèÿÿéËòÿÿH‰ïèÿÿéÐòÿÿè+ÿÿH‹|$è@ÿÿH…ÀH‰Å…1ñÿÿHyRÇ@ï NÇ2ï ^E1íE1öH‰ï éXýÿÿ„HDRÇï NÇýî bE1íE1öH‰èî é#ýÿÿH‰ïèxÿÿéñòÿÿL‰×èhÿÿéÌòÿÿHôQÇ»î OÇ­î tE1äE1ÒL‹t$H‰“î E1íéhøÿÿL‰÷è@ÿÿ…À‰`óÿÿH¬QÇsî SÇeî ÈM‰åL‹t$E1ÒH‰Kî énöÿÿfDHtQÇ;î OÇ-î wE1ÒL‹t$E1íH‰î éøÿÿfDèc ÿÿH…ÀH‰ÃL‹T$teH‹'­ H‰ÆL‰T$H‰×è¯ÿÿHƒ+I‰ÅL‹T$„ôM…ít7H‹|$L‰îL‰T$èæÿÿIƒmH‰ÅL‹T$u
L‰ïè?ÿÿL‹T$H…í…bôÿÿHÅPÇŒí aÇ~í |
M‰åL‹t$H‰gí éŠõÿÿfH”PL‰åÇXí OÇJí yE1äE1ÒH‰5í L‹t$E1íé÷ÿÿ„HTPÇí OÇ
í ~L‹t$E1äE1íH‰óì é.ûÿÿfDè³ÿÿL‰ïè>ÿÿH…ÀI‰Â…©HPÇÊì OÇ¼ì €M‰ÔL‹t$E1íH‰¢ì é÷ÿÿDHÌOÇ“ì OÇ…ì „E1ÒL‹t$E1íH‰kì éáöÿÿfDH‰ÏL‰T$èÿÿ…ÀL‹T$‰[òÿÿHzOÇAì ^Ç3ì Q
M‰åL‹t$H‰ì é?ôÿÿHKOÇì NÇì `E1ÒE1íE1öH‰ìë éböÿÿH‹ˆë H…Û„ I‹|$H9û„CïÿÿH‰ÞèAÿÿ…À…3ïÿÿI‹D$H‹K H5±‹H‹P H‹fª H‹81Àè¤ÿÿHÈNǏë OÇë ‰L‹t$E1ÒE1íH‰gë ézóÿÿH–NÇ]ë PÇOë ”M‰åL‹t$H‰8ë é[óÿÿHgNÇ.ë PÇ ë ¢H‰ë L‰ÕM‰åL‹t$E1ä1ÛE1ÒéÖôÿÿH-NÇôê QÇæê ®M‰åL‹t$H‰Ïê éòòÿÿHþMÇÅê QÇ·ê ¼H‰¨ê ë•L‰×è>ÿÿé5ùÿÿH‰ïL‰T$è,ÿÿL‹T$éjðÿÿL‰×èÿÿéEðÿÿL‰ÿH‰D$(èÿÿL‹T$(é!ùÿÿH’MÇYê OÇKê ‚L‹t$E1ÒE1íH‰1ê é§ôÿÿègÿÿH…À„h÷ÿÿé¹öÿÿH‰ßL‰T$è¬ÿÿL‹T$éOúÿÿL‰ÿL‰T$è•ÿÿL‹T$é.úÿÿH‰ïèƒÿÿL‹T$éúÿÿH‰ßèqÿÿL‹T$éúûÿÿH‰ßè_ÿÿL‹T$éðÿÿHéLǰé _Ç¢é \
M‰åL‹t$H‰‹é é®ñÿÿHºLǁé XÇsé ÿM‰åL‹t$H‰\é éñÿÿH‹LÇRé UÇDé ÛM‰åL‹t$H‰-é éPñÿÿH;¨ tH‹|$è…ÿÿ…À„ïèHÿÿH…ÀuH‹ħ H5LH‹8èMÿÿè(ÿÿH…;ÿÿÿÿ„ îÿÿHLÇÕè TÇÇè ÒM‰åL‹t$E1ÒH‰­è éÐðÿÿHÜKM‰åÇ è UM‰ÔǏè ÞL‹t$H‰{è E1Òé‹ðÿÿH‹-è H…í„2H‹xH9ý„ÆíÿÿH‰îH‰D$èÉÿÿ…ÀL‹T$…¬íÿÿI‹BH‹M H55ˆH‹P H‹ê¦ H‹81Àè(ÿÿL‹T$HGKM‰åÇè UM‰ÔÇúç ÝL‹t$H‰æç E1ÒéöïÿÿHKM‰åÇÖç XM‰ÔÇÅç 
L‹t$H‰±ç E1ÒéÁïÿÿHÝJM‰åÇ¡ç XÇ“ç 
L‹t$E1äH‰|ç 1ÛéµõÿÿH‹~¦ H5O‰H‹8è¿ÿÿémþÿÿL‹-ûæ M…í„nH‹xI9ý„áìÿÿL‰îL‰T$è°ÿÿ…ÀL‹T$…ÇìÿÿH‹EI‹M H5‡H‹P H‹ѥ H‹81ÀèÿÿL‹T$H.JM‰åÇòæ UM‰ÔÇáæ àL‹t$H‰Íæ 1ÛE1Òé ðÿÿH‹¦ H5”IH‹8è
ÿÿé`òÿÿHƒøÿ„H‹¤¥ H5EˆH‹8èåÿÿé“ýÿÿH´IÇ{æ ZÇmæ &
M‰åL‹t$H‰Væ éyîÿÿH;:¥ tH‹|$L‰T$(è©ÿÿ…ÀL‹T$(„iL‰T$èbÿÿH…ÀL‹T$uH‹٤ H5!IH‹8èbÿÿL‹T$L‰T$A½ÿÿÿÿè-ÿÿH…ÀL‹T$„	õÿÿHIÇÚå YÇÌå 
M‰åL‹t$H‰µå éØíÿÿHäHM‰åǨå ZÇšå )
1ÛE1äH‰†å L‹t$éYïÿÿH‹5å HxL‰T$è÷6ÿÿ…ÀL‹T$…¸ôÿÿHŽHM‰åÇRå ZÇDå (
L‹t$E1äH‰-å 1ÛéïÿÿH‹/¤ H5‡L‰T$H‹8èkÿÿL‹T$éÿÿÿH5HM‰åÇùä [Çëä 4
E1äL‹t$H‰Ôä éJïÿÿH‹5pä HxL‰T$èJ6ÿÿ…ÀL‹T$…?ôÿÿHáGM‰åÇ¥ä ZÇ—ä +
L‹t$E1äH‰€ä 1ÛéôîÿÿHƒøÿ„vH‹x£ H5†L‰T$H‹8è´ÿÿL‹T$éMþÿÿH~GM‰åÇBä [I‰ÜÇ1ä 7
1ÛH‰ ä L‹t$é‘îÿÿH‹5·ã HxL‰T$è‘5ÿÿ…ÀL‹T$…¸óÿÿH(GM‰åÇìã [I‰ÜÇÛã 6
L‹t$H‰Çã 1Ûé;îÿÿHôFM‰åǸã _Ǫã ^
L‹t$E1äH‰“ã é›íÿÿH‹5/ã HxL‰T$è	5ÿÿ…ÀL‹T$…bóÿÿH FM‰åÇdã [I‰ÜÇSã 9
L‰óH‰Aã L‹t$é²íÿÿH‹ˆ¢ H5FH‹8èÿÿéˆ÷ÿÿH‰ßè4ÿÿH…ÀI‰Ç„„ïÿÿL‹-¢ M9oL‰èu;„ö€³tsL‰ÿè_ÿÿHcÈLcèH9Èu1Iƒ/…ããÿÿL‰ÿèbÿÿéÖãÿÿL‰ÿèÅ;ÿÿH…ÀI‰Ç„IïÿÿH‹@ë³Hƒøÿt`H‹¦¡ H5ïˆH‹8èçÿÿIƒ/…ïÿÿIÇÅÿÿÿÿëªL9àtL‰ÿè×ÿÿ…À„¨èšÿÿH…ÀuÎH‹¡ H5^EH‹8èŸÿÿë¶èxÿÿH…Àt–ëªH‰D$H‹}¡ H5EH‹8èvÿÿL‹T$éùùÿÿèGÿÿH…À„cûÿÿéùÿÿL‰T$è/ÿÿH…ÀL‹T$„rýÿÿéßûÿÿH‹-¡ H5°DL‰T$H‹8è!ÿÿL‹T$é½úÿÿL‰ÿèÏÿÿH…ÀH‰Å„DÿÿÿL9hu<H‹Eö€³„JH‰ïèÿÿHcðLcèH9ðu-Hƒm…šþÿÿH‰ïèÿÿéþÿÿH‰Çèi:ÿÿH…ÀH‰Åu´éÅþÿÿHƒÀ„NH‹K  H5”‡H‹8èŒÿÿIƒÍÿë­I‰Äé-äÿÿH‹|$è4ÿÿH…ÀH‰Å„û÷ÿÿH‹  H9Eu"H‰ïèƒ:ÿÿHƒm‰Ã…#æÿÿH‰ïè~ÿÿéæÿÿH‰ïèá9ÿÿH…ÀH‰Å„Ø÷ÿÿëÈH‹|$èÙÿÿH…ÀH‰ÃL‹T$(„|úÿÿH‹¡Ÿ H9Cu1H‰ßL‰T$è:ÿÿHƒ+A‰ÅL‹T$…œïÿÿH‰ßèÿÿL‹T$éŠïÿÿH‰ßL‰T$èm9ÿÿH…ÀH‰ÃL‹T$„Oúÿÿë¯H‰Ãé•áÿÿL9àtH‰ïè¥ÿÿ…ÀtPèlÿÿH…À…÷þÿÿH‹äž H5,CIƒÍÿH‹8èiÿÿé‹þÿÿH‰Åé€âÿÿH‰Åéûßÿÿè/ÿÿH…À„¤þÿÿéµþÿÿH‰ïèùÿÿH…ÀI‰Ät L9hu#L‰çèC‚ÿÿIƒ,$Lcè…<þÿÿL‰çèMÿÿé/þÿÿH‰Çè°8ÿÿH…ÀI‰ÄuÍégþÿÿAUATUSH‰óHƒì8H‹ìž H…ÒHÇD$HÇD$H‰D$ H‰D$(…GH‹VHƒú„µHƒú„§Hƒú„HxBH
zBHƒúH5L‡L
ÖBHNÈŸÀHƒì¶ÀRHoBLDH‹» H‹81ÀèùÿÿHBÇäÞ ÇÖÞ ò
¾ò
H‰ÂÞ XZH
ôAH="‡ºèø0ÿÿ1ÀHƒÄ8[]A\A]ÃH‹F8H‹S0H‹s(H‹{ H\$H‰T$H‰ÚÇD$H‰D$ èÞÿÿH…Àu¾H
˜AH=Ɔº¾H‰D$ÇIÞ H‰
6Þ Ç4Þ èw0ÿÿH‹D$éwÿÿÿDH‰ÂëƒH‹nHƒý‡þI‰ÔHlIHcªHÐÿà€H‹F8H‰D$(H‹C0H‰D$ H‹C(H‰D$H‹C H‰D$L‰çèl
ÿÿHƒýI‰Å„…~]Hƒý„–Hƒýu&M…í~*H‹5YÛ L‰çèùÿÿH…À„žH‰D$(IƒíM…폌H‹|$H‹t$H\$H‹T$ H‹D$(éÍþÿÿH…íuÔH‹5<Ü L‰çIƒíè¨ÿÿH…ÀH‰D$„ñH‹5«Û L‰çè‹ÿÿH…ÀH‰D$tqIƒíM…í~šH‹5±Û L‰çèiÿÿH…À„XÿÿÿH‰D$ IƒíéEÿÿÿH\$LF@H5¯Ë H‰éL‰çH‰ÚèÑ3ÿÿ…Àˆ‰H‹|$H‹t$H‹T$ H‹D$(éþÿÿH‹a› HƒìH
Ø?jH5µ„L
?@Hç?A¸H‹81ÀèwÿÿH›?ÇbÜ ÇTÜ Í
YH‰DÜ ^¾Í
éyýÿÿH‹SéûüÿÿHd?Ç+Ü ÇÜ Ý
¾Ý
H‰	Ü éDýÿÿH‰êéÇüÿÿff.„AWAVAUATUSH‰õHƒì8L‹%H› H…ÒHÇD$HÇD$L‰d$ …ØH‹FHƒø„ŠHƒø…àL‹v0H‹u(L‹} Hl$H‰êL‰ÿÇD$L‰t$L‰d$ è"ÛÿÿH…ÀH‰Ã„fH‹@H;cš H‰ß„2H;+š „%è ÿÿH…ÀH‰Å„VHƒ+„‚H‹EH‰ïH‹˜èÿÓH…ÀI‰Å„sH‰ïÿÓH…ÀI‰Ä„<H‰ïÿÓH‰Çèð|ÿÿ…Àˆ>Hƒm…H‰ïèu	ÿÿéøH…Û„%H‰Ø@H>H
>HƒøH5ׂL
a>HNÊŸÂHƒìPH‹U™ ¶ÒLBH>H‹81Àè…ÿÿH©=ÇpÚ {ÇbÚ G
¾G
H‰NÚ XZH
€=H=ƒº{1Ûè‚,ÿÿHƒÄ8H‰Ø[]A\A]A^A_Ãè+ÿÿHƒø…é1öH‰ßèÇÿÿH…ÀI‰Å„;¾H‰ßè®ÿÿH…ÀI‰Ä„2Hƒ+„èH‹©× H‹=úÙ H‰ÞèòÿÿH…ÀH‰Á„>Hƒ¿H‰L$èÓ
ÿÿH…ÀH‰ÅH‹L$„bIƒL‰x 1ÒIƒ$L‰`(H‰ÏIƒH‰ÆL‰p0H‰L$èW
ÿÿH…ÀH‰ÃH‹L$„VHƒm„+Hƒ)„Iƒmt/Iƒ,$…ýþÿÿL‰çèÇÿÿéðþÿÿfM‰æé|ýÿÿ„I‰Ý1ÛL‰ïè£ÿÿM…äuÄéÇþÿÿf„H‰ßèˆÿÿéÿÿÿH‹^I‰ÕHƒût(ŽýýÿÿHƒûtHƒû…öýÿÿH‹F0H‰D$ H‹E(H‰D$H‹E H‰D$L‰ïèJÿÿHƒûI‰Æ„õHƒû„H…Û„¢M…öŽ)Hl$Lé;H5þÇ H‰ÙL‰ïH‰êè`/ÿÿ…ÀˆL‹|$H‹t$L‹t$ é¥üÿÿ@H‰ÏèÈÿÿéâþÿÿH‰ïH‰L$è³ÿÿH‹L$é¾þÿÿf„H4;Çû× ¼Çí× l
E1äH‰Û× H‹
Ñ× ‹×× H=”€‹5Æ× è	*ÿÿH…Û„­þÿÿHƒ+„–þÿÿ1Ûéœþÿÿ€H‹5Ö L‰ïèùÿÿH…ÀH‰D$„SIƒîM…ö~*H‹5Ö L‰ïèÓÿÿH…À„éþÿÿH‰D$ IƒîéÒþÿÿ@L‹|$H‹t$Hl$L‹t$ é ûÿÿ€"H…Àx1H½9H
Ð:HƒøH5¬HDÊH‰ÂH‹ޕ H‹81ÀèüÿÿH :ÇçÖ ¼ÇÙÖ t
H‰ÊÖ ë*„Hô9Ç»Ö ¼Ç­Ö 
H‰žÖ Hƒ+…†E1íH‰ßè)ÿÿM…í„rIƒmui1É1íL‰ïH‰L$èÿÿH‹L$H…É„B1ÛE1äHƒ)t/H…í„nþÿÿHƒm…cþÿÿH‰ïèÓÿÿéVþÿÿL‰á1ÛE1äfDH‰Ïè¸ÿÿëÇfDE1ä1Ûé.þÿÿfDH‹ᔠH5"|ºH‹81ÀèóÿÿéòþÿÿH9ÇÙÕ ¼ÇËÕ ‰
H‰¼Õ éÿÿÿ€Hƒ+Hà8Ç§Õ ¼Ç™Õ ƒ
H‰ŠÕ …ÿÿÿéîþÿÿ€èCÿÿH‰ßè›&ÿÿH…ÀH‰Á…­ûÿÿH“8ÇZÕ ¾ÇLÕ ©
L‰ëH‰:Õ é]ýÿÿDHd8Ç+Õ ¾ÇÕ È
H‰Õ L‰ëé±þÿÿfDH48ÇûÔ ¾ÇíÔ Ö
H‰ÞÔ ëÎ@H‹5ÉÓ L‰ïIƒîè5ÿÿH…ÀH‰D$…ýÿÿH‹EéîùÿÿfDH‰ßè@ÿÿéqùÿÿ1ÛHƒm„×èÉÿÿH…À…H:8H
7HƒûH5}H‰ÚHEÈH‹A“ H‹81Àè_ÿÿHƒ7ÇJÔ ¼Ç<Ô ™
H‰-Ô éŸýÿÿH‹é’ HƒìH
`7jH5=|L
Ç7Hƒ7A¸H‹81ÀèÿÿÿH#7ÇêÓ {ÇÜÓ +
YH‰ÌÓ ^¾+
éuùÿÿ»éÿÿÿH‰ïèOÿÿéÿÿÿIƒmHÙ6Ç Ó ¼Ç’Ó ‘
L‰áH‰€Ó „ýÿÿIƒ,$„Aýÿÿ1ÛE1äéýÿÿH‹†’ H‹8è6ÿÿ…À„ÿþÿÿèÿÿéÄþÿÿHx6Ç?Ó {Ç1Ó 5
¾5
H‰Ó éÌøÿÿE1ä1Ûé¿üÿÿH‹
Ó ‹
Ó H=Ê{‹5üÒ 1Ûè=%ÿÿé¶øÿÿ„AWAVAUATI‰ýUSHƒìHH…ÒH‰t$0„H‹BL‹bH‰D$8IƒEH‹Ð H‹=ÑÒ H‰ÞèÉÿÿH…ÀI‰Æ„Hƒ¿è¯ÿÿH…ÀI‰Ç„kIƒEL‰h Iƒ$L‰`(èLÿÿH…ÀH‰Ã„ðH‹‰‘ H‹5"Ñ H‰ÇèŠÿÿ…Àˆ2
H‰ÚL‰þL‰÷èÿÿH…ÀH‰D$„n
Iƒ.„<	Iƒ/„
	Hƒ+„	Iƒm„5	H‹5†Ï H‹|$èœÿÿH…ÀH‰Å„P
H‰ÇèHÿÿ…À„ˆ1öH‰ïèfÿÿH‰ÃH…Û„B	Hƒm„÷
H‹Cö€³„H‰ßèÿÿHcÐLcèH9Ð…çAƒýÿ„5Hƒ+„Ë
H‹-dÏ H‹=…Ñ H‰îè}ÿÿH…ÀH‰Ã„qHƒH‹5ÖÏ H‰ßèîÿÿH…ÀH‰Å„ºHƒ+„
L‰ïèÿÿH…ÀH‰Ã„ô¿è*ÿÿH…ÀI‰Ç„H‰X èÕÿÿH…ÀH‰Ã„9H‹RÐ H‹=ûÐ H‰ÆH‰D$èîÿþÿH…ÀI‰Æ„’HƒH‹5OÏ L‰òH‰ßèìþþÿ…Àˆ™Iƒ.„âH‰ÚL‰þH‰ïèlÿÿH…ÀH‰D$„¶Hƒm„ËIƒ/„áHƒ+„ÇH‹PÎ H‹=qÐ H‰ÞèiÿþÿH…ÀI‰Æ„
HƒH‹5ÂÎ L‰÷èÚÿÿH…ÀH‰Ã„®Iƒ.„ÔL‰ïèüþþÿH…ÀH‰Å„Ø¿èÿÿH…ÀI‰Ç„
H‰h èÁÿþÿH…ÀI‰Æ„EH‹>Ï H‹=çÏ H‰ÆH‰D$èÚþþÿH…ÀH‰Å„žHƒH‹5;Î H‰êL‰÷èØýþÿ…Àˆ9Hƒm„Å
L‰òL‰þH‰ßèWÿÿH…ÀH‰D$„¹Hƒ+„Iƒ/„Iƒ.„ë
H‹<Í H‹=]Ï H‰ÞèUþþÿH…ÀH‰Å„ÉHƒH‹5®Í H‰ïèÆÿÿH…ÀI‰Æ„&Hƒm„L‰ïèçýþÿH…ÀH‰Å„C¿èÿÿH…ÀI‰Ç„hH‰h è¬þþÿH…ÀH‰Å„›H‹)Î H‹=ÒÎ H‰ÆH‰D$ èÅýþÿH…ÀH‰Ã„ÙHƒH‹5&Í H‰ÚH‰ïèÃüþÿ…ÀˆðHƒ+„¡
H‰êL‰þL‰÷èCÿþÿH…ÀH‰D$ „’
Iƒ.„Iƒ/„Hƒm„H‹-'Ì H‹=HÎ H‰îè@ýþÿH…ÀH‰Ã„HƒH‹5YË H‰ßè±ÿÿH…ÀH‰Å„EHƒ+„{L‰ïèÓüþÿH…ÀH‰Ã„t¿èíþþÿH…ÀI‰Ç„‘H‰X è˜ýþÿH…ÀH‰Ã„L‹-Í H‹=¾Í L‰îè¶üþÿH…ÀI‰Æ„HƒH‹5Ì L‰òH‰ßè´ûþÿ…ÀˆŠIƒ.„0H‰ÚL‰þH‰ïè4þþÿH…ÀH‰D$(„‘Hƒm„TIƒ/„dHƒ+„MH‹5¨Ë H‹|$èÆÿþÿH…ÀH‰Ã„»H‹5CÊ 1?è—þþÿH…ÀH‰Å„Æ1ÒH‰ÆH‰ßè¾ýþÿI‰ÅH‹EHPÿH…ÒH‰UuH‰ïèRûþÿM…í„”H‹HPÿH…ÒH‰„BI‹EHPÿH…ÒI‰U„ H‹5Ë H‹|$è0ÿþÿH…ÀH‰Ã„²H‹5­É 1?èþþÿH…ÀH‰Å„½1ÒH‰ÆH‰ßè(ýþÿI‰ÅH‹EHPÿH…ÒH‰UuH‰ïè¼úþÿM…í„‹H‹HPÿH…ÒH‰„ I‹EHPÿH…ÒI‰U„~H‹5|Ê H‹|$ èšþþÿH…ÀH‰Ã„rH‹5É 1?èkýþÿH…ÀH‰Å„}1ÒH‰ÆH‰ßè’üþÿI‰ÅH‹EHPÿH…ÒH‰UuH‰ïè&úþÿM…í„KH‹HPÿH…ÒH‰„}I‹EHPÿH…ÒI‰U„¯L;%¾Š ”ÀL;%„Š ”ÂÂu
L;%nŠ …P¶À„ÈH‹\$0H‹Cö€³„†H‹5HŠ 1ÒH‰ßèîüþÿ…Àˆ¨ƒø„ÚH‰ßèuúþÿ‰‰ÅH9Ð…ƒýÿ„H‹5@É H‹|$è~ýþÿH…ÀI‰Æ„ÿL‹-㉠L9è…¬H‹5É H‹|$èQýþÿH…ÀH‰Ã„ŠL9è…ÄL9l$…sL9l$…"L9l$ …ÑL9l$(…€HƒìH‰ÚL‰öÿt$0L‹L$0‰ïL‹D$(H‹L$èœ^ÿÿ‰D$@I‹HƒèH…ÀI‰ZY„'H‹E1äHƒèH…ÀH‰„H‹t$8H;5a‰ ”ÀH;5'‰ ”ÂÂu	L9î…î¶|$0„§è#üþÿH…ÀH‰Å„ÝL‰êH‰ÆL‰ïèyûþÿHƒmH‰Ã„´H…Û„¸H‹|$H‰ÞèµøþÿHƒ+H‰ÅuH‰ßèøþÿH…í„‘¿è‘úþÿH…ÀH‰Ã„žH‰h H‹D$HƒH‰C(é`€1ÿè‘ûþÿH…ÀI‰Å„½H‰ÆH‰ïèJøþÿIƒmH‰Ã…Y÷ÿÿL‰ïè¤÷þÿéL÷ÿÿ€L‰ÿè÷þÿHƒ+…îöÿÿH‰ßè~÷þÿIƒm…æöÿÿëL‰÷èh÷þÿIƒ/…¼öÿÿëÄ@L‰ïèP÷þÿé¾öÿÿL‰÷è@÷þÿéøÿÿH‰ïè0÷þÿé(øÿÿH‰ßè ÷þÿé,øÿÿL‰ÿè÷þÿéøÿÿHœ+ÇcÈ ÇUÈ ÒH‰FÈ E1äHÇD$(HÇD$ HÇD$HÇD$€H…ítHƒm„8H‹
È ‹È H=üp‹5öÇ 1Ûè7ÿÿHƒ|$tH‹L$H‹H‰D$0HƒèH…ÀH‰„âH‹L$H…ÉtH‹H‰D$HƒèH…ÀH‰„€H‹L$ H…ÉtH‹H‰D$HƒèH…ÀH‰trH‹t$(H…ötH‹H‰D$HƒèH…ÀH‰tdM…ätIƒ,$thH‹T$H‹H‰D$HƒèH…ÀH‰uH‰×è×õþÿHƒÄHH‰Ø[]A\A]A^A_ÃDH‰Ïè¸õþÿésÿÿÿH‰Ïè¨õþÿë„fDH‰÷è˜õþÿë’fDL‰çèˆõþÿëŽfDH‰ÏèxõþÿéÿÿÿH‰ïèhõþÿé»þÿÿH‹)† H‰D$8I‰Äéøóÿÿ@H‰ïè@õþÿéüôÿÿH‰ßè0õþÿé(õÿÿH‰ßè õþÿécõÿÿèCöþÿH‰ßè›ÿÿH…À…âH–)Ç]Æ ÇOÆ ´E1äHÇD$(HÇD$ H‰+Æ HÇD$HÇD$L‰l$éþÿÿ€H<)ÇÆ ÇõÅ ¶1í1ÛHÇD$(H‰ÙÅ HÇD$ HÇD$HÇD$L‰l$I‹E1äHƒèH…ÀI‰uE1ÿL‰÷è<ôþÿM…ÿtIƒ/t!H…Û„pýÿÿHƒ+…fýÿÿH‰ßèôþÿéYýÿÿL‰ÿèôþÿëÕfDH”(Ç[Å ÇMÅ ¾H‰>Å 1íE1äHÇD$(HÇD$ HÇD$HÇD$L‰l$Iƒ.…oÿÿÿé]ÿÿÿH4(ÇûÄ ÇíÄ ÀL‰l$1íH‰×Ä E1äHÇD$(HÇD$ HÇD$HÇD$ëžfDHÜ'Ç£Ä Ç•Ä ÁH‰†Ä éCÿÿÿH´'Ç{Ä ÇmÄ ÐH‰^Ä E1äHÇD$(HÇD$ HÇD$HÇD$é*üÿÿfL‰÷èÈòþÿéôÿÿèëóþÿH‰ßèCÿÿH…À…JH>'ÇÄ Ç÷à E1äHÇD$(HÇD$ H‰Óà HÇD$é½ûÿÿDH‰ßèXòþÿéRõÿÿHç&Ǯà Ǡà 41ÛE1äHÇD$(H‰ƒÃ énþÿÿfDL‹-a‚ L9ètH‰ßèÔôþÿ…À„½
è—õþÿH…ÀuH‹‚ H5[&H‹8èœóþÿ@èsõþÿH…ÀIÇÅÿÿÿÿ„¶ñÿÿHW&Çà Çà ÕE1äHÇD$(HÇD$ H‰ì HÇD$1íHÇD$éBýÿÿè›òþÿH‰ïèóÿÿH…À…Hî%ǵ ǧ àH‰˜Â é5þÿÿHƒøÿ„ÍH‹ H5ØhH‹8èÐòþÿé3ÿÿÿHœ%Çc ÇU âH‰F E1äHÇD$(HÇD$ HÇD$HÇD$é‰üÿÿf.„HD%Ç ÇýÁ åH‰îÁ é£ùÿÿf„H%ÇÛÁ ÇÍÁ çH‰¾Á ésÿÿÿf„H‰ïèHðþÿé.òÿÿHÔ$Ç›Á ǍÁ ìE1äHÇD$(HÇD$ H‰iÁ HÇD$HÇD$é»ûÿÿfL‰÷èèïþÿéòÿÿL‰ÿèØïþÿéîñÿÿH‰ßèÈïþÿéÔñÿÿèëðþÿH‹|$èAÿÿH…ÀH‰D$ …cH7$ÇþÀ ÇðÀ îE1äHÇD$(HÇD$H‰ÌÀ HÇD$é'ûÿÿfDHì#dzÀ Ç¥À òE1äHÇD$(HÇD$ H‰À HÇD$éÜúÿÿH‰ïèïþÿétñÿÿH”#Ç[À ÇMÀ 1íHÇD$(HÇD$ H‰*À HÇD$écúÿÿ@HL#ÇÀ ÇÀ E1äHÇD$(HÇD$ H‰á¿ HÇD$éBúÿÿH#I‰îÇȿ Ǻ¿ 1íHÇD$(H‰ ¿ HÇD$ HÇD$éÐùÿÿf„H´"Ç{¿ Çm¿ 
E1äHÇD$(HÇD$ H‰I¿ HÇD$1íé¢ùÿÿf„L‰ÿèÈíþÿéòðÿÿL‰÷è¸íþÿéØðÿÿH‰ïè¨íþÿéÝðÿÿèËîþÿH‹|$è!ÿÿH…ÀH‰D$…H5"Ç޾ Çо H‰ÅE1äHÇD$(H‰5²¾ HÇD$ é”ùÿÿ@HÔ!Ç›¾ Ǎ¾ 1íE1äHÇD$(H‰p¾ HÇD$ éRùÿÿfH‰ßèøìþÿéxðÿÿèîþÿH‰ßèsÿÿH…ÀH‰Å…"ïÿÿHk!Ç2¾ Ç$¾ "E1äHÇD$(HÇD$ H‰¾ éóõÿÿH/!Çö½ Çè½ ðH‰ٽ éýøÿÿH!ÇϽ Ç} $E1äHÇD$(HÇD$ H‰½ é€õÿÿHÌ Ç“½ Ç…½ '1ÛHÇD$(HÇD$ H‰b½ é¤÷ÿÿH‘ ÇX½ ÇJ½ )1ÛHÇD$(HÇD$ H‰'½ éi÷ÿÿL‰÷èºëþÿéÃïÿÿHI ǽ ǽ .1ÛE1äHÇD$(H‰å¼ HÇD$ éÇ÷ÿÿH‰ïèoëþÿéŸïÿÿH‰ßèbëþÿé¦ïÿÿL‰ÿèUëþÿéïÿÿè{ìþÿH‹|$ èÑ
ÿÿH…ÀH‰D$ …¿H5ÇÇ޼ Ç€¼ 0H‰ÃE1äHÇD$(H‰5b¼ éM÷ÿÿH‹5¶» H‹|$èïþÿH…ÀH‰Å„ H‹5y H‰ÇèñîþÿH…ÀI‰Ç„×Hƒm„H‹5+¼ 1ÒL‰ÿèùìþÿH…ÀI‰Ä„w	Iƒ/„úH‹\$0H‹Cö€³„‚	H‹5{ 1ÒH‰ßè¼íþÿ…Àˆ¤	ƒø„DH‰ßèCëþÿ‰‰D$0H9Ð…„ƒ|$0ÿ„y	H‹5
º H‹|$èHîþÿH…ÀH‰Ã„ÏL‹-­z L9è…H‹5չ H‹|$èîþÿH…ÀI‰Ç„ÅL9è…{H‹5·¹ L‰çè÷íþÿH…ÀI‰Æ„7L9è…í
H‹5‹¹ L‰çèÓíþÿH…ÀH‰Å„«
L9è…öL9l$…§L9l$…
L9l$ …âL9l$(…BHƒìI‰èL‰ñÿt$0ÿt$0L‰úÿt$0L‹L$(H‰ދ|$Pè8;ÿÿ‰D$PH‹HƒÄ HƒèH…ÀH‰„ôIƒ/„ÝIƒ.„ÆHƒm…qðÿÿH‰ïèéþÿédðÿÿL‰ïèùèþÿéÓíÿÿH‰ßèìèþÿé±íÿÿH{ÇBº Ç4º E1äHÇD$(HÇD$ H‰º HÇD$éòôÿÿèÍéþÿH‰ïè%ÿÿH…À…<H Çç¹ Çٹ CE1äHÇD$(H‰¾¹ é±ñÿÿèôëþÿH…À„%÷ÿÿénöÿÿfDHÔÇ›¹ Ǎ¹ EE1äHÇD$(H‰r¹ éÜóÿÿL‰ïèèþÿéuíÿÿH‰ßèøçþÿéSíÿÿH‡ÇN¹ Ç@¹ HE1äHÇD$(H‰%¹ éñÿÿHTǹ Ç
¹ JE1äHÇD$(H‰ò¸ é\óÿÿH‰ßè…çþÿévíÿÿL‰çè˜èþÿ…À‰£íÿÿHÇ˸ 
ǽ¸ ²E1äH‰«¸ éžðÿÿL‰ïè>çþÿéDíÿÿHÍÇ”¸ dž¸ OE1äHÇD$(H‰k¸ éÏòÿÿè1èþÿL‰ïè‰	ÿÿH…ÀH‰D$(…µHÇF¸ Ç8¸ QE1äH‰&¸ éŠòÿÿè|êþÿH…ÀH‰ÃtHL‰êH‰ÆL‰ïèÖéþÿHƒ+H‰Å„H…ít(H‹|$H‰îèçþÿHƒmH‰ÃuH‰ïèuæþÿH…Û…íïÿÿHÇǷ ǹ· ŽH‰ª· éïÿÿHÙÇ · Ç’· UE1äH‰€· éäñÿÿH¯Çv· Çh· 2E1äHÇD$(HÇD$ H‰D· é/òÿÿHsÇ:· 	Ç,· dE1äH‰· é
ïÿÿHIÇ· 	Ç· rE1ä1íH‰î¶ éXñÿÿH‰÷è¡æþÿ…À‰íÿÿH
ÇԶ Çƶ cH‰·¶ éªîÿÿHæÇ­¶ 
ÇŸ¶ ~E1äH‰¶ é€îÿÿH¼Çƒ¶ 
Çu¶ ŒE1ä1íH‰a¶ éËðÿÿHÇW¶ ÇI¶ ˜E1äH‰7¶ é*îÿÿHfÇ-¶ Ƕ ¦E1ä1íH‰¶ éuðÿÿH‰ïèžäþÿéßùÿÿL‰ÿè‘äþÿéùùÿÿL‰÷è„äþÿéÌëÿÿH‰ßèwäþÿéÕëÿÿHÇ͵ Ç¿µ SE1äHÇD$(H‰¤µ éðÿÿH‰ßè·åþÿH…ÀI‰Ç„/òÿÿH‹-„t I9oH‰èu:ö€³„ßL‰ÿèããþÿHcÐLcèH9Ðu1Iƒ/…×ãÿÿL‰ÿèæãþÿéÊãÿÿL‰ÿèIÿÿH…ÀI‰Ç„õñÿÿH‹@ë¯Hƒøÿ„:H‹&t H5o[H‹8ègåþÿIƒ/…ÅñÿÿIÇÅÿÿÿÿë¦H‰ßèŒãþÿéîüÿÿH‰ïèãþÿé?ëÿÿHÇմ ÇǴ nH‰¸´ é«ìÿÿL‰÷èKãþÿé-úÿÿL‰ÿè>ãþÿéúÿÿH‰ßè1ãþÿéÿùÿÿL9ètL‰ÿèïåþÿ…À„Kè²æþÿH…À…bÿÿÿH‹*s H5rH‹8è³äþÿéGÿÿÿH‚I‰îÇF´ Ç8´ ÿ1Û1íH‰%´ égîÿÿHTÇ´ Ç
´ ýE1äH‰û³ éîëÿÿH‹5—³ Hxèvÿÿ…À…<éÿÿHÇٳ Ç˳ Ç1í1ÛH‰¸³ éúíÿÿHçÇ®³ Ç ³ ÅE1äH‰޳ éëÿÿH;rr tH‹|$0èæäþÿ…À„éè©åþÿH…ÀuH‹%r H5mH‹8è®ãþÿè‰åþÿƒÍÿH…À„nèÿÿHqÇ8³ Ç*³ ¼E1äH‰³ éëÿÿH‹r H5íTH‹8è]ãþÿë­H/Çö² Çè² È1íH‰ײ éíÿÿHƒÀ„ H‹Ñq H5rTH‹8èãþÿé_ÿÿÿHáǨ² Çš² $H‰‹² é~êÿÿHºÇ² Çs² 1í1ÛH‰`² éÄìÿÿH;Dq tH‹|$0è¸ãþÿ…À„«è{äþÿH…ÀuH‹÷p H5?H‹8è€âþÿè[äþÿH…ÀÇD$0ÿÿÿÿ„qöÿÿH>Dz Ç÷± H‰è± éÛéÿÿèäþÿH…À„¸üÿÿéÉüÿÿH‹D$(H‹5l± HxèKÿÿ…À…cçÿÿHçÇ®± Ç ± Þ1íH‰± éÑëÿÿH‹D$ H‹5&± Hxèÿÿ…À…çÿÿH¡Çh± ÇZ± Ý1íH‰I± é‹ëÿÿH‹D$H‹5à° Hxè¿ÿÿ…À…ÁæÿÿH[Ç"± DZ Ô1íH‰± éEëÿÿH‹D$H‹5š° Hxèyÿÿ…À…pæÿÿHÇܰ Çΰ Ó1íH‰½° éÿêÿÿH‹5Y° Hxè8ÿÿ…À…$æÿÿHÔÇ›° Ǎ° Ê1íH‰|° é¾êÿÿH‹€o H5QRH‹8èÁàþÿé<þÿÿHÇW° ÇI° 5H‰:° é%ëÿÿH‹5֯ Hxèµÿÿ…À…ûôÿÿHQǰ Ç
° 41íH‰ù¯ éäêÿÿH(Çï¯ Çᯠ21íH‰Я é4êÿÿH‹5l¯ HxèKÿÿ…À…môÿÿHçÇ®¯ Ç ¯ )1íH‰¯ éóéÿÿH¾Ç…¯ Çw¯ '1íH‰f¯ éÐéÿÿH‹5¯ Hxèáÿÿ…À…ÝóÿÿH}ÇD¯ Ç6¯ &1íH‰%¯ ééÿÿHƒÀ„/H‹n H5ÀPH‹8è`ßþÿéÛüÿÿH‹D$ H‹5—® Hxèvÿÿ…À…ôÿÿHÇٮ Çˮ JH‰¼® é§éÿÿHëDz® Ǥ® pH‰•® éxæÿÿH‹D$(H‹5,® Hxèÿÿ…À…¡óÿÿH§Çn® Ç`® KH‰Q® é<éÿÿH‹D$H‹5è­ HxèÇÿþÿ…À…<óÿÿHcÇ*® Ç® @H‰
® éøèÿÿH‹5©­ Hxèˆÿþÿ…À…òòÿÿH$Çë­ Çݭ 7H‰έ é¹èÿÿH‹D$H‹5e­ HxèDÿþÿ…À…ÄòÿÿHàǧ­ Ç™­ AH‰Š­ éuèÿÿH‹|$0è›ÝþÿH…ÀH‰Ã„úÿÿH‹hl H9Cu!H‰ßèêÿÿHƒ+‰Å…vâÿÿH‰ßèæÛþÿéiâÿÿH‰ßèIÿÿH…ÀH‰ÃuÏéÞùÿÿL‰ÿèDÝþÿH…ÀI‰Æ„¡øÿÿH9hu;I‹Fö€³„‰L‰÷èyÛþÿHcÈLcèH9Èu,Iƒ.…Œ÷ÿÿL‰÷è|Ûþÿé÷ÿÿH‰ÇèßÿÿH…ÀI‰Æuµé»÷ÿÿHƒÀt0H‹Åk H5SH‹8èÝþÿIƒÍÿë²L‹t$ éèÛÿÿL‹t$(éßÿÿèÇÞþÿH…ÀtÆëÚI‰ÆéïÙÿÿL9ètL‰÷èÛÝþÿ…Àt)è¢ÞþÿH…Àu·H‹k H5fIƒÍÿH‹8è£ÜþÿéPÿÿÿL‰÷èVÜþÿH…ÀH‰ÁtÇH9hu,H‰ÏH‰L$è›NÿÿH‹L$LcèHƒ)…ÿÿÿH‰Ïè¡ÚþÿéÿÿÿH‰ÇèÿÿH…ÀH‰ÁuÄéAÿÿÿè"ÞþÿH…À„Ãüÿÿé´ùÿÿH‹\$ éEÝÿÿH‹l$é&ÜÿÿI‰ÆéÛÿÿH‰ÃésÚÿÿH‰Ãé¨ÝÿÿèãÝþÿH…À„ÒøÿÿéGøÿÿH‹|$0è«ÛþÿH…ÀH‰Ã„?ùÿÿH‹xj H9Cu#H‰ßèúÿÿHƒ+‰D$0…¸ïÿÿH‰ßèôÙþÿé«ïÿÿH‰ßèWÿÿH…ÀH‰ÃuÍéùÿÿf.„AUATUSH‰óHƒì8H‹Œj H…ÒHÇD$HÇD$H‰D$ H‰D$(…GH‹VHƒú„µHƒú„§Hƒú„HH
HƒúH5ìRL
vHNÈŸÀHƒì¶ÀRH6LDH‹[i H‹81Àè™ÜþÿH½
Ç„ª ÁÇvª ¾H‰bª XZH
”
H=ZSºÁè˜üþÿ1ÀHƒÄ8[]A\A]ÃH‹F8H‹S0H‹s(H‹{ H\$H‰T$H‰ÚÇD$H‰D$ è)×ÿÿH…Àu¾H
8
H=þRºÁ¾%H‰D$Çé© ÁH‰
֩ Çԩ %èüþÿH‹D$éwÿÿÿDH‰ÂëƒH‹nHƒý‡þI‰ÔH HcªHÐÿà€H‹F8H‰D$(H‹C0H‰D$ H‹C(H‰D$H‹C H‰D$L‰çèÙþÿHƒýI‰Å„…~]Hƒý„–Hƒýu&M…í~*H‹5ù¦ L‰çè™×þÿH…À„žH‰D$(IƒíM…폌H‹|$H‹t$H\$H‹T$ H‹D$(éÍþÿÿH…íuÔH‹5ܧ L‰çIƒíèH×þÿH…ÀH‰D$„ñH‹5K§ L‰çè+×þÿH…ÀH‰D$tqIƒíM…í~šH‹5Q§ L‰çè	×þÿH…À„XÿÿÿH‰D$ IƒíéEÿÿÿH\$L
H5— H‰éL‰çH‰Úèqÿþÿ…Àˆ‰H‹|$H‹t$H‹T$ H‹D$(éþÿÿH‹g HƒìH
xjH5UPL
ßH®A¸H‹81ÀèÚþÿH;Ǩ ÁÇô§ áYH‰ä§ ^¾áéyýÿÿH‹SéûüÿÿHÇ˧ Áǽ§ ñ¾ñH‰©§ éDýÿÿH‰êéÇüÿÿff.„AWAVAUATUSH‰õHƒì8L‹%èf H…ÒHÇD$HÇD$L‰d$ …ØH‹FHƒø„ŠHƒø…àL‹v0H‹u(L‹} Hl$H‰êL‰ÿÇD$L‰t$L‰d$ è2ÔÿÿH…ÀH‰Ã„fH‹@H;f H‰ß„2H;Ëe „%è@ØþÿH…ÀH‰Å„VHƒ+„‚H‹EH‰ïH‹˜èÿÓH…ÀI‰Å„sH‰ïÿÓH…ÀI‰Ä„<H‰ïÿÓH‰ÇèHÿÿ…Àˆ>Hƒm…H‰ïèÕþÿéøH…Û„%H‰Ø@H£	H
¥	HƒøH5wNL

HNÊŸÂHƒìPH‹õd ¶ÒLBHÈ	H‹81Àè%ØþÿHI	Ǧ ÁǦ @¾@H‰î¥ XZH
 	H=OºÁ1Ûè"øþÿHƒÄ8H‰Ø[]A\A]A^A_ÃèËÖþÿHƒø…é1öH‰ßèg×þÿH…ÀI‰Å„;¾H‰ßèN×þÿH…ÀI‰Ä„2Hƒ+„èH‹I£ H‹=š¥ H‰Þè’ÔþÿH…ÀH‰Á„>Hƒ¿H‰L$èsÖþÿH…ÀH‰ÅH‹L$„bIƒL‰x 1ÒIƒ$L‰`(H‰ÏIƒH‰ÆL‰p0H‰L$è÷ÕþÿH…ÀH‰ÃH‹L$„VHƒm„+Hƒ)„Iƒmt/Iƒ,$…ýþÿÿL‰çègÓþÿéðþÿÿfM‰æé|ýÿÿ„I‰Ý1ÛL‰ïèCÓþÿM…äuÄéÇþÿÿf„H‰ßè(ÓþÿéÿÿÿH‹^I‰ÕHƒût(ŽýýÿÿHƒûtHƒû…öýÿÿH‹F0H‰D$ H‹E(H‰D$H‹E H‰D$L‰ïèêÓþÿHƒûI‰Æ„õHƒû„H…Û„¢M…öŽ)Hl$L®H5¾“ H‰ÙL‰ïH‰êèûþÿ…ÀˆL‹|$H‹t$L‹t$ é¥üÿÿ@H‰ÏèhÒþÿéâþÿÿH‰ïH‰L$èSÒþÿH‹L$é¾þÿÿf„HÔÇ›£ Ǎ£ eE1äH‰{£ H‹
q£ ‹w£ H=¤L‹5f£ è©õþÿH…Û„­þÿÿHƒ+„–þÿÿ1Ûéœþÿÿ€H‹5¹¡ L‰ïè™ÑþÿH…ÀH‰D$„SIƒîM…ö~*H‹5»¡ L‰ïèsÑþÿH…À„éþÿÿH‰D$ IƒîéÒþÿÿ@L‹|$H‹t$Hl$L‹t$ é ûÿÿ€"H…Àx1H]H
pHƒøH5LKHDÊH‰ÂH‹~a H‹81ÀèœÔþÿHÀLJ¢ Çy¢ mH‰j¢ ë*„H”Ç[¢ ÇM¢ zH‰>¢ Hƒ+…†E1íH‰ßèÉÐþÿM…í„rIƒmui1É1íL‰ïH‰L$è¨ÐþÿH‹L$H…É„B1ÛE1äHƒ)t/H…í„nþÿÿHƒm…cþÿÿH‰ïèsÐþÿéVþÿÿL‰á1ÛE1äfDH‰ÏèXÐþÿëÇfDE1ä1Ûé.þÿÿfDH‹` H5ÂGºH‹81Àè“ÓþÿéòþÿÿH²Çy¡ Çk¡ ‚H‰\¡ éÿÿÿ€Hƒ+H€ÇG¡ Ç9¡ |H‰*¡ …ÿÿÿéîþÿÿ€èãÐþÿH‰ßè;òþÿH…ÀH‰Á…­ûÿÿH3Çú  Çì  ¢L‰ëH‰ڠ é]ýÿÿDHÇˠ ǽ  ÁH‰®  L‰ëé±þÿÿfDHÔÇ›  Ǎ  ÏH‰~  ëÎ@H‹5iŸ L‰ïIƒîèÕÎþÿH…ÀH‰D$…ýÿÿH‹EéîùÿÿfDH‰ßèàÎþÿéqùÿÿ1ÛHƒm„×èiÒþÿH…À…HÚH
¹HƒûH5¯HH‰ÚHEÈH‹á^ H‹81ÀèÿÑþÿH#ÇêŸ Çܟ ’H‰͟ éŸýÿÿH‹‰^ HƒìH
jH5ÝGL
gHHA¸H‹81ÀèŸÑþÿHÃÇŠŸ ÁÇ|Ÿ $YH‰lŸ ^¾$éuùÿÿ»éÿÿÿH‰ïèïÍþÿéÿÿÿIƒmHyÇ@Ÿ Ç2Ÿ ŠL‰áH‰ Ÿ „ýÿÿIƒ,$„Aýÿÿ1ÛE1äéýÿÿH‹&^ H‹8èÖÎþÿ…À„ÿþÿÿè¹ÎþÿéÄþÿÿHÇߞ ÁÇў .¾.H‰½ž éÌøÿÿE1ä1Ûé¿üÿÿH‹
§ž ‹­ž H=ÚG‹5œž 1ÛèÝðþÿé¶øÿÿHƒìHƒÄÃ'char''signed char''unsigned char''short''unsigned short''int''unsigned int''long''unsigned long''long long''unsigned long long''float''double''long double'a structPython objecta pointera stringendunparseable format string'complex long double''complex double''complex float'name '%U' is not definedMissing type objectcannot import name %S%s (%s:%d)an integer is requiredbuffer dtype_traversal.pyxat leastat mostconnected_componentsbreadth_first_orderbreadth_first_treedepth_first_orderdepth_first_tree%d.%d%sbuiltinscython_runtime__builtins____init__.pxdtype.pxdnumpyflatiterbroadcastndarrayufuncparameters.pxi_traversalITYPE_têþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ êþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ°êþÿÀêþÿ0ëþÿ0ëþÿÐêþÿ0ëþÿ0ëþÿàêþÿðêþÿëþÿ0ëþÿ0ëþÿëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ0ëþÿ ëþÿðéþÿêþÿ0ëþÿêþÿ0êþÿHêþÿPêþÿ0ëþÿ0ëþÿ`êþÿ0ëþÿ0ëþÿ0ëþÿpêþÿ€êþÿ0ëþÿpêþÿðôþÿ õþÿ õþÿðôþÿ õþÿ õþÿ õþÿ õþÿ õþÿõþÿàôþÿ õþÿ õþÿÐôþÿ õþÿ õþÿÐôþÿÐôþÿÐôþÿ õþÿ õþÿ õþÿ õþÿ õþÿ õþÿ õþÿ õþÿ õþÿ õþÿ õþÿ õþÿ õþÿ õþÿ õþÿ õþÿðôþÿðôþÿÐôþÿ õþÿàôþÿõþÿõþÿàôþÿ õþÿ õþÿÐôþÿ õþÿ õþÿ õþÿðôþÿÐôþÿ õþÿðôþÿÂøþÿÌøþÿÌøþÿÌøþÿÌøþÿÌøþÿÂøþÿÂøþÿÌøþÿÌøþÿÂøþÿÌøþÿÌøþÿ´õþÿ´õþÿÂøþÿÌøþÿÌøþÿÌøþÿÌøþÿÌøþÿÌøþÿÌøþÿÌøþÿÌøþÿÌøþÿÌøþÿÌøþÿÌøþÿÌøþÿÌøþÿÌøþÿ¤øþÿšøþÿ®øþÿÌøþÿ®øþÿ®øþÿ¤øþÿ¤øþÿÌøþÿÌøþÿ¤øþÿÌøþÿÌøþÿÌøþÿ¤øþÿ¤øþÿÌøþÿ¤øþÿ”÷þÿ¤÷þÿ¤÷þÿ”÷þÿ¤÷þÿ¤÷þÿ¤÷þÿ¤÷þÿ¤÷þÿTöþÿ„÷þÿ¤÷þÿ¤÷þÿ„÷þÿ¤÷þÿ¤÷þÿDõþÿDõþÿDõþÿ¤÷þÿ¤÷þÿ¤÷þÿ¤÷þÿ¤÷þÿ¤÷þÿ¤÷þÿ¤÷þÿ¤÷þÿ¤÷þÿ¤÷þÿ¤÷þÿ¤÷þÿ¤÷þÿ¤÷þÿ¤÷þÿ”÷þÿ”÷þÿÔöþÿ¤÷þÿ¼öþÿìöþÿTöþÿ„÷þÿ¤÷þÿ¤÷þÿ„÷þÿ¤÷þÿ¤÷þÿ¤÷þÿ”÷þÿDõþÿ¤÷þÿ”÷þÿ€÷þÿÐöþÿÐöþÿÐöþÿÐöþÿÐöþÿp÷þÿ¨÷þÿÐöþÿÐöþÿ`÷þÿÐöþÿÐöþÿ`÷þÿ`÷þÿ`÷þÿÐöþÿÐöþÿÐöþÿÐöþÿÐöþÿÐöþÿÐöþÿÐöþÿÐöþÿÐöþÿÐöþÿÐöþÿÐöþÿÐöþÿÐöþÿÐöþÿ€÷þÿ€÷þÿ¸÷þÿÐöþÿÐ÷þÿ÷þÿp÷þÿ¨÷þÿÐöþÿÐöþÿ`÷þÿÐöþÿÐöþÿÐöþÿ€÷þÿ`÷þÿÐöþÿ€÷þÿ¸ùþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿèøþÿùþÿùþÿèøþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿèøþÿ¨ûþÿùþÿùþÿùþÿùþÿùþÿùþÿøþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿùþÿØûþÿùþÿ¨úþÿûþÿ¨ûþÿùþÿûþÿùþÿxùþÿùþÿùþÿùþÿùþÿùþÿxùþÿxùþÿùþÿùþÿxùþÿùþÿùþÿxùþÿùþÿxùþÿùþÿùþÿðúþÿùþÿùþÿùþÿùþÿùþÿÀúþÿùþÿùþÿùþÿûþÿùþÿùþÿùþÿxùþÿxùþÿxùþÿùþÿxùþÿxùþÿxùþÿxùþÿùþÿùþÿxùþÿùþÿùþÿùþÿxùþÿxùþÿùþÿ(ùþÿùþÿùþÿùþÿùþÿúþÿùþÿùþÿùþÿùþÿPúþÿ¬€ÿÿ£€ÿÿš€ÿÿ‘€ÿÿˆ€ÿÿȶÿÿ¿¶ÿÿ¶¶ÿÿ­¶ÿÿ¤¶ÿÿëÿÿëÿÿëÿÿùêÿÿðêÿÿFormat string allocated too short.scipy.sparse.csgraph._validationnumpy.core.umath failed to importndarray is not Fortran contiguousconnection must be 'weak' or 'strong'Non-native byte order not supportedFormat string allocated too short, see comment in numpy.pxdunknown dtype code in numpy.pxd (%d)scipy.sparse.csgraph._traversalnumpy.core.multiarray failed to import
    depth_first_tree(csgraph, i_start, directed=True)

    Return a tree generated by a depth-first search.

    Note that a tree generated by a depth-first search is not unique:
    it depends on the order that the children of each node are searched.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : array_like or sparse matrix
        The N x N matrix representing the compressed sparse graph.  The input
        csgraph will be converted to csr format for the calculation.
    i_start : int
        The index of starting node.
    directed : bool, optional
        If True (default), then operate on a directed graph: only
        move from point i to point j along paths csgraph[i, j].
        If False, then find the shortest path on an undirected graph: the
        algorithm can progress from point i to j along csgraph[i, j] or
        csgraph[j, i].

    Returns
    -------
    cstree : csr matrix
        The N x N directed compressed-sparse representation of the depth-
        first tree drawn from csgraph, starting at the specified node.

    Examples
    --------
    The following example shows the computation of a depth-first tree
    over a simple four-component graph, starting at node 0::

         input graph           depth first tree from (0)

             (0)                         (0)
            /   \                           \
           3     8                           8
          /       \                           \
        (3)---5---(1)               (3)       (1)
          \       /                   \       /
           6     2                     6     2
            \   /                       \   /
             (2)                         (2)

    In compressed sparse representation, the solution looks like this:

    >>> from scipy.sparse import csr_matrix
    >>> from scipy.sparse.csgraph import depth_first_tree
    >>> X = csr_matrix([[0, 8, 0, 3],
    ...                 [0, 0, 2, 5],
    ...                 [0, 0, 0, 6],
    ...                 [0, 0, 0, 0]])
    >>> Tcsr = depth_first_tree(X, 0, directed=False)
    >>> Tcsr.toarray().astype(int)
    array([[0, 8, 0, 0],
           [0, 0, 2, 0],
           [0, 0, 0, 6],
           [0, 0, 0, 0]])

    Note that the resulting graph is a Directed Acyclic Graph which spans
    the graph.  Unlike a breadth-first tree, a depth-first tree of a given
    graph is not unique if the graph contains cycles.  If the above solution
    had begun with the edge connecting nodes 0 and 3, the result would have
    been different.
    
    depth_first_order(csgraph, i_start, directed=True, return_predecessors=True)

    Return a depth-first ordering starting with specified node.

    Note that a depth-first order is not unique.  Furthermore, for graphs
    with cycles, the tree generated by a depth-first search is not
    unique either.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : array_like or sparse matrix
        The N x N compressed sparse graph.  The input csgraph will be
        converted to csr format for the calculation.
    i_start : int
        The index of starting node.
    directed : bool, optional
        If True (default), then operate on a directed graph: only
        move from point i to point j along paths csgraph[i, j].
        If False, then find the shortest path on an undirected graph: the
        algorithm can progress from point i to j along csgraph[i, j] or
        csgraph[j, i].
    return_predecessors : bool, optional
        If True (default), then return the predecesor array (see below).

    Returns
    -------
    node_array : ndarray, one dimension
        The depth-first list of nodes, starting with specified node.  The
        length of node_array is the number of nodes reachable from the
        specified node.
    predecessors : ndarray, one dimension
        Returned only if return_predecessors is True.
        The length-N list of predecessors of each node in a depth-first
        tree.  If node i is in the tree, then its parent is given by
        predecessors[i]. If node i is not in the tree (and for the parent
        node) then predecessors[i] = -9999.

    Examples
    --------
    >>> from scipy.sparse import csr_matrix
    >>> from scipy.sparse.csgraph import depth_first_order

    >>> graph = [
    ... [0, 1 , 2, 0],
    ... [0, 0, 0, 1],
    ... [2, 0, 0, 3],
    ... [0, 0, 0, 0]
    ... ]
    >>> graph = csr_matrix(graph)
    >>> print(graph)
      (0, 1)	1
      (0, 2)	2
      (1, 3)	1
      (2, 0)	2
      (2, 3)	3

    >>> depth_first_order(graph,0)
    (array([0, 1, 3, 2], dtype=int32), array([-9999,     0,     0,     1], dtype=int32))

    
    connected_components(csgraph, directed=True, connection='weak',
                         return_labels=True)

    Analyze the connected components of a sparse graph

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : array_like or sparse matrix
        The N x N matrix representing the compressed sparse graph.  The input
        csgraph will be converted to csr format for the calculation.
    directed : bool, optional
        If True (default), then operate on a directed graph: only
        move from point i to point j along paths csgraph[i, j].
        If False, then find the shortest path on an undirected graph: the
        algorithm can progress from point i to j along csgraph[i, j] or
        csgraph[j, i].
    connection : str, optional
        ['weak'|'strong'].  For directed graphs, the type of connection to
        use.  Nodes i and j are strongly connected if a path exists both
        from i to j and from j to i.  Nodes i and j are weakly connected if
        only one of these paths exists.  If directed == False, this keyword
        is not referenced.
    return_labels : bool, optional
        If True (default), then return the labels for each of the connected
        components.

    Returns
    -------
    n_components: int
        The number of connected components.
    labels: ndarray
        The length-N array of labels of the connected components.

    References
    ----------
    .. [1] D. J. Pearce, "An Improved Algorithm for Finding the Strongly
           Connected Components of a Directed Graph", Technical Report, 2005

    Examples
    --------
    >>> from scipy.sparse import csr_matrix
    >>> from scipy.sparse.csgraph import connected_components

    >>> graph = [
    ... [ 0, 1 , 1, 0 , 0 ],
    ... [ 0, 0 , 1 , 0 ,0 ],
    ... [ 0, 0, 0, 0, 0],
    ... [0, 0 , 0, 0, 1],
    ... [0, 0, 0, 0, 0]
    ... ]
    >>> graph = csr_matrix(graph)
    >>> print(graph)
      (0, 1)	1
      (0, 2)	1
      (1, 2)	1
      (3, 4)	1

    >>> n_components, labels = connected_components(csgraph=graph, directed=False, return_labels=True)
    >>> n_components
    2
    >>> labels
    array([0, 0, 0, 1, 1], dtype=int32)

    
    breadth_first_tree(csgraph, i_start, directed=True)

    Return the tree generated by a breadth-first search

    Note that a breadth-first tree from a specified node is unique.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : array_like or sparse matrix
        The N x N matrix representing the compressed sparse graph.  The input
        csgraph will be converted to csr format for the calculation.
    i_start : int
        The index of starting node.
    directed : bool, optional
        If True (default), then operate on a directed graph: only
        move from point i to point j along paths csgraph[i, j].
        If False, then find the shortest path on an undirected graph: the
        algorithm can progress from point i to j along csgraph[i, j] or
        csgraph[j, i].

    Returns
    -------
    cstree : csr matrix
        The N x N directed compressed-sparse representation of the breadth-
        first tree drawn from csgraph, starting at the specified node.

    Examples
    --------
    The following example shows the computation of a depth-first tree
    over a simple four-component graph, starting at node 0::

         input graph          breadth first tree from (0)

             (0)                         (0)
            /   \                       /   \
           3     8                     3     8
          /       \                   /       \
        (3)---5---(1)               (3)       (1)
          \       /                           /
           6     2                           2
            \   /                           /
             (2)                         (2)

    In compressed sparse representation, the solution looks like this:

    >>> from scipy.sparse import csr_matrix
    >>> from scipy.sparse.csgraph import breadth_first_tree
    >>> X = csr_matrix([[0, 8, 0, 3],
    ...                 [0, 0, 2, 5],
    ...                 [0, 0, 0, 6],
    ...                 [0, 0, 0, 0]])
    >>> Tcsr = breadth_first_tree(X, 0, directed=False)
    >>> Tcsr.toarray().astype(int)
    array([[0, 8, 0, 3],
           [0, 0, 2, 0],
           [0, 0, 0, 0],
           [0, 0, 0, 0]])

    Note that the resulting graph is a Directed Acyclic Graph which spans
    the graph.  A breadth-first tree from a given node is unique.
    
    breadth_first_order(csgraph, i_start, directed=True, return_predecessors=True)

    Return a breadth-first ordering starting with specified node.

    Note that a breadth-first order is not unique, but the tree which it
    generates is unique.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : array_like or sparse matrix
        The N x N compressed sparse graph.  The input csgraph will be
        converted to csr format for the calculation.
    i_start : int
        The index of starting node.
    directed : bool, optional
        If True (default), then operate on a directed graph: only
        move from point i to point j along paths csgraph[i, j].
        If False, then find the shortest path on an undirected graph: the
        algorithm can progress from point i to j along csgraph[i, j] or
        csgraph[j, i].
    return_predecessors : bool, optional
        If True (default), then return the predecesor array (see below).

    Returns
    -------
    node_array : ndarray, one dimension
        The breadth-first list of nodes, starting with specified node.  The
        length of node_array is the number of nodes reachable from the
        specified node.
    predecessors : ndarray, one dimension
        Returned only if return_predecessors is True.
        The length-N list of predecessors of each node in a breadth-first
        tree.  If node i is in the tree, then its parent is given by
        predecessors[i]. If node i is not in the tree (and for the parent
        node) then predecessors[i] = -9999.

    Examples
    --------
    >>> from scipy.sparse import csr_matrix
    >>> from scipy.sparse.csgraph import breadth_first_order

    >>> graph = [
    ... [0, 1 , 2, 0],
    ... [0, 0, 0, 1],
    ... [2, 0, 0, 3],
    ... [0, 0, 0, 0]
    ... ]
    >>> graph = csr_matrix(graph)
    >>> print(graph)
      (0, 1)    1
      (0, 2)    2
      (1, 3)    1
      (2, 0)    2
      (2, 3)    3

    >>> breadth_first_order(graph,0)
    (array([0, 1, 2, 3], dtype=int32), array([-9999,     0,     0,     1], dtype=int32))

    
Routines for traversing graphs in compressed sparse format
connected_components (line 22)breadth_first_order (line 267)scipy.sparse.csgraph._toolsndarray is not C contiguousbreadth_first_tree (line 123)depth_first_order (line 449)depth_first_tree (line 193)connected_componentsreturn_predecessorscline_in_tracebackbreadth_first_treereconstruct_pathdepth_first_treevalidate_graphisspmatrix_csrisspmatrix_csc_traversal.pyxreturn_labelsscipy.sparsepredecessorsn_componentsdense_outputRuntimeErrorImportErrorisspmatrixcsr_matrixconnectionValueErrornode_listcsgraph_Tdirectedindicesi_startfloat64csgraphstronglabelsindptr__import__zerostocsrshaperangenumpylowerint32emptydtypeITYPEDTYPEweak__test____name____main__fillnpTBuffer dtype mismatch, expected %s%s%s but got %sBuffer dtype mismatch, expected '%s' but got %s in '%s.%s'%.200s.%.200s is not a type object%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObject%s.%s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObjectDoes not understand character buffer dtype format string ('%c')Cannot convert %.200s to %.200sscipy/sparse/csgraph/_traversal.c%s() got multiple values for keyword argument '%U'%.200s() keywords must be strings%s() got an unexpected keyword argument '%U'__int__ returned non-int (type %.200s).  The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__%.4s__ returned non-%.4s (type %.200s)value too large to convert to unsigned intcan't convert negative value to unsigned intUnexpected format string character: '%c'Expected a dimension of size %zu, got %zuExpected %d dimensions, got %dPython does not define a standard format string size for long double ('g')..Buffer dtype mismatch; next field is at offset %zd but %zd expectedBig-endian buffer not supported on little-endian compilerBuffer acquisition: Expected '{' after 'T'Cannot handle repeated arrays in format stringExpected a dimension of size %zu, got %dExpected a comma in format string, got '%c'Expected %d dimension(s), got %dUnexpected end of format string, expected ')'Buffer has wrong number of dimensions (expected %d, got %d)Item size of buffer (%zd byte%s) does not match size of '%s' (%zd byte%s)scipy.sparse.csgraph._traversal._breadth_first_undirectedOut of bounds on buffer access (axis %d)scipy.sparse.csgraph._traversal._breadth_first_directedscipy.sparse.csgraph._traversal._depth_first_undirectedscipy.sparse.csgraph._traversal._depth_first_directedtoo many values to unpack (expected %zd)value too large to convert to intscipy.sparse.csgraph._traversal._connected_components_undirectedBuffer acquisition failed on assignment; and then reacquiring the old buffer failed too!scipy.sparse.csgraph._traversal._connected_components_directedcalling %R should have returned an instance of BaseException, not %Rraise: exception class must be a subclass of BaseExceptionscipy.sparse.csgraph._traversal.connected_components%.200s() takes %.8s %zd positional argument%.1s (%zd given)scipy.sparse.csgraph._traversal.breadth_first_orderneed more than %zd value%.1s to unpackscipy.sparse.csgraph._traversal.breadth_first_treescipy.sparse.csgraph._traversal.depth_first_orderscipy.sparse.csgraph._traversal.depth_first_treescipy.sparse.csgraph._traversalcompiletime version %s of module '%.100s' does not match runtime version %sinit scipy.sparse.csgraph._traversal;4%„þÿPþÿxЈþÿàȉþÿÀŠþÿ˜̊þÿ ¤þÿ¥þÿ¨¦þÿÀ°¦þÿ8 §þÿP€§þÿˆ¨þÿè@¨þÿ­þÿدþÿ@€¯þÿ`аþÿp±þÿ¨·þÿ°¼þÿˆ>þÿ耿þÿ  Íþÿp€ÖþÿÀ`êþÿð÷þÿ`pøþÿ€€ùþÿ¨ 
ÿÿøP9ÿÿH Uÿÿ¨`vÿÿ	zÿÿ`	ƒÿÿÐ	*ÿÿH
`®ÿÿ 
zRx$¨‚þÿÀFJw€?;*3$"D@‡þÿ\ˆ¢þÿhtà£þÿyŒH¤þÿ˜DK
IT¬è†þÿøBŽBE ŒA(†D0ƒP€…ˆIgˆA€X0D(A BBBp¤þÿlGd4ȤþÿUA†AƒJ X
DAG_DA4Tð¤þÿEŒA†A ƒX
ABF[
ABJ$Œ‡þÿKA†AƒG AA´ ¥þÿ.Aƒ\
CIŒÔ0¥þÿµBBŽE B(ŒD0†A8ƒHp±
8A0A(B BBBE~xM€AˆBB˜A A¨A°A¸AÀPp
8A0A(B BBBH<ds†þÿ¹EŽEB ŒA(†A0ƒ (D BBBd¤ ©þÿ÷BBŽE B(ŒD0†A8ƒK€Ý
8A0A(B BBBF¢
8F0A(B BBBA¸ªþÿzAƒC
D,,«þÿNAƒG {
ADZ
FH\8¬þÿ—tb\t,þÿ‘PBŽB B(ŒA0†A8ƒG`»8AÃ0AÆ(BÌ BÍBÎBÏL`ƒ†ŒŽ|Ô²þÿ”BBŽB B(ŒD0†A8ƒK`
8A0A(B BBBG€
8A0A(B BBBFt
8A0A(B BBBJ\T ·þÿ	A†AƒPpú
AABF
FACO
AAGn
AAHsxA€RxAp4´иþÿ²AƒG0ƒ
ADL
ACPALìX¹þÿBBŽE B(ŒD0†A8ƒOð&¼
8A0A(B BBBKL<(ÇþÿÔBBŽE B(ŒD0†A8ƒLðE
8A0A(B BBBELŒ¸ÏþÿàBBŽE B(ŒD0†A8ƒOÐ3	
8A0A(B BBBHLÜHãþÿ…
BBŽE B(ŒD0†A8ƒOà&Ä
8A0A(B BBBC,ˆðþÿyDW
Eq
G$LèðþÿAƒG ^
AILtÐñþÿ˜BBŽE B(ŒD0†A8ƒM€'~
8D0A(B BBBHLÄ ÿÿ!/BBŽB B(ŒD0†A8ƒJ€.°
8D0A(B BBBD\1ÿÿOBBŽB B(ŒA0†A8ƒGæ˜D L˜A^
8D0A(B BBBE\tðLÿÿ½ BBŽB B(ŒD0†A8ƒDpê
8D0A(B BBBH?xE€ixApTÔPmÿÿ”BBŒA †A(ƒG`yhDpEhA`^
(A ABBDhIpAhH`l,˜pÿÿ	BBŽB B(ŒA0†A8ƒGpJxA€GxAp^
8D0A(B BBBAxI€AxHptœ8yÿÿ¦'BBŽB B(ŒD0†A8ƒD€ƒˆJhˆA€æ
8D0A(B BBBFRˆJD˜G \€T	p ÿÿ”BBŒA †A(ƒG`yhDpEhA`^
(A ABBDhIpAhH`ll	¸£ÿÿ	BBŽB B(ŒA0†A8ƒGpJxA€GxAp^
8D0A(B BBBAxI€AxHpÌÜ	´þÿMRŒA†H ƒY€V
 AÃAÆBÌAŸˆFIˆA€{ˆQB˜F F¨A°A¸AÀAÈAÐN€™ˆQB˜F F¨A°A¸AÀAÈAÐN€™ˆQE˜F F¨A°A¸AÀAÈAÐN€€N@Nsƒp.
øa`½!h½!õþÿoðx
™À!h'h	þÿÿoàÿÿÿoðÿÿoùÿÿo¸x½!¦.¶.Æ.Ö.æ.ö.//&/6/F/V/f/v/†/–/¦/¶/Æ/Ö/æ/ö/00&060F0V0f0v0†0–0¦0¶0Æ0Ö0æ0ö011&161F1V1f1v1†1–1¦1¶1Æ1Ö1æ1ö122&262F2V2f2v2†2–2¦2¶2Æ2Ö2æ2ö233&363F3€Â!
    depth_first_order(csgraph, i_start, directed=True, return_predecessors=True)

    Return a depth-first ordering starting with specified node.

    Note that a depth-first order is not unique.  Furthermore, for graphs
    with cycles, the tree generated by a depth-first search is not
    unique either.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : array_like or sparse matrix
        The N x N compressed sparse graph.  The input csgraph will be
        converted to csr format for the calculation.
    i_start : int
        The index of starting node.
    directed : bool, optional
        If True (default), then operate on a directed graph: only
        move from point i to point j along paths csgraph[i, j].
        If False, then find the shortest path on an undirected graph: the
        algorithm can progress from point i to j along csgraph[i, j] or
        csgraph[j, i].
    return_predecessors : bool, optional
        If True (default), then return the predecesor array (see below).

    Returns
    -------
    node_array : ndarray, one dimension
        The depth-first list of nodes, starting with specified node.  The
        length of node_array is the number of nodes reachable from the
        specified node.
    predecessors : ndarray, one dimension
        Returned only if return_predecessors is True.
        The length-N list of predecessors of each node in a depth-first
        tree.  If node i is in the tree, then its parent is given by
        predecessors[i]. If node i is not in the tree (and for the parent
        node) then predecessors[i] = -9999.

    Examples
    --------
    >>> from scipy.sparse import csr_matrix
    >>> from scipy.sparse.csgraph import depth_first_order

    >>> graph = [
    ... [0, 1 , 2, 0],
    ... [0, 0, 0, 1],
    ... [2, 0, 0, 3],
    ... [0, 0, 0, 0]
    ... ]
    >>> graph = csr_matrix(graph)
    >>> print(graph)
      (0, 1)	1
      (0, 2)	2
      (1, 3)	1
      (2, 0)	2
      (2, 3)	3

    >>> depth_first_order(graph,0)
    (array([0, 1, 3, 2], dtype=int32), array([-9999,     0,     0,     1], dtype=int32))

    
    breadth_first_order(csgraph, i_start, directed=True, return_predecessors=True)

    Return a breadth-first ordering starting with specified node.

    Note that a breadth-first order is not unique, but the tree which it
    generates is unique.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : array_like or sparse matrix
        The N x N compressed sparse graph.  The input csgraph will be
        converted to csr format for the calculation.
    i_start : int
        The index of starting node.
    directed : bool, optional
        If True (default), then operate on a directed graph: only
        move from point i to point j along paths csgraph[i, j].
        If False, then find the shortest path on an undirected graph: the
        algorithm can progress from point i to j along csgraph[i, j] or
        csgraph[j, i].
    return_predecessors : bool, optional
        If True (default), then return the predecesor array (see below).

    Returns
    -------
    node_array : ndarray, one dimension
        The breadth-first list of nodes, starting with specified node.  The
        length of node_array is the number of nodes reachable from the
        specified node.
    predecessors : ndarray, one dimension
        Returned only if return_predecessors is True.
        The length-N list of predecessors of each node in a breadth-first
        tree.  If node i is in the tree, then its parent is given by
        predecessors[i]. If node i is not in the tree (and for the parent
        node) then predecessors[i] = -9999.

    Examples
    --------
    >>> from scipy.sparse import csr_matrix
    >>> from scipy.sparse.csgraph import breadth_first_order

    >>> graph = [
    ... [0, 1 , 2, 0],
    ... [0, 0, 0, 1],
    ... [2, 0, 0, 3],
    ... [0, 0, 0, 0]
    ... ]
    >>> graph = csr_matrix(graph)
    >>> print(graph)
      (0, 1)    1
      (0, 2)    2
      (1, 3)    1
      (2, 0)    2
      (2, 3)    3

    >>> breadth_first_order(graph,0)
    (array([0, 1, 2, 3], dtype=int32), array([-9999,     0,     0,     1], dtype=int32))

    
    depth_first_tree(csgraph, i_start, directed=True)

    Return a tree generated by a depth-first search.

    Note that a tree generated by a depth-first search is not unique:
    it depends on the order that the children of each node are searched.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : array_like or sparse matrix
        The N x N matrix representing the compressed sparse graph.  The input
        csgraph will be converted to csr format for the calculation.
    i_start : int
        The index of starting node.
    directed : bool, optional
        If True (default), then operate on a directed graph: only
        move from point i to point j along paths csgraph[i, j].
        If False, then find the shortest path on an undirected graph: the
        algorithm can progress from point i to j along csgraph[i, j] or
        csgraph[j, i].

    Returns
    -------
    cstree : csr matrix
        The N x N directed compressed-sparse representation of the depth-
        first tree drawn from csgraph, starting at the specified node.

    Examples
    --------
    The following example shows the computation of a depth-first tree
    over a simple four-component graph, starting at node 0::

         input graph           depth first tree from (0)

             (0)                         (0)
            /   \                           \
           3     8                           8
          /       \                           \
        (3)---5---(1)               (3)       (1)
          \       /                   \       /
           6     2                     6     2
            \   /                       \   /
             (2)                         (2)

    In compressed sparse representation, the solution looks like this:

    >>> from scipy.sparse import csr_matrix
    >>> from scipy.sparse.csgraph import depth_first_tree
    >>> X = csr_matrix([[0, 8, 0, 3],
    ...                 [0, 0, 2, 5],
    ...                 [0, 0, 0, 6],
    ...                 [0, 0, 0, 0]])
    >>> Tcsr = depth_first_tree(X, 0, directed=False)
    >>> Tcsr.toarray().astype(int)
    array([[0, 8, 0, 0],
           [0, 0, 2, 0],
           [0, 0, 0, 6],
           [0, 0, 0, 0]])

    Note that the resulting graph is a Directed Acyclic Graph which spans
    the graph.  Unlike a breadth-first tree, a depth-first tree of a given
    graph is not unique if the graph contains cycles.  If the above solution
    had begun with the edge connecting nodes 0 and 3, the result would have
    been different.
    
    breadth_first_tree(csgraph, i_start, directed=True)

    Return the tree generated by a breadth-first search

    Note that a breadth-first tree from a specified node is unique.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : array_like or sparse matrix
        The N x N matrix representing the compressed sparse graph.  The input
        csgraph will be converted to csr format for the calculation.
    i_start : int
        The index of starting node.
    directed : bool, optional
        If True (default), then operate on a directed graph: only
        move from point i to point j along paths csgraph[i, j].
        If False, then find the shortest path on an undirected graph: the
        algorithm can progress from point i to j along csgraph[i, j] or
        csgraph[j, i].

    Returns
    -------
    cstree : csr matrix
        The N x N directed compressed-sparse representation of the breadth-
        first tree drawn from csgraph, starting at the specified node.

    Examples
    --------
    The following example shows the computation of a depth-first tree
    over a simple four-component graph, starting at node 0::

         input graph          breadth first tree from (0)

             (0)                         (0)
            /   \                       /   \
           3     8                     3     8
          /       \                   /       \
        (3)---5---(1)               (3)       (1)
          \       /                           /
           6     2                           2
            \   /                           /
             (2)                         (2)

    In compressed sparse representation, the solution looks like this:

    >>> from scipy.sparse import csr_matrix
    >>> from scipy.sparse.csgraph import breadth_first_tree
    >>> X = csr_matrix([[0, 8, 0, 3],
    ...                 [0, 0, 2, 5],
    ...                 [0, 0, 0, 6],
    ...                 [0, 0, 0, 0]])
    >>> Tcsr = breadth_first_tree(X, 0, directed=False)
    >>> Tcsr.toarray().astype(int)
    array([[0, 8, 0, 3],
           [0, 0, 2, 0],
           [0, 0, 0, 0],
           [0, 0, 0, 0]])

    Note that the resulting graph is a Directed Acyclic Graph which spans
    the graph.  A breadth-first tree from a given node is unique.
    
    connected_components(csgraph, directed=True, connection='weak',
                         return_labels=True)

    Analyze the connected components of a sparse graph

    .. versionadded:: 0.11.0

    Parameters
    ----------
    csgraph : array_like or sparse matrix
        The N x N matrix representing the compressed sparse graph.  The input
        csgraph will be converted to csr format for the calculation.
    directed : bool, optional
        If True (default), then operate on a directed graph: only
        move from point i to point j along paths csgraph[i, j].
        If False, then find the shortest path on an undirected graph: the
        algorithm can progress from point i to j along csgraph[i, j] or
        csgraph[j, i].
    connection : str, optional
        ['weak'|'strong'].  For directed graphs, the type of connection to
        use.  Nodes i and j are strongly connected if a path exists both
        from i to j and from j to i.  Nodes i and j are weakly connected if
        only one of these paths exists.  If directed == False, this keyword
        is not referenced.
    return_labels : bool, optional
        If True (default), then return the labels for each of the connected
        components.

    Returns
    -------
    n_components: int
        The number of connected components.
    labels: ndarray
        The length-N array of labels of the connected components.

    References
    ----------
    .. [1] D. J. Pearce, "An Improved Algorithm for Finding the Strongly
           Connected Components of a Directed Graph", Technical Report, 2005

    Examples
    --------
    >>> from scipy.sparse import csr_matrix
    >>> from scipy.sparse.csgraph import connected_components

    >>> graph = [
    ... [ 0, 1 , 1, 0 , 0 ],
    ... [ 0, 0 , 1 , 0 ,0 ],
    ... [ 0, 0, 0, 0, 0],
    ... [0, 0 , 0, 0, 1],
    ... [0, 0, 0, 0, 0]
    ... ]
    >>> graph = csr_matrix(graph)
    >>> print(graph)
      (0, 1)	1
      (0, 2)	1
      (1, 2)	1
      (3, 4)	1

    >>> n_components, labels = connected_components(csgraph=graph, directed=False, return_labels=True)
    >>> n_components
    2
    >>> labels
    array([0, 0, 0, 1, 1], dtype=int32)

    ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿxÿ!ÿ!0ÿ!Hþ!xÿ!ÿ!0ÿ!Hþ!xÿ!0ÿ!ˆÿ!Pþ!xÿ!ÿ!0ÿ!xÿ!ÿ!0ÿ!"wž" m<" l#"qžøÿ!xðÿ!`m$èÿ!h
àÿ!¹žØÿ!¸Ðÿ!-Èÿ!`›Àÿ!€œ¸ÿ! ‰	°ÿ!¨ÿ!`œ ÿ! œ˜ÿ!—ÿ!@›ˆÿ!¨€ÿ! m&xÿ!žpÿ!؝
hÿ!˜`ÿ!X
Xÿ! xPPÿ!à›Hÿ!@ÿ!€n
8ÿ!œ0ÿ!è	(ÿ!kž ÿ!ežÿ!±žÿ!žÿ!žÿ!0žøþ!øðþ!&žèþ!_žàþ!ˆØþ!øœÐþ!èœÈþ!žÀþ!Yž¸þ!¨ž	°þ!H
¨þ!˜ž	 þ! ›˜þ!àl"þ!ȝ
ˆþ!¶ž€þ!Sžxþ!@n'pþ! l"hþ!8
`þ!MžXþ! œPþ!Hþ!@œ@þ!(
8þ!€›0þ! n (þ!`l! þ!Gžþ!žþ!ˆž	þ!Ažþ!øý!àm%ðý!؜èý!}žàý!;ž´d›ÿÿÿÿÿÿÿÿ`ü!ðcð Ë!dPU Â!)dðX@Ó!d$`Ý!Ûcàã€æ!¿dIGCC: (Debian 6.3.0-18+deb9u1) 6.3.0 20170516Èðxàh'	p.
.P3`3
øa bªȫ`½!h½!p½!x½!H¿!À!€Â! ý!ñÿ°Nh, PyF P˜a`3ør@QlŒ°QU¡¨"©R¿X4KÐ R.ë°"óÐRµ0"˜")"; "P¨ÿ!m£4¹‡¸"W÷¸YzíZN	`[—5\‘S a”l@g	• ý!hÜ ï!@ì@"@øPi²"jiŒ"vˆ"„€"“0xÔØàð”…
`€¢yŠ£¤˜ëÿ!úØý!
°´!/V"f(ÿ!v("‘àãOÕèý!äÀþ!ôðý!
`ÿ!$ˆþ!1 ÿ!A þ!QÐý!døþ!vðþ!‡þ!˜Èý!¥ "¾Pþ!Öxÿ!è0ÿ!ûˆÿ!àÿ!þ!,àï!(C0½ ™ð ”ÜHþ!úÿ!`ï!(#$	eXþ!€ ð! — -¦'ëàý!ûPU”<	 ï!(S	ðX	“	@ð! ª	àû!pº	`ð!hË	¸þ!Ú	¨þ!é	Øÿ!þ	`þ!
èÿ!%
øÿ!;
€ÿ!g
 þ!Ž
˜þ!º
ðÿ!æ
""@xþ!kpþ!—Èþ!¨pÿ!¼°þ!Ó ÿ!òþ!hþ!"þ!6Àÿ!SHÿ!nhÿ!ƒ€þ!“àþ!¨Ðþ!ÁØþ!Ú@þ!ñ(þ!
8þ!B
ÿ!T
"d
èþ!t
0þ!ž
ý! ä
àü! (Àü! j˜ÿ!•ÿ!½¸ÿ!è°ÿ!@ÿ!:8ÿ!_Ðÿ!ŠÈÿ!²Xÿ!ÝPÿ!þ!wž  m<I l#tqž‚x–`m$¿h
Ô¹žÞ¸ñ-`›>€œY ‰	¥`œÀ œÝ—@›*¨= m&fžv؝
ˆ˜›X
° xPØà›û€n
<œ^è	okž}ež‹±ž˜ž¨ž¸ÿ!É0žØøè&ž÷_žˆøœ/èœFžUYžc¨ž	pH
…˜ž	’ ›¶àl"ßȝ
ñ¶žüSž
@n'2 l"[8
pMž~ œ—­@œÉ(
Þ€› n *`l!SGžažpˆž	}Až‹¡øý!Ìàm%ô؜}ž;ž&›=M`ü!`[Ë!-Ÿ Â!Pá@Ó!
"`Ý!	e€æ!—©ñÿ´p½!Á°MÃðMÖ@Nì ý!ûh½!"€N.`½!©ñÿMp¶[p½!ñÿgÀý!Ÿˆý!¦
øa¬€Â!¹À"¾ˆý!Êx½!Ӑªæˆý!òÀ!	p.$GWiz¢³ Ïßò$;Tl~Œ£¶Óê$7Jb{‰\5M›­¼Êãð*8HXkyŽ ¶Òßô! 0?M_w‡±ÃÓáô*HZm„—ªºÉÛéÿ ( 7  K Z u † ™ ®  Ï â  ü !$!4!M!^!"z!_traversal.c__Pyx_BufFmt_DescribeTypeChar__pyx_bisect_code_objects__Pyx_BufFmt_RaiseExpected__Pyx_ImportType__Pyx_BufFmt_ExpectNumber__Pyx_GetBuiltinName__pyx_b__Pyx_TypeTest.isra.7__Pyx_ImportFrom__Pyx__GetModuleGlobalName__pyx_d__Pyx_AddTraceback__pyx_code_cache__pyx_empty_tuple__pyx_empty_bytes__pyx_cython_runtime__pyx_n_s_cline_in_traceback__Pyx_Import.constprop.22__pyx_m__Pyx_ParseOptionalKeywords.constprop.24__Pyx_PyNumber_IntOrLongWrongResultType.constprop.30__Pyx_PyInt_As_unsigned_int__Pyx_BufFmt_TypeCharToPadding.constprop.32__Pyx_BufFmt_ProcessTypeChunk__Pyx_BufFmt_CheckString__Pyx__GetBufferAndValidate.constprop.31__Pyx_TypeInfo_nn___pyx_t_5scipy_6sparse_7csgraph_10_traversal_ITYPE_t__Pyx_minusones__Pyx_zeros__Pyx_WriteUnraisable.isra.5.constprop.36__pyx_f_5scipy_6sparse_7csgraph_10_traversal__breadth_first_undirected__pyx_lineno__pyx_clineno__pyx_filename__pyx_f_5scipy_6sparse_7csgraph_10_traversal__breadth_first_directed__pyx_f_5scipy_6sparse_7csgraph_10_traversal__depth_first_undirected__pyx_f_5scipy_6sparse_7csgraph_10_traversal__depth_first_directed__Pyx_IternextUnpackEndCheck.constprop.34__Pyx_PyInt_As_int__pyx_f_5scipy_6sparse_7csgraph_10_traversal__connected_components_undirected__pyx_n_s_fill__pyx_int_neg_1__pyx_f_5scipy_6sparse_7csgraph_10_traversal__connected_components_directed__pyx_n_s_ITYPE__pyx_n_s_dtype__pyx_ptype_5numpy_ndarray__pyx_pw_5scipy_6sparse_7csgraph_10_traversal_1connected_components__pyx_n_u_weak__pyx_n_s_lower__pyx_n_s_validate_graph__pyx_n_s_dense_output__pyx_n_s_np__pyx_n_s_empty__pyx_n_s_shape__pyx_int_neg_9999__pyx_n_s_indices__pyx_n_s_indptr__pyx_n_u_strong__pyx_tuple___pyx_builtin_ValueError__pyx_n_s_return_labels__pyx_n_s_csgraph__pyx_n_s_directed__pyx_n_s_connection__pyx_n_s_T__pyx_n_s_tocsr__pyx_pyargnames.11026__pyx_f_5scipy_6sparse_7csgraph_10_traversal_breadth_first_order.isra.17.constprop.26__pyx_pw_5scipy_6sparse_7csgraph_10_traversal_7breadth_first_order__pyx_n_s_return_predecessors__pyx_n_s_i_start__pyx_pyargnames.11416__pyx_pw_5scipy_6sparse_7csgraph_10_traversal_3breadth_first_tree__pyx_n_s_reconstruct_path__pyx_pyargnames.11158__pyx_f_5scipy_6sparse_7csgraph_10_traversal_depth_first_order.isra.15.constprop.27__pyx_n_s_zeros__pyx_pw_5scipy_6sparse_7csgraph_10_traversal_9depth_first_order__pyx_pyargnames.11707__pyx_pw_5scipy_6sparse_7csgraph_10_traversal_5depth_first_tree__pyx_pyargnames.11241__pyx_moduledef__pyx_string_tab__pyx_n_s_main__pyx_n_s_name__pyx_n_s_ValueError__pyx_n_s_range__pyx_n_s_RuntimeError__pyx_n_s_ImportError__pyx_kp_u_connection_must_be_weak_or_stron__pyx_kp_u_ndarray_is_not_C_contiguous__pyx_kp_u_ndarray_is_not_Fortran_contiguou__pyx_kp_u_Non_native_byte_order_not_suppor__pyx_kp_u_Format_string_allocated_too_shor__pyx_kp_u_Format_string_allocated_too_shor_2__pyx_kp_u_numpy_core_multiarray_failed_to__pyx_kp_u_numpy_core_umath_failed_to_impor__pyx_n_s_labels__pyx_n_s_csgraph_T__pyx_n_s_n_components__pyx_n_s_connected_components__pyx_kp_s_traversal_pyx__pyx_n_s_predecessors__pyx_n_s_node_list__pyx_n_s_breadth_first_tree__pyx_n_s_depth_first_tree__pyx_n_s_csr_matrix__pyx_n_s_numpy__pyx_n_s_isspmatrix__pyx_n_s_isspmatrix_csr__pyx_n_s_isspmatrix_csc__pyx_n_s_scipy_sparse__pyx_n_s_scipy_sparse_csgraph__validation__pyx_n_s_scipy_sparse_csgraph__tools__pyx_n_s_float64__pyx_n_s_DTYPE__pyx_n_s_int32__pyx_n_s_scipy_sparse_csgraph__traversal__pyx_mdef_5scipy_6sparse_7csgraph_10_traversal_1connected_components__pyx_mdef_5scipy_6sparse_7csgraph_10_traversal_3breadth_first_tree__pyx_mdef_5scipy_6sparse_7csgraph_10_traversal_5depth_first_tree__pyx_kp_u_connected_components_csgraph_di__pyx_kp_u_connected_components_line_22__pyx_kp_u_breadth_first_tree_csgraph_i_st__pyx_kp_u_breadth_first_tree_line_123__pyx_kp_u_depth_first_tree_csgraph_i_star__pyx_kp_u_depth_first_tree_line_193__pyx_kp_u_breadth_first_order_csgraph_i_s__pyx_kp_u_breadth_first_order_line_267__pyx_kp_u_depth_first_order_csgraph_i_sta__pyx_kp_u_depth_first_order_line_449__pyx_n_s_test__pyx_k_DTYPE__pyx_k_Format_string_allocated_too_shor__pyx_k_Format_string_allocated_too_shor_2__pyx_k_ITYPE__pyx_k_ImportError__pyx_k_Non_native_byte_order_not_suppor__pyx_k_RuntimeError__pyx_k_T__pyx_k_ValueError__pyx_k_breadth_first_order_csgraph_i_s__pyx_k_breadth_first_order_line_267__pyx_k_breadth_first_tree__pyx_k_breadth_first_tree_csgraph_i_st__pyx_k_breadth_first_tree_line_123__pyx_k_cline_in_traceback__pyx_k_connected_components__pyx_k_connected_components_csgraph_di__pyx_k_connected_components_line_22__pyx_k_connection__pyx_k_connection_must_be_weak_or_stron__pyx_k_csgraph__pyx_k_csgraph_T__pyx_k_csr_matrix__pyx_k_dense_output__pyx_k_depth_first_order_csgraph_i_sta__pyx_k_depth_first_order_line_449__pyx_k_depth_first_tree__pyx_k_depth_first_tree_csgraph_i_star__pyx_k_depth_first_tree_line_193__pyx_k_directed__pyx_k_dtype__pyx_k_empty__pyx_k_fill__pyx_k_float64__pyx_k_i_start__pyx_n_s_import__pyx_k_import__pyx_k_indices__pyx_k_indptr__pyx_k_int32__pyx_k_isspmatrix__pyx_k_isspmatrix_csc__pyx_k_isspmatrix_csr__pyx_k_labels__pyx_k_lower__pyx_k_main__pyx_k_n_components__pyx_k_name__pyx_k_ndarray_is_not_C_contiguous__pyx_k_ndarray_is_not_Fortran_contiguou__pyx_k_node_list__pyx_k_np__pyx_k_numpy__pyx_k_numpy_core_multiarray_failed_to__pyx_k_numpy_core_umath_failed_to_impor__pyx_k_predecessors__pyx_k_range__pyx_k_reconstruct_path__pyx_k_return_labels__pyx_k_return_predecessors__pyx_k_scipy_sparse__pyx_k_scipy_sparse_csgraph__tools__pyx_k_scipy_sparse_csgraph__traversal__pyx_k_scipy_sparse_csgraph__validation__pyx_k_shape__pyx_k_strong__pyx_k_test__pyx_k_tocsr__pyx_k_traversal_pyx__pyx_kp_u_unknown_dtype_code_in_numpy_pxd__pyx_k_unknown_dtype_code_in_numpy_pxd__pyx_k_validate_graph__pyx_k_weak__pyx_k_zeros__pyx_k_Routines_for_traversing_graphs__pyx_methods__pyx_doc_5scipy_6sparse_7csgraph_10_traversal_6breadth_first_order__pyx_doc_5scipy_6sparse_7csgraph_10_traversal_8depth_first_order__pyx_doc_5scipy_6sparse_7csgraph_10_traversal_4depth_first_tree__pyx_doc_5scipy_6sparse_7csgraph_10_traversal_2breadth_first_tree__pyx_doc_5scipy_6sparse_7csgraph_10_traversal_connected_componentscrtstuff.c__JCR_LIST__deregister_tm_clones__do_global_dtors_auxcompleted.6972__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entry__FRAME_END____JCR_END____pyx_module_is_main_scipy__sparse__csgraph___traversal_edata_fini__dso_handle_end__bss_start_DYNAMIC__GNU_EH_FRAME_HDR__TMC_END___GLOBAL_OFFSET_TABLE__initPyPyObject_IsSubclassPyPyImport_ImportModuleLevelObjectPyPyOS_snprintfPyPyExc_TypeErrorPyPyDict_SetItemPyPyExc_BaseExceptionPyPyErr_SetObjectPyPyDict_GetItem_ITM_deregisterTMCloneTablePyPyLong_AsLongPyPyModule_GetDict_PyPy_DeallocPyPySequence_GetItemPyPyMem_MallocPyPyDict_GetItemStringPyPyObject_SetAttrStringPyPyImport_ImportModulePyPyLong_FromLongPyPyDict_NextPyPyUnicode_FromFormatPyPyObject_GetItemPyPyUnicode_InternFromStringPyPyUnicode_FromStringPyPyDict_SetItemStringPyPyUnicode_ComparePyPyTuple_TypePyPyUnicode_DecodePyPyExc_ValueErrorPyPyLong_AsUnsignedLongPyPyObject_GetAttrStringPyPyDict_SizePyInit__traversalPyPyObject_IsTruePyPyBytes_TypePyPyErr_ClearPyPyErr_ExceptionMatchesPyPyDict_NewPyPyObject_HashPyPyErr_WarnFormatPyPyExc_AttributeErrorPyPyLong_TypePyPyNumber_LongPyPyErr_RestorePyPyBuffer_ReleasePyPyList_TypePyPyObject_GetBufferPyPyErr_SetStringPyPyExc_OverflowErrorPyPyBytes_FromStringAndSizePyPyCode_NewPyPyImport_AddModulePyPyUnicode_CheckPyPyExc_DeprecationWarning__gmon_start__PyPyObject_NotPyPyErr_FetchPyPyList_SET_ITEMPyPyErr_WriteUnraisablePyPyObject_CallPyPyExc_StopIterationPyPyThreadState_GetPyPySequence_SizePyPyMem_ReallocPyPyTuple_NewPyPyObject_SetAttrPyPyExc_IndexError_PyPy_NoneStruct_PyPy_FalseStructPyPyUnicode_FromStringAndSizePyPyExc_NameErrorPyPyObject_GetIterPyPyUnicode_CheckExactPyPySequence_CheckPyPyModule_Create2PyPyErr_PrintExPyPyTuple_PackPyPySequence_ITEMPyPySlice_NewPyPyNumber_InPlaceAddPyPyObject_RichCompareBoolPyPyFrame_NewPyPyErr_Format_Jv_RegisterClassesPyPyErr_WarnExPyPyNumber_InPlaceMultiplyPyPyErr_OccurredPyPyTraceBack_HerePyPyLong_FromSsize_tPyPyExc_SystemErrorPyPyList_NewPyPyType_IsSubtype_ITM_registerTMCloneTablePyPyExc_ImportErrorPyPyCFunction_NewExPyPy_GetVersionPyPyImport_GetModuleDict_PyPy_TrueStruct__cxa_finalize@@GLIBC_2.2.5PyPyObject_GetAttr.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.plt.got.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.jcr.dynamic.got.plt.data.bss.commentÈÈ$.öÿÿoðð$8`	@xx™HÿÿÿoÈUþÿÿoàà dhnBh'h'xp.p.s..À~P3P3‡`3`3˜.øaøa	“ b bpH ›ªª4©ȫȫ¬
³`½!`½¿h½!h½Ëp½!p½Ðx½!x½Ð‚H¿!H¿¸ÙÀ!Àpâ€Â!€Â; è ý!ˆý  í0ˆý-¸ý"	À!MAö