Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
statsmodels / tsa / arima / estimators / yule_walker.py
Size: Mime:
"""
Yule-Walker method for estimating AR(p) model parameters.

Author: Chad Fulton
License: BSD-3
"""
from statsmodels.tools.tools import Bunch
from statsmodels.regression import linear_model

from statsmodels.tsa.arima.specification import SARIMAXSpecification
from statsmodels.tsa.arima.params import SARIMAXParams


def yule_walker(endog, ar_order=0, demean=True, unbiased=False):
    """
    Estimate AR parameters using Yule-Walker equations.

    Parameters
    ----------
    endog : array_like or SARIMAXSpecification
        Input time series array, assumed to be stationary.
    ar_order : int, optional
        Autoregressive order. Default is 0.
    demean : bool, optional
        Whether to estimate and remove the mean from the process prior to
        fitting the autoregressive coefficients. Default is True.
    unbiased : bool, optional
        Whether to use the "unbiased" autocovariance estimator, which uses
        n - h degrees of freedom rather than n. Note that despite the name, it
        is only truly unbiased if the process mean is known (rather than
        estimated) and for some processes it can result in a non-positive
        definite autocovariance matrix. Default is False.

    Returns
    -------
    parameters : SARIMAXParams object
        Contains the parameter estimates from the final iteration.
    other_results : Bunch
        Includes one component, `spec`, which is the `SARIMAXSpecification`
        instance corresponding to the input arguments.

    Notes
    -----
    The primary reference is [1]_, section 5.1.1.

    This procedure assumes that the series is stationary.

    For a description of the effect of the "unbiased" estimate of the
    autocovariance function, see 2.4.2 of [1]_.

    References
    ----------
    .. [1] Brockwell, Peter J., and Richard A. Davis. 2016.
       Introduction to Time Series and Forecasting. Springer.
    """
    spec = SARIMAXSpecification(endog, ar_order=ar_order)
    endog = spec.endog
    p = SARIMAXParams(spec=spec)

    if not spec.is_ar_consecutive:
        raise ValueError('Yule-Walker estimation unavailable for models with'
                         ' seasonal or non-consecutive AR orders.')

    # Estimate parameters
    method = 'unbiased' if unbiased else 'mle'
    p.ar_params, sigma = linear_model.yule_walker(
        endog, order=ar_order, demean=demean, method=method)
    p.sigma2 = sigma**2

    # Construct other results
    other_results = Bunch({
        'spec': spec,
    })

    return p, other_results