Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
statsmodels / nonparametric / _smoothers_lowess.pypy3-71-x86_64-linux-gnu.so
Size: Mime:
ELF>@5@¸Û@8@DmDm PmPm!Pm!¸,0 hmhm!hm!ààÈÈÈ$$Påtdà`à`à`QåtdRåtdPmPm!Pm!°°GNUzgd…‚Z{1uíO,‰ ñú,ƒv&kˆÑ A@	kmpBEÕì»ã’|ØqX¸ñ‰×N@êÓï!ºŠ“!°‘/= ›êáXÛÇþŸ	Òmg.b+ªò‡°Xu—NÅÓCn*„H2	*ùZ¢EÁ¶«Áýu ìÞñëe\uAΨEmû깿â×Û€S`J‰×ˆa Ò/Q—~ä8 ®D®Â
R"ï|š!`!ƒš!	À/k@š!
È5t£6d__gmon_start___init_fini_ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Jv_RegisterClassesPyPyExc_ValueErrorPyPyErr_FormatPyPyObject_GetAttrStringPyPyExc_TypeErrorPyPyOS_snprintfPyPyErr_WarnEx_PyPy_DeallocPyPyObject_GetAttrPyPyExc_NameErrorPyPyExc_StopIterationPyPyErr_ExceptionMatchesPyPyErr_ClearPyPyErr_OccurredPyPyObject_GetItemPyPyThreadState_GetPyPyFrame_NewPyPyTraceBack_HerePyPyUnicode_FromStringPyPyCode_NewPyPyMem_ReallocPyPyErr_FetchPyPyObject_Not_PyPy_FalseStruct_PyPy_TrueStructPyPyErr_RestorePyPyUnicode_FromFormatPyPyObject_SetAttrPyPyMem_MallocPyPyDict_NextPyPyUnicode_CheckPyPyUnicode_ComparePyPyLong_AsLongPyPyExc_OverflowErrorPyPyErr_SetStringPyPyBytes_TypePyPyUnicode_CheckExactPyPyNumber_LongPyPyLong_TypePyPyExc_DeprecationWarningPyPyErr_WarnFormatPyPyObject_GetBufferPyPyBuffer_Release_PyPy_NoneStructPyPyLong_FromSsize_tPyPyFloat_FromDoublePyPyTuple_NewPyPyNumber_PowerPyPyNumber_SubtractPyPyErr_PrintExPyPyErr_WriteUnraisablePyPyExc_SystemErrorPyPyType_IsSubtypePyPyLong_AsSsize_tPyPyDict_GetItemPyPyDict_SizePyPyNumber_IndexPyPyFloat_AsDoublePyPyTuple_PackPyPyObject_CallPyPyFloat_TypePyPyObject_RichComparePyPyObject_IsTruePyPyObject_SetItemPyPyNumber_MultiplyPyPyNumber_InPlaceTrueDividePyPyFloat_AS_DOUBLEPyPyNumber_InPlaceMultiplyPyPyNumber_InPlaceAddPyPySlice_NewPyPyNumber_TrueDividePyPyDict_NewPyPyDict_SetItemPyPyList_TypePyPyTuple_TypePyPyObject_GetIterPyPyLong_FromLongPyPyList_NewPyPyList_SET_ITEMPyPyExc_BaseExceptionPyPyObject_IsSubclassPyPyErr_SetObjectPyPySequence_SizePyPySequence_ITEMPyPyNumber_AddPyInit__smoothers_lowessPyPy_GetVersionPyPyBytes_FromStringAndSizePyPyUnicode_FromStringAndSizePyPyModule_Create2PyPyModule_GetDictPyPyImport_AddModulePyPyObject_SetAttrStringPyPyUnicode_InternFromStringPyPyObject_HashPyPyUnicode_Decode__pyx_module_is_main_statsmodels__nonparametric___smoothers_lowessPyPyExc_ImportErrorPyPyImport_GetModuleDictPyPyDict_GetItemStringPyPyDict_SetItemStringPyPyImport_ImportModulePyPyImport_ImportModuleLevelObjectPyPyCFunction_NewExlibm.so.6libpthread.so.0libc.so.6_edata__bss_start_endGLIBC_2.2.5rui	”Pm!àMXm! MÀr!Àr!à!œ!è!œ!ð!œ!ø!è›!Ž!(œ! Ž!àš!(Ž!ø›!0Ž! ›!8Ž!Л!@Ž!8›!`Ž!àš!hŽ!Ț!pŽ!(œ!xŽ!ø›!€Ž! ›!ˆŽ!؛! Ž!К!¨Ž!Ț!! œ!Ȏ!‚TèŽ!˜œ!ðŽ!€P!œ!! @8!ˆœ!@!xS`!€œ!h!@Pˆ!xœ!!P°!pœ!¸!hS؏!hœ!à!ÓT!`œ!!˜S(!Xœ!0!¿TP!Pœ!X!|Tx!Hœ!€!øS !@œ!¨!ÐRȐ!8œ!А!Sð!0œ!ø!èS‘!(œ! ‘!vT@‘! œ!H‘!KTh‘!œ!p‘!pT‘!œ!˜‘!jT¸‘!œ!!¶Tà‘!œ!è‘!±T’!ø›!’!ÑT0’!ð›!8’!@TX’!è›!`’!ÆT€’!à›!ˆ’!ÏT¨’!؛!°’!ˆSВ!Л!ؒ!ØSø’!ț!“!4T “!!(“! AH“!¸›!P“!@Sp“!°›!x“!¨T˜“!¨›! “!-T! ›!ȓ!ÍTè“!˜›!ð“!˜T”!›!”!°R8”!ˆ›!@”!`A`”!€›!h”!ÈSˆ”!x›!”!ÃT°”!p›!¸”!dTؔ!h›!à”!Q•!`›!•! A(•!X›!0•!&TP•!P›!X•!^Tx•!H›!€•!T •!@›!¨•!XSȕ!8›!Е!¸Sð•!0›!ø•!T–!(›! –!à@@–! ›!H–!`@h–!›!p–!¨S–!›!˜–!»T¸–!›!!ˆTà–!›!è–!ÀP—!øš!—!(S0—!ðš!8—!ðRX—!èš!`—!T€—!àš!ˆ—!ËT¨—!ؚ!°—!TЗ!К!ؗ!ÉTø—!Ț!˜!XT ˜!!(˜!RT°˜!a8¸˜!@QȘ!`š!™!s8™!àt™!àr! ™!7(™!0‘8™!€t!@™!ˆ7H™!Ð|X™!@v!`™!t7h™!Pux™!z!€™!l8ˆ™!/˜™!@! ™!|8Ho!Po!Xo!
`o!ho!po!!xo!%€o!,ˆo!1o!5˜o!: o!;¨o!C°o!I¸o!JÀo!MÈo!YÐo!_Øo!bào!cèo!hðo!iøo!op! p!(p!0p!8p!@p!Hp!	Pp!Xp!`p!
hp!pp!xp!€p!ˆp!p!˜p! p!¨p!°p!¸p!Àp!Èp!Ðp!Øp!àp!èp! ðp!"øp!#q!$q!&q!'q!( q!)(q!*0q!+8q!-@q!.Hq!/Pq!0Xq!2`q!3hq!4pq!6xq!7€q!8ˆq!9q!<˜q!= q!>¨q!?°q!@¸q!AÀq!BÈq!DÐq!EØq!Fàq!Gèq!Hðq!Køq!Lr!Nr!Or!Pr!Q r!R(r!S0r!T8r!U@r!VHr!WPr!XXr!Z`r![hr!\pr!]xr!^€r!`ˆr!ar!d˜r!e r!f¨r!g°r!jHƒìH‹Õ?!H…ÀtÿÐHƒÄÃÿ5"@!ÿ%$@!@ÿ%"@!héàÿÿÿÿ%@!héÐÿÿÿÿ%@!héÀÿÿÿÿ%
@!hé°ÿÿÿÿ%@!hé ÿÿÿÿ%ú?!héÿÿÿÿ%ò?!hé€ÿÿÿÿ%ê?!hépÿÿÿÿ%â?!hé`ÿÿÿÿ%Ú?!h	éPÿÿÿÿ%Ò?!h
é@ÿÿÿÿ%Ê?!hé0ÿÿÿÿ%Â?!hé ÿÿÿÿ%º?!h
éÿÿÿÿ%²?!héÿÿÿÿ%ª?!héðþÿÿÿ%¢?!héàþÿÿÿ%š?!héÐþÿÿÿ%’?!héÀþÿÿÿ%Š?!hé°þÿÿÿ%‚?!hé þÿÿÿ%z?!héþÿÿÿ%r?!hé€þÿÿÿ%j?!hépþÿÿÿ%b?!hé`þÿÿÿ%Z?!héPþÿÿÿ%R?!hé@þÿÿÿ%J?!hé0þÿÿÿ%B?!hé þÿÿÿ%:?!héþÿÿÿ%2?!héþÿÿÿ%*?!héðýÿÿÿ%"?!h éàýÿÿÿ%?!h!éÐýÿÿÿ%?!h"éÀýÿÿÿ%
?!h#é°ýÿÿÿ%?!h$é ýÿÿÿ%ú>!h%éýÿÿÿ%ò>!h&é€ýÿÿÿ%ê>!h'épýÿÿÿ%â>!h(é`ýÿÿÿ%Ú>!h)éPýÿÿÿ%Ò>!h*é@ýÿÿÿ%Ê>!h+é0ýÿÿÿ%Â>!h,é ýÿÿÿ%º>!h-éýÿÿÿ%²>!h.éýÿÿÿ%ª>!h/éðüÿÿÿ%¢>!h0éàüÿÿÿ%š>!h1éÐüÿÿÿ%’>!h2éÀüÿÿÿ%Š>!h3é°üÿÿÿ%‚>!h4é üÿÿÿ%z>!h5éüÿÿÿ%r>!h6é€üÿÿÿ%j>!h7épüÿÿÿ%b>!h8é`üÿÿÿ%Z>!h9éPüÿÿÿ%R>!h:é@üÿÿÿ%J>!h;é0üÿÿÿ%B>!h<é üÿÿÿ%:>!h=éüÿÿÿ%2>!h>éüÿÿÿ%*>!h?éðûÿÿÿ%">!h@éàûÿÿÿ%>!hAéÐûÿÿÿ%>!hBéÀûÿÿÿ%
>!hCé°ûÿÿÿ%>!hDé ûÿÿÿ%ú=!hEéûÿÿÿ%ò=!hFé€ûÿÿÿ%ê=!hGépûÿÿÿ%â=!hHé`ûÿÿÿ%Ú=!hIéPûÿÿÿ%Ò=!hJé@ûÿÿÿ%Ê=!hKé0ûÿÿÿ%Â=!hLé ûÿÿÿ%º=!hMéûÿÿÿ%²=!hNéûÿÿÿ%ª=!hOéðúÿÿÿ%¢=!hPéàúÿÿÿ%š=!hQéÐúÿÿÿ%’=!hRéÀúÿÿÿ%Š=!hSé°úÿÿÿ%º:!fAVAUI‰õATUH‰ÖSI‰ÔH‰ÍE‰ÆHìÐè=üÿÿH…À„·H‰ÃH‹@ö€³€u H‹Å9!H5ÆL‰áL‰êH‹81ÀèÆþÿÿëzL‹K(I9ér
E…öu(I9ét#H‹º9!H5»I‰èL‰áL‰êH‹81ÀèþÿÿëDAÿÎuNI9évII‰æHƒìH AQL‰éI‰éM‰à¾ÈL‰÷1Àèúÿÿ1Ò1ÿL‰öè`þÿÿ…ÀZYyHÿuH‰ßè]úÿÿ1ÛHÄÐH‰Ø[]A\A]A^ÃHƒìH‹e9!H‹8è¥ûÿÿƒÊÿ…Àtèyûÿÿ1҉ÐZÃH…ÿSt-HÿH‰óuèúÿÿH‹ù8!H5" H‰ÚH‹81ÀèÕýÿÿƒÊÿëèûýÿÿ1ÒH…Àt[뙉Ð[ÃH‹®f!H…ÀtHÿÃAUATHUSA¸¹¾1ÀHìèHl$Ld$H‰ïè5ùÿÿèþÿÿHãH‰~1ÀL‰çèùÿÿŠD$8D$u
ŠD$8D$
tbH\$LÇ(Hð(M‰áH‰é¾ÈH‰ß1ÀèÛøÿÿ1ÿºH‰Þèýÿÿ…Ày'H1$ÇÃe!ǵe!C!H‰¦e!és1ÿèúûÿÿH…ÀH‰¨e!u'H÷#lje!Ç{e!G!H‰le!é9H=.ÿ1öèÙúÿÿH…ÀH‰_e!u'H¶#ÇHe!Ç:e!H!H‰+e!éøH=íþ1öè¨ûÿÿH…Àu'H|#Çe!Çe!I!H‰ñd!é¾H=E`!¾õè›ûÿÿH…ÀH‰	e!u'H8#ÇÊd!Ǽd!m!H‰­d!éÐH‰Çèð÷ÿÿH…ÀH‰Æd!u'Hý"Ǐd!ǁd!o!H‰rd!é?HÿH= ÿèþùÿÿH…ÀH‰|d!u'H»"ÇMd!Ç?d!q!H‰0d!éýHÿH=çþè¼ùÿÿH…ÀH‰2d!u'Hy"Çd!Çýc!s!H‰îc!é»HÿH‹d!H5­þH‹=	d!HjU!èU÷ÿÿ…Ày_H*"Ǽc!Ç®c!u!H‰Ÿc!élŠC 
C!H‹{ta€{"t0è£÷ÿÿH‰EH‹H‹8H…ÿ„ˆè[øÿÿHÿÀt~HƒÃ(H‹+H…íuÀë>H‹SH‹sH…ÒtHÿÎ1Éè±÷ÿÿH‰Eë¼HÿÎèÃùÿÿH‰Eë®H‹CHpÿè øÿÿH‰Eë›ò²&èÝõÿÿH…ÀH‰›`!tò©&èÄõÿÿH…ÀH‰z`!u'HQ!Çãb!ÇÕb!w!H‰Æb!é“1ÿèŠöÿÿH…ÀH‰8`!tƿètöÿÿH…ÀH‰`!t°¿è^öÿÿH…ÀH‰ü_!tšH‹S5!ƒ8„ÏH‹û`!H‹5Ü`!H‹=•b!èÈøÿÿ…À‰­H¹ ÇKb!Ç=b!|!H‰.b!Hƒ=^b!tLHƒ=Lb!tH‹
b!‹b!H=V%‹5b!è‹H‹=,b!H…ÿt7HÿHÇb!u'è:õÿÿë èCùÿÿH…ÀuH‹‡4!H5%H‹8è÷ÿÿH‹éa!HÄè[]A\A]ÃèŽùÿÿH…ÀH‰Ãu'HÿÇ‘a!ǃa!€!H‰ta!éAÿÿÿH58$H‰ÇèàôÿÿH…ÀuAH‹Œa!H5$H‰ßè•õÿÿ…Ày'HªÇ<a!Ç.a!‚!H‰a!éìþÿÿH‹=S`!èH…ÀH‰Œ`!u'HkÇý`!Çï`!§H‰à`!é­þÿÿH‹=_!èÏH…Àu'H3ÇÅ`!¢Ç·`!©H‰¨`!éuþÿÿH‹=Ì^!è—H…Àu'HûǍ`!÷Ç`!­H‰p`!é=þÿÿH‹=´_!è_H…Àu'H5ûÇU`!XÇG`!®H‰8`!éþÿÿH‹=”_!è'H…Àu'HýúÇ`!Ç`!¯H‰`!éÍýÿÿH‹5T_!1?èÈöÿÿH…ÀH‰>]!u'HEÇ×_!ÇÉ_!ÀH‰º_!é‡ýÿÿH‹=>2!H‰úH‰þè£öÿÿH…ÀH‰]!u'HÇ’_!AÇ„_!ËH‰u_!éBýÿÿH‹5Ù]!1?è=öÿÿH…Àu'H3úÇS_!ÇE_!ÖH‰6_!éýÿÿH‹5’]!1?èþõÿÿH…Àu'HôùÇ_!Ç_!áH‰÷^!éÄüÿÿH‹5C^!1?è¿õÿÿH…Àu'HµùÇÕ^!2ÇÇ^!ìH‰¸^!é…üÿÿH‹5$^!1?è€õÿÿH…Àu'HvùÇ–^!XLj^!÷H‰y^!éFüÿÿH‹5Ý]!1?èAõÿÿH…Àu'H7ùÇW^!pÇI^! H‰:^!éüÿÿH‹5v\!1?èõÿÿH…Àu'HøøÇ^!Ç
^!
 H‰û]!éÈûÿÿH‹5/\!1?èÃôÿÿH…Àu'H¹øÇÙ]!ÇË]! H‰¼]!é‰ûÿÿÿ5Ù[!L‹
²\!1Àÿ5Ú[!L‹c\!¿ÿ5°[!H‹
i\!ÿ5K[!H‹d\!ÿ5[!ÿ5 [!ÿ5*[!ÿ5\!ÿ5v[!ÿ5\!ÿ5*\!ÿ5\[!ÿ5\!ÿ5À[!H‹5)\!èôÿÿHƒÄpH…Àu'H”Ç&]!Ç]!# H‰	]!éÖúÿÿH‹]!L‹
]!Hƒì1É1öA¸¿AQjÿ5[!ÿ5ÛZ!RRPRRºèTòÿÿHƒÄPH…Àu'H$Ƕ\!Ǩ\!& H‰™\!éfúÿÿH‹

[!H‹^[!HƒìL‹
“Z!L‹$[!1ÀH‹5+Z!ÿ5Z!¿è;óÿÿH…ÀZYu'H½ÇO\!ÐÇA\!/ H‰2\!éÿùÿÿH‹>\!L‹
/\!Hƒì1É1öA¸¿AQhÐÿ5ÏY!ÿ5Z!RRPRRºèzñÿÿHƒÄPH…Àu'HJÇÜ[!ÐÇÎ[!2 H‰¿[!éŒùÿÿL‹
3Z!L‹„Z!HƒìH‹
©Z!H‹BY!1ÀH‹5QY!ÿ5›Z!¿ÿ5@Z!ÿ52Z!èUòÿÿHƒÄ H…Àu'HÕÇg[!ÁÇY[!; H‰J[!éùÿÿH‹V[!L‹
G[!Hƒì1É1öA¸¿AQhÁÿ5ïX!ÿ5Y!RRPRRºè’ðÿÿHƒÄPH…Àu'HbÇôZ!ÁÇæZ!> H‰×Z!餸ÿÿL‹
ëX!L‹LY!1ÀH‹
³X!H‹\X!¿H‹5XX!èƒñÿÿH…Àu'HÇ™Z!	Ç‹Z!G H‰|Z!éIøÿÿH‹ˆZ!L‹
yZ!Hƒì1É1öA¸¿AQh	ÿ5iY!ÿ5KX!RRPRRºèÄïÿÿHƒÄPH…Àu'H”Ç&Z!	ÇZ!J H‰	Z!éÖ÷ÿÿH‹5½W!1?èÑðÿÿH…Àu'HUÇçY!XÇÙY!S H‰ÊY!é—÷ÿÿH‹ÖY!L‹
ÇY!Hƒì1É1öA¸¿AQhXÿ5¿X!ÿ5™W!RRPRRºèïÿÿHƒÄPH…Àu'HâÇtY!XÇfY!V H‰WY!é$÷ÿÿH=ôèíÿÿH…ÀH‰Ãu'H&ôÇ9Y!	Ç+Y!— H‰Y!ééöÿÿHCóH5ÆóA¸¹hH‰ßèñÿÿH…Àu'HÙóÇìX!	ÇÞX!  H‰ÏX!é›HÿuH‰ßèìÿÿH=sóèqìÿÿH…ÀH‰Ãu'HšóǤX!Ç–X!¢ H‰‡X!éTöÿÿH|óH51óA¸¹H‰ÇèðÿÿH…ÀH‰ïW!u'HFóÇPX!ÇBX!¥ H‰3X!éÿHÿuH‰ßèëÿÿH=×òèÕëÿÿH…ÀH‰Ãu'HóÇX!ÇúW!§ H‰ëW!é¸õÿÿHñòH5•òA¸¹(H‰ÇèåïÿÿH…Àu'H¿òÇ»W!Ç­W!ª H‰žW!éjHÿuH‰ßèìêÿÿH=Ÿòè@ëÿÿH…ÀH‰Ãu'HSòÇsW!ÎÇeW!¬ H‰VW!é#õÿÿH|ñH5]òA¸¹hH‰ÇèPïÿÿH…Àu'HòÇ&W!ÎÇW!¯ H‰	W!éÕHòH5òA¸¹P
H‰ßèïÿÿH…Àu'H¹ñÇÙV!åÇËV!± H‰¼V!éˆHÙñH5ÃñA¸¹8H‰ßè¶îÿÿH…Àu'HlñÇŒV!éÇ~V!³ H‰oV!é;H–ñH5vñA¸¹XH‰ßèiîÿÿH…ÀH‰ÏU!u'HñÇ8V!òÇ*V!µ H‰V!éçHJñH5"ñA¸¹àH‰ßèîÿÿH…Àu'HËðÇëU!–ÇÝU!· H‰ÎU!éšHÿuH‰ßèéÿÿ1ÿL‹-T!èNíÿÿH…ÀI‰ÄtVH‹=×U!1ÛèèèÿÿH…ÀH‰Åt(èkêÿÿH…ÀH‰ÃtH‰îE1ÀL‰áH‰ÂL‰ïè_èÿÿH‰Åë1íIÿ$uL‰çèºèÿÿH…Ûu,H…íu6H¹ÇKU!Ç=U!ž!H‰.U!éûòÿÿHÿuÏH‰ßè|èÿÿëÅH‹5kS!H‹=<U!H‰êèèÿÿ…Ày'HiÇûT!ÇíT! !H‰ÞT!é“HÿMuH‰ïè+èÿÿH‹=S!è	H…ÀH‰Åu'H DzT!ǤT!ª!H‰•T!ébòÿÿH‹5‰S!H‰ÇèìÿÿH…ÀH‰Ãu'HâÇtT!ÇfT!¬!H‰WT!éHÿMuH‰ïè¤çÿÿH‹5½S!H‹=fT!H‰Úè>çÿÿ…Ày'H“Ç%T!ÇT!¯!H‰T!éÔHÿuH‰ßèVçÿÿH‹ïQ!ò
ŸH=@P!1öò
FQ!è‘ëÿÿH…ÀH‰Ãu'H2ÇÄS!ǶS!Â!H‰§S!étñÿÿH‹5CR!H‹=ÄS!H‰Âèœæÿÿ…Ày'HñǃS!ÇuS!Ä!H‰fS!é2HÿuH‰ßè´æÿÿH‹MQ!H=†O!1öèÿêÿÿH…ÀH‰Ãu'H Ç2S!ÐÇ$S!Î!H‰S!éâðÿÿH‹5ÙP!H‹=2S!H‰Âè
æÿÿ…Ày'H_ÇñR!ÐÇãR!Ð!H‰ÔR!é HÿuH‰ßè"æÿÿH‹»P!H=ÔN!1öèmêÿÿH…ÀH‰Ãu'HÇ R!ÁÇ’R!Ú!H‰ƒR!éPðÿÿH‹5OP!H‹= R!H‰Âèxåÿÿ…Ày'HÍÇ_R!ÁÇQR!Ü!H‰BR!éHÿuH‰ßèåÿÿH‹)P!H="N!1öèÛéÿÿH…ÀH‰Ãu'H|ÇR!	ÇR!æ!H‰ñQ!é¾ïÿÿH‹5Q!H‹=R!H‰Âèæäÿÿ…Ày'H;ÇÍQ!	Ç¿Q!è!H‰°Q!é|HÿuH‰ßèþäÿÿH‹—O!H=pM!1öèIéÿÿH…ÀH‰Ãu'HêÇ|Q!XÇnQ!ò!H‰_Q!é,ïÿÿH‹5{P!H‹=|Q!H‰ÂèTäÿÿ…Ày'H©Ç;Q!XÇ-Q!ô!H‰Q!éêHÿuH‰ßèläÿÿèçåÿÿH…ÀH‰Ãu'HhÇúP!ÇìP!ü!H‰ÝP!éªîÿÿH‹qO!H‹5bO!H‰ÇèÒãÿÿ…Ày$H'ǹP!Ç«P!þ!H‰œP!ëkH‹5{N!H‹=¼P!H‰Úè”ãÿÿ…Ày$HéÇ{P!ÇmP!ÿ!H‰^P!ë-Hÿ…›îÿÿH‰ßè«ãÿÿéŽîÿÿHÿM…îÿÿH‰ïè”ãÿÿéîÿÿHÿ…øíÿÿH‰ßè~ãÿÿéëíÿÿf„H=ñL!HñL!UH)øH‰åHƒøvH‹&"!H…Àt	]ÿàfD]Ã@f.„H=±L!H5ªL!UH)þH‰åHÁþH‰ðHÁè?HÆHÑþtH‹Y"!H…Àt]ÿàf„]Ã@f.„€=yL!u'Hƒ=?"!UH‰åtH‹=%!èmçÿÿèHÿÿÿ]ÆPL!óÃ@f.„H=y!Hƒ?ué^ÿÿÿfDH‹É!!H…ÀtéUH‰åÿÐ]é@ÿÿÿ@€ÿs@¶Ç‡bH{êHc‚HÐÿàfH©çÄHtèÄHúçÄHKèÄHÃçÄHžçÄHuçÄHÜçH+è…öHDÂÃH³çH:è…öHDÂÃH£çHè…öHDÂÃHøæÃH÷æÃ„HŠçÄHFçÄHçÄHcçÄHúæÃ„HÔæÃ„H­æÃ„H…æÃ„H8çÄA‰ðAƒèx_IcȉðHÁá9T|KE…ÀtK1öë€~9pA9ð~'D‰Á)ñ‰ÈÁèÈÑøðHcÈHÁá‹L9Ê}×A‰ÀA9ðÙ9ʟ¶ÒÐóËO1À9ʟ¶ÒÐëê€HƒìL‹GM…Àt{M‹I9ùtC‹w@¾DèßýÿÿI‹PðH5ÔH‹
I‹M‹IH‹L‹H‰ÁH‹!H‹81ÀHƒÄéüãÿÿ@H‹L{æH‹‹w@¾DèýÿÿH5PI‰ÁM‰ÐL‰Òë¼DLOæH
æëÍ„H‹¾HЀù	w5HJ¾Rƒè0rÐ@€þ	wfD€HƒÁDBоrÐ@€þ	véH‰ÃHƒì¾ÐH‹o!H5XH‹81ÀèNãÿÿ¸ÿÿÿÿHƒÄÃ@USH‰þH‰ýHƒìH‹=L!èèãÿÿH…ÀH‰ÃtHƒÄH‰Ø[]ÃfDH‹i!H5²åH‰êH‹81ÀèõâÿÿHƒÄH‰Ø[]Ðf.„SH‰þH‰ûH‹=ÂK!èßÿÿH…ÀtHƒ[Ãfè+àÿÿH‰ß[érÿÿÿfAWAVI‰þAUATI‰ÍUS‰ó‰ÕHƒì8èƒáÿÿ…ÛI‰Ä…A‰ï1ÛE…ÿ„¢L‹
ÛJ!M…É„’‹
ÄJ!D‰úL‰ÏL‰L$‰Ή$èýÿÿ9$~rL‹L$H˜HÁàIÁE;yu^I‹HƒH‹K!1ÉL‰çH‰ÞèûáÿÿH…ÀI‰Ä„Ÿ‰h0H‰ÇèDâÿÿHƒ+„òIƒ,$uL‰çèÞÿÿHƒÄ8[]A\A]A^A_Ã@L‰ïèÀÞÿÿH…ÀI‰Åt݅Û…xL‰÷è¨ÞÿÿI‰ÆM…ö„ŒH‹}J!L‹
nJ!HƒìE1À1É1Ò1ö1ÿAQUAVAUPPPPPèÎßÿÿH‰ÃI‹EHƒÄPHƒèH…ÀI‰E„ÊIƒ.„°H…Û„dÿÿÿH‹°I!E…ÿH‰$„ÿÿÿH…À„§D‹5‹I!H‹<$D‰úD‰öèLüÿÿLcèE9îD;5mI!…¶AƒÆ@H‹<$IcöHÁæèÿßÿÿH…ÀH‰$„³þÿÿD‰5?I!D‹54I!IcÍHÁáH‰.I!E9õšH$IcÆD‰òHÁàH$H‹pðH‹xøƒêHƒèH‰pH‰xA9Õ|äEND‰yH‰D‰
ÚH!HƒéBþÿÿHƒ=HI!„ÞHT$(Ht$ H|$èÞÞÿÿH‹5H!H‹= I!èûàÿÿH…ÀI‰Ç„_H‰Çè§Þÿÿ…ÀI‹thHƒèH…ÀI‰u>H‹e!H‰ÐL‰ÿH‰T$H‰$èÜÿÿH‹$H‹T$H9ÐtH;l!tJH‰ÇèZÞÿÿ…Àt>H‹T$(H‹t$ H‹|$è²Ýÿÿé5ýÿÿDHƒèH…ÀI‰„H‹ù!H9"!tÂH‹T$(H‹t$ H‹|$ètÝÿÿA‰ßA÷ßéöüÿÿf„Hƒ+…{ýÿÿH‰ßè~ÛÿÿHƒÄ8[]A\A]A^A_ÀH±H=âL‰ö‰Ù1ÀèîÛÿÿI‰ÆéqýÿÿfDIƒm…*ýÿÿL‰ïè-Ûÿÿéýÿÿ„IcÍHÁáH$D;y„®D;5HG!…%þÿÿéÖýÿÿf„è;ÜÿÿH‹!H‹5•F!H‹=–G!èáÝÿÿéÖþÿÿ@L‰÷èÀÚÿÿéCýÿÿL‰ïè°Úÿÿé)ýÿÿ¿è±ÚÿÿH…À„IüÿÿH‰ÙF!ÇËF!@ǽF!D‰xH‰HƒéüÿÿH‹$IÁåLéé±ýÿÿH‹9H‰Hƒ/…þûÿÿèHÚÿÿéôûÿÿHÁéýÿÿH‹œ!H‹e!éþýÿÿH‰ßè Úÿÿéüÿÿf.„AWAVI‰ÿAUATI‰ÔUSHÎH‰õHƒìHHD$(Lt$0L‰D$HÇD$(HÇD$0H‰D$HD$8HÇD$8H‰D$@H‹T$H‹t$L‰ñL‰ÿè3Úÿÿ…À„H‹H‹|$(H…ÒtH;:H‰Øuë|@H9:tsHƒÀH‹H…ÒuïèºÛÿÿ…À„H‹H…Àt}I‰ÝëDtWIƒÅI‹EH…ÀtdH‹8H‹t$(H9÷t=è/Úÿÿ…ÀyÛè6ÝÿÿH…ÀtӸÿÿÿÿHƒÄH[]A\A]A^A_ÃDH‹T$0H)èI‰é?ÿÿÿL‰èH‹L$0H)èIƒ}I‰…%ÿÿÿH9ÝuëJfD„›HƒÅH9ët5H‹EH‹t$(H‹8H9÷„‚è§Ùÿÿ…ÀyÓè®ÜÿÿH…À…tÿÿÿHƒÅH9ëuËH‹L$(H‹T$H5[ÿH‹<!H‹81ÀèJÜÿÿHƒÄH¸ÿÿÿÿ[]A\A]A^A_ÃH‹!H‹T$H5ûþH‹81ÀèÜÿÿ¸ÿÿÿÿéÿÿÿH‹|$(H‰ùH‹T$H5›þëžf„SH‰ûHƒìH‹Gö€³tCèÖ×ÿÿHcÈH9ÈuHƒÄ[ÄHƒøÿtIH‹ã!H5´ÿH‹8èÄÙÿÿ¸ÿÿÿÿëÏDH;©!t	èúÚÿÿ…Àt!è±ÛÿÿH…À„Ǹÿÿÿÿë£èœÛÿÿH…Àt­ëíH‰ßè=ÙÿÿH…ÀH‰ÃtÏH‹@H;j!u0H‰ßèPÿÿÿH‹3HVÿH…ÒH‰…_ÿÿÿH‰߉D$èA×ÿÿ‹D$éJÿÿÿö€³t<H‹H H‹<!H-þ¾H‹81Àè®Øÿÿ…Àt¢Hƒ+…hÿÿÿH‰ßèøÖÿÿé[ÿÿÿL‹@ H‹°!H5™þ1É1ÒH‹81Àè³ÚÿÿëÇH‹’!H5wÝH‹8è»ØÿÿƒÈÿéÅþÿÿGÁ<4wiH
’à¶ÀHcHÈÿàfD¸Ãf.„¸Ãf.„¸Ãf.„¸Ãf.„¸Ãf.„HƒìH‹%!@¾×H5:þH‹81ÀèÚÿÿ1ÀHƒÄÃf„¾WD1Ò„ÖAWAVAUATUSH‰ûHƒì(H‹GH‹(H‹uHƒ~„ó€ús„²€úp„©¶GG1ÿ„À„‹NXA¿…É~#ƒéHFA¿HLÎ @L¯8HƒÀH9ÁuóÆCGHÇC0BK{@<4‡±H
.à¶ÀHcHÈÿàfDH…ÒHÇC…gÆCDÇC@1ÀHƒÄ([]A\A]A^A_óÃf.„ƒ~XH‹K0¿”CGH‹uL‹FL9Á„9ÿÿÿL‰ÂH52ýé,DA¿é^ÿÿÿDˆT$IGÿL-5áL5ZàH‹MH‰D$¶CF<@„D<^„BÁ<4‡u¶ÀIc†Lðÿàf„A¼f.„H‹Q¶A\L9â„<C„<Ht€|$H…hL9â…_H‹CH‹MH‹S HHH9Ñ…^LáM…ÿt	L¯d$LáH‹C0H‰K HPÿH‰S0H9Ý„¤þÿÿH‹MH‹CH}H…ÉH‰8„Ü€y\Su)H‹qHƒ>„àH‹}(H‹HLXL‰[H‰pHùH‰HH…Ò„eþÿÿH‹C‹{@¾SDH‹(¶CFH‹M<@…æþÿÿrÁ@€þ4‡a@¶öIctµLîÿæH‹QA¼¶A\L9â…úþÿÿf„:D$„ÿÿÿ<C…çþÿÿH‹IH…É„ÞþÿÿH‹CH‹UHPHpH‰sH‰HH‰PH‹S0éWÿÿÿ@ƒÿMäIƒäüIƒÄé…þÿÿDƒÿMäIƒäøIƒÄémþÿÿDH‹Á!H5ZûH‰L$E1äH‹8èºÔÿÿ¶CFH‹L$<@…8þÿÿ¾{DH‰L$èêûÿÿH…ÀH‰Æ„ÞH‹{ 1ÒH‹L$H‰øH÷öH…Òt
HþH)ÖH‰s Hƒ{8…óýÿÿ¾{DH‰L$è¥ûÿÿH‹L$H‰C8é×ýÿÿ€A¼éÅýÿÿDA¼éµýÿÿDH‹	!H5"úH‰L$E1äH‹81ÀèàÕÿÿ¶CFH‹L$éBÿÿÿÆD$HéýÿÿÆD$Ié
ýÿÿƒÿàƒÀCˆD$éöüÿÿÆD$UéìüÿÿH‹©!H5ÂùH‹81ÀèˆÕÿÿH‹C‹{@¾SDÆD$H‹(é¼üÿÿA¼éÕþÿÿDA¼éÅþÿÿDA¼éµþÿÿDƒÿMäIƒäðIƒÄ éþÿÿDA¼éþÿÿDƒÿMäIƒäøIƒÄéuþÿÿDƒÿMäIƒäüIƒÄé]þÿÿDHHðH‹hðH‰Kéòüÿÿ€H‰ýéãüÿÿ„H‰ßèhðÿÿ¸ÿÿÿÿé”ûÿÿfDH5¡ùH‹ª!H‹81ÀèÔÿÿ¸ÿÿÿÿélûÿÿH‹!‹VX‰ùH5ùH‹81ÀèiÔÿÿ¸ÿÿÿÿéEûÿÿDf.„AWAVAUATI‰ýUSHœÝHƒì(HD$Hl$H‰t$H‰$¶€ú}‡¶ÂHcƒHØÿàDI‹EHƒÆIƒ}(H‹H‹H‰t$D‹`X…6L‰ïèîùÿÿƒøÿ„GH‹t$E1öA¿¶„Étz€ù)tu€ù wL‰øH¿>HÓàH…øuÝH‰ïèéïÿÿƒøÿ„E9ô~I‹UIcÎH‹H‹H‹TÊHcÈH9Ñ…[H‹t$¶€ù,t	€ù)…Ç€ù,„^AƒÆ„Éu†E9ô…݄Ʉ\AÆEGIÇE(„HƒÆH‰t$¶€ú}†òþÿÿH‹<$èOïÿÿƒøÿ„hH˜I‰E(H‹t$éÁþÿÿfDE1äL‰ïèåøÿÿƒøÿ„>I‹E(H‹t$I‰E0A¶EEHƒÆAˆEF¶FÿE‰e@H‰t$IÇE(AˆEDéoþÿÿ@E1äA8UDuªE;e@u¤A¶EEA8EFu™HƒÆI‹E(IÇE(IE0H‰t$é3þÿÿ„A€}DtIƒ}„fL‰ïèFøÿÿƒøÿ„ŸIƒ}…JH‹D$HƒÄ([]A\A]A^A_ÃfDL‰ïèøÿÿƒøÿ„iI‹E(IE A¶EEIÇE(IÇE0AÆEDAˆEFH‹D$HpH‰t$é™ýÿÿfDHƒÆL‰ïI‹]8H‰t$è³÷ÿÿƒøÿ„H…ÛAÆED„jÿÿÿI‹M 1ÒH‰ÈH÷óH…Ò„UÿÿÿHËH)ÓI‰] éFÿÿÿ„HƒÆAÆEE=H‰t$é(ýÿÿDHFH‰D$¶VJš€ùv	€úd…ôH‰ÆA¼éþÿÿ@HFM‹e(IÇE(M‹u8H‰D$€~{…ÿL‰ïèýöÿÿƒøÿtZH‹D$M…äAÆEDIÇE0IÇE8HpH‰t$„ôE1ÿë€IƒÇM9ü„ÛH‹t$L‰ïèFüÿÿH…ÀH‰ÆuÞ1ÀHƒÄ([]A\A]A^A_ÃDHFH‰D$¶H‰ÆAˆUEé;üÿÿH‹i!H5šõH‹8èjÎÿÿ1ÀHƒÄ([]A\A]A^A_Ãf„HFH‰D$€~:tHƒÆDH‰t$H‰ðHƒÆ€~ÿ:uîHpH‰t$éÓûÿÿ„HFH‰D$¶NH‰ÆéüÿÿL‰ïè€ëÿÿ1Àë„@M…öH‰t$„•ûÿÿM‰u8éŒûÿÿH‹¹
!H5ZõH‹8èºÍÿÿ1ÀéKÿÿÿH‹™
!H5šõ¾ÑH‹81ÀèuÏÿÿH…À…|üÿÿ1ÀéÙþÿÿDI‹EH5õD‰ñH‹H‹‹PXH‹R
!H‹81Àè8ÏÿÿëÁH‹?
!H5XóºZH‹81ÀèÏÿÿ1ÀéÊþÿÿ‰ÁH‹
!H5êôH‹81ÀèøÎÿÿëH‹ÿ	!H5pôH‹8èÍÿÿ1Àé‘þÿÿH‹â	!H5;õH‹8èãÌÿÿ1Àétþÿÿff.„USH‰ýH‰÷H‰îH‰ËHƒìXHÇEè¡Ìÿÿƒøÿ„P‹M$ƒù…ÜH‰#HÇCHª3!€=ÿ3!SH5GÑHÇD$H‰$H‰\$H‰çH‰t$HÇD$ HKÆD$E@ÆD$F@HÇD$(HÇD$0ÆD$DÇD$@ÆD$GHÇD$8u)@H‹@H‰ÊHÇAHƒÁH‰AðH‹€x\StàH‰T$H‹u(èzùÿÿH…ÀtBH‹UL‹
3!L9Ê…±1ÀHƒ}@tXHƒÄX[]ÐH‹©!H52ôºH‹81ÀèƒÍÿÿHƒ}¸ÿÿÿÿtÏH°&!H9E@„²H‰ïè^ËÿÿHƒÄX¸ÿÿÿÿ[]ÃfH‰&!H‰]@HƒÄX[]ÃfDH±5!Hj&!HÇEHÇEH‰U8H‰U0H‰]@HƒÄX[]ÀHtÐH
€ÏIƒùL‹'2!H‰ÆHBñHƒúHMÈH‹á!HƒìVH5¥óH‹81Àè»ÌÿÿXZé1ÿÿÿHÇE@éAÿÿÿ€AVAUI‰õATUI‰ÔSH‰ÍL‰ÃHìPH…ÿHÇD$8HÇD$0„ÊH;=³!„½HD$8Lt$ H‰þºL‰ñH‰Çèýÿÿƒøÿ„ÇH‹D$pL‹T$8I9ÜH‹8Ž]H‰øH‰úH¯ÅòWøH¯ÓL¯ïòAòAòC*òXÁòYÃf.ÐvhHMHSHøLÐI‰ÉI‰ÐL¯ÏL¯Çë2f„H‰ÆòL)ÎHøòBòXÁòYÃf.Ðv HƒÁHƒÂI9ÔH‰ÍH‰ÓuÌH‰øH¯ÁòAHCÿH¯øòA:H‰ïò\Âò\Ñf(ÈòÂÊfTÁfUÊfVÁòD$è–ËÿÿH…ÀI‰ÄòD$„zH‰ßòD$èvËÿÿH…ÀH‰ÃòD$„†èŸÆÿÿH…ÀH‰Å„°¿èÊÿÿH…À„úHƒ|$8L‰` H‰X(H‰h0t&H$!H9T$x„H|$8H‰D$è»ÈÿÿH‹D$HÄP[]A\A]A^ÃfDH3!H
Ò#!HÇD$@E1ÒH‰D$pH‰D$hH‰L$xéEþÿÿfH™ñÇ+3!ÐÇ3!?
H‰3!fDHt$H|$L‰òèÆÈÿÿHƒ|$8tHg#!H9D$x„JH|$8èÈÿÿH‹T$ H‹t$H‹|$èîÇÿÿH‹
·2!‹½2!H=Jñ‹5¬2!è/çÿÿHÄP1À[]A\A]A^ÃDHÇD$xéðþÿÿHãðÇu2!Çg2!¸
Lt$ H‰S2!éFÿÿÿIƒ,$H²ðÇD2!Ç62!º
H‰'2!uYL‰çLt$ èxÅÿÿéÿÿÿH|ðÇ2!Ç2!¼
H‰ñ1!Iƒ,$„~Hƒ+t H…ítHƒmuH‰ïè,ÅÿÿLt$ éºþÿÿfH‰ßèÅÿÿëÖHðDZ1!Ç£1!¾
H‰”1!ë¡HÇD$xé¨þÿÿH‰øH¯ÅL¯ïòAòC*é)ýÿÿL‰çèÀÄÿÿéuÿÿÿf.„AWAVAUATI‰õUSI‰ÌH‰ÓHìxH…ÿL‹=¼!òD$HÇD$8HÇD$0HDŽ$XHDŽ$P„ÖL9ÿ„ÍHD$8Lt$ ºH‰þL‰ñH‰Çè`ùÿÿƒøÿH‹T$p„*M9ýH‹*„ÈM…í„¿Lt$ H¼$XºL‰îL‰ñè ùÿÿƒøÿH‹”$„¯H‰èL‹D$8H‹:H¯ÃHSòT$L9âòAòXэ¤HèòAf.‡œH‰ÖL‹Œ$XHèH¯÷LÀLÎë*fDòHþHèf.‡dH‰êH¯ÓòAH‰Êf.ÈzuH¯ßòAH‰ÓòHJL9áuºH{HƒêH9úHMúèVÇÿÿH…ÀI‰Ä„+H‰ßèBÇÿÿH…ÀH‰Å„Q¿èüÅÿÿH…ÀH‰Ã„rHƒ|$8L‰` H‰h(tHù!H9D$x„H|$8è¤ÄÿÿHƒ¼$Xt"HÒ!H9„$˜„¤H¼$XèwÄÿÿHÄxH‰Ø[]A\A]A^A_ÃfHÙ.!H’!M9ýHÇD$@H‰T$pH‰T$hH‰D$xH‹*…8þÿÿH§.!H`!HDŽ$XHDŽ$`H‰”$H‰”$ˆH‰„$˜é,þÿÿH{H‰ÊéÆþÿÿ@HíÇ“.!ÁÇ….!|H‰v.!fDHt$H|$L‰òè.ÄÿÿHƒ|$8tHÏ!H9D$x„vH|$8èzÃÿÿHƒ¼$Xt"H¨!H9„$˜„ZH¼$XèMÃÿÿH‹T$ H‹t$1ÛH‹|$è'ÃÿÿH‹
ð-!‹ö-!H=Ãì‹5å-!èhâÿÿéœþÿÿH9ìÇË-!Áǽ-!H‰®-!é9ÿÿÿf„HDŽ$˜éKþÿÿHøëÇŠ-!Ç|-!
Lt$ H‰h-!éóþÿÿHÇD$xéçýÿÿIƒ,$H¹ëÇK-!Ç=-!H‰.-!„ŒLt$ é®þÿÿIƒ,$H‚ëÇ-!Ç-!H‰÷,!tfH‹ELt$ HƒèH…ÀH‰E…kþÿÿH‰ïè3Àÿÿé^þÿÿHÇD$xé|þÿÿHDŽ$˜é•þÿÿH‰×H‰ÚéÎüÿÿH‰×éÆüÿÿL‰çèô¿ÿÿégÿÿÿL‰çèç¿ÿÿëDAUATUSH‰ûHìHL‹%ùþ HÇD$(HÇD$ L9ç„ÖH…ÿ„ÍLl$H|$(ºH‰ÞL‰éè»ôÿÿƒøÿ„H‹5“)!H‰ßL‰âè€ÁÿÿH…ÀH‰Ã„H‹=•)!H‰Æ蕿ÿÿH…ÀH‰Å„QHƒ+„H‹5P)!L‰âH‰ïè=ÁÿÿH…ÀH‰Ãt}H‹EHPÿH…ÒH‰U„pHƒ|$(tH!!H9D$h„fH|$(èÌÀÿÿHÄHH‰Ø[]A\A]ÃH1+!HÇD$0H‰D$`H‰D$XH×!H‰D$hé+ÿÿÿDH±éÇC+!jÇ5+!£Ll$H‰!+!H‹EHƒèH…ÀH‰E„LHt$H‰çL‰êèÌÀÿÿHƒ|$(tHm!H9D$h„2H|$(èÀÿÿH‹T$H‹t$1ÛH‹<$èó¿ÿÿH‹
¼*!‹Â*!H=Ïé‹5±*!è4ßÿÿéÿÿÿ€HéÇ“*!jÇ…*! Ll$H‰q*!H‹HƒèH…ÀH‰…RÿÿÿH‰ß趽ÿÿéEÿÿÿH‰ß訽ÿÿédþÿÿH‰ï蘽ÿÿéƒþÿÿHÇD$héŒþÿÿfH‰èÇ*!XÇ
*!”H‰þ)!éíþÿÿf„HYèÇë)!jÇÝ)!žLl$H‰É)!é¸þÿÿ@H‰ïè½ÿÿé§þÿÿHÇD$héÀþÿÿfSH‰ûHƒì H|$HT$Ht$èT¿ÿÿH‹|$H…ÿtHƒH‹t$H…ötHƒH‹T$H…ÒtHƒ腾ÿÿ¿èÀÿÿH‰ßès½ÿÿH‹T$H‹t$H‰ÃH‹|$è\¾ÿÿH…Ût'H‰ßè¿ÿÿHƒ+t	HƒÄ [ÃH‰ßèh¼ÿÿHƒÄ [ÃfH‹=‰û èä¾ÿÿHƒÄ [Ã@f.„ATUSHƒìH…öt#I‰üH‹?H‰óH9þu=½HƒÄ‰è[]A\ÃDH‹Yû H5ÚÂ1íH‹8èø½ÿÿHƒÄ‰è[]A\ÃDH‰T$è.Àÿÿ…	ÅH‹T$u®I‹$H‹K H5¼çL‹@ H‹ú H‹81À菿ÿÿëf.„SH‰óH‹5Å'!H9st	H;¸ú uH‰ß[éûÿÿDH{H%Ãè(ÿÿÿ…ÀuÞHmæÇÿ'!XÇñ'!z[H‰á'!1ÀÃ@f.„AWAVAUATUSH‰óHƒìHH…ÒHÇD$HÇD$HÇD$ HÇD$(HÇD$0…ùH‹NHƒù…[H‹F0H‹n H‹~(H‰D$ H‹F8H‰l$H‰|$H‰D$(H‹F@H‰D$0H‹§ù H9_…èH¼ÿÿI‰ÄIƒüÿ„»H‹|$ H9_…|è'¼ÿÿI‰ÅIƒýÿ„H‹|$(H9_…Ûè¼ÿÿI‰ÆIƒþÿ„yH‹|$0H9_…êèå»ÿÿI‰ÀIƒøÿ„H‹5Q&!H9ut	H;-Dù u"L‰ñL‰êL‰æH‰ïèAñÿÿHƒÄH[]A\A]A^A_ÃfH}HÁL‰D$è›ýÿÿ…ÀL‹D$uÀHÛäÇm&!ÐÇ_&!
H‰P&!1Àë«@H‹5$!L‰çIƒíèe¹ÿÿH…ÀH‰D$…H‹KH‹Aø HƒìHbÀQH5¦åL
ºÀH
DÀA¸H‹81Àè(½ÿÿHQäÇã%!ÐÇÕ%!
¾
H‰Á%!XZºÐH
#äH=Läè7ÚÿÿHƒÄH1À[]A\A]A^A_ÃfDH‹nHƒý‡#I‰ÔHÈHcªHÐÿà€H‹F@H‰D$0H‹C8H‰D$(H‹C0H‰D$ H‹C(H‰D$H‹C H‰D$L‰çèùÿÿHƒýI‰Å‡šHÏÇHcªHÐÿàfDH‹5á#!L‰çè1¸ÿÿH…ÀH‰D$„'IƒíH‹5h#!L‰çè¸ÿÿH…ÀH‰D$ „˜IƒíH‹5w#!L‰çèï·ÿÿH…ÀH‰D$(„
IƒíH‹5¾"!L‰çèηÿÿH…ÀH‰D$0„}IƒíM…íH‹l$H‹|$é&ýÿÿ@èۻÿÿH…ÀIÇÄÿÿÿÿ„0ýÿÿHÄâÇV$!ÑÇH$!

¾

ºÑH‰/$!épþÿÿf.„è;ºÿÿH…ÀI‰Åt£H‰Çè¹ÿÿIƒmI‰Ä…ÈüÿÿL‰ïèU·ÿÿé»üÿÿè[»ÿÿH…ÀIÇÅÿÿÿÿ„ÑüÿÿHDâÇÖ#!ÒÇÈ#!
¾
ºÒH‰¯#!éðýÿÿf.„軹ÿÿH…ÀI‰Æt£H‰Ç蛸ÿÿIƒ.I‰Å…jüÿÿL‰÷èֶÿÿé]üÿÿèۺÿÿH…ÀIÇÆÿÿÿÿ„rüÿÿHÄáÇV#!ÓÇH#!
¾
ºÓH‰/#!épýÿÿf.„è;¹ÿÿH…ÀI‰Çt£H‰Çè¸ÿÿIƒ/I‰Æ…üÿÿL‰ÿèV¶ÿÿéþûÿÿè¹ÿÿH…ÀH‰Ãt3H‰Çèë·ÿÿHƒ+I‰À…üûÿÿH‰ßH‰D$è!¶ÿÿL‹D$éåûÿÿ€èºÿÿH…ÀIÇÀÿÿÿÿ„ÓûÿÿHáÇ–"!ÔLj"!
¾
ºÔH‰o"!é°üÿÿHT$L²¼H5W!H‰éL‰çèœÛÿÿ…À‰ÁýÿÿH­àÇ?"!ÐÇ1"!
¾
ºÐH‰"!éYüÿÿH‹4ô HƒìH
M¼jHL¼H5‘áL
¥¼A¸H‹81Àè¹ÿÿHCàÇÕ!!ÐÇÇ!!ýYH‰·!!ºÐ^¾ýéíûÿÿH‹Èó HƒìHé»jH5,áL
@¼H
ʻA¸H‹81À许ÿÿH×ßÇi!!ÐÇ[!!÷_H‰K!!¾÷ºÐAXé€ûÿÿH‹[ó HƒìL
ã»jHs»H5¸àH
]»A¸H‹81ÀèA¸ÿÿHjßÇü !ÐÇî !ñAYH‰Ý !¾ñºÐAZéûÿÿH‹íò HƒìH»jH5QàL
e»H
ïºA¸H‹81ÀèӷÿÿHüÞÇŽ !ÐÇ€ !ëA[H‰o !¾ëºÐ[é¥úÿÿH‰éé7úÿÿ€AWAVAUATUSH‰óHƒìHH…ÒHÇD$HÇD$HÇD$ HÇD$(HÇD$0HÇD$8…8H‹NHƒù…šH‹F8L‹f H‹n(H‹~0H‰D$(H‹F@L‰d$H‰l$H‰|$ H‰D$0H‹FHH‰D$8藳ÿÿf.?ãò$z„*H‹|$(H‹öñ H9_…¬藴ÿÿI‰ÅIƒýÿ„JH‹|$0H9_…èv´ÿÿI‰ÆIƒþÿ„©H‹|$8H9_…èU´ÿÿHƒøÿ„KH‹5Ä!I9t$t	L;%¶ñ u4H9ut	H;-§ñ uUò$L‰ñL‰êH‰îL‰çè¯íÿÿHƒÄH[]A\A]A^A_ÃI|$Hü¹èÿõÿÿ…À„'H‹5`!H9uu¬ë³„H}H,¹èÐõÿÿ…Àu—HÝǧ!ÂÇ™!OH‰Š!1Àë‡fDH‹59!L‰çIƒí蝱ÿÿH…ÀH‰D$…H‹KH‹yð HƒìH®¸QH5ÞÝL
ò¸H
|¸A¸H‹81Àè`µÿÿH‰ÜÇ!ÁÇ
!H¾HH‰ù!XZºÁH
[ÜH=ÄÜèoÒÿÿHƒÄH1À[]A\A]A^A_ÃfDH‹nHƒý‡«I‰ÔHtÀHcªHÐÿà€H‹FHH‰D$8H‹C@H‰D$0H‹C8H‰D$(H‹C0H‰D$ H‹C(H‰D$H‹C H‰D$L‰çèò±ÿÿHƒýI‰Å‡ºH.ÀHcªHÐÿàDH‹5á!L‰çèa°ÿÿH…ÀH‰D$„§IƒíH‹5 !L‰çè@°ÿÿH…ÀH‰D$ „IƒíH‹5Ï!L‰çè°ÿÿH…ÀH‰D$(„ŠIƒíH‹5V!L‰çèþ¯ÿÿH…ÀH‰D$0„9IƒíH‹5m!L‰çèݯÿÿH…ÀH‰D$8„ÜIƒíM…íxL‹d$H‹l$H‹|$ éÂüÿÿfDèã³ÿÿH…À„ÈüÿÿHÓÚÇe!ÃÇW!A¾AºÃH‰>!éGþÿÿf„蛳ÿÿH…ÀIÇÅÿÿÿÿ„¡üÿÿH„ÚÇ!ÄÇ!B¾BºÄH‰ï!éøýÿÿf.„èû±ÿÿH…ÀI‰Æt£H‰Çè۰ÿÿIƒ.I‰Å…:üÿÿL‰÷è¯ÿÿé-üÿÿè³ÿÿH…ÀIÇÆÿÿÿÿ„BüÿÿHÚÇ–!ÅLj!C¾CºÅH‰o!éxýÿÿf.„è{±ÿÿH…ÀI‰Çt£H‰Çè[°ÿÿIƒ/I‰Æ…ÛûÿÿL‰ÿ薮ÿÿéÎûÿÿèK±ÿÿH…ÀH‰Ãt3H‰Çè+°ÿÿH‹HQÿH…ÒH‰…ÃûÿÿH‰ßH‰D$è[®ÿÿH‹D$é¬ûÿÿè[²ÿÿH…À„§ûÿÿHKÙÇÝ!ÆÇÏ!D¾DºÆH‰¶!é¿üÿÿHÙÇ«!Áǝ!NH‰Ž!1ÀéˆûÿÿH‹¨ì HƒìHݴjH5ÚL
 µH
ª´A¸H‹81À莱ÿÿH·ØÇI!ÁÇ;!)_H‰+!¾)ºÁAXé(üÿÿHT$Lv´H5G!H‰éL‰çèLÓÿÿ…À‰býÿÿH]ØÇï!ÁÇá!3¾3ºÁH‰È!éÑûÿÿH‹äë HƒìH
ý³jH´H5AÙL
U´A¸H‹81ÀèʰÿÿHó×Ç…!ÁÇw!/YH‰g!ºÁ^¾/éeûÿÿH‹xë HƒìL
´jH¤³H5ÕØH
z³A¸H‹81Àè^°ÿÿH‡×Ç!ÁÇ!#AYH‰ú!¾#ºÁAZé÷úÿÿH‹
ë HƒìH?³jH5nØL
‚³H
³A¸H‹81Àèð¯ÿÿH×Ç«!Áǝ!A[H‰Œ!¾ºÁ[éŠúÿÿH‹ê HƒìHҲjH5ØL
³H
Ÿ²A¸H‹81À胯ÿÿH¬ÖÇ>!ÁÇ0!]H‰ !¾ºÁA\éúÿÿH‰éé¯ùÿÿ€AWAVI‰÷AUATI‰ýUSHìhH;=rê HÇD$(HÇD$ HDŽ$HHDŽ$@„H…ÿ„	Lt$H|$(ºL‰îL‰ñèàÿÿƒøÿ„¦L;=ê „M…ÿ„Lt$H¼$HºL‰þL‰ñèãßÿÿƒøÿ„zH‹›!H‹=l!H‰ÞèD«ÿÿH…ÀH‰Å„àHƒH‹5U!H‰ïè¯ÿÿH…ÀH‰Ã„	Hƒm„ÞL‰þL‰ï蓪ÿÿH…ÀH‰Å„7H‰ƿ1À踭ÿÿH…ÀI‰Å„¼1ÒH‰ÆH‰ß迬ÿÿIƒmI‰Ä„ñHƒm„¦M…䄍Hƒ+„£H‹-ä!H‹=µ!H‰î荪ÿÿH…ÀH‰Ã„áHƒH‹5î!H‰ßè^®ÿÿH…ÀH‰Å„²Hƒ+„¨1ÀL‰æ¿è­ÿÿH…ÀI‰Å„½1ÒH‰ÆH‰ïè ¬ÿÿIƒmH‰ÃuL‰ïèn©ÿÿH…Û„•Hƒm„’H‹5{!H9Þ„¦H‹#è H9C„ºH‰ß謭ÿÿH…ÀH‰Å„€H;è A”ÅH;Fè ”ÀDè…H;-+è „õH‰ïè-ªÿÿ…ÀA‰Åˆ’H‹UHƒêH…ÒH‰U„E…í„DH‹5å!ºL‰çè0­ÿÿH…ÀH‰Å„”H‹½!H‰ÆL‰çèb¬ÿÿ…ÀˆÚH‹EM‰æHƒèH…ÀH‰E„H‹5£!ºL‰÷èެÿÿH…ÀH‰Å„2H‹ƒ!H‰ÆL‰÷è¬ÿÿ…ÀˆHHƒm„­L‹%î!H‹=ï!L‰æèǨÿÿH…ÀH‰Å„{Hƒ1ÀL‰ö¿èx«ÿÿH…ÀI‰Ä„¬1ÒH‰ÆH‰ïèªÿÿIƒ,$I‰ÅuL‰çèͧÿÿM…í„„Hƒm„©IƒEHƒ|$(tHÅ!H9D$h„òH|$(èp©ÿÿHƒ¼$Ht"Hž!H9„$ˆ„°H¼$HèC©ÿÿIƒ.M‰ô„±Hƒ+„Â@IƒmuL‰ïè9§ÿÿHÄhL‰è[]A\A]A^A_Ã@L‰ïè§ÿÿHƒm…ýÿÿ騄HY!L;="æ HÇD$0H‰D$`H‰D$XHø!H‰D$h…ôûÿÿH&!HDŽ$HHDŽ$PH‰„$€H‰„$xH·!H‰„$ˆéàûÿÿf.„H‰ïèx¦ÿÿéüÿÿHƒm…õE1äfH‰ïèX¦ÿÿéMüÿÿH‰ßèH¦ÿÿéPüÿÿHIÑÇÛ!	ÇÍ!¤1ÛE1äH‰¹!f„Ht$H‰çL‰òèp¨ÿÿHƒ|$(tH!H9D$h„öH|$(輧ÿÿHƒ¼$Ht"Hê!H9„$ˆ„ÜH¼$H菧ÿÿH‹T$H‹t$H‹<$èl§ÿÿH‹
5!‹;!H=ҋ5*!è­ÆÿÿM…ä„LIƒ,$„ÁH…Û„PHƒ+…FE1äH‰ßM‰åèH¥ÿÿM…í…÷ýÿÿéþÿÿf.„H9ÐÇË!	ǽ!©1ÛE1äH‰©!éôþÿÿ@E¶íéüÿÿ€è;¦ÿÿH‰ïèƒÅÿÿH…ÀH‰Ã…
ûÿÿHàÏÇr!Çd!ÕLt$H‰P!é›þÿÿE1íL‰ç蝤ÿÿH…Û„LÿÿÿHƒ+…BÿÿÿM‰ìé/ÿÿÿfH‹=©!H‰Þ葧ÿÿH…ÀH‰Å„…H‰ÆL‰ç誤ÿÿH…ÀI‰Æ„ÎHƒm„ÓIƒ,$…ÆûÿÿL‰çè0¤ÿÿé¹ûÿÿH…ÛtHƒ+„Æþÿÿf„E1íéÏüÿÿ„H‰ßèø£ÿÿéKúÿÿHÇD$héüýÿÿfHDŽ$ˆéþÿÿ€H‰ïè#ÿÿéaúÿÿH‰ï谣ÿÿéÞúÿÿèó¤ÿÿH‰ßè;ÄÿÿH…ÀI‰Ä…6H˜ÎÇ*!Ç!´1ÛLt$H‰!éQýÿÿHiÎÇû!Çí!¶E1äH‰Û!H‹ELt$HƒèH…ÀH‰E…ýÿÿH‰ïè£ÿÿéýÿÿ@HÎÇ«!ǝ!¹H‰Ž!E1äHƒ+t1ÛLt$éÉüÿÿf„H‰ßLt$1Ûèbÿÿé¬üÿÿ@H‰ß萣ÿÿf.àÒzfudH‹-â A½H‹EHPH‰Ué¨ùÿÿfDH‰ïèx¢ÿÿéFúÿÿHyÍÇ!Çý!ÈH‰î!é[ÿÿÿf„H‹-qá E1íH;-—á H‹EA”ÅHPH‰Ué<ùÿÿf.„H‰ïè¢ÿÿéJúÿÿH	ÍÇ›!Ǎ!×H‰~!éîþÿÿf„HÙÌÇk!Ç]!æ1ÛH‰L!élþÿÿ€H©ÌÇ;!Ç-!óLt$H‰!édûÿÿ@H‰ïèh¡ÿÿé ýÿÿH‰ïèX¡ÿÿéáøÿÿHYÌÇë
!ÇÝ
!õH‰Î
!éîýÿÿf„H)ÌM‰ôǸ
!%Ǫ
!'Lt$H‰–
!éáúÿÿHùËÇ‹
!%Ç}
!(M‰ôH‰k
!é‹ýÿÿfDHDŽ$ˆé?ùÿÿ€HÇD$héùÿÿf.„èۡÿÿL‰çè#ÁÿÿH…ÀH‰Å…pøÿÿH€ËM‰ôÇ
!)Ç
!2Lt$H‰í!é8úÿÿ„HIËÇÛ!)ÇÍ!@M‰ôH‰»!éÛüÿÿfDHËÇ«! ǝ!Lt$H‰‰!éÔùÿÿ@HéÊÇ{!"Çm!Lt$H‰Y!é¤ùÿÿ@H¹ÊÇK! Ç=!H‰.!éNüÿÿf„H‰ÊÇ!"Ç
!H‰þ!éüÿÿH‰ÅéÍôÿÿAUATUSH‰óHƒìH…ÒHÇ$HÇD$…yH‹NHƒù…ãH‹n H‹^(H‹5<!H9ut	H;-/Þ u-H9st	H; Þ uNH‰ÞH‰ïèƒóÿÿHƒÄ[]A\A]ÄH}Hž¦è€âÿÿ…À„H‹5á
!H9su´ë»f„H{H¬¥èPâÿÿ…ÀužH•ÉÇ'!
Ç!~H‰
!1ÀëƒfDH‹5©!L‰çIƒíèžÿÿH…ÀH‰$…ÉH‹K@H‹ùÜ HƒìHC¥QH5^ÊL
r¥H
ü¤A¸H‹81Àèà¡ÿÿH	ÉÇ›
!	Ǎ
!w¾wH‰y
!XZH
àÈH=Iʺ	èï¾ÿÿHƒÄ1À[]A\A]ÃfH‹nI‰ÔHƒýtlHƒýt]H…íH‰é…YÿÿÿL‰ç蹞ÿÿH…íI‰Å„ÿÿÿHƒýu!H‹5¸!L‰çè8ÿÿH…ÀH‰D$„§IƒíM…íRH‹,$H‹\$é0þÿÿH‹F(H‰D$H‹C H‰$ëœDH1ÈÇÃ	!	ǵ	!}H‰¦	!1ÀéþÿÿL¤H5û H‰âH‰éL‰çèÓÂÿÿ…ÀyŽHèÇÇz	!	Çl	!j¾jH‰X	!éÜþÿÿH‹tÛ HƒìH
£jH5ØÈL
ì£H§£A¸H‹81ÀèZ ÿÿHƒÇÇ	!	Ç	!fYH‰÷!^¾féuþÿÿff.„AWAVAUATUSH‰ûHìhL‹-UÛ HƒHÇD$HÇD$HÇD$HÇD$HL9ïHÇD$@„+Lt$0H|$HºH‰ÞL‰ñèÑÿÿƒøÿ„¨H‰ÞH‰ßèݞÿÿH…ÀI‰Ä„)H‰ÆH‰ß覟ÿÿH…ÀH‰Å„BL9è…ÁHƒ|$HL5¤ø „L9´$ˆ…èL|$@HDŽ$ˆIè6ÿÿL9í„ÏLt$0IƒÇºH‰îL‰ÿL‰ñèaÐÿÿ…Àˆ‘Hƒ+„ÙHƒ|$H„#H,ø H9„$ˆ„^H|$HH‰ëèќÿÿIƒ,$„¶Hƒ+uH‰ßèؚÿÿHÄh[]A\A]A^A_ÃfDH!HÇD$PH‰„$€H‰D$xH¼÷ H‰„$ˆéÇþÿÿ€H|$Hè^œÿÿHƒ+HÓ!HÇD$HHÇD$PL‰´$ˆH‰„$€H‰D$x…'ÿÿÿH‰ßè>šÿÿéÿÿÿf„L‰çè(šÿÿé=ÿÿÿH)ÅÇ»!FÇ­!H‰ž!Ht$(H|$ L‰òè\œÿÿHƒ|$HtHýö H9„$ˆ„?H|$H襛ÿÿH‹|$ H‹T$0H‹t$(聛ÿÿH=òÆè¥ÜÿÿéºþÿÿHDŽ$ˆé‘þÿÿ€H‘ÄÇ#!TÇ!)Lt$0H‰!é^ÿÿÿ@HaÄLt$0Çî!UÇà!5H‰Ñ!Ht$(H|$ L‰ò菛ÿÿHƒ|$HtH0ö H9„$ˆ„zH|$HèؚÿÿH‹|$ H‹T$0H‹t$(贚ÿÿH=%ÆèØÛÿÿéâýÿÿL‹5ù!M…ö„ºH‹xI9þ…ïHƒ|$H…7L|$@éPýÿÿDHT$Ht$H|$èôšÿÿL9ë„;L‰ñºH‰ÞL‰ÿè˜Íÿÿƒøÿt{H‹T$H‹t$H‹|$èšÿÿHXÃHÇD$HÇD$HÇD$ÇÏ!UH‰¼!Ǻ!HHƒm…ÖþÿÿH‰ïèÿ—ÿÿéÉþÿÿf.„H‰ëé÷üÿÿH‹|$H…ÿt
Hƒ/„FH‹|$H…ÿt
Hƒ/„<H‹|$H…ÿt
Hƒ/„2H‹•Ö H5†ÄH‹8薙ÿÿéBÿÿÿE1äDH|$HHDŽ$ˆèR™ÿÿH‹T$0H‹t$(H‹|$ è.™ÿÿH=ŸÄèRÚÿÿM…ä„cüÿÿéSüÿÿ@H™!HÇD$HHÇD$PH‰„$€H‰D$xH3ô H‰„$ˆé£þÿÿH‹OÖ H5НH‹8èð˜ÿÿHùÁÇ‹!UÇ}!7Lt$0H‰i!é²þÿÿL‰öè›ÿÿ…À…þÿÿH‹EI‹N H5mÃH‹P H‹bÕ H‹81Àèpšÿÿëž艖ÿÿé°þÿÿè–ÿÿéºþÿÿèu–ÿÿéÄþÿÿL5‰ó L9´$ˆ„ëúÿÿL|$@Iè-˜ÿÿéûúÿÿ„AVAUATUSH‰ûHì`L‹5WÕ HƒHÇD$HÇD$HÇD$HÇD$HL9÷HÇD$@„ÝLl$0H|$HºH‰ÞL‰éèËÿÿƒøÿ„zH‰ßè‚ùÿÿL‹%³!H‹=„!L‰æè\–ÿÿH…ÀH‰Å„ÈHƒH‹5•!H‰ïè-šÿÿH…ÀI‰Ä„!Hƒm„ö1ÀH‰޿èç˜ÿÿH…ÀI‰Å„S1ÒH‰ÆL‰çèî—ÿÿIƒmH‰Å„(H…í„/Iƒ,$„¼H‹5-ÿ H‰êH‰ßèê˜ÿÿ…ÀˆšHƒm„§H‹5 ÿ H‰ß記ÿÿH…ÀH‰Å„ÔL9ð…ÃHƒ|$HL-öñ „L9¬$ˆ…êLd$@HDŽ$ˆI|$臖ÿÿL9õ„ÐLl$0IƒÄºH‰îL‰çL‰éè²Éÿÿ…Àˆ’Hƒ+„ÚH‰ïè(øÿÿHƒ|$H„|Huñ H9„$ˆ„H|$HH‰ëè–ÿÿHƒ+uH‰ßè,”ÿÿHÄ`[]A\A]A^Ã@L‰ïè”ÿÿéËþÿÿH¿Ç£!AÇ•!·Ll$0H‰!I‹$HƒèH…ÀI‰$„ä@Ht$(H|$ L‰êè&–ÿÿHƒ|$HtHÇð H9„$ˆ„	H|$Hèo•ÿÿH‹|$ H‹T$0H‹t$(èK•ÿÿH=üÀèoÖÿÿé0ÿÿÿf.„Hi¾Çûÿ AÇíÿ ¨Ll$0H‰Ùÿ H‹EHƒèH…ÀH‰E…\ÿÿÿH‰ïè“ÿÿéOÿÿÿ€Hiÿ HÇD$PH‰„$€H‰D$xHð H‰„$ˆéýÿÿ€H|$H讔ÿÿHƒ+H#ÿ HÇD$HHÇD$PL‰¬$ˆH‰„$€H‰D$x…&þÿÿH‰ß莒ÿÿéþÿÿf„H‰ïèx’ÿÿéýüÿÿL‰çèh’ÿÿé7ýÿÿH‰ïèX’ÿÿéLýÿÿHY½Çëþ .ÇÝþ ’H‰Îþ éaþÿÿf„L‹%Iþ M…ä„íH‹xI9ü…vHƒ|$H…¼Ld$@éOýÿÿDL‰çèà‘ÿÿéþÿÿè#“ÿÿL‰çèk²ÿÿH…ÀH‰Å…#üÿÿHȼÇZþ AÇLþ ¦Ll$0H‰8þ éËýÿÿHDŽ$ˆéæýÿÿ€H¼Ll$0Çþ AÇþ ºH‰ñý Hƒm…~ýÿÿH‰ïè>‘ÿÿéqýÿÿf„HDŽ$ˆéØüÿÿ€H!¼Ç³ý BÇ¥ý ÄLl$0H‰‘ý é$ýÿÿ@HT$Ht$H|$èD“ÿÿL9ótrL‰éºH‰ÞL‰çèìÅÿÿƒøÿ„ÛH‹T$H‹t$H‹|$èo’ÿÿH¨»HÇD$HÇD$HÇD$Çý BH‰ý Ç
ý ×éÿÿÿH¶ü HÇD$HHÇD$PH‰„$€H‰D$xHPí H‰„$ˆépÿÿÿH‹lÏ H5í–H‹8è
’ÿÿH»Ç¨ü BÇšü ÆLl$0H‰†ü éþÿÿH‰ëéžûÿÿH‹|$H…ÿtHƒ/t|H‹|$H…ÿtHƒ/tvH‹|$H…ÿtHƒ/tUH‹‘Î H5‚¼H‹8蒑ÿÿéîþÿÿL‰æèՓÿÿ…À…zýÿÿH‹EI‹L$ H55¼H‹P H‹*Î H‹81Àè8“ÿÿéFÿÿÿèNÿÿë¤èGÿÿézÿÿÿè=ÿÿëƒL-Tì L9¬$ˆ„dúÿÿLd$@I|$è÷ÿÿétúÿÿfAWAVI‰ÖAUATI‰õUSI‰üHìøH;=Î H‰L$L‰D$òD$ L‰L$HDŽ$ØHDŽ$ÐHÇD$XHÇD$PHDŽ$¸	HDŽ$°	HDŽ$˜HDŽ$HDŽ$xHDŽ$p„BH…ÿ„9HL$@H¼$¸	ºL‰æèoÃÿÿƒøÿH‹”$ð	„þH‹M…íH‰D$(„@L;-FÍ „3HL$@H¼$˜ºL‰îè&Ãÿÿƒøÿ„M…ö„NL;5
Í „AHL$@H¼$xºL‰öèíÂÿÿƒøÿ„¤H‹|$èڑÿÿH…ÀH‰Ã„ÖH‹|$èđÿÿH…ÀH‰Å„øH‹±Ì H‰ÆH‰ßè‘ÿÿH…ÀI‰Ç„ZHƒ+„Hƒm„L‰þL‰çèúÿÿH…ÀH‰Ã„ÎIƒ/„ÔH;]Ì …H€ù HDŽ$ØHDŽ$àH‰„$
H‰„$
Hê H‰„$
L‹%Ú÷ H‹=«ù L‰æ胍ÿÿH…ÀH‰Å„?HƒH‹5”ø H‰ïèT‘ÿÿH…ÀI‰Ç„hHƒm„ÅH‹D$(H‹”$¸	H¯D$òèð‹ÿÿH…ÀH‰Å„¤H‰ÆH‰ß詌ÿÿH…ÀI‰Ä„ÅHƒm„21ÀL‰æ¿èÏÿÿH…ÀH‰Å„W1ÒH‰ÆL‰ÿèʎÿÿHƒmI‰Á„¬Iƒ,$„AM…É„¨Iƒ/„NòD$ L‰L$è^‹ÿÿH…ÀH‰ÅL‹L$„ÅL‰ÏH‰ÆL‰L$è-ÿÿH…ÀI‰ÄL‹L$„ÜIƒ)„"Hƒm„'L;%ÐÊ …ÚHó÷ HÇD$XHÇD$`H‰„$H‰„$ˆHŠè H‰„$˜H‹ÃÊ H‹|$Hƒè}ÿÿH…ÀI‰Ç„‘H‹|$ègÿÿH…À„¶H‹WÊ H‰ÆL‰ÿH‰D$跎ÿÿH…ÀH‰ÅL‹L$„ÆIƒ/„Iƒ)„êL‰âH‰îL‰ï贎ÿÿ…ÀˆÜHƒm„ñH‹5Ê H‹¼$0ºè8ÿÿH…ÀI‰Ç„ÜH;
Ê ”ÀL;=ÓÉ ”ÂÂu
L;=½É …w¶èI‹HPÿH…ÒI‰„I…턱H‹|$菎ÿÿH…ÀI‰Ç„ÍH‹|$èyŽÿÿH…ÀH‰Å„H‹fÉ H‰ÆL‰ÿèˍÿÿH…ÀH‰Â„xIƒ/„•Hƒm„rH‰ÖL‰ïH‰T$誊ÿÿH…ÀI‰ÇH‹T$„ÂHƒ*„vL;=É …L‰ÿèŠóÿÿIƒ/uL‰ÿ載ÿÿ@H‹5É H‹¼$0ºèŽÿÿH…ÀI‰Ç„ÀH;ôÈ ”ÀL;=ºÈ ”ÂÂ…L;= È „rL‰ÿ袊ÿÿ…	ʼncHa´I‰ÝÇðõ PÇâõ Ú1Û1íH‰Ïõ L‹5È éÃHyõ H2æ M…íHDŽ$À	H‰„$ø	H‹H‰”$ð	H‰”$è	H‰D$(…ÀúÿÿH6õ M…öHDŽ$˜HDŽ$ H‰„$ÐH‰„$ÈHÄå H‰„$Ø…²úÿÿHïô HDŽ$xHDŽ$€H‰„$°H‰„$¨H€å H‰„$¸éŸúÿÿH‰ßèHˆÿÿHƒm…èúÿÿH‰ïè5ˆÿÿéÛúÿÿH9³ÇËô ǽô 'E1öE1äE1íH‰¥ô DHT$@Ht$8H|$0è\ŠÿÿHƒ|$XtHýä H9„$˜„ß	H|$X襉ÿÿHƒ¼$xt"HÓä H9„$¸„…	H¼$xèx‰ÿÿHƒ¼$˜t"H¦ä H9„$Ø„p	H¼$˜èK‰ÿÿHƒ¼$¸	t"Hyä H9„$ø	„ûH¼$¸	è‰ÿÿHƒ¼$Øt"HLä H9„$
„æH¼$ØèñˆÿÿH‹T$@H‹t$8H‹|$0è͈ÿÿH‹
–ó ‹œó H=©´‹5‹ó è¨ÿÿM…í„mI‹E1íHPÿH…ÒI‰U„&M…ätI‹$HPÿH…ÒI‰$„üM…ötI‹HPÿH…ÒI‰uL‰÷舆ÿÿHÄøH‰è[]A\A]A^A_ÃH‰ïH‰D$èc†ÿÿL‹L$é=úÿÿf„HY±Çëò ÇÝò ,E1öE1äE1íH‰Åò é þÿÿH‰ïè†ÿÿéÁùÿÿH±Ç«ò ǝò 1E1öE1äE1íH‰…ò éàýÿÿIƒ,$…uE1ÉfL‰çL‰L$èÅÿÿL‹L$é¨ùÿÿf„L‰ÿL‰L$装ÿÿL‹L$é›ùÿÿf„L‰Ï舅ÿÿéÑùÿÿH‰ïèx…ÿÿéÌùÿÿHy°Çò DÇýñ DL‰ýE1öE1äH‰åñ E1íE1ÿ€Hƒm„¥H…Ût
Hƒ+„¦M…ÿ„ýÿÿIƒ/…ýÿÿL‰ÿè…ÿÿéþüÿÿfD¶èI‹HPÿH…ÒI‰„²…í…L‹5Ëï H‹=œñ L‰öèt…ÿÿH…ÀI‰Ç„GHƒH‹5=ï L‰ÿèE‰ÿÿH…ÀI‰Á„¦Iƒ/„3H‹|$L‰L$谈ÿÿH…ÀH‰ÅL‹L$„pH‹|$L‰L$萈ÿÿH…ÀI‰ÆL‹L$„ûH‹xà H‰ÆH‰ïL‰L$è؇ÿÿH…ÀI‰ÇL‹L$„SHƒm„¿Iƒ.„žL‰þL‰ïL‰L$貄ÿÿH…ÀH‰ÅL‹L$„ Iƒ/„»1ÀH‰î¿L‰L$èS‡ÿÿH…ÀI‰ÆL‹L$„­1ÒL‰ÏH‰ÆèU†ÿÿIƒ.I‰ÇL‹L$u
L‰÷蟃ÿÿL‹L$Hƒm„ˆM…ÿ„.Iƒ)„ŒL‰ÿèôƒÿÿf.œ³òD$z„Iƒ/„qfïÒf.T$ƒL‹55î H‹=ð L‰öèރÿÿH…ÀI‰Ç„XHƒH‹5§í L‰ÿ诇ÿÿH…ÀI‰Æ„ÇIƒ/„ÛH‹|$è‡ÿÿH…À„sH‹|$H‰D$ è‡ÿÿH…ÀI‰ÇL‹L$ „ H‹ïÁ L‰ÏH‰ÆL‰L$ èO†ÿÿH…ÀH‰ÅL‹L$ „ãIƒ)„‘Iƒ/„zH‰îL‰ïè/ƒÿÿH…ÀI‰Ç„ùHƒm„·H‹5‰ì I9÷„xH‹1Á I9G„zºL‰ÿ躆ÿÿH…ÀI‰Á„íIƒ/„¶L‰Î1?L‰L$ 萅ÿÿH…ÀI‰ÇL‹L$ „Û1ÒH‰ÆL‰÷蒄ÿÿIƒ/H‰ÅL‹L$ u
L‰ÿè܁ÿÿL‹L$ Iƒ)„µH…í„·Iƒ.„H‹5Óë H9î„kH‹ƒÀ H9E„úH‰ïè†ÿÿH…ÀI‰Æ„&Hƒm„gL;5ÖÀ ”ÀL;5œÀ ”ÂÂ…«L;5‚À „žL‰÷脂ÿÿ…ÀA‰Çˆ¨I‹HPÿH…ÒI‰„¦E…ÿ…ðH‹|$èC…ÿÿH…ÀI‰Æ„EH‹|$è-…ÿÿH…ÀH‰Å„øH‹À H‰ÆL‰÷è„ÿÿH…ÀI‰Ç„BIƒ.„ÎHƒm„NL‰þL‰ïècÿÿH…ÀH‰Å„hIƒ/„òD$è€ÿÿH…ÀI‰Ç„ùH‰ÆH‰ïèہÿÿH…ÀI‰Æ„¯Hƒm„ÆIƒ/„¯H‹|$耄ÿÿH…ÀI‰Ç„PH‹|$èj„ÿÿH…ÀH‰Å„H‹W¿ H‰ÆL‰ÿ較ÿÿH…ÀH‰Á„BIƒ/„öHƒm„ÔH‰ÎL‰òL‰ïH‰L$踃ÿÿ…ÀH‹L$ˆAHƒ)„tIƒ.„wH‹(¿ H‹-!¿ H‹HƒÀHƒ|$XH‰EtH¿Ü H9„$˜„†H|$XègÿÿHƒ¼$xt"H•Ü H9„$¸„mH¼$xè:ÿÿHƒ¼$˜t"HhÜ H9„$Ø„ôH¼$˜è
ÿÿHƒ¼$¸	t"H;Ü H9„$ø	„ØH¼$¸	èà€ÿÿHƒ¼$Øt"HÜ H9„$
„‰H¼$Ø賀ÿÿHƒ+I‰îI‰Ýt/I‹$I‰îHƒèH…ÀI‰$…øÿÿ€L‰çè ~ÿÿé÷÷ÿÿL‰ïè~ÿÿéÍ÷ÿÿH‰ïè€~ÿÿéNùÿÿH‰ßèp~ÿÿéMùÿÿ1íé£÷ÿÿL‰ÿèX~ÿÿéñÿÿHDŽ$ø	éôöÿÿ€HDŽ$
é	÷ÿÿ€HDŽ$¸éjöÿÿ€HDŽ$Øéöÿÿ€HDŽ$˜éöÿÿ€H‰ïèÐ}ÿÿé.ñÿÿHѨÇcê DÇUê <E1öE1äE1íH‰=ê é˜õÿÿ„H™¨I‰ßÇ(ê DÇê >1ÛE1öH‰ê E1äE1íIƒ/…ýE1ÉL‰ÿL‰L$E1ÿèC}ÿÿL‹L$M…ÉtIƒ)tH…í…ò÷ÿÿéø÷ÿÿDL‰Ïè}ÿÿëãfDH¨I‰éǨé DH‰ÝÇ—é @1ÛH‰†é E1öE1äE1íHƒm„oE1ÿ1íë’H‹|$èî€ÿÿH…ÀI‰Ç„‚H‹|$è؀ÿÿH…ÀH‰Å„ÓH‹Ż H‰ÆL‰ÿè*€ÿÿH…ÀI‰Á„]Iƒ/„éHƒm„ÇL‰ÎL‰ïL‰L$è	}ÿÿH…ÀI‰ÇL‹L$„¨Iƒ)„øL;=g» …Q
L‰ÿèéåÿÿIƒ/„æH‹|$èE€ÿÿH…ÀI‰Ç„øH‹|$è/€ÿÿH…À„H‹» H‰ÆL‰ÿH‰D$èÿÿH…ÀH‰ÅL‹L$„cIƒ/„|Iƒ)„eH‰îL‰ïè_|ÿÿH…ÀI‰Á„ºHƒm„ÚH‹|$L‰L$è¹ÿÿH…ÀH‰ÅL‹L$„ÔH‹|$L‰L$è™ÿÿH…ÀI‰ÇL‹L$„oH‹º H‰ÆH‰ïL‰L$èá~ÿÿH…ÀH‰ÂL‹L$„‡Hƒm„°
Iƒ/„…
H‰ÖL‰÷L‰L$ H‰T$è¶{ÿÿH…ÀI‰ÇH‹T$L‹L$ „{Hƒ*„û
L‰ÏL‰þL‰L$èö}ÿÿH…ÀH‰ÅL‹L$„ÄIƒ)„]Iƒ/„FH‹|$è×~ÿÿH…ÀI‰Æ„ˆH‹|$èÁ~ÿÿH…À„%H‹±¹ H‰ÆL‰÷H‰D$è~ÿÿH…ÀI‰ÇL‹L$„1Iƒ.„/
Iƒ)„
H‰êL‰þL‰ïè~ÿÿ…ÀˆHIƒ/„6
Hƒm…GõÿÿH‰ïèzÿÿé:õÿÿ@L‰ÿèH{ÿÿ…	ʼnzïÿÿH¥Ç™æ NÇ‹æ ¯M‰ùH‰yæ I‰ÝE1ÿ1Û1íL‹50¹ éŠüÿÿH‹-éå H…í„I‹|$H9ý…ýHL$@H|$XºL‰æ軮ÿÿƒøÿ… îÿÿH‹«¸ I‰ÝHÇD$XL‰ãÇæ EÇæ ƒE1ÿE1öL‹%{¸ HƒHP¤H‰Ùå éôÿÿ@L‰ÿè(yÿÿéAôÿÿL‹%Iå M…ä„:H‹{I9ü…HL$@H¼$ØºH‰Þè®ÿÿƒøÿ…÷ëÿÿH‹	¸ I‰ÙHDŽ$ØÇlå DÇ^å ME1ÿ1Û1íE1öHƒH±£E1äL‹-Ƿ H‰0å éRûÿÿèÓyÿÿL‰çè™ÿÿH…À…œH{£Ç
å EÇÿä \I‰ÝE1öE1äH‰çä éBðÿÿfHI£I‰ÝÇØä EÇÊä ^1ÛE1öH‰¶ä E1äéÖòÿÿfDL‰Ïèxÿÿé	íÿÿL‰ÿL‰L$èëwÿÿL‹L$éåìÿÿH‰ïèØwÿÿéíÿÿH٢I‰ÝÇhä EÇZä b1ÛE1öH‰Fä E1äé>úÿÿfDH¡¢I‰ÝÇ0ä EÇ"ä d1ÛE1öH‰ä é	úÿÿf„Hi¢I‰ÝÇøã EÇêã t1Û1íH‰×ã E1öE1äéÌùÿÿ@L‰ÿè wÿÿéªìÿÿH!¢I‰Ýǰã EÇ¢ã wE1ÿ1ÛH‰Žã E1öE1äéªùÿÿHé¡I‰ÝÇxã EÇjã y1ÛE1öH‰Vã éÔùÿÿH¹¡ÇKã MÇ=㠜I‰ÝL‹5óµ H‰$ã éîÿÿ€H¡I‰ÝÇã ML‰ûÇÿ⠞E1ÿH‰íâ L‹5®µ éñÿÿHI¡I‰ÝÇØâ ML‰ûÇÇâ  M‰ÏH‰µâ L‹5vµ 驸ÿÿf„H	¡Ç›â MǍ⠤I‰éH‰{â éýûÿÿfDH٠Çkâ NÇ]â ®I‰ÝL‹5µ H‰Dâ éŸíÿÿ€H‰ïH‰T$è‹uÿÿH‹T$éwëÿÿL‰ÿH‰D$èsuÿÿH‹T$éTëÿÿH‰×èauÿÿé}ëÿÿL‰ÿH‰D$èOuÿÿL‹L$é¶ðÿÿèPyÿÿH…À…+Iƒ/„JH‹^´ H‹
W´ H‹-P´ H‹HƒÀH‰H‹
o´ H‹	HQÿH‰L$H‹
\´ H…ÒH‰…2õÿÿH‹=I´ èÜtÿÿH‹EéõÿÿHܟÇná PÇ`á ÙI‰ÝL‹5´ H‰Gá é¢ìÿÿH‰ïL‰L$è•tÿÿL‹L$é"øÿÿL‰ÿH‰D$è~tÿÿL‹L$éøÿÿL‰÷L‰L$ègtÿÿL‹L$éKðÿÿH‰ïL‰L$èPtÿÿL‹L$é*ðÿÿL‰Ïè>tÿÿéû÷ÿÿL‰ÿè1tÿÿé
øÿÿL‰ÿL‰L$ètÿÿL‹L$é.ðÿÿHƒm…²E1ÿH‰ïL‰L$èúsÿÿL‹L$éaðÿÿL‰ÏèèsÿÿégðÿÿL‰ÿèÛsÿÿé‚ðÿÿH‹³ H5 zH‹8èÀuÿÿHɞI‰ÙÇXà DÇJà GE1ÿ1ÛH‰6à 1íE1öE1äE1íéMöÿÿHžÇ!à OÇà ºI‰ÝL‹5ɲ H‰úß éUëÿÿL‰ÏèMsÿÿéŽ÷ÿÿL‰ÿL‰L$è;sÿÿL‹L$ém÷ÿÿH:žÇÌß OÇ¾ß ¼H‰¯ß M‰ùI‰ÝE1ÿ1ÛL‹5e² é¿õÿÿL‰æè@wÿÿ…À…åùÿÿH‹CI‹L$ H5 ŸH‹P H‹•± H‹81Àè£vÿÿéþþÿÿH‰ïH‰D$è±rÿÿL‹L$é÷ÿÿH°I‰ÝÇ?ß OÇ1ß ¾M‰ù1ÛH‰ß L‹5ޱ é”õÿÿè¼sÿÿL‰÷è“ÿÿH…ÀI‰Ç…¤íÿÿHaÇóÞ UÇåÞ AI‰ÝL‹5›± H‰ÌÞ é'êÿÿH0I‰ÝÇ¿Þ OÇ±Þ ÂH‰ÓL‹5g± H‰˜Þ éÆìÿÿHüœI‰ÝÇ‹Þ UÇ}Þ C1í1ÛH‰jÞ L‹5+± é^ôÿÿH‹-çÝ H…í„kI‹H9ý„ÏçÿÿH‰îèéuÿÿ…À…¿çÿÿI‹GH‹M H5JžH‹P H‹?° H‹81ÀèMuÿÿHvœI‰ÝÇÞ OÇ÷Ý Å1Û1íH‰äÝ L‹5¥° éØóÿÿ„H9œÇËÝ QÇ½Ý åI‰ÝL‹5s° H‰¤Ý éÿèÿÿHœI‰ÝÇ—Ý UÇ‰Ý FE1ÿ1ÛH‰uÝ L‹56° éóÿÿHқI‰ÝÇaÝ QÇSÝ ç1ÛL‹5
° H‰;Ý é6óÿÿL‰ÿL‰L$ H‰T$è„pÿÿL‹L$ H‹T$éZõÿÿH‰ïL‰L$ H‰D$ècpÿÿL‹L$ H‹T$é/õÿÿH]›I‰ÝÇìÜ UÇÞÜ H1ÛL‹5•¯ H‰ÆÜ éDóÿÿH*›I‰ÝÇ¹Ü QH‰ëÇ¨Ü é1íH‰—Ü L‹5X¯ é‹òÿÿH‰×L‰L$èÞoÿÿL‹L$éîôÿÿHݚI‰ÝÇlÜ UL‰óÇ[Ü JL‹5¯ H‰EÜ éÃòÿÿH©šI‰ÝÇ8Ü QÇ*Ü í1í1ÛH‰Ü L‹5خ é2òÿÿL‰ÿècoÿÿé­ôÿÿL‰ÏèVoÿÿé–ôÿÿHZšI‰ÝÇéÛ UÇÛÛ N1ÛL‹5’® H‰ÃÛ éåñÿÿL‰ÿèoÿÿéìÿÿHšÇ¬Û RÇžÛ ûI‰ÝL‹5T® H‰…Û éàæÿÿH‹-	Û H…í„v	I‹H9ý„’òÿÿH‰îèsÿÿ…À…‚òÿÿI‹GH‹M H5l›H‹P H‹a­ H‹81ÀèorÿÿH˜™I‰ÝÇ'Û QL‰ûÇÛ ðE1ÿH‰Û L‹5ŭ é+éÿÿHa™ÇóÚ UÇåÚ ^H‰ÖÚ éXôÿÿH‹z­ H5ûtH‹8èpÿÿH$™I‰ÝÇ³Ú EL‰ãÇ¢Ú }E1ÿH‰Ú E1öE1äé¸èÿÿHî˜I‰ÝÇ}Ú RL‰ûÇlÚ ýE1ÿH‰ZÚ L‹5­ éèÿÿD¶øélìÿÿH‰îèíqÿÿ…À…óóÿÿI‹D$H‹M H5MšH‹P H‹B¬ H‹81ÀèPqÿÿéPÿÿÿHt˜I‰ÝÇÚ RL‰ûÇòÙ ÿE1ÿH‰àÙ L‹5¡¬ éûïÿÿL‰Ïè,mÿÿéÛòÿÿL‰÷L‰L$èmÿÿL‹L$éºòÿÿL‰ÿèmÿÿéyêÿÿL‰ÏèûlÿÿébêÿÿL‰ÿèîlÿÿé½òÿÿHò—I‰ïI‰ÝÇ~Ù RÇpÙ 1íH‰_Ù 1ÛL‹5¬ éQïÿÿH‰ïè©lÿÿé<êÿÿH­—I‰ÝÇ<Ù SÇ.Ù E1ÿ1ÛH‰Ù L‹5۫ é5ïÿÿL‰ÿL‰L$ èalÿÿL‹L$ é3êÿÿHDŽ$
éfíÿÿHDŽ$ØéûìÿÿHDŽ$ø	éíÿÿIƒ)…
1íL‰Ïèlÿÿé>êÿÿHDŽ$˜éiìÿÿHDŽ$¸é‚ìÿÿHò–I‰ÝÇØ SÇsØ 1ÛL‹5*« H‰[Ø éÙîÿÿL‰÷è®kÿÿéïéÿÿH²–I‰ÝÇAØ SÇ3Ø L‰ûL‹5éª H‰Ø é˜îÿÿH~–I‰ÝÇ
Ø SÇÿ× H‰Õ1ÛH‰ë× L‹5¬ª éîÿÿH‹ ª HƒI‰ÆH‹EE1ÿL;5‹ª HPÿA”ÇH…ÒH‰U…ÕéÿÿH‰ïèkÿÿéŒéÿÿH
–I‰ÝÇ™× RL‰ûÇˆ× !E1ÿH‰v× L‹57ª é‘íÿÿèlÿÿL‰÷è]‹ÿÿH…ÀI‰Ç…“çÿÿHº•ÇL× WÇ>× rI‰ÝL‹5ô© H‰%× é€âÿÿL‰÷èxjÿÿéMéÿÿH|•I‰ÝÇ× WL‰óÇúÖ wE1ÿH‰èÖ L‹5©© éåÿÿHE•Ç×Ö WÇÉÖ t1íH‰¸Ö é÷ÿÿH•I‰ÝÇ«Ö RÇÖ %1ÛL‹5T© H‰…Ö éžäÿÿH‹© HƒI‰ÁéŸçÿÿL‰ÿè¥jÿÿfïäf.ÄztÙH‹© HƒI‰ÁéxçÿÿH¯”I‰ÝÇ>Ö WL‰óÇ-Ö y1íH‰Ö L‹5ݨ é7ìÿÿH‰ïèhiÿÿé¥èÿÿHl”I‰ÝÇûÕ RL‰óÇêÕ 'L‹5£¨ H‰ÔÕ éíãÿÿH8”I‰ÝÇÇÕ RL‰óÇ¶Õ )L‹5o¨ H‰ Õ éÂëÿÿL‰÷èóhÿÿé%èÿÿH÷“I‰ÝÇ†Õ RÇxÕ -1ÛL‹5/¨ H‰`Õ é[ëÿÿHēI‰ÝÇSÕ WL‰óÇBÕ {L‹5û§ H‰,Õ éNëÿÿL‰ÿèhÿÿéÝçÿÿHƒ“I‰ïI‰ÝÇÕ WL‰óÇþÔ H‰ïÔ 1íL‹5®§ éáêÿÿHJ“I‰ÝÇÙÔ WL‰óÇÈÔ ‚L‹5§ H‰²Ô éàâÿÿH“I‰ÝÇ¥Ô WL‰óÇ”Ô ’E1ÿH‰‚Ô L‹5C§ é©âÿÿH‰ïè®hÿÿf.˜z„üÿÿH‹ï¦ HƒI‰ÆézüÿÿL‰ÿè£gÿÿéDçÿÿH‰ïè–gÿÿé-çÿÿHš’I‰ÝÇ)Ô WL‰óÇÔ ˜E1ÿH‰Ô L‹5Ǧ é-âÿÿHc’I‰ÝÇòÓ WÇäÓ •1ÛL‹5›¦ H‰ÌÓ éåáÿÿH‰ïH‰L$ègÿÿH‹L$éçÿÿL‰ÿH‰D$ègÿÿH‹L$éóæÿÿH’I‰ÝÇ‘Ó ]L‰óÇ€Ó ¼E1ÿH‰nÓ L‹5/¦ é•áÿÿHˑÇ]Ó ]ÇOÓ ºI‰ÝL‹5¦ H‰6Ó é‘ÞÿÿHš‘I‰ÝÇ)Ó ]L‰óÇÓ ¾L‹5ѥ H‰Ó éáÿÿH‰ÏèUfÿÿéæÿÿL‰÷èHfÿÿé|æÿÿH‹Œ¥ H5
mH‹8è-hÿÿé»ôÿÿH1‘I‰ÝÇÀÒ ]L‰óÇ¯Ò ÍL‹5h¥ H‰™Ò é”èÿÿHýI‰ÝÇŒÒ ]L‰óÇ{Ò ËL‹54¥ H‰eÒ é“àÿÿHɐI‰ÝÇXÒ ]ÇJÒ Ç1ÛL‹5¥ H‰2Ò é-èÿÿH–I‰ÝÇ%Ò ]ÇÒ Å1ÛL‹5Τ H‰ÿÑ éàÿÿH‹£¤ H5$lH‹8èDgÿÿé°öÿÿHHI‰ÝÇ×Ñ ]ÇÉÑ Â1ÛL‹5€¤ H‰±Ñ é¬çÿÿHI‰ÝÇ¤Ñ UÇ–Ñ aL‰ý1ÛH‰‚Ñ L‹5C¤ é”ßÿÿH‰ÅéØÿÿH׏I‰ÝÇfÑ ]L‰óÇUÑ ÏL‹5¤ H‰?Ñ é:çÿÿH£I‰ÝÇ2Ñ ]L‰óÇ!Ñ ÓI‰ÏH‰Ñ L‹5У é6ßÿÿI‰ï1íéçÿÿE1ÿéçÿÿAWAVAUATI‰õUSI‰üHìx#H…ÿ”ÃH;=\£ òD$H‰T$0òL$8HDŽ$ÈHDŽ$ÐHDŽ$Ø”ÀHDŽ$˜
HDŽ$
ÃHDŽ$¸HDŽ$°HDŽ$ØHDŽ$ÐHDŽ$x
HDŽ$p
HDŽ$XHDŽ$PHDŽ$HDŽ$HDŽ$8HDŽ$0…ŒHŒ$P H¼$ºL‰æèW˜ÿÿƒøÿ„nM…í@”ÅL;-@¢ ”À@Å…„HŒ$P H¼$8ºL‰îè˜ÿÿƒøÿ„FHƒ¼$¸t"L5ì¿ L9´$ø„&H¼$¸è‘dÿÿ„Û…qHŒ$P H¼$¸ºL‰æ輗ÿÿ…ÀˆIƒ$Hƒ¼$˜
t"L5¿ L9´$Ø
„/H¼$˜
è2dÿÿ@„í…YHŒ$P H¼$˜
ºL‰îè\—ÿÿ…Àˆ´fïöIƒEòl$f.î‚còC’f.\$‚OI‹E(fï:H‹=³Î H‹òH*ÀH‰ÃH‰D$(òYD$òX
’ò,øMÐHcÂH9ÃLÓH‹£Ì ‰T$@H‰ÞèObÿÿH…ÀI‰Æ„“HƒH‹5ÈË L‰÷è fÿÿH…ÀH‰Å„üIƒ.„H‹|$(èeÿÿH…ÀI‰Æ„ä!¿èJdÿÿH…ÀI‰Ã„~"L‰p H‰D$è°bÿÿH…ÀI‰ÆL‹\$„—"H‹8Í H‹=áÍ L‰\$H‰Þè´aÿÿH…ÀI‰ÇL‹\$„Ã"HƒH‹5€Ì L‰úL‰÷L‰\$èˆ`ÿÿ…ÀL‹\$ˆC&Iƒ/„©L‰ÞL‰òH‰ïL‰\$èNcÿÿH…ÀI‰ÇL‹\$„ý"Hƒm„
Iƒ+„ðIƒ.„ÖL;=§Ÿ …	#Hƒ¼$ØL5½ „èL9´$…ÍHœ$ÐHDŽ$H{èbÿÿL;=YŸ „°HŒ$P H{ºL‰þè:•ÿÿ…ÀˆÒH‹óÊ H‹=ÄÌ H‰Þèœ`ÿÿH…ÀH‰Å„¸"HƒEH‹5Ê H‰ïèldÿÿH…ÀI‰Æ„ Hƒm„-H‹|$(èÛcÿÿH…ÀH‰Å„÷"¿è•bÿÿH…ÀI‰Ã„©#H‰h H‰D$èû`ÿÿH…ÀH‰ÃL‹\$„ú#H‹ƒË H‹=,Ì L‰\$H‰ÆH‰D$èú_ÿÿH…ÀH‰ÅL‹\$„$HƒH‹5ÆÊ H‰êH‰ßL‰\$èÎ^ÿÿ…ÀL‹\$ˆa)Hƒm„¶ L‰ÞH‰ÚL‰÷L‰\$è“aÿÿH…ÀH‰ÅL‹\$„²$Iƒ.„!Iƒ+„ö Hƒ+„!H;-í …Ç$Hƒ¼$XL5ǻ „œL9´$˜…Hœ$PHDŽ$˜H{èV`ÿÿH;-Ÿ „dHŒ$P H{ºH‰î耓ÿÿ…Àˆ¸$Hƒ|$0H‰l$ »L‰|$HÇD$HÇD$ˆþH„$p
HÇD$XL‰d$PL‰l$HH‰D$hH„$x
H‰D$`L‹%ßÈ H‹=°Ê L‰æèˆ^ÿÿH…ÀH‰Å„?%HƒH‹5È H‰ïèYbÿÿH…ÀI‰Å„u%Hƒm„ê H‹|$(èÈaÿÿH…ÀH‰Å„–%¿è‚`ÿÿH…ÀI‰Æ„Œ&H‰h èí^ÿÿH…ÀH‰Å„à&L‹%zÉ H‹=#Ê L‰æèû]ÿÿH…ÀI‰Ç„
'HƒH‹5ÌÈ L‰úH‰ïèÙ\ÿÿ…Àˆw6Iƒ/„WH‰êL‰öL‰ïè©_ÿÿH…ÀI‰Ç„JIƒm„Z"Iƒ.„@"Hƒm„%"L;=œ …w'Hƒ¼$ØH-๠„š H9¬$… L¤$ÐHDŽ$I|$èn^ÿÿL;=·› „a H¬$P IƒÄºL‰þL‰çH‰é蒑ÿÿ…Àˆ:'H‹t$H‹H‰D$pHƒèH…ÀH‰„="HcD$@Hƒ|$XL‰|$DŽ$ ÿÿÿÿI‰ßHÇD$xHÇD$pH‰„$€H‹6› HO^› H‰„$H„$P H‰„$ˆH„$X H‰„$˜H‹¿Æ H‹=È H‰Þèh\ÿÿH…ÀI‰Ä„q'HƒH‹5áÅ L‰çè9`ÿÿH…ÀH‰Å„ª'Iƒ,$„è"H‹|$(è¨_ÿÿH…ÀI‰Å„Ô'¿èb^ÿÿH…ÀI‰Æ„õ'L‰h èÍ\ÿÿH…ÀI‰Ä„+(H‹ZÇ H‹=È H‰ÞèÛ[ÿÿH…ÀI‰Å„Œ(HƒH‹5¬Æ L‰êL‰çè¹Zÿÿ…Àˆ;Iƒm„·$L‰âL‰öH‰ïèˆ]ÿÿH…ÀI‰Å„)Hƒm„ú$Iƒ.„
%Iƒ,$„ò$L;-å™ …)Hƒ¼$x
L%¿· „ì"L9¤$¸
…Ô"H‹|$`HDŽ$¸
èU\ÿÿL;-ž™ „»"H‹D$hH‹Œ$ˆºL‰îHhH‰ïèwÿÿ…Àˆÿ(Hƒ|$t H‹t$H‹H‰„$¨HƒèH…ÀH‰„Ï%H‹-€Ä H‹=ÙÆ H‰îè±ZÿÿH…ÀH‰Ã„à)HƒH‹|$pè^ÿÿH…ÀI‰Æ„”*H‹|$(è^ÿÿH…ÀH‰Å„q+H‹|$xèë]ÿÿH…ÀI‰Ä„®+H‹¼$€èÒ]ÿÿH…ÀI‰Á„F,¿H‰D$è‡\ÿÿH…ÀI‰ÀL‹L$„3H‹D$H1ÒL‰ÆH‰ßL‰D$HƒM‰p(I‰@ I‰h0M‰`8M‰H@èç[ÿÿH…ÀI‰ÆL‹D$„Y3Iƒ(„<'Hƒ+„?'I‹FH;˜ L‰÷„!H;ï— „!è<\ÿÿH…ÀI‰Ä„lHIƒ.uL‰÷èâXÿÿI‹D$L‰çH‹˜èÿÓH…ÀH‰Å„úGL‰çÿÓH…ÀI‰À„2GH‰D$L‰çÿÓH…ÀH‰„$¨L‹D$„£OL‰çÿӾH‰Çè_^ÿÿ…ÀL‹D$ˆ/OIƒ,$„+DH‹c— H9EH‰ïL‰D$…"8èüYÿÿL‹D$H‰D$xHƒ|$xÿ„÷4Hƒm„F)H‹$— I9@L‰ÇL‰D$…÷5è½YÿÿL‹D$H‰„$€Hƒ¼$€ÿ„­5Iƒ(„õ(M…ÿt
Iƒ/„+*H‹¼$¨èKXÿÿf.ó‡z„‡6Hƒ|$X„YLH‹— HƒH‹Õà H…Û„Î5H‹„$H‹xH9û…Q8HƒìL‰îÿ´$˜L‹Œ$L‹„$ˆH‹Œ$€H‹T$0H‹|$Xè:ÈÿÿH…ÀH‰„$ÀZY„h8H‹´$H‹H‰D$HƒèH…ÀH‰„º)H‹t$H…ötH‹H‰D$HƒèH…ÀH‰„1H‹D$HH;– HDŽ$HDŽ$HDŽ$8HDŽ$0HDŽ$X HDŽ$P HDŽ$øHDŽ$ð„µ'L´$H‹t$HH¼$ºL‰ñ葋ÿÿƒøÿH‹”$P„û6H‹D$PH;t• H‹*„¤'L´$H‹t$PH¼$8ºL‰ñèI‹ÿÿƒøÿH‹”$p„´:H‹D$H;,• L‹"„S(L´$H‹t$H‹¼$˜ºL‰ñè‹ÿÿƒøÿH‹”$ „Ï8L;-é” H‹„±(L´$H¼$øºL‰îL‰ñè
ÿÿƒøÿH‹”$0„Z8H‹5°” H‹¼$°L‹2ºèãYÿÿH…ÀI‰Ç„8H;¸” ”ÀL;=~” ”ÁÁu
L;=h” …¬0¶ÀI‹7HNÿH…ÉI‰„U2…À…ý.H‹´$€H9t$xH‹D$xL‹Œ$fïÒL‹„$€H‰ÂH‰ÁI¯ÖH¯ÍH”$øLÉH‰ÖH‰Ïf„òHƒÀLöòYHïL9ÀòXÐuåH‹t$xfïäI‰ÈH‰×fDòAHƒÆIèò\ÂòYÀòYL÷H9ðòXàuÜL‹T$pL‹D$xL‰ÖH¯õI¯ÚIñL‰ÆH‰ßH¼$X I¯ôH´$8òfDòAIƒÀf(ÈòHéò\Êò\ÂòYÁò^ÄòXD„òYLòòYLæL9ÀòXØòu¹Hƒ¼$øt"L%÷° L9¤$8„ÿ6H¼$øèœUÿÿHƒ¼$t"L%ʰ L9¤$X„ã6H¼$èoUÿÿHƒ¼$8t"L%° L9¤$x„Ç6H¼$8èBUÿÿHƒ¼$X t"L%p° L9¤$˜ „«6H‹¼$˜èUÿÿHc„$ H‰ÆH‰D$H‹D$pHƒèH9ÆŒW&H‹„½ H‹=տ H‰Þè­SÿÿH…ÀI‰Æ„4HƒòD$8èRRÿÿH…ÀI‰À„H7H‹|$pH‰D$è÷VÿÿH…ÀI‰ÁL‹D$„Ï6H‹|$(L‰D$pH‰D$èÒVÿÿH…ÀI‰ÄL‹L$L‹D$p„i6H‹|$L‰D$pL‰L$èèRÿÿH…ÀH‰ÅL‹L$L‹D$p„Ü5¿L‰D$L‰L$èNUÿÿH…ÀH‰ÃL‹L$L‹D$„	8H‹D$H1ÒH‰ÞL‰÷HƒH‰C H‹D$HƒL‰K8H‰C(L‰C0L‰c@H‰kHè¡TÿÿH…ÀI‰Á„‰7Hƒ+„ 0Iƒ.„0I‹AH;ސ L‰ÏL‰L$„"H;© „"èöTÿÿH…ÀH‰ÅL‹L$„äAIƒ)„°CH‹EH‰ïL‹ èAÿÔH…ÀI‰Æ„ÌBH‰ïAÿÔH…ÀH‰Ã„ DH‰ïAÿԾH‰Çè6Wÿÿ…Àˆ¦CHƒm„ŽCH‹? I9FL‰÷…3AèÝRÿÿH‰D$pHƒ|$pÿ„^=Iƒ.„¤2H‰ßèúxÿÿƒøÿ‰„$ „Ò<Hƒ+„u2H‹´$°Hc„$ L‰l$L‹¼$¨H‰t$H‹t$(HVÿH9ÐŒîôÿÿH‹t$0H9t$XL‰ûL‹|$HH‹=]¼ è˜qÿÿH…ÀH‰Á„dE¿H‰D$è}SÿÿH…ÀH‰ÅH‹L$„KH‹D$P1ÒH‰ÏH‰îH‰L$HƒH‰E IƒL‰}(èåRÿÿH…ÀI‰ÁH‹L$„•JHƒmuH‰ïH‰L$H‰D$èPÿÿH‹L$L‹L$Hƒ)uH‰ÏL‰L$èþOÿÿL‹L$L;
" …!GHƒ¼$XH-ü¬ t%H9¬$˜„ôIH¼$XL‰L$èšQÿÿL‹L$H¼ HDŽ$XHDŽ$`H‰¬$˜H‰„$H‰„$ˆH‹t$ H‹H‰D$HƒèH…ÀH‰„DL‰L$ HƒD$XH‹´$°H‹D$XH9D$0L‰|$L‰l$H‹œ$¨H‰t$9ñÿÿL‹d$PL‹l$HH‹-º H‹=߻ H‰îè·OÿÿH…ÀI‰Æ„ 7HƒH‹5: L‰÷èˆSÿÿH…ÀH‰Å„L7Iƒ.„ÿ,¿èSÿÿH…ÀI‰Æ„ã6IƒE1öH‰ÇL‰êè*QÿÿH‹D$¾L‰÷HƒH‰ÂèQÿÿ1ÀL‰ö¿èRÿÿH…ÀI‰Ç„ñ01ÒH‰ÆH‰ïè	QÿÿIƒ/I‰ÁuL‰ÿH‰D$(èSNÿÿL‹L$(Iƒ.„Ì0M…É„Õ9Hƒm„”0H‹5º L‰ÏL‰L$(è¼RÿÿH…ÀI‰ÆL‹L$(„s9Iƒ)„ 0Hƒ¼$t"H« H9„$X„@6H¼$è´OÿÿHƒ¼$8t"H⪠H9„$x„3H¼$8è‡OÿÿHƒ¼$Xt"Hµª H9„$˜„•3H¼$XèZOÿÿHƒ¼$x
t"Hˆª H9„$¸
„y3H¼$x
è-OÿÿHƒ¼$˜
t"H[ª H9„$Ø
„25H¼$˜
èOÿÿHƒ¼$¸t"H.ª H9„$ø„5H¼$¸èÓNÿÿHƒ¼$Ø„{Hý© H9„$„Ã4H¼$Øè¢NÿÿéTDH¹ HDŽ$ H‰„$PH‰„$HH®© H‰„$XécéÿÿHٸ HDŽ$8HDŽ$@H‰„$pH‰„$hHj© H‰„$xé_éÿÿDH‘¸ HDŽ$¸HDŽ$ÀH‰„$ðH‰„$èH"© H‰„$øéqéÿÿDHI¸ HDŽ$˜
HDŽ$ 
H‰„$Ð
H‰„$È
Hڨ H‰„$Ø
é‰éÿÿDH‹5¡µ H‹=· 1Òè3NÿÿH…ÀH‰Ã„ßH‹-PŠ H‹xH‹uèóJÿÿ…À…3H‹Cö€³€„öƒ³@„1ÿèFNÿÿH…ÀI‰ÇtM1ÒH‰ÆH‰ßèÑMÿÿIƒ/I‰Æ„&.M…öt.I‹~H‹uè’Jÿÿ…À„z0L‰öH‰ßè¿JÿÿIƒ.uL‰÷èñJÿÿHƒ+„gHðuÇ‚· Çt· 	E1ÀE1ÒE1ÉH‰\· 1ÉE1ÿéK
fH¹uÇK· Ç=· «H‰.· E1ÀE1ÒE1É1ÉE1ÿHÇD$1ÛHÇD$ HÇD$HÇD$E1äE1í@M…ÿt
Iƒ/„1H…Ét
Hƒ)„ZM…Ét
Iƒ)„{M…Òt
Iƒ*„”M…Àt
Iƒ(„¥H”$P H´$0H¼$èXLÿÿHƒ¼$t"Hö¦ H9„$X„ˆH¼$è›KÿÿHƒ¼$8t"Hɦ H9„$x„£H¼$8ènKÿÿHƒ¼$Xt"Hœ¦ H9„$˜„ŽH¼$XèAKÿÿHƒ¼$x
t"Ho¦ H9„$¸
„yH¼$x
èKÿÿHƒ¼$˜
t"HB¦ H9„$Ø
„dH¼$˜
èçJÿÿHƒ¼$¸t"H¦ H9„$ø„¿H¼$¸èºJÿÿHƒ¼$Øt"Hè¥ H9„$„ªH¼$ØèJÿÿH‹”$P H‹´$0E1öH‹¼$è]JÿÿH‹
&µ ‹,µ H=±w‹5µ èžiÿÿM…ítIƒm„îM…ätIƒ,$„îH‹t$H…ötH‹H‰D$(HƒèH…ÀH‰„ÜH‹L$H…ÉtH‹H‰D$HƒèH…ÀH‰„ÊH‹T$ H…ÒtH‹H‰D$HƒèH…ÀH‰„¸H…Ût
Hƒ+„¹H‹T$H…ÒtH‹H‰D$HƒèH…ÀH‰uH‰×è³GÿÿHÄx#L‰ð[]A\A]A^A_ÃfDH¡rÇ3´ Ç%´ °H‰´ éãüÿÿH”$ØH´$ÐH¼$ÈèÃIÿÿH¬³ H‹”$ØH‹´$ÐH‹¼$ÈHDŽ$¸H‰„$ðH‰„$èH1¤ HDŽ$ÀH‰„$øèÈHÿÿHrHDŽ$ØHDŽ$ÐHDŽ$ÈÇo³ ‹H‰\³ ÇZ³ ÊéüÿÿDL‰÷è FÿÿéæÿÿL‰ßèFÿÿéæÿÿH‰ïL‰\$è{FÿÿL‹\$éßåÿÿH”$ÈH´$ÐH¼$ØE1ÿ1ÛE1íè»HÿÿH¤² H‹”$ÈH‹´$ÐH‹¼$ØHDŽ$˜
H‰„$Ð
H‰„$È
H)£ HDŽ$ 
H‰„$Ø
èÀGÿÿHùpHDŽ$ÈHDŽ$ÐHDŽ$ØÇg² ŒE1ÀH‰Q² ÇO² åE1ÒE1É1ÉHÇD$HÇD$ HÇD$HÇD$é&ûÿÿfDL‰ïèhEÿÿéýÿÿL‰çèXEÿÿéýÿÿH‰÷èHEÿÿéýÿÿH‰Ïè8Eÿÿé)ýÿÿH‰×è(Eÿÿé;ýÿÿH‰ßèEÿÿé:ýÿÿL‰ÿL‰T$@L‰D$8L‰L$0H‰L$(èôDÿÿL‹T$@L‹D$8L‹L$0H‹L$(éšúÿÿH‰ÏL‰T$8L‰D$0L‰L$(èÁDÿÿL‹T$8L‹D$0L‹L$(é{úÿÿDL‰ÏL‰T$0L‰D$(è–DÿÿL‹T$0L‹D$(édúÿÿ€L‰×L‰D$(èsDÿÿL‹D$(éUúÿÿf„L‰ÇèXDÿÿéNúÿÿL‰÷èHDÿÿéÙâÿÿHDŽ$Xégúÿÿ€HDŽ$øé0ûÿÿ€HDŽ$éEûÿÿ€HDŽ$xéLúÿÿ€HDŽ$˜éaúÿÿ€HDŽ$¸
évúÿÿ€HDŽ$Ø
é‹úÿÿ€HDŽ$øéÉàÿÿ€H¼$ØèSEÿÿH̯ HDŽ$ØHDŽ$àL‰´$H‰„$H‰„$é5ãÿÿ€HDŽ$Ø
éÀàÿÿ€L‰ÿL‰\$èCÿÿL‹\$é@âÿÿèKDÿÿH‰ßè“cÿÿH…ÀH‰Ã…þ5HðmÇ‚¯ žÇt¯ _	H‰e¯ E1ÀE1ÒE1É1ÉE1ÿHÇD$HÇD$ HÇD$HÇD$é>øÿÿfDH‰ïè€BÿÿéÆâÿÿHmǯ žÇ¯ a	E1ÀE1ÒE1ÉH‰í® 1ÉE1ÿE1Û1ÛHÇD$HÇD$ HÇD$HÇD$M…öt
Iƒ.„ H…ítHƒmtLM…Û„«÷ÿÿIƒ+…¡÷ÿÿL‰ßL‰T$@L‰D$8L‰L$0H‰L$(èÕAÿÿL‹T$@L‹D$8L‹L$0H‹L$(él÷ÿÿ@H‰ïL‰T$HL‰D$@L‰L$8H‰L$0L‰\$(è—AÿÿL‹T$HL‹D$@L‹L$8H‹L$0L‹\$(éuÿÿÿf„L‰÷L‰T$HL‰D$@L‰L$8H‰L$0L‰\$(èOAÿÿL‹T$HL‹D$@L‹L$8H‹L$0L‹\$(é!ÿÿÿH”$ØH´$ÐH¼$ÈèƒCÿÿHl­ H‹”$ØH‹´$ÐH‹¼$ÈHDŽ$ØH‰„$H‰„$Hñ HDŽ$àH‰„$èˆBÿÿHÁkHDŽ$ØHDŽ$ÐHDŽ$ÈÇ/­ žH‰­ Ç­ ‡	E1ÀE1ÒE1É1ÉHÇD$1ÛHÇD$ HÇD$HÇD$éìõÿÿ@H‹{H‰Þèì?ÿÿé6õÿÿ€H)kL‰|$Ƕ¬ ŸÇ¨¬ –	E1ÀE1ÒH‰“¬ E1É1É1ÛI‰ïHÇD$HÇD$ HÇD$éyõÿÿf„L‰ÿè¸?ÿÿéœâÿÿH¼jM‰ïM‰óL‹d$PL‹l$HE1ÀH‰2¬ Ç4¬ §E1ÒÇ#¬ 
E1É1ÉéaýÿÿHyjǬ žÇý« d	E1ÀE1ÒE1ÉH‰å« 1ÉE1ÿE1Û1ÛHÇD$HÇD$ HÇD$HÇD$éýÿÿH¼$Xèå@ÿÿH^« HDŽ$XHDŽ$`L‰´$˜H‰„$H‰„$ˆéàÿÿf„HÉiÇ[« žÇM« f	E1ÀE1ÒE1ÉH‰5« 1ÉE1ÿéFüÿÿH‘iÇ#« žÇ« k	E1ÀE1ÒE1ÉH‰ýª 1ÉE1ÿéÿÿÿH‰ïL‰\$èC>ÿÿL‹\$é3ßÿÿf„L‰\$èv?ÿÿH‰ßè¾^ÿÿH…ÀI‰ÇL‹\$…ÝÿÿHiǨª žÇšª m	E1ÀE1ÒE1ÉH‰‚ª 1Éé–ûÿÿL‰ßèÐ=ÿÿéýÞÿÿL‰÷L‰\$è»=ÿÿL‹\$éÙÞÿÿH‰ßè¨=ÿÿéßÞÿÿH©hÇ;ª žÇ-ª q	E1ÀE1ÒE1ÉH‰ª 1Éé)ûÿÿfDH‹‘© H…Û„ˆ
I‹H9û…Hƒ¼$Ø…[0Hœ$ÐéÝÿÿ€ès>ÿÿH‰ßè»]ÿÿH…À…!0HhL‰|$Ǩ© ŸÇš© ”	E1ÀE1ÒH‰…© E1É1É1ÛE1ÿHÇD$HÇD$ HÇD$ékòÿÿH‰ïè°<ÿÿé	ßÿÿH±gÇC© ŸÇ5© ™	E1ÀE1ÒE1ÉH‰© 1ÉE1Û1ÛL‰|$HÇD$E1ÿHÇD$ HÇD$é/úÿÿfDH‹	{ H5‚jH‹8è2>ÿÿé<ñÿÿH¼$Øè>ÿÿHy¨ HDŽ$ØHDŽ$àH‰¬$H‰„$H‰„$éŠßÿÿ@HéfL‰|$Çv¨ ŸI‰ïÇe¨ ›	E1ÀH‰S¨ E1ÒE1É1É1Û1íHÇD$HÇD$ HÇD$éhùÿÿ€H‰ßèx;ÿÿéŒðÿÿHyfǨ ŸÇý§  	E1ÀE1ÒE1ÉH‰å§ 1É1íéÆþÿÿ@L‰\$è~<ÿÿH‹|$èÄ[ÿÿH…ÀH‰ÅL‹\$…ÞÛÿÿHfÇ®§ ŸÇ § ¢	H‰‘§ L‰|$E1ÀI‰ßE1ÒE1É1É1ÛHÇD$HÇD$ HÇD$éøÿÿ@H‰ïè°:ÿÿéÎÝÿÿL‰÷è :ÿÿé³ÝÿÿL‰ïè:ÿÿé™ÝÿÿH‘eÇ#§ žÇ§ o	E1ÀE1ÒE1ÉH‰ý¦ 1ÉHÇD$1ÛHÇD$ HÇD$HÇD$éøÿÿH9eÇ˦ ŸÇ½¦ ¦	H‰®¦ éÿÿÿf„H‹|$èö9ÿÿé´ÝÿÿH‹¦ H…Û„ÃH‹}H9û…óHƒ¼$X„ÿ+L5ݖ L9´$˜„ÛÿÿHœ$PH{è~;ÿÿé0Ûÿÿf„H”$ÈH´$ÐH¼$Øèã;ÿÿH̥ H‹”$ÈH‹´$ÐH‹¼$ØHDŽ$XH‰„$H‰„$ˆHQ– HDŽ$`H‰„$˜èè:ÿÿH!dHDŽ$ÈHDŽ$ÐHDŽ$ØÇ¥ ŸH‰|¥ Çz¥ ¼	L‰|$E1ÀE1ÒE1É1ÉE1ÿE1ÛHÇD$1ÛHÇD$ HÇD$éŠöÿÿL‰çè’8ÿÿéÝÿÿèØ9ÿÿL‰çè YÿÿH…ÀI‰Ç…G+H}cL‹d$PL‹l$HÇ¥ §Ç÷¤ 
E1ÀH‰å¤ E1ÒE1É1ÉéèíÿÿI‰ÇL‹d$PH9cL‹l$HÇƤ §H‰³¤ DZ¤ 
E1ÀE1ÒE1É1ÉE1ÛéæõÿÿHÿbM‰ïL‹d$PL‹l$HÇ„¤ §E1ÀH‰n¤ Çl¤ 
E1ÒE1É1ÉégíÿÿH‹|$`è9ÿÿH¤ HDŽ$x
HDŽ$€
L‰¤$¸
H‰„$°
H‰„$¨
é2ÝÿÿèL:ÿÿHƒø…1öL‰÷èè:ÿÿH…ÀH‰Å„|¾L‰÷èÏ:ÿÿH…ÀI‰À„¾L‰÷H‰D$è±:ÿÿH…ÀH‰„$¨L‹D$„òIƒ.…—ÞÿÿL‰÷L‰D$èô6ÿÿL‹D$é€ÞÿÿI‰ÃHðaM‰ïL‹d$PL‹l$HE1ÀH‰i£ Çk£ §E1ÒÇZ£ 	
E1É1Éé˜ôÿÿH±aÇC£ Ç5£ ÿH‰&£ é¼óÿÿHŠaM‰ïM‰óL‹d$PL‹l$HE1ÀH‰£ Ç£ §E1ÒÇñ¢ 
E1É1Éé;ôÿÿL‰ïè76ÿÿé<Ûÿÿè}7ÿÿL‰çèÅVÿÿH…ÀI‰Ç…ÞØÿÿH"aM‰ïM‰óL‹d$PL‹l$HE1ÀH‰˜¢ Ç𢠧E1Òlj¢ 
E1É1ÉéÇóÿÿH‰ïèÏ5ÿÿéùÚÿÿL‰çèÂ5ÿÿéÛÿÿL‰÷èµ5ÿÿééÚÿÿH¹`L‰|$ÇF¢ ŸI‰ßÇ5¢ ¤	E1ÀH‰#¢ E1ÒE1É1ÉHÇD$1ÛHÇD$ HÇD$é:óÿÿH‹-‚¡ H…í„ÐI‹H9ý…¡Hƒ¼$Ø…»+L¤$Ð韨ÿÿH”$ØH´$ÐH¼$ÈM‰þL‹l$HM‰çL‹d$Pèc7ÿÿH‹D$H;t „‰H‹t$H‰éºL‰ÿèüiÿÿƒøÿ„êH‹”$ØH‹´$ÐH‹¼$Èèv6ÿÿH¯_HDŽ$ØHDŽ$ÐHDŽ$ÈÇ¡ §H‰
¡ Ç¡ *
E1ÀE1ÒE1É1ÉE1ÿE1Û1íé)òÿÿH‰÷è@4ÿÿé$Úÿÿè†5ÿÿH‰ßèÎTÿÿH…À…'H._L‹d$PL‹l$HL‰ûdz  ¬Ç¥  @
H‰–  E1ÀE1ÒE1É1ÉE1ÿé“éÿÿHì^L‰âL‰ûL‹d$PL‹l$HE1ÀH‰b  Çd  ¬E1ÒÇS  B
E1É1ÉE1ÿE1ÛI‰ÖéyñÿÿL‰ûI‰ÇH›^L‹d$PL‹l$HH‰  Ç  ¬Ç  E
éXûÿÿI‰ÃHg^L‰ûM‰ïL‹d$PL‹l$HM‰þH‰ݟ Çߟ ¬Çџ G
E1ÀE1ÒE1É1ÉE1ÿé÷ðÿÿH‰ÁH^L‰ûM‰óL‹d$PL‹l$HH‰•Ÿ Ç—Ÿ ¬E1ÀdžŸ L
E1ÒE1ÉE1ÿéÀðÿÿH‹r H5š9H‹8èº4ÿÿHÃ]ÇUŸ žÇGŸ v	H‰8Ÿ é!òÿÿèÞ3ÿÿH‰ßè&SÿÿH…ÀI‰Å…_×ÿÿL‰áL‰ûL‹d$PI‰ÇL‹l$HHp]M‰óÇÿž ¬Çñž N
H‰➠I‰ÎE1ÀE1ÒE1É1ÉéðÿÿH‰Þèw6ÿÿ…À…ÔôÿÿI‹GH‹K H5Ø^H‹P H‹Íp H‹81ÀèÛ5ÿÿé<ÿÿÿfDL‰Çèè1ÿÿé·ØÿÿH‰ßèÛ1ÿÿé´ØÿÿL‰ûI‰ÇHÙ\L‰áM‰óL‹d$PL‹l$HH‰Rž ÇTž ¬ÇFž R
éWÿÿÿH‹- H…í„PI‹}H9ý…ÓHƒ¼$x
„×ÿÿL%†Ž L9¤$¸
„ÍÖÿÿH‹|$`è.3ÿÿéáÖÿÿf„H”$ÈH´$ÐH¼$ØL‰ûL‹t$M‰ïL‹d$PL‹l$Hè~3ÿÿH‹D$H…À„`H;)p „SH‹Œ$ˆH‹t$ºH‰ïè	fÿÿƒøÿ„ÏH‹”$ÈH‹´$ÐH‹¼$Øèƒ2ÿÿH¼[HDŽ$ÈHDŽ$ÐHDŽ$ØÇ* ¬H‰ ǝ h
L‰t$E1ÀE1ÒE1É1ÉéæÿÿH±œ HDŽ$ØHDŽ$àH‰„$H‰„$HB H‰„$éRûÿÿè`1ÿÿH‰ïè¨PÿÿH…À…6 H[L‰ûM‰ïL‰|$L‹d$PE1ÀL‹l$HH‰yœ E1ÒÇxœ ¯Çjœ u
E1É1ÉE1ÿéeåÿÿè2ÿÿHƒøL‹L$…O1öL‰ÏL‰L$è"3ÿÿH…ÀI‰ÆL‹L$„õL‰ϾL‰L$èÿ2ÿÿH…ÀH‰ÃL‹L$„%Iƒ)…ÞÿÿL‰ÏèL/ÿÿéÞÿÿI‰ÃH‰ÞHJZL‰ûL‹d$PM‰ïL‹l$HH‰Û E1ÀÇ› ¯Ç´› w
L‰|$E1ÒE1É1É1íE1ÿI‰öéÓìÿÿL‰Çèê.ÿÿéþÖÿÿH‰ïL‰D$èØ.ÿÿL‹D$é£ÖÿÿH'› Hà‹ HDŽ$ H‰”$PH‰”$HH‰„$XéGØÿÿHðš H©‹ HDŽ$8HDŽ$@H‰”$pH‰”$hH‰„$xéLØÿÿH]YH‰ÞL‰ûM‰ïM‰óL‹d$PL‰|$L‹l$HE1ÀH‰Ț Çʚ ¯E1Òǹš y
E1É1ÉE1ÿI‰öéâëÿÿH‰ÁHYH‰ÞL‰ûM‰ïM‰óL‰|$L‹d$PE1ÀL‹l$HH‰rš E1ÒÇqš °Çcš ƒ
E1ÉE1ÿI‰öéŽëÿÿL‰ÿè¥-ÿÿéÈÕÿÿHù™ H²Š HDŽ$X HDŽ$` H‰”$ H‰”$ˆ H‰„$˜ é×ÿÿH‰÷èU-ÿÿé9ÖÿÿHYXH‰ÞL‰ûM‰ïM‰óL‰áL‰|$L‹d$PE1ÀL‹l$HH‰Y E1ÒÇ ±Ç²™ 
E1ÿI‰öéàêÿÿHX™ HŠ HDŽ$øHDŽ$H‰”$0H‰”$(H‰„$8é=×ÿÿH‹D$HH;àk HDŽ$àHDŽ$èHDŽ$ðHDŽ$HDŽ$HDŽ$8HDŽ$0HDŽ$X HDŽ$P „Ã	L¤$ðH‹t$HH¼$8ºL‰áèLaÿÿƒÀ„QH‹„$pH‹H‰D$H‹D$H;'k „L¤$ðH‹t$H‹¼$˜ºL‰áèÿ`ÿÿƒÀ„H‹„$ H‹H‰„$ H‹D$HƒÀH‰ÇH‰„$¸èÊ/ÿÿH…ÀH‰Ã„°H‹|$pè´/ÿÿH…ÀH‰Å„MH‹¡j H‰ÆH‰ßè/ÿÿH…ÀI‰Æ„åHƒ+„BHƒm„*H‹|$HL‰öèè+ÿÿH…ÀI‰Ä„ÎIƒ.uL‰÷è+ÿÿL‹|$H‹„$8L¯|$òB8èp*ÿÿH…ÀI‰Æ„<H‰ÆL‰çè)+ÿÿH…ÀH‰Ã„©Iƒ,$„‘Iƒ.„zH;ñi ….(Hƒ¼$L%ˇ „±L9¤$X…–H¬$HDŽ$XH}èZ,ÿÿH;£i „yL¤$ðH}ºH‰ÞL‰áè_ÿÿ…Àˆ+H‹T$H‹„$8H¯T$pòòB\8è–)ÿÿH…ÀI‰Ä„ÊL‰æH‰ßèo+ÿÿH…ÀH‰D$„´&Iƒ,$uL‰çèò)ÿÿH‹D$H;i …3&Hƒ¼$L%ð† „ÍL9¤$X…²H¬$HDŽ$XH}è+ÿÿH‹D$H;Ãh „L¤$ðH‹t$HƒÅºH‰ïL‰áèœ^ÿÿ…Àˆ%Hƒ+uH‰ßèV)ÿÿH‹D$pH‹”$X H¯„$ òè¦(ÿÿH…ÀI‰Æ„“$H‹|$H‰Æè=,ÿÿH…ÀH‰Ã„F$Iƒ.uL‰÷è)ÿÿH‹t$H‹=/“ è2)ÿÿH…ÀI‰Æ„å#H‹„$ H‹”$X H¯D$òè6(ÿÿH…ÀH‰Å„ÐH‰ÆL‰÷èÏ+ÿÿH…ÀI‰Ç„ˆIƒ.uL‰÷è•(ÿÿHƒmuH‰ïè†(ÿÿL‰þH‰ßè++ÿÿH…ÀI‰Ä„Hƒ+„õIƒ/„ÞH‹¼$¸è~,ÿÿH…ÀH‰Ã„–H‹|$pèh,ÿÿH…ÀI‰Ç„QH‹Ug H‰ÆH‰ßèº+ÿÿH…ÀI‰Æ„Hƒ+„ùIƒ/„âH‹|$L‰âL‰öèº+ÿÿ…ÀˆœIƒ.„Iƒ,$„Hƒ¼$t"L%ۄ L9¤$X„H¼$è€)ÿÿHƒ¼$8t"L%®„ L9¤$x„~H¼$8èS)ÿÿHƒ¼$X „XL%}„ L9¤$˜ „2H‹¼$˜è")ÿÿL‹|$I‹HPÿH…ÒI‰…ÔÿÿL‰ÿè"'ÿÿé
ÔÿÿH‹ff H5ç-H‹8è)ÿÿHRÇ¢“ ŸÇ”“ «	H‰…“ éîÿÿH‰Þè(+ÿÿ…À…ýìÿÿH‹EH‹K H5‰SH‹P H‹~e H‹81ÀèŒ*ÿÿë£H³QM‰óL‹d$PM‰þÇ:“ §M‰ïH‰$“ L‹l$HE1ÀÇ“ 
E1ÒE1É1ÉéFäÿÿHnQH‰ÞL‰ûM‰ïM‰óL‰áL‰|$L‹d$PE1ÒL‹l$HH‰֒ E1ÿÇՒ ¯Çǒ ´
I‰öéøãÿÿH‹t$pH‹„$8L¯æH¯ÞòB H‹„$X òéÒÿÿH‰÷èâ%ÿÿéèÎÿÿI‰ÃHãPH‰ÞL‹d$PL‰ûÇj’ ¯M‰ïH‰T’ L‹l$HÇM’ È
é”öÿÿHù‘ HDŽ$x
HDŽ$€
H‰„$°
H‰„$¨
HŠ‚ H‰„$¸
éôÿÿM‰óL‰ûL‹t$M‰ïL‹d$PL‹l$H
H…Àx;H¡+H
‡,HƒøH5©SL‰\$HDÊH‰ÂH‹þc H‹81Àèä(ÿÿL‹\$HPL‰|$Ç•‘ ¯Ç‡‘ Ó
M‰ßH‰u‘ écôÿÿHÙOL‰ûM‰ïL‰|$L‹d$PE1ÀL‹l$HH‰J‘ E1ÒÇI‘ ¯Ç;‘ ã
E1É1ÉM‰÷é6ÚÿÿL‰ÿè¾%ÿÿ…À‰GÏÿÿHOÇ‘ ”Ç‘ nL´$H‰ì I‹HƒèH…ÀI‰„H´$øH¼$ðL‰òè‘&ÿÿHƒ¼$øt"L%/ L9¤$8„1
H¼$øèÔ%ÿÿHƒ¼$t"L% L9¤$X„
H¼$è§%ÿÿHƒ¼$8t"L%Հ L9¤$x„ù	H¼$8èz%ÿÿHƒ¼$X t"L%¨€ L9¤$˜ „Ý	H‹¼$˜èM%ÿÿH‹¼$ðH‹”$H‹´$øè %ÿÿH=ùQèDfÿÿé
ÐÿÿL‰D$èE'ÿÿH…ÀL‹D$……HÇD$xÿÿÿÿéãÊÿÿL‰ûHNM‰ïL‹d$PL‹l$HM‰óH‰˜ Çš ¯ÇŒ ç
L‰|$I‰îM‰ßE1ÒE1É1ÉE1Û1íé¨àÿÿL‰ÿ‰D$è»"ÿÿ‹D$é–ÍÿÿH»ML‰ûM‰óM‰ïL‹d$PL‹l$HH‰1 Ç3 ¯Ç% å
ë—HԎ HDŽ$@H‰„$pH‰„$hHq H‰„$xé1öÿÿL‰D$èJ&ÿÿH…ÀL‹D$…kHDŽ$€ÿÿÿÿé*ÊÿÿèÖ$ÿÿH…ÀH‰ÃL‹D$tÅH‰ÇL‰D$è¬#ÿÿHƒ+H‰„$€L‹D$…åÉÿÿH‰ßèÝ!ÿÿL‹D$éÓÉÿÿL‰÷èË!ÿÿéôÒÿÿH‹a H5(M‰ïL‹t$L‹d$PL‹l$HH‹8èž#ÿÿH§LL‰|$Ç4Ž ·Ç&Ž H‹œ$¨H‰Ž L‹¼$éõðÿÿL‰÷L‰L$èU!ÿÿL‹L$éjÏÿÿH‰ßH‰D$è>!ÿÿL‹L$éIÏÿÿòD$è9%ÿÿH…ÀòD$„_ÉÿÿH#LM‰ïL‹d$PL‹l$HǨ ·H‰• Ç“ H‹œ$¨L‰|$éãìÿÿH‹¼$ÈH…ÿt
Hƒ/„ H‹¼$ÐH…ÿt
Hƒ/„H‹¼$ØH…ÿt
Hƒ/„H‹}_ H5nMH‹8è~"ÿÿéÓëÿÿH‹Â_ H5C'M‰þL‹d$PL‹l$HH‹8èV"ÿÿH_KÇñŒ §Ç㌠
H‰Ԍ éÏëÿÿèê"ÿÿH…ÀH‰ÃL‹D$„ÚüÿÿH‰ÇL‰D$è¼!ÿÿHƒ+H‰D$xL‹D$…¶ÇÿÿH‰ßèðÿÿL‹D$é¤ÇÿÿHïJL‰áM‰óL‰ûI‰ÎM‰ïL‹d$PL‹l$HE1ÀH‰\Œ Ç^Œ ¬E1ÒÇMŒ P
E1É1Éé|ÝÿÿH‰îèã#ÿÿ…À…OêÿÿI‹GH‹M H5DLM‰þL‹d$PL‹l$HH‹P H‹,^ H‹81Àè:#ÿÿéÿþÿÿH^JÇð‹ bÇ⋠IH‰Ӌ éõúÿÿH‰ÞòD$èp#ÿÿ…ÀòD$…“ÇÿÿH‹„$H‹K H5ÇKM‰ïL‹t$L‹d$PL‹l$HH‹@H‹P H‹¦] H‹81Àè´"ÿÿé1ýÿÿHØIM‰ïL‹d$PL‰|$L‹l$HE1ÀH‰L‹ ÇN‹ ¶E1ÒÇ=‹ &E1É1ÉH‹œ$¨L‹¼$é+ÔÿÿH‰ßèsÿÿé~ÍÿÿL‰÷èfÿÿéOÍÿÿè¬ÿÿH‰ßèô>ÿÿH…ÀI‰Æ…[ËÿÿM‰ïHNIL‹d$PL‹l$HÇ֊ ÄE1ÀH‰
 Ç¾Š XE1ÒE1ÉH‹„$°L‰|$1ÉH‹œ$¨E1ÿH‰D$éœÓÿÿHEŠ HDŽ$X HDŽ$` H‰„$ H‰„$ˆ HÖz H‰„$˜ éãñÿÿL‰ÿè¡ÿÿécùÿÿH‰ïL‰L$(èÿÿL‹L$(éUÏÿÿIƒ.…	E1ÉL‰÷L‰L$(èkÿÿL‹L$(éÏÿÿL‰ÏèYÿÿéSÏÿÿH]HÇï‰ ”ÇበmL´$H‰ʉ éìøÿÿH.HÇ	 bDz‰ XH‰£‰ éÅøÿÿL‰ÿèöÿÿéÍÑÿÿHúGÇŒ‰ bÇ~‰ SH‰o‰ 鑸ÿÿHDŽ$8éðÈÿÿHDŽ$XéÉÿÿHDŽ$xé(ÉÿÿHDŽ$˜ éDÉÿÿM‰ïL‰áH‰GL‹d$PL‹l$HM‰óH‰‰ lj ÄE1ÒÇöˆ `H‹„$°L‰|$M‰ÎM‰ßH‹œ$¨E1ÛE1ÉH‰D$éÚÿÿH‰ÁH)GM‰ïM‰óL‹d$PL‹l$HH‰¢ˆ Ǥˆ ÄE1ÒÇ“ˆ ^1íë™M‰ïHíFL‹d$PL‹l$HM‰óÇrˆ ÄH‰_ˆ Ç]ˆ \E1ÒH‹„$°L‰|$1ÉH‹œ$¨M‰ßH‰D$é>ÑÿÿH—FM‰ïM‰óL‹d$PL‹l$HE1ÒH‰
ˆ Lj ÄE1ÉÇþ‡ Zë¢H]FÇï‡ bÇᇠNH‰҇ éôöÿÿH‹Z H5?AºL‰\$H‹81ÀèëÿÿL‹\$éöÿÿH‹¼$ØH…ÿt
Hƒ/„H‹¼$ÐH…ÿt
Hƒ/„ƒH‹¼$ÈH…ÿt
Hƒ/„H‹¥Y H5–GH‹8è¦ÿÿéîéÿÿHDŽ$xéÜÌÿÿH‹QY I‹NH5~HH‰ÚH‹81ÀèQÿÿémÏÿÿM‰ïHrEL‹d$PL‹l$HM‰óI‰ÚH‰ë† Çí† ÄÇ߆ žE1Àé}þÿÿI‰ÂH5EM‰ïL‰áM‰óL‹d$PL‹l$HH‰«† Ç­† ÄÇŸ† ‡é¤ýÿÿHDŽ$˜éZÌÿÿHDŽ$¸
évÌÿÿHDŽ$8é¾õÿÿHDŽ$XéÚõÿÿHDŽ$xéöõÿÿHDŽ$˜ éöÿÿM‰ïH’DL‹d$PL‹l$Hdž ÄH‰† dž ¶E1ÀE1ÒéBûÿÿM‰ïL‹t$L‹d$PL‹l$H¡H…Àx;HœH
‚ HƒøH5¤GL‰L$HDÊH‰ÂH‹ùW H‹81ÀèßÿÿL‹L$HDÇ•… ÄLJ… ©H‰x… H‹„$°L‰|$E1ÀH‹œ$¨L‰t$E1Ò1ÉE1ÿH‰D$éYÎÿÿH‰îèñÿÿ…À…çÿÿL‰ûM‰ïH‹M I‹GH5LEL‹t$L‹d$PL‹l$HH‹P H‹2W H‹81Àè@ÿÿHiCÇû„ ¬Çí„ W
H‰ބ éÌçÿÿH‹‚W H5L‰ûL‹t$M‰ïL‹d$PL‹l$HH‹8èÿÿë¬HDŽ$é,ËÿÿHDŽ$Ø
é½ÊÿÿHDŽ$øéÙÊÿÿHâBÇt„ ÍÇf„ dH‰W„ E1ÀE1ÒE1É1ÉE1ÿE1Ûé‘ÕÿÿHDŽ$Xé¯ÉÿÿH™BÇ+„ ÍÇ„ aE1ÀM‰òE1ÉH‰„ 1ÉE1ÿéÍÿÿè¦ÿÿH‰ïèî7ÿÿH…ÀI‰Æ…KÈÿÿHKBÇ݃ ÍÇσ _H‰ é%ãÿÿH‰ïèÿÿéÉëÿÿH‰ßèÿÿé±ëÿÿH¼$èÔÿÿHMƒ HDŽ$HDŽ$ L‰¤$XH‰„$PH‰„$HéoìÿÿHÁAÇSƒ ¼ÇEƒ X1ÛE1ÿH‰1ƒ H‰ÝI‹$HPÿH…ÒI‰$„jM…öL¤$ðtI‹L¤$ðHPÿH…ÒI‰„5H…ítH‹EHPÿH…ÒH‰U„5L´$H¼$øL‰âL‰öèŒÿÿHƒ¼$t"L%*s L9¤$X„H¼$èÏÿÿHƒ¼$8t"L%ýr L9¤$x„ëH¼$8è¢ÿÿHƒ¼$X t"L%Ðr L9¤$˜ „ÏH‹¼$˜èuÿÿH‹”$ðH‹´$H‹¼$øèHÿÿH=aDèlXÿÿM…ÿ…&îÿÿéKÂÿÿHg@L¤$ðÇñ ¼ÇだTE1ÿH‰с I‹1íHPÿH…ÒI‰…åþÿÿL‰÷èÿÿé¾þÿÿL‰çèÿÿé‰þÿÿH‰ïèúÿÿé¾þÿÿHDŽ$XéèþÿÿHDŽ$xéÿÿÿHDŽ$˜ é ÿÿÿHË?Ç]  ÇO <E1ÿH‰= éaþÿÿH¡?Ç3 ÍÇ% |E1ÀE1Ò1ÉH‰ E1ÿéÊÿÿHo?ǁ ÍÇó€ yH‰ä€ éˆüÿÿL‰çL‰D$è2ÿÿL‹D$龻ÿÿè3ÿÿH…À„ ÃÿÿH#?M‰ïI‰ÚL‰|$L‹d$PE1ÀH‰™€ H‹„$°E1ÉL‹l$HÇ‹€ Ä1ÉÇ{€ ÓH‹œ$¨E1ÿH‰D$énÉÿÿèÉÿÿH…À…HÇD$pÿÿÿÿé†ÂÿÿH«>L‰ûM‰ïL‰|$I‰îL‹d$PL‹l$HH‰€ E1ÒÇ€ ¯Ç
€ 
1ÉL‹Œ$¨E1ÿE1Û1íé/ÑÿÿL‰÷èFÿÿéyèÿÿL‰çè9ÿÿébèÿÿH=>ÇÏ ¼ÇÁ ZE1ÿH‰¯ éyüÿÿH¼$èÝÿÿHV HDŽ$HDŽ$ L‰¤$XH‰„$PH‰„$Hé]éÿÿHÊ=L‰ûM‰ïL‰|$L‹d$PE1ÒL‹l$HH‰; 1ÉÇ; ¯Ç- E1ÿL‹Œ$¨é%ÈÿÿH~=I‰ìÇ
 ¼Çÿ~ P1íE1ÿH‰ë~ H‹HPÿH…ÒH‰…ªûÿÿH‰ßè0ÿÿéûÿÿH4=L¤$ðǾ~ ¼Ç°~ NE1ÿH‰ž~ H‹HPÿH…ÒH‰…šûÿÿH‰ßèãÿÿéûÿÿHç<Çy~ ¼Çk~ LE1ÿL¤$ðH‰Q~ éuûÿÿHµ<ÇG~  Ç9~ AE1ÿH‰'~ éKûÿÿL‰áL‰ûL‹d$PM‰ïL‹l$HL‹t$HÇD$Hƒ)„æL‰D$è]ÿÿH…ÀL‹D$…²H‹T$H
ŽH5´?L‰D$H‰ÐHƒèH‡HDÈH‹þO H‹81ÀèäÿÿL‹D$H<L‰t$Ç•} ¯Ç‡} ÿ
L‰|$I‰îH‰p} énÜÿÿL‰áL‰ûL‹t$M‰ïL‹d$PL‹l$HE1ÀHÇD$éAÿÿÿèÿÿéÖïÿÿè“ÿÿéãïÿÿè‰ÿÿéðïÿÿH‰ÁHŠ;L‰ûM‰ïL‹d$PL‹l$HL‰|$H‰þ| E1ÀÇý| ¯Çï| í
E1ÒE1ÉM‰÷ééÅÿÿI‰ÂH?;M‰ïM‰óL‹d$PL‹l$HH‰¸| Ǻ| ÄǬ| ¸éÈõÿÿèºÿÿH…ÀH‰Å„0üÿÿH‰Çè–ÿÿHƒmH‰D$p…®¾ÿÿH‰ïèÎÿÿ顾ÿÿH‰ÃéеÿÿHÊ:M‰ïL‹d$PL‹l$HÇO| ÄH‰<| Ç:| ¾é0öÿÿL‰D$è;ÿÿ…ÀL‹D$…wþÿÿé2þÿÿH‰ÏL‰D$èdÿÿL‹D$éþÿÿèUÿÿéfôÿÿèKÿÿésôÿÿHO:Çá{ ¾ÇÓ{ ¼L‹|$1ÛH‰½{ 釸ÿÿL‰ÿèÿÿéçÿÿH‰ßèÿÿéúæÿÿH:H‰ÝÇ–{ ¾L‰ûÇ…{ ¸L‹|$H‰q{ éüÿÿL‰çèÄÿÿéòæÿÿL‰÷è·ÿÿéÚæÿÿM‰ïL‹t$L‹d$PL‹l$HI‰Ã1ÛHƒmuH‰ïL‰\$è‡ÿÿL‹\$L‰\$èˆÿÿH…ÀL‹\$…ŒHÑH
·HƒûH5Ù<H‰ÚL‰\$HDÈH‹.M H‹81ÀèÿÿL‹\$H89L‰|$ÇÅz ÄÇ·z ÎH‹œ$¨M‰ßH‰z H‹„$°H‰D$é~ÝÿÿL‰Ïèã
ÿÿéC¼ÿÿL‰\$èŒÿÿ…ÀL‹\$„]ÿÿÿë–Hœ$PéO¯ÿÿH‰ïè°
ÿÿée¼ÿÿH´8M‰ïI‰ÚL‰|$L‹d$PM‰÷H‰*z H‹„$°E1ÀL‹l$HÇz ÄE1ÉÇz ÆH‹œ$¨1ÉH‰D$E1Ûé<ËÿÿM‰óM‰ïL‹t$L‹d$PL‹l$H»é’þÿÿH‰Åé]¯ÿÿI‰Äéu±ÿÿHDŽ$˜ é½åÿÿL‹|$éÅåÿÿHDŽ$xéqåÿÿH‰Åé­ÿÿI‰ÆéR«ÿÿL5úi L9´$„¬ÿÿHœ$ÐH{è›ÿÿ铬ÿÿè±ÿÿéðñÿÿHµ7M‰ïI‰ÚL‰|$L‹d$PM‰÷H‰+y H‹„$°E1ÀL‹l$HÇy ÄE1ÉÇy ÑH‹œ$¨1ÉH‰D$éÂÿÿHY7Çëx ½ÇÝx ~I‰ßL¤$ðH‰Ãx éçõÿÿH”$ðH´$èH¼$à1íE1ÿèlÿÿHUx H‹”$ðH‹´$èH‹¼$àHDŽ$H‰„$PH‰„$HHÚh HDŽ$ H‰„$Xèq
ÿÿHª6HDŽ$ðHDŽ$èHDŽ$àÇx ¼H‰x Çx oéXùÿÿH‹‡J Hƒ颳ÿÿH‹|$ L‰L$è7ÿÿL‹L$L‰L$ é̻ÿÿI‰ÂH.6M‰þM‰ïL‹d$PL‹l$HL‰|$H‰¢w E1ÀÇ¡w ËÇ“w E1ÉE1ÿL‰t$é‹ÀÿÿHä5Çvw ¾Çhw ¶L‹|$E1öH‰Qw éôÿÿHµ5ÇGw ¾Ç9w ´L‹|$E1öH‰"w éìóÿÿL‰ÿèu
ÿÿéâÿÿH‰ßèh
ÿÿéþáÿÿHl5L‰ýÇûv ¾Çív °L‹|$L¤$ðH‰Ñv é.øÿÿHDŽ$XénâÿÿH$5I‰ìdzv ¾Ç¥v ¬1íL‹|$H‰v éŸ÷ÿÿHƒ+Hï4ǁv ¾Çsv ªH‰dv „ŒI‹L‹|$L¤$ðHƒèH…ÀI‰…góÿÿé}ôÿÿH‹‚H H5«/ºH‹81Àè\
ÿÿL‹L$éxðÿÿH-‹f H9¬$„±¬ÿÿL¤$ÐI|$è+ÿÿéŬÿÿHO4L‰ûM‰ïL‰áL‰|$I‰îL‹d$PL‹l$HE1ÒH‰ºu Ǽu ¯E1ÿÇ«u ÷
L‹Œ$¨E1Û1íéÒÆÿÿL‰áL‰ûL‹t$M‰ïL‹d$PL‹l$HHÇD$éj÷ÿÿH‹ôt H…Û„®I‹yH9û…YHƒ¼$XHœ$Pt0H-´e H9¬$˜„®Hœ$PL‰L$H{èP
ÿÿL‹L$H„$P HƒÃL‰κH‰ßL‰L$H‰ÁH‰D$èr=ÿÿ…ÀL‹L$‰·¸ÿÿH”$ØH´$ÐH¼$ÈM‰þL‹d$PM‰ïL‹l$Hèx
ÿÿH‹D$ H;,G L‹L$„¡H‹L$H‹t$ ºH‰ßL‰L$è=ÿÿƒÀL‹L$„ìH‹”$ØH‹´$ÐH‹¼$ÈL‰L$èu	ÿÿL‹L$H©2HDŽ$ØHDŽ$ÐHDŽ$ÈÇt ËH‰t Çt Gé}îÿÿH‰ÞL‰L$è˜ÿÿ…ÀL‹L$…þÿÿI‹AH‹K H5ô3M‰þL‹d$PM‰ïL‹l$HH‹P H‹ÙE H‹81Àèç
ÿÿL‹L$H2ǝs ËǏs 6H‰€s éîÿÿH‹¼$ÈH…ÿtHƒ/uL‰L$è¾ÿÿL‹L$H‹¼$ÐH…ÿtHƒ/uL‰L$èœÿÿL‹L$H‹¼$ØH…ÿtHƒ/uL‰L$èzÿÿL‹L$H‹^E H5O3L‰L$H‹8èZÿÿL‹L$é°þÿÿH©r HDŽ$XHDŽ$`H‰„$H‰„$ˆH:c H‰„$˜éFþÿÿH‹VE H5×L‰L$M‰þL‹d$PM‰ïL‹l$HH‹8èâÿÿL‹L$éÖþÿÿHœ$PL‰L$HDŽ$˜H{è–ÿÿL‹L$L;
ÚD …9ýÿÿéêµÿÿH¨0M‰þM‰ïI‰ÊL‰|$L‹d$PL‹l$HH‰r E1ÀÇr ËÇ
r 11ÉE1ÛE1ÿL‰t$é@ÃÿÿHY0M‰þM‰ïI‰ÊL‰|$L‹d$PL‹l$HH‰Êq E1ÀÇÉq ËÇ»q &E1É1ÉE1ÿL‰t$鱺ÿÿH
0Çœq ¾ÇŽq §1íL‹|$L¤$ðH‰pq éÍòÿÿHÔ/Çfq ¾ÇXq ¤L‹|$L¤$ðH‰<q éfïÿÿH /Ç2q ¾Ç$q ¢L‹|$L¤$ðH‰q é,îÿÿH”$àH´$èH¼$ðè¶ÿÿH;oC „ùL‰áºH‰ÞH‰ïèV9ÿÿƒÀ„zH‹”$àH‹´$èH‹¼$ðèÐÿÿH	/HDŽ$àHDŽ$èHDŽ$ðÇwp ½I‰ßH‰ap Ç_p ”L‹t$é|îÿÿL‹%Öo M…䄸H‹D$H‹xI9üuyHƒ¼$H¬$„ëÙÿÿL%‘` L9¤$X„§ÙÿÿH¬$H}è2ÿÿéÀÙÿÿHV.I‰ßÇåo ½L‰ãÇÔo €1íH‰Ão L¤$ðéñÿÿL‰æè^ÿÿ…À…wÿÿÿH‹D$I‹L$ H5½/H‹@H‹P H‹®A H‹81Àè¼ÿÿHå-Çwo ½Çio ƒI‰ßL‹t$L¤$ðH‰Jo étíÿÿH‹îA H5o	H‹8èÿÿë±L‹%¶n M…ä„ÂH‹{I9üuTHƒ¼$H¬$„ð×ÿÿL%v_ L9¤$X„±×ÿÿH¬$H}èÿÿéÅ×ÿÿH‰ßè*ÿÿL‹|$é´ëÿÿL‰æèhÿÿ…Àu H‹CI‹L$ H5Ì.H‹P H‹Á@ H‹81ÀèÏÿÿHø,ÇŠn ¼Ç|n ^1íE1ÿL¤$ðH‰`n é½ïÿÿH‹A H5…H‹8è¥ÿÿë´H‹¼$ðH…ÿtHƒ/uè‹ÿÿH‹¼$èH…ÿtHƒ/uèsÿÿH‹¼$àH…ÿtHƒ/uè[ÿÿH‹D@ H55.H‹8èEÿÿé@ýÿÿH™m HDŽ$HDŽ$ H‰„$PH‰„$HH*^ H‰„$Xéàüÿÿf.„AUATI‰ÔUSH‰õHƒìHH…ÒHÇD$HÇD$HÇD$ HÇD$(HÇD$0…úH‹FHƒøt(Ž
HƒøtHƒø…H‹F@H‰D$0H‹E8H‰D$(L‹e0L‰d$ H‹](H‹m H‰\$H‰l$M…䄼L‰çèÌÿÿf.t0ò$z„?H‹|$(H…ÿ„¬H‹"? H9G…èèÃÿÿI‰ÄIƒüÿ„ÎH‹|$0H…ÿ„èsÿÿf.0f(Èz„ïH‹5l H9ut
H;-û> …eH9st
H;è> …Êò$L‰âH‰ÞH‰ïèO›ÿÿHƒÄH[]A\A]Ã@Hƒø„ÿÿÿH·H
¹HƒøH5­+L
ÁHNÊŸÂHƒìPH‹> ¶ÒLDRH0H‹81ÀèÿÿHC*ÇÕk ÇÇk B¾BH‰³k XZºH
*H=6.è) ÿÿHƒÄH1À[]A\A]Ã@H{H,òL$è’Bÿÿ…ÀòL$…ÿÿÿHÍ)Ç_k ÇQk IH‰Bk 1ÀéüþÿÿH‹|$(ò›h ò$H…ÿ…TþÿÿH‹|$0A¼H…ÿ…qþÿÿfïÉéþÿÿH}HžòL$è
Bÿÿ…À„‚H‹5kj òL$ékþÿÿèëÿÿH…ÀI‰Å„çH‰ÇèÇÿþÿIƒmI‰Ä…ùýÿÿL‰ïèþþÿéìýÿÿ@èÿÿH…À„³ýÿÿHó(Ç…j Çwj 1¾1ºH‰^j é­þÿÿf„H‹^Hƒû‡àH3
HcšHÐÿàfH‹F@H‰D$0H‹E8H‰D$(H‹E0H‰D$ H‹E(H‰D$H‹E H‰D$L‰çè‹þþÿHƒûI‰Å‡:H÷HcšHÐÿàfDèCÿÿH…ÀIÇÄÿÿÿÿ„ýÿÿH,(Ǿi ǰi 6¾6ºH‰—i éæýÿÿfòD$èõÿÿH…ÀòL$„÷üÿÿHß'Çqi  Çci ;¾;º H‰Ji é™ýÿÿDH‹5!h L‰çèaüþÿH…ÀH‰D$„UIƒíM…í~kH‹5óg L‰çè;üþÿH…ÀtIƒíH‰D$ „H‹5¸g L‰çèüþÿH…ÀtH‰D$(IƒíM…í~&H‹5Ög L‰çèöûþÿH…À„†H‰D$0IƒíM…íxH‹l$H‹\$L‹d$ éžûÿÿM…íœëâH‹5yg L‰çIƒíè­ûþÿH…ÀH‰D$…/ÿÿÿH‹Eé@üÿÿfDHÉ&Ç[h ÇMh HH‰>h 1ÀéøûÿÿHT$LwH5äX H‰ÙL‰çèi!ÿÿ…À‰bÿÿÿHz&Çh Çþg ¾ºH‰åg é4üÿÿH‹l$H‹\$I‰ÄéÚúÿÿH‹ï9 HƒìH
TjHÿH5L'L
`A¸H‹81ÀèÕþþÿHþ%ǐg Ç‚g YH‰rg º^¾é¶ûÿÿH‰Øé4ûÿÿHƒìHƒÄÃ'bool''char''signed char''unsigned char''short''unsigned short''int''unsigned int''long''unsigned long''long long''unsigned long long''float''double''long double'a structPython objecta pointera stringendunparseable format string'complex long double''complex double''complex float'name '%U' is not defined%s (%s:%d)an integer is requiredbuffer dtypeMissing type objectexactlyupdate_neighborhoodupdate_indicesy_fitcalculate_residual_weightsat leastat mostendogexog%d.%d%sbuiltinscython_runtime__builtins____init__.pxdtype.pxdbool.pxdboolcomplex.pxdcomplexnumpyflatiterbroadcastndarrayufunc_smoothers_lowessbisquareDTYPE_t ÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿÿÿàÿÿàÿÿÐÿÿàÿÿàÿÿàÿÿàÿÿàÿÿÀÿÿ°ÿÿàÿÿàÿÿ ÿÿàÿÿàÿÿÿÿ€ÿÿpÿÿàÿÿàÿÿ`ÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿàÿÿPÿÿHÿÿ0ÿÿàÿÿÿÿÿÿðÿÿàÿÿàÿÿàÿÿÐÿÿàÿÿàÿÿàÿÿÀÿÿ°ÿÿàÿÿÀÿÿ ÿÿÐÿÿÐÿÿ ÿÿÐÿÿÐÿÿÐÿÿÐÿÿÐÿÿ°ÿÿÿÿÐÿÿÐÿÿ€ÿÿÐÿÿÐÿÿ€ÿÿ€ÿÿ€ÿÿÐÿÿÐÿÿÐÿÿÐÿÿÐÿÿÐÿÿÐÿÿÐÿÿÐÿÿÐÿÿÐÿÿÐÿÿÐÿÿÐÿÿÐÿÿÐÿÿ ÿÿ ÿÿ€ÿÿÐÿÿÿÿÀÿÿ°ÿÿÿÿÐÿÿÐÿÿ€ÿÿÐÿÿÐÿÿÐÿÿ ÿÿ€ÿÿÐÿÿ ÿÿr#ÿÿ|#ÿÿ|#ÿÿr#ÿÿ|#ÿÿ|#ÿÿ|#ÿÿ|#ÿÿ|#ÿÿr#ÿÿr#ÿÿ|#ÿÿ|#ÿÿr#ÿÿ|#ÿÿ|#ÿÿd ÿÿd ÿÿr#ÿÿ|#ÿÿ|#ÿÿ|#ÿÿ|#ÿÿ|#ÿÿ|#ÿÿ|#ÿÿ|#ÿÿ|#ÿÿ|#ÿÿ|#ÿÿ|#ÿÿ|#ÿÿ|#ÿÿ|#ÿÿ|#ÿÿT#ÿÿJ#ÿÿ^#ÿÿ|#ÿÿ^#ÿÿ^#ÿÿT#ÿÿT#ÿÿ|#ÿÿ|#ÿÿT#ÿÿ|#ÿÿ|#ÿÿ|#ÿÿT#ÿÿT#ÿÿ|#ÿÿT#ÿÿ8"ÿÿH"ÿÿH"ÿÿ8"ÿÿH"ÿÿH"ÿÿH"ÿÿH"ÿÿH"ÿÿø ÿÿ("ÿÿH"ÿÿH"ÿÿ("ÿÿH"ÿÿH"ÿÿèÿÿèÿÿèÿÿH"ÿÿH"ÿÿH"ÿÿH"ÿÿH"ÿÿH"ÿÿH"ÿÿH"ÿÿH"ÿÿH"ÿÿH"ÿÿH"ÿÿH"ÿÿH"ÿÿH"ÿÿH"ÿÿ8"ÿÿ8"ÿÿx!ÿÿH"ÿÿ`!ÿÿ!ÿÿø ÿÿ("ÿÿH"ÿÿH"ÿÿ("ÿÿH"ÿÿH"ÿÿH"ÿÿ8"ÿÿèÿÿH"ÿÿ8"ÿÿ$"ÿÿt!ÿÿt!ÿÿ$"ÿÿt!ÿÿt!ÿÿt!ÿÿt!ÿÿt!ÿÿ"ÿÿL"ÿÿt!ÿÿt!ÿÿ"ÿÿt!ÿÿt!ÿÿ"ÿÿ"ÿÿ"ÿÿt!ÿÿt!ÿÿt!ÿÿt!ÿÿt!ÿÿt!ÿÿt!ÿÿt!ÿÿt!ÿÿt!ÿÿt!ÿÿt!ÿÿt!ÿÿt!ÿÿt!ÿÿt!ÿÿ$"ÿÿ$"ÿÿ\"ÿÿt!ÿÿt"ÿÿ4"ÿÿ"ÿÿL"ÿÿt!ÿÿt!ÿÿ"ÿÿt!ÿÿt!ÿÿt!ÿÿ$"ÿÿ"ÿÿt!ÿÿ$"ÿÿP$ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ€#ÿÿ˜#ÿÿ˜#ÿÿ€#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ€#ÿÿ@&ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜"ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿp&ÿÿ˜#ÿÿ@%ÿÿ(&ÿÿ@&ÿÿ$ÿÿ(&ÿÿ˜#ÿÿ$ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ$ÿÿ$ÿÿ˜#ÿÿ˜#ÿÿ$ÿÿ˜#ÿÿ˜#ÿÿ$ÿÿ˜#ÿÿ$ÿÿ˜#ÿÿ˜#ÿÿˆ%ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿX%ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ(&ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ$ÿÿ$ÿÿ$ÿÿ˜#ÿÿ$ÿÿ$ÿÿ$ÿÿ$ÿÿ˜#ÿÿ˜#ÿÿ$ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ$ÿÿ$ÿÿ˜#ÿÿÀ#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜$ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿ˜#ÿÿè$ÿÿ-8ÿÿ$8ÿÿ8ÿÿ8ÿÿ	8ÿÿ8ÿÿ7ÿÿ@8ÿÿa8ÿÿ‚8ÿÿ£8ÿÿÒ?ÿÿÉ?ÿÿÀ?ÿÿ·?ÿÿ®?ÿÿ¥?ÿÿœ?ÿÿ >ÿÿà?ÿÿ@ÿÿ"@ÿÿC@ÿÿd@ÿÿóÿÿüòÿÿóòÿÿêòÿÿáòÿÿØòÿÿ`ôÿÿ°óÿÿÑóÿÿXôÿÿôÿÿstatsmodels.nonparametric._smoothers_lowessFormat string allocated too short.statsmodels/nonparametric/_smoothers_lowess.pyxnumpy.core.umath failed to importndarray is not Fortran contiguouslowess(endog, exog, frac=2.0/3.0, it=3, delta=0.0)
    LOWESS (Locally Weighted Scatterplot Smoothing)

    A lowess function that outs smoothed estimates of endog
    at the given exog values from points (exog, endog)

    Parameters
    ----------
    endog: 1-D numpy array
        The y-values of the observed points
    exog: 1-D numpy array
        The x-values of the observed points. exog has to be increasing.
    frac: float
        Between 0 and 1. The fraction of the data used
        when estimating each y-value.
    it: int
        The number of residual-based reweightings
        to perform.
    delta: float
        Distance within which to use linear-interpolation
        instead of weighted regression.

    Returns
    -------
    out: numpy array
        A numpy array with two columns. The first column
        is the sorted x values and the second column the
        associated estimated y-values.

    Notes
    -----
    This lowess function implements the algorithm given in the
    reference below using local linear estimates.

    Suppose the input data has N points. The algorithm works by
    estimating the `smooth` y_i by taking the frac*N closest points
    to (x_i,y_i) based on their x values and estimating y_i
    using a weighted linear regression. The weight for (x_j,y_j)
    is tricube function applied to |x_i-x_j|.

    If it > 1, then further weighted local linear regressions
    are performed, where the weights are the same as above
    times the _lowess_bisquare function of the residuals. Each iteration
    takes approximately the same amount of time as the original fit,
    so these iterations are expensive. They are most useful when
    the noise has extremely heavy tails, such as Cauchy noise.
    Noise with less heavy-tails, such as t-distributions with df>2,
    are less problematic. The weights downgrade the influence of
    points with large residuals. In the extreme case, points whose
    residuals are larger than 6 times the median absolute residual
    are given weight 0.

    delta can be used to save computations. For each x_i, regressions
    are skipped for points closer than delta. The next regression is
    fit for the farthest point within delta of x_i and all points in
    between are estimated by linearly interpolating between the two
    regression fits.

    Judicious choice of delta can cut computation time considerably
    for large data (N > 5000). A good choice is delta = 0.01 *
    range(exog).

    Some experimentation is likely required to find a good
    choice of frac and iter for a particular dataset.

    References
    ----------
    Cleveland, W.S. (1979) "Robust Locally Weighted Regression
    and Smoothing Scatterplots". Journal of the American Statistical
    Association 74 (368): 829-836.

    Examples
    --------
    The below allows a comparison between how different the fits from
    lowess for different values of frac can be.

    >>> import numpy as np
    >>> import statsmodels.api as sm
    >>> lowess = sm.nonparametric.lowess
    >>> x = np.random.uniform(low = -2*np.pi, high = 2*np.pi, size=500)
    >>> y = np.sin(x) + np.random.normal(size=len(x))
    >>> z = lowess(y, x)
    >>> w = lowess(y, x, frac=1./3)

    This gives a similar comparison for when it is 0 vs not.

    >>> import numpy as np
    >>> import scipy.stats as stats
    >>> import statsmodels.api as sm
    >>> lowess = sm.nonparametric.lowess
    >>> x = np.random.uniform(low = -2*np.pi, high = 2*np.pi, size=500)
    >>> y = np.sin(x) + stats.cauchy.rvs(size=len(x))
    >>> z = lowess(y, x, frac= 1./3, it=0)
    >>> w = lowess(y, x, frac=1./3)

    Non-native byte order not supportedLowess `frac` must be in the range [0,1]!Format string allocated too short, see comment in numpy.pxdunknown dtype code in numpy.pxd (%d)numpy.core.multiarray failed to import
Univariate lowess function, like in R.

References
----------
Hastie, Tibshirani, Friedman. (2009) The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, Second Edition: Chapter 6.

Cleveland, W.S. (1979) "Robust Locally Weighted Regression and Smoothing
Scatterplots". Journal of the American Statistical Association 74 (368): 829-836.
ndarray is not C contiguouscalculate_residual_weightsupdate_neighborhoodcline_in_tracebackupdate_indiceslowess (line 28)resid_weightsRuntimeErrorImportErrorlast_fit_iValueErrorstd_residright_endnegativeleft_endcutpointbisquareweightsrobiterxrangereg_okradiusmedianlowess__import__doublezerosy_fitrangenumpyendogdtypedeltaarrayDTYPE__test____name____main__fracexogsumabsnpityxnkiTBuffer dtype mismatch, expected %s%s%s but got %sBuffer dtype mismatch, expected '%s' but got %s in '%s.%s'%.200s.%.200s is not a type object%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObject%s.%s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObjectDoes not understand character buffer dtype format string ('%c')too many values to unpack (expected %zd)statsmodels/nonparametric/_smoothers_lowess.c%s() got multiple values for keyword argument '%U'%.200s() keywords must be strings%s() got an unexpected keyword argument '%U'__int__ returned non-int (type %.200s).  The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__%.4s__ returned non-%.4s (type %.200s)value too large to convert to intUnexpected format string character: '%c'Expected a dimension of size %zu, got %zuExpected %d dimensions, got %dPython does not define a standard format string size for long double ('g')..Buffer dtype mismatch; next field is at offset %zd but %zd expectedBig-endian buffer not supported on little-endian compilerBuffer acquisition: Expected '{' after 'T'Cannot handle repeated arrays in format stringExpected a dimension of size %zu, got %dExpected a comma in format string, got '%c'Expected %d dimension(s), got %dUnexpected end of format string, expected ')'Buffer has wrong number of dimensions (expected %d, got %d)Item size of buffer (%zd byte%s) does not match size of '%s' (%zd byte%s)statsmodels/nonparametric/_smoothers_lowess.pyxstatsmodels.nonparametric._smoothers_lowess.update_neighborhoodstatsmodels.nonparametric._smoothers_lowess.update_indicesstatsmodels.nonparametric._smoothers_lowess.bisquareArgument '%.200s' has incorrect type (expected %.200s, got %.200s)%.200s() takes %.8s %zd positional argument%.1s (%zd given)statsmodels.nonparametric._smoothers_lowess.calculate_residual_weightsCannot convert %.200s to %.200sBuffer acquisition failed on assignment; and then reacquiring the old buffer failed too!statsmodels.nonparametric._smoothers_lowess.fast_array_cubestatsmodels.nonparametric._smoothers_lowess.tricubestatsmodels.nonparametric._smoothers_lowess.calculate_weightscalling %R should have returned an instance of BaseException, not %Rraise: exception class must be a subclass of BaseExceptionneed more than %zd value%.1s to unpackstatsmodels.nonparametric._smoothers_lowess.calculate_y_fitstatsmodels.nonparametric._smoothers_lowess.interpolate_skipped_fitsstatsmodels.nonparametric._smoothers_lowess.lowessstatsmodels.nonparametric._smoothers_lowesscompiletime version %s of module '%.100s' does not match runtime version %sinit statsmodels.nonparametric._smoothers_lowessà?ð¿ð?»½×Ùß|Û=@UUUUUUå?;"Ïþÿ8PÔþÿ``ÔþÿÈXÕþÿp}ÕþÿˆÃÕþÿØ
0íþÿx°îþÿ0ïþÿ¨Ðïþÿ @ðþÿ8 ðþÿ¨ÐðþÿȐõþÿX÷þÿÀðøþÿèùþÿ0ÿþÿ`Ðÿÿààÿÿ@ð
ÿÿ Àÿÿð ÿÿ0`ÿÿhÿÿ°pÿÿÐðÿÿ@$ÿÿ`P0ÿÿ°`3ÿÿ 	`9ÿÿp	@ÿÿ¸	Pkÿÿ
°Îÿÿh
zRx$ÀÍþÿPFJw€?;*3$"DèÒþÿ\°ëþÿxtíþÿyŒ€íþÿ˜DK
IT¬ÒþÿøBŽBE ŒA(†D0ƒP€…ˆIgˆA€X0D(A BBB¨íþÿlGd4îþÿUA†AƒJ X
DAG_DATàÒþÿ%D`líÒþÿFDƒ|
BCŒðíþÿ.Aƒ\
CIŒ¬îþÿµBBŽE B(ŒD0†A8ƒHp±
8A0A(B BBBE~xM€AˆBB˜A A¨A°A¸AÀPp
8A0A(B BBBHd<0òþÿ÷BBŽE B(ŒD0†A8ƒK€Ý
8A0A(B BBBF¢
8F0A(B BBBA$¤Èóþÿ]AƒG ^
AIÌõþÿ—tb\äˆõþÿ‘PBŽB B(ŒA0†A8ƒG`»8AÃ0AÆ(BÌ BÍBÎBÏL`ƒ†ŒŽ|DÈúþÿ”BBŽB B(ŒD0†A8ƒK`
8A0A(B BBBG€
8A0A(B BBBFt
8A0A(B BBBJ\Äèÿþÿ	A†AƒPpú
AABF
FACO
AAGn
AAHsxA€RxAp\$˜ÿÿBŽBE ŒA(†D0ƒM€Ö
0A(A BBBGÈ
0C(A BBBFL„HÿÿËBBŽB B(ŒD0†A8ƒM°

8D0A(B BBBC<ÔÈ	ÿÿÞBBŒA †A(ƒJðë
(D ABBD4hÿÿ²AƒG0ƒ
ADL
ACPADLðÿÿ“BŒA†A ƒD0\
 CABF\
 CABF”H
ÿÿbAƒ]
Jp¼´˜
ÿÿyBBŽB B(ŒA0†A8ƒG€"
8A0A(B BBBC{ˆHMˆA€\
8C0A(B BBBGˆˆIAˆM€UˆIAˆS€PˆIBˆS€PˆIBˆR€ÌtXÿÿIBBŽB B(ŒA0†A8ƒG€D
8A0A(B BBBA£ˆHMˆA€\
8C0A(B BBBGLˆIAˆS€gˆIAˆM€UˆIBˆS€PˆIBˆR€PˆIAˆS€LDØÿÿBBŽE B(ŒD0†A8ƒG 

8D0A(B BBBEl”˜'ÿÿBBŒA †A(ƒG@d
(A ABBI£HHPMHA@\
(C ABBCHIPAHH@L8*ÿÿøBBŽB B(ŒA0†A8ƒJ [
8A0A(B BBBGDTè/ÿÿ.BŽBB ŒA(†A0ƒJ	
0A(A BBBELœÐ6ÿÿ¿*BBŽE B(ŒD0†A8ƒJ° u
8D0A(B BBBD\ì@aÿÿScBBŽB B(ŒD0†A8ƒJ°G¾¸GJÀGs¸GA°G‘
8D0A(B BBBGlL	@Äÿÿ6BBŒD †A(ƒGpE
(A ABBEuxA€HxAp\
(C ABBEÅxI€AxMp„¼	ãÊþÿdRBŒH †A(ƒY
(Aà AÆBÌBÍAò˜O R¨M°M¸FÀFÈFÐFØFàFèFðFøF€P~˜Q B¨F°F¸AÀAÈAÐAØAàN~˜] N˜A{˜Q E¨F°F¸AÀAÈAÐAØAàN~˜] K¨F°I~˜Q E¨F°F¸AÀAÈAÐAØAàN™˜Q E¨F°F¸AÀAÈAÐAØAàN}˜Q E¨F°F¸AÀAÈAÐAØAàNàM MXbrÀ/
È5Pm!Xm!õþÿoðà0
 p!àà'ˆX	þÿÿohÿÿÿoðÿÿo€ùÿÿo¢hm!ö/00&060F0V0f0v0†0–0¦0¶0Æ0Ö0æ0ö011&161F1V1f1v1†1–1¦1¶1Æ1Ö1æ1ö122&262F2V2f2v2†2–2¦2¶2Æ2Ö2æ2ö233&363F3V3f3v3†3–3¦3¶3Æ3Ö3æ3ö344&464F4V4f4v4†4–4¦4¶4Æ4Ö4æ4ö455&5Àr!
    The bi-square function (1 - x**2)**2.

    Used to weight the residuals in the `robustifying`
    iterations. Called by the calculate_residual_weights function.

    Parameters
    ----------
    x: 1-D numpy array
        A vector of absolute regression residuals, in units of
        6 times the median absolute residual.

    Returns
    -------
    A 1-D numpy array of residual weights.
    
    Calculate residual weights for the next `robustifying` iteration.

    Parameters
    ----------
    y: 1-D numpy array
        The vector of actual input y-values.
    y_fit: 1-D numpy array
        The vector of fitted y-values from the current
        iteration.

    Returns
    -------
    resid_weights: 1-D numpy array
        The vector of residual weights, to be used in the
        next iteration of regressions.
    
    Update the counters of the local regression.

    Parameters
    ----------
    x: 1-D numpy array
        The vector of input x-values.
    y_fit: 1-D numpy array
        The vector of fitted y-values
    delta: float
        Indicates the range of x values within which linear
        interpolation should be used to estimate y_fit instead
        of weighted regression.
    i: indexing integer
        The index of the current point being fit.
    n: indexing integer
        The length of the input vectors, x and y.
    last_fit_i: indexing integer
        The last point at which y_fit was calculated.

    Returns
    -------
    i: indexing integer
        The next point at which to run a weighted regression.
    last_fit_i: indexing integer
        The updated last point at which y_fit was calculated

    Notes
    -----
    The relationship between the outputs is s.t. x[i+1] >
    x[last_fit_i] + delta.

    
    Find the indices bounding the k-nearest-neighbors of the current point.

    Parameters
    ----------
    x: 1-D numpy array
        The input x-values
    i: indexing integer
        The index of the point currently being fit.
    n: indexing integer
        The length of the input vectors, x and y.
    left_end: indexing integer
        The index of the left-most point in the neighborhood
        of x[i-1] (the previously-fit point).
    right_end: indexing integer
        The index of the right-most point in the neighborhood
        of x[i-1]. Non-inclusive, s.t. the neighborhood is
        x[left_end] <= x < x[right_end].
    radius: float
        The radius of the current neighborhood. The larger of
        distances between x[i] and its left-most or right-most
        neighbor.

    Returns
    -------
    left_end: indexing integer
        The index of the left-most point in the neighborhood
              of x[i] (the current point).
    right_end: indexing integer
        The index of the right-most point in the neighborhood
               of x[i]. Non-inclusive, s.t. the neighborhood is
               x[left_end] <= x < x[right_end].
    radius: float
        The radius of the current neighborhood. The larger of
        distances between x[i] and its left-most or right-most
        neighbor.
    lowess(endog, exog, frac=2.0/3.0, it=3, delta=0.0)
    LOWESS (Locally Weighted Scatterplot Smoothing)

    A lowess function that outs smoothed estimates of endog
    at the given exog values from points (exog, endog)

    Parameters
    ----------
    endog: 1-D numpy array
        The y-values of the observed points
    exog: 1-D numpy array
        The x-values of the observed points. exog has to be increasing.
    frac: float
        Between 0 and 1. The fraction of the data used
        when estimating each y-value.
    it: int
        The number of residual-based reweightings
        to perform.
    delta: float
        Distance within which to use linear-interpolation
        instead of weighted regression.

    Returns
    -------
    out: numpy array
        A numpy array with two columns. The first column
        is the sorted x values and the second column the
        associated estimated y-values.

    Notes
    -----
    This lowess function implements the algorithm given in the
    reference below using local linear estimates.

    Suppose the input data has N points. The algorithm works by
    estimating the `smooth` y_i by taking the frac*N closest points
    to (x_i,y_i) based on their x values and estimating y_i
    using a weighted linear regression. The weight for (x_j,y_j)
    is tricube function applied to |x_i-x_j|.

    If it > 1, then further weighted local linear regressions
    are performed, where the weights are the same as above
    times the _lowess_bisquare function of the residuals. Each iteration
    takes approximately the same amount of time as the original fit,
    so these iterations are expensive. They are most useful when
    the noise has extremely heavy tails, such as Cauchy noise.
    Noise with less heavy-tails, such as t-distributions with df>2,
    are less problematic. The weights downgrade the influence of
    points with large residuals. In the extreme case, points whose
    residuals are larger than 6 times the median absolute residual
    are given weight 0.

    delta can be used to save computations. For each x_i, regressions
    are skipped for points closer than delta. The next regression is
    fit for the farthest point within delta of x_i and all points in
    between are estimated by linearly interpolating between the two
    regression fits.

    Judicious choice of delta can cut computation time considerably
    for large data (N > 5000). A good choice is delta = 0.01 *
    range(exog).

    Some experimentation is likely required to find a good
    choice of frac and iter for a particular dataset.

    References
    ----------
    Cleveland, W.S. (1979) "Robust Locally Weighted Regression
    and Smoothing Scatterplots". Journal of the American Statistical
    Association 74 (368): 829-836.

    Examples
    --------
    The below allows a comparison between how different the fits from
    lowess for different values of frac can be.

    >>> import numpy as np
    >>> import statsmodels.api as sm
    >>> lowess = sm.nonparametric.lowess
    >>> x = np.random.uniform(low = -2*np.pi, high = 2*np.pi, size=500)
    >>> y = np.sin(x) + np.random.normal(size=len(x))
    >>> z = lowess(y, x)
    >>> w = lowess(y, x, frac=1./3)

    This gives a similar comparison for when it is 0 vs not.

    >>> import numpy as np
    >>> import scipy.stats as stats
    >>> import statsmodels.api as sm
    >>> lowess = sm.nonparametric.lowess
    >>> x = np.random.uniform(low = -2*np.pi, high = 2*np.pi, size=500)
    >>> y = np.sin(x) + stats.cauchy.rvs(size=len(x))
    >>> z = lowess(y, x, frac= 1./3, it=0)
    >>> w = lowess(y, x, frac=1./3)

    ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿœ!œ!œ!è›!(œ!àš!ø›! ›!Л!8›!àš!Ț!(œ!ø›! ›!؛!К!Ț! œ!‚T˜œ!€P<œ! @#ˆœ!xS€œ!@P*xœ!P$pœ!hS
hœ!ÓT`œ!˜SXœ!¿TPœ!|THœ!øS	@œ!ÐR8œ!S0œ!èS	(œ!vT œ!KTœ!pTœ!jTœ!¶Tœ!±Tø›!ÑTð›!@Tè›!ÆTà›!ÏT؛!ˆSЛ!ØS	ț!4T! AI¸›!@S°›!¨T	¨›!-T ›!ÍT˜›!˜T	›!°Rˆ›!`A"€›!ÈS	x›!ÃTp›!dTh›!Q'`›! A"X›!&TP›!^TH›!T@›!XS8›!¸S
0›!T(›!à@0 ›!`@,›!¨S
›!»T›!ˆT	›!ÀP%øš!(Sðš!ðRèš!Tàš!ËTؚ!TК!ÉTȚ!XT!RTa8@Qÿÿÿÿÿÿÿÿ`š!s8àtàr!70‘€t!ˆ7Ð|@v!t7Puz!l8/@!|8RGCC: (Debian 6.3.0-18+deb9u1) 6.3.0 20170516Èð0à€hˆà'	À/
à/05@5
È5à5à`bPm!Xm!`m!hm!Ho!p!Àr! š!ñÿNx3OyMP˜h@5øy°Pl“ QU¨H!°86%É]6Fæ€Q.P!	°Qµ!-8!?0!Q@!f8œ!ƒpV÷¬pX]¿ÐY—ëpZ‘	`”"°e	K ™!hŸ !@¯àœ!@»Àg,! (!. !=Ðkː pÞݘš!鸚!ù€s²$@t“Kàtb°œ!«Puyûàš!ø›! ›!Л!28›!F Ž!0]Ð|I¨Ț!¸(œ!È؛!Ý`Ž!8ô …Sx›!`Xœ!n¨›!¨š!‹ š!—Hœ!ª°š!º0‘К! Ž!4@”ø~@š.À€›!Óˆš!âp¡¿*.›!<0ÌSc†!– œ!¦œ!¶ðš!Ô¸œ!ôøš!
	@œ!2	Pœ!B	hœ!N	€š!]	¨œ!v	/6¹	š!Â	œ!Ñ	œ!à	è›!í	œ!ý	à!0
X!
€˜!p,
!°	=
°›!L
˜›![
`œ!p
P›!€
pœ!—
ˆœ!­
€œ!Ù
›!ˆ›!,xœ!X˜œ!„œ!²h›!Ý`›!	H›!X›!+@›!Cèš!U0›!gà›!sț!„(›!°0œ!Ã›!×p›!ç œ!ø ›!%
€™! j
`™! ¼
@™! 	 ™! b™! ©!Õ¸›!ï›!þ‚T€P<5 @#`xSt@P*P$ÆhS
ÛÓTå˜Sø¿T|TøS	#ÐRFSaèS	rvT€KTpTjT«¶T¸±TÅÑTÏð›!à@TïÆTúÏTˆSØS	(4T7 AI`@Sw¨T	„-T“ÍT˜T	ª°RÎ`A"÷ÈS	ÃTdT!Q'I A"r&T^TTžXS´¸S
ÆTÖà@0ÿ`@,*¨S
<»THˆT	U›!€ÀP%¨(S¿ðRÛTëËTõؚ!TÉTXT-RT;@Qjc`š! qàr!’·€t!±@v!£[z!5¬@!Iïñÿú`m!M	PM M2 š!AXm!hàMtPm!ïñÿ“@m¡`m!ñÿ­Àr!ºhm!Ãà`Öš!âp!ø
#FVhy¡² ÎÞñÿ%>Ro~–¨»Éš!Ðçú.BY
È5_s‚•¨ÁÏáðþ-:J]k~Žž±¿Ôæ÷
)6K]x ‡–¤¶ÎÞíþ£6d-ASc#`!q„•§»Ùëš!÷
!4DSes‰—ª¹ ÍÜ÷0DQd ~’¦¶Íæ÷"	À/@š!\_smoothers_lowess.c__Pyx_BufFmt_DescribeTypeChar__pyx_bisect_code_objects__Pyx_BufFmt_RaiseExpected__Pyx_ImportType__Pyx_BufFmt_ExpectNumber__Pyx_GetBuiltinName__pyx_b__Pyx_IterFinish.part.11__Pyx_IternextUnpackEndCheck__Pyx__GetModuleGlobalName__pyx_d__Pyx_AddTraceback__pyx_code_cache__pyx_empty_tuple__pyx_empty_bytes__pyx_cython_runtime__pyx_n_s_cline_in_traceback__Pyx_ParseOptionalKeywords.constprop.23__Pyx_PyInt_As_int__Pyx_BufFmt_TypeCharToPadding.constprop.28__Pyx_BufFmt_ProcessTypeChunk__Pyx_BufFmt_CheckString__Pyx__GetBufferAndValidate.constprop.27__Pyx_TypeInfo_nn___pyx_t_11statsmodels_13nonparametric_17_smoothers_lowess_DTYPE_t__Pyx_minusones__Pyx_zeros__pyx_pf_11statsmodels_13nonparametric_17_smoothers_lowess_2update_neighborhood.isra.19__pyx_lineno__pyx_clineno__pyx_filename__pyx_pf_11statsmodels_13nonparametric_17_smoothers_lowess_4update_indices.isra.18__pyx_pf_11statsmodels_13nonparametric_17_smoothers_lowess_8bisquare.isra.15__pyx_int_2__pyx_float_1_0__Pyx_WriteUnraisable.isra.10.constprop.29__Pyx__ArgTypeTest.isra.0.constprop.30__pyx_pw_11statsmodels_13nonparametric_17_smoothers_lowess_9bisquare__pyx_ptype_5numpy_ndarray__pyx_pw_11statsmodels_13nonparametric_17_smoothers_lowess_3update_neighborhood__pyx_n_s_x__pyx_n_s_i__pyx_n_s_n__pyx_n_s_left_end__pyx_n_s_right_end__pyx_pyargnames.11158__pyx_pw_11statsmodels_13nonparametric_17_smoothers_lowess_5update_indices__pyx_n_s_y_fit__pyx_n_s_delta__pyx_n_s_last_fit_i__pyx_pyargnames.11523__pyx_pf_11statsmodels_13nonparametric_17_smoothers_lowess_6calculate_residual_weights.isra.17__pyx_n_s_np__pyx_n_s_abs__pyx_n_s_median__pyx_int_0__pyx_int_1__pyx_n_s_bisquare__pyx_float_6_0__pyx_pw_11statsmodels_13nonparametric_17_smoothers_lowess_7calculate_residual_weights__pyx_n_s_y__pyx_pyargnames.11610__pyx_f_11statsmodels_13nonparametric_17_smoothers_lowess_fast_array_cube__pyx_f_11statsmodels_13nonparametric_17_smoothers_lowess_tricube__pyx_n_s_negative__pyx_slice__3__pyx_f_11statsmodels_13nonparametric_17_smoothers_lowess_calculate_weights__pyx_n_s_sum__pyx_pf_11statsmodels_13nonparametric_17_smoothers_lowess_lowess.isra.20__pyx_n_s_zeros__pyx_n_s_DTYPE__pyx_n_s_dtype__pyx_n_s_update_neighborhood__pyx_ptype_7cpython_4bool_bool__pyx_n_s_update_indices__pyx_n_s_calculate_residual_weights__pyx_n_s_array__pyx_n_s_T__pyx_tuple__2__pyx_builtin_ValueError__pyx_pw_11statsmodels_13nonparametric_17_smoothers_lowess_1lowess__pyx_k___pyx_n_s_exog__pyx_n_s_frac__pyx_n_s_it__pyx_n_s_endog__pyx_pyargnames.10873__pyx_m__pyx_moduledef__pyx_string_tab__pyx_n_s_main__pyx_n_s_name__pyx_n_s_ValueError__pyx_n_s_range__pyx_n_s_RuntimeError__pyx_n_s_ImportError__pyx_kp_u_Lowess_frac_must_be_in_the_range__pyx_kp_u_ndarray_is_not_C_contiguous__pyx_kp_u_ndarray_is_not_Fortran_contiguou__pyx_kp_u_Non_native_byte_order_not_suppor__pyx_kp_u_Format_string_allocated_too_shor__pyx_kp_u_Format_string_allocated_too_shor_2__pyx_kp_u_numpy_core_multiarray_failed_to__pyx_kp_u_numpy_core_umath_failed_to_impor__pyx_n_s_reg_ok__pyx_n_s_radius__pyx_n_s_resid_weights__pyx_n_s_weights__pyx_n_s_robiter__pyx_n_s_k__pyx_n_s_lowess__pyx_kp_s_statsmodels_nonparametric__smoot__pyx_n_s_cutpoint__pyx_n_s_std_resid__pyx_n_s_numpy__pyx_n_s_double__pyx_n_s_statsmodels_nonparametric__smoot_2__pyx_mdef_11statsmodels_13nonparametric_17_smoothers_lowess_1lowess__pyx_mdef_11statsmodels_13nonparametric_17_smoothers_lowess_3update_neighborhood__pyx_mdef_11statsmodels_13nonparametric_17_smoothers_lowess_5update_indices__pyx_mdef_11statsmodels_13nonparametric_17_smoothers_lowess_7calculate_residual_weights__pyx_mdef_11statsmodels_13nonparametric_17_smoothers_lowess_9bisquare__pyx_kp_u_lowess_endog_exog_frac_2_0_3_0_i__pyx_kp_u_lowess_line_28__pyx_n_s_test__pyx_k_DTYPE__pyx_k_Format_string_allocated_too_shor__pyx_k_Format_string_allocated_too_shor_2__pyx_k_ImportError__pyx_k_Lowess_frac_must_be_in_the_range__pyx_k_Non_native_byte_order_not_suppor__pyx_k_RuntimeError__pyx_k_T__pyx_k_ValueError__pyx_k_abs__pyx_k_array__pyx_k_bisquare__pyx_k_calculate_residual_weights__pyx_k_cline_in_traceback__pyx_k_cutpoint__pyx_k_delta__pyx_k_double__pyx_k_dtype__pyx_k_endog__pyx_k_exog__pyx_k_frac__pyx_k_i__pyx_n_s_import__pyx_k_import__pyx_k_it__pyx_k_k__pyx_k_last_fit_i__pyx_k_left_end__pyx_k_lowess__pyx_k_lowess_endog_exog_frac_2_0_3_0_i__pyx_k_lowess_line_28__pyx_k_main__pyx_k_median__pyx_k_n__pyx_k_name__pyx_k_ndarray_is_not_C_contiguous__pyx_k_ndarray_is_not_Fortran_contiguou__pyx_k_negative__pyx_k_np__pyx_k_numpy__pyx_k_numpy_core_multiarray_failed_to__pyx_k_numpy_core_umath_failed_to_impor__pyx_k_radius__pyx_k_range__pyx_k_reg_ok__pyx_k_resid_weights__pyx_k_right_end__pyx_k_robiter__pyx_k_statsmodels_nonparametric__smoot__pyx_k_statsmodels_nonparametric__smoot_2__pyx_k_std_resid__pyx_k_sum__pyx_k_test__pyx_kp_u_unknown_dtype_code_in_numpy_pxd__pyx_k_unknown_dtype_code_in_numpy_pxd__pyx_k_update_indices__pyx_k_update_neighborhood__pyx_k_weights__pyx_k_x__pyx_n_s_xrange__pyx_k_xrange__pyx_k_y__pyx_k_y_fit__pyx_k_zeros__pyx_k_Univariate_lowess_function_like__pyx_methods__pyx_doc_11statsmodels_13nonparametric_17_smoothers_lowess_8bisquare__pyx_doc_11statsmodels_13nonparametric_17_smoothers_lowess_6calculate_residual_weights__pyx_doc_11statsmodels_13nonparametric_17_smoothers_lowess_4update_indices__pyx_doc_11statsmodels_13nonparametric_17_smoothers_lowess_2update_neighborhood__pyx_doc_11statsmodels_13nonparametric_17_smoothers_lowess_lowesscrtstuff.c__JCR_LIST__deregister_tm_clones__do_global_dtors_auxcompleted.6972__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entry__FRAME_END____JCR_END____dso_handle_DYNAMIC__GNU_EH_FRAME_HDR__TMC_END___GLOBAL_OFFSET_TABLE_PyPyFloat_FromDoublePyPyObject_IsSubclassPyPyImport_ImportModuleLevelObjectPyPyOS_snprintfPyPyExc_TypeErrorPyPyDict_SetItemPyPyExc_BaseExceptionPyPyErr_SetObjectPyPyDict_GetItem_ITM_deregisterTMCloneTablePyPyLong_AsLongPyPyModule_GetDict_PyPy_DeallocPyPyMem_MallocPyPyDict_GetItemStringPyPyObject_SetAttrStringPyPyNumber_SubtractPyPyNumber_InPlaceTrueDividePyPyFloat_TypePyPyImport_ImportModulePyPyLong_FromLongPyPyFloat_AsDoublePyPyDict_Next_edataPyPyUnicode_FromFormatPyPyObject_GetItemPyPyUnicode_InternFromStringPyPyUnicode_FromStringPyPyFloat_AS_DOUBLEPyPyDict_SetItemString_finiPyPyUnicode_ComparePyPyTuple_TypePyPyUnicode_DecodePyPyExc_ValueErrorPyPyObject_GetAttrStringPyPyDict_SizePyPyObject_IsTruePyPyBytes_TypePyPyErr_ClearPyPyNumber_TrueDividePyPyErr_ExceptionMatchesPyPyDict_NewPyPyObject_HashPyPyErr_WarnFormatPyPyLong_TypePyPyLong_AsSsize_tPyPyNumber_LongPyPyErr_RestorePyPyBuffer_ReleasePyPyList_TypePyPyObject_GetBufferPyPyErr_SetStringPyPyNumber_PowerPyPyExc_OverflowErrorPyPyBytes_FromStringAndSizePyPyCode_NewPyPyImport_AddModulePyPyUnicode_CheckPyPyExc_DeprecationWarning__gmon_start__PyPyObject_NotPyPyErr_FetchPyPyList_SET_ITEMPyPyErr_WriteUnraisablePyPyObject_CallPyPyNumber_AddPyPyNumber_IndexPyInit__smoothers_lowessPyPyExc_StopIterationPyPyThreadState_GetPyPySequence_SizePyPyMem_ReallocPyPyTuple_NewPyPyObject_SetAttr_PyPy_NoneStruct_PyPy_FalseStructPyPyNumber_MultiplyPyPyUnicode_FromStringAndSizePyPyExc_NameError__bss_startPyPyObject_GetIterPyPyUnicode_CheckExactPyPyModule_Create2PyPyErr_PrintExPyPyTuple_PackPyPySequence_ITEMPyPySlice_NewPyPyNumber_InPlaceAddPyPyFrame_NewPyPyObject_SetItemPyPyErr_Format_Jv_RegisterClassesPyPyErr_WarnExPyPyNumber_InPlaceMultiplyPyPyErr_OccurredPyPyTraceBack_HerePyPyLong_FromSsize_tPyPyExc_SystemErrorPyPyList_NewPyPyType_IsSubtype_ITM_registerTMCloneTablePyPyExc_ImportErrorPyPyCFunction_NewExPyPy_GetVersionPyPyObject_RichComparePyPyImport_GetModuleDict_PyPy_TrueStruct__cxa_finalize@@GLIBC_2.2.5_init__pyx_module_is_main_statsmodels__nonparametric___smoothers_lowessPyPyObject_GetAttr.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.plt.got.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.jcr.dynamic.got.plt.data.bss.commentÈÈ$.öÿÿoðð@800°
@àà Hÿÿÿo€€äUþÿÿohh dˆˆXnBà'à'àxÀ/À/sà/à/P~0505‡@5@5†È5È5	“à5à5+ ›à`à`©bbD³Pm!Pm¿Xm!XmË`m!`mÐhm!hmà‚Ho!Ho¸Ùp!p¸âÀr!ÀrH' è š!š@ í0š-8š!ð	P»o¿Úö