Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
fpc-src / usr / share / fpcsrc / 3.2.0 / compiler / optcse.pas
Size: Mime:
{
    Common subexpression elimination on base blocks

    Copyright (c) 2005-2012 by Florian Klaempfl

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 ****************************************************************************
}
unit optcse;

{$i fpcdefs.inc}

{ $define csedebug}
{ $define csestats}

  interface

    uses
      node;

    {
      the function  creates non optimal code so far:
      - call para nodes are cse barriers because they can be reordered and thus the
        temp. creation could be done too late
      - the cse knows nothing about register pressure. In case of high register pressure, cse might
        have a negative impact
      - the list of cseinvariant node types and inline numbers is not complete yet

      Further, it could be done probably in a faster way though the complexity can't probably not reduced
    }
    function do_optcse(var rootnode : tnode) : tnode;

  implementation

    uses
      globtype,globals,
      cutils,cclasses,
      nutils,compinnr,
      nbas,nld,ninl,ncal,nadd,nmem,
      pass_1,
      symconst,symdef,symsym,
      defutil,
      optbase;

    const
      cseinvariant : set of tnodetype = [addn,muln,subn,divn,slashn,modn,andn,orn,xorn,notn,vecn,
        derefn,equaln,unequaln,ltn,gtn,lten,gten,typeconvn,subscriptn,
        inn,symdifn,shrn,shln,ordconstn,realconstn,unaryminusn,pointerconstn,stringconstn,setconstn,niln,
        setelementn,{arrayconstructorn,arrayconstructorrangen,}
        isn,asn,starstarn,nothingn,temprefn,loadparentfpn {,callparan},assignn,addrn];

    function searchsubdomain(var n:tnode; arg: pointer) : foreachnoderesult;
      begin
        if (n.nodetype in cseinvariant) or
          ((n.nodetype=inlinen) and
           (tinlinenode(n).inlinenumber in [in_length_x,in_assigned_x,in_sqr_real,in_sqrt_real,in_sin_real,in_cos_real,in_abs_long,
             in_abs_real,in_exp_real,in_ln_real,in_pi_real,in_popcnt_x,in_arctan_real,in_round_real,in_trunc_real,
             { cse on fma will still not work because it would require proper handling of call nodes
               with more than one parameter }
             in_fma_single,in_fma_double,in_fma_extended,in_fma_float128])
          ) or
          ((n.nodetype=callparan) and not(assigned(tcallparanode(n).right))) or
          ((n.nodetype=loadn) and
            not((tloadnode(n).symtableentry.typ in [staticvarsym,localvarsym,paravarsym]) and
                (vo_volatile in tabstractvarsym(tloadnode(n).symtableentry).varoptions))
          ) then
          result:=fen_true
        else
          begin
            pboolean(arg)^:=false;
            result:=fen_norecurse_true;
          end;
      end;

    type
      tlists = record
        nodelist : tfplist;
        locationlist : tfplist;
        equalto : tfplist;
        refs : tfplist;
        avail : TDFASet;
      end;

      plists = ^tlists;

    { collectnodes needs the address of itself to call foreachnodestatic,
      so we need a wrapper because @<func> inside <func doesn't work }

    function collectnodes(var n:tnode; arg: pointer) : foreachnoderesult;forward;

    function collectnodes2(var n:tnode; arg: pointer) : foreachnoderesult;
      begin
        result:=collectnodes(n,arg);
      end;


    function collectnodes(var n:tnode; arg: pointer) : foreachnoderesult;

      { when compiling a tree like
            and
            / \
          and  C
          / \
         A   B
        all expressions of B are available during evaluation of C. However considerung the whole expression,
        values of B and C might not be available due to short boolean evaluation.

        So recurseintobooleanchain detectes such chained and/or expressions and makes sub-expressions of B
        available during the evaluation of C

        firstleftend is later used to remove all sub expressions of B and C by storing the expression count
        in the cse table after handling A
      }
      var
        firstleftend : longint;
      procedure recurseintobooleanchain(t : tnodetype;n : tnode);
        begin
          if (tbinarynode(n).left.nodetype=t) and is_boolean(tbinarynode(n).left.resultdef) then
            recurseintobooleanchain(t,tbinarynode(n).left)
          else
            foreachnodestatic(pm_postprocess,tbinarynode(n).left,@collectnodes2,arg);
          firstleftend:=min(plists(arg)^.nodelist.count,firstleftend);
          foreachnodestatic(pm_postprocess,tbinarynode(n).right,@collectnodes2,arg);
        end;

      var
        i : longint;
      begin
        result:=fen_false;
        { don't add the tree below an untyped const parameter: there is
          no information available that this kind of tree actually needs
          to be addresable, this could be improved }
        { the nodes below a type conversion node created for an absolute
          reference cannot be handled separately, because the absolute reference
          may have special requirements (no regability, must be in memory, ...)
        }
        if (((n.nodetype=callparan) and
             (tcallparanode(n).left.resultdef.typ=formaldef) and
             (tcallparanode(n).parasym.varspez=vs_const)) or
            ((n.nodetype=typeconvn) and
             (nf_absolute in n.flags))
           ) then
          begin
            result:=fen_norecurse_false;
            exit;
          end;
        if
          { node possible to add? }
          assigned(n.resultdef) and
          (
            { regable expressions }
            (actualtargetnode(@n)^.flags*[nf_write,nf_modify,nf_address_taken]=[]) and
            ((((tstoreddef(n.resultdef).is_intregable or tstoreddef(n.resultdef).is_fpuregable or tstoreddef(n.resultdef).is_const_intregable) and
            { is_int/fpuregable allows arrays and records to be in registers, cse cannot handle this }
            (not(n.resultdef.typ in [arraydef,recorddef]))) or
             is_dynamic_array(n.resultdef) or
             ((n.resultdef.typ in [arraydef,recorddef]) and not(is_special_array(tstoreddef(n.resultdef))) and not(tstoreddef(n.resultdef).is_intregable) and not(tstoreddef(n.resultdef).is_fpuregable))
            ) and
            { same for voiddef }
            not(is_void(n.resultdef)) and
            { adding tempref and callpara nodes itself is worthless but
              their complexity is probably <= 1 anyways

              neither add setelementn nodes because the compiler sometimes depends on the fact
              that a certain node stays a setelementn, this does not hurt either because
              setelementn nodes itself generate no real code (except moving data into register) }
            not(n.nodetype in [temprefn,callparan,setelementn]) and

            { node worth to add?

              We consider almost every node because even loading a variables from
              a register instead of memory is more beneficial. This behaviour should
              not increase register pressure because if a variable is already
              in a register, the reg. allocator can merge the nodes. If a variable
              is loaded from memory, loading this variable and spilling another register
              should not add a speed penalty.
            }
            {
              load nodes are not considered if they load para or local symbols from the
              current stack frame, those are in registers anyways if possible
            }
            (not(actualtargetnode(@n)^.nodetype=loadn) or
             not(tloadnode(actualtargetnode(@n)^).symtableentry.typ in [paravarsym,localvarsym,staticvarsym]) or
             { apply cse on non-regable variables }
             ((tloadnode(actualtargetnode(@n)^).symtableentry.typ in [paravarsym,localvarsym,staticvarsym]) and
               not(tabstractvarsym(tloadnode(actualtargetnode(@n)^).symtableentry).is_regvar(false)) and
               not(vo_volatile in tabstractvarsym(tloadnode(actualtargetnode(@n)^).symtableentry).varoptions)) or
             (node_complexity(n)>1)
            ) and

            {
              Const nodes however are only considered if their complexity is >1
              This might be the case for the risc architectures if they need
              more than one instruction to load this particular value
            }
            (not(is_constnode(n)) or (node_complexity(n)>1)))
{$if not(defined(i386)) and not(defined(i8086))}
            or
            { store reference of expression? }

            { loading the address of a global symbol takes typically more than
              one instruction on every platform except i8086/i386
              so consider in this case loading the address of the data
            }
            (((n.resultdef.typ in [arraydef,recorddef]) or is_object(n.resultdef)) and not(is_dynamic_array(n.resultdef)) and
             (n.nodetype=loadn) and
             (tloadnode(n).symtableentry.typ=staticvarsym)
            )
{$endif not(defined(i386)) and not(defined(i8086))}
          ) then
          begin
            plists(arg)^.nodelist.Add(n);
            plists(arg)^.locationlist.Add(@n);
            plists(arg)^.refs.Add(nil);
            plists(arg)^.equalto.Add(pointer(-1));

            DFASetInclude(plists(arg)^.avail,plists(arg)^.nodelist.count-1);

            for i:=0 to plists(arg)^.nodelist.count-2 do
              begin
                if tnode(plists(arg)^.nodelist[i]).isequal(n) and DFASetIn(plists(arg)^.avail,i) then
                  begin
                    { use always the first occurence }
                    if plists(arg)^.equalto[i]<>pointer(-1) then
                      plists(arg)^.equalto[plists(arg)^.nodelist.count-1]:=plists(arg)^.equalto[i]
                    else
                      plists(arg)^.equalto[plists(arg)^.nodelist.count-1]:=pointer(ptrint(i));
                    plists(arg)^.refs[i]:=pointer(plists(arg)^.refs[i])+1;
                    { tree has been found, no need to search further,
                      sub-trees have been added by the first occurence of
                      the tree already }
                    result:=fen_norecurse_false;
                    break;
                  end;
              end;
          end;

        { boolean and/or require a special handling: after evaluating the and/or node,
          the expressions of the right side might not be available due to short boolean
          evaluation, so after handling the right side, mark those expressions
          as unavailable }
        if (n.nodetype in [orn,andn]) and is_boolean(taddnode(n).left.resultdef) then
          begin
            firstleftend:=high(longint);
            recurseintobooleanchain(n.nodetype,n);
            for i:=firstleftend to plists(arg)^.nodelist.count-1 do
              DFASetExclude(plists(arg)^.avail,i);
            result:=fen_norecurse_false;
          end;
{$ifdef cpuhighleveltarget}
          { The high level targets use the functionality from ncgnstld for
            nested accesses, and that one stores the complete location of the
            nested variable in tloadnode.left rather than only the location of
            the parent context containing it. This causes problems with the
            CSE in case the nested variable is used as an lvalue, so disable
            CSE in that case
          }
          if (n.nodetype=loadn) and assigned(tloadnode(n).left) then
            result:=fen_norecurse_false;
{$endif}
       end;


    function searchcsedomain(var n: tnode; arg: pointer) : foreachnoderesult;
      var
        csedomain : boolean;
        lists : tlists;
        templist : tfplist;
        i : longint;
        def : tstoreddef;
        nodes : tblocknode;
        creates,
        statements : tstatementnode;
        deletetemp : ttempdeletenode;
        hp : ttempcreatenode;
        addrstored : boolean;
        hp2 : tnode;
      begin
        result:=fen_false;
        nodes:=nil;
        if n.nodetype in cseinvariant then
          begin
            csedomain:=true;
            foreachnodestatic(pm_postprocess,n,@searchsubdomain,@csedomain);
            if not(csedomain) then
              begin
                { try to transform the tree to get better cse domains, consider:
                       +    (1)
                      / \
                     +   C
                    / \
                   A   B

                  if A is not cse'able but B and C are, then the compiler cannot do cse so the tree is transformed into
                 (2)   +
                      / \
                     A   +
                        / \
                       B   C
                  Because A could be another tree of this kind, the whole process is done in a while loop
                }
                if (n.nodetype in [andn,orn,addn,muln]) and
                  (n.nodetype=tbinarynode(n).left.nodetype) and
                  { do is optimizations only for integers, reals (no currency!), vectors, sets or booleans }
                  (is_integer(n.resultdef) or is_real(n.resultdef) or is_vector(n.resultdef) or is_set(n.resultdef) or
                   is_boolean(n.resultdef)) and
                  { either if fastmath is on }
                  ((cs_opt_fastmath in current_settings.optimizerswitches) or
                   { or for the logical operators, they cannot overflow }
                   (n.nodetype in [andn,orn]) or
                   { or for integers if range checking is off }
                   ((is_integer(n.resultdef) and
                    (n.localswitches*[cs_check_range,cs_check_overflow]=[]) and
                    (tbinarynode(n).left.localswitches*[cs_check_range,cs_check_overflow]=[]))) or
                   { for sets, we can do this always }
                   (is_set(n.resultdef))
                   ) then
                  while (n.nodetype=tbinarynode(n).left.nodetype) and
                    { if node (1) is fully boolean evaluated and node (2) not, we cannot do the swap as this might result in B being evaluated always,
                      the other way round is no problem, C is still evaluated only if needed }
                    (not(is_boolean(n.resultdef)) or not(n.nodetype in [andn,orn]) or doshortbooleval(n) or not(doshortbooleval(tbinarynode(n).left))) and
                        { the resulttypes of the operands we'll swap must be equal,
                          required in case of a 32x32->64 multiplication, then we
                          cannot swap out one of the 32 bit operands for a 64 bit one
                        }
                        (tbinarynode(tbinarynode(n).left).left.resultdef=tbinarynode(n).left.resultdef) and
                        (tbinarynode(n).left.resultdef=tbinarynode(n).right.resultdef) do
                    begin
                      csedomain:=true;
                      foreachnodestatic(pm_postprocess,tbinarynode(n).right,@searchsubdomain,@csedomain);
                      if csedomain then
                        begin
                          csedomain:=true;
                          foreachnodestatic(pm_postprocess,tbinarynode(tbinarynode(n).left).right,@searchsubdomain,@csedomain);
                          if csedomain then
                            begin
                              { move the full boolean evaluation of (2) to (1), if it was there (so it again applies to A and
                                what follows) }
                              if not(doshortbooleval(tbinarynode(n).left)) and
                                 doshortbooleval(n) then
                                begin
                                  n.localswitches:=n.localswitches+(tbinarynode(n).left.localswitches*[cs_full_boolean_eval]);
                                  exclude(tbinarynode(n).left.localswitches,cs_full_boolean_eval);
                                  tbinarynode(n).left.flags:=tbinarynode(n).left.flags+(n.flags*[nf_short_bool]);
                                  exclude(n.Flags,nf_short_bool);
                                end;

                              hp2:=tbinarynode(tbinarynode(n).left).left;
                              tbinarynode(tbinarynode(n).left).left:=tbinarynode(tbinarynode(n).left).right;
                              tbinarynode(tbinarynode(n).left).right:=tbinarynode(n).right;
                              tbinarynode(n).right:=tbinarynode(n).left;
                              tbinarynode(n).left:=hp2;

                              { the transformed tree could result in new possibilities to fold constants
                                so force a firstpass on the root node }
                              exclude(tbinarynode(n).right.flags,nf_pass1_done);
                              do_firstpass(tbinarynode(n).right);
                            end
                          else
                            break;
                        end
                      else
                        break;
                    end;
              end
            else
              begin
                statements:=nil;
                result:=fen_norecurse_true;
{$ifdef csedebug}
                writeln('============ cse domain ==================');
                printnode(output,n);
                writeln('Complexity: ',node_complexity(n));
{$endif csedebug}
                lists.nodelist:=tfplist.create;
                lists.locationlist:=tfplist.create;
                lists.equalto:=tfplist.create;
                lists.refs:=tfplist.create;
                foreachnodestatic(pm_postprocess,n,@collectnodes,@lists);

                templist:=tfplist.create;
                templist.count:=lists.nodelist.count;

                { check all nodes if one is used more than once }
                for i:=0 to lists.nodelist.count-1 do
                  begin
                    { current node used more than once? }
                    if assigned(lists.refs[i]) then
                      begin
                        if not(assigned(statements)) then
                          begin
                            nodes:=internalstatements(statements);
                            addstatement(statements,internalstatements(creates));
                          end;

                        def:=tstoreddef(tnode(lists.nodelist[i]).resultdef);
                        { we cannot handle register stored records or array in CSE yet
                          but we can store their reference }
                        addrstored:=((def.typ in [arraydef,recorddef]) or is_object(def)) and not(is_dynamic_array(def));

                        if addrstored then
                          templist[i]:=ctempcreatenode.create_value(cpointerdef.getreusable(def),voidpointertype.size,tt_persistent,
                            true,caddrnode.create_internal(tnode(lists.nodelist[i])))
                        else
                          templist[i]:=ctempcreatenode.create_value(def,def.size,tt_persistent,
                            def.is_intregable or def.is_fpuregable or def.is_const_intregable,tnode(lists.nodelist[i]));

                        { the value described by the temp. is immutable and the temp. can be always in register

                          ttempcreatenode.create normally takes care of the register location but it does not
                          know about immutability so it cannot take care of managed types }
                        ttempcreatenode(templist[i]).includetempflag(ti_const);
                        ttempcreatenode(templist[i]).includetempflag(ti_may_be_in_reg);

                        { make debugging easier and set temp. location to the original location }
                        tnode(templist[i]).fileinfo:=tnode(lists.nodelist[i]).fileinfo;

                        addstatement(creates,tnode(templist[i]));

                        { the delete node has no semantic use yet, it is just used to clean up memory }
                        deletetemp:=ctempdeletenode.create(ttempcreatenode(templist[i]));
                        deletetemp.includetempflag(ti_cleanup_only);
                        addstatement(tstatementnode(arg^),deletetemp);

                        { make debugging easier and set temp. location to the original location }
                        creates.fileinfo:=tnode(lists.nodelist[i]).fileinfo;

                        hp:=ttempcreatenode(templist[i]);
                        do_firstpass(tnode(hp));
                        templist[i]:=hp;

                        if addrstored then
                          pnode(lists.locationlist[i])^:=cderefnode.Create(ctemprefnode.create(ttempcreatenode(templist[i])))
                        else
                          pnode(lists.locationlist[i])^:=ctemprefnode.create(ttempcreatenode(templist[i]));
                        { make debugging easier and set temp. location to the original location }
                        pnode(lists.locationlist[i])^.fileinfo:=tnode(lists.nodelist[i]).fileinfo;

                        do_firstpass(pnode(lists.locationlist[i])^);
{$ifdef csedebug}
                        printnode(output,statements);
{$endif csedebug}
                      end
                    { current node reference to another node? }
                    else if lists.equalto[i]<>pointer(-1) then
                      begin
                        def:=tstoreddef(tnode(lists.nodelist[i]).resultdef);
                        { we cannot handle register stored records or array in CSE yet
                          but we can store their reference }
                        addrstored:=((def.typ in [arraydef,recorddef]) or is_object(def)) and not(is_dynamic_array(def));

{$if defined(csedebug) or defined(csestats)}
                        writeln;
                        writeln('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!');
                        writeln('Complexity: ',node_complexity(tnode(lists.nodelist[i])),'  Node ',i,' equals Node ',ptrint(lists.equalto[i]));
                        printnode(output,tnode(lists.nodelist[i]));
                        printnode(output,tnode(lists.nodelist[ptrint(lists.equalto[i])]));
                        writeln('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!');
                        writeln;
{$endif defined(csedebug) or defined(csestats)}
                        templist[i]:=templist[ptrint(lists.equalto[i])];
                        if addrstored then
                          pnode(lists.locationlist[i])^:=cderefnode.Create(ctemprefnode.create(ttempcreatenode(templist[ptrint(lists.equalto[i])])))
                        else
                          pnode(lists.locationlist[i])^:=ctemprefnode.create(ttempcreatenode(templist[ptrint(lists.equalto[i])]));

                        { make debugging easier and set temp. location to the original location }
                        pnode(lists.locationlist[i])^.fileinfo:=tnode(lists.nodelist[i]).fileinfo;

                        do_firstpass(pnode(lists.locationlist[i])^);
                      end;
                  end;
                { clean up unused trees }
                for i:=0 to lists.nodelist.count-1 do
                  if lists.equalto[i]<>pointer(-1) then
                    tnode(lists.nodelist[i]).free;
{$ifdef csedebug}
                writeln('nodes: ',lists.nodelist.count);
                writeln('==========================================');
{$endif csedebug}
                lists.nodelist.free;
                lists.locationlist.free;
                lists.equalto.free;
                lists.refs.free;
                templist.free;

                if assigned(statements) then
                  begin
                    { call para nodes need a special handling because
                      they can be only children nodes of call nodes
                      so the initialization code is inserted below the
                      call para node
                    }
                    if n.nodetype=callparan then
                      begin
                        addstatement(statements,tcallparanode(n).left);
                        tcallparanode(n).left:=nodes;
                        do_firstpass(tcallparanode(n).left);
                      end
                    else
                      begin
                        addstatement(statements,n);
                        n:=nodes;
                        do_firstpass(n);
                      end;
{$ifdef csedebug}
                    printnode(output,nodes);
{$endif csedebug}
                  end;
              end
          end;
      end;


    function do_optcse(var rootnode : tnode) : tnode;
      var
        deletes,
        statements : tstatementnode;
        deleteblock,
        rootblock : tblocknode;
      begin
{$ifdef csedebug}
        writeln('====================================================================================');
        writeln('CSE optimization pass started');
        writeln('====================================================================================');
        printnode(rootnode);
        writeln('====================================================================================');
        writeln;
{$endif csedebug}
        deleteblock:=internalstatements(deletes);
        foreachnodestatic(pm_postprocess,rootnode,@searchcsedomain,@deletes);
        rootblock:=internalstatements(statements);
        addstatement(statements,rootnode);
        addstatement(statements,deleteblock);
        rootnode:=rootblock;
        do_firstpass(rootnode);
{$ifdef csedebug}
        writeln('====================================================================================');
        writeln('CSE optimization result');
        writeln('====================================================================================');
        printnode(rootnode);
        writeln('====================================================================================');
        writeln;
{$endif csedebug}
        result:=nil;
      end;

end.