Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
lazarus / usr / share / lazarus / 1.6 / components / jcf2 / Parse / ParseTreeNode.pas
Size: Mime:
unit ParseTreeNode;

{(*}
(*------------------------------------------------------------------------------
 Delphi Code formatter source code 

The Original Code is ParseTreeNode, released May 2003.
The Initial Developer of the Original Code is Anthony Steele. 
Portions created by Anthony Steele are Copyright (C) 1999-2008 Anthony Steele.
All Rights Reserved. 
Contributor(s): Anthony Steele. 

The contents of this file are subject to the Mozilla Public License Version 1.1
(the "License"). you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.mozilla.org/NPL/

Software distributed under the License is distributed on an "AS IS" basis,
WITHOUT WARRANTY OF ANY KIND, either express or implied.
See the License for the specific language governing rights and limitations 
under the License.

Alternatively, the contents of this file may be used under the terms of
the GNU General Public License Version 2 or later (the "GPL") 
See http://www.gnu.org/licenses/gpl.html
------------------------------------------------------------------------------*)
{*)}

{$I JcfGlobal.inc}

interface

{ AFS 27 October 2002
  A node on the parse tree
}
uses
  {delphi }
  Contnrs, Classes,
  { local }
  Tokens, ParseTreeNodeType, Nesting;


type

  TParseTreeNode = class(TObject)
  private
    fcParent: TParseTreeNode;
    fcChildNodes: TObjectList;
    feNodeType: TParseTreeNodeType;
    fcNestings: TNestingLevelList;

    fiUserTag: integer;

    function GetChildNodes(const piIndex: integer): TParseTreeNode;
  protected
  public
    constructor Create;
    destructor Destroy; override;

    function ChildNodeCount: integer;
    procedure SortChildNodes(Compare: TListSortCompare);

    function RecursiveChildCount: integer;
    function MaxDepth: integer;

    function NewChild: TParseTreeNode;
    procedure AddChild(const pcChild: TParseTreeNode);

    procedure InsertChild(const piIndex: integer; const pcChild: TParseTreeNode);
    function RemoveChild(const pcChild: TParseTreeNode): Boolean; overload;
    function RemoveChild(const piIndex: integer): Boolean; overload;
    function ExtractChild(const pcChild: TParseTreeNode): TParseTreeNode;

    function IndexOfChild(const pcChild: TParseTreeNode): integer;
    function IndexOfSelf: integer;
    function SolidChildCount: integer; virtual;

    function FirstLeaf: TParseTreeNode;
    function FirstSolidLeaf: TParseTreeNode; virtual;
    function LastLeaf: TParseTreeNode;

    function PriorLeafNode: TParseTreeNode;
    function NextLeafNode: TParseTreeNode;

    function FirstNodeBefore(const pcChild: TParseTreeNode): TParseTreeNode;
    function FirstNodeAfter(const pcChild: TParseTreeNode): TParseTreeNode;
    function GetImmediateChild(const peNodeTypes: TParseTreeNodeTypeSet): TParseTreeNode; overload;
    function GetImmediateChild(const peNodeType: TParseTreeNodeType): TParseTreeNode; overload;

    function CountImmediateChild(const peNodeTypes: TParseTreeNodeTypeSet): integer; overload;
    function CountImmediateChild(const peNodeType: TParseTreeNodeType): integer; overload;

    function Level: integer;
    function HasChildren: boolean;
    function IsLeaf: boolean; virtual;
    function Root: TParseTreeNode;

    function HasChildNode(const peToken: TTokenType): boolean; overload;
    function HasChildNode(const peTokens: TTokenTypeSet): boolean; overload; virtual;
    function HasChildNode(const peTokens: TTokenTypeSet;
      const piMaxDepth: integer): boolean; overload; virtual;
    function HasChildNode(const peToken: TTokenType; const piMaxDepth: integer): boolean; overload; virtual;
    function HasChildNode(const peNodes: TParseTreeNodeTypeSet;
      const piMaxDepth: integer): boolean; overload; virtual;
    function HasChildNode(const peNode: TParseTreeNodeType;
      const piMaxDepth: integer): boolean; overload; virtual;
    function HasChildNode(const peNode: TParseTreeNodeType): boolean; overload; virtual;

    function HasParentNode(const peNodeTypes: TParseTreeNodeTypeSet): boolean; overload;
    function HasParentNode(const peNodeType: TParseTreeNodeType): boolean; overload;

    function HasParentNode(const peNodeTypes: TParseTreeNodeTypeSet;
      const piMaxDepth: integer): boolean; overload;
    function HasParentNode(const peNodeType: TParseTreeNodeType;
      const piMaxDepth: integer): boolean; overload;

    function HasParentNode(const pcParentNode: TParseTreeNode): boolean; overload;

    function GetParentNode(const peNodeTypes: TParseTreeNodeTypeSet): TParseTreeNode; overload;
    function GetParentNode(const peNodeType: TParseTreeNodeType): TParseTreeNode; overload;

    function CountParentNodes(const peNodeType: TParseTreeNodeType): integer;

    { this one needs some explanation. Need to answer questions like
     'Is this node in a type decl, on the right of an equal sign
     So we find if we have a predecessor of one of peWords in the subtree rooted at peNodeTypes }
    function IsOnRightOf(const peRootNodeTypes: TParseTreeNodeTypeSet;
      const peTokens: TTokenTypeSet): boolean; overload;
    function IsOnRightOf(const peRootNodeType: TParseTreeNodeType;
      const peToken: TTokenType): boolean; overload;

    { same with parse tree interior nodes }
    function IsOnRightOf(const peRootNodeTypes, peNodes: TParseTreeNodeTypeSet): boolean; overload;
    function IsOnRightOf(const peRootNodeType, peNode: TParseTreeNodeType): boolean; overload;

    function Describe: string; virtual;

    property Parent: TParseTreeNode Read fcParent Write fcParent;
    property ChildNodes[const piIndex: integer]: TParseTreeNode Read GetChildNodes;
    property NodeType: TParseTreeNodeType Read feNodeType Write feNodeType;

    property Nestings: TNestingLevelList Read fcNestings;

    { use tag is for temp use of any process.
      No process is guaranteed any input value here
      Create for alignment processes }
    property UserTag: integer Read fiUserTag Write fiUserTag;
  end;


implementation

uses SysUtils, Math;

constructor TParseTreeNode.Create;
begin
  inherited Create;

  fcParent   := nil;
  feNodeType := nUnknown;

  fcChildNodes := TObjectList.Create;
  fcChildNodes.OwnsObjects := True;

  fcNestings := TNestingLevelList.Create;
end;

destructor TParseTreeNode.Destroy;
begin
  FreeAndNil(fcChildNodes);
  FreeAndNil(fcNestings);

  { detatch from the tree }
  if (Parent <> nil) and (Parent.fcChildNodes <> nil) then
    Parent.fcChildNodes.Extract(self);

  inherited;
end;


function TParseTreeNode.ChildNodeCount: integer;
begin
  Result := fcChildNodes.Count;
end;

procedure TParseTreeNode.SortChildNodes(Compare: TListSortCompare);
begin
  fcChildNodes.Sort(Compare);
end;

function TParseTreeNode.GetChildNodes(const piIndex: integer): TParseTreeNode;
begin
  Result := TParseTreeNode(fcChildNodes[piIndex]);
end;

function TParseTreeNode.NewChild: TParseTreeNode;
begin
  // a new child, properly attached parent <-> child
  Result := TParseTreeNode.Create;
  fcChildNodes.Add(Result);
end;


procedure TParseTreeNode.AddChild(const pcChild: TParseTreeNode);
begin
  pcChild.fcParent := self;
  fcChildNodes.Add(pcChild);
end;


procedure TParseTreeNode.InsertChild(const piIndex: integer;
  const pcChild: TParseTreeNode);
begin
  pcChild.fcParent := self;
  fcChildNodes.Insert(piIndex, pcChild);
end;

function TParseTreeNode.RemoveChild(const pcChild: TParseTreeNode): Boolean;
begin
  Result := RemoveChild(fcChildNodes.IndexOf(pcChild));
end;

function TParseTreeNode.RemoveChild(const piIndex: integer): Boolean;
begin
  Result := (piIndex >= 0) and (piIndex < ChildNodeCount);
  if  Result then
  begin
    ChildNodes[piIndex].Parent := nil;
    fcChildNodes.Delete(piIndex);
  end;
end;

function TParseTreeNode.ExtractChild(const pcChild: TParseTreeNode): TParseTreeNode;
begin
  Result := TParseTreeNode(fcChildNodes.Extract(pcChild));
end;

function TParseTreeNode.IndexOfChild(const pcChild: TParseTreeNode): integer;
begin
  Result := fcChildNodes.IndexOf(pcChild);
end;

function TParseTreeNode.IndexOfSelf: integer;
begin
  if Parent = nil then
    Result := 0
  else
    Result := Parent.IndexOfChild(self);
end;

{ how far down the tree is this node? }
function TParseTreeNode.Level: integer;
begin
  if fcParent = nil then
    Result := 0
  else
    Result := fcParent.Level + 1;
end;

function TParseTreeNode.HasChildren: boolean;
begin
  Result := (ChildNodeCount > 0);
end;

function TParseTreeNode.IsLeaf: boolean;
begin
  Result := False;
end;

function TParseTreeNode.Describe: string;
begin
  Result := NodeTypeToString(NodeType);
end;


function TParseTreeNode.MaxDepth: integer;
var
  liLoop: integer;
  liMaxChildDepth, liChildDepth: integer;
begin
  liMaxChildDepth := 0;

  // one deeper than the deepest child
  for liLoop := 0 to ChildNodeCount - 1 do
  begin
    liChildDepth := ChildNodes[liLoop].MaxDepth;

    liMaxChildDepth := Max(liMaxChildDepth, liChildDepth);
  end;

  Result := liMaxChildDepth + 1;
end;

function TParseTreeNode.RecursiveChildCount: integer;
var
  liLoop: integer;
begin
  // I am one, and my children are the rest

  Result := 1;

  for liLoop := 0 to ChildNodeCount - 1 do
    Result := Result + ChildNodes[liLoop].RecursiveChildCount;
end;

function TParseTreeNode.Root: TParseTreeNode;
begin
  // if I have a parent then I am not the root
  if (fcParent = nil) then
    Result := self
  else
    Result := fcParent.Root;
end;

function TParseTreeNode.HasChildNode(const peToken: TTokenType): boolean;
begin
  Result :=  HasChildNode([peToken]);
end;

function TParseTreeNode.HasChildNode(const peTokens: TTokenTypeSet): boolean;
var
  liLoop: integer;
begin
  Result := False;

  for liLoop := 0 to ChildNodeCount - 1 do
  begin
    Result := ChildNodes[liLoop].HasChildNode(peTokens);
    if Result then
      break;
  end;
end;

function TParseTreeNode.HasChildNode(const peTokens: TTokenTypeSet;
  const piMaxDepth: integer): boolean;
var
  liLoop: integer;
begin
  Result := False;

  if (piMaxDepth > 0) then
  begin
    for liLoop := 0 to ChildNodeCount - 1 do
    begin
      Result := ChildNodes[liLoop].HasChildNode(peTokens, piMaxDepth - 1);
      if Result then
        break;
    end;
  end;
end;

function TParseTreeNode.HasChildNode(const peToken: TTokenType;
  const piMaxDepth: integer): boolean;
begin
  Result := HasChildNode([peToken], piMaxDepth);
end;


function TParseTreeNode.HasChildNode(const peNodes: TParseTreeNodeTypeSet;
  const piMaxDepth: integer): boolean;
var
  liLoop: integer;
begin
  Result := (NodeType in peNodes);
  if Result then
    exit;

  if (piMaxDepth > 0) then
  begin
    for liLoop := 0 to ChildNodeCount - 1 do
    begin
      Result := ChildNodes[liLoop].HasChildNode(peNodes, piMaxDepth - 1);
      if Result then
        break;
    end;
  end;
end;

function TParseTreeNode.HasChildNode(const peNode: TParseTreeNodeType;
  const piMaxDepth: integer): boolean;
begin
  Result := HasChildNode([peNode], piMaxDepth);
end;

function TParseTreeNode.HasChildNode(const peNode: TParseTreeNodeType): boolean;
begin
  // get the child down to any depth
  Result := HasChildNode([peNode], High(integer));
end;

function TParseTreeNode.HasParentNode(const peNodeTypes: TParseTreeNodeTypeSet): boolean;
begin
  Result := (NodeType in peNodeTypes);

  // try above
  if ( not Result) and (Parent <> nil) then
    Result := Parent.HasParentNode(peNodeTypes);
end;

function TParseTreeNode.HasParentNode(const peNodeType: TParseTreeNodeType): boolean;
begin
  Result := HasParentNode([peNodeType]);
end;


function TParseTreeNode.GetParentNode(const peNodeTypes: TParseTreeNodeTypeSet):
TParseTreeNode;
begin
  if (NodeType in peNodeTypes) then
  begin
    Result := self;
  end
  else
  begin
    Result := nil;

    // try above
    if (Parent <> nil) then
      Result := Parent.GetParentNode(peNodeTypes);
  end;
end;

function TParseTreeNode.HasParentNode(const peNodeTypes: TParseTreeNodeTypeSet;
  const piMaxDepth: integer): boolean;
begin
  Result := (NodeType in peNodeTypes);

  // try above
  if ( not Result) and (Parent <> nil) and (piMaxDepth > 0) then
    Result := Parent.HasParentNode(peNodeTypes, (piMaxDepth - 1));
end;

function TParseTreeNode.HasParentNode(const peNodeType: TParseTreeNodeType;
  const piMaxDepth: integer): boolean;
begin
  Result := HasParentNode([peNodeType], piMaxDepth);
end;

function TParseTreeNode.HasParentNode(const pcParentNode: TParseTreeNode): boolean;
begin
  Result := (Parent = pcParentNode);

  if (not Result) and (Parent <> nil) then
    Result := Parent.HasParentNode(pcParentNode);
end;


function TParseTreeNode.GetParentNode(const peNodeType: TParseTreeNodeType): TParseTreeNode;
begin
  Result := GetParentNode([peNodeType]);
end;

function TParseTreeNode.CountParentNodes(const peNodeType: TParseTreeNodeType): integer;
var
  lcParent: TParseTreeNode;
begin
  Result := 0;
  lcParent := GetParentNode(peNodeType);
  while (lcParent <> nil) do
  begin
      inc(Result);
      if lcParent.Parent <> nil then
      begin
        lcParent := lcParent.Parent.GetParentNode(peNodeType);
      end
      else
      begin
        lcParent := nil;
      end;
  end;
end;

{ a copy of the above with different types }
function TParseTreeNode.IsOnRightOf(const peRootNodeTypes: TParseTreeNodeTypeSet;
  const peTokens: TTokenTypeSet): boolean;
var
  lbSearchDone: boolean;

  function GetFirstMatch(const pcRoot: TParseTreeNode;
  const peTokens: TTokenTypeSet): TParseTreeNode;
  var
    liLoop:  integer;
    lcChild: TParseTreeNode;
  begin
    Result := nil;

    if pcRoot = self then
    begin
      lbSearchDone := True;
      exit;
    end;

    // leaf node - matching token using the 'HasChildNode' override to match self
    if (pcRoot.ChildNodeCount = 0) and pcRoot.HasChildNode(peTokens) then
    begin
      lbSearchDone := True;
      Result := pcRoot;
      exit;
    end;

    // recurse into all children (or until self is encountered)
    for liLoop := 0 to pcRoot.ChildNodeCount - 1 do
    begin
      lcChild := pcRoot.ChildNodes[liLoop];
      if lcChild = self then
      begin
        lbSearchDone := True;
        break;
      end;

      Result := GetFirstMatch(lcChild, peTokens);
      if Result <> nil then
        break;

      if lbSearchDone then
        break;
    end;
  end;

var
  lcRoot, lcFirstMatch: TParseTreeNode;
begin
  { does it have the required parent }
  lcRoot := GetParentNode(peRootNodeTypes);
  if lcRoot = nil then
  begin
    Result := False;
    exit;
  end;

  { does the parent have the required child
    search depth-first, ending when the self node is reached  }

  lbSearchDone := False;
  lcFirstMatch := GetFirstMatch(lcRoot, peTokens);

  Result := (lcFirstMatch <> nil);
end;

function TParseTreeNode.IsOnRightOf(const peRootNodeType: TParseTreeNodeType;
  const peToken: TTokenType): boolean;
begin
  Result := IsOnRightOf([peRootNodeType], [peToken]);
end;


function TParseTreeNode.IsOnRightOf(const peRootNodeTypes, peNodes: TParseTreeNodeTypeSet): boolean;
var
  lbSearchDone: boolean;

  function GetFirstMatch(const pcRoot: TParseTreeNode;
  const peNodes: TParseTreeNodeTypeSet): TParseTreeNode;
  var
    liLoop:  integer;
    lcChild: TParseTreeNode;
  begin
    Result := nil;

    if pcRoot = self then
    begin
      lbSearchDone := True;
      exit;
    end;

    if pcRoot.NodeType in peNodes then
    begin
      lbSearchDone := True;
      Result := self;
      exit;
    end;

    // recurse into all children (or until self is encountered)
    for liLoop := 0 to ChildNodeCount - 1 do
    begin
      lcChild := ChildNodes[liLoop];
      if lcChild = self then
      begin
        lbSearchDone := True;
        break;
      end;

      Result := GetFirstMatch(lcChild, peNodes);
      if Result <> nil then
        break;

      if lbSearchDone then
        break;
    end;
  end;

var
  lcRoot, lcFirstMatch: TParseTreeNode;
begin
  { does it have the required parent }
  lcRoot := GetParentNode(peRootNodeTypes);
  if lcRoot = nil then
  begin
    Result := False;
    exit;
  end;

  { does the parent have the required child
    search depth-first, ending when the self node is reached  }

  lbSearchDone := False;
  lcFirstMatch := GetFirstMatch(lcRoot, peNodes);

  // not enough - must be before self
  Result := (lcFirstMatch <> nil);
end;

function TParseTreeNode.IsOnRightOf(const peRootNodeType, peNode:
  TParseTreeNodeType): boolean;
begin
  Result := IsOnRightOf([peRootNodeType], [peNode])
end;

function TParseTreeNode.FirstLeaf: TParseTreeNode;
var
  liLoop: integer;
begin
  if IsLeaf then
    Result := Self // I am a leaf
  else if ChildNodeCount = 0 then
  begin
    Result := nil // I am a bare branch.
  end
  else
  begin
    // child may be a bare branch. Look back until a non-bare child is found
    liLoop := 0;
    Result := nil;
    while (Result = nil) and (liLoop < ChildNodeCount) do
    begin
      Result := ChildNodes[liLoop].FirstLeaf; // go down
      Inc(liLoop)
    end;
  end;
end;

function TParseTreeNode.FirstSolidLeaf: TParseTreeNode;
var
  liLoop: integer;
begin
  Result := nil;

  for liLoop := 0 to ChildNodeCount - 1 do
  begin
    Result := ChildNodes[liLoop].FirstSolidLeaf; // go down
    if Result <> nil then
      break;
  end;
end;

function TParseTreeNode.LastLeaf: TParseTreeNode;
var
  liLoop: integer;
begin
  if IsLeaf then
    Result := Self // I am a leaf
  else if ChildNodeCount = 0 then
  begin
    Result := nil // I am a bare branch.
  end
  else
  begin
    // child may be a bare branch. Look back until a non-bare child is found
    liLoop := ChildNodeCount - 1;
    Result := nil;
    while (Result = nil) and (liLoop >= 0) do
    begin
      Result := ChildNodes[liLoop].LastLeaf; // go down
      Dec(liLoop)
    end;
  end;
end;

{ find the first leaf before this one }
function TParseTreeNode.PriorLeafNode: TParseTreeNode;
var
  lcFocus, lcParent, lcLeaf: TParseTreeNode;
begin
  // get the node before this one
  Result := Parent.FirstNodeBefore(Self);

  if Result = nil then
  begin
    { climb the tree until we reach the top or a node with stuff before this }
    lcParent := Parent;

    while (Result = nil) and (lcParent <> nil) do
    begin
      lcFocus  := lcParent;
      lcParent := lcParent.Parent;

      if lcParent <> nil then
        Result := lcParent.FirstNodeBefore(lcFocus);
    end;
  end;

  // result may not be a leaf node
  if Result <> nil then
  begin
    if (Result.ChildNodeCount = 0) and ( not Result.IsLeaf) then
      // result is a bare branch. Move on
      Result := Result.PriorLeafNode
    else
    begin
      lcLeaf := Result.LastLeaf;
      if lcLeaf = nil then
        // result is a bare branch. Move on
        Result := Result.PriorLeafNode
      else
        Result := lcLeaf;
    end;
  end;
end;

function TParseTreeNode.NextLeafNode: TParseTreeNode;
var
  lcFocus, lcParent: TParseTreeNode;
begin
  // get the node after this one
  Assert(Parent <> nil);
  Result := Parent.FirstNodeAfter(Self);

  if Result = nil then
  begin
    { climb the tree until we reach the top or a node with stuff before this }
    lcParent := Parent;

    while (Result = nil) and (lcParent <> nil) do
    begin
      lcFocus  := lcParent;
      lcParent := lcParent.Parent;

      if lcParent <> nil then
        Result := lcParent.FirstNodeAfter(lcFocus);
    end;
  end;

  // result may not be a leaf node
  if Result <> nil then
  begin
    if (Result.ChildNodeCount = 0) and ( not Result.IsLeaf) then
      // result is a bare branch. Move on
      Result := Result.NextLeafNode
    else
      Result := Result.FirstLeaf;
  end;
end;

function TParseTreeNode.FirstNodeBefore(const pcChild: TParseTreeNode): TParseTreeNode;
var
  liIndex: integer;
begin

  liIndex := IndexOfChild(pcChild);
  if liIndex > 0 then
    Result := ChildNodes[liIndex - 1]
  else
    Result := nil;
end;

function TParseTreeNode.FirstNodeAfter(const pcChild: TParseTreeNode): TParseTreeNode;
var
  liIndex: integer;
begin

  liIndex := IndexOfChild(pcChild);
  if (liIndex < (ChildNodeCount - 1)) then
    Result := ChildNodes[liIndex + 1]
  else
    Result := nil;
end;

function TParseTreeNode.SolidChildCount: integer;
var
  liLoop: integer;
begin
  Result := 0;

  for liLoop := 0 to ChildNodeCount - 1 do
  begin
    Result := Result + ChildNodes[liLoop].SolidChildCount;
  end;

end;

function TParseTreeNode.GetImmediateChild(const peNodeTypes: TParseTreeNodeTypeSet): TParseTreeNode;
var
  liLoop: integer;
  lcNode: TParseTreeNode;
begin
  Result := nil;

  for liLoop := 0 to ChildNodeCount - 1 do
  begin
    lcNode := ChildNodes[liLoop];

    if lcNode.NodeType in peNodeTypes then
    begin
      Result := lcNode;
      break;
    end;
  end;
end;

function TParseTreeNode.GetImmediateChild(const peNodeType: TParseTreeNodeType):
TParseTreeNode;
begin
  Result := GetImmediateChild([peNodeType]);
end;

function TParseTreeNode.CountImmediateChild(const peNodeTypes: TParseTreeNodeTypeSet): integer;
var
  liLoop: integer;
  lcNode: TParseTreeNode;
begin
  Result := 0;

  for liLoop := 0 to ChildNodeCount - 1 do
  begin
    lcNode := ChildNodes[liLoop];

    if lcNode.NodeType in peNodeTypes then
      inc(Result);
  end;
end;

function TParseTreeNode.CountImmediateChild(const peNodeType: TParseTreeNodeType): integer;
begin
  Result := CountImmediateChild([peNodeType]);
end;

end.