Repository URL to install this package:
|
Version:
1.0.5 ▾
|
"""
Functions for preparing various inputs passed to the DataFrame or Series
constructors before passing them to a BlockManager.
"""
from collections import abc
import numpy as np
import numpy.ma as ma
from pandas._libs import lib
from pandas.core.dtypes.cast import (
construct_1d_arraylike_from_scalar,
maybe_cast_to_datetime,
maybe_convert_platform,
maybe_infer_to_datetimelike,
maybe_upcast,
)
from pandas.core.dtypes.common import (
is_categorical_dtype,
is_datetime64tz_dtype,
is_dtype_equal,
is_extension_array_dtype,
is_integer_dtype,
is_list_like,
is_object_dtype,
)
from pandas.core.dtypes.generic import (
ABCDataFrame,
ABCDatetimeIndex,
ABCIndexClass,
ABCPeriodIndex,
ABCSeries,
ABCTimedeltaIndex,
)
from pandas.core import algorithms, common as com
from pandas.core.arrays import Categorical
from pandas.core.construction import sanitize_array
from pandas.core.indexes import base as ibase
from pandas.core.indexes.api import (
Index,
ensure_index,
get_objs_combined_axis,
union_indexes,
)
from pandas.core.internals import (
create_block_manager_from_arrays,
create_block_manager_from_blocks,
)
# ---------------------------------------------------------------------
# BlockManager Interface
def arrays_to_mgr(arrays, arr_names, index, columns, dtype=None):
"""
Segregate Series based on type and coerce into matrices.
Needs to handle a lot of exceptional cases.
"""
# figure out the index, if necessary
if index is None:
index = extract_index(arrays)
else:
index = ensure_index(index)
# don't force copy because getting jammed in an ndarray anyway
arrays = _homogenize(arrays, index, dtype)
# from BlockManager perspective
axes = [ensure_index(columns), index]
return create_block_manager_from_arrays(arrays, arr_names, axes)
def masked_rec_array_to_mgr(data, index, columns, dtype, copy):
"""
Extract from a masked rec array and create the manager.
"""
# essentially process a record array then fill it
fill_value = data.fill_value
fdata = ma.getdata(data)
if index is None:
index = get_names_from_index(fdata)
if index is None:
index = ibase.default_index(len(data))
index = ensure_index(index)
if columns is not None:
columns = ensure_index(columns)
arrays, arr_columns = to_arrays(fdata, columns)
# fill if needed
new_arrays = []
for fv, arr, col in zip(fill_value, arrays, arr_columns):
# TODO: numpy docs suggest fv must be scalar, but could it be
# non-scalar for object dtype?
assert lib.is_scalar(fv), fv
mask = ma.getmaskarray(data[col])
if mask.any():
arr, fv = maybe_upcast(arr, fill_value=fv, copy=True)
arr[mask] = fv
new_arrays.append(arr)
# create the manager
arrays, arr_columns = reorder_arrays(new_arrays, arr_columns, columns)
if columns is None:
columns = arr_columns
mgr = arrays_to_mgr(arrays, arr_columns, index, columns, dtype)
if copy:
mgr = mgr.copy()
return mgr
# ---------------------------------------------------------------------
# DataFrame Constructor Interface
def init_ndarray(values, index, columns, dtype=None, copy=False):
# input must be a ndarray, list, Series, index
if isinstance(values, ABCSeries):
if columns is None:
if values.name is not None:
columns = [values.name]
if index is None:
index = values.index
else:
values = values.reindex(index)
# zero len case (GH #2234)
if not len(values) and columns is not None and len(columns):
values = np.empty((0, 1), dtype=object)
# we could have a categorical type passed or coerced to 'category'
# recast this to an arrays_to_mgr
if is_categorical_dtype(getattr(values, "dtype", None)) or is_categorical_dtype(
dtype
):
if not hasattr(values, "dtype"):
values = prep_ndarray(values, copy=copy)
values = values.ravel()
elif copy:
values = values.copy()
index, columns = _get_axes(len(values), 1, index, columns)
return arrays_to_mgr([values], columns, index, columns, dtype=dtype)
elif is_extension_array_dtype(values) or is_extension_array_dtype(dtype):
# GH#19157
if isinstance(values, np.ndarray) and values.ndim > 1:
# GH#12513 a EA dtype passed with a 2D array, split into
# multiple EAs that view the values
values = [values[:, n] for n in range(values.shape[1])]
else:
values = [values]
if columns is None:
columns = list(range(len(values)))
return arrays_to_mgr(values, columns, index, columns, dtype=dtype)
# by definition an array here
# the dtypes will be coerced to a single dtype
values = prep_ndarray(values, copy=copy)
if dtype is not None:
if not is_dtype_equal(values.dtype, dtype):
try:
values = values.astype(dtype)
except Exception as orig:
# e.g. ValueError when trying to cast object dtype to float64
raise ValueError(
f"failed to cast to '{dtype}' (Exception was: {orig})"
) from orig
index, columns = _get_axes(*values.shape, index=index, columns=columns)
values = values.T
# if we don't have a dtype specified, then try to convert objects
# on the entire block; this is to convert if we have datetimelike's
# embedded in an object type
if dtype is None and is_object_dtype(values):
if values.ndim == 2 and values.shape[0] != 1:
# transpose and separate blocks
dvals_list = [maybe_infer_to_datetimelike(row) for row in values]
for n in range(len(dvals_list)):
if isinstance(dvals_list[n], np.ndarray):
dvals_list[n] = dvals_list[n].reshape(1, -1)
from pandas.core.internals.blocks import make_block
# TODO: What about re-joining object columns?
block_values = [
make_block(dvals_list[n], placement=[n]) for n in range(len(dvals_list))
]
else:
datelike_vals = maybe_infer_to_datetimelike(values)
block_values = [datelike_vals]
else:
block_values = [values]
return create_block_manager_from_blocks(block_values, [columns, index])
def init_dict(data, index, columns, dtype=None):
"""
Segregate Series based on type and coerce into matrices.
Needs to handle a lot of exceptional cases.
"""
if columns is not None:
from pandas.core.series import Series
arrays = Series(data, index=columns, dtype=object)
data_names = arrays.index
missing = arrays.isna()
if index is None:
# GH10856
# raise ValueError if only scalars in dict
index = extract_index(arrays[~missing])
else:
index = ensure_index(index)
# no obvious "empty" int column
if missing.any() and not is_integer_dtype(dtype):
if dtype is None or np.issubdtype(dtype, np.flexible):
# GH#1783
nan_dtype = np.dtype(object)
else:
nan_dtype = dtype
val = construct_1d_arraylike_from_scalar(np.nan, len(index), nan_dtype)
arrays.loc[missing] = [val] * missing.sum()
else:
keys = list(data.keys())
columns = data_names = Index(keys)
arrays = (com.maybe_iterable_to_list(data[k]) for k in keys)
# GH#24096 need copy to be deep for datetime64tz case
# TODO: See if we can avoid these copies
arrays = [
arr if not isinstance(arr, ABCIndexClass) else arr._data for arr in arrays
]
arrays = [
arr if not is_datetime64tz_dtype(arr) else arr.copy() for arr in arrays
]
return arrays_to_mgr(arrays, data_names, index, columns, dtype=dtype)
# ---------------------------------------------------------------------
def prep_ndarray(values, copy=True) -> np.ndarray:
if not isinstance(values, (np.ndarray, ABCSeries, Index)):
if len(values) == 0:
return np.empty((0, 0), dtype=object)
elif isinstance(values, range):
arr = np.arange(values.start, values.stop, values.step, dtype="int64")
return arr[..., np.newaxis]
def convert(v):
return maybe_convert_platform(v)
# we could have a 1-dim or 2-dim list here
# this is equiv of np.asarray, but does object conversion
# and platform dtype preservation
try:
if is_list_like(values[0]) or hasattr(values[0], "len"):
values = np.array([convert(v) for v in values])
elif isinstance(values[0], np.ndarray) and values[0].ndim == 0:
# GH#21861
values = np.array([convert(v) for v in values])
else:
values = convert(values)
except (ValueError, TypeError):
values = convert(values)
else:
# drop subclass info, do not copy data
values = np.asarray(values)
if copy:
values = values.copy()
if values.ndim == 1:
values = values.reshape((values.shape[0], 1))
elif values.ndim != 2:
raise ValueError("Must pass 2-d input")
return values
def _homogenize(data, index, dtype=None):
oindex = None
homogenized = []
for val in data:
if isinstance(val, ABCSeries):
if dtype is not None:
val = val.astype(dtype)
if val.index is not index:
# Forces alignment. No need to copy data since we
# are putting it into an ndarray later
val = val.reindex(index, copy=False)
else:
if isinstance(val, dict):
if oindex is None:
oindex = index.astype("O")
if isinstance(index, (ABCDatetimeIndex, ABCTimedeltaIndex)):
val = com.dict_compat(val)
else:
val = dict(val)
val = lib.fast_multiget(val, oindex.values, default=np.nan)
val = sanitize_array(
val, index, dtype=dtype, copy=False, raise_cast_failure=False
)
homogenized.append(val)
return homogenized
def extract_index(data):
index = None
if len(data) == 0:
index = Index([])
elif len(data) > 0:
raw_lengths = []
indexes = []
have_raw_arrays = False
have_series = False
have_dicts = False
for val in data:
if isinstance(val, ABCSeries):
have_series = True
indexes.append(val.index)
elif isinstance(val, dict):
have_dicts = True
indexes.append(list(val.keys()))
elif is_list_like(val) and getattr(val, "ndim", 1) == 1:
have_raw_arrays = True
raw_lengths.append(len(val))
if not indexes and not raw_lengths:
raise ValueError("If using all scalar values, you must pass an index")
if have_series:
index = union_indexes(indexes)
elif have_dicts:
index = union_indexes(indexes, sort=False)
if have_raw_arrays:
lengths = list(set(raw_lengths))
if len(lengths) > 1:
raise ValueError("arrays must all be same length")
if have_dicts:
raise ValueError(
"Mixing dicts with non-Series may lead to ambiguous ordering."
)
if have_series:
if lengths[0] != len(index):
msg = (
f"array length {lengths[0]} does not match index "
f"length {len(index)}"
)
raise ValueError(msg)
else:
index = ibase.default_index(lengths[0])
return ensure_index(index)
def reorder_arrays(arrays, arr_columns, columns):
# reorder according to the columns
if (
columns is not None
and len(columns)
and arr_columns is not None
and len(arr_columns)
):
indexer = ensure_index(arr_columns).get_indexer(columns)
arr_columns = ensure_index([arr_columns[i] for i in indexer])
arrays = [arrays[i] for i in indexer]
return arrays, arr_columns
def get_names_from_index(data):
has_some_name = any(getattr(s, "name", None) is not None for s in data)
if not has_some_name:
return ibase.default_index(len(data))
index = list(range(len(data)))
count = 0
for i, s in enumerate(data):
n = getattr(s, "name", None)
if n is not None:
index[i] = n
else:
index[i] = f"Unnamed {count}"
count += 1
return index
def _get_axes(N, K, index, columns):
# helper to create the axes as indexes
# return axes or defaults
if index is None:
index = ibase.default_index(N)
else:
index = ensure_index(index)
if columns is None:
columns = ibase.default_index(K)
else:
columns = ensure_index(columns)
return index, columns
# ---------------------------------------------------------------------
# Conversion of Inputs to Arrays
def to_arrays(data, columns, coerce_float=False, dtype=None):
"""
Return list of arrays, columns.
"""
if isinstance(data, ABCDataFrame):
if columns is not None:
arrays = [
data._ixs(i, axis=1).values
for i, col in enumerate(data.columns)
if col in columns
]
else:
columns = data.columns
arrays = [data._ixs(i, axis=1).values for i in range(len(columns))]
return arrays, columns
if not len(data):
if isinstance(data, np.ndarray):
columns = data.dtype.names
if columns is not None:
return [[]] * len(columns), columns
return [], [] # columns if columns is not None else []
if isinstance(data[0], (list, tuple)):
return _list_to_arrays(data, columns, coerce_float=coerce_float, dtype=dtype)
elif isinstance(data[0], abc.Mapping):
return _list_of_dict_to_arrays(
data, columns, coerce_float=coerce_float, dtype=dtype
)
elif isinstance(data[0], ABCSeries):
return _list_of_series_to_arrays(
data, columns, coerce_float=coerce_float, dtype=dtype
)
elif isinstance(data[0], Categorical):
if columns is None:
columns = ibase.default_index(len(data))
return data, columns
elif (
isinstance(data, (np.ndarray, ABCSeries, Index))
and data.dtype.names is not None
):
columns = list(data.dtype.names)
arrays = [data[k] for k in columns]
return arrays, columns
else:
# last ditch effort
data = [tuple(x) for x in data]
return _list_to_arrays(data, columns, coerce_float=coerce_float, dtype=dtype)
def _list_to_arrays(data, columns, coerce_float=False, dtype=None):
if len(data) > 0 and isinstance(data[0], tuple):
content = list(lib.to_object_array_tuples(data).T)
else:
# list of lists
content = list(lib.to_object_array(data).T)
# gh-26429 do not raise user-facing AssertionError
try:
result = _convert_object_array(
content, columns, dtype=dtype, coerce_float=coerce_float
)
except AssertionError as e:
raise ValueError(e) from e
return result
def _list_of_series_to_arrays(data, columns, coerce_float=False, dtype=None):
if columns is None:
# We know pass_data is non-empty because data[0] is a Series
pass_data = [x for x in data if isinstance(x, (ABCSeries, ABCDataFrame))]
columns = get_objs_combined_axis(pass_data, sort=False)
indexer_cache = {}
aligned_values = []
for s in data:
index = getattr(s, "index", None)
if index is None:
index = ibase.default_index(len(s))
if id(index) in indexer_cache:
indexer = indexer_cache[id(index)]
else:
indexer = indexer_cache[id(index)] = index.get_indexer(columns)
values = com.values_from_object(s)
aligned_values.append(algorithms.take_1d(values, indexer))
values = np.vstack(aligned_values)
if values.dtype == np.object_:
content = list(values.T)
return _convert_object_array(
content, columns, dtype=dtype, coerce_float=coerce_float
)
else:
return values.T, columns
def _list_of_dict_to_arrays(data, columns, coerce_float=False, dtype=None):
"""Convert list of dicts to numpy arrays
if `columns` is not passed, column names are inferred from the records
- for OrderedDict and dicts, the column names match
the key insertion-order from the first record to the last.
- For other kinds of dict-likes, the keys are lexically sorted.
Parameters
----------
data : iterable
collection of records (OrderedDict, dict)
columns: iterables or None
coerce_float : bool
dtype : np.dtype
Returns
-------
tuple
arrays, columns
"""
if columns is None:
gen = (list(x.keys()) for x in data)
sort = not any(isinstance(d, dict) for d in data)
columns = lib.fast_unique_multiple_list_gen(gen, sort=sort)
# assure that they are of the base dict class and not of derived
# classes
data = [(type(d) is dict) and d or dict(d) for d in data]
content = list(lib.dicts_to_array(data, list(columns)).T)
return _convert_object_array(
content, columns, dtype=dtype, coerce_float=coerce_float
)
def _convert_object_array(content, columns, coerce_float=False, dtype=None):
if columns is None:
columns = ibase.default_index(len(content))
else:
if len(columns) != len(content): # pragma: no cover
# caller's responsibility to check for this...
raise AssertionError(
f"{len(columns)} columns passed, passed data had "
f"{len(content)} columns"
)
# provide soft conversion of object dtypes
def convert(arr):
if dtype != object and dtype != np.object:
arr = lib.maybe_convert_objects(arr, try_float=coerce_float)
arr = maybe_cast_to_datetime(arr, dtype)
return arr
arrays = [convert(arr) for arr in content]
return arrays, columns
# ---------------------------------------------------------------------
# Series-Based
def sanitize_index(data, index, copy=False):
"""
Sanitize an index type to return an ndarray of the underlying, pass
through a non-Index.
"""
if index is None:
return data
if len(data) != len(index):
raise ValueError("Length of values does not match length of index")
if isinstance(data, ABCIndexClass) and not copy:
pass
elif isinstance(data, (ABCPeriodIndex, ABCDatetimeIndex)):
data = data._values
if copy:
data = data.copy()
elif isinstance(data, np.ndarray):
# coerce datetimelike types
if data.dtype.kind in ["M", "m"]:
data = sanitize_array(data, index, copy=copy)
return data