Repository URL to install this package:
Version:
3.2.0 ▾
|
program intge1te;
uses
typ,
spe,
int;
const
e = 2.71828182845905;
fnames = 'KI A0 A1 A2 A3 A4 SS SL SE V1 V2 ';
ogs: array[1..11] of ArbFloat = (0, 0, 1, e, 0, 1, 0, 1, 1, 1, 1);
integraaltekst: array[1..11, 1..5] of string[60] =
((' ì ',
' ô -àcosh(x) ',
{k0} ' ³ e dx = k0(à), mits à > 0. ',
' õ ',
'0 '),
(' ì ',
' ô sin x àcos x ',
{a0} ' ³ ------- + ---------- dx = 1, mits à>0 ',
' õ (x+1)à (x+1)(à+1) ',
'0 '),
(' ì ',
' ô 1 ',
{a1} ' ³ ---- dx = 1/(à-1), mits à>1 ',
' õ xà ',
'1 '),
(' ì ',
' ô dx ',
{a2} ' ³ --------- = 1/(à-1), mits à>1 ',
' õ x.ln(x)à ',
'e '),
(' ì ',
' ô Ú àùxàùsin(xà) cos(xà)¿ ',
{a3} ' ³ ³ -------------- + ---------³ dx = 1, mits à>0 ',
' õ À x(x+1) (x+1)ý Ù ',
'0 '),
(' ì ',
' ô Ú 2sin(«ãùxà) xàùcos(«ãùxà) ¿ ',
{a4} ' ³ ³-------------- + ãà-----------------³ dx = 1, mits àò0',
' õ À (x+1)ý x(x+1) Ù ',
'1 '),
(' ss(n)=2*(n+1)(à-1)/n (n=1,2,3...), àò0 ',
{ss} ' ss(x)=0 als min(|n-x|) ò 0.5/(n+1)à ',
' ss lineair interpoleren als min(|n-x|) ó 0.5/(n+1)à ',
' int. 0:ì = ä [1:ì] 1/(n(n+1)) = 1 ',
' '),
(' ì ',
' ô sin(ln(x)) 1 ',
{sl} ' ³ --------- dx = ---------, mits à>1 ',
' õ xà (à-1)ý+1 ',
'1 '),
(' ì ',
' ô sin(xà)-à.x(à-1).cos(xà) sin(1) ',
{se} ' ³ --------------------------- dx = ------ ',
' õ ex e ',
'1 '),
(' ì ',
' ô à.|x|(à-1) ',
{v1} ' ³ ---------------- dx = 1, mits à > 0 ',
' õ ã.(|x|(2à) + 1) ',
'-ì '),
(' ì 0 ì ',
' ô ô àx ô -x/à ',
{v2} ' ³ v2(x)dx = ³ e dx + ³ e dx = à + 1/à, mits à > 0',
' õ õ õ ',
'-ì -ì 0 '));
var
alfa, ond, inte, int1: ArbFloat;
u, i: ArbInt;
s: string;
q: char;
f: rfunc1r;
scale: boolean;
function Ki(x: ArbFloat): ArbFloat;
var
kk: ArbFloat;
begin
if abs(x) < ln(100 / alfa) then
kk := Exp(-alfa * Specoh(x))
else
kk := 0;
if scale then
ki := kk / int1
else
ki := kk;
end;
function uki(u: ArbFloat): ArbFloat; {u=1/(x+1), of x=1/u-1}
begin
if u > 0 then
uki := ki((1 - u) / u) / sqr(u)
else
uki := 0;
end;
function a0(x: ArbFloat): ArbFloat;
begin
a0 := ((x + 1) * sin(x) + alfa * cos(x)) * spepow(x + 1, -alfa - 1);
end;
function ua0(u: ArbFloat): ArbFloat; {u=1/(x+1), of x=1/u-1}
begin
if u > 0 then
ua0 := a0((1 - u) / u) / sqr(u)
else
ua0 := 0;
end;
function a1(x: ArbFloat): ArbFloat;
var
a: ArbFloat;
begin
a := spepow(x, -alfa);
if scale then
a1 := (alfa - 1) * a
else
a1 := a;
end;
function ua1(u: ArbFloat): ArbFloat; {u=ond/x of x=ond/u}
begin
if u > 0 then
ua1 := a1(ond / u) * ond / sqr(u)
else
ua1 := 0;
end;
function a2(x: ArbFloat): ArbFloat;
var
a: ArbFloat;
begin
a := spepow(ln(x), -alfa) / x;
if scale then
a2 := (alfa - 1) * a
else
a2 := a;
end;
function ua2(u: ArbFloat): ArbFloat; {u=ond/x of x=ond/u}
begin
if u > 0 then
ua2 := a2(ond / u) * ond / sqr(u)
else
ua2 := 0;
end;
function a3(x: ArbFloat): ArbFloat;
var
y: ArbFloat;
begin
if x = 0 then
a3 := 0
else
begin
y := spepow(x, alfa);
a3 := alfa * y * sin(y) / (x * (x + 1)) + cos(y) / sqr(x + 1);
end;
end;
function ua3(u: ArbFloat): ArbFloat; {u=1/(x+1), of x=1/u-1}
begin
if u > 0 then
ua3 := a3((1 - u) / u) / sqr(u)
else
ua3 := 0;
end;
function a4(x: ArbFloat): ArbFloat;
var
y, z: ArbFloat;
begin
y := spepow(x, alfa);
z := y * pi / 2;
a4 := 2 * sin(z) / sqr(x + 1) - pi * alfa * y * cos(z) / (x * (x + 1));
end;
function ua4(u: ArbFloat): ArbFloat; {u=ond/x of x=ond/u}
begin
if u > 0 then
ua4 := a4(ond / u) * ond / sqr(u)
else
ua4 := 0;
end;
function ss(x: ArbFloat): ArbFloat;
var
d, eps, r: ArbFloat;
begin
if x > 0.5 then
begin
d := frac(x);
r := x - d;
if d > 0.5 then
begin
d := 1 - d;
r := r + 1;
end;
eps := 0.5 / spepow(r + 1, alfa);
if d > eps then
ss := 0
else
ss := (1 - d / eps) / (r * (r + 1) * eps);
end
else
ss := 0;
end;
function uss(u: ArbFloat): ArbFloat; {u=ond/x of x=ond/u}
begin
if u > 0 then
uss := ss(ond / u) * ond / sqr(u)
else
uss := 0;
end;
function sl(x: ArbFloat): ArbFloat;
var
sl1: ArbFloat;
begin
sl1 := sin(ln(x)) * spepow(x, -alfa);
if scale then
sl := sl1 / int1
else
sl := sl1;
end;
function usl(u: ArbFloat): ArbFloat; {u=ond/x of x=ond/u}
begin
if u > 0 then
usl := sl(ond / u) * ond / sqr(u)
else
usl := 0;
end;
function se(x: ArbFloat): ArbFloat;
var
y, se1: ArbFloat;
begin
y := spepow(x, alfa);
se1 := (sin(y) - alfa * (y / x) * cos(y)) * exp(-x);
if scale then
se := se1 / int1
else
se := se1;
end;
function use(u: ArbFloat): ArbFloat; {u=ond/x of x=ond/u}
begin
if u > 0 then
use := se(ond / u) * ond / sqr(u)
else
use := 0;
end;
function v1(x: ArbFloat): ArbFloat;
var
a, y: ArbFloat;
begin
x := abs(x);
alfa := abs(alfa);
if x = 0 then
begin
if alfa = 1 then
v1 := alfa / pi
else
v1 := 0;
end
else
begin
if x > 1 then
a := -alfa - 1
else
a := alfa - 1;
y := spepow(x, a);
v1 := alfa * y / (pi * (sqr(x * y) + 1));
end;
end;
function uv1(u: ArbFloat): ArbFloat; { u=«((2/ã)arctan(x)+1) of x=tan(«ã(2u-1)) }
var
y: ArbFloat; { 0 ó u ó 1 }
begin
if (u = 0) or (u = 1) then
uv1 := 0
else
begin
y := 1 / sqr(cos(pi * (u - 0.5)));
uv1 := pi * v1(sqrt(y - 1)) * y;
end;
end;
function v2(x: ArbFloat): ArbFloat;
var
v: ArbFloat;
begin
alfa := abs(alfa);
if x > 0 then
v := exp(-x / alfa)
else
if x < 0 then
v := exp(x * alfa)
else
v := 1;
if scale then
v2 := v / (alfa + 1 / alfa)
else
v2 := v;
end;
function uv2(u: ArbFloat): ArbFloat; { u=«((2/ã)arctan(x)+1) of x=tan(«ã(2u-1)) }
var
y: ArbFloat; { 0 ó u ó 1 }
begin
if (u = 0) or (u = 1) then
uv2 := 0
else
begin
y := 1 / sqr(cos(pi * (u - 0.5)));
if u > 0.5 then
uv2 := pi * v2(sqrt(y - 1)) * y
else
uv2 := pi * v2(-sqrt(y - 1)) * y;
end;
end;
var
integral, ae, err: ArbFloat;
term, num2: ArbInt;
intex, First: boolean;
procedure Header;
var
i: ArbInt;
begin
for i := 1 to 5 do
if i = 3 then
writeln(s: 3, ': ', Integraaltekst[u, i])
else
writeln('': 5, Integraaltekst[u, i]);
end;
procedure ShowResults;
var
f: ArbFloat;
begin
if First then
writeln('alfa': num2, '': numdig - num2, 'ae': 7, ' ': 4, 'int': num2,
'': numdig - num2, ' ', 'err': 7, ' ': 4, 'f': 6);
First := False;
if intex then
f := inte - integral;
case term of
1:
begin
Write(alfa: numdig, ae: 10, integral: numdig, ' ', err: 10, ' ');
if intex then
writeln(f: 10)
else
writeln;
end;
2:
begin
Write(alfa: numdig, ae: 10, integral: numdig, ' ', err: 10, ' ');
if intex then
writeln(f: 10)
else
writeln;
Writeln(' process afgebroken, te hoge nauwkeurigheid?');
end;
3: Writeln('Verkeerde waarde ae (<=0) bij aanroep: ', ae: 8);
4:
begin
Write(alfa: numdig, ae: 10, integral: numdig, ' ', err: 10, ' ');
if intex then
writeln(f: 10)
else
writeln;
writeln(' process afgebroken, moeilijk, mogelijk divergent?');
end;
end;
end;
const
fint: array[boolean, 1..11] of rfunc1r =
((@ki, @a0, @a1, @a2, @a3, @a4, @ss, @sl, @se, @v1, @v2),
(@uki, @ua0, @ua1, @ua2, @ua3, @ua4, @uss, @usl, @use, @uv1, @uv2));
begin
s := ParamStr(1);
if s = '' then
begin
writeln(' Vergeten functienaam mee te geven!');
writeln(' Kies uit: ', fnames);
halt;
end;
for i := 1 to length(s) do
s[i] := Upcase(s[i]);
u := (Pos(s, fnames) + 2) div 3;
if u = 0 then
begin
writeln(' Commandlineparameter ', s, ' bestaat niet');
writeln(' Kies uit: ', fnames);
halt;
end;
Write('program results int1fr function ' + s);
case SizeOf(ArbFloat) of
4: writeln('(single)');
8: writeln('(double)');
6: writeln('(real)');
end;
num2 := numdig div 2;
if Pos(s, 'a0 a4 a3 ss v1') > 0 then
scale := True
else
begin
Write(' scale ? (y or n)');
readln(q);
scale := Upcase(q) = 'Y';
end;
Write('Transformatie naar 0 => 1 ? (y or n)');
readln(q);
ond := ogs[u];
f := fint[Upcase(q) = 'Y'][u];
Header;
Writeln('à en ae: ');
First := True;
while not eoln do
begin
Read(alfa, ae);
intex := True;
case u of
1: int1 := spebk0(alfa);
2:
begin
int1 := 1;
intex := alfa > 0;
end;
3:
begin
if alfa > 1 then
int1 := 1 / (alfa - 1);
intex := alfa > 1;
end;
4:
begin
if alfa > 1 then
int1 := 1 / (alfa - 1);
intex := alfa > 1;
end;
5:
begin
if alfa > 0 then
int1 := 1
else
int1 := cos(1);
intex := alfa > 0;
end;
6:
begin
int1 := 1;
intex := alfa > 0;
end;
7: int1 := 1;
8:
begin
if alfa > 1 then
int1 := 1 / (sqr(alfa - 1) + 1);
intex := alfa > 1;
end;
9: int1 := sin(1) / e;
10:
begin
int1 := 1;
intex := alfa <> 0;
end;
11:
begin
if alfa <> 0 then
int1 := abs(alfa) + 1 / abs(alfa);
intex := alfa <> 0;
end;
end;
if scale then
inte := 1
else
inte := int1;
if Upcase(q) = 'Y' then
int1fr(f, 0, 1, ae, integral, err, term)
else if u < 10 then
int1fr(f, ond, infinity, ae, integral, err, term)
else
int1fr(f, -infinity, infinity, ae, integral, err, term);
Showresults;
end;
end.