Repository URL to install this package:
Version:
0.11.1 ▾
|
import warnings
import numpy as np
import pandas as pd
import pytest
from numpy.testing import assert_equal
from statsmodels.iolib.summary2 import summary_col
from statsmodels.tools.tools import add_constant
from statsmodels.regression.linear_model import OLS
class TestSummaryLatex(object):
def test_summarycol(self):
# Test for latex output of summary_col object
desired = r'''
\begin{table}
\caption{}
\begin{center}
\begin{tabular}{lcc}
\hline
& y I & y II \\
\midrule
const & 7.7500 & 12.4231 \\
& (1.1058) & (3.1872) \\
x1 & -0.7500 & -1.5769 \\
& (0.2368) & (0.6826) \\
R-squared & 0.6930 & 0.5202 \\
& 0.7697 & 0.6401 \\
\hline
\end{tabular}
\end{center}
\end{table}
'''
x = [1,5,7,3,5]
x = add_constant(x)
y1 = [6,4,2,7,4]
y2 = [8,5,0,12,4]
reg1 = OLS(y1,x).fit()
reg2 = OLS(y2,x).fit()
actual = summary_col([reg1,reg2]).as_latex()
actual = '\n%s\n' % actual
assert_equal(desired, actual)
def test_summarycol_float_format(self):
# Test for latex output of summary_col object
desired = r"""
=====================
y I y II
---------------------
const 7.7 12.4
(1.1) (3.2)
x1 -0.7 -1.6
(0.2) (0.7)
R-squared 0.7 0.5
0.8 0.6
=====================
Standard errors in
parentheses.
""" # noqa:W291
x = [1, 5, 7, 3, 5]
x = add_constant(x)
y1 = [6, 4, 2, 7, 4]
y2 = [8, 5, 0, 12, 4]
reg1 = OLS(y1, x).fit()
reg2 = OLS(y2, x).fit()
actual = summary_col([reg1, reg2], float_format='%0.1f').as_text()
actual = '%s\n' % actual
assert_equal(actual, desired)
def test_summarycol_drop_omitted(self):
# gh-3702
x = [1, 5, 7, 3, 5]
x = add_constant(x)
x2 = np.concatenate([x, np.array([[3], [9], [-1], [4], [0]])], 1)
y1 = [6, 4, 2, 7, 4]
y2 = [8, 5, 0, 12, 4]
reg1 = OLS(y1, x).fit()
reg2 = OLS(y2, x2).fit()
actual = summary_col([reg1, reg2], regressor_order=['const', 'x1'],
drop_omitted=True)
assert 'x2' not in str(actual)
actual = summary_col([reg1, reg2], regressor_order=['x1'],
drop_omitted=False)
assert 'const' in str(actual)
assert 'x2' in str(actual)
def test_summary_col_ordering_preserved(self):
# gh-3767
x = [1, 5, 7, 3, 5]
x = add_constant(x)
x2 = np.concatenate([x, np.array([[3], [9], [-1], [4], [0]])], 1)
x2 = pd.DataFrame(x2, columns=['const', 'b', 'a'])
y1 = [6, 4, 2, 7, 4]
y2 = [8, 5, 0, 12, 4]
reg1 = OLS(y1, x2).fit()
reg2 = OLS(y2, x2).fit()
info_dict = {'R2': lambda x: '{:.3f}'.format(int(x.rsquared)),
'N': lambda x: '{0:d}'.format(int(x.nobs))}
original = actual = summary_col([reg1, reg2], float_format='%0.4f')
actual = summary_col([reg1, reg2], regressor_order=['a', 'b'],
float_format='%0.4f',
info_dict=info_dict)
variables = ('const', 'b', 'a')
for line in str(original).split('\n'):
for variable in variables:
if line.startswith(variable):
assert line in str(actual)
def test_OLSsummary(self):
# Test that latex output of regular OLS output still contains
# multiple tables
x = [1,5,7,3,5]
x = add_constant(x)
y1 = [6,4,2,7,4]
reg1 = OLS(y1,x).fit()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
actual = reg1.summary().as_latex()
string_to_find = r'''\end{tabular}
\begin{tabular}'''
result = string_to_find in actual
assert(result is True)
def test_ols_summary_rsquared_label():
# Check that the "uncentered" label is correctly added after rsquared
x = [1, 5, 7, 3, 5, 2, 5, 3]
y = [6, 4, 2, 7, 4, 9, 10, 2]
reg_with_constant = OLS(y, add_constant(x)).fit()
r2_str = 'R-squared:'
with pytest.warns(UserWarning):
assert r2_str in str(reg_with_constant.summary2())
with pytest.warns(UserWarning):
assert r2_str in str(reg_with_constant.summary())
reg_without_constant = OLS(y, x, hasconst=False).fit()
r2_str = 'R-squared (uncentered):'
with pytest.warns(UserWarning):
assert r2_str in str(reg_without_constant.summary2())
with pytest.warns(UserWarning):
assert r2_str in str(reg_without_constant.summary())