Repository URL to install this package:
Version:
3.0.0 ▾
|
{
File: OSServices/OpenTransportProtocol.h
Contains: *** DEPRECATED *** Definitions likely to be used by low-level protocol stack implementation.
Copyright: (c) 1993-2011 Apple Inc. and Mentat Inc. All rights reserved.
Bugs?: For bug reports, consult the following page on
the World Wide Web:
http://www.freepascal.org/bugs.html
}
{ Pascal Translation Updated: Peter N Lewis, <peter@stairways.com.au>, November 2005 }
{ Pascal Translation Updated: Jonas Maebe, <jonas@freepascal.org>, October 2009 }
{ Pascal Translation Updated: Jonas Maebe <jonas@freepascal.org>, September 2012 }
{
Modified for use with Free Pascal
Version 308
Please report any bugs to <gpc@microbizz.nl>
}
{$ifc not defined MACOSALLINCLUDE or not MACOSALLINCLUDE}
{$mode macpas}
{$packenum 1}
{$macro on}
{$inline on}
{$calling mwpascal}
unit OpenTransportProtocol;
interface
{$setc UNIVERSAL_INTERFACES_VERSION := $0400}
{$setc GAP_INTERFACES_VERSION := $0308}
{$ifc not defined USE_CFSTR_CONSTANT_MACROS}
{$setc USE_CFSTR_CONSTANT_MACROS := TRUE}
{$endc}
{$ifc defined CPUPOWERPC and defined CPUI386}
{$error Conflicting initial definitions for CPUPOWERPC and CPUI386}
{$endc}
{$ifc defined FPC_BIG_ENDIAN and defined FPC_LITTLE_ENDIAN}
{$error Conflicting initial definitions for FPC_BIG_ENDIAN and FPC_LITTLE_ENDIAN}
{$endc}
{$ifc not defined __ppc__ and defined CPUPOWERPC32}
{$setc __ppc__ := 1}
{$elsec}
{$setc __ppc__ := 0}
{$endc}
{$ifc not defined __ppc64__ and defined CPUPOWERPC64}
{$setc __ppc64__ := 1}
{$elsec}
{$setc __ppc64__ := 0}
{$endc}
{$ifc not defined __i386__ and defined CPUI386}
{$setc __i386__ := 1}
{$elsec}
{$setc __i386__ := 0}
{$endc}
{$ifc not defined __x86_64__ and defined CPUX86_64}
{$setc __x86_64__ := 1}
{$elsec}
{$setc __x86_64__ := 0}
{$endc}
{$ifc not defined __arm__ and defined CPUARM}
{$setc __arm__ := 1}
{$elsec}
{$setc __arm__ := 0}
{$endc}
{$ifc defined cpu64}
{$setc __LP64__ := 1}
{$elsec}
{$setc __LP64__ := 0}
{$endc}
{$ifc defined __ppc__ and __ppc__ and defined __i386__ and __i386__}
{$error Conflicting definitions for __ppc__ and __i386__}
{$endc}
{$ifc defined __ppc__ and __ppc__}
{$setc TARGET_CPU_PPC := TRUE}
{$setc TARGET_CPU_PPC64 := FALSE}
{$setc TARGET_CPU_X86 := FALSE}
{$setc TARGET_CPU_X86_64 := FALSE}
{$setc TARGET_CPU_ARM := FALSE}
{$setc TARGET_OS_MAC := TRUE}
{$setc TARGET_OS_IPHONE := FALSE}
{$setc TARGET_IPHONE_SIMULATOR := FALSE}
{$setc TARGET_OS_EMBEDDED := FALSE}
{$elifc defined __ppc64__ and __ppc64__}
{$setc TARGET_CPU_PPC := FALSE}
{$setc TARGET_CPU_PPC64 := TRUE}
{$setc TARGET_CPU_X86 := FALSE}
{$setc TARGET_CPU_X86_64 := FALSE}
{$setc TARGET_CPU_ARM := FALSE}
{$setc TARGET_OS_MAC := TRUE}
{$setc TARGET_OS_IPHONE := FALSE}
{$setc TARGET_IPHONE_SIMULATOR := FALSE}
{$setc TARGET_OS_EMBEDDED := FALSE}
{$elifc defined __i386__ and __i386__}
{$setc TARGET_CPU_PPC := FALSE}
{$setc TARGET_CPU_PPC64 := FALSE}
{$setc TARGET_CPU_X86 := TRUE}
{$setc TARGET_CPU_X86_64 := FALSE}
{$setc TARGET_CPU_ARM := FALSE}
{$ifc defined(iphonesim)}
{$setc TARGET_OS_MAC := FALSE}
{$setc TARGET_OS_IPHONE := TRUE}
{$setc TARGET_IPHONE_SIMULATOR := TRUE}
{$elsec}
{$setc TARGET_OS_MAC := TRUE}
{$setc TARGET_OS_IPHONE := FALSE}
{$setc TARGET_IPHONE_SIMULATOR := FALSE}
{$endc}
{$setc TARGET_OS_EMBEDDED := FALSE}
{$elifc defined __x86_64__ and __x86_64__}
{$setc TARGET_CPU_PPC := FALSE}
{$setc TARGET_CPU_PPC64 := FALSE}
{$setc TARGET_CPU_X86 := FALSE}
{$setc TARGET_CPU_X86_64 := TRUE}
{$setc TARGET_CPU_ARM := FALSE}
{$setc TARGET_OS_MAC := TRUE}
{$setc TARGET_OS_IPHONE := FALSE}
{$setc TARGET_IPHONE_SIMULATOR := FALSE}
{$setc TARGET_OS_EMBEDDED := FALSE}
{$elifc defined __arm__ and __arm__}
{$setc TARGET_CPU_PPC := FALSE}
{$setc TARGET_CPU_PPC64 := FALSE}
{$setc TARGET_CPU_X86 := FALSE}
{$setc TARGET_CPU_X86_64 := FALSE}
{$setc TARGET_CPU_ARM := TRUE}
{ will require compiler define when/if other Apple devices with ARM cpus ship }
{$setc TARGET_OS_MAC := FALSE}
{$setc TARGET_OS_IPHONE := TRUE}
{$setc TARGET_IPHONE_SIMULATOR := FALSE}
{$setc TARGET_OS_EMBEDDED := TRUE}
{$elsec}
{$error __ppc__ nor __ppc64__ nor __i386__ nor __x86_64__ nor __arm__ is defined.}
{$endc}
{$ifc defined __LP64__ and __LP64__ }
{$setc TARGET_CPU_64 := TRUE}
{$elsec}
{$setc TARGET_CPU_64 := FALSE}
{$endc}
{$ifc defined FPC_BIG_ENDIAN}
{$setc TARGET_RT_BIG_ENDIAN := TRUE}
{$setc TARGET_RT_LITTLE_ENDIAN := FALSE}
{$elifc defined FPC_LITTLE_ENDIAN}
{$setc TARGET_RT_BIG_ENDIAN := FALSE}
{$setc TARGET_RT_LITTLE_ENDIAN := TRUE}
{$elsec}
{$error Neither FPC_BIG_ENDIAN nor FPC_LITTLE_ENDIAN are defined.}
{$endc}
{$setc ACCESSOR_CALLS_ARE_FUNCTIONS := TRUE}
{$setc CALL_NOT_IN_CARBON := FALSE}
{$setc OLDROUTINENAMES := FALSE}
{$setc OPAQUE_TOOLBOX_STRUCTS := TRUE}
{$setc OPAQUE_UPP_TYPES := TRUE}
{$setc OTCARBONAPPLICATION := TRUE}
{$setc OTKERNEL := FALSE}
{$setc PM_USE_SESSION_APIS := TRUE}
{$setc TARGET_API_MAC_CARBON := TRUE}
{$setc TARGET_API_MAC_OS8 := FALSE}
{$setc TARGET_API_MAC_OSX := TRUE}
{$setc TARGET_CARBON := TRUE}
{$setc TARGET_CPU_68K := FALSE}
{$setc TARGET_CPU_MIPS := FALSE}
{$setc TARGET_CPU_SPARC := FALSE}
{$setc TARGET_OS_UNIX := FALSE}
{$setc TARGET_OS_WIN32 := FALSE}
{$setc TARGET_RT_MAC_68881 := FALSE}
{$setc TARGET_RT_MAC_CFM := FALSE}
{$setc TARGET_RT_MAC_MACHO := TRUE}
{$setc TYPED_FUNCTION_POINTERS := TRUE}
{$setc TYPE_BOOL := FALSE}
{$setc TYPE_EXTENDED := FALSE}
{$setc TYPE_LONGLONG := TRUE}
uses MacTypes,ConditionalMacros,Files,CodeFragments,OpenTransport;
{$endc} {not MACOSALLINCLUDE}
{ this header is only supported on Mac OS X < 10.4, and Mac OS X < 10.4 does
not support i386
}
{$ifc TARGET_OS_MAC and TARGET_CPU_PPC}
{$ALIGN MAC68K}
{ ***** Setup Default Compiler Variables *****}
{
OTKERNEL is used to indicate whether the code is being built
for the kernel environment. It defaults to 0. If you include
"OpenTransportKernel.h" before including this file,
it will be 1 and you will only be able to see stuff available
to kernel code.
As we've included "OpenTransport.h" and it defaults this variable
to 0 if it's not already been defined, it should always be defined
by the time we get here. So we just assert that. Assertions in
header files! Cool (-:
}
{$ifc undefined OTKERNEL}
{$setc OTKERNEL := 0}
{$endc}
{ ***** Shared Client Memory *****}
{$ifc NOT OTKERNEL}
{
These allocators allocate memory in the shared client pool,
which is shared between all clients and is not disposed when
a particular client goes away. See DTS Technote ¥¥¥
"Understanding Open Transport Memory Management" for details.
}
{
* OTAllocSharedClientMem()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTFreeSharedClientMem()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{$endc} { !OTKERNEL }
{ ***** UNIX Types *****}
{$ifc CALL_NOT_IN_CARBON}
{
On UNIX, uid_t and gid_t are defined to be big enough
to hold a user ID and group ID respectively. As Mac OS
has no such concepts, we just define them as UInt32 place
holders.
}
type
uid_t = UInt32;
gid_t = UInt32;
{ Similarly, dev_t is a UNIX type for denoting a device number.}
type
dev_t = UInt32;
{ ***** From the Mentat "strstat.h" *****}
{ module statistics structure }
type
module_statPtr = ^module_stat;
module_stat = record
ms_pcnt: SIGNEDLONG; { count of calls to put proc }
ms_scnt: SIGNEDLONG; { count of calls to service proc }
ms_ocnt: SIGNEDLONG; { count of calls to open proc }
ms_ccnt: SIGNEDLONG; { count of calls to close proc }
ms_acnt: SIGNEDLONG; { count of calls to admin proc }
ms_xptr: UnivPtr; { pointer to private statistics }
ms_xsize: SInt16; { length of private statistics buffer }
end;
{ ***** From the Mentat "cred.h" *****}
type
credPtr = ^cred;
cred = record
cr_ref: UInt16; { reference count on processes using cred structures }
cr_ngroups: UInt16; { number of groups in cr_groups }
cr_uid: uid_t; { effective user id }
cr_gid: gid_t; { effective group id }
cr_ruid: uid_t; { real user id }
cr_rgid: gid_t; { real group id }
cr_suid: uid_t; { user id saved by exec }
cr_sgid: gid_t; { group id saved by exec }
cr_groups: array [0..0] of gid_t; { supplementary groups list }
end;
type
cred_t = cred;
{ Free return structure for esballoc }
type
FreeFuncType = procedure( var arg: char );
free_rtnPtr = ^free_rtn;
free_rtn = record
free_func: FreeFuncType; { Routine to call to free buffer }
free_arg: UnivPtr; { Parameter to free_func }
end;
type
frtn_t = free_rtn;
frtn_tPtr = ^frtn_t;
{ data descriptor }
type
databPtr = ^datab;
datab_db_f = record
case SInt16 of
0: (
freep: databPtr;
);
1: (
frtnp: free_rtnPtr;
);
end;
datab_db_fPtr = ^datab_db_f;
datab = record
db_f: datab_db_f;
db_base: UInt8Ptr; { first byte of buffer }
db_lim: UInt8Ptr; { last byte+1 of buffer }
db_ref: UInt8; { count of messages pointing to block}
db_type: UInt8; { message type }
db_iswhat: UInt8; { message status }
db_filler2: UInt8; { for spacing }
db_size: UInt32; { used internally }
db_msgaddr: UInt8Ptr; { used internally }
db_filler: SInt32;
end;
type
dblk_t = datab;
dblk_tPtr = ^dblk_t;
{ message block }
type
msgbPtr = ^msgb;
msgb = record
b_next: struct msgb *; { next message on queue }
b_prev: struct msgb *; { previous message on queue }
b_cont: struct msgb *; { next message block of message }
b_rptr: UInt8Ptr; { first unread data byte in buffer }
b_wptr: UInt8Ptr; { first unwritten data byte }
b_datap: databPtr; { data block }
b_band: UInt8; { message priority }
b_pad1: UInt8;
b_flag: UInt16;
end;
type
mblk_t = msgb;
mblk_tPtr = ^mblk_t;
{ mblk flags }
const
MSGMARK = $01; { last byte of message is tagged }
MSGNOLOOP = $02; { don't pass message to write-side of stream }
MSGDELIM = $04; { message is delimited }
MSGNOGET = $08;
{ STREAMS environments are expected to define these constants in a public header file.}
const
STRCTLSZ = 256; { Maximum Control buffer size for messages }
STRMSGSZ = 8192; { Maximum # data bytes for messages }
{ Message types }
const
QNORM = 0;
M_DATA = 0; { Ordinary data }
M_PROTO = 1; { Internal control info and data }
M_BREAK = $08; { Request a driver to send a break }
M_PASSFP = $09; { Used to pass a file pointer }
M_SIG = $0B; { Requests a signal to be sent }
M_DELAY = $0C; { Request a real-time delay }
M_CTL = $0D; { For inter-module communication }
M_IOCTL = $0E; { Used internally for I_STR requests }
M_SETOPTS = $10; { Alters characteristics of Stream head }
M_RSE = $11; { Reserved for internal use }
{ MPS private type }
const
M_MI = $40;
M_MI_READ_RESET = 1;
M_MI_READ_SEEK = 2;
M_MI_READ_END = 4;
{ Priority messages types }
const
QPCTL = $80;
M_IOCACK = $81; { Positive ack of previous M_IOCTL }
M_IOCNAK = $82; { Previous M_IOCTL failed }
M_PCPROTO = $83; { Same as M_PROTO except for priority }
M_PCSIG = $84; { Priority signal }
M_FLUSH = $86; { Requests modules to flush queues }
M_STOP = $87; { Request drivers to stop output }
M_START = $88; { Request drivers to start output }
M_HANGUP = $89; { Driver can no longer produce data }
M_ERROR = $8A; { Reports downstream error condition }
M_READ = $8B; { Reports client read at Stream head }
M_COPYIN = $8C; { Requests the Stream to copy data in for a module }
M_COPYOUT = $8D; { Requests the Stream to copy data out for a module }
M_IOCDATA = $8E; { Status from M_COPYIN/M_COPYOUT message }
M_PCRSE = $90; { Reserved for internal use }
M_STOPI = $91; { Request drivers to stop input }
M_STARTI = $92; { Request drivers to start input }
M_HPDATA = $93; { MPS-private type; high priority data }
{ Defines for flush messages }
const
FLUSHALL = 1;
FLUSHDATA = 0;
const
NOERROR = -1; { used in M_ERROR messages }
type
sth_sPtr = ^sth_s;
sth_s = record
dummy: UInt32;
end;
sqh_sPtr = ^sqh_s;
sqh_s = record
dummy: UInt32;
end;
q_xtraPtr = ^q_xtra;
q_xtra = record
dummy: UInt32;
end;
{$ifc OTKERNEL}
{
module_info is aligned differently on 68K than
on PowerPC. Yucky. I can't defined a conditionalised
pad field because a) you can't conditionalise specific
fields in the interface definition language used to
create Universal Interfaces, and b) lots of code
assigns C structured constants to global variables
of this type, and these assignments break if you
add an extra field to the type. Instead, I
set the alignment appropriately before defining the
structure. The problem with doing that is that
the interface definition language doesn't allow
my to set the alignment in the middle of a file,
so I have to do this via "pass throughs". This
works fine for the well known languages (C, Pascal),
but may cause problems for other languages (Java,
Asm).
}
{$ifc TARGET_CPU_PPC}
{$ALIGN POWER}
{$endc} {TARGET_CPU_PPC}
type
module_info = record
mi_idnum: UInt16; { module ID number }
mi_idname: UnivPtr; { module name }
mi_minpsz: SIGNEDLONG; { min pkt size, for developer use }
mi_maxpsz: SIGNEDLONG; { max pkt size, for developer use }
mi_hiwat: UNSIGNEDLONG; { hi-water mark, for flow control }
mi_lowat: UNSIGNEDLONG; { lo-water mark, for flow control }
end;
module_infoPtr = ^module_info;
{$ifc TARGET_CPU_PPC}
{$ALIGN MAC68K}
{$endc} {TARGET_CPU_PPC}
type
queuePtr = ^queue;
admin_t = function: OTInt32;
bufcall_t = procedure( size: SIGNEDLONG );
bufcallp_t = procedure( size: SIGNEDLONG );
closep_t = function( q: queuePtr; foo: OTInt32; var cred: cred_t ): OTInt32;
old_closep_t = function( q: queuePtr ): OTInt32;
openp_t = function( q: queuePtr; var dev: dev_t; foo: OTInt32; bar: OTInt32; var cred: cred_t ): OTInt32;
openOld_t = function( q: queuePtr; dev: dev_t; foo: OTInt32; bar: OTInt32 ): OTInt32;
old_openp_t = function( q: queuePtr; dev: dev_t; foo: OTInt32; bar: OTInt32 ): OTInt32;
closeOld_t = function( q: queuePtr ): OTInt32;
putp_t = function( q: queuePtr; var mp: msgb ): OTInt32;
srvp_t = function( q: queuePtr ): OTInt32;
qinitPtr = ^qinit;
qinit = record
qi_putp: putp_t; { put procedure }
qi_srvp: srvp_t; { service procedure }
qi_qopen: openp_t; { called on each open or a push }
qi_qclose: closep_t; { called on last close or a pop }
qi_qadmin: admin_t; { reserved for future use }
qi_minfo: module_infoPtr; { information structure }
qi_mstat: module_statPtr; { statistics structure - optional }
end;
{ defines module or driver }
streamtabPtr = ^streamtab;
streamtab = record
st_rdinit: qinitPtr; { defines read QUEUE }
st_wrinit: qinitPtr; { defines write QUEUE }
st_muxrinit: qinitPtr; { for multiplexing drivers only }
st_muxwinit: qinitPtr; { ditto }
end;
qbandPtr = ^qband;
qband = record
qb_next: struct qband *; { next band for this queue }
qb_count: UNSIGNEDLONG; { weighted count of characters in this band }
qb_first: msgbPtr; { head of message queue }
qb_last: msgbPtr; { tail of message queue }
qb_hiwat: UNSIGNEDLONG; { high water mark }
qb_lowat: UNSIGNEDLONG; { low water mark }
qb_flag: UInt16; { ¥¥¥Êstate }
qb_pad1: SInt16; { ¥¥¥ reserved }
end;
qband_t = qband;
qband_tPtr = ^qband_t;
queue_q_uPtr = ^queue_q_u;
queue_q_u = record
case SInt16 of
0: (
q_u_link: queuePtr; { link to scheduling queue }
);
1: (
q_u_sqh_parent: sqh_sPtr;
);
end;
queue = record
q_qinfo: qinitPtr; { procedures and limits for queue }
q_first: msgbPtr; { head of message queue }
q_last: msgbPtr; { tail of message queue }
q_next: queuePtr; { next queue in Stream }
q_u: queue_q_u;
q_ptr: UnivPtr; { to private data structure }
q_count: UNSIGNEDLONG; { weighted count of characters on q }
q_minpsz: SIGNEDLONG; { min packet size accepted }
q_maxpsz: SIGNEDLONG; { max packet size accepted }
q_hiwat: UNSIGNEDLONG; { high water mark, for flow control }
q_lowat: UNSIGNEDLONG; { low water mark }
q_bandp: qbandPtr; { band information }
q_flag: UInt16; { ¥¥¥ queue state }
q_nband: UInt8; { ¥¥¥ number of bands }
q_pad1: SInt8; { ¥¥¥ reserved }
q_osx: q_xtraPtr; { Pointer to OS-dependent extra stuff }
q_ffcp: queuePtr; { Forward flow control pointer }
q_bfcp: queuePtr; { Backward flow control pointer }
end;
queue_t = queue;
queue_tPtr = ^queue_t;
{ queue_t flag defines }
const
QREADR = $01; { This queue is a read queue }
QNOENB = $02; { Don't enable in putq }
QFULL = $04; { The queue is full }
QWANTR = $08; { The queue should be scheduled in the next putq }
QWANTW = $10; { The stream should be back enabled when this queue drains }
QUSE = $20; { The queue is allocated and ready for use }
QENAB = $40; { The queue is scheduled (on the run queue) }
QBACK = $80; { The queue has been back enabled }
QOLD = $0100; { Module supports old style opens and closes }
QHLIST = $0200; { The Stream head is doing something with this queue (Not supported by MPS) }
QWELDED = $0400; { Mentat flag for welded queues }
QUNWELDING = $0800; { Queue is scheduled to be unwelded }
QPROTECTED = $1000; { Mentat flag for unsafe q access }
QEXCOPENCLOSE = $2000; { Queue wants exclusive open/close calls }
{ qband_t flag defines }
const
QB_FULL = $01; { The band is full }
QB_WANTW = $02; { The stream should be back enabled when this band/queue drains }
QB_BACK = $04; { The queue has been back enabled }
{$elsec}
{
Client code views a queue_t as a simple cookie.
The real definition lives above and is only available
to kernel code.
}
type
queue_t = SInt32;
queue_tPtr = ^queue_t;
{$endc} {OTKERNEL}
{ structure contained in M_COPYIN/M_COPYOUT messages }
type
caddr_t = ^char;
copyreqPtr = ^copyreq;
copyreq = record
cq_cmd: SInt32; { ioctl command (from ioc_cmd) }
cq_cr: credPtr; { pointer to full credentials }
cq_id: UInt32; { ioctl id (from ioc_id) }
cq_addr: caddr_t; { address to copy data to/from }
cq_size: UInt32; { number of bytes to copy }
cq_flag: SInt32; { state }
cq_private: mblk_tPtr; { private state information }
cq_filler: array [0..3] of SInt32;
end;
{ copyreq defines }
const
STRCANON = $01; { b_cont data block contains canonical format specifier }
RECOPY = $02; { perform I_STR copyin again this time using canonical format specifier }
{ structure contained in M_IOCDATA message block }
type
copyrespPtr = ^copyresp;
copyresp = record
cp_cmd: SInt32; { ioctl command (from ioc_cmd) }
cp_cr: credPtr; { pointer to full credentials }
cp_id: UInt32; { ioctl id (from ioc_id) }
cp_rval: caddr_t; { status of request; 0 for success; error value for failure }
cp_pad1: UInt32;
cp_pad2: SInt32;
cp_private: mblk_tPtr; { private state information }
cp_filler: array [0..3] of SInt32;
end;
{ structure contained in an M_IOCTL message block }
type
iocblkPtr = ^iocblk;
iocblk = record
ioc_cmd: SInt32; { ioctl command type }
ioc_cr: credPtr; { pointer to full credentials }
ioc_id: UInt32; { ioctl id }
ioc_count: UInt32; { count of bytes in data field }
ioc_error: SInt32; { error code }
ioc_rval: SInt32; { return value }
ioc_filler: array [0..3] of SInt32;
end;
const
TRANSPARENT = $FFFFFFFF;
{ Used in M_IOCTL mblks to muxes (ioc_cmd I_LINK) }
type
linkblkPtr = ^linkblk;
linkblk = record
l_qtop: queue_tPtr; { lowest level write queue of upper stream }
l_qbot: queue_tPtr; { highest level write queue of lower stream }
l_index: SInt32; { system-unique index for lower stream }
l_pad: array [0..4] of SIGNEDLONG;
end;
{ structure contained in an M_PASSFP message block }
type
strpfp = record
pass_file_cookie: UNSIGNEDLONG; { file 'pointer' }
pass_uid: UInt16; { user id of sending stream }
pass_gid: UInt16;
pass_sth: sth_sPtr; { Stream head pointer of passed stream }
end;
{ structure contained in an M_SETOPTS message block }
type
stroptions = packed record
so_flags: UNSIGNEDLONG; { options to set }
so_readopt: SInt16; { read option }
so_wroff: UInt16; { write offset }
so_minpsz: SIGNEDLONG; { minimum read packet size }
so_maxpsz: SIGNEDLONG; { maximum read packet size }
so_hiwat: UNSIGNEDLONG; { read queue high-water mark }
so_lowat: UNSIGNEDLONG; { read queue low-water mark }
so_band: UInt8; { band for water marks }
so_filler: packed array [0..2] of UInt8; { added for alignment }
so_poll_set: UNSIGNEDLONG; { poll events to set }
so_poll_clr: UNSIGNEDLONG; { poll events to clear }
end;
{ definitions for so_flags field }
const
SO_ALL = $7FFF; { Update all options }
SO_READOPT = $0001; { Set the read mode }
SO_WROFF = $0002; { Insert an offset in write M_DATA mblks }
SO_MINPSZ = $0004; { Change the min packet size on sth rq }
SO_MAXPSZ = $0008; { Change the max packet size on sth rq }
SO_HIWAT = $0010; { Change the high water mark on sth rq }
SO_LOWAT = $0020; { Change the low water mark }
SO_MREADON = $0040; { Request M_READ messages }
SO_MREADOFF = $0080; { Don't gen M_READ messages }
SO_NDELON = $0100; { old TTY semantics for O_NDELAY reads and writes }
SO_NDELOFF = $0200; { STREAMS semantics for O_NDELAY reads and writes }
SO_ISTTY = $0400; { Become a controlling tty }
SO_ISNTTY = $0800; { No longer a controlling tty }
SO_TOSTOP = $1000; { Stop on background writes }
SO_TONSTOP = $2000; { Don't stop on background writes }
SO_BAND = $4000; { Water marks are for a band }
SO_POLL_SET = $8000; { Set events to poll }
SO_POLL_CLR = $00010000; { Clear events to poll }
{ Buffer Allocation Priority }
const
BPRI_LO = 1;
BPRI_MED = 2;
BPRI_HI = 3;
const
INFPSZ = -1;
{* Test whether message is a data message }
// #define datamsg(type) ((type) == M_DATA || (type) == M_PROTO || (type) == M_PCPROTO || (type) == M_DELAY)
const
CLONEOPEN = $02;
MODOPEN = $01;
OPENFAIL = -1;
{ Enumeration values for strqget and strqset }
type
qfields = SInt32;
const
QHIWAT = 0;
QLOWAT = 1;
QMAXPSZ = 2;
QMINPSZ = 3;
QCOUNT = 4;
QFIRST = 5;
QLAST = 6;
QFLAG = 7;
QBAD = 8;
type
qfields_t = qfields;
{$endc} { CALL_NOT_IN_CARBON }
{ ***** From the Mentat "stropts.h" *****}
const
I_NREAD = $4101; { return the number of bytes in 1st msg }
I_PUSH = $4102; { push module just below stream head }
I_POP = $4103; { pop module below stream head }
I_LOOK = $4104; { retrieve name of first stream module }
I_FLUSH = $4105; { flush all input and/or output queues }
I_SRDOPT = $4106; { set the read mode }
I_GRDOPT = $4107; { get the current read mode }
I_STR = $4108; { create an internal ioctl message }
I_SETSIG = $4109; { request SIGPOLL signal on events }
I_GETSIG = $410A; { query the registered events }
I_FIND = $410B; { check for module in stream }
I_LINK = $410C; { connect stream under mux fd }
I_UNLINK = $410D; { disconnect two streams }
I_PEEK = $410F; { peek at data on read queue }
I_FDINSERT = $4110; { create a message and send downstream }
I_SENDFD = $4111; { send an fd to a connected pipe stream }
I_RECVFD = $4112; { retrieve a file descriptor }
I_FLUSHBAND = $4113; { flush a particular input and/or output band }
I_SWROPT = $4114; { set the write mode }
I_GWROPT = $4115; { get the current write mode }
I_LIST = $4116; { get a list of all modules on a stream }
I_ATMARK = $4117; { check to see if the next message is "marked" }
I_CKBAND = $4118; { check for a message of a particular band }
I_GETBAND = $4119; { get the band of the next message to be read }
I_CANPUT = $411A; { check to see if a message may be passed on a stream }
I_SETCLTIME = $411B; { set the close timeout wait }
I_GETCLTIME = $411C; { get the current close timeout wait }
I_PLINK = $411D; { permanently connect a stream under a mux }
I_PUNLINK = $411E; { disconnect a permanent link }
I_GETMSG = $4128; { getmsg() system call }
I_PUTMSG = $4129; { putmsg() system call }
I_POLL = $412A; { poll() system call }
I_SETDELAY = $412B; { set blocking status }
I_GETDELAY = $412C; { get blocking status }
I_RUN_QUEUES = $412D; { sacrifice for the greater good }
I_GETPMSG = $412E; { getpmsg() system call }
I_PUTPMSG = $412F; { putpmsg() system call }
I_AUTOPUSH = $4130; { for systems that cannot do the autopush in open }
I_PIPE = $4131; { for pipe library call }
I_HEAP_REPORT = $4132; { get heap statistics }
I_FIFO = $4133; { for fifo library call }
{ priority message request on putmsg() or strpeek }
const
RS_HIPRI = $01;
{ flags for getpmsg and putpmsg }
const
MSG_HIPRI = $01;
MSG_BAND = $02; { Retrieve a message from a particular band }
MSG_ANY = $04; { Retrieve a message from any band }
{ return values from getmsg(), 0 indicates all ok }
const
MORECTL = $01; { more control info available }
MOREDATA = $02; { more data available }
const
FMNAMESZ = 31; { maximum length of a module or device name }
{ Infinite poll wait time }
const
INFTIM = $FFFFFFFF;
{ flush requests }
const
FLUSHR = $01; { Flush the read queue }
FLUSHW = $02; { Flush the write queue }
FLUSHRW = FLUSHW or FLUSHR; { Flush both }
const
FLUSHBAND = $40; { Flush a particular band }
{
Mentat's code does an #ifdef on this symbol, so we have to #define
it as well as declare it as an enum. But only for Apple builds because
we don't want internal weirdness to propagate to developers.
}
// #define FLUSHBAND FLUSHBAND
{ I_FLUSHBAND }
type
bandinfoPtr = ^bandinfo;
bandinfo = record
bi_pri: UInt8; { Band to flush }
pad1: SInt8;
bi_flag: SInt32; { One of the above flush requests }
end;
{ flags for I_ATMARK }
const
ANYMARK = $01; { Check if message is marked }
LASTMARK = $02; { Check if this is the only message marked }
{ signal event masks }
const
S_INPUT = $01; { A non-M_PCPROTO message has arrived }
S_HIPRI = $02; { A priority (M_PCPROTO) message is available }
S_OUTPUT = $04; { The write queue is no longer full }
S_MSG = $08; { A signal message has reached the front of read queue }
S_RDNORM = $10; { A non-priority message is available }
S_RDBAND = $20; { A banded messsage is available }
S_WRNORM = $40; { Same as S_OUTPUT }
S_WRBAND = $80; { A priority band exists and is writable }
S_ERROR = $0100; { Error message has arrived }
S_HANGUP = $0200; { Hangup message has arrived }
S_BANDURG = $0400; { Use SIGURG instead of SIGPOLL on S_RDBAND signals }
{ read mode bits for I_S|GRDOPT; choose one of the following }
const
RNORM = $01; { byte-stream mode, default }
RMSGD = $02; { message-discard mode }
RMSGN = $04; { message-nondiscard mode }
RFILL = $08; { fill read buffer mode (PSE private) }
{ More read modes, these are bitwise or'ed with the modes above }
const
RPROTNORM = $10; { Normal handling of M_PROTO/M_PCPROTO messages, default }
RPROTDIS = $20; { Discard M_PROTO/M_PCPROTO message blocks }
RPROTDAT = $40; { Convert M_PROTO/M_PCPROTO message blocks into M_DATA }
{ write modes for I_S|GWROPT }
const
SNDZERO = $01; { Send a zero-length message downstream on a write of zero bytes }
const
MUXID_ALL = -1; { Unlink all lower streams for I_UNLINK and I_PUNLINK }
{
strbuf is moved to "OpenTransport.h" because that header file
exports provider routines that take it as a parameter.
}
{ structure of ioctl data on I_FDINSERT }
type
strfdinsertPtr = ^strfdinsert;
strfdinsert = record
ctlbuf: strbuf;
databuf: strbuf;
flags: SIGNEDLONG; { type of message, 0 or RS_HIPRI }
fildes: SIGNEDLONG; { fd of other stream (FDCELL) }
offset: SInt32; { where to put other stream read qp }
end;
{ I_LIST structures }
type
str_mlistPtr = ^str_mlist;
str_mlist = record
l_name: packed array [0..31] of char;
end;
type
str_listPtr = ^str_list;
str_list = record
sl_nmods: SInt32; { number of modules in sl_modlist array }
sl_modlist: str_mlistPtr;
end;
{ I_PEEK structure }
type
strpeekPtr = ^strpeek;
strpeek = record
ctlbuf: strbuf;
databuf: strbuf;
flags: SIGNEDLONG; { if RS_HIPRI, get priority messages only }
end;
{ structure for getpmsg and putpmsg }
type
strpmsgPtr = ^strpmsg;
strpmsg = record
ctlbuf: strbuf;
databuf: strbuf;
band: SInt32;
flags: SIGNEDLONG;
end;
{ structure of ioctl data on I_RECVFD }
type
strrecvfdPtr = ^strrecvfd;
strrecvfd = record
fd: SIGNEDLONG; { new file descriptor (FDCELL) }
uid: UInt16; { user id of sending stream }
gid: UInt16;
fill: packed array [0..7] of char;
end;
{ structure of ioctl data on I_STR }
type
strioctlPtr = ^strioctl;
strioctl = record
ic_cmd: SInt32; { downstream command }
ic_timout: SInt32; { ACK/NAK timeout }
ic_len: SInt32; { length of data arg }
ic_dp: UnivPtr; { ptr to data arg }
end;
{ ***** From the Mentat "strlog.h" *****}
type
log_ctlPtr = ^log_ctl;
log_ctl = record
mid: SInt16;
sid: SInt16;
level: SInt8;
pad1: SInt8;
flags: SInt16;
ltime: SIGNEDLONG;
ttime: SIGNEDLONG;
seq_no: SInt32;
end;
const
SL_FATAL = $01; { Fatal error }
SL_NOTIFY = $02; { Notify the system administrator }
SL_ERROR = $04; { Pass message to error logger }
SL_TRACE = $08; { Pass message to tracer }
SL_CONSOLE = $00; { Console messages are disabled }
SL_WARN = $20; { Warning }
SL_NOTE = $40; { Notice this message }
type
trace_idsPtr = ^trace_ids;
trace_ids = record
ti_mid: SInt16;
ti_sid: SInt16;
ti_level: char;
end;
const
I_TRCLOG = $6201;
I_ERRLOG = $6202;
const
LOGMSGSZ = 128;
{ ***** From the Mentat "tihdr.h" *****}
{$ifc CALL_NOT_IN_CARBON}
{ TPI Primitives}
const
T_BIND_REQ = 101;
T_CONN_REQ = 102; { connection request }
T_CONN_RES = 103; { respond to connection indication }
T_DATA_REQ = 104;
T_DISCON_REQ = 105;
T_EXDATA_REQ = 106;
T_INFO_REQ = 107;
T_OPTMGMT_REQ = 108;
T_ORDREL_REQ = 109;
T_UNBIND_REQ = 110;
T_UNITDATA_REQ = 111;
T_ADDR_REQ = 112; { Get address request }
T_UREQUEST_REQ = 113; { UnitRequest (transaction) req }
T_REQUEST_REQ = 114; { Request (CO transaction) req }
T_UREPLY_REQ = 115; { UnitRequest (transaction) req }
T_REPLY_REQ = 116; { REPLY (CO transaction) req }
T_CANCELREQUEST_REQ = 117; { Cancel outgoing request }
T_CANCELREPLY_REQ = 118; { Cancel incoming request }
T_REGNAME_REQ = 119; { Request name registration }
T_DELNAME_REQ = 120; { Request delete name registration }
T_LKUPNAME_REQ = 121; { Request name lookup }
T_BIND_ACK = 122;
T_CONN_CON = 123; { connection confirmation }
T_CONN_IND = 124; { incoming connection indication }
T_DATA_IND = 125;
T_DISCON_IND = 126;
T_ERROR_ACK = 127;
T_EXDATA_IND = 128;
T_INFO_ACK = 129;
T_OK_ACK = 130;
T_OPTMGMT_ACK = 131;
T_ORDREL_IND = 132;
T_UNITDATA_IND = 133;
T_UDERROR_IND = 134;
T_ADDR_ACK = 135; { Get address ack }
T_UREQUEST_IND = 136; { UnitRequest (transaction) ind }
T_REQUEST_IND = 137; { Request (CO transaction) ind }
T_UREPLY_IND = 138; { Incoming unit reply }
T_REPLY_IND = 139; { Incoming reply }
T_UREPLY_ACK = 140; { outgoing Unit Reply is complete }
T_REPLY_ACK = 141; { outgoing Reply is complete }
T_RESOLVEADDR_REQ = 142;
T_RESOLVEADDR_ACK = 143;
T_LKUPNAME_CON = 146; { Results of name lookup }
T_LKUPNAME_RES = 147; { Partial results of name lookup }
T_REGNAME_ACK = 148; { Request name registration }
T_SEQUENCED_ACK = 149; { Sequenced version of OK or ERROR ACK }
T_EVENT_IND = 160; { Miscellaneous event Indication }
{ State values }
const
TS_UNBND = 1;
TS_WACK_BREQ = 2;
TS_WACK_UREQ = 3;
TS_IDLE = 4;
TS_WACK_OPTREQ = 5;
TS_WACK_CREQ = 6;
TS_WCON_CREQ = 7;
TS_WRES_CIND = 8;
TS_WACK_CRES = 9;
TS_DATA_XFER = 10;
TS_WIND_ORDREL = 11;
TS_WREQ_ORDREL = 12;
TS_WACK_DREQ6 = 13;
TS_WACK_DREQ7 = 14;
TS_WACK_DREQ9 = 15;
TS_WACK_DREQ10 = 16;
TS_WACK_DREQ11 = 17;
TS_WACK_ORDREL = 18;
TS_NOSTATES = 19;
TS_BAD_STATE = 19;
{ Transport events }
const
TE_OPENED = 1;
TE_BIND = 2;
TE_OPTMGMT = 3;
TE_UNBIND = 4;
TE_CLOSED = 5;
TE_CONNECT1 = 6;
TE_CONNECT2 = 7;
TE_ACCEPT1 = 8;
TE_ACCEPT2 = 9;
TE_ACCEPT3 = 10;
TE_SND = 11;
TE_SNDDIS1 = 12;
TE_SNDDIS2 = 13;
TE_SNDREL = 14;
TE_SNDUDATA = 15;
TE_LISTEN = 16;
TE_RCVCONNECT = 17;
TE_RCV = 18;
TE_RCVDIS1 = 19;
TE_RCVDIS2 = 20;
TE_RCVDIS3 = 21;
TE_RCVREL = 22;
TE_RCVUDATA = 23;
TE_RCVUDERR = 24;
TE_PASS_CONN = 25;
TE_BAD_EVENT = 26;
type
T_addr_ackPtr = ^T_addr_ack;
T_addr_ack = record
PRIM_type: SIGNEDLONG; { Always T_ADDR_ACK }
LOCADDR_length: SIGNEDLONG;
LOCADDR_offset: SIGNEDLONG;
REMADDR_length: SIGNEDLONG;
REMADDR_offset: SIGNEDLONG;
end;
type
T_addr_reqPtr = ^T_addr_req;
T_addr_req = record
PRIM_type: SIGNEDLONG; { Always T_ADDR_REQ }
end;
type
T_bind_ackPtr = ^T_bind_ack;
T_bind_ack = record
PRIM_type: SIGNEDLONG; { always T_BIND_ACK }
ADDR_length: SIGNEDLONG;
ADDR_offset: SIGNEDLONG;
CONIND_number: UNSIGNEDLONG;
end;
type
T_bind_reqPtr = ^T_bind_req;
T_bind_req = record
PRIM_type: SIGNEDLONG; { always T_BIND_REQ }
ADDR_length: SIGNEDLONG;
ADDR_offset: SIGNEDLONG;
CONIND_number: UNSIGNEDLONG;
end;
type
T_conn_conPtr = ^T_conn_con;
T_conn_con = record
PRIM_type: SIGNEDLONG; { always T_CONN_CON }
RES_length: SIGNEDLONG; { responding address length }
RES_offset: SIGNEDLONG;
OPT_length: SIGNEDLONG;
OPT_offset: SIGNEDLONG;
end;
type
T_conn_indPtr = ^T_conn_ind;
T_conn_ind = record
PRIM_type: SIGNEDLONG; { always T_CONN_IND }
SRC_length: SIGNEDLONG;
SRC_offset: SIGNEDLONG;
OPT_length: SIGNEDLONG;
OPT_offset: SIGNEDLONG;
SEQ_number: SIGNEDLONG;
end;
type
T_conn_reqPtr = ^T_conn_req;
T_conn_req = record
PRIM_type: SIGNEDLONG; { always T_CONN_REQ }
DEST_length: SIGNEDLONG;
DEST_offset: SIGNEDLONG;
OPT_length: SIGNEDLONG;
OPT_offset: SIGNEDLONG;
end;
type
T_conn_resPtr = ^T_conn_res;
T_conn_res = record
PRIM_type: SIGNEDLONG; { always T_CONN_RES }
QUEUE_ptr: queue_tPtr;
OPT_length: SIGNEDLONG;
OPT_offset: SIGNEDLONG;
SEQ_number: SIGNEDLONG;
end;
type
T_data_indPtr = ^T_data_ind;
T_data_ind = record
PRIM_type: SIGNEDLONG; { always T_DATA_IND }
MORE_flag: SIGNEDLONG;
end;
type
T_data_reqPtr = ^T_data_req;
T_data_req = record
PRIM_type: SIGNEDLONG; { always T_DATA_REQ }
MORE_flag: SIGNEDLONG;
end;
type
T_discon_indPtr = ^T_discon_ind;
T_discon_ind = record
PRIM_type: SIGNEDLONG; { always T_DISCON_IND }
DISCON_reason: SIGNEDLONG;
SEQ_number: SIGNEDLONG;
end;
type
T_discon_reqPtr = ^T_discon_req;
T_discon_req = record
PRIM_type: SIGNEDLONG; { always T_DISCON_REQ }
SEQ_number: SIGNEDLONG;
end;
type
T_exdata_indPtr = ^T_exdata_ind;
T_exdata_ind = record
PRIM_type: SIGNEDLONG; { always T_EXDATA_IND }
MORE_flag: SIGNEDLONG;
end;
type
T_exdata_reqPtr = ^T_exdata_req;
T_exdata_req = record
PRIM_type: SIGNEDLONG; { always T_EXDATA_REQ }
MORE_flag: SIGNEDLONG;
end;
type
T_error_ackPtr = ^T_error_ack;
T_error_ack = record
PRIM_type: SIGNEDLONG; { always T_ERROR_ACK }
ERROR_prim: SIGNEDLONG; { primitive in error }
TLI_error: SIGNEDLONG;
UNIX_error: SIGNEDLONG;
end;
type
T_info_ackPtr = ^T_info_ack;
T_info_ack = record
PRIM_type: SIGNEDLONG; { always T_INFO_ACK }
TSDU_size: SIGNEDLONG; { max TSDU size }
ETSDU_size: SIGNEDLONG; { max ETSDU size }
CDATA_size: SIGNEDLONG; { connect data size }
DDATA_size: SIGNEDLONG; { disconnect data size }
ADDR_size: SIGNEDLONG; { TSAP size }
OPT_size: SIGNEDLONG; { options size }
TIDU_size: SIGNEDLONG; { TIDU size }
SERV_type: SIGNEDLONG; { service type }
CURRENT_state: SIGNEDLONG; { current state }
PROVIDER_flag: SIGNEDLONG; { provider flags (see xti.h for defines) }
end;
{ Provider flags }
const
SENDZERO = $0001; { supports 0-length TSDU's }
XPG4_1 = $0002; { provider supports recent stuff }
type
T_info_reqPtr = ^T_info_req;
T_info_req = record
PRIM_type: SIGNEDLONG; { always T_INFO_REQ }
end;
type
T_ok_ackPtr = ^T_ok_ack;
T_ok_ack = record
PRIM_type: SIGNEDLONG; { always T_OK_ACK }
CORRECT_prim: SIGNEDLONG;
end;
type
T_optmgmt_ackPtr = ^T_optmgmt_ack;
T_optmgmt_ack = record
PRIM_type: SIGNEDLONG; { always T_OPTMGMT_ACK }
OPT_length: SIGNEDLONG;
OPT_offset: SIGNEDLONG;
MGMT_flags: SIGNEDLONG;
end;
type
T_optmgmt_reqPtr = ^T_optmgmt_req;
T_optmgmt_req = record
PRIM_type: SIGNEDLONG; { always T_OPTMGMT_REQ }
OPT_length: SIGNEDLONG;
OPT_offset: SIGNEDLONG;
MGMT_flags: SIGNEDLONG;
end;
type
T_ordrel_indPtr = ^T_ordrel_ind;
T_ordrel_ind = record
PRIM_type: SIGNEDLONG; { always T_ORDREL_IND }
end;
type
T_ordrel_reqPtr = ^T_ordrel_req;
T_ordrel_req = record
PRIM_type: SIGNEDLONG; { always T_ORDREL_REQ }
end;
type
T_unbind_reqPtr = ^T_unbind_req;
T_unbind_req = record
PRIM_type: SIGNEDLONG; { always T_UNBIND_REQ }
end;
type
T_uderror_indPtr = ^T_uderror_ind;
T_uderror_ind = record
PRIM_type: SIGNEDLONG; { always T_UDERROR_IND }
DEST_length: SIGNEDLONG;
DEST_offset: SIGNEDLONG;
OPT_length: SIGNEDLONG;
OPT_offset: SIGNEDLONG;
ERROR_type: SIGNEDLONG;
end;
type
T_unitdata_indPtr = ^T_unitdata_ind;
T_unitdata_ind = record
PRIM_type: SIGNEDLONG; { always T_UNITDATA_IND }
SRC_length: SIGNEDLONG;
SRC_offset: SIGNEDLONG;
OPT_length: SIGNEDLONG;
OPT_offset: SIGNEDLONG;
end;
type
T_unitdata_reqPtr = ^T_unitdata_req;
T_unitdata_req = record
PRIM_type: SIGNEDLONG; { always T_UNITDATA_REQ }
DEST_length: SIGNEDLONG;
DEST_offset: SIGNEDLONG;
OPT_length: SIGNEDLONG;
OPT_offset: SIGNEDLONG;
end;
type
T_resolveaddr_ackPtr = ^T_resolveaddr_ack;
T_resolveaddr_ack = record
PRIM_type: SIGNEDLONG; { always T_RESOLVEADDR_ACK }
SEQ_number: SIGNEDLONG;
ADDR_length: SIGNEDLONG;
ADDR_offset: SIGNEDLONG;
ORIG_client: SIGNEDLONG;
ORIG_data: SIGNEDLONG;
TLI_error: SIGNEDLONG;
UNIX_error: SIGNEDLONG;
end;
type
T_resolveaddr_reqPtr = ^T_resolveaddr_req;
T_resolveaddr_req = record
PRIM_type: SIGNEDLONG; { always T_RESOLVEADDR_REQ }
SEQ_number: SIGNEDLONG;
ADDR_length: SIGNEDLONG;
ADDR_offset: SIGNEDLONG;
ORIG_client: SIGNEDLONG;
ORIG_data: SIGNEDLONG;
MAX_milliseconds: SIGNEDLONG;
end;
type
T_unitreply_indPtr = ^T_unitreply_ind;
T_unitreply_ind = record
PRIM_type: SIGNEDLONG; { Always T_UREPLY_IND }
SEQ_number: SIGNEDLONG;
OPT_length: SIGNEDLONG;
OPT_offset: SIGNEDLONG;
REP_flags: SIGNEDLONG;
TLI_error: SIGNEDLONG;
UNIX_error: SIGNEDLONG;
end;
type
T_unitrequest_indPtr = ^T_unitrequest_ind;
T_unitrequest_ind = record
PRIM_type: SIGNEDLONG; { Always T_UREQUEST_IND }
SEQ_number: SIGNEDLONG;
SRC_length: SIGNEDLONG;
SRC_offset: SIGNEDLONG;
OPT_length: SIGNEDLONG;
OPT_offset: SIGNEDLONG;
REQ_flags: SIGNEDLONG;
end;
type
T_unitrequest_reqPtr = ^T_unitrequest_req;
T_unitrequest_req = record
PRIM_type: SIGNEDLONG; { Always T_UREQUEST_REQ }
SEQ_number: SIGNEDLONG;
DEST_length: SIGNEDLONG;
DEST_offset: SIGNEDLONG;
OPT_length: SIGNEDLONG;
OPT_offset: SIGNEDLONG;
REQ_flags: SIGNEDLONG;
end;
type
T_unitreply_reqPtr = ^T_unitreply_req;
T_unitreply_req = record
PRIM_type: SIGNEDLONG; { Always T_UREPLY_REQ }
SEQ_number: SIGNEDLONG;
OPT_length: SIGNEDLONG;
OPT_offset: SIGNEDLONG;
REP_flags: SIGNEDLONG;
end;
type
T_unitreply_ackPtr = ^T_unitreply_ack;
T_unitreply_ack = record
PRIM_type: SIGNEDLONG; { Always T_UREPLY_ACK }
SEQ_number: SIGNEDLONG;
TLI_error: SIGNEDLONG;
UNIX_error: SIGNEDLONG;
end;
type
T_cancelrequest_reqPtr = ^T_cancelrequest_req;
T_cancelrequest_req = record
PRIM_type: SIGNEDLONG; { Always T_CANCELREQUEST_REQ }
SEQ_number: SIGNEDLONG;
end;
type
T_cancelreply_reqPtr = ^T_cancelreply_req;
T_cancelreply_req = record
PRIM_type: SIGNEDLONG; { Always T_CANCELREPLY_REQ }
SEQ_number: SIGNEDLONG;
end;
type
T_reply_indPtr = ^T_reply_ind;
T_reply_ind = record
PRIM_type: SIGNEDLONG; { Always T_REPLY_IND }
SEQ_number: SIGNEDLONG;
OPT_length: SIGNEDLONG;
OPT_offset: SIGNEDLONG;
REP_flags: SIGNEDLONG;
TLI_error: SIGNEDLONG;
UNIX_error: SIGNEDLONG;
end;
type
T_request_indPtr = ^T_request_ind;
T_request_ind = record
PRIM_type: SIGNEDLONG; { Always T_REQUEST_IND }
SEQ_number: SIGNEDLONG;
OPT_length: SIGNEDLONG;
OPT_offset: SIGNEDLONG;
REQ_flags: SIGNEDLONG;
end;
type
T_request_reqPtr = ^T_request_req;
T_request_req = record
PRIM_type: SIGNEDLONG; { Always T_REQUEST_REQ }
SEQ_number: SIGNEDLONG;
OPT_length: SIGNEDLONG;
OPT_offset: SIGNEDLONG;
REQ_flags: SIGNEDLONG;
end;
type
T_reply_reqPtr = ^T_reply_req;
T_reply_req = record
PRIM_type: SIGNEDLONG; { Always T_REPLY_REQ }
SEQ_number: SIGNEDLONG;
OPT_length: SIGNEDLONG;
OPT_offset: SIGNEDLONG;
REP_flags: SIGNEDLONG;
end;
type
T_reply_ackPtr = ^T_reply_ack;
T_reply_ack = record
PRIM_type: SIGNEDLONG; { Always T_REPLY_ACK }
SEQ_number: SIGNEDLONG;
TLI_error: SIGNEDLONG;
UNIX_error: SIGNEDLONG;
end;
type
T_regname_reqPtr = ^T_regname_req;
T_regname_req = record
PRIM_type: SIGNEDLONG; { Always T_REGNAME_REQ }
SEQ_number: SIGNEDLONG; { Reply is sequence ack }
NAME_length: SIGNEDLONG;
NAME_offset: SIGNEDLONG;
ADDR_length: SIGNEDLONG;
ADDR_offset: SIGNEDLONG;
REQ_flags: SIGNEDLONG;
end;
type
T_regname_ackPtr = ^T_regname_ack;
T_regname_ack = record
PRIM_type: SIGNEDLONG; { always T_REGNAME_ACK }
SEQ_number: SIGNEDLONG;
REG_id: SIGNEDLONG;
ADDR_length: SIGNEDLONG;
ADDR_offset: SIGNEDLONG;
end;
type
T_delname_reqPtr = ^T_delname_req;
T_delname_req = record
PRIM_type: SIGNEDLONG; { Always T_DELNAME_REQ }
SEQ_number: SIGNEDLONG; { Reply is sequence ack }
NAME_length: SIGNEDLONG;
NAME_offset: SIGNEDLONG;
end;
type
T_lkupname_reqPtr = ^T_lkupname_req;
T_lkupname_req = record
PRIM_type: SIGNEDLONG; { Always T_LKUPNAME_REQ }
SEQ_number: SIGNEDLONG; { Reply is sequence ack }
NAME_length: SIGNEDLONG; { ... or T_LKUPNAME_CON }
NAME_offset: SIGNEDLONG;
ADDR_length: SIGNEDLONG;
ADDR_offset: SIGNEDLONG;
MAX_number: SIGNEDLONG;
MAX_milliseconds: SIGNEDLONG;
REQ_flags: SIGNEDLONG;
end;
type
T_lkupname_conPtr = ^T_lkupname_con;
T_lkupname_con = record
PRIM_type: SIGNEDLONG; { Either T_LKUPNAME_CON }
SEQ_number: SIGNEDLONG; { Or T_LKUPNAME_RES }
NAME_length: SIGNEDLONG;
NAME_offset: SIGNEDLONG;
RSP_count: SIGNEDLONG;
RSP_cumcount: SIGNEDLONG;
end;
type
T_sequence_ackPtr = ^T_sequence_ack;
T_sequence_ack = record
PRIM_type: SIGNEDLONG; { always T_SEQUENCED_ACK }
ORIG_prim: SIGNEDLONG; { original primitive }
SEQ_number: SIGNEDLONG;
TLI_error: SIGNEDLONG;
UNIX_error: SIGNEDLONG;
end;
type
T_event_indPtr = ^T_event_ind;
T_event_ind = record
PRIM_type: SIGNEDLONG; { always T_EVENT_IND }
EVENT_code: SIGNEDLONG;
EVENT_cookie: SIGNEDLONG;
end;
T_primitivesPtr = ^T_primitives;
T_primitives = record
case SInt16 of
0: (
primType: SIGNEDLONG;
);
1: (
taddrack: T_addr_ack;
);
2: (
tbindack: T_bind_ack;
);
3: (
tbindreq: T_bind_req;
);
4: (
tconncon: T_conn_con;
);
5: (
tconnind: T_conn_ind;
);
6: (
tconnreq: T_conn_req;
);
7: (
tconnres: T_conn_res;
);
8: (
tdataind: T_data_ind;
);
9: (
tdatareq: T_data_req;
);
10: (
tdisconind: T_discon_ind;
);
11: (
tdisconreq: T_discon_req;
);
12: (
texdataind: T_exdata_ind;
);
13: (
texdatareq: T_exdata_req;
);
14: (
terrorack: T_error_ack;
);
15: (
tinfoack: T_info_ack;
);
16: (
tinforeq: T_info_req;
);
17: (
tokack: T_ok_ack;
);
18: (
toptmgmtack: T_optmgmt_ack;
);
19: (
toptmgmtreq: T_optmgmt_req;
);
20: (
tordrelind: T_ordrel_ind;
);
21: (
tordrelreq: T_ordrel_req;
);
22: (
tunbindreq: T_unbind_req;
);
23: (
tuderrorind: T_uderror_ind;
);
24: (
tunitdataind: T_unitdata_ind;
);
25: (
tunitdatareq: T_unitdata_req;
);
26: (
tunitreplyind: T_unitreply_ind;
);
27: (
tunitrequestind: T_unitrequest_ind;
);
28: (
tunitrequestreq: T_unitrequest_req;
);
29: (
tunitreplyreq: T_unitreply_req;
);
30: (
tunitreplyack: T_unitreply_ack;
);
31: (
treplyind: T_reply_ind;
);
32: (
trequestind: T_request_ind;
);
33: (
trequestreq: T_request_req;
);
34: (
treplyreq: T_reply_req;
);
35: (
treplyack: T_reply_ack;
);
36: (
tcancelreqreq: T_cancelrequest_req;
);
37: (
tresolvereq: T_resolveaddr_req;
);
38: (
tresolveack: T_resolveaddr_ack;
);
39: (
tregnamereq: T_regname_req;
);
40: (
tregnameack: T_regname_ack;
);
41: (
tdelnamereq: T_delname_req;
);
42: (
tlkupnamereq: T_lkupname_req;
);
43: (
tlkupnamecon: T_lkupname_con;
);
44: (
tsequenceack: T_sequence_ack;
);
45: (
teventind: T_event_ind;
);
end;
{ ***** From the Mentat "dlpi.h" *****}
{
This header file has encoded the values so an existing driver
or user which was written with the Logical Link Interface(LLI)
can migrate to the DLPI interface in a binary compatible manner.
Any fields which require a specific format or value are flagged
with a comment containing the message LLI compatibility.
}
{ DLPI revision definition history}
const
DL_CURRENT_VERSION = $02; { current version of dlpi }
DL_VERSION_2 = $02; { version of dlpi March 12,1991 }
const
DL_INFO_REQ = $00; { Information Req, LLI compatibility }
DL_INFO_ACK = $03; { Information Ack, LLI compatibility }
DL_ATTACH_REQ = $0B; { Attach a PPA }
DL_DETACH_REQ = $0C; { Detach a PPA }
DL_BIND_REQ = $01; { Bind dlsap address, LLI compatibility }
DL_BIND_ACK = $04; { Dlsap address bound, LLI compatibility }
DL_UNBIND_REQ = $02; { Unbind dlsap address, LLI compatibility }
DL_OK_ACK = $06; { Success acknowledgment, LLI compatibility }
DL_ERROR_ACK = $05; { Error acknowledgment, LLI compatibility }
DL_SUBS_BIND_REQ = $1B; { Bind Subsequent DLSAP address }
DL_SUBS_BIND_ACK = $1C; { Subsequent DLSAP address bound }
DL_SUBS_UNBIND_REQ = $15; { Subsequent unbind }
DL_ENABMULTI_REQ = $1D; { Enable multicast addresses }
DL_DISABMULTI_REQ = $1E; { Disable multicast addresses }
DL_PROMISCON_REQ = $1F; { Turn on promiscuous mode }
DL_PROMISCOFF_REQ = $20; { Turn off promiscuous mode }
DL_UNITDATA_REQ = $07; { datagram send request, LLI compatibility }
DL_UNITDATA_IND = $08; { datagram receive indication, LLI compatibility }
DL_UDERROR_IND = $09; { datagram error indication, LLI compatibility }
DL_UDQOS_REQ = $0A; { set QOS for subsequent datagram transmissions }
DL_CONNECT_REQ = $0D; { Connect request }
DL_CONNECT_IND = $0E; { Incoming connect indication }
DL_CONNECT_RES = $0F; { Accept previous connect indication }
DL_CONNECT_CON = $10; { Connection established }
DL_TOKEN_REQ = $11; { Passoff token request }
DL_TOKEN_ACK = $12; { Passoff token ack }
DL_DISCONNECT_REQ = $13; { Disconnect request }
DL_DISCONNECT_IND = $14; { Disconnect indication }
DL_RESET_REQ = $17; { Reset service request }
DL_RESET_IND = $18; { Incoming reset indication }
DL_RESET_RES = $19; { Complete reset processing }
DL_RESET_CON = $1A; { Reset processing complete }
DL_DATA_ACK_REQ = $21; { data unit transmission request }
DL_DATA_ACK_IND = $22; { Arrival of a command PDU }
DL_DATA_ACK_STATUS_IND = $23; { Status indication of DATA_ACK_REQ}
DL_REPLY_REQ = $24; { Request a DLSDU from the remote }
DL_REPLY_IND = $25; { Arrival of a command PDU }
DL_REPLY_STATUS_IND = $26; { Status indication of REPLY_REQ }
DL_REPLY_UPDATE_REQ = $27; { Hold a DLSDU for transmission }
DL_REPLY_UPDATE_STATUS_IND = $28; { Status of REPLY_UPDATE req }
DL_XID_REQ = $29; { Request to send an XID PDU }
DL_XID_IND = $2A; { Arrival of an XID PDU }
DL_XID_RES = $2B; { request to send a response XID PDU}
DL_XID_CON = $2C; { Arrival of a response XID PDU }
DL_TEST_REQ = $2D; { TEST command request }
DL_TEST_IND = $2E; { TEST response indication }
DL_TEST_RES = $2F; { TEST response }
DL_TEST_CON = $30; { TEST Confirmation }
DL_PHYS_ADDR_REQ = $31; { Request to get physical addr }
DL_PHYS_ADDR_ACK = $32; { Return physical addr }
DL_SET_PHYS_ADDR_REQ = $33; { set physical addr }
DL_GET_STATISTICS_REQ = $34; { Request to get statistics }
DL_GET_STATISTICS_ACK = $35; { Return statistics }
{ DLPI interface states}
const
DL_UNATTACHED = $04; { PPA not attached }
DL_ATTACH_PENDING = $05; { Waiting ack of DL_ATTACH_REQ }
DL_DETACH_PENDING = $06; { Waiting ack of DL_DETACH_REQ }
DL_UNBOUND = $00; { PPA attached, LLI compatibility }
DL_BIND_PENDING = $01; { Waiting ack of DL_BIND_REQ, LLI compatibility }
DL_UNBIND_PENDING = $02; { Waiting ack of DL_UNBIND_REQ, LLI compatibility }
DL_IDLE = $03; { dlsap bound, awaiting use, LLI compatibility }
DL_UDQOS_PENDING = $07; { Waiting ack of DL_UDQOS_REQ }
DL_OUTCON_PENDING = $08; { outgoing connection, awaiting DL_CONN_CON }
DL_INCON_PENDING = $09; { incoming connection, awaiting DL_CONN_RES }
DL_CONN_RES_PENDING = $0A; { Waiting ack of DL_CONNECT_RES }
DL_DATAXFER = $0B; { connection-oriented data transfer }
DL_USER_RESET_PENDING = $0C; { user initiated reset, awaiting DL_RESET_CON }
DL_PROV_RESET_PENDING = $0D; { provider initiated reset, awaiting DL_RESET_RES }
DL_RESET_RES_PENDING = $0E; { Waiting ack of DL_RESET_RES }
DL_DISCON8_PENDING = $0F; { Waiting ack of DL_DISC_REQ when in DL_OUTCON_PENDING }
DL_DISCON9_PENDING = $10; { Waiting ack of DL_DISC_REQ when in DL_INCON_PENDING }
DL_DISCON11_PENDING = $11; { Waiting ack of DL_DISC_REQ when in DL_DATAXFER }
DL_DISCON12_PENDING = $12; { Waiting ack of DL_DISC_REQ when in DL_USER_RESET_PENDING }
DL_DISCON13_PENDING = $13; { Waiting ack of DL_DISC_REQ when in DL_DL_PROV_RESET_PENDING }
DL_SUBS_BIND_PND = $14; { Waiting ack of DL_SUBS_BIND_REQ }
DL_SUBS_UNBIND_PND = $15; { Waiting ack of DL_SUBS_UNBIND_REQ }
{ DL_ERROR_ACK error return values}
const
DL_ACCESS = $02; { Improper permissions for request, LLI compatibility }
DL_BADADDR = $01; { DLSAP address in improper format or invalid }
DL_BADCORR = $05; { Sequence number not from outstanding DL_CONN_IND }
DL_BADDATA = $06; { User data exceeded provider limit }
DL_BADPPA = $08; { Specified PPA was invalid }
DL_BADPRIM = $09; { Primitive received is not known by DLS provider }
DL_BADQOSPARAM = $0A; { QOS parameters contained invalid values }
DL_BADQOSTYPE = $0B; { QOS structure type is unknown or unsupported }
DL_BADSAP = $00; { Bad LSAP selector, LLI compatibility }
DL_BADTOKEN = $0C; { Token used not associated with an active stream }
DL_BOUND = $0D; { Attempted second bind with dl_max_conind or }
{ dl_conn_mgmt > 0 on same DLSAP or PPA }
DL_INITFAILED = $0E; { Physical Link initialization failed }
DL_NOADDR = $0F; { Provider couldn't allocate alternate address }
DL_NOTINIT = $10; { Physical Link not initialized }
DL_OUTSTATE = $03; { Primitive issued in improper state, LLI compatibility }
DL_SYSERR = $04; { UNIX system error occurred, LLI compatibility }
DL_UNSUPPORTED = $07; { Requested service not supplied by provider }
DL_UNDELIVERABLE = $11; { Previous data unit could not be delivered }
DL_NOTSUPPORTED = $12; { Primitive is known but not supported by DLS provider }
DL_TOOMANY = $13; { limit exceeded }
DL_NOTENAB = $14; { Promiscuous mode not enabled }
DL_BUSY = $15; { Other streams for a particular PPA in the post-attached state }
DL_NOAUTO = $16; { Automatic handling of XID & TEST responses not supported }
DL_NOXIDAUTO = $17; { Automatic handling of XID not supported }
DL_NOTESTAUTO = $18; { Automatic handling of TEST not supported }
DL_XIDAUTO = $19; { Automatic handling of XID response }
DL_TESTAUTO = $1A; { AUtomatic handling of TEST response}
DL_PENDING = $1B; { pending outstanding connect indications }
{ DLPI media types supported}
const
DL_CSMACD = $00; { IEEE 802.3 CSMA/CD network, LLI Compatibility }
DL_TPB = $01; { IEEE 802.4 Token Passing Bus, LLI Compatibility }
DL_TPR = $02; { IEEE 802.5 Token Passing Ring, LLI Compatibility }
DL_METRO = $03; { IEEE 802.6 Metro Net, LLI Compatibility }
DL_ETHER = $04; { Ethernet Bus, LLI Compatibility }
DL_HDLC = $05; { ISO HDLC protocol support, bit synchronous }
DL_CHAR = $06; { Character Synchronous protocol support, eg BISYNC }
DL_CTCA = $07; { IBM Channel-to-Channel Adapter }
DL_FDDI = $08; { Fiber Distributed data interface }
DL_OTHER = $09; { Any other medium not listed above }
{
DLPI provider service supported.
These must be allowed to be bitwise-OR for dl_service_mode in
DL_INFO_ACK.
}
const
DL_CODLS = $01; { support connection-oriented service }
DL_CLDLS = $02; { support connectionless data link service }
DL_ACLDLS = $04; { support acknowledged connectionless service}
{
DLPI provider style.
The DLPI provider style which determines whether a provider
requires a DL_ATTACH_REQ to inform the provider which PPA
user messages should be sent/received on.
}
const
DL_STYLE1 = $0500; { PPA is implicitly bound by open(2) }
DL_STYLE2 = $0501; { PPA must be explicitly bound via DL_ATTACH_REQ }
{ DLPI Originator for Disconnect and Resets}
const
DL_PROVIDER = $0700;
DL_USER = $0701;
{ DLPI Disconnect Reasons}
const
DL_CONREJ_DEST_UNKNOWN = $0800;
DL_CONREJ_DEST_UNREACH_PERMANENT = $0801;
DL_CONREJ_DEST_UNREACH_TRANSIENT = $0802;
DL_CONREJ_QOS_UNAVAIL_PERMANENT = $0803;
DL_CONREJ_QOS_UNAVAIL_TRANSIENT = $0804;
DL_CONREJ_PERMANENT_COND = $0805;
DL_CONREJ_TRANSIENT_COND = $0806;
DL_DISC_ABNORMAL_CONDITION = $0807;
DL_DISC_NORMAL_CONDITION = $0808;
DL_DISC_PERMANENT_CONDITION = $0809;
DL_DISC_TRANSIENT_CONDITION = $080A;
DL_DISC_UNSPECIFIED = $080B;
{ DLPI Reset Reasons}
const
DL_RESET_FLOW_CONTROL = $0900;
DL_RESET_LINK_ERROR = $0901;
DL_RESET_RESYNCH = $0902;
{ DLPI status values for acknowledged connectionless data transfer}
const
DL_CMD_MASK = $0F; { mask for command portion of status }
DL_CMD_OK = $00; { Command Accepted }
DL_CMD_RS = $01; { Unimplemented or inactivated service }
DL_CMD_UE = $05; { Data Link User interface error }
DL_CMD_PE = $06; { Protocol error }
DL_CMD_IP = $07; { Permanent implementation dependent error}
DL_CMD_UN = $09; { Resources temporarily unavailable }
DL_CMD_IT = $0F; { Temporary implementation dependent error }
DL_RSP_MASK = $F0; { mask for response portion of status }
DL_RSP_OK = $00; { Response DLSDU present }
DL_RSP_RS = $10; { Unimplemented or inactivated service }
DL_RSP_NE = $30; { Response DLSDU never submitted }
DL_RSP_NR = $40; { Response DLSDU not requested }
DL_RSP_UE = $50; { Data Link User interface error }
DL_RSP_IP = $70; { Permanent implementation dependent error }
DL_RSP_UN = $90; { Resources temporarily unavailable }
DL_RSP_IT = $F0; { Temporary implementation dependent error }
{ Service Class values for acknowledged connectionless data transfer}
const
DL_RQST_RSP = $01; { Use acknowledge capability in MAC sublayer}
DL_RQST_NORSP = $02; { No acknowledgement service requested }
{ DLPI address type definition}
const
DL_FACT_PHYS_ADDR = $01; { factory physical address }
DL_CURR_PHYS_ADDR = $02; { current physical address }
{ DLPI flag definitions}
const
DL_POLL_FINAL = $01; { if set,indicates poll/final bit set}
{ XID and TEST responses supported by the provider}
const
DL_AUTO_XID = $01; { provider will respond to XID }
DL_AUTO_TEST = $02; { provider will respond to TEST }
{ Subsequent bind type}
const
DL_PEER_BIND = $01; { subsequent bind on a peer addr }
DL_HIERARCHICAL_BIND = $02; { subs_bind on a hierarchical addr}
{ DLPI promiscuous mode definitions}
const
DL_PROMISC_PHYS = $01; { promiscuous mode at phys level }
DL_PROMISC_SAP = $02; { promiscous mode at sap level }
DL_PROMISC_MULTI = $03; { promiscuous mode for multicast }
{ M_DATA "raw" mode }
// #define DLIOCRAW MIOC_CMD(MIOC_DLPI,1)
{
DLPI Quality Of Service definition for use in QOS structure definitions.
The QOS structures are used in connection establishment, DL_INFO_ACK,
and setting connectionless QOS values.
}
{
Throughput
This parameter is specified for both directions.
}
type
dl_through_t = record
dl_target_value: SInt32; { desired bits/second desired }
dl_accept_value: SInt32; { min. acceptable bits/second }
end;
{
transit delay specification
This parameter is specified for both directions.
expressed in milliseconds assuming a DLSDU size of 128 octets.
The scaling of the value to the current DLSDU size is provider dependent.
}
type
dl_transdelay_tPtr = ^dl_transdelay_t;
dl_transdelay_t = record
dl_target_value: SInt32; { desired value of service }
dl_accept_value: SInt32; { min. acceptable value of service }
end;
{
priority specification
priority range is 0-100, with 0 being highest value.
}
type
dl_priority_tPtr = ^dl_priority_t;
dl_priority_t = record
dl_min: SInt32;
dl_max: SInt32;
end;
{ protection specification}
const
DL_NONE = $0B01; { no protection supplied }
DL_MONITOR = $0B02; { protection against passive monitoring }
DL_MAXIMUM = $0B03; { protection against modification, replay, addition, or deletion }
type
dl_protect_tPtr = ^dl_protect_t;
dl_protect_t = record
dl_min: SInt32;
dl_max: SInt32;
end;
{
Resilience specification
probabilities are scaled by a factor of 10,000 with a time interval
of 10,000 seconds.
}
type
dl_resilience_tPtr = ^dl_resilience_t;
dl_resilience_t = record
dl_disc_prob: SInt32; { probability of provider init DISC }
dl_reset_prob: SInt32; { probability of provider init RESET }
end;
{
QOS type definition to be used for negotiation with the
remote end of a connection, or a connectionless unitdata request.
There are two type definitions to handle the negotiation
process at connection establishment. The typedef dl_qos_range_t
is used to present a range for parameters. This is used
in the DL_CONNECT_REQ and DL_CONNECT_IND messages. The typedef
dl_qos_sel_t is used to select a specific value for the QOS
parameters. This is used in the DL_CONNECT_RES, DL_CONNECT_CON,
and DL_INFO_ACK messages to define the selected QOS parameters
for a connection.
NOTE
A DataLink provider which has unknown values for any of the fields
will use a value of DL_UNKNOWN for all values in the fields.
NOTE
A QOS parameter value of DL_QOS_DONT_CARE informs the DLS
provider the user requesting this value doesn't care
what the QOS parameter is set to. This value becomes the
least possible value in the range of QOS parameters.
The order of the QOS parameter range is then:
DL_QOS_DONT_CARE < 0 < MAXIMUM QOS VALUE
}
const
DL_UNKNOWN = -1;
DL_QOS_DONT_CARE = -2;
{
Every QOS structure has the first 4 bytes containing a type
field, denoting the definition of the rest of the structure.
This is used in the same manner has the dl_primitive variable
is in messages.
The following list is the defined QOS structure type values and structures.
}
const
DL_QOS_CO_RANGE1 = $0101; { QOS range struct. for Connection modeservice }
DL_QOS_CO_SEL1 = $0102; { QOS selection structure }
DL_QOS_CL_RANGE1 = $0103; { QOS range struct. for connectionless}
DL_QOS_CL_SEL1 = $0104; { QOS selection for connectionless mode}
type
dl_qos_co_range1_tPtr = ^dl_qos_co_range1_t;
dl_qos_co_range1_t = record
dl_qos_type: UInt32;
dl_rcv_throughput: dl_through_t; { desired and acceptable}
dl_rcv_trans_delay: dl_transdelay_t; { desired and acceptable}
dl_xmt_throughput: dl_through_t;
dl_xmt_trans_delay: dl_transdelay_t;
dl_priority: dl_priority_t; { min and max values }
dl_protection: dl_protect_t; { min and max values }
dl_residual_error: SInt32;
dl_resilience: dl_resilience_t;
end;
type
dl_qos_co_sel1_tPtr = ^dl_qos_co_sel1_t;
dl_qos_co_sel1_t = record
dl_qos_type: UInt32;
dl_rcv_throughput: SInt32;
dl_rcv_trans_delay: SInt32;
dl_xmt_throughput: SInt32;
dl_xmt_trans_delay: SInt32;
dl_priority: SInt32;
dl_protection: SInt32;
dl_residual_error: SInt32;
dl_resilience: dl_resilience_t;
end;
type
dl_qos_cl_range1_tPtr = ^dl_qos_cl_range1_t;
dl_qos_cl_range1_t = record
dl_qos_type: UInt32;
dl_trans_delay: dl_transdelay_t;
dl_priority: dl_priority_t;
dl_protection: dl_protect_t;
dl_residual_error: SInt32;
end;
type
dl_qos_cl_sel1_tPtr = ^dl_qos_cl_sel1_t;
dl_qos_cl_sel1_t = record
dl_qos_type: UInt32;
dl_trans_delay: SInt32;
dl_priority: SInt32;
dl_protection: SInt32;
dl_residual_error: SInt32;
end;
{
DLPI interface primitive definitions.
Each primitive is sent as a stream message. It is possible that
the messages may be viewed as a sequence of bytes that have the
following form without any padding. The structure definition
of the following messages may have to change depending on the
underlying hardware architecture and crossing of a hardware
boundary with a different hardware architecture.
Fields in the primitives having a name of the form
dl_reserved cannot be used and have the value of
binary zero, no bits turned on.
Each message has the name defined followed by the
stream message type (M_PROTO, M_PCPROTO, M_DATA)
}
{ LOCAL MANAGEMENT SERVICE PRIMITIVES}
{ DL_INFO_REQ, M_PCPROTO type}
type
dl_info_req_tPtr = ^dl_info_req_t;
dl_info_req_t = record
dl_primitive: UInt32; { set to DL_INFO_REQ }
end;
{ DL_INFO_ACK, M_PCPROTO type}
type
dl_info_ack_tPtr = ^dl_info_ack_t;
dl_info_ack_t = record
dl_primitive: UInt32; { set to DL_INFO_ACK }
dl_max_sdu: UInt32; { Max bytes in a DLSDU }
dl_min_sdu: UInt32; { Min bytes in a DLSDU }
dl_addr_length: UInt32; { length of DLSAP address }
dl_mac_type: UInt32; { type of medium supported}
dl_reserved: UInt32; { value set to zero }
dl_current_state: UInt32; { state of DLPI interface }
dl_sap_length: SInt32; { current length of SAP part of dlsap address }
dl_service_mode: UInt32; { CO, CL or ACL }
dl_qos_length: UInt32; { length of qos values }
dl_qos_offset: UInt32; { offset from beg. of block}
dl_qos_range_length: UInt32; { available range of qos }
dl_qos_range_offset: UInt32; { offset from beg. of block}
dl_provider_style: UInt32; { style1 or style2 }
dl_addr_offset: UInt32; { offset of the dlsap addr }
dl_version: UInt32; { version number }
dl_brdcst_addr_length: UInt32; { length of broadcast addr }
dl_brdcst_addr_offset: UInt32; { offset from beg. of block}
dl_growth: UInt32; { set to zero }
end;
{ DL_ATTACH_REQ, M_PROTO type}
type
dl_attach_req_tPtr = ^dl_attach_req_t;
dl_attach_req_t = record
dl_primitive: UInt32; { set to DL_ATTACH_REQ}
dl_ppa: UInt32; { id of the PPA }
end;
{ DL_DETACH_REQ, M_PROTO type}
type
dl_detach_req_tPtr = ^dl_detach_req_t;
dl_detach_req_t = record
dl_primitive: UInt32; { set to DL_DETACH_REQ }
end;
{ DL_BIND_REQ, M_PROTO type}
type
dl_bind_req_tPtr = ^dl_bind_req_t;
dl_bind_req_t = record
dl_primitive: UInt32; { set to DL_BIND_REQ }
dl_sap: UInt32; { info to identify dlsap addr}
dl_max_conind: UInt32; { max # of outstanding con_ind}
dl_service_mode: UInt16; { CO, CL or ACL }
dl_conn_mgmt: UInt16; { if non-zero, is con-mgmt stream}
dl_xidtest_flg: UInt32; { if set to 1 indicates automatic initiation of test and xid frames }
end;
{ DL_BIND_ACK, M_PCPROTO type}
type
dl_bind_ack_tPtr = ^dl_bind_ack_t;
dl_bind_ack_t = record
dl_primitive: UInt32; { DL_BIND_ACK }
dl_sap: UInt32; { DLSAP addr info }
dl_addr_length: UInt32; { length of complete DLSAP addr }
dl_addr_offset: UInt32; { offset from beginning of M_PCPROTO}
dl_max_conind: UInt32; { allowed max. # of con-ind }
dl_xidtest_flg: UInt32; { responses supported by provider}
end;
{ DL_SUBS_BIND_REQ, M_PROTO type}
type
dl_subs_bind_req_tPtr = ^dl_subs_bind_req_t;
dl_subs_bind_req_t = record
dl_primitive: UInt32; { DL_SUBS_BIND_REQ }
dl_subs_sap_offset: UInt32; { offset of subs_sap }
dl_subs_sap_length: UInt32; { length of subs_sap }
dl_subs_bind_class: UInt32; { peer or hierarchical }
end;
{ DL_SUBS_BIND_ACK, M_PCPROTO type}
type
dl_subs_bind_ack_tPtr = ^dl_subs_bind_ack_t;
dl_subs_bind_ack_t = record
dl_primitive: UInt32; { DL_SUBS_BIND_ACK }
dl_subs_sap_offset: UInt32; { offset of subs_sap }
dl_subs_sap_length: UInt32; { length of subs_sap }
end;
{ DL_UNBIND_REQ, M_PROTO type}
type
dl_unbind_req_tPtr = ^dl_unbind_req_t;
dl_unbind_req_t = record
dl_primitive: UInt32; { DL_UNBIND_REQ }
end;
{ DL_SUBS_UNBIND_REQ, M_PROTO type}
type
dl_subs_unbind_req_tPtr = ^dl_subs_unbind_req_t;
dl_subs_unbind_req_t = record
dl_primitive: UInt32; { DL_SUBS_UNBIND_REQ }
dl_subs_sap_offset: UInt32; { offset of subs_sap }
dl_subs_sap_length: UInt32; { length of subs_sap }
end;
{ DL_OK_ACK, M_PCPROTO type}
type
dl_ok_ack_tPtr = ^dl_ok_ack_t;
dl_ok_ack_t = record
dl_primitive: UInt32; { DL_OK_ACK }
dl_correct_primitive: UInt32; { primitive being acknowledged }
end;
{ DL_ERROR_ACK, M_PCPROTO type}
type
dl_error_ack_tPtr = ^dl_error_ack_t;
dl_error_ack_t = record
dl_primitive: UInt32; { DL_ERROR_ACK }
dl_error_primitive: UInt32; { primitive in error }
dl_errno: UInt32; { DLPI error code }
dl_unix_errno: UInt32; { UNIX system error code }
end;
{ DL_ENABMULTI_REQ, M_PROTO type}
type
dl_enabmulti_req_tPtr = ^dl_enabmulti_req_t;
dl_enabmulti_req_t = record
dl_primitive: UInt32; { DL_ENABMULTI_REQ }
dl_addr_length: UInt32; { length of multicast address }
dl_addr_offset: UInt32; { offset from beg. of M_PROTO block}
end;
{ DL_DISABMULTI_REQ, M_PROTO type}
type
dl_disabmulti_req_tPtr = ^dl_disabmulti_req_t;
dl_disabmulti_req_t = record
dl_primitive: UInt32; { DL_DISABMULTI_REQ }
dl_addr_length: UInt32; { length of multicast address }
dl_addr_offset: UInt32; { offset from beg. of M_PROTO block}
end;
{ DL_PROMISCON_REQ, M_PROTO type}
type
dl_promiscon_req_tPtr = ^dl_promiscon_req_t;
dl_promiscon_req_t = record
dl_primitive: UInt32; { DL_PROMISCON_REQ }
dl_level: UInt32; { physical,SAP level or ALL multicast}
end;
{ DL_PROMISCOFF_REQ, M_PROTO type}
type
dl_promiscoff_req_tPtr = ^dl_promiscoff_req_t;
dl_promiscoff_req_t = record
dl_primitive: UInt32; { DL_PROMISCOFF_REQ }
dl_level: UInt32; { Physical,SAP level or ALL multicast}
end;
{ Primitives to get and set the Physical address}
{ DL_PHYS_ADDR_REQ, M_PROTO type}
type
dl_phys_addr_req_tPtr = ^dl_phys_addr_req_t;
dl_phys_addr_req_t = record
dl_primitive: UInt32; { DL_PHYS_ADDR_REQ }
dl_addr_type: UInt32; { factory or current physical addr }
end;
{ DL_PHYS_ADDR_ACK, M_PCPROTO type}
type
dl_phys_addr_ack_tPtr = ^dl_phys_addr_ack_t;
dl_phys_addr_ack_t = record
dl_primitive: UInt32; { DL_PHYS_ADDR_ACK }
dl_addr_length: UInt32; { length of the physical addr }
dl_addr_offset: UInt32; { offset from beg. of block }
end;
{ DL_SET_PHYS_ADDR_REQ, M_PROTO type}
type
dl_set_phys_addr_req_tPtr = ^dl_set_phys_addr_req_t;
dl_set_phys_addr_req_t = record
dl_primitive: UInt32; { DL_SET_PHYS_ADDR_REQ }
dl_addr_length: UInt32; { length of physical addr }
dl_addr_offset: UInt32; { offset from beg. of block }
end;
{ Primitives to get statistics}
{ DL_GET_STATISTICS_REQ, M_PROTO type}
type
dl_get_statistics_req_tPtr = ^dl_get_statistics_req_t;
dl_get_statistics_req_t = record
dl_primitive: UInt32; { DL_GET_STATISTICS_REQ }
end;
{ DL_GET_STATISTICS_ACK, M_PCPROTO type}
type
dl_get_statistics_ack_tPtr = ^dl_get_statistics_ack_t;
dl_get_statistics_ack_t = record
dl_primitive: UInt32; { DL_GET_STATISTICS_ACK }
dl_stat_length: UInt32; { length of statistics structure}
dl_stat_offset: UInt32; { offset from beg. of block }
end;
{ CONNECTION-ORIENTED SERVICE PRIMITIVES}
{ DL_CONNECT_REQ, M_PROTO type}
type
dl_connect_req_tPtr = ^dl_connect_req_t;
dl_connect_req_t = record
dl_primitive: UInt32; { DL_CONNECT_REQ }
dl_dest_addr_length: UInt32; { len. of dlsap addr}
dl_dest_addr_offset: UInt32; { offset }
dl_qos_length: UInt32; { len. of QOS parm val}
dl_qos_offset: UInt32; { offset }
dl_growth: UInt32; { set to zero }
end;
{ DL_CONNECT_IND, M_PROTO type}
type
dl_connect_ind_tPtr = ^dl_connect_ind_t;
dl_connect_ind_t = record
dl_primitive: UInt32; { DL_CONNECT_IND }
dl_correlation: UInt32; { provider's correlation token}
dl_called_addr_length: UInt32; { length of called address }
dl_called_addr_offset: UInt32; { offset from beginning of block }
dl_calling_addr_length: UInt32; { length of calling address }
dl_calling_addr_offset: UInt32; { offset from beginning of block }
dl_qos_length: UInt32; { length of qos structure }
dl_qos_offset: UInt32; { offset from beginning of block }
dl_growth: UInt32; { set to zero }
end;
{ DL_CONNECT_RES, M_PROTO type}
type
dl_connect_res_tPtr = ^dl_connect_res_t;
dl_connect_res_t = record
dl_primitive: UInt32; { DL_CONNECT_RES }
dl_correlation: UInt32; { provider's correlation token }
dl_resp_token: UInt32; { token associated with responding stream }
dl_qos_length: UInt32; { length of qos structure }
dl_qos_offset: UInt32; { offset from beginning of block }
dl_growth: UInt32; { set to zero }
end;
{ DL_CONNECT_CON, M_PROTO type}
type
dl_connect_con_tPtr = ^dl_connect_con_t;
dl_connect_con_t = record
dl_primitive: UInt32; { DL_CONNECT_CON}
dl_resp_addr_length: UInt32; { length of responder's address }
dl_resp_addr_offset: UInt32; { offset from beginning of block}
dl_qos_length: UInt32; { length of qos structure }
dl_qos_offset: UInt32; { offset from beginning of block}
dl_growth: UInt32; { set to zero }
end;
{ DL_TOKEN_REQ, M_PCPROTO type}
type
dl_token_req_tPtr = ^dl_token_req_t;
dl_token_req_t = record
dl_primitive: UInt32; { DL_TOKEN_REQ }
end;
{ DL_TOKEN_ACK, M_PCPROTO type}
type
dl_token_ack_tPtr = ^dl_token_ack_t;
dl_token_ack_t = record
dl_primitive: UInt32; { DL_TOKEN_ACK }
dl_token: UInt32; { Connection response token associated with the stream }
end;
{ DL_DISCONNECT_REQ, M_PROTO type}
type
dl_disconnect_req_tPtr = ^dl_disconnect_req_t;
dl_disconnect_req_t = record
dl_primitive: UInt32; { DL_DISCONNECT_REQ }
dl_reason: UInt32; {normal, abnormal, perm. or transient}
dl_correlation: UInt32; { association with connect_ind }
end;
{ DL_DISCONNECT_IND, M_PROTO type}
type
dl_disconnect_ind_tPtr = ^dl_disconnect_ind_t;
dl_disconnect_ind_t = record
dl_primitive: UInt32; { DL_DISCONNECT_IND }
dl_originator: UInt32; { USER or PROVIDER }
dl_reason: UInt32; { permanent or transient }
dl_correlation: UInt32; { association with connect_ind }
end;
{ DL_RESET_REQ, M_PROTO type}
type
dl_reset_req_tPtr = ^dl_reset_req_t;
dl_reset_req_t = record
dl_primitive: UInt32; { DL_RESET_REQ }
end;
{ DL_RESET_IND, M_PROTO type}
type
dl_reset_ind_tPtr = ^dl_reset_ind_t;
dl_reset_ind_t = record
dl_primitive: UInt32; { DL_RESET_IND }
dl_originator: UInt32; { Provider or User }
dl_reason: UInt32; { flow control, link error or resynch}
end;
{ DL_RESET_RES, M_PROTO type}
type
dl_reset_res_tPtr = ^dl_reset_res_t;
dl_reset_res_t = record
dl_primitive: UInt32; { DL_RESET_RES }
end;
{ DL_RESET_CON, M_PROTO type}
type
dl_reset_con_tPtr = ^dl_reset_con_t;
dl_reset_con_t = record
dl_primitive: UInt32; { DL_RESET_CON }
end;
{ CONNECTIONLESS SERVICE PRIMITIVES}
{ DL_UNITDATA_REQ, M_PROTO type, with M_DATA block(s)}
type
dl_unitdata_req_tPtr = ^dl_unitdata_req_t;
dl_unitdata_req_t = record
dl_primitive: UInt32; { DL_UNITDATA_REQ }
dl_dest_addr_length: UInt32; { DLSAP length of dest. user }
dl_dest_addr_offset: UInt32; { offset from beg. of block }
dl_priority: dl_priority_t; { priority value }
end;
{ DL_UNITDATA_IND, M_PROTO type, with M_DATA block(s)}
type
dl_unitdata_ind_tPtr = ^dl_unitdata_ind_t;
dl_unitdata_ind_t = record
dl_primitive: UInt32; { DL_UNITDATA_IND }
dl_dest_addr_length: UInt32; { DLSAP length of dest. user }
dl_dest_addr_offset: UInt32; { offset from beg. of block }
dl_src_addr_length: UInt32; { DLSAP addr length of sending user}
dl_src_addr_offset: UInt32; { offset from beg. of block }
dl_group_address: UInt32; { set to one if multicast/broadcast}
end;
{
DL_UDERROR_IND, M_PROTO type
(or M_PCPROTO type if LLI-based provider)
}
type
dl_uderror_ind_tPtr = ^dl_uderror_ind_t;
dl_uderror_ind_t = record
dl_primitive: UInt32; { DL_UDERROR_IND }
dl_dest_addr_length: UInt32; { Destination DLSAP }
dl_dest_addr_offset: UInt32; { Offset from beg. of block }
dl_unix_errno: UInt32; { unix system error code}
dl_errno: UInt32; { DLPI error code }
end;
{ DL_UDQOS_REQ, M_PROTO type}
type
dl_udqos_req_tPtr = ^dl_udqos_req_t;
dl_udqos_req_t = record
dl_primitive: UInt32; { DL_UDQOS_REQ }
dl_qos_length: UInt32; { length in bytes of requested qos}
dl_qos_offset: UInt32; { offset from beg. of block }
end;
{ Primitives to handle XID and TEST operations}
{ DL_TEST_REQ, M_PROTO type}
type
dl_test_req_tPtr = ^dl_test_req_t;
dl_test_req_t = record
dl_primitive: UInt32; { DL_TEST_REQ }
dl_flag: UInt32; { poll/final }
dl_dest_addr_length: UInt32; { DLSAP length of dest. user }
dl_dest_addr_offset: UInt32; { offset from beg. of block }
end;
{ DL_TEST_IND, M_PROTO type}
type
dl_test_ind_tPtr = ^dl_test_ind_t;
dl_test_ind_t = record
dl_primitive: UInt32; { DL_TEST_IND }
dl_flag: UInt32; { poll/final }
dl_dest_addr_length: UInt32; { dlsap length of dest. user }
dl_dest_addr_offset: UInt32; { offset from beg. of block }
dl_src_addr_length: UInt32; { dlsap length of source user }
dl_src_addr_offset: UInt32; { offset from beg. of block }
end;
{ DL_TEST_RES, M_PROTO type}
type
dl_test_res_tPtr = ^dl_test_res_t;
dl_test_res_t = record
dl_primitive: UInt32; { DL_TEST_RES }
dl_flag: UInt32; { poll/final }
dl_dest_addr_length: UInt32; { DLSAP length of dest. user }
dl_dest_addr_offset: UInt32; { offset from beg. of block }
end;
{ DL_TEST_CON, M_PROTO type}
type
dl_test_con_tPtr = ^dl_test_con_t;
dl_test_con_t = record
dl_primitive: UInt32; { DL_TEST_CON }
dl_flag: UInt32; { poll/final }
dl_dest_addr_length: UInt32; { dlsap length of dest. user }
dl_dest_addr_offset: UInt32; { offset from beg. of block }
dl_src_addr_length: UInt32; { dlsap length of source user }
dl_src_addr_offset: UInt32; { offset from beg. of block }
end;
{ DL_XID_REQ, M_PROTO type}
type
dl_xid_req_tPtr = ^dl_xid_req_t;
dl_xid_req_t = record
dl_primitive: UInt32; { DL_XID_REQ }
dl_flag: UInt32; { poll/final }
dl_dest_addr_length: UInt32; { dlsap length of dest. user }
dl_dest_addr_offset: UInt32; { offset from beg. of block }
end;
{ DL_XID_IND, M_PROTO type}
type
dl_xid_ind_tPtr = ^dl_xid_ind_t;
dl_xid_ind_t = record
dl_primitive: UInt32; { DL_XID_IND }
dl_flag: UInt32; { poll/final }
dl_dest_addr_length: UInt32; { dlsap length of dest. user }
dl_dest_addr_offset: UInt32; { offset from beg. of block }
dl_src_addr_length: UInt32; { dlsap length of source user }
dl_src_addr_offset: UInt32; { offset from beg. of block }
end;
{ DL_XID_RES, M_PROTO type}
type
dl_xid_res_tPtr = ^dl_xid_res_t;
dl_xid_res_t = record
dl_primitive: UInt32; { DL_XID_RES }
dl_flag: UInt32; { poll/final }
dl_dest_addr_length: UInt32; { DLSAP length of dest. user }
dl_dest_addr_offset: UInt32; { offset from beg. of block }
end;
{ DL_XID_CON, M_PROTO type}
type
dl_xid_con_tPtr = ^dl_xid_con_t;
dl_xid_con_t = record
dl_primitive: UInt32; { DL_XID_CON }
dl_flag: UInt32; { poll/final }
dl_dest_addr_length: UInt32; { dlsap length of dest. user }
dl_dest_addr_offset: UInt32; { offset from beg. of block }
dl_src_addr_length: UInt32; { dlsap length of source user }
dl_src_addr_offset: UInt32; { offset from beg. of block }
end;
{ ACKNOWLEDGED CONNECTIONLESS SERVICE PRIMITIVES}
{ DL_DATA_ACK_REQ, M_PROTO type}
type
dl_data_ack_req_tPtr = ^dl_data_ack_req_t;
dl_data_ack_req_t = record
dl_primitive: UInt32; { DL_DATA_ACK_REQ }
dl_correlation: UInt32; { User's correlation token }
dl_dest_addr_length: UInt32; { length of destination addr }
dl_dest_addr_offset: UInt32; { offset from beginning of block }
dl_src_addr_length: UInt32; { length of source address }
dl_src_addr_offset: UInt32; { offset from beginning of block }
dl_priority: UInt32; { priority }
dl_service_class: UInt32; { DL_RQST_RSP or DL_RQST_NORSP }
end;
{ DL_DATA_ACK_IND, M_PROTO type}
type
dl_data_ack_ind_tPtr = ^dl_data_ack_ind_t;
dl_data_ack_ind_t = record
dl_primitive: UInt32; { DL_DATA_ACK_IND }
dl_dest_addr_length: UInt32; { length of destination addr }
dl_dest_addr_offset: UInt32; { offset from beginning of block }
dl_src_addr_length: UInt32; { length of source address }
dl_src_addr_offset: UInt32; { offset from beginning of block }
dl_priority: UInt32; { priority for data unit transm. }
dl_service_class: UInt32; { DL_RQST_RSP or DL_RQST_NORSP }
end;
{ DL_DATA_ACK_STATUS_IND, M_PROTO type}
type
dl_data_ack_status_ind_tPtr = ^dl_data_ack_status_ind_t;
dl_data_ack_status_ind_t = record
dl_primitive: UInt32; { DL_DATA_ACK_STATUS_IND }
dl_correlation: UInt32; { User's correlation token }
dl_status: UInt32; { success or failure of previous req}
end;
{ DL_REPLY_REQ, M_PROTO type}
type
dl_reply_req_tPtr = ^dl_reply_req_t;
dl_reply_req_t = record
dl_primitive: UInt32; { DL_REPLY_REQ }
dl_correlation: UInt32; { User's correlation token }
dl_dest_addr_length: UInt32; { length of destination address }
dl_dest_addr_offset: UInt32; { offset from beginning of block }
dl_src_addr_length: UInt32; { source address length }
dl_src_addr_offset: UInt32; { offset from beginning of block }
dl_priority: UInt32; { priority for data unit transmission}
dl_service_class: UInt32;
end;
{ DL_REPLY_IND, M_PROTO type}
type
dl_reply_ind_tPtr = ^dl_reply_ind_t;
dl_reply_ind_t = record
dl_primitive: UInt32; { DL_REPLY_IND }
dl_dest_addr_length: UInt32; { length of destination address }
dl_dest_addr_offset: UInt32; { offset from beginning of block}
dl_src_addr_length: UInt32; { length of source address }
dl_src_addr_offset: UInt32; { offset from beginning of block }
dl_priority: UInt32; { priority for data unit transmission}
dl_service_class: UInt32; { DL_RQST_RSP or DL_RQST_NORSP }
end;
{ DL_REPLY_STATUS_IND, M_PROTO type}
type
dl_reply_status_ind_tPtr = ^dl_reply_status_ind_t;
dl_reply_status_ind_t = record
dl_primitive: UInt32; { DL_REPLY_STATUS_IND }
dl_correlation: UInt32; { User's correlation token }
dl_status: UInt32; { success or failure of previous req}
end;
{ DL_REPLY_UPDATE_REQ, M_PROTO type}
type
dl_reply_update_req_tPtr = ^dl_reply_update_req_t;
dl_reply_update_req_t = record
dl_primitive: UInt32; { DL_REPLY_UPDATE_REQ }
dl_correlation: UInt32; { user's correlation token }
dl_src_addr_length: UInt32; { length of source address }
dl_src_addr_offset: UInt32; { offset from beginning of block }
end;
{ DL_REPLY_UPDATE_STATUS_IND, M_PROTO type}
type
dl_reply_update_status_ind_tPtr = ^dl_reply_update_status_ind_t;
dl_reply_update_status_ind_t = record
dl_primitive: UInt32; { DL_REPLY_UPDATE_STATUS_IND }
dl_correlation: UInt32; { User's correlation token }
dl_status: UInt32; { success or failure of previous req}
end;
DL_primitivesPtr = ^DL_primitives;
DL_primitives = record
case SInt16 of
0: (
dl_primitive: UInt32;
);
1: (
info_req: dl_info_req_t;
);
2: (
info_ack: dl_info_ack_t;
);
3: (
attach_req: dl_attach_req_t;
);
4: (
detach_req: dl_detach_req_t;
);
5: (
bind_req: dl_bind_req_t;
);
6: (
bind_ack: dl_bind_ack_t;
);
7: (
unbind_req: dl_unbind_req_t;
);
8: (
subs_bind_req: dl_subs_bind_req_t;
);
9: (
subs_bind_ack: dl_subs_bind_ack_t;
);
10: (
subs_unbind_req: dl_subs_unbind_req_t;
);
11: (
ok_ack: dl_ok_ack_t;
);
12: (
error_ack: dl_error_ack_t;
);
13: (
connect_req: dl_connect_req_t;
);
14: (
connect_ind: dl_connect_ind_t;
);
15: (
connect_res: dl_connect_res_t;
);
16: (
connect_con: dl_connect_con_t;
);
17: (
token_req: dl_token_req_t;
);
18: (
token_ack: dl_token_ack_t;
);
19: (
disconnect_req: dl_disconnect_req_t;
);
20: (
disconnect_ind: dl_disconnect_ind_t;
);
21: (
reset_req: dl_reset_req_t;
);
22: (
reset_ind: dl_reset_ind_t;
);
23: (
reset_res: dl_reset_res_t;
);
24: (
reset_con: dl_reset_con_t;
);
25: (
unitdata_req: dl_unitdata_req_t;
);
26: (
unitdata_ind: dl_unitdata_ind_t;
);
27: (
uderror_ind: dl_uderror_ind_t;
);
28: (
udqos_req: dl_udqos_req_t;
);
29: (
enabmulti_req: dl_enabmulti_req_t;
);
30: (
disabmulti_req: dl_disabmulti_req_t;
);
31: (
promiscon_req: dl_promiscon_req_t;
);
32: (
promiscoff_req: dl_promiscoff_req_t;
);
33: (
physaddr_req: dl_phys_addr_req_t;
);
34: (
physaddr_ack: dl_phys_addr_ack_t;
);
35: (
set_physaddr_req: dl_set_phys_addr_req_t;
);
36: (
get_statistics_req: dl_get_statistics_req_t;
);
37: (
get_statistics_ack: dl_get_statistics_ack_t;
);
38: (
test_req: dl_test_req_t;
);
39: (
test_ind: dl_test_ind_t;
);
40: (
test_res: dl_test_res_t;
);
41: (
test_con: dl_test_con_t;
);
42: (
xid_req: dl_xid_req_t;
);
43: (
xid_ind: dl_xid_ind_t;
);
44: (
xid_res: dl_xid_res_t;
);
45: (
xid_con: dl_xid_con_t;
);
46: (
data_ack_req: dl_data_ack_req_t;
);
47: (
data_ack_ind: dl_data_ack_ind_t;
);
48: (
data_ack_status_ind: dl_data_ack_status_ind_t;
);
49: (
reply_req: dl_reply_req_t;
);
50: (
reply_ind: dl_reply_ind_t;
);
51: (
reply_status_ind: dl_reply_status_ind_t;
);
52: (
reply_update_req: dl_reply_update_req_t;
);
53: (
reply_update_status_ind: dl_reply_update_status_ind_t;
);
end;
const
DL_INFO_REQ_SIZE = SizeOf(dl_info_req_t);
DL_INFO_ACK_SIZE = SizeOf(dl_info_ack_t);
DL_ATTACH_REQ_SIZE = SizeOf(dl_attach_req_t);
DL_DETACH_REQ_SIZE = SizeOf(dl_detach_req_t);
DL_BIND_REQ_SIZE = SizeOf(dl_bind_req_t);
DL_BIND_ACK_SIZE = SizeOf(dl_bind_ack_t);
DL_UNBIND_REQ_SIZE = SizeOf(dl_unbind_req_t);
DL_SUBS_BIND_REQ_SIZE = SizeOf(dl_subs_bind_req_t);
DL_SUBS_BIND_ACK_SIZE = SizeOf(dl_subs_bind_ack_t);
DL_SUBS_UNBIND_REQ_SIZE = SizeOf(dl_subs_unbind_req_t);
DL_OK_ACK_SIZE = SizeOf(dl_ok_ack_t);
DL_ERROR_ACK_SIZE = SizeOf(dl_error_ack_t);
DL_CONNECT_REQ_SIZE = SizeOf(dl_connect_req_t);
DL_CONNECT_IND_SIZE = SizeOf(dl_connect_ind_t);
DL_CONNECT_RES_SIZE = SizeOf(dl_connect_res_t);
DL_CONNECT_CON_SIZE = SizeOf(dl_connect_con_t);
DL_TOKEN_REQ_SIZE = SizeOf(dl_token_req_t);
DL_TOKEN_ACK_SIZE = SizeOf(dl_token_ack_t);
DL_DISCONNECT_REQ_SIZE = SizeOf(dl_disconnect_req_t);
DL_DISCONNECT_IND_SIZE = SizeOf(dl_disconnect_ind_t);
DL_RESET_REQ_SIZE = SizeOf(dl_reset_req_t);
DL_RESET_IND_SIZE = SizeOf(dl_reset_ind_t);
DL_RESET_RES_SIZE = SizeOf(dl_reset_res_t);
DL_RESET_CON_SIZE = SizeOf(dl_reset_con_t);
DL_UNITDATA_REQ_SIZE = SizeOf(dl_unitdata_req_t);
DL_UNITDATA_IND_SIZE = SizeOf(dl_unitdata_ind_t);
DL_UDERROR_IND_SIZE = SizeOf(dl_uderror_ind_t);
DL_UDQOS_REQ_SIZE = SizeOf(dl_udqos_req_t);
DL_ENABMULTI_REQ_SIZE = SizeOf(dl_enabmulti_req_t);
DL_DISABMULTI_REQ_SIZE = SizeOf(dl_disabmulti_req_t);
DL_PROMISCON_REQ_SIZE = SizeOf(dl_promiscon_req_t);
DL_PROMISCOFF_REQ_SIZE = SizeOf(dl_promiscoff_req_t);
DL_PHYS_ADDR_REQ_SIZE = SizeOf(dl_phys_addr_req_t);
DL_PHYS_ADDR_ACK_SIZE = SizeOf(dl_phys_addr_ack_t);
DL_SET_PHYS_ADDR_REQ_SIZE = SizeOf(dl_set_phys_addr_req_t);
DL_GET_STATISTICS_REQ_SIZE = SizeOf(dl_get_statistics_req_t);
DL_GET_STATISTICS_ACK_SIZE = SizeOf(dl_get_statistics_ack_t);
DL_XID_REQ_SIZE = SizeOf(dl_xid_req_t);
DL_XID_IND_SIZE = SizeOf(dl_xid_ind_t);
DL_XID_RES_SIZE = SizeOf(dl_xid_res_t);
DL_XID_CON_SIZE = SizeOf(dl_xid_con_t);
DL_TEST_REQ_SIZE = SizeOf(dl_test_req_t);
DL_TEST_IND_SIZE = SizeOf(dl_test_ind_t);
DL_TEST_RES_SIZE = SizeOf(dl_test_res_t);
DL_TEST_CON_SIZE = SizeOf(dl_test_con_t);
DL_DATA_ACK_REQ_SIZE = SizeOf(dl_data_ack_req_t);
DL_DATA_ACK_IND_SIZE = SizeOf(dl_data_ack_ind_t);
DL_DATA_ACK_STATUS_IND_SIZE = SizeOf(dl_data_ack_status_ind_t);
DL_REPLY_REQ_SIZE = SizeOf(dl_reply_req_t);
DL_REPLY_IND_SIZE = SizeOf(dl_reply_ind_t);
DL_REPLY_STATUS_IND_SIZE = SizeOf(dl_reply_status_ind_t);
DL_REPLY_UPDATE_REQ_SIZE = SizeOf(dl_reply_update_req_t);
DL_REPLY_UPDATE_STATUS_IND_SIZE = SizeOf(dl_reply_update_status_ind_t);
const
DL_IOC_HDR_INFO = $6C0A; { Fast path request }
{ ***** From the Mentat "modnames.h" *****}
const
MI_AFU_NAME = 'afu';
const
MI_AHARP_NAME = 'ahar';
const
MI_AHENET_NAME = 'ahen';
const
MI_ARP_NAME = 'arp';
const
MI_ARPM_NAME = 'arpm';
const
MI_COURMUX_NAME = 'courmux';
const
MI_CLONE_NAME = 'clone';
const
MI_DLB_NAME = 'dlb';
const
MI_DLM_NAME = 'dlm';
const
MI_DMODD_NAME = 'disdlpi';
const
MI_DMODT_NAME = 'distpi';
const
MI_DN_NAME = 'dn';
const
MI_DNF_NAME = 'dnf';
const
MI_DRVE_NAME = 'drve';
const
MI_ECHO_NAME = 'echo';
const
MI_ENXR_NAME = 'enxr';
const
MI_RAWIP_NAME = 'rawip';
const
MI_RAWIPM_NAME = 'rawipm';
const
MI_HAVOC_NAME = 'havoc';
const
MI_HAVOCM_NAME = 'havocm';
const
MI_IP_NAME = 'ip';
const
MI_IPM_NAME = 'ipm';
const
MI_IPX_NAME = 'ipx';
const
MI_LOG_NAME = 'log';
const
MI_MODE_NAME = 'mode';
const
MI_MUX_NAME = 'mux';
const
MI_NECHO_NAME = 'necho';
const
MI_NPEP_NAME = 'npep';
const
MI_NULS_NAME = 'nuls';
const
MI_NULZ_NAME = 'nulz';
const
MI_PASS_NAME = 'pass';
const
MI_PIPEMOD_NAME = 'pipemod';
const
MI_SAD_NAME = 'sad';
const
MI_SC_NAME = 'sc';
const
MI_SOCKMOD_NAME = 'sockmod';
const
MI_SPASS_NAME = 'spass';
const
MI_SPX_NAME = 'spx';
const
MI_STH_NAME = 'mi_sth';
const
MI_TCP_NAME = 'tcp';
const
MI_TCPM_NAME = 'tcpm';
const
MI_TIMOD_NAME = 'timod';
const
MI_TIRDWR_NAME = 'tirdwr';
const
MI_TMOD_NAME = 'tmod';
const
MI_TMUX_NAME = 'tmux';
const
MI_TPIT_NAME = 'tpit';
const
MI_TRSR_NAME = 'trsr';
const
MI_TRXR_NAME = 'trxr';
const
MI_UDP_NAME = 'udp';
const
MI_UDPM_NAME = 'udpm';
const
MI_WELD_NAME = 'mi_weld';
const
MI_XDG_NAME = 'xdg';
const
MI_XECHO_NAME = 'xecho';
const
MI_XF_NAME = 'xf';
const
MI_XFIPX_NAME = 'xfipx';
const
MI_XFXNS_NAME = 'xfxns';
const
MI_XPE_NAME = 'xpe';
const
MI_XS_NAME = 'xs';
const
MI_XTINDG_NAME = 'xtindg';
const
MI_XTINVC_NAME = 'xtinvc';
const
MI_XTM_NAME = 'xtm';
const
MI_XTMIP_NAME = 'xtmip';
const
MI_AFU_DEVICE = '/dev/afu';
const
MI_ARP_DEVICE = '/dev/arp';
const
MI_COURMUX_DEVICE = '/dev/courmux';
const
MI_CLONE_DEVICE = '/dev/clone';
const
MI_DLB_DEVICE = '/dev/dlb';
const
MI_DN_DEVICE = '/dev/dn';
const
MI_DNF_DEVICE = '/dev/dnf';
const
MI_DRVE_DEVICE = '/dev/drve';
const
MI_ECHO_DEVICE = '/dev/echo';
const
MI_RAWIP_DEVICE = '/dev/rawip';
const
MI_HAVOC_DEVICE = '/dev/havoc';
const
MI_IP_DEVICE = '/dev/ip';
const
MI_IPX_DEVICE = '/dev/ipx';
const
MI_LOG_DEVICE = '/dev/log';
const
MI_MODE_DEVICE = '/dev/mode';
const
MI_MUX_DEVICE = '/dev/mux';
const
MI_NECHO_DEVICE = '/dev/necho';
const
MI_NPEP_DEVICE = '/dev/npep';
const
MI_NULS_DEVICE = '/dev/nuls';
const
MI_NULZ_DEVICE = '/dev/nulz';
const
MI_SAD_DEVICE = '/dev/sad';
const
MI_SPX_DEVICE = '/dev/spx';
const
MI_TCP_DEVICE = '/dev/tcp';
const
MI_TMUX_DEVICE = '/dev/tmux';
const
MI_TMUX0_DEVICE = '/dev/tmux#0';
const
MI_TMUX1_DEVICE = '/dev/tmux#1';
const
MI_TPIT_DEVICE = '/dev/tpit';
const
MI_UDP_DEVICE = '/dev/udp';
const
MI_XDG_DEVICE = '/dev/xdg';
const
MI_XECHO_DEVICE = '/dev/xecho';
const
MI_XF_DEVICE = '/dev/xf';
const
MI_XPE_DEVICE = '/dev/xpe';
const
MI_XS_DEVICE = '/dev/xs';
const
MI_XTINDG_DEVICE = '/dev/xtindg';
const
MI_XTINVC_DEVICE = '/dev/xtinvc';
{ Streamtab entries }
// #define MI_AFU_STREAMTAB afuinfo
// #define MI_AHARP_STREAMTAB aharinfo
// #define MI_AHENET_STREAMTAB aheninfo
// #define MI_ARP_STREAMTAB arpinfo
// #define MI_ARPM_STREAMTAB arpminfo
// #define MI_COURMUX_STREAMTAB courmuxinfo
// #define MI_CLONE_STREAMTAB cloneinfo
// #define MI_DLB_STREAMTAB dlbinfo
// #define MI_DLM_STREAMTAB dlminfo
// #define MI_DMODD_STREAMTAB dmoddinfo
// #define MI_DMODT_STREAMTAB dmodtinfo
// #define MI_DN_STREAMTAB dninfo
// #define MI_DNF_STREAMTAB dnfinfo
// #define MI_DRVE_STREAMTAB drveinfo
// #define MI_ECHO_STREAMTAB echoinfo
// #define MI_ENXR_STREAMTAB enxrinfo
// #define MI_HAVOC_STREAMTAB hvcinfo
// #define MI_HAVOCM_STREAMTAB hvcminfo
// #define MI_IP_STREAMTAB ipinfo
// #define MI_IPM_STREAMTAB ipminfo
// #define MI_IPX_STREAMTAB ipxinfo
// #define MI_LOG_STREAMTAB loginfo
// #define MI_MODE_STREAMTAB modeinfo
// #define MI_MUX_STREAMTAB muxinfo
// #define MI_NECHO_STREAMTAB nechoinfo
// #define MI_NPEP_STREAMTAB npepinfo
// #define MI_NULS_STREAMTAB nulsinfo
// #define MI_NULZ_STREAMTAB nulzinfo
// #define MI_PASS_STREAMTAB passinfo
// #define MI_PIPEMOD_STREAMTAB pmodinfo
// #define MI_RAWIP_STREAMTAB rawipinfo
// #define MI_RAWIPM_STREAMTAB rawipminfo
// #define MI_SAD_STREAMTAB sadinfo
// #define MI_SC_STREAMTAB scinfo
// #define MI_SOCKMOD_STREAMTAB sockmodinfo
// #define MI_SPASS_STREAMTAB spassinfo
// #define MI_SPX_STREAMTAB spxinfo
// #define MI_STH_STREAMTAB mi_sthinfo
// #define MI_TCP_STREAMTAB tcpinfo
// #define MI_TCPM_STREAMTAB tcpminfo
// #define MI_TIMOD_STREAMTAB timodinfo
// #define MI_TIRDWR_STREAMTAB tirdwrinfo
// #define MI_TMOD_STREAMTAB tmodinfo
// #define MI_TMUX_STREAMTAB tmuxinfo
// #define MI_TPIT_STREAMTAB tpitinfo
// #define MI_TRSR_STREAMTAB trsrinfo
// #define MI_TRXR_STREAMTAB trxrinfo
// #define MI_UDP_STREAMTAB udpinfo
// #define MI_UDPM_STREAMTAB udpminfo
// #define MI_WELD_STREAMTAB mi_weldinfo
// #define MI_XDG_STREAMTAB xdginfo
// #define MI_XECHO_STREAMTAB xechoinfo
// #define MI_XF_STREAMTAB xfinfo
// #define MI_XFIPX_STREAMTAB xfipxinfo
// #define MI_XFXNS_STREAMTAB xfxnsinfo
// #define MI_XPE_STREAMTAB xpeinfo
// #define MI_XS_STREAMTAB xsinfo
// #define MI_XTINDG_STREAMTAB xtindginfo
// #define MI_XTINVC_STREAMTAB xtinvcinfo
// #define MI_XTM_STREAMTAB xtminfo
// #define MI_XTMIP_STREAMTAB xtmipinfo
// #define MI_AFU_DEVFLAG afudevflag
// #define MI_AHARP_DEVFLAG ahardevflag
// #define MI_AHENET_DEVFLAG ahendevflag
// #define MI_ARP_DEVFLAG arpdevflag
// #define MI_ARPM_DEVFLAG arpmdevflag
// #define MI_COURMUX_DEVFLAG courmuxdevflag
// #define MI_CLONE_DEVFLAG clonedevflag
// #define MI_DLB_DEVFLAG dlbdevflag
// #define MI_DLM_DEVFLAG dlmdevflag
// #define MI_DMODD_DEVFLAG dmodddevflag
// #define MI_DMODT_DEVFLAG dmodtdevflag
// #define MI_DN_DEVFLAG dndevflag
// #define MI_DNF_DEVFLAG dnfdevflag
// #define MI_DRVE_DEVFLAG drvedevflag
// #define MI_ECHO_DEVFLAG echodevflag
// #define MI_ENXR_DEVFLAG enxrdevflag
// #define MI_HAVOC_DEVFLAG hvcdevflag
// #define MI_HAVOCM_DEVFLAG hvcmdevflag
// #define MI_IP_DEVFLAG ipdevflag
// #define MI_IPM_DEVFLAG ipmdevflag
// #define MI_IPX_DEVFLAG ipxdevflag
// #define MI_LOG_DEVFLAG logdevflag
// #define MI_MODE_DEVFLAG modedevflag
// #define MI_MUX_DEVFLAG muxdevflag
// #define MI_NECHO_DEVFLAG nechodevflag
// #define MI_NPEP_DEVFLAG npepdevflag
// #define MI_NULS_DEVFLAG nulsdevflag
// #define MI_NULZ_DEVFLAG nulzdevflag
// #define MI_PASS_DEVFLAG passdevflag
// #define MI_PIPEMOD_DEVFLAG pipemoddevflag
// #define MI_RAWIP_DEVFLAG rawipdevflag
// #define MI_RAWIPM_DEVFLAG rawipmdevflag
// #define MI_SAD_DEVFLAG saddevflag
// #define MI_SC_DEVFLAG scdevflag
// #define MI_SOCKMOD_DEVFLAG sockmoddevflag
// #define MI_SPASS_DEVFLAG spassdevflag
// #define MI_SPX_DEVFLAG spxdevflag
// #define MI_TCP_DEVFLAG tcpdevflag
// #define MI_TCPM_DEVFLAG tcpmdevflag
// #define MI_TIMOD_DEVFLAG timoddevflag
// #define MI_TIRDWR_DEVFLAG tirdwrdevflag
// #define MI_TMOD_DEVFLAG tmoddevflag
// #define MI_TMUX_DEVFLAG tmuxdevflag
// #define MI_TPIT_DEVFLAG tpitdevflag
// #define MI_TRSR_DEVFLAG trsrdevflag
// #define MI_TRXR_DEVFLAG trxrdevflag
// #define MI_UDP_DEVFLAG udpdevflag
// #define MI_UDPM_DEVFLAG udpmdevflag
// #define MI_XDG_DEVFLAG xdgdevflag
// #define MI_XECHO_DEVFLAG xechodevflag
// #define MI_XF_DEVFLAG xfdevflag
// #define MI_XFIPX_DEVFLAG xfipxdevflag
// #define MI_XFXNS_DEVFLAG xfxnsdevflag
// #define MI_XPE_DEVFLAG xpedevflag
// #define MI_XS_DEVFLAG xsdevflag
// #define MI_XTINDG_DEVFLAG xtindgdevflag
// #define MI_XTINVC_DEVFLAG xtinvcdevflag
// #define MI_XTM_DEVFLAG xtmdevflag
// #define MI_XTMIP_DEVFLAG xtmipdevflag
// #define MI_AFU_SQLVL SQLVL_QUEUEPAIR
// #define MI_AHARP_SQLVL SQLVL_QUEUE
// #define MI_AHENET_SQLVL SQLVL_QUEUE
// #define MI_ARP_SQLVL SQLVL_MODULE
// #define MI_ARPM_SQLVL SQLVL_MODULE
// #define MI_COURMUX_SQLVL SQLVL_MODULE
// #define MI_CLONE_SQLVL SQLVL_MODULE
// #define MI_DLB_SQLVL SQLVL_QUEUE
// #define MI_DLM_SQLVL SQLVL_QUEUE
// #define MI_DMODD_SQLVL SQLVL_QUEUE
// #define MI_DMODT_SQLVL SQLVL_QUEUE
// #define MI_DN_SQLVL SQLVL_QUEUE
// #define MI_DNF_SQLVL SQLVL_QUEUE
// #define MI_DRVE_SQLVL SQLVL_QUEUEPAIR
// #define MI_ECHO_SQLVL SQLVL_QUEUE
// #define MI_ENXR_SQLVL SQLVL_QUEUE
// #define MI_RAWIP_SQLVL SQLVL_QUEUE
// #define MI_RAWIPM_SQLVL SQLVL_QUEUE
// #define MI_HAVOC_SQLVL SQLVL_QUEUE
// #define MI_HAVOCM_SQLVL SQLVL_QUEUE
// #define MI_IP_SQLVL SQLVL_QUEUEPAIR
// #define MI_IPM_SQLVL SQLVL_QUEUEPAIR
// #define MI_IPX_SQLVL SQLVL_QUEUE
// #define MI_LOG_SQLVL SQLVL_MODULE
// #define MI_MODE_SQLVL SQLVL_QUEUEPAIR
// #define MI_MUX_SQLVL SQLVL_MODULE
// #define MI_NECHO_SQLVL SQLVL_QUEUE
// #define MI_NPEP_SQLVL SQLVL_QUEUE
// #define MI_NULS_SQLVL SQLVL_QUEUE
// #define MI_NULZ_SQLVL SQLVL_QUEUE
// #define MI_PASS_SQLVL SQLVL_QUEUE
// #define MI_PIPEMOD_SQLVL SQLVL_QUEUE
// #define MI_SAD_SQLVL SQLVL_MODULE
// #define MI_SC_SQLVL SQLVL_QUEUE
// #define MI_SOCKMOD_SQLVL SQLVL_QUEUEPAIR
// #define MI_SPASS_SQLVL SQLVL_QUEUE
// #define MI_SPX_SQLVL SQLVL_QUEUE
// #define MI_TCP_SQLVL SQLVL_QUEUEPAIR
// #define MI_TCPM_SQLVL SQLVL_QUEUEPAIR
// #define MI_TIMOD_SQLVL SQLVL_QUEUEPAIR
// #define MI_TIRDWR_SQLVL SQLVL_QUEUE
// #define MI_TMOD_SQLVL SQLVL_QUEUEPAIR
// #define MI_TMUX_SQLVL SQLVL_MODULE
// #define MI_TPIT_SQLVL SQLVL_MODULE
// #define MI_TRSR_SQLVL SQLVL_MODULE
// #define MI_TRXR_SQLVL SQLVL_QUEUE
// #define MI_UDP_SQLVL SQLVL_QUEUE
// #define MI_UDPM_SQLVL SQLVL_QUEUE
// #define MI_XDG_SQLVL SQLVL_QUEUE
// #define MI_XECHO_SQLVL SQLVL_QUEUE
// #define MI_XF_SQLVL SQLVL_MODULE
// #define MI_XFIPX_SQLVL SQLVL_MODULE
// #define MI_XFXNS_SQLVL SQLVL_MODULE
// #define MI_XPE_SQLVL SQLVL_QUEUE
// #define MI_XS_SQLVL SQLVL_QUEUEPAIR
// #define MI_XTINDG_SQLVL SQLVL_QUEUEPAIR
// #define MI_XTINVC_SQLVL SQLVL_QUEUEPAIR
// #define MI_XTM_SQLVL SQLVL_QUEUEPAIR
// #define MI_XTMIP_SQLVL SQLVL_QUEUEPAIR
{ ***** Raw Streams *****}
{
Flags used in the fType field of OTReadInfo for functions.
I've removed the terse and confusing comments in this header
file. For a full description, read "Open Transport Advanced
Client Programming".
}
const
kOTNoMessagesAvailable = $FFFFFFFF;
kOTAnyMsgType = $FFFFFFFE;
kOTDataMsgTypes = $FFFFFFFC;
kOTMProtoMsgTypes = $FFFFFFFB;
kOTOnlyMProtoMsgTypes = $FFFFFFFA;
{
OTPutCommand, OTPutData, and OTPutWriteData flags.
These equates must not conflict with any of the other putmsg flags,
ie MSG_ANY, MSG_BAND, MSG_HIPRI, or RS_HIPRI.
¥¥¥ These should probably move into whereever their
corresponding functions end up but, seeing as this
is APPLE_ONLY, I'm not too concerned ¥¥¥
}
const
RS_EXDATA = $20;
RS_ALLOWAGAIN = $40;
RS_DELIMITMSG = $80;
{$ifc NOT OTKERNEL}
{ StreamRef is an opaque reference to a raw stream.}
type
StreamRef = UnivPtr;
const
kOTInvalidStreamRef = nil;
{ PollRef structure is used with the OTStreamPoll function.}
type
PollRefPtr = ^PollRef;
PollRef = record
filler: SInt32; { holds a file descriptor an a UNIX system, replaced by ref (at end of structure) under OT}
events: SInt16;
revents: SInt16;
ref: StreamRef;
end;
{ Poll masks for use with OTStreamPoll: }
const
POLLIN = $001; { A non-priority message is available }
POLLPRI = $002; { A high priority message is available }
POLLOUT = $004; { The stream is writable for non-priority messages }
POLLERR = $008; { A error message has arrived }
POLLHUP = $010; { A hangup has occurred }
POLLNVAL = $020; { This fd is bogus }
POLLRDNORM = $040; { A non-priority message is available }
POLLRDBAND = $080; { A priority message (band > 0) message is available }
POLLWRNORM = $100; { Same as POLLOUT }
POLLWRBAND = $200; { A priority band exists and is writable }
POLLMSG = $400; { A signal message has reached the front of the queue }
{ OTReadInfo structure is used with the various functions that read and peek at the stream head.}
type
OTReadInfoPtr = ^OTReadInfo;
OTReadInfo = record
fType: UInt32;
fCommand: OTCommand;
fFiller: UInt32; { For compatibility with OT 1.0 and 1.1 }
fBytes: ByteCount;
fError: OSStatus;
end;
{ Opening and closing raw streams}
{
* OTStreamOpen()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTAsyncStreamOpen()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTCreateStream()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTAsyncCreateStream()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTStreamClose()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{ Polling a stream for activity}
{
* OTStreamPoll()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTAsyncStreamPoll()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{ Classic UNIX file descriptor operations}
{
* OTStreamRead()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTStreamWrite()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTStreamIoctl()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTStreamPipe()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{ there can be only 2!}
{ Notifiers and modes of operation}
{
* OTStreamInstallNotifier()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTStreamRemoveNotifier()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTStreamUseSyncIdleEvents()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTStreamSetBlocking()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTStreamSetNonBlocking()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTStreamIsBlocking()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTStreamSetSynchronous()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTStreamSetAsynchronous()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTStreamIsSynchronous()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{ STREAMS primitives}
{
* OTStreamGetMessage()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTStreamGetPriorityMessage()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTStreamPutMessage()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTStreamPutPriorityMessage()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{ Miscellaneous stuff}
{
* OTStreamSetControlMask()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
Opening endpoints and mappers on a Stream - these calls are synchronous, and may
only be used at System Task time. Once the stream has been installed into a provider
or endpoint, you should not continue to use STREAMS APIs on it
}
{
* OTOpenProviderOnStream()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTOpenEndpointOnStream()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
To quote an earlier version of this header file:
Some functions that should only be used if
you really know what you're doing.
}
{
* OTRemoveStreamFromProvider()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTPeekMessage()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTReadMessage()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTPutBackBuffer()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTPutBackPartialBuffer()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{$endc} { !OTKERNEL }
{$endc} { CALL_NOT_IN_CARBON }
{ ***** Port Utilities *****}
{$ifc NOT OTKERNEL}
{
These types and routines are used during sophisticated
port management. High-level clients may get involved
for things like request a port to be yielding, but typically
this stuff is used by protocol infrastructure.
}
{
OTPortCloseStruct is used when processing the kOTClosePortRequest
and kOTYieldPortRequest events.
}
type
OTPortCloseStructPtr = ^OTPortCloseStruct;
OTPortCloseStruct = record
fPortRef: OTPortRef; { The port requested to be closed.}
fTheProvider: ProviderRef; { The provider using the port.}
fDenyReason: OSStatus; { Set to a negative number to deny the request}
end;
{ OTClientList structure is used with the OTYieldPortRequest function.}
type
OTClientListPtr = ^OTClientList;
OTClientList = record
fNumClients: ItemCount;
fBuffer: packed array [0..3] of UInt8;
end;
{
Returns a buffer containing all of the clients that refused to yield the port.
"size" is the total number of bytes @ buffer, including the fNumClients field.
}
{
* OTYieldPortRequest()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{ Send a notification to all Open Transport registered clients}
{
* OTNotifyAllClients()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{ Determine if "child" is a child port of "parent"}
{
* OTIsDependentPort()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{$endc} { !OTKERNEL }
{ ***** Timers ***** }
{
STREAMS plug-ins code should not use these timers, instead
they should use timer messages, ie mi_timer etc.
}
{$ifc NOT OTKERNEL}
type
OTTimerTask = SIGNEDLONG;
{
Under Carbon, OTCreateTimerTask takes a client context pointer. Applications may pass NULL
after calling InitOpenTransport(kInitOTForApplicationMask, ...). Non-applications must always pass a
valid client context.
}
{$ifc not TARGET_CPU_64}
{
* OTCreateTimerTaskInContext() *** DEPRECATED ***
*
* Availability:
* Mac OS X: in version 10.0 and later in CoreServices.framework [32-bit only] but deprecated in 10.4
* CarbonLib: in CarbonLib 1.0 and later
* Non-Carbon CFM: not available
}
function OTCreateTimerTaskInContext( upp: OTProcessUPP; arg: UnivPtr; clientContext: OTClientContextPtr ): SIGNEDLONG; external name '_OTCreateTimerTaskInContext';
(* __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_0,__MAC_10_4,__IPHONE_NA,__IPHONE_NA) *)
{$endc} {not TARGET_CPU_64}
{
* OTCreateTimerTask()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{$ifc not TARGET_CPU_64}
{
* OTCancelTimerTask() *** DEPRECATED ***
*
* Availability:
* Mac OS X: in version 10.0 and later in CoreServices.framework [32-bit only] but deprecated in 10.4
* CarbonLib: in CarbonLib 1.0 and later
* Non-Carbon CFM: not available
}
function OTCancelTimerTask( timerTask: OTTimerTask ): Boolean; external name '_OTCancelTimerTask';
(* __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_0,__MAC_10_4,__IPHONE_NA,__IPHONE_NA) *)
{
* OTDestroyTimerTask() *** DEPRECATED ***
*
* Availability:
* Mac OS X: in version 10.0 and later in CoreServices.framework [32-bit only] but deprecated in 10.4
* CarbonLib: in CarbonLib 1.0 and later
* Non-Carbon CFM: not available
}
procedure OTDestroyTimerTask( timerTask: OTTimerTask ); external name '_OTDestroyTimerTask';
(* __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_0,__MAC_10_4,__IPHONE_NA,__IPHONE_NA) *)
{
* OTScheduleTimerTask() *** DEPRECATED ***
*
* Availability:
* Mac OS X: in version 10.0 and later in CoreServices.framework [32-bit only] but deprecated in 10.4
* CarbonLib: in CarbonLib 1.0 and later
* Non-Carbon CFM: not available
}
function OTScheduleTimerTask( timerTask: OTTimerTask; milliSeconds: OTTimeout ): Boolean; external name '_OTScheduleTimerTask';
(* __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_0,__MAC_10_4,__IPHONE_NA,__IPHONE_NA) *)
{$endc} {not TARGET_CPU_64}
{ The following macro may be used by applications only.}
// #define OTCreateTimerTask(upp, arg) OTCreateTimerTaskInContext(upp, arg, NULL)
{$endc} { !OTKERNEL }
{ ***** Miscellaneous Helpful Functions *****}
{$ifc NOT OTKERNEL}
{
These routines allow you to manipulate OT's buffer structures.
If you use no-copy receives (described in "OpenTransport.h")
you will need some of these routines, and may choose to use others.
See "Open Tranport Advanced Client Programming" for documentation.
}
{$ifc not TARGET_CPU_64}
{
* OTBufferDataSize() *** DEPRECATED ***
*
* Availability:
* Mac OS X: in version 10.0 and later in CoreServices.framework [32-bit only] but deprecated in 10.4
* CarbonLib: in CarbonLib 1.0 and later
* Non-Carbon CFM: in OTUtilityLib 1.0 and later
}
function OTBufferDataSize( var buffer: OTBuffer ): OTByteCount; external name '_OTBufferDataSize';
(* __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_0,__MAC_10_4,__IPHONE_NA,__IPHONE_NA) *)
{
* OTReadBuffer() *** DEPRECATED ***
*
* Availability:
* Mac OS X: in version 10.0 and later in CoreServices.framework [32-bit only] but deprecated in 10.4
* CarbonLib: in CarbonLib 1.0 and later
* Non-Carbon CFM: in OTUtilityLib 1.0 and later
}
function OTReadBuffer( var buffer: OTBufferInfo; dest: UnivPtr; var len: OTByteCount ): Boolean; external name '_OTReadBuffer';
(* __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_0,__MAC_10_4,__IPHONE_NA,__IPHONE_NA) *)
{
* OTReleaseBuffer() *** DEPRECATED ***
*
* Availability:
* Mac OS X: in version 10.0 and later in CoreServices.framework [32-bit only] but deprecated in 10.4
* CarbonLib: in CarbonLib 1.0 and later
* Non-Carbon CFM: in OTUtilityLib 1.0 and later
}
procedure OTReleaseBuffer( var buffer: OTBuffer ); external name '_OTReleaseBuffer';
(* __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_0,__MAC_10_4,__IPHONE_NA,__IPHONE_NA) *)
{
* StoreIntoNetbuf()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* StoreMsgIntoNetbuf()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{$endc} { !OTKERNEL }
{ ***** OTConfiguration *****}
{$ifc CALL_NOT_IN_CARBON}
{$ifc NOT OTKERNEL}
{
As promised in "OpenTransport.h", here are the routines
for advanced operations on configurations.
}
{ Manipulating a configuration}
{
* OTCfigNewConfiguration()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTCfigDeleteConfiguration()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTCfigCloneConfiguration()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTCfigPushNewSingleChild()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTCfigPushParent()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTCfigPushChild()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTCfigPopChild()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTCfigGetChild()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTCfigSetPath()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTCfigNewChild()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTCfigAddChild()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTCfigRemoveChild()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTCfigSetPortRef()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTCfigChangeProviderName()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{ Query a configuration}
{
* OTCfigNumberOfChildren()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTCfigGetParent()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTCfigGetOptionNetbuf()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTCfigGetPortRef()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTCfigGetInstallFlags()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTCfigGetProviderName()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTCfigIsPort()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{$endc} { !OTKERNEL }
{ ***** Configurators *****}
{
The kOTConfiguratorInterfaceID define is what you need to add to your
export file for the "interfaceID = " clause to export a configurator
for ASLM. Similarly, kOTConfiguratorCFMTag is used for CFM-based
configurators.
}
// #define kOTConfiguratorInterfaceID kOTClientPrefix "cfigMkr"
// #define kOTConfiguratorCFMTag kOTClientPrefix "cfigMkr"
{$ifc NOT OTKERNEL}
type
TOTConfiguratorRef = ^SInt32; { an opaque 32-bit type }
TOTConfiguratorRefPtr = ^TOTConfiguratorRef;
{
Typedef for the OTCanConfigure function, and the enum for which pass we're doing.
The first (kOTSpecificConfigPass) is to give configurators a shot at the configuration
before we start allowing the generic configurators to get into the act.
}
const
kOTSpecificConfigPass = 0;
kOTGenericConfigPass = 1;
type
OTCanConfigureProcPtr = function( cfig: OTConfigurationRef; pass: UInt32 ): Boolean;
{ Typedef for the function to create and return a configurator object}
type
OTCreateConfiguratorProcPtr = function( var cfigor: TOTConfiguratorRef ): OSStatus;
{
Typedef for the "OTSetupConfigurator" function that your configurator library must export.
The enum is for the type of configurator that it is.
}
const
kOTSetupConfiguratorID = 'OTSetupConfigurator';
const
kOTDefaultConfigurator = 0;
kOTProtocolFamilyConfigurator = 1;
kOTLinkDriverConfigurator = 2;
type
OTSetupConfiguratorProcPtr = function( var canConfigure: OTCanConfigureProcPtr; var createConfigurator: OTCreateConfiguratorProcPtr; var configuratorType: UInt8 ): OSStatus;
{
Procedure pointer definitions for the three key callbacks associated
with a configurator, as established by OTNewConfigurator.
}
type
OTCFConfigureProcPtr = function( cfigor: TOTConfiguratorRef; cfig: OTConfigurationRef ): OSStatus;
OTCFCreateStreamProcPtr = function( cfigor: TOTConfiguratorRef; cfig: OTConfigurationRef; oFlags: OTOpenFlags; proc: OTNotifyUPP; contextPtr: UnivPtr ): OSStatus;
OTCFHandleSystemEventProcPtr = procedure( cfigor: TOTConfiguratorRef; code: OTEventCode; result: OTResult; cookie: UnivPtr );
{
Determine if this instance of your configurator is the "master"
(the one that can create and destroy control streams)
}
{
* OTIsMasterConfigurator()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{ Get back the userData you passed in to OTNewConfigurator}
{
* OTGetConfiguratorUserData()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{ Create a configurator object for use by Open Transport}
{
* OTNewConfigurator()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{ Delete a configurator object created by OTNewConfigurator}
{
* OTDeleteConfigurator()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
A utility function to send notifications to the user - it takes care of calls
from deferred tasks
}
{
* OTNotifyUser()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{ Call when the configurator unloads from memory}
{
* OTConfiguratorUnloaded()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
Call to create your control stream if you're not the master
configurator. You can also use the state machine function
OTSMCreateControlStream(OTStateMachine*, OTConfigurationRef, TOTConfiguratorRef cfigor).
}
{
* OTCreateControlStream()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
A helpful function for the configurators to
be able to recursively configure the children.
}
{
* OTConfigureChildren()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{ Allocate a bit in the system-wide control mask for streams.}
{
* OTNewControlMask()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{ Warning: These 2 APIs is going away}
{
* OTCloseProvidersByUseCount()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTCloseProvidersByPortRef()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{ These are the "real" APIs}
{
* OTCloseProviderByStream()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTCloseMatchingProviders()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{ The following defines are for use in building an 'epcf' resource: }
{ Defines for fFlags field: }
const
kIsReliable = $00000001;
kIsNotReliable = $00000002;
kSupportsOrderlyRelease = $00000004;
{ Defines for fProtocolType field: }
kStream = $0001;
kUStream = $0002;
kTransaction = $0004;
kUTransaction = $0008;
kMapper = $0010;
kGenericProtocol = $0020;
{ Defines for optionType field: }
const
kBooleanOption = 0;
const
kUnsignedValueOption = 1;
const
kSignedValueOption = 2;
const
kHexValueOption = 3;
const
kPrintableStringOption = 4;
const
kOctetStringOption = 5;
{ Defines for fUpperInterface and fLowerInterface: }
const
kTPIInterface = FourCharCode('TPI ');
kDLPIInterface = FourCharCode('DLPI');
kMapperInterface = FourCharCode('MAPR');
kPrivateInterface = -1;
const
kNoInterface = 0;
{$endc} { !OTKERNEL }
{$endc} { CALL_NOT_IN_CARBON }
{ ***** OTStateMachine *****}
{$ifc CALL_NOT_IN_CARBON}
{
This utility set allows you to write an asynchronous chain of code that looks
somewhat like it is synchronous. This is primarily used for plumbing
streams asynchronously, especially in configurators
}
{$ifc NOT OTKERNEL}
{ Alas, the state machine is only available to client code. Sorry.}
{
There are 12 or 8 bytes of reserved space at the front of
the OTStateMachine structure, depending on whether you're
building PowerPC or 68K code.. The OTStateMachineDataPad
type compensates for this.
}
{$ifc TARGET_CPU_PPC}
type
OTStateMachineDataPad = packed array [0..11] of UInt8;
{$elsec}
type
OTStateMachineDataPad = packed array [0..7] of UInt8;
{$endc} {TARGET_CPU_PPC}
{
Forward define OTStateMachine so that OTStateProcPtr has
access to it.
}
type
OTStateMachinePtr = ^OTStateMachine;
{
This type is is the required prototype of a state machine
entry point.
}
OTStateProcPtr = procedure( var sm: OTStateMachine );
{
This type defines a routine that the state machine will
call when the top level completes.
}
OTSMCompleteProcPtr = procedure( contextPtr: UnivPtr );
{ And now for the state machine structure itself.}
OTStateMachine = record
fData: OTStateMachineDataPad;
fCookie: UnivPtr;
fCode: OTEventCode;
fResult: OTResult;
end;
// #define kOTSMBufferSize(callDepth) (80 + (callDepth * 8))
{
For structSize, pass the size of your structure that you want associated with
the state machine. It can later be obtained by calling OTSMGetClientData.
For bufSize, use the kOTSMBufferSize macro, plus the size of your structure
to create a buffer on the stack. For synchronous calls, the stack buffer will
be used (unless you pass in NULL). The callDepth is the depth level of nested
calls using OTSMCallStateProc.
}
{
* OTCreateStateMachine()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTDestroyStateMachine()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
OTSMCallStateProc used to take a parameter of type UInt16_p,
which was defined to be the same as UInt32. In an attempt
to reduce the number of wacky types defined by the OT
interfaces, we've changed these routines to just take a
straight UInt32. You should be warned that the current
implementation does not support values outside of the
range 0..32767. The same applies to OTSMSetState.
}
{
* OTSMCallStateProc()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTSMGetState()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTSMSetState()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{ Fill out the fCookie, fCode, and fResult fields before calling!}
{
* OTSMComplete()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTSMPopCallback()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTSMWaitForComplete()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTSMCreateStream()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTSMOpenStream()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTSMIoctl()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTSMPutMessage()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTSMGetMessage()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTSMReturnToCaller()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTSMGetClientData()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTSMInstallCompletionProc()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
* OTSMCreateControlStream()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{$endc} { !OTKERNEL }
{ ***** Autopush Definitions *****}
{
The autopush functionality for Open Transport is based on the names of
devices and modules, rather than on the major number information like
SVR4. This is so that autopush information can be set up for modules
that are not yet loaded.
}
{ The name of the STREAMS driver you open and send the ioctls to.}
const
kSADModuleName = 'sad';
{ Autopush ioctls.}
const
I_SAD_SAP = $6701; { Set autopush information }
I_SAD_GAP = $6702; { Get autopush information }
I_SAD_VML = $6703; { Validate a list of modules (uses str_list structure) }
{ Maximum number of modules autopushed on a driver.}
const
kOTAutopushMax = 8;
{ ioctl structure used for SAD_SAP and SAD_GAP commands.}
type
OTAutopushInfoPtr = ^OTAutopushInfo;
OTAutopushInfo = record
sap_cmd: UInt32;
sap_device_name: packed array [0..31] of char;
sap_minor: SInt32;
sap_lastminor: SInt32;
sap_npush: SInt32;
sap_list: packed array [0..7,0..31] of char;
end;
{ Command values for sap_cmd field of the above.}
const
kSAP_ONE = 1; { Configure a single minor device }
kSAP_RANGE = 2; { Configure a range of minor devices }
kSAP_ALL = 3; { Configure all minor devices }
kSAP_CLEAR = 4; { Clear autopush information }
{ ***** Configuration Helpers *****}
{
These definitions are used by device driver and port scanner
developers to provide a library giving client-side information about
the registered ports, such as a user-visible name or an icon.
}
{ Configuration helper library prefix}
{
This prefix is prepended to the string found in the "fResourceInfo"
field of the OTPortRecord to build the actual library name of the
configuration helper library.
}
const
kPortConfigLibPrefix = 'OTPortCfg$';
{ Get user visible port name entry point.}
{
This entry point returns the user visible name of the port. If includeSlot
is true, a slot distinguishing suffix (eg "slot X") should be added. If
includePort is true, a port distinguishing suffix (eg " port X") should be added for
multiport cards.
}
const
kOTGetUserPortNameID = 'OTGetUserPortName';
type
OTGetPortNameProcPtr = procedure( var port: OTPortRecord; includeSlot: OTBooleanParam; includePort: OTBooleanParam; var userVisibleName: Str255 );
{ Get icon entry point.}
{
This entry point returns the location of the icon for the port. Return false if no
icon is provided.
}
const
kOTGetPortIconID = 'OTGetPortIcon';
type
OTResourceLocatorPtr = ^OTResourceLocator;
OTResourceLocator = record
fFile: FSSpec;
fResID: UInt16;
end;
type
OTGetPortIconProcPtr = function( var port: OTPortRecord; var iconLocation: OTResourceLocator ): Boolean;
{ ***** Application Access to Configuration Helpers *****}
{$ifc NOT OTKERNEL}
{
These routines are used by clients to get information about ports.
The canonical user of these routines is the OT control panel(s),
but applications may want to use them as well (to display the list
of available Ethernet cards, for example).
}
{ Returns a user friendly name for a port.}
{
* OTGetUserPortNameFromPortRef()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
Returns the location for the icon familly representing the port.
Returns false if the port has no icon.
}
{
* OTGetPortIconFromPortRef()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
Gets the slot and other value for the default port of the given device type
Returns false if there is no default port of that device type
}
{
* OTGetDefaultPort()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{ Returns true if the port can be used with the specified protocol.}
{
* OTIsPortCompatibleWith()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{$endc} { !OTKERNEL }
{$endc} { CALL_NOT_IN_CARBON }
{ ***** Common Utilities *****}
{
The utilities defined in this section are available to both client
and kernel code. Cool huh? These utilities differ from those
provided in "OpenTransport.h" in that they are only available to native
architecture clients.
}
{ Bitmap functions}
{ These functions atomically deal with a bitmap that is multiple-bytes long}
{
Set the first clear bit in "bitMap", starting with bit "startBit",
giving up after "numBits". Returns the bit # that was set, or
a kOTNotFoundErr if there was no clear bit available
}
{
* OTSetFirstClearBit() *** DEPRECATED ***
*
* Availability:
* Mac OS X: in version 10.0 and later in CoreServices.framework [32-bit only] but deprecated in 10.4
* CarbonLib: in CarbonLib 1.0 and later
* Non-Carbon CFM: in OTUtilityLib 1.0 and later
}
function OTSetFirstClearBit( bitMap: UInt8Ptr; startBit: OTByteCount; numBits: OTByteCount ): OTResult; external name '_OTSetFirstClearBit';
(* __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_0,__MAC_10_4,__IPHONE_NA,__IPHONE_NA) *)
{ Standard clear, set and test bit functions}
{
* OTClearBit() *** DEPRECATED ***
*
* Availability:
* Mac OS X: in version 10.0 and later in CoreServices.framework [32-bit only] but deprecated in 10.4
* CarbonLib: in CarbonLib 1.0 and later
* Non-Carbon CFM: in OTUtilityLib 1.0 and later
}
function OTClearBit( bitMap: UInt8Ptr; bitNo: OTByteCount ): Boolean; external name '_OTClearBit';
(* __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_0,__MAC_10_4,__IPHONE_NA,__IPHONE_NA) *)
{
* OTSetBit() *** DEPRECATED ***
*
* Availability:
* Mac OS X: in version 10.0 and later in CoreServices.framework [32-bit only] but deprecated in 10.4
* CarbonLib: in CarbonLib 1.0 and later
* Non-Carbon CFM: in OTUtilityLib 1.0 and later
}
function OTSetBit( bitMap: UInt8Ptr; bitNo: OTByteCount ): Boolean; external name '_OTSetBit';
(* __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_0,__MAC_10_4,__IPHONE_NA,__IPHONE_NA) *)
{
* OTTestBit() *** DEPRECATED ***
*
* Availability:
* Mac OS X: in version 10.0 and later in CoreServices.framework [32-bit only] but deprecated in 10.4
* CarbonLib: in CarbonLib 1.0 and later
* Non-Carbon CFM: in OTUtilityLib 1.0 and later
}
function OTTestBit( bitMap: UInt8Ptr; bitNo: OTByteCount ): Boolean; external name '_OTTestBit';
(* __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_0,__MAC_10_4,__IPHONE_NA,__IPHONE_NA) *)
{ OTHashList}
{
This implements a simple, but efficient hash list. It is not
thread-safe.
}
{$endc} {not TARGET_CPU_64}
type
OTHashProcPtr = function( var linkToHash: OTLink ): UInt32;
OTHashSearchProcPtr = function( ref: {const} UnivPtr; var linkToCheck: OTLink ): Boolean;
OTHashListPtr = ^OTHashList;
OTHashList = record
fHashProc: OTHashProcPtr;
fHashTableSize: ByteCount;
fHashBuckets: ^OTLinkPtr;
end;
{
Return the number of bytes of memory needed to create a hash list
of at least "numEntries" entries.
}
{
* OTCalculateHashListMemoryNeeds()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: in OTUtilityLib 1.0 and later
}
{
Create an OTHashList from "memory". Return an error if it
couldn't be done.
}
{
* OTInitHashList()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: in OTUtilityLib 1.0 and later
}
{
* OTAddToHashList()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: in OTUtilityLib 1.0 and later
}
{
* OTRemoveLinkFromHashList()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: in OTUtilityLib 1.0 and later
}
{
* OTIsInHashList()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: in OTUtilityLib 1.0 and later
}
{
* OTFindInHashList()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: in OTUtilityLib 1.0 and later
}
{
* OTRemoveFromHashList()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: in OTUtilityLib 1.0 and later
}
{ Random functions}
{
These implement a very simple random number generator, suitable
for protocol implementations but not "cryptographically" random.
}
{
* OTGetRandomSeed()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: in OTUtilityLib 1.0 and later
}
{
* OTGetRandomNumber()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: in OTUtilityLib 1.0 and later
}
{ Concurrency Control}
{
OTGate implements a cool concurrency control primitive.
You're not going to understand it without reading the documentation!
See "Open Transport Advanced Client Programming" for details.
WARNING:
This structure must be on a 4-byte boundary.
}
type
OTGateProcPtr = function( var thisLink: OTLink ): Boolean;
CFMLibraryInfoPtr = ^CFMLibraryInfo;
CFMLibraryInfo = record
fLIFO: OTLIFO;
fList: OTList;
fProc: OTGateProcPtr;
fNumQueued: SInt32;
fInside: SInt32;
end;
{
* OTInitGate()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: in OTUtilityLib 1.0 and later
}
{
* OTEnterGate()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: in OTUtilityLib 1.0 and later
}
{
* OTLeaveGate()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: in OTUtilityLib 1.0 and later
}
{ ***** Shared Library Bonus Extras *****}
{$ifc CALL_NOT_IN_CARBON}
{
These routines provide addition shared library support beyond
that provided by the base shared library mechanism.
}
{
Some flags which can be passed to the "loadFlags" parameter of the
various CFM routines. Not all flags can be used with all routines.
See "Open Transport Advanced Client Programming" for details.
}
const
kOTGetDataSymbol = 0;
kOTGetCodeSymbol = 1;
kOTLoadNewCopy = 2;
kOTLoadACopy = 4;
kOTFindACopy = 8;
kOTLibMask = kOTLoadNewCopy or kOTLoadACopy or kOTFindACopy;
kOTLoadLibResident = $20;
{ Finding all matching CFM libraries.}
{
The routine OTFindCFMLibraries allows you to find all CFM libraries
that match specific criteria. The result is placed in a list
of CFMLibraryInfo structures. OT allocates those structures using
a routine of type OTAllocMemProcPtr that you pass to OTFindCFMLibraries.
}
{
A list of CFMLibraryInfo structures is returned by the OTFindCFMLibraries routine.
The list is created out of the data that is passed to the function.
IMPORTANT:
Only the first 3 fields are valid when using OT 1.2 and older.
}
type
CFMLibraryInfoPtr = ^CFMLibraryInfo;
CFMLibraryInfo = record
link: OTLink; { To link them all up on a list }
libName: UnivPtr; { "C" String which is fragment name }
intlName: StringPtr; { Pascal String which is internationalized name }
fileSpec: FSSpecPtr; { location of fragment's file }
pstring2: StringPtr; { Secondary string from extended cfrg }
pstring3: StringPtr; { Extra info from extended cfrg }
end;
{
You must pass a routine of type OTAllocMemProcPtr to OTFindCFMLibraries
which it calls to allocate memory for the CFMLibraryInfo structures.
}
type
OTAllocMemProcPtr = function( size: OTByteCount ): UnivPtr;
{ Find CFM libraries of the specified kind and type}
{
* OTFindCFMLibraries()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{ Loading libraries and connecting to symbols.}
{ Load a CFM library by name}
{
* OTLoadCFMLibrary()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{ Load a CFM library and get a named pointer from it}
{
* OTGetCFMPointer()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{ Get a named pointer from a CFM library that's already loaded}
{
* OTGetCFMSymbol()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{ Release a connection to a CFM library}
{
* OTReleaseCFMConnection()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
You can call these routines in your CFM initialisation and termination
routines to hold or unhold your libraries sections.
}
{
Used in a CFM InitProc, will hold the executable code, if applicable.
This can also be the InitProc of the library
}
{
* OTHoldThisCFMLibrary()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
Used in a CFM terminate proc, will unhold the executable code, if applicable.
This can also be the terminate proc of the library
}
{
* OTUnholdThisCFMLibrary()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{ ASLM Utilities}
{ Load an ASLM library}
{
* OTLoadASLMLibrary()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{ Unload an ASLM library}
{
* OTUnloadASLMLibrary()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{
This is an ASLM utility routine. You can get it by including
"LibraryManagerUtilities.h", but since we only use a few ASLM utilities,
we put the prototype here for convenience.
}
{
* UnloadUnusedLibraries()
*
* Availability:
* Mac OS X: not available
* CarbonLib: not available
* Non-Carbon CFM: not available
}
{$ifc NOT OTKERNEL}
{******************************************************************************
** A few C++ objects for C++ fans
*******************************************************************************}
{$ifc CALL_NOT_IN_CARBON}
{$endc} { CALL_NOT_IN_CARBON }
{$endc} { !OTKERNEL }
{$endc} { CALL_NOT_IN_CARBON }
{$endc} {TARGET_OS_MAC and TARGET_CPU_PPC}
{$ifc not defined MACOSALLINCLUDE or not MACOSALLINCLUDE}
end.
{$endc} {not MACOSALLINCLUDE}