Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
getdaft / daft / __init__.pyi
Size: Mime:
import builtins
import datetime
from enum import Enum
from typing import TYPE_CHECKING, Any, Callable, Iterator, Literal

from daft.catalog import Catalog, Table
from daft.dataframe.display import MermaidOptions
from daft.execution import physical_plan
from daft.io.scan import ScanOperator
from daft.plan_scheduler.physical_plan_scheduler import PartitionT
from daft.runners.partitioning import PartitionCacheEntry
from daft.sql.sql_connection import SQLConnection
from daft.udf import BoundUDFArgs, InitArgsType, UninitializedUdf

if TYPE_CHECKING:
    import pyarrow as pa
    from pyiceberg.schema import Schema as IcebergSchema
    from pyiceberg.table import TableProperties as IcebergTableProperties

    from daft.runners.runner import Runner

class ImageMode(Enum):
    """Supported image modes for Daft's image type.

    .. warning::
        Currently, only the 8-bit modes (L, LA, RGB, RGBA) can be stored in a DataFrame.
        If your binary image data includes other modes, use the `mode` argument
        in `image.decode` to convert the images to a supported mode.
    """

    #: 8-bit grayscale
    L: int

    #: 8-bit grayscale + alpha
    LA: int

    #: 8-bit RGB
    RGB: int

    #: 8-bit RGB + alpha
    RGBA: int

    #: 16-bit grayscale
    L16: int

    #: 16-bit grayscale + alpha
    LA16: int

    #: 16-bit RGB
    RGB16: int

    #: 16-bit RGB + alpha
    RGBA16: int

    #: 32-bit floating RGB
    RGB32F: int

    #: 32-bit floating RGB + alpha
    RGBA32F: int

    @staticmethod
    def from_mode_string(mode: str) -> ImageMode:
        """Create an ImageMode from its string representation.

        Args:
            mode: String representation of the mode. This is the same as the enum
                attribute name, e.g. ``ImageMode.from_mode_string("RGB")`` would
                return ``ImageMode.RGB``.
        """
        ...

class ImageFormat(Enum):
    """Supported image formats for Daft's image I/O."""

    PNG: int
    JPEG: int
    TIFF: int
    GIF: int
    BMP: int

    @staticmethod
    def from_format_string(mode: str) -> ImageFormat:
        """Create an ImageFormat from its string representation."""
        ...

class JoinType(Enum):
    """Type of a join operation."""

    Inner: int
    Left: int
    Right: int
    Outer: int
    Semi: int
    Anti: int

    @staticmethod
    def from_join_type_str(join_type: str) -> JoinType:
        """Create a JoinType from its string representation.

        Args:
            join_type: String representation of the join type. This is the same as the enum
                attribute name (but snake-case), e.g. ``JoinType.from_join_type_str("inner")`` would
                return ``JoinType.Inner``.
        """
        ...

class JoinStrategy(Enum):
    """Join strategy (algorithm) to use."""

    Hash: int
    SortMerge: int
    Broadcast: int

    @staticmethod
    def from_join_strategy_str(join_strategy: str) -> JoinStrategy:
        """Create a JoinStrategy from its string representation.

        Args:
            join_strategy: String representation of the join strategy. This is the same as the enum
                attribute name (but snake-case), e.g. ``JoinType.from_join_strategy_str("sort_merge")`` would
                return ``JoinStrategy.SortMerge``.
        """
        ...

class JoinSide(Enum):
    Left: int
    Right: int

class CountMode(Enum):
    """Supported count modes for Daft's count aggregation.

    | All   - Count both non-null and null values.
    | Valid - Count only valid values.
    | Null  - Count only null values.
    """

    All: int
    Valid: int
    Null: int

    @staticmethod
    def from_count_mode_str(count_mode: str) -> CountMode:
        """Create a CountMode from its string representation.

        Args:
            count_mode: String representation of the count mode , e.g. "all", "valid", or "null".
        """
        ...

class ResourceRequest:
    """Resource request for a query fragment task."""

    num_cpus: float | None
    num_gpus: float | None
    memory_bytes: int | None

    def __init__(
        self,
        num_cpus: float | None = None,
        num_gpus: float | None = None,
        memory_bytes: int | None = None,
    ): ...
    @staticmethod
    def max_resources(resource_requests: list[ResourceRequest]):
        """Take a field-wise max of the list of resource requests."""
        ...

    def with_num_cpus(self, num_cpus: float | None) -> ResourceRequest: ...
    def with_num_gpus(self, num_gpus: float | None) -> ResourceRequest: ...
    def with_memory_bytes(self, memory_bytes: int | None) -> ResourceRequest: ...
    def __mul__(self, factor: float) -> ResourceRequest: ...
    def __add__(self, other: ResourceRequest) -> ResourceRequest: ...
    def __repr__(self) -> str: ...
    def __eq__(self, other: ResourceRequest) -> bool: ...  # type: ignore[override]
    def __ne__(self, other: ResourceRequest) -> bool: ...  # type: ignore[override]

class FileFormat(Enum):
    """Format of a file, e.g. Parquet, CSV, and JSON."""

    Parquet: int
    Csv: int
    Json: int

    def ext(self): ...

class ParquetSourceConfig:
    """Configuration of a Parquet data source."""

    coerce_int96_timestamp_unit: PyTimeUnit | None
    field_id_mapping: dict[int, PyField] | None
    row_groups: list[list[int]] | None
    chunk_size: int | None

    def __init__(
        self,
        coerce_int96_timestamp_unit: PyTimeUnit | None = None,
        field_id_mapping: dict[int, PyField] | None = None,
        row_groups: list[list[int]] | None = None,
        chunk_size: int | None = None,
    ): ...

class CsvSourceConfig:
    """Configuration of a CSV data source."""

    delimiter: str | None
    has_headers: bool
    double_quote: bool
    quote: str | None
    escape_char: str | None
    comment: str | None
    allow_variable_columns: bool
    buffer_size: int | None
    chunk_size: int | None

    def __init__(
        self,
        has_headers: bool,
        double_quote: bool,
        allow_variable_columns: bool,
        delimiter: str | None,
        quote: str | None,
        escape_char: str | None,
        comment: str | None,
        buffer_size: int | None = None,
        chunk_size: int | None = None,
    ): ...

class JsonSourceConfig:
    """Configuration of a JSON data source."""

    buffer_size: int | None
    chunk_size: int | None

    def __init__(
        self,
        buffer_size: int | None = None,
        chunk_size: int | None = None,
    ): ...

class WarcSourceConfig:
    """Configuration of a Warc data source."""
    def __init__(self): ...

class DatabaseSourceConfig:
    """Configuration of a database data source."""

    sql: str
    conn: SQLConnection

    def __init__(self, sql: str, conn_factory: SQLConnection): ...

class FileFormatConfig:
    """Configuration for parsing a particular file format (Parquet, CSV, JSON)."""

    config: ParquetSourceConfig | CsvSourceConfig | JsonSourceConfig | DatabaseSourceConfig | WarcSourceConfig

    @staticmethod
    def from_parquet_config(config: ParquetSourceConfig) -> FileFormatConfig:
        """Create a Parquet file format config."""
        ...

    @staticmethod
    def from_csv_config(config: CsvSourceConfig) -> FileFormatConfig:
        """Create a CSV file format config."""
        ...

    @staticmethod
    def from_json_config(config: JsonSourceConfig) -> FileFormatConfig:
        """Create a JSON file format config."""
        ...

    @staticmethod
    def from_warc_config(config: WarcSourceConfig) -> FileFormatConfig:
        """Create a WARC file format config."""
        ...

    @staticmethod
    def from_database_config(config: DatabaseSourceConfig) -> FileFormatConfig:
        """Create a database file format config."""
        ...

    def file_format(self) -> FileFormat:
        """Get the file format for this config."""
        ...

    def __eq__(self, other: FileFormatConfig) -> bool: ...  # type: ignore[override]
    def __ne__(self, other: FileFormatConfig) -> bool: ...  # type: ignore[override]

class CsvConvertOptions:
    """Options for converting CSV data to Daft data."""

    limit: int | None
    include_columns: list[str] | None
    column_names: list[str] | None
    schema: PySchema | None
    predicate: PyExpr | None

    def __init__(
        self,
        limit: int | None = None,
        include_columns: list[str] | None = None,
        column_names: list[str] | None = None,
        schema: PySchema | None = None,
        predicate: PyExpr | None = None,
    ): ...

class CsvParseOptions:
    """Options for parsing CSV files."""

    has_header: bool
    delimiter: str | None
    double_quote: bool
    quote: str | None
    allow_variable_columns: bool
    escape_char: str | None
    comment: str | None

    def __init__(
        self,
        has_header: bool = True,
        delimiter: str | None = None,
        double_quote: bool = True,
        quote: str | None = None,
        allow_variable_columns: bool = False,
        escape_char: str | None = None,
        comment: str | None = None,
    ): ...

class CsvReadOptions:
    """Options for reading CSV files."""

    buffer_size: int | None
    chunk_size: int | None

    def __init__(
        self,
        buffer_size: int | None = None,
        chunk_size: int | None = None,
    ): ...

class JsonConvertOptions:
    """Options for converting JSON data to Daft data."""

    limit: int | None
    include_columns: list[str] | None
    schema: PySchema | None

    def __init__(
        self,
        limit: int | None = None,
        include_columns: list[str] | None = None,
        schema: PySchema | None = None,
    ): ...

class JsonParseOptions:
    """Options for parsing JSON files."""

class JsonReadOptions:
    """Options for reading JSON files."""

    buffer_size: int | None
    chunk_size: int | None

    def __init__(
        self,
        buffer_size: int | None = None,
        chunk_size: int | None = None,
    ): ...

class FileInfo:
    """Metadata for a single file."""

    file_path: str
    file_size: int | None
    num_rows: int | None

class FileInfos:
    """Metadata for a collection of files."""

    file_paths: list[str]
    file_sizes: list[int | None]
    num_rows: list[int | None]

    @staticmethod
    def from_infos(file_paths: list[str], file_sizes: list[int | None], num_rows: list[int | None]) -> FileInfos: ...
    def extend(self, new_infos: FileInfos) -> FileInfos:
        """Concatenate two FileInfos together."""
        ...

    def __getitem__(self, idx: int) -> FileInfo: ...
    def __len__(self) -> int: ...

class HTTPConfig:
    """I/O configuration for accessing HTTP systems."""

    bearer_token: str | None

    def __init__(self, bearer_token: str | None = None): ...

class S3Config:
    """I/O configuration for accessing an S3-compatible system."""

    region_name: str | None
    endpoint_url: str | None
    key_id: str | None
    session_token: str | None
    access_key: str | None
    credentials_provider: Callable[[], S3Credentials] | None
    max_connections: int
    retry_initial_backoff_ms: int
    connect_timeout_ms: int
    read_timeout_ms: int
    num_tries: int
    retry_mode: str | None
    anonymous: bool
    use_ssl: bool
    verify_ssl: bool
    check_hostname_ssl: bool
    requester_pays: bool | None
    force_virtual_addressing: bool | None
    profile_name: str | None

    def __init__(
        self,
        region_name: str | None = None,
        endpoint_url: str | None = None,
        key_id: str | None = None,
        session_token: str | None = None,
        access_key: str | None = None,
        credentials_provider: Callable[[], S3Credentials] | None = None,
        buffer_time: int | None = None,
        max_connections: int | None = None,
        retry_initial_backoff_ms: int | None = None,
        connect_timeout_ms: int | None = None,
        read_timeout_ms: int | None = None,
        num_tries: int | None = None,
        retry_mode: str | None = None,
        anonymous: bool | None = None,
        use_ssl: bool | None = None,
        verify_ssl: bool | None = None,
        check_hostname_ssl: bool | None = None,
        requester_pays: bool | None = None,
        force_virtual_addressing: bool | None = None,
        profile_name: str | None = None,
    ): ...
    def replace(
        self,
        region_name: str | None = None,
        endpoint_url: str | None = None,
        key_id: str | None = None,
        session_token: str | None = None,
        access_key: str | None = None,
        credentials_provider: Callable[[], S3Credentials] | None = None,
        max_connections: int | None = None,
        retry_initial_backoff_ms: int | None = None,
        connect_timeout_ms: int | None = None,
        read_timeout_ms: int | None = None,
        num_tries: int | None = None,
        retry_mode: str | None = None,
        anonymous: bool | None = None,
        use_ssl: bool | None = None,
        verify_ssl: bool | None = None,
        check_hostname_ssl: bool | None = None,
        requester_pays: bool | None = None,
        force_virtual_addressing: bool | None = None,
        profile_name: str | None = None,
    ) -> S3Config:
        """Replaces values if provided, returning a new S3Config."""
        ...

    @staticmethod
    def from_env() -> S3Config:
        """Creates an S3Config, retrieving credentials and configurations from the current environment."""
        ...

    def provide_cached_credentials(self) -> S3Credentials | None:
        """Wrapper around call to `S3Config.credentials_provider` to cache credentials until expiry."""
        ...

class S3Credentials:
    key_id: str
    access_key: str
    session_token: str | None
    expiry: datetime.datetime | None

    def __init__(
        self,
        key_id: str,
        access_key: str,
        session_token: str | None = None,
        expiry: datetime.datetime | None = None,
    ): ...

class AzureConfig:
    """I/O configuration for accessing Azure Blob Storage."""

    storage_account: str | None
    access_key: str | None
    sas_token: str | None
    bearer_token: str | None
    tenant_id: str | None
    client_id: str | None
    client_secret: str | None
    use_fabric_endpoint: bool | None
    anonymous: bool | None
    endpoint_url: str | None = None
    use_ssl: bool | None = None

    def __init__(
        self,
        storage_account: str | None = None,
        access_key: str | None = None,
        sas_token: str | None = None,
        bearer_token: str | None = None,
        tenant_id: str | None = None,
        client_id: str | None = None,
        client_secret: str | None = None,
        use_fabric_endpoint: bool | None = None,
        anonymous: bool | None = None,
        endpoint_url: str | None = None,
        use_ssl: bool | None = None,
    ): ...
    def replace(
        self,
        storage_account: str | None = None,
        access_key: str | None = None,
        sas_token: str | None = None,
        bearer_token: str | None = None,
        tenant_id: str | None = None,
        client_id: str | None = None,
        client_secret: str | None = None,
        use_fabric_endpoint: bool | None = None,
        anonymous: bool | None = None,
        endpoint_url: str | None = None,
        use_ssl: bool | None = None,
    ) -> AzureConfig:
        """Replaces values if provided, returning a new AzureConfig."""
        ...

class GCSConfig:
    """I/O configuration for accessing Google Cloud Storage."""

    project_id: str | None
    credentials: str | None
    token: str | None
    anonymous: bool
    max_connections: int
    retry_initial_backoff_ms: int
    connect_timeout_ms: int
    read_timeout_ms: int
    num_tries: int

    def __init__(
        self,
        project_id: str | None = None,
        credentials: str | None = None,
        token: str | None = None,
        anonymous: bool | None = None,
        max_connections: int | None = None,
        retry_initial_backoff_ms: int | None = None,
        connect_timeout_ms: int | None = None,
        read_timeout_ms: int | None = None,
        num_tries: int | None = None,
    ): ...
    def replace(
        self,
        project_id: str | None = None,
        credentials: str | None = None,
        token: str | None = None,
        anonymous: bool | None = None,
        max_connections: int | None = None,
        retry_initial_backoff_ms: int | None = None,
        connect_timeout_ms: int | None = None,
        read_timeout_ms: int | None = None,
        num_tries: int | None = None,
    ) -> GCSConfig:
        """Replaces values if provided, returning a new GCSConfig."""
        ...

class IOConfig:
    """Configuration for the native I/O layer, e.g. credentials for accessing cloud storage systems."""

    s3: S3Config
    azure: AzureConfig
    gcs: GCSConfig
    http: HTTPConfig

    def __init__(
        self,
        s3: S3Config | None = None,
        azure: AzureConfig | None = None,
        gcs: GCSConfig | None = None,
        http: HTTPConfig | None = None,
    ): ...
    def replace(
        self,
        s3: S3Config | None = None,
        azure: AzureConfig | None = None,
        gcs: GCSConfig | None = None,
        http: HTTPConfig | None = None,
    ) -> IOConfig:
        """Replaces values if provided, returning a new IOConfig."""
        ...

class StorageConfig:
    """Configuration for interacting with a particular storage backend."""

    # Whether or not to use a multithreaded tokio runtime for processing I/O
    multithreaded_io: bool
    io_config: IOConfig

    def __init__(self, multithreaded_io: bool, io_config: IOConfig | None): ...

class ScanTask:
    """A batch of scan tasks for reading data from an external source."""

    def num_rows(self) -> int:
        """Get number of rows that will be scanned by this ScanTask."""
        ...

    def estimate_in_memory_size_bytes(self, cfg: PyDaftExecutionConfig) -> int:
        """Estimate the In Memory Size of this ScanTask."""
        ...

    @staticmethod
    def catalog_scan_task(
        file: str,
        file_format: FileFormatConfig,
        schema: PySchema,
        storage_config: StorageConfig,
        num_rows: int | None,
        size_bytes: int | None,
        iceberg_delete_files: list[str] | None,
        pushdowns: Pushdowns | None,
        partition_values: PyRecordBatch | None,
        stats: PyRecordBatch | None,
    ) -> ScanTask | None:
        """Create a Catalog Scan Task."""
        ...

    @staticmethod
    def sql_scan_task(
        url: str,
        file_format: FileFormatConfig,
        schema: PySchema,
        storage_config: StorageConfig,
        num_rows: int | None,
        size_bytes: int | None,
        pushdowns: Pushdowns | None,
        stats: PyRecordBatch | None,
    ) -> ScanTask:
        """Create a SQL Scan Task."""
        ...

    @staticmethod
    def python_factory_func_scan_task(
        module: str,
        func_name: str,
        func_args: tuple[Any, ...],
        schema: PySchema,
        num_rows: int | None,
        size_bytes: int | None,
        pushdowns: Pushdowns | None,
        stats: PyRecordBatch | None,
    ) -> ScanTask:
        """Create a Python factory function Scan Task."""
        ...

class ScanOperatorHandle:
    """A handle to a scan operator."""

    @staticmethod
    def anonymous_scan(
        files: list[str],
        schema: PySchema,
        file_format_config: FileFormatConfig,
        storage_config: StorageConfig,
    ) -> ScanOperatorHandle: ...
    @staticmethod
    def glob_scan(
        glob_path: list[str],
        file_format_config: FileFormatConfig,
        storage_config: StorageConfig,
        hive_partitioning: bool,
        infer_schema: bool,
        schema: PySchema | None = None,
        file_path_column: str | None = None,
    ) -> ScanOperatorHandle: ...
    @staticmethod
    def from_python_scan_operator(operator: ScanOperator) -> ScanOperatorHandle: ...

def logical_plan_table_scan(scan_operator: ScanOperatorHandle) -> LogicalPlanBuilder: ...

class PartitionField:
    """Partitioning Field of a Scan Source such as Hive or Iceberg."""

    field: PyField

    def __init__(
        self,
        field: PyField,
        source_field: PyField | None = None,
        transform: PartitionTransform | None = None,
    ) -> None: ...

class PartitionTransform:
    """Partitioning Transform from a Data Catalog source field to a Partitioning Columns."""

    @staticmethod
    def identity() -> PartitionTransform: ...
    @staticmethod
    def year() -> PartitionTransform: ...
    @staticmethod
    def month() -> PartitionTransform: ...
    @staticmethod
    def day() -> PartitionTransform: ...
    @staticmethod
    def hour() -> PartitionTransform: ...
    @staticmethod
    def iceberg_bucket(n: int) -> PartitionTransform: ...
    @staticmethod
    def iceberg_truncate(w: int) -> PartitionTransform: ...

class Pushdowns:
    """Pushdowns from the query optimizer that can optimize scanning data sources."""

    columns: list[str] | None
    filters: PyExpr | None
    partition_filters: PyExpr | None
    limit: int | None

    def filter_required_column_names(self) -> list[str]:
        """List of field names that are required by the filter predicate."""
        ...

def read_parquet(
    uri: str,
    columns: list[str] | None = None,
    start_offset: int | None = None,
    num_rows: int | None = None,
    row_groups: list[int] | None = None,
    predicate: PyExpr | None = None,
    io_config: IOConfig | None = None,
    multithreaded_io: bool | None = None,
    coerce_int96_timestamp_unit: PyTimeUnit | None = None,
): ...
def read_parquet_bulk(
    uris: list[str],
    columns: list[str] | None = None,
    start_offset: int | None = None,
    num_rows: int | None = None,
    row_groups: list[list[int] | None] | None = None,
    predicate: PyExpr | None = None,
    io_config: IOConfig | None = None,
    num_parallel_tasks: int | None = 128,
    multithreaded_io: bool | None = None,
    coerce_int96_timestamp_unit: PyTimeUnit | None = None,
): ...
def read_parquet_statistics(
    uris: PySeries,
    io_config: IOConfig | None = None,
    multithreaded_io: bool | None = None,
): ...
def read_parquet_into_pyarrow(
    uri: str,
    columns: list[str] | None = None,
    start_offset: int | None = None,
    num_rows: int | None = None,
    row_groups: list[int] | None = None,
    io_config: IOConfig | None = None,
    multithreaded_io: bool | None = None,
    coerce_int96_timestamp_unit: PyTimeUnit | None = None,
    string_encoding: Literal["utf-8", "raw"] = "utf-8",
    file_timeout_ms: int | None = None,
): ...
def read_parquet_into_pyarrow_bulk(
    uris: list[str],
    columns: list[str] | None = None,
    start_offset: int | None = None,
    num_rows: int | None = None,
    row_groups: list[list[int] | None] | None = None,
    io_config: IOConfig | None = None,
    num_parallel_tasks: int | None = 128,
    multithreaded_io: bool | None = None,
    coerce_int96_timestamp_unit: PyTimeUnit | None = None,
): ...
def read_parquet_schema(
    uri: str,
    io_config: IOConfig | None = None,
    multithreaded_io: bool | None = None,
    coerce_int96_timestamp_unit: PyTimeUnit | None = None,
): ...
def read_csv(
    uri: str,
    convert_options: CsvConvertOptions | None = None,
    parse_options: CsvParseOptions | None = None,
    read_options: CsvReadOptions | None = None,
    io_config: IOConfig | None = None,
    multithreaded_io: bool | None = None,
): ...
def read_csv_schema(
    uri: str,
    parse_options: CsvParseOptions | None = None,
    io_config: IOConfig | None = None,
    multithreaded_io: bool | None = None,
): ...
def read_json(
    uri: str,
    convert_options: JsonConvertOptions | None = None,
    parse_options: JsonParseOptions | None = None,
    read_options: JsonReadOptions | None = None,
    io_config: IOConfig | None = None,
    multithreaded_io: bool | None = None,
    max_chunks_in_flight: int | None = None,
): ...
def read_json_schema(
    uri: str,
    parse_options: JsonParseOptions | None = None,
    io_config: IOConfig | None = None,
    multithreaded_io: bool | None = None,
): ...

class PyTimeUnit:
    @staticmethod
    def nanoseconds() -> PyTimeUnit: ...
    @staticmethod
    def microseconds() -> PyTimeUnit: ...
    @staticmethod
    def milliseconds() -> PyTimeUnit: ...
    @staticmethod
    def seconds() -> PyTimeUnit: ...

class PyDataType:
    @staticmethod
    def null() -> PyDataType: ...
    @staticmethod
    def bool() -> PyDataType: ...
    @staticmethod
    def int8() -> PyDataType: ...
    @staticmethod
    def int16() -> PyDataType: ...
    @staticmethod
    def int32() -> PyDataType: ...
    @staticmethod
    def int64() -> PyDataType: ...
    @staticmethod
    def uint8() -> PyDataType: ...
    @staticmethod
    def uint16() -> PyDataType: ...
    @staticmethod
    def uint32() -> PyDataType: ...
    @staticmethod
    def uint64() -> PyDataType: ...
    @staticmethod
    def float32() -> PyDataType: ...
    @staticmethod
    def float64() -> PyDataType: ...
    @staticmethod
    def binary() -> PyDataType: ...
    @staticmethod
    def fixed_size_binary(size: int) -> PyDataType: ...
    @staticmethod
    def string() -> PyDataType: ...
    @staticmethod
    def decimal128(precision: int, size: int) -> PyDataType: ...
    @staticmethod
    def date() -> PyDataType: ...
    @staticmethod
    def time(time_unit: PyTimeUnit) -> PyDataType: ...
    @staticmethod
    def timestamp(time_unit: PyTimeUnit, timezone: str | None = None) -> PyDataType: ...
    @staticmethod
    def duration(time_unit: PyTimeUnit) -> PyDataType: ...
    @staticmethod
    def interval() -> PyDataType: ...
    @staticmethod
    def list(data_type: PyDataType) -> PyDataType: ...
    @staticmethod
    def fixed_size_list(data_type: PyDataType, size: int) -> PyDataType: ...
    @staticmethod
    def map(key_type: PyDataType, value_type: PyDataType) -> PyDataType: ...
    @staticmethod
    def struct(fields: dict[str, PyDataType]) -> PyDataType: ...
    @staticmethod
    def extension(name: str, storage_data_type: PyDataType, metadata: str | None = None) -> PyDataType: ...
    @staticmethod
    def embedding(data_type: PyDataType, size: int) -> PyDataType: ...
    @staticmethod
    def image(
        mode: ImageMode | None = None,
        height: int | None = None,
        width: int | None = None,
    ) -> PyDataType: ...
    @staticmethod
    def tensor(dtype: PyDataType, shape: tuple[int, ...] | None = None) -> PyDataType: ...
    @staticmethod
    def sparse_tensor(dtype: PyDataType, shape: tuple[int, ...] | None = None) -> PyDataType: ...
    @staticmethod
    def python() -> PyDataType: ...
    def to_arrow(self, cast_tensor_type_for_ray: builtins.bool | None = None) -> pa.DataType: ...
    def is_numeric(self) -> builtins.bool: ...
    def is_integer(self) -> builtins.bool: ...
    def is_image(self) -> builtins.bool: ...
    def is_fixed_shape_image(self) -> builtins.bool: ...
    def is_list(self) -> builtins.bool: ...
    def is_tensor(self) -> builtins.bool: ...
    def is_fixed_shape_tensor(self) -> builtins.bool: ...
    def is_sparse_tensor(self) -> builtins.bool: ...
    def is_fixed_shape_sparse_tensor(self) -> builtins.bool: ...
    def is_map(self) -> builtins.bool: ...
    def is_logical(self) -> builtins.bool: ...
    def is_boolean(self) -> builtins.bool: ...
    def is_string(self) -> builtins.bool: ...
    def is_temporal(self) -> builtins.bool: ...
    def is_equal(self, other: Any) -> builtins.bool: ...
    @staticmethod
    def from_json(serialized: str) -> PyDataType: ...
    def __reduce__(self) -> tuple: ...
    def __hash__(self) -> int: ...

class PyField:
    def name(self) -> str: ...
    @staticmethod
    def create(name: str, datatype: PyDataType) -> PyField: ...
    def dtype(self) -> PyDataType: ...
    def eq(self, other: PyField) -> bool: ...
    def __reduce__(self) -> tuple: ...

class PySchema:
    def __getitem__(self, name: str) -> PyField: ...
    def names(self) -> list[str]: ...
    def union(self, other: PySchema) -> PySchema: ...
    def eq(self, other: PySchema) -> bool: ...
    def estimate_row_size_bytes(self) -> float: ...
    @staticmethod
    def from_field_name_and_types(names_and_types: list[tuple[str, PyDataType]]) -> PySchema: ...
    @staticmethod
    def from_fields(fields: list[PyField]) -> PySchema: ...
    def to_pyarrow_schema(self) -> pa.Schema: ...
    def __reduce__(self) -> tuple: ...
    def __repr__(self) -> str: ...
    def _repr_html_(self) -> str: ...
    def _truncated_table_html(self) -> str: ...
    def _truncated_table_string(self) -> str: ...
    def apply_hints(self, hints: PySchema) -> PySchema: ...

class PyExpr:
    def alias(self, name: str) -> PyExpr: ...
    def cast(self, dtype: PyDataType) -> PyExpr: ...
    def if_else(self, if_true: PyExpr, if_false: PyExpr) -> PyExpr: ...
    def count(self, mode: CountMode) -> PyExpr: ...
    def count_distinct(self) -> PyExpr: ...
    def sum(self) -> PyExpr: ...
    def approx_count_distinct(self) -> PyExpr: ...
    def approx_percentiles(self, percentiles: float | list[float]) -> PyExpr: ...
    def mean(self) -> PyExpr: ...
    def stddev(self) -> PyExpr: ...
    def min(self) -> PyExpr: ...
    def max(self) -> PyExpr: ...
    def bool_and(self) -> PyExpr: ...
    def bool_or(self) -> PyExpr: ...
    def any_value(self, ignore_nulls: bool) -> PyExpr: ...
    def agg_list(self) -> PyExpr: ...
    def agg_set(self) -> PyExpr: ...
    def agg_concat(self) -> PyExpr: ...
    def __add__(self, other: PyExpr) -> PyExpr: ...
    def __sub__(self, other: PyExpr) -> PyExpr: ...
    def __mul__(self, other: PyExpr) -> PyExpr: ...
    def __floordiv__(self, other: PyExpr) -> PyExpr: ...
    def __truediv__(self, other: PyExpr) -> PyExpr: ...
    def __mod__(self, other: PyExpr) -> PyExpr: ...
    def __and__(self, other: PyExpr) -> PyExpr: ...
    def __or__(self, other: PyExpr) -> PyExpr: ...
    def __xor__(self, other: PyExpr) -> PyExpr: ...
    def __invert__(self) -> PyExpr: ...
    def __lt__(self, other: PyExpr) -> PyExpr: ...
    def __le__(self, other: PyExpr) -> PyExpr: ...
    def __gt__(self, other: PyExpr) -> PyExpr: ...
    def __ge__(self, other: PyExpr) -> PyExpr: ...
    def __eq__(self, other: PyExpr) -> PyExpr: ...  # type: ignore[override]
    def __ne__(self, other: PyExpr) -> PyExpr: ...  # type: ignore[override]
    def __rshift__(self, other: PyExpr) -> PyExpr: ...
    def __lshift__(self, other: PyExpr) -> PyExpr: ...
    def is_null(self) -> PyExpr: ...
    def not_null(self) -> PyExpr: ...
    def fill_null(self, fill_value: PyExpr) -> PyExpr: ...
    def eq_null_safe(self, other: PyExpr) -> PyExpr: ...
    def is_in(self, other: list[PyExpr]) -> PyExpr: ...
    def between(self, lower: PyExpr, upper: PyExpr) -> PyExpr: ...
    def name(self) -> str: ...
    def to_field(self, schema: PySchema) -> PyField: ...
    def to_sql(self) -> str: ...
    def __repr__(self) -> str: ...
    def __hash__(self) -> int: ...
    def __reduce__(self) -> tuple: ...
    def struct_get(self, name: str) -> PyExpr: ...
    def map_get(self, key: PyExpr) -> PyExpr: ...
    def partitioning_days(self) -> PyExpr: ...
    def partitioning_hours(self) -> PyExpr: ...
    def partitioning_months(self) -> PyExpr: ...
    def partitioning_years(self) -> PyExpr: ...
    def partitioning_iceberg_bucket(self, n: int) -> PyExpr: ...
    def partitioning_iceberg_truncate(self, w: int) -> PyExpr: ...

    ###
    # Helper methods required by optimizer:
    # These should be removed from the Python API for Expressions when logical plans and optimizer are migrated to Rust
    ###
    def _input_mapping(self) -> builtins.str | None: ...

def eq(expr1: PyExpr, expr2: PyExpr) -> bool: ...
def unresolved_col(name: str) -> PyExpr: ...
def resolved_col(name: str) -> PyExpr: ...
def lit(item: Any) -> PyExpr: ...
def list_(items: list[PyExpr]) -> PyExpr: ...
def date_lit(item: int) -> PyExpr: ...
def time_lit(item: int, tu: PyTimeUnit) -> PyExpr: ...
def timestamp_lit(item: int, tu: PyTimeUnit, tz: str | None) -> PyExpr: ...
def duration_lit(item: int, tu: PyTimeUnit) -> PyExpr: ...
def interval_lit(
    years: int | None,
    months: int | None,
    days: int | None,
    hours: int | None,
    minutes: int | None,
    seconds: int | None,
    millis: int | None,
    nanos: int | None,
) -> PyExpr: ...
def decimal_lit(sign: bool, digits: tuple[int, ...], exp: int) -> PyExpr: ...
def series_lit(item: PySeries) -> PyExpr: ...
def udf(
    name: str,
    inner: UninitializedUdf,
    bound_args: BoundUDFArgs,
    expressions: list[PyExpr],
    return_dtype: PyDataType,
    init_args: InitArgsType,
    resource_request: ResourceRequest | None,
    batch_size: int | None,
    concurrency: int | None,
) -> PyExpr: ...
def initialize_udfs(expression: PyExpr) -> PyExpr: ...
def get_udf_names(expression: PyExpr) -> list[str]: ...
def resolve_expr(expr: PyExpr, schema: PySchema) -> tuple[PyExpr, PyField]: ...
def hash(expr: PyExpr, seed: Any | None = None) -> PyExpr: ...
def cosine_distance(expr: PyExpr, other: PyExpr) -> PyExpr: ...
def url_download(
    expr: PyExpr,
    max_connections: int,
    raise_error_on_failure: bool,
    multi_thread: bool,
    config: IOConfig,
) -> PyExpr: ...
def url_upload(
    expr: PyExpr,
    folder_location: PyExpr,
    max_connections: int,
    raise_error_on_failure: bool,
    multi_thread: bool,
    is_single_folder: bool,
    io_config: IOConfig | None,
) -> PyExpr: ...
def tokenize_encode(
    expr: PyExpr,
    tokens_path: str,
    use_special_tokens: bool,
    io_config: IOConfig | None,
    pattern: str | None,
    special_tokens: str | None,
) -> PyExpr: ...
def tokenize_decode(
    expr: PyExpr,
    tokens_path: str,
    io_config: IOConfig | None,
    pattern: str | None,
    special_tokens: str | None,
) -> PyExpr: ...
def minhash(
    expr: PyExpr,
    num_hashes: int,
    ngram_size: int,
    seed: int = 1,
    hash_function: Literal["murmurhash3", "xxhash", "sha1"] = "murmurhash3",
) -> PyExpr: ...
def coalesce(exprs: list[PyExpr]) -> PyExpr: ...

# -----
# SQL functions
# -----
class SQLFunctionStub:
    @property
    def name(self) -> str: ...
    @property
    def docstring(self) -> str: ...
    @property
    def arg_names(self) -> list[str]: ...

def plan_sql(source: str, session: PySession, config: PyDaftPlanningConfig) -> LogicalPlanBuilder: ...
def sql(sql: str, catalog: PyCatalog, daft_planning_config: PyDaftPlanningConfig) -> LogicalPlanBuilder: ...
def sql_expr(sql: str) -> PyExpr: ...
def list_sql_functions() -> list[SQLFunctionStub]: ...
def utf8_count_matches(expr: PyExpr, patterns: PyExpr, whole_words: bool, case_sensitive: bool) -> PyExpr: ...
def struct(inputs: list[PyExpr]) -> PyExpr: ...
def connect_start(addr: str = "sc://0.0.0.0:0") -> ConnectionHandle: ...

class ConnectionHandle:
    def shutdown(self) -> None: ...
    def port(self) -> int: ...

# expr numeric ops
def abs(expr: PyExpr) -> PyExpr: ...
def cbrt(expr: PyExpr) -> PyExpr: ...
def ceil(expr: PyExpr) -> PyExpr: ...
def clip(expr: PyExpr, min: PyExpr, max: PyExpr) -> PyExpr: ...
def exp(expr: PyExpr) -> PyExpr: ...
def expm1(expr: PyExpr) -> PyExpr: ...
def floor(expr: PyExpr) -> PyExpr: ...
def log2(expr: PyExpr) -> PyExpr: ...
def log10(expr: PyExpr) -> PyExpr: ...
def log(expr: PyExpr, base: float) -> PyExpr: ...
def ln(expr: PyExpr) -> PyExpr: ...
def log1p(expr: PyExpr) -> PyExpr: ...
def round(expr: PyExpr, decimal: int) -> PyExpr: ...
def sign(expr: PyExpr) -> PyExpr: ...
def sqrt(expr: PyExpr) -> PyExpr: ...
def sin(expr: PyExpr) -> PyExpr: ...
def cos(expr: PyExpr) -> PyExpr: ...
def tan(expr: PyExpr) -> PyExpr: ...
def csc(expr: PyExpr) -> PyExpr: ...
def sec(expr: PyExpr) -> PyExpr: ...
def cot(expr: PyExpr) -> PyExpr: ...
def sinh(expr: PyExpr) -> PyExpr: ...
def cosh(expr: PyExpr) -> PyExpr: ...
def tanh(expr: PyExpr) -> PyExpr: ...
def arcsin(expr: PyExpr) -> PyExpr: ...
def arccos(expr: PyExpr) -> PyExpr: ...
def arctan(expr: PyExpr) -> PyExpr: ...
def arctan2(expr: PyExpr, other: PyExpr) -> PyExpr: ...
def radians(expr: PyExpr) -> PyExpr: ...
def degrees(expr: PyExpr) -> PyExpr: ...
def arctanh(expr: PyExpr) -> PyExpr: ...
def arccosh(expr: PyExpr) -> PyExpr: ...
def arcsinh(expr: PyExpr) -> PyExpr: ...

# ---
# expr.image namespace
# ---
def image_crop(expr: PyExpr, bbox: PyExpr) -> PyExpr: ...
def image_decode(expr: PyExpr, raise_on_error: bool, mode: ImageMode | None = None) -> PyExpr: ...
def image_encode(expr: PyExpr, image_format: ImageFormat) -> PyExpr: ...
def image_resize(expr: PyExpr, w: int, h: int) -> PyExpr: ...
def image_to_mode(expr: PyExpr, mode: ImageMode) -> PyExpr: ...

# ---
# expr.float namespace
# ---
def is_nan(expr: PyExpr) -> PyExpr: ...
def is_inf(expr: PyExpr) -> PyExpr: ...
def not_nan(expr: PyExpr) -> PyExpr: ...
def fill_nan(expr: PyExpr, fill_value: PyExpr) -> PyExpr: ...

# ---
# expr.json namespace
# ---
def json_query(expr: PyExpr, query: str) -> PyExpr: ...

# ---
# expr.dt namespace
# ---
def dt_date(expr: PyExpr) -> PyExpr: ...
def dt_day(expr: PyExpr) -> PyExpr: ...
def dt_hour(expr: PyExpr) -> PyExpr: ...
def dt_minute(expr: PyExpr) -> PyExpr: ...
def dt_second(expr: PyExpr) -> PyExpr: ...
def dt_time(expr: PyExpr) -> PyExpr: ...
def dt_month(expr: PyExpr) -> PyExpr: ...
def dt_year(expr: PyExpr) -> PyExpr: ...
def dt_day_of_week(expr: PyExpr) -> PyExpr: ...
def dt_truncate(expr: PyExpr, interval: str, relative_to: PyExpr) -> PyExpr: ...

# ---
# expr.list namespace
# ---
def explode(expr: PyExpr) -> PyExpr: ...
def list_sort(expr: PyExpr, desc: PyExpr, nulls_first: PyExpr) -> PyExpr: ...
def list_distinct(expr: PyExpr) -> PyExpr: ...
def list_value_counts(expr: PyExpr) -> PyExpr: ...
def list_join(expr: PyExpr, delimiter: PyExpr) -> PyExpr: ...
def list_count(expr: PyExpr, mode: CountMode) -> PyExpr: ...
def list_get(expr: PyExpr, idx: PyExpr, default: PyExpr) -> PyExpr: ...
def list_sum(expr: PyExpr) -> PyExpr: ...
def list_mean(expr: PyExpr) -> PyExpr: ...
def list_min(expr: PyExpr) -> PyExpr: ...
def list_max(expr: PyExpr) -> PyExpr: ...
def list_bool_and(expr: PyExpr) -> PyExpr: ...
def list_bool_or(expr: PyExpr) -> PyExpr: ...
def list_slice(expr: PyExpr, start: PyExpr, end: PyExpr | None = None) -> PyExpr: ...
def list_chunk(expr: PyExpr, size: int) -> PyExpr: ...

# ---
# expr.utf8 namespace
# ---
def utf8_endswith(expr: PyExpr, pattern: PyExpr) -> PyExpr: ...
def utf8_startswith(expr: PyExpr, pattern: PyExpr) -> PyExpr: ...
def utf8_contains(expr: PyExpr, pattern: PyExpr) -> PyExpr: ...
def utf8_match(expr: PyExpr, pattern: PyExpr) -> PyExpr: ...
def utf8_split(expr: PyExpr, pattern: PyExpr, regex: bool) -> PyExpr: ...
def utf8_extract(expr: PyExpr, pattern: PyExpr, index: int) -> PyExpr: ...
def utf8_extract_all(expr: PyExpr, pattern: PyExpr, index: int) -> PyExpr: ...
def utf8_replace(expr: PyExpr, pattern: PyExpr, replacement: PyExpr, regex: bool) -> PyExpr: ...
def utf8_length(expr: PyExpr) -> PyExpr: ...
def utf8_length_bytes(expr: PyExpr) -> PyExpr: ...
def utf8_lower(expr: PyExpr) -> PyExpr: ...
def utf8_upper(expr: PyExpr) -> PyExpr: ...
def utf8_lstrip(expr: PyExpr) -> PyExpr: ...
def utf8_rstrip(expr: PyExpr) -> PyExpr: ...
def utf8_reverse(expr: PyExpr) -> PyExpr: ...
def utf8_capitalize(expr: PyExpr) -> PyExpr: ...
def utf8_left(expr: PyExpr, nchars: PyExpr) -> PyExpr: ...
def utf8_right(expr: PyExpr, nchars: PyExpr) -> PyExpr: ...
def utf8_find(expr: PyExpr, substr: PyExpr) -> PyExpr: ...
def utf8_rpad(expr: PyExpr, length: PyExpr, pad: PyExpr) -> PyExpr: ...
def utf8_lpad(expr: PyExpr, length: PyExpr, pad: PyExpr) -> PyExpr: ...
def utf8_repeat(expr: PyExpr, n: PyExpr) -> PyExpr: ...
def utf8_like(expr: PyExpr, pattern: PyExpr) -> PyExpr: ...
def utf8_ilike(expr: PyExpr, pattern: PyExpr) -> PyExpr: ...
def utf8_substr(expr: PyExpr, start: PyExpr, length: PyExpr) -> PyExpr: ...
def utf8_to_date(expr: PyExpr, format: str) -> PyExpr: ...
def utf8_to_datetime(expr: PyExpr, format: str, timezone: str | None = None) -> PyExpr: ...
def utf8_normalize(
    expr: PyExpr, remove_punct: bool, lowercase: bool, nfd_unicode: bool, white_space: bool
) -> PyExpr: ...

# ---
# expr.binary namespace
# ---
def binary_length(expr: PyExpr) -> PyExpr: ...
def binary_concat(left: PyExpr, right: PyExpr) -> PyExpr: ...
def binary_slice(expr: PyExpr, start: PyExpr, length: PyExpr | None = None) -> PyExpr: ...

class PyCatalog:
    @staticmethod
    def new() -> PyCatalog: ...
    def register_table(self, name: str, logical_plan_builder: LogicalPlanBuilder) -> None: ...
    def copy_from(self, other: PyCatalog) -> None: ...

class PySeries:
    @staticmethod
    def from_arrow(name: str, pyarrow_array: pa.Array) -> PySeries: ...
    @staticmethod
    def from_pylist(name: str, pylist: list[Any], pyobj: str) -> PySeries: ...
    def to_pylist(self) -> list[Any]: ...
    def to_arrow(self) -> pa.Array: ...
    def __abs__(self) -> PySeries: ...
    def __add__(self, other: PySeries) -> PySeries: ...
    def __sub__(self, other: PySeries) -> PySeries: ...
    def __mul__(self, other: PySeries) -> PySeries: ...
    def __truediv__(self, other: PySeries) -> PySeries: ...
    def __mod__(self, other: PySeries) -> PySeries: ...
    def __and__(self, other: PySeries) -> PySeries: ...
    def __or__(self, other: PySeries) -> PySeries: ...
    def __xor__(self, other: PySeries) -> PySeries: ...
    def __lt__(self, other: PySeries) -> PySeries: ...
    def __le__(self, other: PySeries) -> PySeries: ...
    def __gt__(self, other: PySeries) -> PySeries: ...
    def __ge__(self, other: PySeries) -> PySeries: ...
    def __eq__(self, other: PySeries) -> PySeries: ...  # type: ignore[override]
    def __ne__(self, other: PySeries) -> PySeries: ...  # type: ignore[override]
    def __rshift__(self, other: PySeries) -> PySeries: ...
    def __lshift__(self, other: PySeries) -> PySeries: ...
    def __floordiv__(self, other: PySeries) -> PySeries: ...
    def take(self, idx: PySeries) -> PySeries: ...
    def slice(self, start: int, end: int) -> PySeries: ...
    def filter(self, mask: PySeries) -> PySeries: ...
    def sort(self, descending: bool, nulls_first: bool) -> PySeries: ...
    def argsort(self, descending: bool, nulls_first: bool) -> PySeries: ...
    def hash(self, seed: PySeries | None = None) -> PySeries: ...
    def minhash(
        self,
        num_hashes: int,
        ngram_size: int,
        seed: int = 1,
        hash_function: Literal["murmurhash3", "xxhash", "sha1"] = "murmurhash3",
    ) -> PySeries: ...
    def __invert__(self) -> PySeries: ...
    def count(self, mode: CountMode) -> PySeries: ...
    def count_distinct(self) -> PySeries: ...
    def sum(self) -> PySeries: ...
    def mean(self) -> PySeries: ...
    def stddev(self) -> PySeries: ...
    def min(self) -> PySeries: ...
    def max(self) -> PySeries: ...
    def agg_list(self) -> PySeries: ...
    def agg_set(self) -> PySeries: ...
    def cast(self, dtype: PyDataType) -> PySeries: ...
    def ceil(self) -> PySeries: ...
    def floor(self) -> PySeries: ...
    def sign(self) -> PySeries: ...
    def round(self, decimal: int) -> PySeries: ...
    def clip(self, min: PySeries, max: PySeries) -> PySeries: ...
    def sqrt(self) -> PySeries: ...
    def cbrt(self) -> PySeries: ...
    def sin(self) -> PySeries: ...
    def cos(self) -> PySeries: ...
    def tan(self) -> PySeries: ...
    def csc(self) -> PySeries: ...
    def sec(self) -> PySeries: ...
    def cot(self) -> PySeries: ...
    def sinh(self) -> PySeries: ...
    def cosh(self) -> PySeries: ...
    def tanh(self) -> PySeries: ...
    def arcsin(self) -> PySeries: ...
    def arccos(self) -> PySeries: ...
    def arctan(self) -> PySeries: ...
    def arctan2(self, other: PySeries) -> PySeries: ...
    def arctanh(self) -> PySeries: ...
    def arccosh(self) -> PySeries: ...
    def arcsinh(self) -> PySeries: ...
    def degrees(self) -> PySeries: ...
    def radians(self) -> PySeries: ...
    def log2(self) -> PySeries: ...
    def log10(self) -> PySeries: ...
    def log(self, base: float) -> PySeries: ...
    def ln(self) -> PySeries: ...
    def log1p(self) -> PySeries: ...
    def exp(self) -> PySeries: ...
    def expm1(self) -> PySeries: ...
    @staticmethod
    def concat(series: list[PySeries]) -> PySeries: ...
    def __len__(self) -> int: ...
    def size_bytes(self) -> int: ...
    def name(self) -> str: ...
    def rename(self, name: str) -> PySeries: ...
    def data_type(self) -> PyDataType: ...
    def utf8_endswith(self, pattern: PySeries) -> PySeries: ...
    def utf8_startswith(self, pattern: PySeries) -> PySeries: ...
    def utf8_contains(self, pattern: PySeries) -> PySeries: ...
    def utf8_match(self, pattern: PySeries) -> PySeries: ...
    def utf8_split(self, pattern: PySeries, regex: bool) -> PySeries: ...
    def utf8_extract(self, pattern: PySeries, index: int) -> PySeries: ...
    def utf8_extract_all(self, pattern: PySeries, index: int) -> PySeries: ...
    def utf8_replace(self, pattern: PySeries, replacement: PySeries, regex: bool) -> PySeries: ...
    def utf8_length(self) -> PySeries: ...
    def utf8_length_bytes(self) -> PySeries: ...
    def utf8_lower(self) -> PySeries: ...
    def utf8_upper(self) -> PySeries: ...
    def utf8_lstrip(self) -> PySeries: ...
    def utf8_rstrip(self) -> PySeries: ...
    def utf8_reverse(self) -> PySeries: ...
    def utf8_capitalize(self) -> PySeries: ...
    def utf8_left(self, nchars: PySeries) -> PySeries: ...
    def utf8_right(self, nchars: PySeries) -> PySeries: ...
    def utf8_find(self, substr: PySeries) -> PySeries: ...
    def utf8_rpad(self, length: PySeries, pad: PySeries) -> PySeries: ...
    def utf8_lpad(self, length: PySeries, pad: PySeries) -> PySeries: ...
    def utf8_repeat(self, n: PySeries) -> PySeries: ...
    def utf8_like(self, pattern: PySeries) -> PySeries: ...
    def utf8_ilike(self, pattern: PySeries) -> PySeries: ...
    def utf8_substr(self, start: PySeries, length: PySeries | None = None) -> PySeries: ...
    def utf8_to_date(self, format: str) -> PySeries: ...
    def utf8_to_datetime(self, format: str, timezone: str | None = None) -> PySeries: ...
    def utf8_normalize(self, remove_punct: bool, lowercase: bool, nfd_unicode: bool, white_space: bool) -> PySeries: ...
    def utf8_count_matches(self, patterns: PySeries, whole_word: bool, case_sensitive: bool) -> PySeries: ...
    def is_nan(self) -> PySeries: ...
    def is_inf(self) -> PySeries: ...
    def not_nan(self) -> PySeries: ...
    def fill_nan(self, fill_value: PySeries) -> PySeries: ...
    def dt_date(self) -> PySeries: ...
    def dt_day(self) -> PySeries: ...
    def dt_hour(self) -> PySeries: ...
    def dt_minute(self) -> PySeries: ...
    def dt_second(self) -> PySeries: ...
    def dt_time(self) -> PySeries: ...
    def dt_month(self) -> PySeries: ...
    def dt_year(self) -> PySeries: ...
    def dt_day_of_week(self) -> PySeries: ...
    def dt_truncate(self, interval: str, relative_to: PySeries) -> PySeries: ...
    def partitioning_days(self) -> PySeries: ...
    def partitioning_hours(self) -> PySeries: ...
    def partitioning_months(self) -> PySeries: ...
    def partitioning_years(self) -> PySeries: ...
    def partitioning_iceberg_bucket(self, n: int) -> PySeries: ...
    def partitioning_iceberg_truncate(self, w: int) -> PySeries: ...
    def list_count(self, mode: CountMode) -> PySeries: ...
    def list_get(self, idx: PySeries, default: PySeries) -> PySeries: ...
    def list_slice(self, start: PySeries, end: PySeries | None = None) -> PySeries: ...
    def list_sort(self, desc: PySeries, nulls_first: PySeries) -> PySeries: ...
    def map_get(self, key: PySeries) -> PySeries: ...
    def if_else(self, other: PySeries, predicate: PySeries) -> PySeries: ...
    def is_null(self) -> PySeries: ...
    def not_null(self) -> PySeries: ...
    def fill_null(self, fill_value: PySeries) -> PySeries: ...
    def murmur3_32(self) -> PySeries: ...
    def to_str_values(self) -> PySeries: ...
    def _debug_bincode_serialize(self) -> bytes: ...
    @staticmethod
    def _debug_bincode_deserialize(b: bytes) -> PySeries: ...

class PyRecordBatch:
    def schema(self) -> PySchema: ...
    def cast_to_schema(self, schema: PySchema) -> PyRecordBatch: ...
    def eval_expression_list(self, exprs: list[PyExpr]) -> PyRecordBatch: ...
    def take(self, idx: PySeries) -> PyRecordBatch: ...
    def filter(self, exprs: list[PyExpr]) -> PyRecordBatch: ...
    def sort(self, sort_keys: list[PyExpr], descending: list[bool], nulls_first: list[bool]) -> PyRecordBatch: ...
    def argsort(self, sort_keys: list[PyExpr], descending: list[bool], nulls_first: list[bool]) -> PySeries: ...
    def agg(self, to_agg: list[PyExpr], group_by: list[PyExpr]) -> PyRecordBatch: ...
    def pivot(
        self,
        group_by: list[PyExpr],
        pivot_column: PyExpr,
        values_column: PyExpr,
        names: list[str],
    ) -> PyRecordBatch: ...
    def hash_join(
        self,
        right: PyRecordBatch,
        left_on: list[PyExpr],
        right_on: list[PyExpr],
        how: JoinType,
    ) -> PyRecordBatch: ...
    def sort_merge_join(
        self,
        right: PyRecordBatch,
        left_on: list[PyExpr],
        right_on: list[PyExpr],
        is_sorted: bool,
    ) -> PyRecordBatch: ...
    def explode(self, to_explode: list[PyExpr]) -> PyRecordBatch: ...
    def head(self, num: int) -> PyRecordBatch: ...
    def sample_by_fraction(self, fraction: float, with_replacement: bool, seed: int | None) -> PyRecordBatch: ...
    def sample_by_size(self, size: int, with_replacement: bool, seed: int | None) -> PyRecordBatch: ...
    def quantiles(self, num: int) -> PyRecordBatch: ...
    def partition_by_hash(self, exprs: list[PyExpr], num_partitions: int) -> list[PyRecordBatch]: ...
    def partition_by_random(self, num_partitions: int, seed: int) -> list[PyRecordBatch]: ...
    def partition_by_range(
        self, partition_keys: list[PyExpr], boundaries: PyRecordBatch, descending: list[bool]
    ) -> list[PyRecordBatch]: ...
    def partition_by_value(self, partition_keys: list[PyExpr]) -> tuple[list[PyRecordBatch], PyRecordBatch]: ...
    def add_monotonically_increasing_id(self, partition_num: int, column_name: str) -> PyRecordBatch: ...
    def __repr__(self) -> str: ...
    def _repr_html_(self) -> str: ...
    def __len__(self) -> int: ...
    def size_bytes(self) -> int: ...
    def column_names(self) -> list[str]: ...
    def get_column(self, name: str) -> PySeries: ...
    def get_column_by_index(self, idx: int) -> PySeries: ...
    @staticmethod
    def concat(tables: list[PyRecordBatch]) -> PyRecordBatch: ...
    def slice(self, start: int, end: int) -> PyRecordBatch: ...
    @staticmethod
    def from_arrow_record_batches(record_batches: list[pa.RecordBatch], schema: PySchema) -> PyRecordBatch: ...
    @staticmethod
    def from_pylist_series(dict: dict[str, PySeries]) -> PyRecordBatch: ...
    def to_arrow_record_batch(self) -> pa.RecordBatch: ...
    @staticmethod
    def empty(schema: PySchema | None = None) -> PyRecordBatch: ...
    @staticmethod
    def from_file_infos(file_infos: FileInfos) -> PyRecordBatch: ...
    def to_file_infos(self) -> FileInfos: ...

class PyMicroPartition:
    def schema(self) -> PySchema: ...
    def column_names(self) -> list[str]: ...
    def get_column(self, name: str) -> PySeries: ...
    def size_bytes(self) -> int | None: ...
    def _repr_html_(self) -> str: ...
    @staticmethod
    def empty(schema: PySchema | None = None) -> PyMicroPartition: ...
    @staticmethod
    def from_scan_task(scan_task: ScanTask) -> PyMicroPartition: ...
    @staticmethod
    def from_tables(tables: list[PyRecordBatch]) -> PyMicroPartition: ...
    @staticmethod
    def from_arrow_record_batches(record_batches: list[pa.RecordBatch], schema: PySchema) -> PyMicroPartition: ...
    @staticmethod
    def concat(tables: list[PyMicroPartition]) -> PyMicroPartition: ...
    def slice(self, start: int, end: int) -> PyMicroPartition: ...
    def to_table(self) -> PyRecordBatch: ...
    def cast_to_schema(self, schema: PySchema) -> PyMicroPartition: ...
    def eval_expression_list(self, exprs: list[PyExpr]) -> PyMicroPartition: ...
    def take(self, idx: PySeries) -> PyMicroPartition: ...
    def filter(self, exprs: list[PyExpr]) -> PyMicroPartition: ...
    def sort(self, sort_keys: list[PyExpr], descending: list[bool], nulls_first: list[bool]) -> PyMicroPartition: ...
    def argsort(self, sort_keys: list[PyExpr], descending: list[bool], nulls_first: list[bool]) -> PySeries: ...
    def agg(self, to_agg: list[PyExpr], group_by: list[PyExpr]) -> PyMicroPartition: ...
    def hash_join(
        self,
        right: PyMicroPartition,
        left_on: list[PyExpr],
        right_on: list[PyExpr],
        how: JoinType,
        null_equals_nulls: list[bool] | None = None,
    ) -> PyMicroPartition: ...
    def pivot(
        self,
        group_by: list[PyExpr],
        pivot_column: PyExpr,
        values_column: PyExpr,
        names: list[str],
    ) -> PyMicroPartition: ...
    def sort_merge_join(
        self,
        right: PyMicroPartition,
        left_on: list[PyExpr],
        right_on: list[PyExpr],
        is_sorted: bool,
    ) -> PyMicroPartition: ...
    def cross_join(
        self,
        right: PyMicroPartition,
        outer_loop_side: JoinSide,
    ) -> PyMicroPartition: ...
    def explode(self, to_explode: list[PyExpr]) -> PyMicroPartition: ...
    def unpivot(
        self,
        ids: list[PyExpr],
        values: list[PyExpr],
        variable_name: str,
        value_name: str,
    ) -> PyMicroPartition: ...
    def head(self, num: int) -> PyMicroPartition: ...
    def sample_by_fraction(self, fraction: float, with_replacement: bool, seed: int | None) -> PyMicroPartition: ...
    def sample_by_size(self, size: int, with_replacement: bool, seed: int | None) -> PyMicroPartition: ...
    def quantiles(self, num: int) -> PyMicroPartition: ...
    def partition_by_hash(self, exprs: list[PyExpr], num_partitions: int) -> list[PyMicroPartition]: ...
    def partition_by_random(self, num_partitions: int, seed: int) -> list[PyMicroPartition]: ...
    def partition_by_range(
        self, partition_keys: list[PyExpr], boundaries: PyRecordBatch, descending: list[bool]
    ) -> list[PyMicroPartition]: ...
    def partition_by_value(self, exprs: list[PyExpr]) -> tuple[list[PyMicroPartition], PyMicroPartition]: ...
    def add_monotonically_increasing_id(self, partition_num: int, column_name: str) -> PyMicroPartition: ...
    def __repr__(self) -> str: ...
    def __len__(self) -> int: ...
    @classmethod
    def read_parquet(
        cls,
        path: str,
        columns: list[str] | None = None,
        start_offset: int | None = None,
        num_rows: int | None = None,
        row_groups: list[int] | None = None,
        predicate: PyExpr | None = None,
        io_config: IOConfig | None = None,
        multithreaded_io: bool | None = None,
        coerce_int96_timestamp_unit: PyTimeUnit = PyTimeUnit.nanoseconds(),
    ): ...
    @classmethod
    def read_parquet_bulk(
        cls,
        uris: list[str],
        columns: list[str] | None = None,
        start_offset: int | None = None,
        num_rows: int | None = None,
        row_groups: list[list[int] | None] | None = None,
        predicate: PyExpr | None = None,
        io_config: IOConfig | None = None,
        num_parallel_tasks: int | None = None,
        multithreaded_io: bool | None = None,
        coerce_int96_timestamp_unit: PyTimeUnit | None = None,
    ): ...
    @classmethod
    def read_csv(
        cls,
        uri: str,
        convert_options: CsvConvertOptions | None = None,
        parse_options: CsvParseOptions | None = None,
        read_options: CsvReadOptions | None = None,
        io_config: IOConfig | None = None,
        multithreaded_io: bool | None = None,
    ): ...
    @classmethod
    def read_json_native(
        cls,
        uri: str,
        convert_options: JsonConvertOptions | None = None,
        parse_options: JsonParseOptions | None = None,
        read_options: JsonReadOptions | None = None,
        io_config: IOConfig | None = None,
        multithreaded_io: bool | None = None,
    ): ...

class PhysicalPlanScheduler:
    """A work scheduler for physical query plans."""

    @staticmethod
    def from_logical_plan_builder(
        logical_plan_builder: LogicalPlanBuilder,
        cfg: PyDaftExecutionConfig,
    ) -> PhysicalPlanScheduler: ...
    def num_partitions(self) -> int: ...
    def repr_ascii(self, simple: bool) -> str: ...
    def repr_mermaid(self, options: MermaidOptions) -> str: ...
    def to_json_string(self) -> str: ...
    def to_partition_tasks(
        self, psets: dict[str, list[PartitionT]], actor_pool_manager: Any
    ) -> physical_plan.InProgressPhysicalPlan: ...
    def run(self, psets: dict[str, list[PartitionT]]) -> Iterator[PyMicroPartition]: ...

class AdaptivePhysicalPlanScheduler:
    """An adaptive Physical Plan Scheduler."""

    @staticmethod
    def from_logical_plan_builder(
        logical_plan_builder: LogicalPlanBuilder,
        cfg: PyDaftExecutionConfig,
    ) -> AdaptivePhysicalPlanScheduler: ...
    def next(self) -> tuple[int | None, PhysicalPlanScheduler]: ...
    def is_done(self) -> bool: ...
    # Todo use in memory info here instead
    def update(
        self,
        stage_id: int,
        partition_key: str,
        cache_entry: PartitionCacheEntry,
        num_partitions: int,
        size_bytes: int,
        num_rows: int,
    ) -> None: ...
    def update_stats(
        self, time_taken: float, size_bytes: int | None, num_rows: int | None, stage_id: int | None
    ) -> None: ...
    def explain_analyze(self, explain_analyze_dir: str) -> None: ...

class LogicalPlanBuilder:
    """A logical plan builder, which simplifies constructing logical plans via a fluent interface.

    E.g., LogicalPlanBuilder.table_scan(..).project(..).filter(..).

    This builder holds the current root (sink) of the logical plan, and the building methods return
    a brand new builder holding a new plan; i.e., this is an immutable builder.
    """

    @staticmethod
    def in_memory_scan(
        partition_key: str,
        cache_entry: PartitionCacheEntry,
        schema: PySchema,
        num_partitions: int,
        size_bytes: int,
        num_rows: int,
    ) -> LogicalPlanBuilder: ...
    def with_planning_config(self, daft_planning_config: PyDaftPlanningConfig) -> LogicalPlanBuilder: ...
    def select(self, to_select: list[PyExpr]) -> LogicalPlanBuilder: ...
    def with_columns(self, columns: list[PyExpr]) -> LogicalPlanBuilder: ...
    def with_columns_renamed(self, cols_map: dict[str, str]) -> LogicalPlanBuilder: ...
    def exclude(self, to_exclude: list[str]) -> LogicalPlanBuilder: ...
    def filter(self, predicate: PyExpr) -> LogicalPlanBuilder: ...
    def limit(self, limit: int, eager: bool) -> LogicalPlanBuilder: ...
    def explode(self, to_explode: list[PyExpr]) -> LogicalPlanBuilder: ...
    def unpivot(
        self,
        ids: list[PyExpr],
        values: list[PyExpr],
        variable_name: str,
        value_name: str,
    ) -> LogicalPlanBuilder: ...
    def sort(self, sort_by: list[PyExpr], descending: list[bool], nulls_first: list[bool]) -> LogicalPlanBuilder: ...
    def hash_repartition(
        self,
        partition_by: list[PyExpr],
        num_partitions: int | None,
    ) -> LogicalPlanBuilder: ...
    def random_shuffle(self, num_partitions: int | None) -> LogicalPlanBuilder: ...
    def into_partitions(self, num_partitions: int) -> LogicalPlanBuilder: ...
    def coalesce(self, num_partitions: int) -> LogicalPlanBuilder: ...
    def distinct(self) -> LogicalPlanBuilder: ...
    def sample(self, fraction: float, with_replacement: bool, seed: int | None) -> LogicalPlanBuilder: ...
    def aggregate(self, agg_exprs: list[PyExpr], groupby_exprs: list[PyExpr]) -> LogicalPlanBuilder: ...
    def pivot(
        self,
        groupby_exprs: list[PyExpr],
        pivot_expr: PyExpr,
        values_expr: PyExpr,
        agg_expr: PyExpr,
        names: list[str],
    ) -> LogicalPlanBuilder: ...
    def join(
        self,
        right: LogicalPlanBuilder,
        left_on: list[PyExpr],
        right_on: list[PyExpr],
        join_type: JoinType,
        join_strategy: JoinStrategy | None = None,
        prefix: str | None = None,
        suffix: str | None = None,
    ) -> LogicalPlanBuilder: ...
    def concat(self, other: LogicalPlanBuilder) -> LogicalPlanBuilder: ...
    def union(self, other: LogicalPlanBuilder, is_all: bool, is_by_name: bool) -> LogicalPlanBuilder: ...
    def intersect(self, other: LogicalPlanBuilder, is_all: bool) -> LogicalPlanBuilder: ...
    def except_(self, other: LogicalPlanBuilder, is_all: bool) -> LogicalPlanBuilder: ...
    def add_monotonically_increasing_id(self, column_name: str | None) -> LogicalPlanBuilder: ...
    def table_write(
        self,
        root_dir: str,
        file_format: FileFormat,
        partition_cols: list[PyExpr] | None = None,
        compression: str | None = None,
        io_config: IOConfig | None = None,
    ) -> LogicalPlanBuilder: ...
    def iceberg_write(
        self,
        table_name: str,
        table_location: str,
        partition_spec_id: int,
        partition_cols: list[PyExpr],
        iceberg_schema: IcebergSchema,
        iceberg_properties: IcebergTableProperties,
        catalog_columns: list[str],
        io_config: IOConfig | None = None,
    ) -> LogicalPlanBuilder: ...
    def delta_write(
        self,
        path: str,
        columns_name: list[str],
        mode: str,
        version: int,
        large_dtypes: bool,
        partition_cols: list[str] | None = None,
        io_config: IOConfig | None = None,
    ) -> LogicalPlanBuilder: ...
    def lance_write(
        self,
        path: str,
        columns_name: list[str],
        mode: str,
        io_config: IOConfig | None = None,
        kwargs: dict[str, Any] | None = None,
    ) -> LogicalPlanBuilder: ...
    def schema(self) -> PySchema: ...
    def describe(self) -> LogicalPlanBuilder: ...
    def summarize(self) -> LogicalPlanBuilder: ...
    def optimize(self) -> LogicalPlanBuilder: ...
    def to_physical_plan_scheduler(self, cfg: PyDaftExecutionConfig) -> PhysicalPlanScheduler: ...
    def to_adaptive_physical_plan_scheduler(self, cfg: PyDaftExecutionConfig) -> AdaptivePhysicalPlanScheduler: ...
    def repr_ascii(self, simple: bool) -> str: ...
    def repr_mermaid(self, options: MermaidOptions) -> str: ...

class NativeExecutor:
    def __init__(self) -> None: ...
    def run(
        self,
        builder: LogicalPlanBuilder,
        psets: dict[str, list[PartitionT]],
        daft_execution_config: PyDaftExecutionConfig,
        results_buffer_size: int | None,
    ) -> Iterator[PyMicroPartition]: ...
    def repr_ascii(
        self, builder: LogicalPlanBuilder, daft_execution_config: PyDaftExecutionConfig, simple: bool
    ) -> str: ...
    def repr_mermaid(
        self, builder: LogicalPlanBuilder, daft_execution_config: PyDaftExecutionConfig, options: MermaidOptions
    ) -> str: ...

class PyDaftExecutionConfig:
    @staticmethod
    def from_env() -> PyDaftExecutionConfig: ...
    def with_config_values(
        self,
        scan_tasks_min_size_bytes: int | None = None,
        scan_tasks_max_size_bytes: int | None = None,
        max_sources_per_scan_task: int | None = None,
        broadcast_join_size_bytes_threshold: int | None = None,
        parquet_split_row_groups_max_files: int | None = None,
        sort_merge_join_sort_with_aligned_boundaries: bool | None = None,
        hash_join_partition_size_leniency: float | None = None,
        sample_size_for_sort: int | None = None,
        num_preview_rows: int | None = None,
        parquet_target_filesize: int | None = None,
        parquet_target_row_group_size: int | None = None,
        parquet_inflation_factor: float | None = None,
        csv_target_filesize: int | None = None,
        csv_inflation_factor: float | None = None,
        shuffle_aggregation_default_partitions: int | None = None,
        partial_aggregation_threshold: int | None = None,
        high_cardinality_aggregation_threshold: float | None = None,
        read_sql_partition_size_bytes: int | None = None,
        enable_aqe: bool | None = None,
        enable_native_executor: bool | None = None,
        default_morsel_size: int | None = None,
        enable_ray_tracing: bool | None = None,
        shuffle_algorithm: str | None = None,
        pre_shuffle_merge_threshold: int | None = None,
        scantask_splitting_level: int | None = None,
    ) -> PyDaftExecutionConfig: ...
    @property
    def scan_tasks_min_size_bytes(self) -> int: ...
    @property
    def scan_tasks_max_size_bytes(self) -> int: ...
    @property
    def max_sources_per_scan_task(self) -> int: ...
    @property
    def broadcast_join_size_bytes_threshold(self) -> int: ...
    @property
    def sort_merge_join_sort_with_aligned_boundaries(self) -> bool: ...
    @property
    def hash_join_partition_size_leniency(self) -> float: ...
    @property
    def sample_size_for_sort(self) -> int: ...
    @property
    def num_preview_rows(self) -> int: ...
    @property
    def parquet_target_filesize(self) -> int: ...
    @property
    def parquet_target_row_group_size(self) -> int: ...
    @property
    def parquet_inflation_factor(self) -> float: ...
    @property
    def csv_target_filesize(self) -> int: ...
    @property
    def csv_inflation_factor(self) -> float: ...
    @property
    def shuffle_aggregation_default_partitions(self) -> int: ...
    @property
    def partial_aggregation_threshold(self) -> int: ...
    @property
    def high_cardinality_aggregation_threshold(self) -> float: ...
    @property
    def read_sql_partition_size_bytes(self) -> int: ...
    @property
    def enable_aqe(self) -> bool: ...
    @property
    def enable_native_executor(self) -> bool: ...
    @property
    def default_morsel_size(self) -> int: ...
    @property
    def shuffle_algorithm(self) -> str: ...
    @property
    def pre_shuffle_merge_threshold(self) -> int: ...
    @property
    def enable_ray_tracing(self) -> bool: ...

class PyDaftPlanningConfig:
    @staticmethod
    def from_env() -> PyDaftPlanningConfig: ...
    def with_config_values(
        self,
        default_io_config: IOConfig | None = None,
    ) -> PyDaftPlanningConfig: ...
    @property
    def default_io_config(self) -> IOConfig: ...

class PyDaftContext:
    def __init__(self) -> None: ...
    _runner: Runner
    def get_or_create_runner(self) -> Runner: ...
    _daft_execution_config: PyDaftExecutionConfig
    _daft_planning_config: PyDaftPlanningConfig
    @property
    def daft_execution_config(self) -> PyDaftExecutionConfig: ...
    @property
    def daft_planning_config(self) -> PyDaftPlanningConfig: ...

def set_runner_ray(
    address: str | None = None,
    noop_if_initialized: bool = False,
    max_task_backlog: int | None = None,
    force_client_mode: bool = False,
) -> PyDaftContext: ...
def set_runner_native() -> PyDaftContext: ...
def set_runner_py(use_thread_pool: bool | None = None) -> PyDaftContext: ...
def get_context() -> PyDaftContext: ...
def build_type() -> str: ...
def version() -> str: ...
def refresh_logger() -> None: ...
def get_max_log_level() -> str: ...
def __getattr__(name) -> Any: ...
def io_glob(
    path: str,
    multithreaded_io: bool | None = None,
    io_config: IOConfig | None = None,
    fanout_limit: int | None = None,
    page_size: int | None = None,
    limit: int | None = None,
) -> list[dict]: ...

class SystemInfo:
    """Accessor for system information."""

    def __init__(self) -> None: ...
    def total_memory(self) -> int: ...
    def cpu_count(self) -> int | None: ...

###
# daft-catalog
###

class PyIdentifier:
    def __init__(self, qualifier: tuple[str, ...], name: str): ...
    @staticmethod
    def from_sql(input: str, normalize: bool): ...
    def eq(self, other: PyIdentifier) -> bool: ...
    def getitem(self, index: int) -> str: ...
    def __len__(self) -> int: ...
    def __repr__(self) -> str: ...

class PyTable(Table):
    def read(self):
        LogicalPlanBuilder

class PyTableSource:
    @staticmethod
    def from_builder(builder: LogicalPlanBuilder):
        PyTable

###
# daft-session
###

class PySession:
    def __init__(self): ...
    @staticmethod
    def empty() -> PySession: ...
    def attach_catalog(self, catalog: Catalog, alias: str): ...
    def attach_table(self, table: Table, alias: str): ...
    def detach_catalog(self, alias: str): ...
    def detach_table(self, alias: str): ...
    def create_temp_table(self, ident: str, source: PyTableSource, replace: bool): ...
    def current_catalog(self) -> Catalog | None: ...
    def current_namespace(self) -> PyIdentifier | None: ...
    def get_catalog(self, ident: str) -> Catalog: ...
    def get_table(self, ident: PyIdentifier) -> Table: ...
    def has_catalog(self, ident: str) -> bool: ...
    def has_table(self, ident: PyIdentifier) -> bool: ...
    def list_catalogs(self, pattern: str | None = None) -> list[str]: ...
    def list_tables(self, pattern: str | None = None) -> list[PyIdentifier]: ...
    def set_catalog(self, ident: str | None): ...
    def set_namespace(self, ident: PyIdentifier | None): ...