Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
pandas / tests / indexes / conftest.py
Size: Mime:
import numpy as np
import pytest

import pandas as pd
import pandas._testing as tm
from pandas.core.indexes.api import Index, MultiIndex

indices_dict = {
    "unicode": tm.makeUnicodeIndex(100),
    "string": tm.makeStringIndex(100),
    "datetime": tm.makeDateIndex(100),
    "period": tm.makePeriodIndex(100),
    "timedelta": tm.makeTimedeltaIndex(100),
    "int": tm.makeIntIndex(100),
    "uint": tm.makeUIntIndex(100),
    "range": tm.makeRangeIndex(100),
    "float": tm.makeFloatIndex(100),
    "bool": Index([True, False]),
    "categorical": tm.makeCategoricalIndex(100),
    "interval": tm.makeIntervalIndex(100),
    "empty": Index([]),
    "tuples": MultiIndex.from_tuples(zip(["foo", "bar", "baz"], [1, 2, 3])),
    "repeats": Index([0, 0, 1, 1, 2, 2]),
}


@pytest.fixture(params=indices_dict.keys())
def indices(request):
    # copy to avoid mutation, e.g. setting .name
    return indices_dict[request.param].copy()


@pytest.fixture(params=[1, np.array(1, dtype=np.int64)])
def one(request):
    # zero-dim integer array behaves like an integer
    return request.param


zeros = [
    box([0] * 5, dtype=dtype)
    for box in [pd.Index, np.array]
    for dtype in [np.int64, np.uint64, np.float64]
]
zeros.extend([np.array(0, dtype=dtype) for dtype in [np.int64, np.uint64, np.float64]])
zeros.extend([0, 0.0])


@pytest.fixture(params=zeros)
def zero(request):
    # For testing division by (or of) zero for Index with length 5, this
    # gives several scalar-zeros and length-5 vector-zeros
    return request.param