Repository URL to install this package:
|
Version:
3.2.0 ▾
|
{!
@file AudioUnitProperties.h
@framework AudioToolbox.framework
@copyright (c) 2000-2015 Apple, Inc. All rights reserved.
@abstract Property ID's and accompanying structs used by Apple audio units.
@discussion
Properties form the basis of much of the audio unit API. You use them with
these AudioUnit.framework API functions declared in AUComponent.h:
AudioUnitGetPropertyInfo
AudioUnitGetProperty
AudioUnitSetProperty
This file first lists generic audio unit properties (those that are potentially applicable to
any audio unit), followed by properties specific to Apple audio units.
Apple reserves property IDs from 0 -> 63999. Developers are free to use property IDs above this
range.
All property values are passed by reference. When a property's value type is listed below,
that value type is always passed by reference. For example, CFStringRef is passed as
&myCFString.
Properties are described below using a general form:
Scope: The audio unit scope that the property applies to. For example, Global,
Input, Output, etc. For an explanation of audio unit scopes, see the
Audio Unit Programming Guide in the ADC Reference Library.
Value Type: The data type used to hold the value associated with the property. For
example, CFStringRef or UInt32
Access: How a host application can access the property in a hosted audio unit:
read only, write only, or read/write.
Description: A description of the property's role.
The descriptions in this file apply to typical or recommended usage. Audio unit developers can
vary the way each property is used. For example, a property may be described as applying to both
input and output scopes, but a given audio unit may implement the property on the input scope
only. As another example, a property may be described here as having read/write access, but an
audio unit may implement the property as read only.
The properties are divided into two primary sections:
(1) Core/Embedded Implementation
- these properties are available on all platforms where audio units are available
(2) OS X
- these properties are available on only available on OS X
}
{ Pascal Translation: Gorazd Krosl <gorazd_1957@yahoo.ca>, October 2009 }
{ Pascal Translation Update: Jonas Maebe <jonas@freepascal.org>, October 2012 }
{ Pascal Translation Update: Jonas Maebe <jonas@freepascal.org>, October 2010 }
{
Modified for use with Free Pascal
Version 308
Please report any bugs to <gpc@microbizz.nl>
}
{$ifc not defined MACOSALLINCLUDE or not MACOSALLINCLUDE}
{$mode macpas}
{$modeswitch cblocks}
{$packenum 1}
{$macro on}
{$inline on}
{$calling mwpascal}
unit AudioUnitProperties;
interface
{$setc UNIVERSAL_INTERFACES_VERSION := $0400}
{$setc GAP_INTERFACES_VERSION := $0308}
{$ifc not defined USE_CFSTR_CONSTANT_MACROS}
{$setc USE_CFSTR_CONSTANT_MACROS := TRUE}
{$endc}
{$ifc defined CPUPOWERPC and defined CPUI386}
{$error Conflicting initial definitions for CPUPOWERPC and CPUI386}
{$endc}
{$ifc defined FPC_BIG_ENDIAN and defined FPC_LITTLE_ENDIAN}
{$error Conflicting initial definitions for FPC_BIG_ENDIAN and FPC_LITTLE_ENDIAN}
{$endc}
{$ifc not defined __ppc__ and defined CPUPOWERPC32}
{$setc __ppc__ := 1}
{$elsec}
{$setc __ppc__ := 0}
{$endc}
{$ifc not defined __ppc64__ and defined CPUPOWERPC64}
{$setc __ppc64__ := 1}
{$elsec}
{$setc __ppc64__ := 0}
{$endc}
{$ifc not defined __i386__ and defined CPUI386}
{$setc __i386__ := 1}
{$elsec}
{$setc __i386__ := 0}
{$endc}
{$ifc not defined __x86_64__ and defined CPUX86_64}
{$setc __x86_64__ := 1}
{$elsec}
{$setc __x86_64__ := 0}
{$endc}
{$ifc not defined __arm__ and defined CPUARM}
{$setc __arm__ := 1}
{$elsec}
{$setc __arm__ := 0}
{$endc}
{$ifc not defined __arm64__ and defined CPUAARCH64}
{$setc __arm64__ := 1}
{$elsec}
{$setc __arm64__ := 0}
{$endc}
{$ifc defined cpu64}
{$setc __LP64__ := 1}
{$elsec}
{$setc __LP64__ := 0}
{$endc}
{$ifc defined __ppc__ and __ppc__ and defined __i386__ and __i386__}
{$error Conflicting definitions for __ppc__ and __i386__}
{$endc}
{$ifc defined __ppc__ and __ppc__}
{$setc TARGET_CPU_PPC := TRUE}
{$setc TARGET_CPU_PPC64 := FALSE}
{$setc TARGET_CPU_X86 := FALSE}
{$setc TARGET_CPU_X86_64 := FALSE}
{$setc TARGET_CPU_ARM := FALSE}
{$setc TARGET_CPU_ARM64 := FALSE}
{$setc TARGET_OS_MAC := TRUE}
{$setc TARGET_OS_IPHONE := FALSE}
{$setc TARGET_IPHONE_SIMULATOR := FALSE}
{$setc TARGET_OS_EMBEDDED := FALSE}
{$elifc defined __ppc64__ and __ppc64__}
{$setc TARGET_CPU_PPC := FALSE}
{$setc TARGET_CPU_PPC64 := TRUE}
{$setc TARGET_CPU_X86 := FALSE}
{$setc TARGET_CPU_X86_64 := FALSE}
{$setc TARGET_CPU_ARM := FALSE}
{$setc TARGET_CPU_ARM64 := FALSE}
{$setc TARGET_OS_MAC := TRUE}
{$setc TARGET_OS_IPHONE := FALSE}
{$setc TARGET_IPHONE_SIMULATOR := FALSE}
{$setc TARGET_OS_EMBEDDED := FALSE}
{$elifc defined __i386__ and __i386__}
{$setc TARGET_CPU_PPC := FALSE}
{$setc TARGET_CPU_PPC64 := FALSE}
{$setc TARGET_CPU_X86 := TRUE}
{$setc TARGET_CPU_X86_64 := FALSE}
{$setc TARGET_CPU_ARM := FALSE}
{$setc TARGET_CPU_ARM64 := FALSE}
{$ifc defined(iphonesim)}
{$setc TARGET_OS_MAC := FALSE}
{$setc TARGET_OS_IPHONE := TRUE}
{$setc TARGET_IPHONE_SIMULATOR := TRUE}
{$elsec}
{$setc TARGET_OS_MAC := TRUE}
{$setc TARGET_OS_IPHONE := FALSE}
{$setc TARGET_IPHONE_SIMULATOR := FALSE}
{$endc}
{$setc TARGET_OS_EMBEDDED := FALSE}
{$elifc defined __x86_64__ and __x86_64__}
{$setc TARGET_CPU_PPC := FALSE}
{$setc TARGET_CPU_PPC64 := FALSE}
{$setc TARGET_CPU_X86 := FALSE}
{$setc TARGET_CPU_X86_64 := TRUE}
{$setc TARGET_CPU_ARM := FALSE}
{$setc TARGET_CPU_ARM64 := FALSE}
{$ifc defined(iphonesim)}
{$setc TARGET_OS_MAC := FALSE}
{$setc TARGET_OS_IPHONE := TRUE}
{$setc TARGET_IPHONE_SIMULATOR := TRUE}
{$elsec}
{$setc TARGET_OS_MAC := TRUE}
{$setc TARGET_OS_IPHONE := FALSE}
{$setc TARGET_IPHONE_SIMULATOR := FALSE}
{$endc}
{$setc TARGET_OS_EMBEDDED := FALSE}
{$elifc defined __arm__ and __arm__}
{$setc TARGET_CPU_PPC := FALSE}
{$setc TARGET_CPU_PPC64 := FALSE}
{$setc TARGET_CPU_X86 := FALSE}
{$setc TARGET_CPU_X86_64 := FALSE}
{$setc TARGET_CPU_ARM := TRUE}
{$setc TARGET_CPU_ARM64 := FALSE}
{ will require compiler define when/if other Apple devices with ARM cpus ship }
{$setc TARGET_OS_MAC := FALSE}
{$setc TARGET_OS_IPHONE := TRUE}
{$setc TARGET_IPHONE_SIMULATOR := FALSE}
{$setc TARGET_OS_EMBEDDED := TRUE}
{$elifc defined __arm64__ and __arm64__}
{$setc TARGET_CPU_PPC := FALSE}
{$setc TARGET_CPU_PPC64 := FALSE}
{$setc TARGET_CPU_X86 := FALSE}
{$setc TARGET_CPU_X86_64 := FALSE}
{$setc TARGET_CPU_ARM := FALSE}
{$setc TARGET_CPU_ARM64 := TRUE}
{ will require compiler define when/if other Apple devices with ARM cpus ship }
{$setc TARGET_OS_MAC := FALSE}
{$setc TARGET_OS_IPHONE := TRUE}
{$setc TARGET_IPHONE_SIMULATOR := FALSE}
{$setc TARGET_OS_EMBEDDED := TRUE}
{$elsec}
{$error __ppc__ nor __ppc64__ nor __i386__ nor __x86_64__ nor __arm__ nor __arm64__ is defined.}
{$endc}
{$ifc defined __LP64__ and __LP64__ }
{$setc TARGET_CPU_64 := TRUE}
{$elsec}
{$setc TARGET_CPU_64 := FALSE}
{$endc}
{$ifc defined FPC_BIG_ENDIAN}
{$setc TARGET_RT_BIG_ENDIAN := TRUE}
{$setc TARGET_RT_LITTLE_ENDIAN := FALSE}
{$elifc defined FPC_LITTLE_ENDIAN}
{$setc TARGET_RT_BIG_ENDIAN := FALSE}
{$setc TARGET_RT_LITTLE_ENDIAN := TRUE}
{$elsec}
{$error Neither FPC_BIG_ENDIAN nor FPC_LITTLE_ENDIAN are defined.}
{$endc}
{$setc ACCESSOR_CALLS_ARE_FUNCTIONS := TRUE}
{$setc CALL_NOT_IN_CARBON := FALSE}
{$setc OLDROUTINENAMES := FALSE}
{$setc OPAQUE_TOOLBOX_STRUCTS := TRUE}
{$setc OPAQUE_UPP_TYPES := TRUE}
{$setc OTCARBONAPPLICATION := TRUE}
{$setc OTKERNEL := FALSE}
{$setc PM_USE_SESSION_APIS := TRUE}
{$setc TARGET_API_MAC_CARBON := TRUE}
{$setc TARGET_API_MAC_OS8 := FALSE}
{$setc TARGET_API_MAC_OSX := TRUE}
{$setc TARGET_CARBON := TRUE}
{$setc TARGET_CPU_68K := FALSE}
{$setc TARGET_CPU_MIPS := FALSE}
{$setc TARGET_CPU_SPARC := FALSE}
{$setc TARGET_OS_UNIX := FALSE}
{$setc TARGET_OS_WIN32 := FALSE}
{$setc TARGET_RT_MAC_68881 := FALSE}
{$setc TARGET_RT_MAC_CFM := FALSE}
{$setc TARGET_RT_MAC_MACHO := TRUE}
{$setc TYPED_FUNCTION_POINTERS := TRUE}
{$setc TYPE_BOOL := FALSE}
{$setc TYPE_EXTENDED := FALSE}
{$setc TYPE_LONGLONG := TRUE}
uses MacTypes,AUComponent,AudioFile,CoreAudioTypes,MIDIServices,CFBase,CFURL;
{$endc} {not MACOSALLINCLUDE}
{$ALIGN POWER}
//=====================================================================================================================
//#pragma mark Overview
//#pragma mark -
//#pragma mark Core Implementation
//#pragma mark -
{!
@enum Audio Unit scope types
@abstract The scope IDs for audio units define basic roles and contexts for an audio unit's state.
@discussion Each scope is a discrete context. Apple reserves scope IDs from 0 through 1024.
@constant kAudioUnitScope_Global The context for audio unit characteristics that apply to the audio unit as a
whole
@constant kAudioUnitScope_Input The context for audio data coming into an audio unit
@constant kAudioUnitScope_Output The context for audio data leaving an audio unit
@constant kAudioUnitScope_Group A context specific to the control scope of parameters (for instance,
MIDI Channels is an example of this scope)
@constant kAudioUnitScope_Part A distinct rendering context. For instance a single timbre in a multi-timbral
instrument, a single loop in a multi looping capable looper unit, etc.
@constant kAudioUnitScope_Note A scope that can be used to apply changes to an individual note. The
elementID used with this scope is the unique note ID returned from
a started note (see MusicDeviceStartNote)
@constant kAudioUnitScope_Layer A context which functions as a layer within a part and allows
grouped control of LayerItem-scope parameters.
An example is the percussive attack layer for an electric organ instrument
@constant kAudioUnitScope_LayerItem A scope which represents an individual element within a particular Layer scope.
The individual sample zones, envelope generators, and filters within a synth are
examples of this.
}
const
kAudioUnitScope_Global = 0;
kAudioUnitScope_Input = 1;
kAudioUnitScope_Output = 2;
kAudioUnitScope_Group = 3;
kAudioUnitScope_Part = 4;
kAudioUnitScope_Note = 5;
kAudioUnitScope_Layer = 6;
kAudioUnitScope_LayerItem = 7;
//=====================================================================================================================
//#pragma mark Audio Unit Properties
{!
@enum Generic Property IDs
@abstract Properties that can apply to any audio unit.
@constant kAudioUnitProperty_ClassInfo
Scope: Global (or Part for a part scope preset)
Value Type: CFDictionaryRef
Access: Read / Write
The complete state of an audio unit if on global scope. An audio unit that supports part scope, may also support presets on the part scope
that apply to individual parts.
After a host sets this property it needs to notify the parameter listeners that the values of the parameters of an AU may have changed (so
views, etc, can update their state). Something like the following code should be used:
<code>
AudioUnitParameter changedUnit;
changedUnit.mAudioUnit = theChangedAU;
changedUnit.mParameterID = kAUParameterListener_AnyParameter;
AUParameterListenerNotify (NULL, NULL, &changedUnit);
</code>
@constant kAudioUnitProperty_MakeConnection
Scope: Input
Value Type: AudioUnitConnection
Access: Write
@constant kAudioUnitProperty_SampleRate
Scope: Input / Output
Value Type: Float64
Access: Read / Write
@constant kAudioUnitProperty_ParameterList
Scope: Any
Value Type: AudioUnitParameterID
Access: Read
The list of parameter IDs on the specified scope
@constant kAudioUnitProperty_ParameterInfo
Scope: Any
Element: AudioUnitParameterID of the parameter being queried
Value Type: AudioUnitParameterInfo
Access: Read
The info struct describes the general characteristics of an individual parameterID
@constant kAudioUnitProperty_FastDispatch
Scope: Global
Value Type: void* (function pointer)
Access: Read
The caller provides the selector for a given audio unit API, and retrieves a function pointer for that selector. For instance,
this enables the caller to retrieve the function pointer for the AudioUnitRender call, so that call can be made directly
through to the audio unit to avoid the overhead of the ComponentMgr's dispatch.
@constant kAudioUnitProperty_CPULoad
Scope: Global
Value Type: Float64
Access: Read
Can be used to retrieve the duty cycle (as a value from 0 to 1) of the render time that an audio unit is spending in its render call.
@constant kAudioUnitProperty_StreamFormat
Scope: Input / Output
Value Type: AudioStreamBasicDescription
Access: Read / Write
An AudioStreamBasicDescription is used to specify the basic format for an audio data path. For instance, 2 channels, 44.1KHz, Float32 linear pcm.
The value can be both set and retrieve from an I/O element (bus)
@constant kAudioUnitProperty_ElementCount
Scope: Any (though Global scope will always have an element count of 1)
Value Type: UInt32
Access: Read / Write
Most audio units will only implement the read version of this call, thus they would have a fixed bus topology (number of input and output elements/buses).
Some audio units possess the capability to add or remove elements, so in that case this property will be writable.
@constant kAudioUnitProperty_Latency
Scope: Global
Value Type: Float64
Access: Read
The processing latency (the time it takes an audio unit to represent an input in its audio output) specified in seconds
@constant kAudioUnitProperty_SupportedNumChannels
Scope: Global
Value Type: AUChannelInfo array
Access: Read
The size of this property will represent the number of AUChannelInfo structs that an audio unit provides. Each entry describes a particular number of
channels on any input, matched to a particular number of channels on any output. Thus an entry (2, 2) says the audio unit will support a channel configuration
of 2 channels on an input and 2 channels on an output.
Negative numbers (-1, -2) are used to indicate *any* number of channels. So (-1, -1) means any number of channels on input and output as long as they are the same.
(-1, -2) means any number of channels on input or output buses
A negative number less than -2 is used to indicate a total number of channels across every bus on that scope, regardless of how many channels are set on any
particular bus.
Zero on any side (typically only input) means that the audio unit doesn't have any input elements, and is expressing the capability of configuring its output channels.
@constant kAudioUnitProperty_MaximumFramesPerSlice
Scope: Global
Value Type: UInt32
Access: Read / Write
This property is used to describe to an audio unit the maximum number of samples it will be asked to produce on any single given call to audio unit render.
If an audio unit can require more or less input data than its output request, then it should limit any given request for input to this number of frames (that is,
it should "break up" its input pulls).
@constant kAudioUnitProperty_SetExternalBuffer
Scope: Global
Value Type: AudioUnitExternalBuffer
Access: Write
This is used to provide to an audio unit a buffer that it can use with its input render callback's audio buffer list
@constant kAudioUnitProperty_ParameterValueStrings
Scope: Any
Element: AudioUnitParameterID of the parameter being queried
Value Type: CFArrayRef
Access: Read
Some audio unit parameters that are of an index type, can also provide names for each value of the parameter. This property returns an array containing CFStrings, where
each element in the array is the name that should be used for that parameter value. The size of the array should be the same as the range between the parameters min and max values.
The array's strings can then be used to build a menu for that parameter.
@constant kAudioUnitProperty_GetUIComponentList
Scope: Any
Value Type: AudioComponentDescription array
Access: Read
Presents an array of AudioComponentDescription that are of type 'auvw' (AudioUnitCarbonView). These are the carbon based custom views for that audio unit.
@constant kAudioUnitProperty_AudioChannelLayout
Scope: Input/Output
Value Type: struct AudioChannelLayout
Access: read/write
Description:
Describes for a given scope/element the order of channels within a given stream.
The number of channels it describes must match the number of channels set for that
scope/element. Each input and output bus in an audio unit can have one instance of
this property.
Some audio units require this property. For example, the 3DMixer unit must
implement this property on its output bus. If a host application attempts to
clear the value of this property on a bus that requires a valid value, the
audio unit will return a kAudioUnitErr_InvalidPropertyValue error.
Input and output buses can be in one of three states in regard to Audio
channel layout:
1. implemented and set
2. implemented but not set
3. unimplemented
Requesting the value of this property when it is implemented but not set
results in a kAudioUnitErr_PropertyNotInUse error.
Use the kAudioUnitProperty_AudioChannelLayout property whenever channel
layout is relevant. By comparison, the kAudioUnitProperty_StreamFormat
property cannot specify channel layout or purpose.
See also: kAudioUnitProperty_SupportedChannelLayoutTags,
kAudioUnitProperty_StreamFormat.
@constant kAudioUnitProperty_TailTime
Scope: Global
Value Type: Float64
Access: Read
The time in seconds that will remain after the last valid input of any audio unit has been processed before the output is silent. For example, this could be the total
decay time of a reverb or a delay. In general this will be a conservative estimate.
@constant kAudioUnitProperty_BypassEffect
Scope: Global
Value Type: UInt32
Access: Read / Write
A boolean value that can be used to bypass the processing in an effect unit, so that the input is passed unchanged through to the output
@constant kAudioUnitProperty_LastRenderError
Scope: Global
Value Type: OSStatus
Access: Read
This property is set if there is an error in AudioUnitRender. The AU will then fire a property changed notification to any listeners on this property and
those listeners can then use this property ID to retrieve that error.
@constant kAudioUnitProperty_SetRenderCallback
Scope: Input
Value Type: AURenderCallbackStruct
Access: Write
This is used to provide the audio unit with input on the specified element (input bus) with audio data from the provided callback. The callback is delivered a buffer list
which it must fill in with audio data. If no data is available, it should set the audio data to 0 (silence). In the normal case, f an error is returned, the audio is not processed
and the audio unit will return an error from AudioUnitRender.
@constant kAudioUnitProperty_FactoryPresets
Scope: Global
Value Type: CFArray of AUPreset structures
Access: Read
An array of preset structures that provide a name and number for each preset. A factory preset is then chosen using the PresentPreset property.
@constant kAudioUnitProperty_ContextName
Scope: Global
Value Type: CFString
Access: Read / Write
The host can set this as information to the audio unit to describe something about the context within which the audio unit is instantiated. For instance, "track 3" could
be set as the context, so that the audio unit's view could then display "My audio unit on track 3" as information to the user of the particular context for any audio unit.
@constant kAudioUnitProperty_RenderQuality
Scope: Global
Value Type: UInt32
Access: Read / Write
A value (0 - 127) that can be used to control the quality (complexity) of the rendering operation. A typical usage is to set render quality to maximum for best quality, but
if CPU usage is a concern a lesser quality can be set to trade off render quality.
@constant kAudioUnitProperty_HostCallbacks
Scope: Global
Value Type: HostCallbackInfo
Access: Write
The audio unit should only call the host callbacks while it is in its render function. The audio unit must provide the client info when calling the callbacks as provided
by the host. They are provided as a means for an audio unit to gain information from the host about parameters that may affect its rendering operation.
For example, what is the current beat of the host, is the transport running, and so forth.
Any of the parameters of the callback function, when called by the audio unit, can be NULL. This indicates that the unit doesn't want to know that particular information.
The exception is that the unit must always specify the HostUserData which was be supplied to the unit when the property was set.
If the host is unable to provide the requested information then it can return the kAudioUnitErr_CannotDoInCurrentContext error code
@constant kAudioUnitProperty_InPlaceProcessing
Scope: Global
Value Type: UInt32
Access: Read / Write
A property that can be used to determine if the audio unit can process input data on the same data as is provided to it, and if so this can be turned off if the host
has a particular buffer management strategy and such an operation would defeat that.
@constant kAudioUnitProperty_ElementName
Scope: any
Value Type: CFStringRef
Access: read/write
Description:
The name of the specified element. The Host owns a reference to this property value
(as with all other CF properties), and should release the string retrieved or used when setting.
@constant kAudioUnitProperty_CocoaUI
Scope: Global
Value Type: struct AudioUnitCocoaViewInfo
Access: read
Publishes the audio unit's custom Cocoa NSViews. The Host can determine how big this structure is by
querying the size of the property (i.e., How many alternate UI classes there are for the unit)
Typically, most audio units will provide 1 UI class per unit
@constant kAudioUnitProperty_SupportedChannelLayoutTags
Scope: Input/Output
Value Type: AudioChannelLayoutTags[ variable number of elements ]
Access: read only
Used with GetProperty to ascertain what an audio unit understands about
laying out of channel orders. This will normally return one or more of the specified layout tags.
When a specific set of layouts are returned, the client then uses the
kAudioUnitProperty_AudioChannelLayout property (with one of those layout tags specified) to set
the unit to use that layout. In this case the client (and the audio unit when reporting its
AudioChannelLayout) is only expected to have set an AudioChannelLayout which only sets the
layout tag as the valid field.
Custom Channel Maps:
Some audio units may return the tag:
kAudioChannelLayoutTag_UseChannelDescriptions
In this case, the host then can look at supported number of channels on that scope
(using the kAudioUnitProperty_SupportedNumChannels), and supply an AudioChannelLayout with the
kAudioUnitProperty_AudioChannelLayout property to specify the layout, number of channels
and location of each of those channels. This custom channel map MUST have a channel valence
that is supported by the Audio Unit.
The UseChannelBitmap field is NOT used within the context of the AudioUnit.
@constant kAudioUnitProperty_ParameterIDName
Scope: any
Element: AudioUnitParameterID of the parameter being queried
Value Type: AudioUnitParameterIDName
Access: read
An audio unit returns the full parameter name in the GetParameterInfo struct/property.
In some display situations however, there may only be room for a few characters, and
truncating this full name may give a less than optimal name for the user. Thus,
this property can be used to ask the audio unit whether it can supply a truncated name, with
the host suggesting a length (number of characters). If the unit returns a longer
name than the host requests, that name may be truncated to the requested characters in display.
The unit could return a shorter name than requested as well. The unit returns a CFString
that should be released by the host. When using this property, the host asks for
the name in the same scope and element as the unit publishes the parameter.
@constant kAudioUnitProperty_ParameterClumpName
Scope: any
Value Type: AudioUnitParameterIDName
Access: read
This works in a similar manner to the ParameterIDName property, except that the inID
value is one of the clumpID's that are returned with the audio unit's ParameterInfo
structure.
@constant kAudioUnitProperty_PresentPreset
Scope: Global/Part
Value Type: AUPreset
Access: read/write
This property replaces the deprecated CurrentPreset property, due to the ambiguity of
ownership of the CFString of the preset name in the older CurrentPreset property.
With PresentPreset the client of the audio unit owns the CFString when it retrieves the
preset with PresentPreset and is expected to release this (as with ALL properties
that retrieve a CF object from an audio unit).
@constant kAudioUnitProperty_OfflineRender
Scope: Global
Value Type: UInt32
Access: Read / Write
This is used by the host to indicate when an audio unit (that normally operates within a general real-time calling model) is
rendering in an offline context. A typical usage of this is to set this to true when the rendering operation an audio unit is being used within is
going to write out the results to a file. The value defaults to false, as the common usage of audio units is for real-time processing
@constant kAudioUnitProperty_ParameterStringFromValue
Scope: any
Value Type: AudioUnitParameterStringFromValue
Access: read
This property is used with parameters that are marked with the
kAudioUnitParameterFlag_HasName parameter info flag. This indicates that some
(or all) of the values represented by the parameter can and should be
represented by a special display string.
This is NOT to be confused with kAudioUnitProperty_ParameterValueStrings. That property
is used with parameters that are indexed and is typically used for instance to build
a menu item of choices for one of several parameter values.
kAudioUnitProperty_ParameterStringFromValue can have a continuous range, and merely states
to the host that if it is displaying those parameter's values, they should request
a name any time any value of the parameter is set when displaying that parameter.
For instance (a trivial example), a unit may present a gain parameter in a dB scale,
and wish to display its minimum value as "negative infinity". In this case, the audio unit
will not return names for any parameter value greater than its minimum value - so the host
will then just display the parameter value as is. For values less than or equal to the
minimum value, the audio unit will return a string for "negative infinity" which the host can
use to display appropriately.
A less trivial example might be a parameter that presents its values as seconds. However,
in some situations this value should be better displayed in a SMPTE style of display:
HH:MM:SS:FF
In this case, the audio unit would return a name for any value of the parameter.
The GetProperty call is used in the same scope and element as the inParamID
that is declared in the struct passed in to this property.
If the *inValue member is NULL, then the audio unit should take the current value
of the specified parameter. If the *inValue member is NOT NULL, then the audio unit should
return the name used for the specified value.
On exit, the outName may point to a CFStringRef (which if so must be released by the caller).
If the parameter has no special name that should be applied to that parameter value,
then outName will be NULL, and the host should display the parameter value as
appropriate.
@constant kAudioUnitProperty_ParameterValueFromString
Scope: any
Value Type: AudioUnitParameterValueFromString
Access: read
This property returns the value of a parameter from its string representation. See kAudioUnitProperty_ParameterStringFromValue.
@constant kAudioUnitProperty_IconLocation
Scope: Global
Value Type: CFURLRef
Access: Read
A URL that will specify the location of an icon file that can be used when presenting UI for this audio unit.
@constant kAudioUnitProperty_PresentationLatency
Scope: Input/Output
Value Type: Float64
Access: write
This property is set by a host to describe to the audio unit the presentation latency of both
any of its input and/or output audio data.
It describes this latency in seconds. A value of zero means either no latency
or an unknown latency.
This is a write only property because the host is telling the audio unit the latency of both the
data it provides it for input and the latency from getting the data from the unit until it is
presented.
The property is should be set on each active input and output bus (Scope/Element pair).
For example, an audio unit with multiple outputs will have the output data it produces processed
by different audio units, etc before it is mixed and presented. Thus, in this case, each output
element could have a different presentation latency.
This should not be confused with the Latency property, where the audio unit describes to the host
any processing latency it introduces between its input and its output.
For input:
Describes how long ago the audio given to an audio unit was acquired. For instance, when
reading from a file to the first audio unit, then its input presentation latency will be zero.
When processing audio input from a device, then this initial input latency will be the
presentation latency of the device itself, the device's safety offset and latency.
The next audio unit's (connected to that first unit) input presentation latency will be the
input presentation latency of the first unit, plus the processing latency (as expressed by
kAudioUnitProperty_Latency) of the first unit.
For output:
Describes how long before the output audio of an audio unit is to be presented. For instance,
when writing to a file, then the last audio unit's output presentation latency will be zero.
When the audio from that audio unit is to be played to an AudioDevice, then that initial
presentation latency will be the latency of the device itself - which is the I/O buffer size,
and the device's safety offset and latency
The previous audio unit's (connected to this last unit) output presentation latency will be that
initial presentation latency plus the processing latency (as expressed by
kAudioUnitProperty_Latency) of the last unit.
So, for a given audio unit anywhere within a mixing graph, the input and output presentation
latencies describe to that unit how long from the moment of generation it will take for its
input to arrive, and how long it will take for its output to be presented.
You can use this property, for example, to provide metering for an audio unit that
is generating output to be presented to the user at a future time.
@constant kAudioUnitProperty_DependentParameters
Scope: any
Value Type: array of AUDependentParameter
Access: read
This property is used for parameters with the kAudioUnitParameterFlag_IsGlobalMeta
or kAudioUnitParameterFlag_IsElementMeta flags set. Hosts applications (and the
AudioUnitParameterListener mechanism) can interrogate this property to determine which parameters
are dependent on a
meta-parameter.
For parameters marked with kAudioUnitParameterFlag_IsGlobalMeta, any non-global
dependent parameters are assumed to be dependent in every element of their scope.
For parameters marked with kAudioUnitParameterFlag_IsElementMeta, then its dependent
parameters must all be the same scope, and are assumed to apply only within a single element,
not to other instances of the same parameter in other elements.
@constant kAudioUnitProperty_AUHostIdentifier
Scope: Global
Value Type: AUHostVersionIdentifier
Access: write
Determine which application (and which version) an audio unit is being hosted by.
This is made more complex through the intervention of audio units such as Kore, that are hosting
other audio units (in this case of course, the real host of the audio unit is the hosting unit,
not the host application, so the previous mechanism of getting the main bundle ID is no longer
correct).
There are also inconsistencies in the way that bundle identifiers are applied (with apps changing
these from version to version), and we'd prefer to see a more consistent identifier used with
this property. This is in spirit similar to the string returned by CFBundle API, except that we
require this host string be consistent and reliable through different revisions of the host.
The audio unit is responsible for retaining the hostName string if it needs to use it past the
duration of the actual call. The host should set this property as early as possible within the
lifetime of the unit in a session.
This API used to take a NumVersion struct. It is redefined to take an AUHostVersionIdentifier struct
which is binary compatible with the existing usage, but not source compatible.
@constant kAudioUnitProperty_MIDIOutputCallbackInfo
Scope: Global
Value Type: CFArrayRef
Access: read
Used to determine how many MIDI output streams the audio unit can generate (and the name for
each of these outputs). Each MIDI output is a complete MIDI data stream, such as embodied by a
MIDIEndpointRef in CoreMIDI.
The host can retrieve an array of CFStringRefs published by the audio unit, where :
- the size of the array is the number of MIDI Outputs the audio unit supports
- each item in the array is the name for that output at that index
The host should release the array when it is finished with it.
Once the host has determined that the audio unit supports this feature, it can then provide a
callback, through which the audio unit can send the MIDI data.
See the documentation for the kAudioUnitProperty_MIDIOutputCallback property.
@constant kAudioUnitProperty_MIDIOutputCallback
Scope: Global
Value Type: AUMIDIOutputCallbackStruct
Access: write
The host sets this property on the audio unit with the callback (and its user data) set
appropriately.
Operational Parameters:
In the render call, just as is the expected usage of the AUHostCallbacks, the audio unit can
call the provided callback to provide MIDI data to the host that it will associate with the
current AudioUnitRender call in process.
The audio unit in the callback provides:
- the user data provided by the host when the callback was established
- the AudioTimeStamp that was provided to the audio unit for this particular call of
AudioUnitRender
- the output number to associate this MIDI data with
- a MIDI Packet List containing MIDI data. The time stamp values contained within the
MIDIPackets in this list are **sample offsets*** from the AudioTimeStamp provided.
This allows MIDI data to be time-stamped with a sample offset that is directly associated
with the audio data it is generating in the current call to the AudioUnitRender function
There is no implied or expected association between the number (or position) of an audio unit's
audio or MIDI outputs.
@constant kAudioUnitProperty_InputSamplesInOutput
Scope: Global
Value Type: struct AUInputSamplesInOutputCallbackStruct
Access: read/write
An audio unit calls this callback at the end of its render call. The audio unit supplies the
following information:
outputTime - The timestamp passed in to the audio unit's render call. This timestamp
represents the time of the first output sample.
inputSample - The sample number of the first input sample that is present in the output
audio.
numInputSamples - The number of input samples that were used and are present in the output
audio.
This property allows a host application to determine which input samples correspond to a sample
in the output buffer. It is useful only for audio units that do time-stretching, such as the
AUVarispeed and AUTimePitch units, where the relationship between input and output samples is
non-trivial. For these units, the range of input samples that correspond to an output buffer
typically differs from the range of input samples that were pulled for that render call.
This difference arises because of internal buffering, processing latency, and other factors.
@constant kAudioUnitProperty_ClassInfoFromDocument
Scope: Global
Value Type: CFDictionary
Access: read/write
If the audio unit implements this property then it is going to do different actions establishing
its state from a document rather than from a user preset. Thus, a host app should use this property
first (instead of kAudioUnitProperty_ClassInfo) when restoring the state of an audio unit when
opening a document. If the audio unit returns an error (or doesn't implement this property) then
the host should use the same preset with the kAudioUnitProperty_ClassInfo.
@constant kAudioUnitProperty_ShouldAllocateBuffer
Scope: input/output elements (settable per element)
Value Type: UInt32
Access: read/write
By default this value is true. This affects the allocations of the buffers for I/O (the mData field
of the AudioBufferList used with AudioUnitRender, callbacks and connections)
If true, the element will create a buffer for rendering into.
If false, the element will not create a buffer for rendering.
For example, if the audio unit is only ever going to have a connection as its input and never a callback, then
it should not need to create a buffer (the API contract expects an audio unit to provide a buffer for
callbacks, but no buffer for connections).
If the audio unit is always going to be pulled for audio with the client providing audio data buffers to
the AudioUnitRender call, then it will never need to create an audio buffer on the output side.
So, this property can be used to control the default allocation strategy of an audio unit. If the audio unit
needs a buffer, but one hasn't been allocated, then an error will be thrown from that call to AudioUnitRender.
This property cannot be set on Initialised audio units as it may end up reallocating memory.
@constant kAudioUnitProperty_FrequencyResponse
Scope: input/output elements (settable per element)
Value Type: AudioUnitFrequencyResponseBin
Access: read
The property provides a way for a user interface view to get points for drawing a graph of the frequency
response of the AU.
An array of AudioUnitFrequencyResponseBin are passed in to kAudioUnitProperty_FrequencyResponse
with the mFrequency field filled in. The array is returned with the mMagnitude fields filled in.
If fewer than kNumberOfResponseFrequencies are needed, then the first unused bin should be marked with
a negative frequency.
@constant kAudioUnitProperty_ParameterHistoryInfo
Scope: Global
Value Type: AudioUnitParameterHistoryInfo
Access: read
For parameters which have kAudioUnitParameterFlag_PlotHistory set, getting this property fills out the
AudioUnitParameterHistoryInfo struct containing the recommended update rate and history duration.
@constant kAudioUnitProperty_NickName
Scope: Global
Value Type: CFStringRef
Access: read/write
Provides a way for a host to set a custom name on an AU.
An example of when this is useful is when a host is managing a processing chain that contains multiple AU
instances of the same subtype (and type and manufacturer). The host uses this property to assign a
unique name to each AU instance indicating what that particular instance's function is in the processing
chain and can later query the property to distinguish between AU instances with the same type/subtype/manu
tuple. It is the host's responsibility to keep the names unique if uniqueness is required.
When getting this property, ownership follows Core Foundation's 'Copy Rule'. This property may return NULL
which indicates that no name has been set on the AU.
@constant kAudioUnitProperty_RequestViewController
Scope: Global
Value Type: block: void (^)(AUViewControllerBase *)
Access: write
If the audio unit is implemented using the version 3 API, it may provide a
view controller, returned via this property. As with any other CoreFoundation
or Foundation object returned by AudioUnitGetProperty, the caller must
release the returned reference (i.e. the Copy rule is used).
@constant kAudioUnitProperty_ParametersForOverview
Scope: Global
Value Type: variably-sized array of struct AudioUnitParameter
Access: read
A host may query an audio unit for a list of its N most important
parameters, via this property. The size of the array passed to
AudioUnitGetProperty controls the number of AudioUnitParameter values
returned.
@constant kAudioUnitProperty_SupportsMPE
Scope: Global
Value Type: UInt32
Access: read
Indicates whether an audio unit supports Multi-dimensional Polyphonic Expression.
}
const
// range (0 -> 999)
kAudioUnitProperty_ClassInfo = 0;
kAudioUnitProperty_MakeConnection = 1;
kAudioUnitProperty_SampleRate = 2;
kAudioUnitProperty_ParameterList = 3;
kAudioUnitProperty_ParameterInfo = 4;
kAudioUnitProperty_CPULoad = 6;
kAudioUnitProperty_StreamFormat = 8;
kAudioUnitProperty_ElementCount = 11;
kAudioUnitProperty_Latency = 12;
kAudioUnitProperty_SupportedNumChannels = 13;
kAudioUnitProperty_MaximumFramesPerSlice = 14;
kAudioUnitProperty_ParameterValueStrings = 16;
kAudioUnitProperty_AudioChannelLayout = 19;
kAudioUnitProperty_TailTime = 20;
kAudioUnitProperty_BypassEffect = 21;
kAudioUnitProperty_LastRenderError = 22;
kAudioUnitProperty_SetRenderCallback = 23;
kAudioUnitProperty_FactoryPresets = 24;
kAudioUnitProperty_RenderQuality = 26;
kAudioUnitProperty_HostCallbacks = 27;
kAudioUnitProperty_InPlaceProcessing = 29;
kAudioUnitProperty_ElementName = 30;
kAudioUnitProperty_SupportedChannelLayoutTags = 32;
kAudioUnitProperty_PresentPreset = 36;
kAudioUnitProperty_DependentParameters = 45;
kAudioUnitProperty_InputSamplesInOutput = 49;
kAudioUnitProperty_ShouldAllocateBuffer = 51;
kAudioUnitProperty_FrequencyResponse = 52;
kAudioUnitProperty_ParameterHistoryInfo = 53;
kAudioUnitProperty_NickName = 54;
kAudioUnitProperty_OfflineRender = 37;
kAudioUnitProperty_ParameterIDName = 34;
kAudioUnitProperty_ParameterStringFromValue = 33;
kAudioUnitProperty_ParameterClumpName = 35;
kAudioUnitProperty_ParameterValueFromString = 38;
kAudioUnitProperty_ContextName = 25;
kAudioUnitProperty_PresentationLatency = 40;
kAudioUnitProperty_ClassInfoFromDocument = 50;
kAudioUnitProperty_RequestViewController = 56;
kAudioUnitProperty_ParametersForOverview = 57;
kAudioUnitProperty_SupportsMPE = 58;
kAudioUnitProperty_FastDispatch = 5;
kAudioUnitProperty_SetExternalBuffer = 15;
kAudioUnitProperty_GetUIComponentList = 18;
kAudioUnitProperty_CocoaUI = 31;
kAudioUnitProperty_IconLocation = 39;
kAudioUnitProperty_AUHostIdentifier = 46;
kAudioUnitProperty_MIDIOutputCallbackInfo = 47;
kAudioUnitProperty_MIDIOutputCallback = 48;
{!
@abstract Keys contains in an audio unit preset (ClassInfo) dictionary
@discussion These strings are used as keys in the AUPreset-"classInfo" dictionary
The actual keys are CFStrings to use these keys you define the key as:
static const CFStringRef kMyVersionString = CFSTR(kAUPresetVersionKey);
}
const
kAUPresetVersionKey = 'version';
const
kAUPresetTypeKey = 'type';
const
kAUPresetSubtypeKey = 'subtype';
const
kAUPresetManufacturerKey = 'manufacturer';
const
kAUPresetDataKey = 'data';
const
kAUPresetNameKey = 'name';
const
kAUPresetRenderQualityKey = 'render-quality';
const
kAUPresetCPULoadKey = 'cpu-load';
const
kAUPresetElementNameKey = 'element-name';
const
kAUPresetExternalFileRefs = 'file-references';
//#if !TARGET_OS_IPHONE
{$ifc not TARGET_OS_IPHONE}
// these are keys to use when a preset contains data from other plugin formats
// vstdata is used to signify VST state from a vst "bank"
const kAUPresetVSTDataKey = 'vstdata';
// vstpreset is used to signify VST state from a vst "preset"
const kAUPresetVSTPresetKey = 'vstpreset';
const kAUPresetMASDataKey = 'masdata';
//#endif
{$endc}
{!
@define kAUPresetPartKey
@discussion This key if present, distinguishes a global preset that is set
on the global scope with a part-based preset that is set on the part scope.
The value of this key is audio unit defined
}
const
kAUPresetPartKey = 'part';
{!
@struct AudioUnitConnection
@abstract This structure contains the information needed to make a connection between a source
and destination audio unit.
@discussion The structure is set on the destination audio unit's input element
@field sourceAudioUnit
The audio unit that is the source for the connection
@field sourceOutputNumber
The source audio unit's output element to be used in the connection
@field destInputNumber
The destination audio unit's input element to be used in the connection
}
type
AudioUnitConnection = record
sourceAudioUnit: AudioUnit {__nullable};
sourceOutputNumber: UInt32;
destInputNumber: UInt32;
end;
AudioUnitConnectionPtr = ^AudioUnitConnection;
{!
@struct AUChannelInfo
@abstract Define an audio unit's channel handling capabilities
}
type
AUChannelInfo = record
inChannels: SInt16;
outChannels: SInt16;
end;
AUChannelInfoPtr = ^AUChannelInfo;
{!
@struct AudioUnitExternalBuffer
@abstract Allow a host to tell an audio unit to use the provided memory for its input callback
}
type
AudioUnitExternalBuffer = record
buffer: BytePtr;
size: UInt32;
end;
AudioUnitExternalBufferPtr = ^AudioUnitExternalBuffer;
{!
@struct AURenderCallbackStruct
@abstract Used by a host when registering a callback with the audio unit to provide input
}
type
AURenderCallbackStruct = record
inputProc: AURenderCallback {__nullable};
inputProcRefCon: UnivPtr {__nullable};
end;
AURenderCallbackStructPtr = ^AURenderCallbackStruct;
{!
@struct AUPreset
@abstract Used to publish and set factory presets on an audio unit
@field presetNumber
If < 0, then preset is a user preset
If >= 0, then this field is used to select the factory preset
@field presetName
If a factory preset, the name of the specified factory preset
}
type
AUPreset = record
presetNumber: SInt32;
presetName: CFStringRef {__nullable};
end;
AUPresetPtr = ^AUPreset;
{!
@enum RenderQuality
@abstract Used to get/set a render quality setting on an audio unit
@discussion Typically, this property is used to trade-off between CPU usage, latency
and the quality of the audio unit's processing/output.
}
const
kRenderQuality_Max = $7F;
kRenderQuality_High = $60;
kRenderQuality_Medium = $40;
kRenderQuality_Low = $20;
kRenderQuality_Min = 0;
{!
@enum kNumberOfResponseFrequencies
@abstract The maximum number of frequency response bins for kAudioUnitProperty_FrequencyResponse.
@discussion An array of AudioUnitFrequencyResponseBin are passed in to kAudioUnitProperty_FrequencyResponse
with the mFrequency field filled in. The array is returned with the mMagnitude fields filled in.
If fewer than kNumberOfResponseFrequencies are needed, then the first unused bin should be marked with
a negative frequency.
}
const
kNumberOfResponseFrequencies = 1024;
{!
@struct AudioUnitFrequencyResponseBin
@abstract Structure used to get the magnitude of the frequency response at a particular frequency via kAudioUnitProperty_FrequencyResponse.
@discussion An array of AudioUnitFrequencyResponseBin are passed in to kAudioUnitProperty_FrequencyResponse
with the mFrequency field filled in. The array is returned with the mMagnitude fields filled in.
If fewer than kNumberOfResponseFrequencies are needed, then the first unused bin should be marked with
a negative frequency.
}
type
AudioUnitFrequencyResponseBin = record
mFrequency: Float64;
mMagnitude: Float64;
end;
AudioUnitFrequencyResponseBinPtr = ^AudioUnitFrequencyResponseBin;
{!
@typedef HostCallback_GetBeatAndTempo
@abstract Retrieve information about the current beat and/or tempo
@discussion
If the host app has set this callback, then the audio unit can use this to get the current
beat and tempo as they relate to the first sample in the render buffer. The audio unit can
call this callback only from within the audio unit render call (otherwise the host is unable
to provide information accurately to the audio unit as the information obtained is relate to
the current AudioUnitRender call). If the host cannot provide the requested information, it
will return kAudioUnitErr_CannotDoInCurrentContext.
The AudioUnit can provide NULL for any of the requested parameters (except for
inHostUserData) if it is not interested in that particular piece of information
@param inHostUserData Must be provided by the audio unit when it makes this call. It is the client data provided by the host when it set the HostCallbacks property
@param outCurrentBeat The current beat, where 0 is the first beat. Tempo is defined as the number of whole-number (integer) beat values (as indicated by the outCurrentBeat field) per minute.
@param outCurrentTempo The current tempo
}
type
HostCallback_GetBeatAndTempo = function( inHostUserData: UnivPtr {__nullable}; outCurrentBeat: Float64Ptr {__nullable}; outCurrentTempo: Float64Ptr {__nullable}): OSStatus;
{!
@typedef HostCallback_GetMusicalTimeLocation
@abstract Retrieve information about the musical time state of the host
@discussion
If the host app has set this callback, then the audio unit can use this to obtain
information about the state of musical time in the host. The audio unit can call this
callback only from within the audio unit render call (otherwise the host is unable to
provide information accurately to the audio unit as the information obtained is relate to
the current AudioUnitRender call). If the host cannot provide the requested information, it
will return kAudioUnitErr_CannotDoInCurrentContext.
The AudioUnit can provide NULL for any of the requested parameters (except for
inHostUserData) if it is not interested in that particular piece of information
@param inHostUserData Must be provided by the audio unit when it makes this call. It is the client data provided by the host when it set the HostCallbacks property
@param outDeltaSampleOffsetToNextBeat The number of samples until the next whole beat from the start sample of the current rendering buffer
@param outTimeSig_Numerator The Numerator of the current time signature
@param outTimeSig_Denominator The Denominator of the current time signature (4 is a quarter note, etc)
@param outCurrentMeasureDownBeat The beat that corresponds to the downbeat (first beat) of the current measure that is being rendered
}
type
HostCallback_GetMusicalTimeLocation = function( inHostUserData: UnivPtr {__nullable}; outDeltaSampleOffsetToNextBeat: UInt32Ptr; outTimeSig_Numerator: Float32Ptr; outTimeSig_Denominator: UInt32Ptr; outCurrentMeasureDownBeat: Float64Ptr ): OSStatus;
{!
@typedef HostCallback_GetTransportState
@abstract Retrieve information about the time line's (or transport) state of the host.
@discussion
If the host app has set this callback, then the audio unit can use this to obtain
information about the transport state of the host's time line. The audio unit can call this
callback only from within the audio unit render call (otherwise the host is unable to
provide information accurately to the audio unit as the information obtained is relate to
the current AudioUnitRender call. If the host cannot provide the requested information, it
will return kAudioUnitErr_CannotDoInCurrentContext.
The AudioUnit can provide NULL for any of the requested parameters (except for
inHostUserData) if it is not interested in that particular piece of information
@param inHostUserData Must be provided by the audio unit when it makes this call. It is the client data provided by the host when it set the HostCallbacks property
@param outIsPlaying Returns true if the host's transport is currently playing, false if stopped
@param outTransportStateChanged Returns true if there was a change to the state of, or discontinuities in, the host's transport (generally since the callback was last called). Can indicate such state changes as start/top, time moves (jump from one time line to another).
@param outCurrentSampleInTimeLine Returns the current sample count in the time line of the host's transport time.
@param outIsCycling Returns true if the host's transport is currently cycling or looping
@param outCycleStartBeat If cycling is true, the start beat of the cycle or loop point in the host's transport
@param outCycleEndBeat If cycling is true, the end beat of the cycle or loop point in the host's transport
}
type
HostCallback_GetTransportState = function( inHostUserData: UnivPtr {__nullable}; outIsPlaying: BooleanPtr; outTransportStateChanged: BooleanPtr; outCurrentSampleInTimeLine: Float64Ptr; outIsCycling: BooleanPtr; outCycleStartBeat: Float64Ptr; outCycleEndBeat: Float64Ptr ): OSStatus;
{!
@typedef HostCallback_GetTransportState2
@abstract Retrieve information about the time line's (or transport) state of the host.
@discussion
If the host app has set this callback, then the audio unit can use this to obtain
information about the transport state of the host's time line. The audio unit can call this
callback only from within the audio unit render call (otherwise the host is unable to
provide information accurately to the audio unit as the information obtained is relate to
the current AudioUnitRender call. If the host cannot provide the requested information, it
will return kAudioUnitErr_CannotDoInCurrentContext.
The AudioUnit can provide NULL for any of the requested parameters (except for
inHostUserData) if it is not interested in that particular piece of information
@param inHostUserData Must be provided by the audio unit when it makes this call. It is the client data provided by the host when it set the HostCallbacks property
@param outIsPlaying Returns true if the host's transport is currently playing, false if stopped
@param outIsRecording Returns true if the host is currently record-enabled, otherwise false.
@param outTransportStateChanged Returns true if there was a change to the state of, or discontinuities in, the host's transport (generally since the callback was last called). Can indicate such state changes as start/top, time moves (jump from one time line to another).
@param outCurrentSampleInTimeLine Returns the current sample count in the time line of the host's transport time.
@param outIsCycling Returns true if the host's transport is currently cycling or looping
@param outCycleStartBeat If cycling is true, the start beat of the cycle or loop point in the host's transport
@param outCycleEndBeat If cycling is true, the end beat of the cycle or loop point in the host's transport
}
type
HostCallback_GetTransportState2 = function( inHostUserData: UnivPtr {__nullable}; outIsPlaying: BooleanPtr; outIsRecording: BooleanPtr; outTransportStateChanged: BooleanPtr; outCurrentSampleInTimeLine: Float64Ptr; outIsCycling: BooleanPtr; outCycleStartBeat: Float64Ptr; outCycleEndBeat: Float64Ptr ): OSStatus;
{!
@struct HostCallbackInfo
@abstract Contains the various callbacks for an audio unit to call
@discussion
Any callback can be NULL.
}
type
HostCallbackInfo = record
hostUserData: UnivPtr {__nullable};
beatAndTempoProc: HostCallback_GetBeatAndTempo {__nullable};
musicalTimeLocationProc: HostCallback_GetMusicalTimeLocation {__nullable};
transportStateProc: HostCallback_GetTransportState {__nullable};
transportStateProc2: HostCallback_GetTransportState2 {__nullable};
end;
HostCallbackInfoPtr = ^HostCallbackInfo;
{!
@struct AUDependentParameter
@abstract Used to represent a dependent parameter that can change as a result of its parent meta-parameter
changing
}
type
AUDependentParameter = record
mScope: AudioUnitScope;
mParameterID: AudioUnitParameterID;
end;
AUDependentParameterPtr = ^AUDependentParameter;
{!
@struct AudioUnitCocoaViewInfo
@abstract The location and class name of one or more view factory objects an Audio Unit publishes
@field mCocoaAUViewBundleLocation
Contains the location of the bundle which the host app can then use to locate the bundle
@field mCocoaAUViewClass
Contains the names of the classes that implements the required protocol (AUCocoaUIBase). This class is a view factory that creates the NSView object that is the AudioUnit view.
}
type
AudioUnitCocoaViewInfo = record
mCocoaAUViewBundleLocation: CFURLRef;
mCocoaAUViewClass: array[0..0] of CFStringRef;
end;
AudioUnitCocoaViewInfoPtr = ^AudioUnitCocoaViewInfo;
{!
@struct AUHostVersionIdentifier
@abstract Used to describe the name and version of the audio unit's host
}
type
AUHostVersionIdentifier = record
hostName: CFStringRef;
hostVersion: UInt32;
end;
AUHostVersionIdentifierPtr = ^AUHostVersionIdentifier;
{$ifc TARGET_OS_MAC}
{
@typedef AUMIDIOutputCallback
@abstract A callback used by an audio unit to provide MIDI data to a host application
}
type
AUMIDIOutputCallback = function( userData: UnivPtr {__nullable}; const (*var*) timeStamp: AudioTimeStamp; midiOutNum: UInt32; {const} pktlist: MIDIPacketListPtr ): OSStatus;
{!
@struct AUMIDIOutputCallbackStruct
@abstract Set by host application to provide the callback and user data for an audio
unit that provides MIDI output
}
type
AUMIDIOutputCallbackStruct = record
midiOutputCallback: AUMIDIOutputCallback;
userData: UnivPtr {__nullable};
end;
AUMIDIOutputCallbackStructPtr = ^AUMIDIOutputCallbackStruct;
{$endc TARGET_OS_MAC}
{!
@struct AUInputSamplesInOutputCallbackStruct
@abstract Used by a host when registering a callback with an audio unit, to provide
input-to-output samples mapping
}
type
AUInputSamplesInOutputCallbackStruct = record
inputToOutputCallback: AUInputSamplesInOutputCallback;
userData: UnivPtr {__nullable};
end;
AUInputSamplesInOutputCallbackStructPtr = ^AUInputSamplesInOutputCallbackStruct;
{!
@struct AudioUnitParameterHistoryInfo
@abstract This structure contains the suggested update rate and history duration for parameters which have the kAudioUnitParameterFlag_PlotHistory flag set.
The structure is filled out by getting kAudioUnitProperty_ParameterHistoryInfo.
@field updatesPerSecond
This is the number of times per second that it is suggested that the host get the value of this parameter.
@field historyDurationInSeconds
This is the duration in seconds of history that should be plotted.
}
type
AudioUnitParameterHistoryInfo = record
updatesPerSecond: Float32;
historyDurationInSeconds: Float32;
end;
AudioUnitParameterHistoryInfoPtr = ^AudioUnitParameterHistoryInfo;
//=====================================================================================================================
//#pragma mark - Parameter Definitions
// assume kAudioUnitParameterUnit_Generic if not found in this enum
{!
@enum AudioUnitParameterUnit
@constant kAudioUnitParameterUnit_Generic
untyped value generally between 0.0 and 1.0
@constant kAudioUnitParameterUnit_Indexed
takes an integer value (good for menu selections)
@constant kAudioUnitParameterUnit_Boolean
0.0 means FALSE, non-zero means TRUE
@constant kAudioUnitParameterUnit_Percent
usually from 0 -> 100, sometimes -50 -> +50
@constant kAudioUnitParameterUnit_Seconds
absolute or relative time
@constant kAudioUnitParameterUnit_SampleFrames
one sample frame equals (1.0/sampleRate) seconds
@constant kAudioUnitParameterUnit_Phase
-180 to 180 degrees
@constant kAudioUnitParameterUnit_Rate
rate multiplier, for playback speed, etc. (e.g. 2.0 == twice as fast)
@constant kAudioUnitParameterUnit_Hertz
absolute frequency/pitch in cycles/second
@constant kAudioUnitParameterUnit_Cents
unit of relative pitch
@constant kAudioUnitParameterUnit_RelativeSemiTones
useful for coarse detuning
@constant kAudioUnitParameterUnit_MIDINoteNumber
absolute pitch as defined in the MIDI spec (exact freq may depend on tuning table)
@constant kAudioUnitParameterUnit_MIDIController
a generic MIDI controller value from 0 -> 127
@constant kAudioUnitParameterUnit_Decibels
logarithmic relative gain
@constant kAudioUnitParameterUnit_LinearGain
linear relative gain
@constant kAudioUnitParameterUnit_Degrees
-180 to 180 degrees, similar to phase but more general (good for 3D coord system)
@constant kAudioUnitParameterUnit_EqualPowerCrossfade
0 -> 100, crossfade mix two sources according to sqrt(x) and sqrt(1.0 - x)
@constant kAudioUnitParameterUnit_MixerFaderCurve1
0.0 -> 1.0, pow(x, 3.0) -> linear gain to simulate a reasonable mixer channel fader response
@constant kAudioUnitParameterUnit_Pan
standard left to right mixer pan
@constant kAudioUnitParameterUnit_Meters
distance measured in meters
@constant kAudioUnitParameterUnit_AbsoluteCents
absolute frequency measurement :
if f is freq in hertz then absoluteCents = 1200 * log2(f / 440) + 6900
@constant kAudioUnitParameterUnit_Octaves
octaves in relative pitch where a value of 1 is equal to 1200 cents
@constant kAudioUnitParameterUnit_BPM
beats per minute, ie tempo
@constant kAudioUnitParameterUnit_Beats
time relative to tempo, i.e., 1.0 at 120 BPM would equal 1/2 a second
@constant kAudioUnitParameterUnit_Milliseconds
parameter is expressed in milliseconds
@constant kAudioUnitParameterUnit_Ratio
for compression, expansion ratio, etc.
@constant kAudioUnitParameterUnit_CustomUnit
this is the parameter unit type for parameters that present a custom unit name
}
type
AudioUnitParameterUnit = UInt32;
AudioUnitParameterUnitPtr = ^AudioUnitParameterUnit;
const
kAudioUnitParameterUnit_Generic = 0;
kAudioUnitParameterUnit_Indexed = 1;
kAudioUnitParameterUnit_Boolean = 2;
kAudioUnitParameterUnit_Percent = 3;
kAudioUnitParameterUnit_Seconds = 4;
kAudioUnitParameterUnit_SampleFrames = 5;
kAudioUnitParameterUnit_Phase = 6;
kAudioUnitParameterUnit_Rate = 7;
kAudioUnitParameterUnit_Hertz = 8;
kAudioUnitParameterUnit_Cents = 9;
kAudioUnitParameterUnit_RelativeSemiTones = 10;
kAudioUnitParameterUnit_MIDINoteNumber = 11;
kAudioUnitParameterUnit_MIDIController = 12;
kAudioUnitParameterUnit_Decibels = 13;
kAudioUnitParameterUnit_LinearGain = 14;
kAudioUnitParameterUnit_Degrees = 15;
kAudioUnitParameterUnit_EqualPowerCrossfade = 16;
kAudioUnitParameterUnit_MixerFaderCurve1 = 17;
kAudioUnitParameterUnit_Pan = 18;
kAudioUnitParameterUnit_Meters = 19;
kAudioUnitParameterUnit_AbsoluteCents = 20;
kAudioUnitParameterUnit_Octaves = 21;
kAudioUnitParameterUnit_BPM = 22;
kAudioUnitParameterUnit_Beats = 23;
kAudioUnitParameterUnit_Milliseconds = 24;
kAudioUnitParameterUnit_Ratio = 25;
kAudioUnitParameterUnit_CustomUnit = 26;
{!
@enum AudioUnitParameterOptions
@discussion Bit positions 18, 17, and 16 are set aside for display scales. Bit 19 is reserved.
@constant kAudioUnitParameterFlag_CFNameRelease
@constant kAudioUnitParameterFlag_PlotHistory
@constant kAudioUnitParameterFlag_MeterReadOnly
@constant kAudioUnitParameterFlag_DisplayMask
@constant kAudioUnitParameterFlag_DisplaySquareRoot
@constant kAudioUnitParameterFlag_DisplaySquared
@constant kAudioUnitParameterFlag_DisplayCubed
@constant kAudioUnitParameterFlag_DisplayCubeRoot
@constant kAudioUnitParameterFlag_DisplayExponential
@constant kAudioUnitParameterFlag_HasClump
@constant kAudioUnitParameterFlag_ValuesHaveStrings
@constant kAudioUnitParameterFlag_DisplayLogarithmic
@constant kAudioUnitParameterFlag_IsHighResolution
@constant kAudioUnitParameterFlag_NonRealTime
@constant kAudioUnitParameterFlag_CanRamp
@constant kAudioUnitParameterFlag_ExpertMode
@constant kAudioUnitParameterFlag_HasCFNameString
@constant kAudioUnitParameterFlag_IsGlobalMeta
@constant kAudioUnitParameterFlag_IsElementMeta
@constant kAudioUnitParameterFlag_IsReadable
@constant kAudioUnitParameterFlag_IsWritable
}
type
AudioUnitParameterOptions = UInt32;
AudioUnitParameterOptionsPtr = ^AudioUnitParameterOptions;
const
kAudioUnitParameterFlag_CFNameRelease = 1 shl 4;
kAudioUnitParameterFlag_OmitFromPresets = 1 shl 13;
kAudioUnitParameterFlag_PlotHistory = 1 shl 14;
kAudioUnitParameterFlag_MeterReadOnly = 1 shl 15;
// bit positions 18,17,16 are set aside for display scales. bit 19 is reserved.
kAudioUnitParameterFlag_DisplayMask = (7 shl 16) or (1 shl 22);
kAudioUnitParameterFlag_DisplaySquareRoot = 1 shl 16;
kAudioUnitParameterFlag_DisplaySquared = 2 shl 16;
kAudioUnitParameterFlag_DisplayCubed = 3 shl 16;
kAudioUnitParameterFlag_DisplayCubeRoot = 4 shl 16;
kAudioUnitParameterFlag_DisplayExponential = 5 shl 16;
kAudioUnitParameterFlag_HasClump = 1 shl 20;
kAudioUnitParameterFlag_ValuesHaveStrings = 1 shl 21;
kAudioUnitParameterFlag_DisplayLogarithmic = 1 shl 22;
kAudioUnitParameterFlag_IsHighResolution = 1 shl 23;
kAudioUnitParameterFlag_NonRealTime = 1 shl 24;
kAudioUnitParameterFlag_CanRamp = 1 shl 25;
kAudioUnitParameterFlag_ExpertMode = 1 shl 26;
kAudioUnitParameterFlag_HasCFNameString = 1 shl 27;
kAudioUnitParameterFlag_IsGlobalMeta = 1 shl 28;
kAudioUnitParameterFlag_IsElementMeta = 1 shl 29;
kAudioUnitParameterFlag_IsReadable = 1 shl 30;
kAudioUnitParameterFlag_IsWritable = 1 shl 31;
{!
@struct AudioUnitParameterInfo
@field name
UNUSED - set to zero - UTF8 encoded C string (originally).
@field unitName
only valid if kAudioUnitParameterUnit_CustomUnit is set. If kAudioUnitParameterUnit_CustomUnit
is set, this field must contain a valid CFString.
@field clumpID
only valid if kAudioUnitParameterFlag_HasClump
@field cfNameString
only valid if kAudioUnitParameterFlag_HasCFNameString
@field unit
if the "unit" field contains a value not in the enum above, then assume
kAudioUnitParameterUnit_Generic
@field minValue
@field maxValue
@field defaultValue
@field flags
Due to some vagaries about the ways in which Parameter's CFNames have been described, it was
necessary to add a flag: kAudioUnitParameterFlag_CFNameRelease
In normal usage a parameter name is essentially a static object, but sometimes an audio unit will
generate parameter names dynamically.. As these are expected to be CFStrings, in that case
the host should release those names when it is finished with them, but there was no way
to communicate this distinction in behavior.
Thus, if an audio unit will (or could) generate a name dynamically, it should set this flag in
the parameter's info. The host should check for this flag, and if present, release the parameter
name when it is finished with it.
}
type
AudioUnitParameterInfo = record
name : packed array [0..51] of char;
unitName: CFStringRef {__nullable};
clumpID: UInt32;
cfNameString: CFStringRef {__nullable};
unt: AudioUnitParameterUnit;
minValue: AudioUnitParameterValue;
maxValue: AudioUnitParameterValue;
defaultValue: AudioUnitParameterValue;
flags: AudioUnitParameterOptions;
end;
AudioUnitParameterInfoPtr = ^AudioUnitParameterInfo;
{!
@enum Audio Unit Clump ID
@discussion Audio unit developers should not use a clump ID of 0. This value is reserved for system use.
}
const
kAudioUnitClumpID_System = 0;
function GetAudioUnitParameterDisplayType(flags : UInt32) : UInt32; inline;
function AudioUnitDisplayTypeIsLogarithmic(flags : UInt32) : Boolean; inline;
function AudioUnitDisplayTypeIsSquareRoot(flags : UInt32) : Boolean; inline;
function AudioUnitDisplayTypeIsSquared(flags : UInt32) : Boolean; inline;
function AudioUnitDisplayTypeIsCubed(flags : UInt32) : Boolean; inline;
function AudioUnitDisplayTypeIsCubeRoot(flags : UInt32) : Boolean; inline;
function AudioUnitDisplayTypeIsExponential(flags : UInt32) : Boolean; inline;
procedure SetAudioUnitParameterDisplayType(var flags : UInt32; displayType : UInt32); inline;
{
The following properties are used with display names
}
{!
@enum Audio Unit Parameter Full Name
@discussion Used with the AudioUnitParameterIDName.inDesiredLength field to indicate the full name
of the requested parameter.
}
const
kAudioUnitParameterName_Full = -1;
{!
@struct AudioUnitParameterIDName
@abstract Used to provide shorter names for a specified parameter
}
type
AudioUnitParameterNameInfo = record
inID: AudioUnitParameterID;
inDesiredLength: SInt32;
outName: CFStringRef {__nullable};
end;
AudioUnitParameterNameInfoPtr = ^AudioUnitParameterNameInfo;
{!
@struct AudioUnitParameterStringFromValue
@abstract Provide a string representation of a parameter's value
}
type
AudioUnitParameterStringFromValue = record
inParamID: AudioUnitParameterID;
inValue: { const } AudioUnitParameterValuePtr;
outString: CFStringRef {__nullable};
end;
AudioUnitParameterStringFromValuePtr = ^AudioUnitParameterStringFromValue;
{!
@struct AudioUnitParameterValueFromString
@abstract Provide the parameter's value for a given string representation of it
}
type
AudioUnitParameterValueFromString = record
inParamID: AudioUnitParameterID;
inString: CFStringRef;
outValue: AudioUnitParameterValue;
end;
AudioUnitParameterValueFromStringPtr = ^AudioUnitParameterValueFromString;
//=====================================================================================================================
//#pragma mark - Configuration Info Keys
// These strings are used as keys to the dictionary of configuration info returned by
// AudioComponentGetConfigurationInfo(). Information about them is presented inline with the
// declaration.
{!
@define kAudioUnitConfigurationInfo_HasCustomView
@discussion This is a boolean value that indicates whether or not the AU has a custom view
}
const
kAudioUnitConfigurationInfo_HasCustomView = 'HasCustomView';
{!
@define kAudioUnitConfigurationInfo_ChannelConfigurations
@discussion This is an array of pairs of values where each item in the array is an array of two
numbers and is the equivalent of an AUChannelInfo. If the AudioUnit is an effect and
it doesn't implement kAudioUnitProperty_SupportedNumChannels, the array will contain
only the single entry, ( -1, -1). If the AudioUnit is an instrument or a generator
and doesn't implement kAudioUnitProperty_SupportedNumChannels, the array will be
empty and means that the AU's initial state is all that is supported.
}
const
kAudioUnitConfigurationInfo_ChannelConfigurations = 'ChannelConfigurations';
{!
@define kAudioUnitConfigurationInfo_InitialInputs
@discussion An array of numbers whose size is equal to the number of input buses posessed by the
AU. Each number in the array represents the number of channels for the corresponding
bus.
}
const
kAudioUnitConfigurationInfo_InitialInputs = 'InitialInputs';
{!
@define kAudioUnitConfigurationInfo_InitialOutputs
@discussion An array of numbers whose size is equal to the number of output buses posessed by
the AU. Each number in the array represents the number of channels for the
corresponding bus.
}
const
kAudioUnitConfigurationInfo_InitialOutputs = 'InitialOutputs';
{!
@define kAudioUnitConfigurationInfo_IconURL
@discussion A CFURLRef value that indicates the location of an icon of the audio unit.
}
const
kAudioUnitConfigurationInfo_IconURL = 'IconURL';
{!
@define kAudioUnitConfigurationInfo_BusCountWritable
@discussion An array of booleans whose size is three representing Global, Input and Output scope
in the order it is defined in CoreAudioTypes.h. Each value represents whether the bus
count is writable for the specified scope.
}
const
kAudioUnitConfigurationInfo_BusCountWritable = 'BusCountWritable';
{!
@define kAudioUnitConfigurationInfo_SupportedChannelLayoutTags
@discussion A dictionary that contains two arrays one for input scope and output scope. Each array
of numbers whose size is equal to number of supported channel layout tags supported for the scope
by the AU. Each number in the array represents the channel layout tag.
}
const
kAudioUnitConfigurationInfo_SupportedChannelLayoutTags = 'SupportedChannelLayoutTags';
//=====================================================================================================================
//#pragma mark - Output Unit
{!
@enum Output Unit Properties
@abstract The collection of properties for output units
@constant kAudioOutputUnitProperty_IsRunning
@discussion Scope:
Value Type:
Access:
}
const
// range (2000 -> 2999)
kAudioOutputUnitProperty_IsRunning = 2001;
//#pragma mark -
//#pragma mark OS X Availability
{$ifc TARGET_OS_MAC}
//=====================================================================================================================
//#pragma mark - Music Effects and Instruments
{!
@enum Music Effect and Instrument Unit (MusicDevice) Properties
@abstract The collection of Music Effects and Instrument Unit Property IDs
@discussion
These properties are used to:
Describe a current set of mappings between MIDI messages and Parameter value setting
Create a mapping between a parameter and a MIDI message through either:
- explicitly adding (or removing) the mapping
- telling the audio unit to hot-map the next MIDI message to a specified Parameter
The same MIDI Message can map to one or more parameters
These properties normally apply only to the two types of audio units that implement
the MIDI API, instrument units ('aumu') and music effects ('aumf').
These properties are used in the Global scope. The scope and element members of the structure describe
the scope and element of the parameter. In all usages, mScope, mElement and mParameterID must be
correctly specified.
* The AUParameterMIDIMapping Structure
Command mStatus mData1
Note Off 0x8n Note Num
Note On 0x9n Note Num
Key Pressure 0xAn Note Num
Control Change 0xBn ControllerID
Patch Change 0xCn Patch Num
Channel Pressure DxDn 0 (Unused)
Pitch Bend 0xEn 0 (Unused)
(where n is 0-0xF to correspond to MIDI channels 1-16)
Details:
In general MIDI Commands can be mapped to either a specific channel as specified in the mStatus bit.
If the kAUParameterMIDIMapping_AnyChannelFlag bit is set mStatus is a MIDI channel message, then the
MIDI channel number in the status byte is ignored; the mapping is from the specified MIDI message on ANY channel.
For note commands (note on, note off, key pressure), the MIDI message can trigger either with just a specific
note number, or any note number if the kAUParameterMIDIMapping_AnyNoteFlag bit is set. In these instances, the
note number is used as the trigger value (for instance, a note message could be used to set the
cut off frequency of a filter).
When the parameter mapping list changes through addition/replace, removal, the implementation should
fire a notification on the kAudioUnitProperty_AllParameterMIDIMappings property. The host can then
retrieve the full set of mappings for the audio unit.
When a hot mapping is made, the notification should just be delivered for the HotMap property. The host can
retrieve the last current hot mapping made through getting the value of that property.
@constant kAudioUnitProperty_AllParameterMIDIMappings
@discussion Scope: any
Value Type: array of AUParameterMIDIMapping
Access: read/write
This property allows setting and retrieving the current mapping state between
(some/many/all of) an audio unit's parameters and MIDI messages. When set, it should replace
any previous mapped settings the audio unit had.
If this property is implemented by a non-MIDI capable audio unit (such as an 'aufx' type),
then the property is read only and should recommend a suggested set of mappings for the host
to perform. In this case, it is the host's responsibility to map MIDI message to the audio
unit parameters.
This property's size varies depending on the number of mappings currently in effect. A host
application should always get the size of this property before retrieving it. The audio
unit should return an error if the host doesn't provide enough space to return all of the
current mappings.
@constant kAudioUnitProperty_AddParameterMIDIMapping
@discussion Scope: any
Value Type: array of AUParameterMIDIMapping
Access: write
Use this property to add parameter-to-MIDI mappings to an audio unit's existing set of
mappings. There can be only one mapping per parameter. When you set a mapping for a parameter,
it replaces the previous mapping.
@constant kAudioUnitProperty_RemoveParameterMIDIMapping
@discussion Scope: any
Value Type: array of AUParameterMIDIMapping
Access: write
Use this property to remove mappings from an audio unit. If a mapping is specified that
does not currently exist in an audio unit, then the audio unit should ignore the request.
The Scope/Element/ParameterID is used to find the mapping to remove.
@constant kAudioUnitProperty_HotMapParameterMIDIMapping
@discussion Scope: any
Value Type: AUParameterMIDIMapping
Access: read/write
This property can be used in two ways, determined by the value supplied by the host
application.
(1) If a mapping structure is provided, then that structure provides all the information
that the audio unit should use to map the parameter, except for the MIDI message. The audio
unit should then listen for the next MIDI message and associate that MIDI message with the
supplied parameter mapping. When this MIDI message is received and the mapping made, the
audio unit should also issue a notification on this property to indicate to the host that
the mapping has been made. The host can then retrieve the mapping that was made by getting the
value of this property.
To avoid possible confusion, it is recommended that once the host has retrieved this mapping
(if it is presenting a user interface to describe the mappings, for example), that the host
should then clear the mapping state, as described in (2).
The only time this property will return a valid value is when an audio unit has implemented the
requested mapping. If the audio unit's mapping state has been cleared (or if it has not been
asked to make a mapping), then the audio unit should return a kAudioUnitErr_InvalidPropertyValue
error when the host tries to read this property's value.
(2) If the value passed in this property is NULL, and if the audio unit had a parameter that
it was in the process of mapping, the audio unit should disregard the parameter mapping request
and discard the partially mapped structure. If the value is NULL and the audio unit is not in
the process of mapping, the audio unit can just ignore the request.
At all times, the _AllMappings property will completely describe the current known state of an
audio unit's mappings of MIDI messages to parameters.
}
const
kAudioUnitProperty_AllParameterMIDIMappings = 41;
kAudioUnitProperty_AddParameterMIDIMapping = 42;
kAudioUnitProperty_RemoveParameterMIDIMapping = 43;
kAudioUnitProperty_HotMapParameterMIDIMapping = 44;
{!
@enum ParameterMIDIMappings
@abstract General defined values to customize the behavior of parameter-to-MIDI mappings
@constant kAUParameterMIDIMapping_AnyChannelFlag
@discussion If this flag is set and the value of the mStatus field is a MIDI channel message, then
the MIDI channel number in the status byte is ignored; the mapping is from the specified
MIDI message on any channel.
@constant kAUParameterMIDIMapping_AnyNoteFlag
@discussion If this flag is set and the value of the mStatus field is a Note On, Note Off, or
Polyphonic Pressure message, the message's note number is ignored. The mapping is from
any note number.
@constant kAUParameterMIDIMapping_SubRange
@discussion Set this flag if the MIDI control should map only to a sub-range of the parameter's value.
Then specify that range in the mSubRangeMin and mSubRangeMax member fields.
@constant kAUParameterMIDIMapping_Toggle
@discussion Intended for Boolean typed parameters. When this property is set, it means that the
parameter's value should be toggled when the mapped MIDI message is received. For example,
if the parameter's value is currently TRUE, when the mapped MIDI message is received
the value changes to FALSE.
@constant kAUParameterMIDIMapping_Bipolar
@discussion This property is useful when mapping a parameter to a MIDI Controller. When set, it
indicates that the parameter can assume only two values: on or off. For this reason, a
parameter associated with this property is typically Boolean. For example, if this
property is set for a parameter mapped to a sustain pedal MIDI controller, controller
values from 0 to 64 result in the parameter switched to its "off" state; controller
values from 65 to 127 result in the parameter switched to its "on" state.
This property works in connection with the kAUParameterMIDIMapping_Bipolar_On property.
The value of the kAUParameterMIDIMapping_Bipolar_On property
@constant kAUParameterMIDIMapping_Bipolar_On
@discussion Determines whether the "on" state of a parameter is mapped to the "on" or "off" state
of the associated MIDI controller. Only valid if the kAUParameterMIDIMapping_Bipolar
property is set.
}
type
AUParameterMIDIMappingFlags = UInt32;
AUParameterMIDIMappingFlagsPtr = ^AUParameterMIDIMappingFlags;
const
kAUParameterMIDIMapping_AnyChannelFlag = 1 shl 0;
kAUParameterMIDIMapping_AnyNoteFlag = 1 shl 1;
kAUParameterMIDIMapping_SubRange = 1 shl 2;
kAUParameterMIDIMapping_Toggle = 1 shl 3;
kAUParameterMIDIMapping_Bipolar = 1 shl 4;
kAUParameterMIDIMapping_Bipolar_On = 1 shl 5;
{!
@struct AUParameterMIDIMapping
@abstract Represents a mapping between a MIDI message and an audio unit's parameter.
@discussion The reserved fields in this structure are for future use. In the current implementation,
they help align the structure to 64 bit size. Do not use the names of these fields in a
host application. They are subject to change.
}
type
AUParameterMIDIMapping = record
mScope: AudioUnitScope;
mElement: AudioUnitElement;
mParameterID: AudioUnitParameterID;
mFlags: AUParameterMIDIMappingFlags;
mSubRangeMin: AudioUnitParameterValue;
mSubRangeMax: AudioUnitParameterValue;
mStatus: UInt8;
mData1: UInt8;
reserved1: UInt8; // MUST be set to zero
reserved2: UInt8; // MUST be set to zero
reserved3: UInt32; // MUST be set to zero
end;
AUParameterMIDIMappingPtr = ^AUParameterMIDIMapping;
//=====================================================================================================================
//#pragma mark - Music Device
{!
@enum Instrument Unit (MusicDevice) Properties
@abstract The collection of Instrument Unit Property IDs
@constant kMusicDeviceProperty_MIDIXMLNames
@discussion Scope:
Value Type:
Access:
@constant kMusicDeviceProperty_PartGroup
@discussion Scope: Part
Value Type: AudioUnitElement
Access: read/write
This property's value specifies the group ID (the Group scope's element)
that the part is (or should be) assigned to. The property is used in the Part scope,
where the element ID is the part that is being queried (or assigned).
This property may be implemented in an audio unit as read only, as writeable only if the
audio unit is uninitialized, or as read/write. Apple recommends that it should be
writable at any time.
The effect of assigning a new group to a part is undefined. Typically, however, it can be
expected that all existing notes would be turned off before the re-assignment is made by
the audio unit.
@constant kMusicDeviceProperty_DualSchedulingMode
@discussion Scope: Global
Value Type: UInt32
Access: write
Some instrument units need to distinguish realtime note and control events (such as from
incoming MIDI) from sequenced or pre-scheduled events. To support this, a host application
may set this property to 1. If the instrument unit returns a value of noErr, it supports
an alternate interpretation of the inOffsetSampleFrame parameter for the following
functions:
MusicDeviceMIDIEvent
MusicDeviceStartNote
MusicDeviceStopNote
AudioUnitSetParameter
Once the host sets this property to 1 and the instrument unit returns noErr, the
inOffsetSampleFrame field becomes a bitfield:
kMusicDeviceSampleFrameMask_SampleOffset = 0xFFFFFF // AND with this to obtain sample offset
kMusicDeviceSampleFrameMask_IsScheduled = 0x01000000
The IsScheduled bit should be set on events which are being scheduled ahead of time from
a prerecorded track. The IsScheduled bit should be clear on events which are being sent
to the instrument unit in response to realtime events, such as incoming MIDI or control
changes in a view.
@constant kMusicDeviceProperty_SupportsStartStopNote
@discussion Scope: Global
Value Type: UInt32
Access: read
The MusicDeviceStartNote and MusicDeviceStopNote APIs have been available since Mac OS X v10.0.
However, many third-party audio units do not implement these calls. This property can
be used to determine if an audio unit does provide a compliant implementation. A compliant
audio unit will both implement the property and return !0 as the value for the property.
Apple's DLSMusicDevice unit has implemented MusicDeviceStartNote and MusicDeviceStopNote
since Mac OS X v10.0. The kMusicDeviceProperty_SupportsStartStopNote property was introduced
with Mac OS X v10.5, so the DLSMusicDevice unit will not return an appropriate value for
this property on a pre-10.5 system.
}
const
// range (1000 -> 1999)
kMusicDeviceProperty_MIDIXMLNames = 1006;
kMusicDeviceProperty_PartGroup = 1010;
kMusicDeviceProperty_DualSchedulingMode = 1013;
kMusicDeviceProperty_SupportsStartStopNote = 1014;
{!
@enum DualSchedulingMode
}
const
kMusicDeviceSampleFrameMask_SampleOffset = $FFFFFF; // AND with this to obtain the sample offset
kMusicDeviceSampleFrameMask_IsScheduled = $01000000;
//=====================================================================================================================
//#pragma mark - Offline Unit
{!
@enum Offline Unit Properties
@abstract The collection of properties for offline units
@constant kAudioUnitOfflineProperty_InputSize
@discussion Scope: Global
Value Type: UInt64
Access: read/write
Once this property is set, an audio unit will assume that its input samples
have been reset to a new region. Setting this property will also cause the
audio unit's internal DSP state to be reset. That is, the audio unit calls
the AudioUnitReset function on itself.
This property tells the offline unit how many samples to process. Once it
knows this number it will then request from 0 to (nSamples-1) in its input
callback. The host of the audio unit is then required to provide the samples
specified in the sample count field of that Input's callback.
@constant kAudioUnitOfflineProperty_OutputSize
@discussion Scope: Global
Value Type: UInt64
Access: read
The host can use this property to estimate how many output samples an audio
unit will produce for the specified input samples. The property value
is invalid if InputSize is not set.
The host cannot assume that the value returned is exact.
It is a guide only, so is suitable for use in a progress bar, for instance.
Termination of processing is solely determined by the setting of the
kAudioUnitStatus_OfflineRenderComplete property in the
ioRenderActionFlags from the AudioUnitRender function.
@constant kAudioUnitOfflineProperty_StartOffset
@discussion Scope: Global
Value Type: UInt64
Access: read/write
The host sets this property to tell an audio unit that the start offset of
the data it is processing has been changed. This should be set along with
the InputSize property, so that the unit knows its input data has been set
or changed.
@constant kAudioUnitOfflineProperty_PreflightRequirements
@discussion Scope: Global
Value Type: UInt32
Access: read
Returns one of the kOfflinePreflight_ results (see the Offline Preflight
enumeration).
@constant kAudioUnitOfflineProperty_PreflightName
@discussion Scope: Global
Value Type: CFStringRef
Access: read
For an audio unit that allows or requires preflighting, this property lets
the unit give its host application a name to describe the preflight
operations.
}
const
// range (3020->3040)
kAudioUnitOfflineProperty_InputSize = 3020;
kAudioUnitOfflineProperty_OutputSize = 3021;
kAudioUnitOfflineProperty_StartOffset = 3022;
kAudioUnitOfflineProperty_PreflightRequirements = 3023;
kAudioUnitOfflineProperty_PreflightName = 3024;
{!
@enum Offline Preflight Flags
@abstract Used to indicate an Offline Unit's preflight requirements
@constant kOfflinePreflight_NotRequired
@discussion Offline unit does not require preflight
@constant kOfflinePreflight_Optional
@discussion Offline unit will generally behave better if it is preflighted, but it is not
required to be preflighted.
@constant kOfflinePreflight_Required
@discussion Offline unit requires preflighting or it cannot do its work
}
const
kOfflinePreflight_NotRequired = 0;
kOfflinePreflight_Optional = 1;
kOfflinePreflight_Required = 2;
//=====================================================================================================================
//#pragma mark - Panner Unit
{!
@enum Panner Unit Properties
@abstract The collection of properties for panner units
@constant kAudioUnitProperty_DistanceAttenuationData
@discussion This property is deprecated.
Scope: Global
Value Type: AUDistanceAttenuationData
Access: Read
}
const
// range (3060->3999)
kAudioUnitProperty_DistanceAttenuationData = 3600;
(* API_DEPRECATED("no longer supported", macos(10.5, 10.11)) API_UNAVAILABLE(ios, watchos, tvos) *)
{!
@struct AUDistanceAttenuationData
}
type
AUDistanceAttenuationDataPairsRec = record
inDistance: Float32; // 0-1000
outGain: Float32; // 0-1
end;
AUDistanceAttenuationDataPairsRecPtr = ^AUDistanceAttenuationDataPairsRec;
AUDistanceAttenuationData = record
inNumberOfPairs: UInt32;
pairs: array[0..0] of AUDistanceAttenuationDataPairsRec; // this is a variable length array of inNumberOfPairs elements
end;
AUDistanceAttenuationDataPtr = ^AUDistanceAttenuationData;
(* API_DEPRECATED("no longer supported", macos(10.5, 10.11)) API_UNAVAILABLE(ios, watchos, tvos); *)
//=====================================================================================================================
//#pragma mark - Translation Service
{!
@enum Translation Properties
@abstract The collection of properties for migrating data from other audio plug-ins to the
Audio Unit architecture
@discussion While this is a general service, there are two formats that are explicitly defined:
MAS and VST. An audio unit may have MAS settings given to it in one of two ways:
(1) The settings may have a single setting. This may be set multiple times with
different settings each time. In this case, numberOfSettings will be 1.
(2) The settings may be set in one hit, providing all SettingData at once.
In this case, numberOfSettings may be more than 1, and will be the number of
settings the host has from the MAS plugin.
AU-VST - the CFDataRef data contains VST chunk data with no additional information.
In addition, this can be used to migrate settings from an older audio unit; this allows manufacturers
to deprecate older audio units and replace them with new ones. The data for the older audio unit is
the audio unit preset CFDictionary that that unit generated.
@constant kAudioUnitMigrateProperty_FromPlugin
@discussion Scope:
Value Type:
Access:
@constant kAudioUnitMigrateProperty_OldAutomation
@discussion Scope:
Value Type:
Access:
}
const
// range (4000->4020)
kAudioUnitMigrateProperty_FromPlugin = 4000;
kAudioUnitMigrateProperty_OldAutomation = 4001;
{!
@enum Other Plug-in Formats
}
const
kOtherPluginFormat_Undefined = 0; //reserving this value for future use
kOtherPluginFormat_kMAS = 1;
kOtherPluginFormat_kVST = 2;
kOtherPluginFormat_AU = 3;
{!
@struct AudioUnitOtherPluginDesc
@discussion
@field format
@discussion One of the OtherPluginFormat values
@field plugin
@discussion struct AudioClassDescription (
OSType mType;
OSType mSubType;
OSType mManufacturer;
);
is defined in <CoreAudio/CoreAudioTypes.h>
mType specifies a generic, plug-in format defined descriptor
mSubType is usually left to the manufacturer to use at their discretion
mManufacturer is a registered code to identify all plugins from the same manufacturer
}
type
AudioUnitOtherPluginDesc = record
format: UInt32;
plugin: AudioClassDescription;
end;
AudioUnitOtherPluginDescPtr = ^AudioUnitOtherPluginDesc;
{!
@struct AudioUnitParameterValueTranslation
@abstract Used to translate another plug-in's parameter values to audio unit parameter
values
}
type
AudioUnitParameterValueTranslation = record
otherDesc: AudioUnitOtherPluginDesc;
otherParamID: UInt32;
otherValue: Float32;
auParamID: AudioUnitParameterID;
auValue: AudioUnitParameterValue;
end;
AudioUnitParameterValueTranslationPtr = ^AudioUnitParameterValueTranslation;
{!
@struct AudioUnitPresetMAS_SettingData
@discussion AU-MAS specific structs for the data contained in the "masdata" key of an audio
unit preset dictionary
}
type
AudioUnitPresetMAS_SettingData = record
isStockSetting: UInt32; // zero or 1 i.e., "long bool"
settingID: UInt32;
dataLen: UInt32; //length of following data
data: array[0..0] of UInt8;
end;
AudioUnitPresetMAS_SettingDataPtr = ^AudioUnitPresetMAS_SettingData;
{!
@struct AudioUnitPresetMAS_Settings
@discussion See MAS documentation
}
type
AudioUnitPresetMAS_Settings = record
manufacturerID: UInt32;
effectID: UInt32;
variantID: UInt32;
settingsVersion: UInt32;
numberOfSettings: UInt32;
settings: array[0..0] of AudioUnitPresetMAS_SettingData;
end;
{$endc} { TARGET_OS_MAC }
//=====================================================================================================================
//#pragma mark -
//#pragma mark Apple Specific Properties
//=====================================================================================================================
//#pragma mark - AUConverter
{!
@enum Apple AUConverter Property IDs
@abstract The collection of property IDs for Apple AUConverter
@constant kAudioUnitProperty_SampleRateConverterComplexity
@discussion Scope: Global
Value Type: UInt32
Access: read/write
}
const
kAudioUnitProperty_SampleRateConverterComplexity = 3014;
{!
@enum Audio Unit Sample Rate Converter Complexity
@discussion The lowest quality of the Mastering algorithm is higher than the highest quality of the Normal algorithm.
@constant kAudioUnitSampleRateConverterComplexity_Normal
@discussion Normal quality sample rate conversion.
@constant kAudioUnitSampleRateConverterComplexity_Mastering
@discussion Mastering quality sample rate conversion. More expensive.
}
const
kAudioUnitSampleRateConverterComplexity_Linear = FourCharCode('line'); // linear interpolation
kAudioUnitSampleRateConverterComplexity_Normal = FourCharCode('norm'); // the default
kAudioUnitSampleRateConverterComplexity_Mastering = FourCharCode('bats'); // higher quality, more expensive
//=====================================================================================================================
//#pragma mark - AUHAL and device units
{!
@enum Apple Output Property IDs
@abstract The collection of property IDs for Apple output units
@constant kAudioOutputUnitProperty_CurrentDevice
@discussion Scope: Global
Value Type: AudioObjectID
Access: read/write
The audio device being used (or to be used) by and output device unit
@constant kAudioOutputUnitProperty_ChannelMap
@discussion Scope: Input/Output
Value Type: Array of SInt32
Access: Read / Write
This will also work with AUConverter. This property is used to map input channels from an input (source) to a destination.
The number of channels represented in the channel map is the number of channels of the destination. The channel map entries
contain a channel number of the source that should be mapped to that destination channel. If -1 is specified, then that
destination channel will not contain any channel from the source (so it will be silent)
@constant kAudioOutputUnitProperty_EnableIO
@discussion Scope: ( scope output, element 0 = output ) ( scope input, element 1 = input )
Value Type: UInt32
Access: read/write
Output units default to output-only operation. Host applications may disable
output or enable input operation using this property, if the output unit
supports it. 0=disabled, 1=enabled using I/O proc.
@constant kAudioOutputUnitProperty_StartTime
@discussion Scope: Global
Value Type: AudioOutputUnitStartAtTimeParams
Access: write only
When this property is set on an output unit, it will cause the next Start request
(but no subsequent Starts) to use AudioDeviceStartAtTime, using the specified
timestamp, passing false for inRequestedStartTimeIsInput.
@constant kAudioOutputUnitProperty_SetInputCallback
@discussion Scope: Global
Value Type: AURenderCallbackStruct
Access: read/write
When an output unit has been enabled for input operation, this callback can be
used to provide a single callback to the host application from the input
I/O proc, in order to notify the host that input is available and may be
obtained by calling the AudioUnitRender function.
Note that the inputProc will always receive a NULL AudioBufferList in ioData.
You must call AudioUnitRender in order to obtain the audio.
@constant kAudioOutputUnitProperty_HasIO
@discussion Scope: ( scope output, element 0 = output ) ( scope input, element 1 = input )
Value Type: UInt32
Access:
See kAudioOutputUnitProperty_EnableIO
Property value is 1 if input or output is enabled on the specified element.
@constant kAudioOutputUnitProperty_StartTimestampsAtZero
@discussion Scope: Global
Value Type: UInt32
Access: read/write
Apple output units typically begin their stream of timestamps presented to their
inputs at sample time 0. Some applications may wish to receive the HAL's timestamps
directly instead. When this property is set to false, the output unit's sample times
will be direct reflections of the HAL's -- except when a sample rate conversion
makes this impossible.
This property also applies to AUConverter. Its value defaults to 1 for AUHAL;
1 for other AUs.
}
const
kAudioOutputUnitProperty_CurrentDevice = 2000;
kAudioOutputUnitProperty_ChannelMap = 2002; // this will also work with AUConverter
kAudioOutputUnitProperty_EnableIO = 2003;
kAudioOutputUnitProperty_StartTime = 2004;
kAudioOutputUnitProperty_SetInputCallback = 2005;
kAudioOutputUnitProperty_HasIO = 2006;
kAudioOutputUnitProperty_StartTimestampsAtZero = 2007; // this will also work with AUConverter
{!
@struct AudioOutputUnitStartAtTimeParams
}
type
AudioOutputUnitStartAtTimeParams = record
// see AudioDeviceStartAtTime
mTimestamp: AudioTimeStamp;
mFlags: UInt32;
end;
AudioOutputUnitStartAtTimeParamsPtr = ^AudioOutputUnitStartAtTimeParams;
//=====================================================================================================================
//#pragma mark - AUVoiceProcessing unit
{!
@enum Apple Voice Processing Property IDs for OS X and iOS
@abstract The collection of property IDs for Apple voice processing units.
@constant kAUVoiceIOProperty_BypassVoiceProcessing
@discussion Scope: Global
Value Type: UInt32
Access: read/write
Bypass all processing done by the voice processing unit. When set to 0
(default), the processing is activated otherwise it is disabled.
@constant kAUVoiceIOProperty_VoiceProcessingEnableAGC
@discussion Scope: Global
Value Type: UInt32
Access: read/write
Enable automatic gain control on the processed microphone/uplink
signal. On by default.
@constant kAUVoiceIOProperty_MuteOutput
@discussion Scope: Global
Value Type: UInt32
Access: read/write
Mutes the output of the voice processing unit.
0 (default) = muting off. 1 = mute output.
}
const
kAUVoiceIOProperty_BypassVoiceProcessing = 2100;
kAUVoiceIOProperty_VoiceProcessingEnableAGC = 2101;
kAUVoiceIOProperty_MuteOutput = 2104;
//#pragma mark - AUVoiceProcessing unit deprecated properties
{!
@enum Apple Voice Processing Property IDs that are being deprecated
@constant kAUVoiceIOProperty_VoiceProcessingQuality
@discussion Scope: Global
Value Type: UInt32
Access: read/write
DEPRECATED. Sets the quality of the voice processing unit. Quality values
are comprised between 0 (lowest) and 127 (highest).
}
const
kAUVoiceIOProperty_VoiceProcessingQuality = 2103;
(* __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_7, __MAC_10_9, __IPHONE_3_0, __IPHONE_7_0) *)
//=====================================================================================================================
//#pragma mark - AUNBandEQ unit
{!
@enum Apple N-Band EQ Audio Unit Property IDs
@abstract The collection of property IDs for the Apple N-Band EQ Audio Unit.
@constant kAUNBandEQProperty_NumberOfBands
@discussion Scope: Global
Value Type: UInt32
Access: read/write
Specifies the number of equalizer bands. If more than kAUNBandEQProperty_MaxNumberOfBands
are specified, an error is returned.
Can only be set if the unit is uninitialized.
@constant kAUNBandEQProperty_MaxNumberOfBands
@discussion Scope: Global
Value Type: UInt32
Access: read-only
Returns the maximum number of equalizer bands.
@constant kAUNBandEQProperty_BiquadCoefficients
@discussion Scope: Global
Value Type: array of Float64
Access: read-only
Returns an array of Float64 values, 5 per band.
}
const
kAUNBandEQProperty_NumberOfBands = 2200;
kAUNBandEQProperty_MaxNumberOfBands = 2201;
kAUNBandEQProperty_BiquadCoefficients = 2203;
{!
@enum Apple Voice Processing AudioUnit Error IDs
@abstract These are the various error IDs returned by Voice Processing audio unit.
@constant kAUVoiceIOErr_UnexpectedNumberOfInputChannels
This error indicates that an unexpected number of input channels was encountered during initialization of voice processing audio unit
}
const
kAUVoiceIOErr_UnexpectedNumberOfInputChannels = -66784;
//=====================================================================================================================
//#pragma mark - Mixers
{!
@enum Apple Mixer Property IDs
@abstract The collection of property IDs for Apple mixers
@constant kAudioUnitProperty_MeteringMode
@discussion Scope: ( scope / element )
Value Type: UInt32
Access: read/write
Enable or disable metering on a particular scope/element
@constant kAudioUnitProperty_MatrixLevels
@discussion This property can be used for both the AUMatrixMixer and AUMultiChannelMixer.
AUMatrixMixer
Scope: Global
Value Type: Float32 array
Access: read/write
This property is used to retrieve the entire state of a matrix mixer. The size required is
the number of (input channels + 1) * (output channels + 1) - see _MatrixDimensions
So a matrix mixer that has 2 input channels and 2 output channels, will need a 3 x 3 array of Float32
Global volume is stored at volumes[2][2]
Input volumes are stored in the last column (volumes[0][2] for the first input channel, volumes[1][2] for the second)
Output volumes are stored in the last row (volumes [2][0] and [2][1])
Cross point volumes are stored at their expected locations ([0][1], etc)
AUMultiChannelMixer
Scope: Input
Value Type: Float32 array
Access: read/write
Gets/sets the matrix levels for one input element. This allows arbitrary mixing configurations
from all input channels to all output channels.
The size required is the number of (input channels) * (output channels).
The matrix stores only the crosspoint gains, there are no overall input or output channel gains.
@constant kAudioUnitProperty_MatrixDimensions
@discussion Scope: Global
Value Type: 2 x UInt32
Access: Read only
Returns the total number of channels for input and output of a given matrix mixer
@constant kAudioUnitProperty_MeterClipping
@discussion Scope: Global
Value Type: AudioUnitMeterClipping
Access: Read
A mixer returns an AudioUnitMeterClipping structure.
@constant kAudioUnitProperty_InputAnchorTimeStamp
@discussion Scope: Input
Value Type: AudioTimeStamp
Access: Read / Write
There are situations, for example moving an input between mixers, where the
input's sample time timeline needs to be made continuous. This facilitates
the operation: after disconnecting the input, fetch its anchor time stamp,
then before reconnecting it, set the same anchor time stamp. The input's
sequence of sample times will be maintained.
This property cannot be accessed while the input is rendering.
}
const
// General mixers
kAudioUnitProperty_MeteringMode = 3007;
// Matrix Mixer
kAudioUnitProperty_MatrixLevels = 3006;
kAudioUnitProperty_MatrixDimensions = 3009;
kAudioUnitProperty_MeterClipping = 3011;
// Multichannel Mixer
kAudioUnitProperty_InputAnchorTimeStamp = 3016;
{!
@struct AudioUnitMeterClipping
@field peakValueSinceLastCall;
@discussion The maximum value seen on the channel since the last time the property was retrieved.
@field sawInfinity;
@discussion TRUE if there was an infinite value on this channel.
@field sawNotANumber
@discussion TRUE if there was a floating point Not-A-Number value on this channel.
}
type
AudioUnitMeterClipping = record
peakValueSinceLastCall: Float32;
sawInfinity: Boolean;
sawNotANumber: Boolean;
end;
AudioUnitMeterClippingPtr = ^AudioUnitMeterClipping;
//=====================================================================================================================
//#pragma mark - _SpatialMixer
{!
@enum Apple Mixer Property IDs
@abstract The collection of property IDs for AUSpatialMixer
@constant kAudioUnitProperty_ReverbRoomType
@discussion Scope: Global
Value Type: UInt32
Access: Read / Write
@constant kAudioUnitProperty_UsesInternalReverb
@discussion Scope: Global
Value Type: UInt32
Access: Read / Write
@constant kAudioUnitProperty_SpatializationAlgorithm
@discussion Scope: Input
Value Type: UInt32
Access: Read / Write
Used to set the spatialisation algorithm used by an input of AUSpatialMixer. See kSpatializationAlgorithm_
@constant kAudioUnitProperty_SpatialMixerRenderingFlags
@discussion Scope: Input
Value Type: UInt32
Access: Read / Write
Used to enable various rendering operations on a given input for the 3DMixer. See k3DMixerRenderingFlags_
@constant kAudioUnitProperty_SpatialMixerAttenuationCurve
@discussion Scope: Input
Value Type: UInt32
Access: Read / Write
@constant kAudioUnitProperty_SpatialMixerDistanceParams
@discussion Scope: Input
Value Type: MixerDistanceParams
Access: Read / Write
}
const
kAudioUnitProperty_ReverbRoomType = 10;
kAudioUnitProperty_UsesInternalReverb = 1005;
kAudioUnitProperty_SpatializationAlgorithm = 3000;
kAudioUnitProperty_SpatialMixerDistanceParams = 3010;
kAudioUnitProperty_SpatialMixerAttenuationCurve = 3013;
kAudioUnitProperty_SpatialMixerRenderingFlags = 3003;
{!
@enum Spatialization Algorithms
}
type
AUSpatializationAlgorithm = UInt32;
const
kSpatializationAlgorithm_EqualPowerPanning = 0;
kSpatializationAlgorithm_SphericalHead = 1;
kSpatializationAlgorithm_HRTF = 2;
kSpatializationAlgorithm_SoundField = 3;
kSpatializationAlgorithm_VectorBasedPanning = 4;
kSpatializationAlgorithm_StereoPassThrough = 5;
kSpatializationAlgorithm_HRTFHQ = 6;
{!
@enum Reverb Room Types
@discussion Used to specify room type (as identified by a factory preset number) on Apple audio
units that use internal reverb.
}
type
AUReverbRoomType = UInt32;
const
kReverbRoomType_SmallRoom = 0;
kReverbRoomType_MediumRoom = 1;
kReverbRoomType_LargeRoom = 2;
kReverbRoomType_MediumHall = 3;
kReverbRoomType_LargeHall = 4;
kReverbRoomType_Plate = 5;
kReverbRoomType_MediumChamber = 6;
kReverbRoomType_LargeChamber = 7;
kReverbRoomType_Cathedral = 8;
kReverbRoomType_LargeRoom2 = 9;
kReverbRoomType_MediumHall2 = 10;
kReverbRoomType_MediumHall3 = 11;
kReverbRoomType_LargeHall2 = 12;
{!
@enum AUSpatialMixer Attenuation Curves
}
type
AUSpatialMixerAttenuationCurve = UInt32;
const
kSpatialMixerAttenuationCurve_Power = 0;
kSpatialMixerAttenuationCurve_Exponential = 1;
kSpatialMixerAttenuationCurve_Inverse = 2;
kSpatialMixerAttenuationCurve_Linear = 3;
{!
@struct MixerDistanceParams
}
type
MixerDistanceParams = record
mReferenceDistance: Float32;
mMaxDistance: Float32;
mMaxAttenuation: Float32; // in decibels
end;
MixerDistanceParamsPtr = ^MixerDistanceParams;
{!
@enum AUSpatial Mixer Rendering Flags
}
type
AUSpatialMixerRenderingFlags = UInt32;
const
kSpatialMixerRenderingFlags_InterAuralDelay = 1 shl 0;
kSpatialMixerRenderingFlags_DistanceAttenuation = 1 shl 2;
//=====================================================================================================================
//#pragma mark - _3DMixer (Deprecated)
{!
// AUMixer3D is deprecated. Use AUSpatialMixer instead.
@enum Apple Mixer Property IDs
@abstract The collection of property IDs for Apple mixers
@constant kAudioUnitProperty_MeteringMode
@discussion Scope: ( scope / element )
Value Type: UInt32
Access: read/write
Enable or disable metering on a particular scope/element
@constant kAudioUnitProperty_DopplerShift
@discussion Scope: Input
Value Type: UInt32
Access: Write
Use a boolean true/false value to enable doppler shift for any specified input
@constant kAudioUnitProperty_3DMixerRenderingFlags
@discussion Scope: Input
Value Type: UInt32
Access: Read / Write
Used to enable various rendering operations on a given input for the 3DMixer. See k3DMixerRenderingFlags_
@constant kAudioUnitProperty_3DMixerDistanceAtten
@discussion Scope:
Value Type:
Access:
@constant kAudioUnitProperty_3DMixerDistanceParams
@discussion Scope:
Value Type:
Access:
@constant kAudioUnitProperty_ReverbPreset
@discussion Scope:
Value Type:
Access:
@constant kAudioUnitProperty_3DMixerAttenuationCurve
@discussion Scope:
Value Type:
Access:
}
const
kAudioUnitProperty_3DMixerDistanceParams = 3010;
kAudioUnitProperty_3DMixerAttenuationCurve = 3013;
kAudioUnitProperty_DopplerShift = 3002;
kAudioUnitProperty_3DMixerRenderingFlags = 3003;
kAudioUnitProperty_3DMixerDistanceAtten = 3004;
kAudioUnitProperty_ReverbPreset = 3012;
(* __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_7, __MAC_10_11, __IPHONE_3_0, __IPHONE_9_0) *)
{!
@enum 3D Mixer Rendering Flags
}
type
AU3DMixerRenderingFlags = UInt32;
AU3DMixerRenderingFlagsPtr = ^AU3DMixerRenderingFlags;
const
k3DMixerRenderingFlags_InterAuralDelay = 1 shl 0;
k3DMixerRenderingFlags_DopplerShift = 1 shl 1;
k3DMixerRenderingFlags_DistanceAttenuation = 1 shl 2;
k3DMixerRenderingFlags_DistanceFilter = 1 shl 3;
k3DMixerRenderingFlags_DistanceDiffusion = 1 shl 4;
k3DMixerRenderingFlags_LinearDistanceAttenuation = 1 shl 5;
k3DMixerRenderingFlags_ConstantReverbBlend = 1 shl 6;
{!
@enum 3D Mixer Attenuation Curves
}
type
AU3DMixerAttenuationCurve = UInt32;
AU3DMixerAttenuationCurvePtr = ^AU3DMixerAttenuationCurve;
const
k3DMixerAttenuationCurve_Power = 0;
k3DMixerAttenuationCurve_Exponential = 1;
k3DMixerAttenuationCurve_Inverse = 2;
k3DMixerAttenuationCurve_Linear = 3;
//=====================================================================================================================
//#pragma mark - AUScheduledSoundPlayer
{!
@enum Apple AUScheduledSoundPlayer Property IDs
@abstract The collection of property IDs for the Apple AUScheduledSoundPlayer audio unit.
@discussion The AUScheduledSoundPlayer audio unit lets a client schedule audio buffers for
future playback, with sample-accurate timing.
Elements and Formats
This unit has one output element and no input elements. The output's format
should be a canonical audio unit stream format (native Float32, deinterleaved).
Scheduling
To schedule slices of audio for future playback, set the
kAudioUnitProperty_ScheduleAudioSlice property, with a ScheduledAudioSlice
structure as the property value. The slice's mTimeStamp.mSampleTime field
determines when the slice will be played. This sample number is relative to
the unit's start time, which you must set using the
kAudioUnitProperty_ScheduleStartTimeStamp property before playback will
begin.
You must retain, unmodified, the ScheduledAudioSlice structure, including
its mBufferList and the buffers to which it points, until the slice has been
completely played, or until you stop playback by uninitializing or resetting
the unit. The format of the slice's buffer list must match the unit's output
stream format.
As of OS X 10.10 and iOS 8.0, you can use an invalid time stamp (no flags set
in mFlags) to indicate that the slice should be played immediately following the
previous slice (or immediately, if there are no slices playing).
(The fields other than mSampleTime and mFlags in the mTimestamp structure are
currently ignored.)
Completion
To receive a callback when the slice has been played, store a pointer to a
callback function in the mCompletionProc field. This function will be called
(from the audio unit's rendering thread) when the slice has been completely
played -- or when the slice is determined to be unplayable due to an error.
As an alternative, you may also poll the slice's
(mFlags & kScheduledAudioSliceFlag_Complete).
Upon completion, you can test (mFlags & kScheduledAudioSliceFlag_BeganToRenderLate)
to determine whether some portion of the slice was not played due to its having
been scheduled too late relative to the current playback time.
Start Time
The audio unit will not play any slices following initialization or reset, until
its start time has been set. The start time establishes the beginning of a
timeline: the timestamps of all slices in the schedule are relative to the
start time.
Set a start time by setting the kAudioUnitProperty_ScheduleStartTimeStamp
property with an AudioTimeStamp structure. If the timestamp contains a valid
sample time (timestamp.mFlags & kAudioTimeStampSampleTimeValid), then playback
begins when the timestamp passed to the AudioUnitRender function reaches the
specified sample time. If the specified sample time is -1, playback begins on
the next render cycle.
If the start timestamp does not contain a valid sample time, but does contain a
valid host time (timestamp.mFlags & kAudioTimeStampHostTimeValid), then the
specified host time is translated to the sample time at which playback will
begin. A host time of 0 means "start on the next render cycle."
The kAudioUnitProperty_ScheduleStartTimeStamp property may be queried to obtain
the time at which playback began. If the start time has not yet been reached,
the timestamp returned will be whatever the host application last set.
Current play time
The kAudioUnitProperty_CurrentPlayTime property may be queried to determine the
audio unit's current time offset from its start time. This is useful, for
example, to monitor playback progress.
Unscheduling events
To clear an audio unit's play schedule, call the AudioUnitReset function. The
completion proc (if any) for each slice in the schedule will called. Playback
will not resume until a new start time has been set. This also happens when
the audio unit is uninitialized.
@constant kAudioUnitProperty_ScheduleAudioSlice
@discussion Scope:
Value Type: ScheduledAudioSlice
Access:
@constant kAudioUnitProperty_ScheduleStartTimeStamp
@discussion Scope:
Value Type: AudioTimeStamp
Access:
Sample time or host time valid. Sample time takes precedence,
-1 means "now". Host time of 0 means "now."
@constant kAudioUnitProperty_CurrentPlayTime
@discussion Scope:
Value Type: AudioTimeStamp
Access:
AudioTimeStamp, relative to start time, sample time of -1 if not yet started.
}
const
kAudioUnitProperty_ScheduleAudioSlice = 3300;
kAudioUnitProperty_ScheduleStartTimeStamp = 3301;
kAudioUnitProperty_CurrentPlayTime = 3302;
{!
@enum ScheduledAudioSlice
@abstract bits in ScheduledAudioSlice.mFlags
@constant kScheduledAudioSliceFlag_Complete
@abstract Set if the unit is done with this slice
@constant kScheduledAudioSliceFlag_BeganToRender
@abstract Set if any portion of the buffer has been played
@constant kScheduledAudioSliceFlag_BeganToRenderLate
@abstract Set if any portion of the buffer was not played because it was scheduled late
@constant kScheduledAudioSliceFlag_Loop
@abstract specifies that the buffer should loop indefinitely
@constant kScheduledAudioSliceFlag_Interrupt
@abstract specifies that the buffer should interrupt any previously scheduled buffer
(by default, buffers following a playing buffer are not played until the
playing buffer has completed).
@constant kScheduledAudioSliceFlag_InterruptAtLoop
@abstract specifies that the buffer should interrupt any previously scheduled buffer,
but only at a loop point in that buffer.
}
type
AUScheduledAudioSliceFlags = UInt32;
AUScheduledAudioSliceFlagsPtr = ^AUScheduledAudioSliceFlags;
const
kScheduledAudioSliceFlag_Complete = $01;
kScheduledAudioSliceFlag_BeganToRender = $02;
kScheduledAudioSliceFlag_BeganToRenderLate = $04;
kScheduledAudioSliceFlag_Loop = $08; // new for OS X 10.10 and iOS 8.0
kScheduledAudioSliceFlag_Interrupt = $10; // new for OS X 10.10 and iOS 8.0
kScheduledAudioSliceFlag_InterruptAtLoop = $20; // new for OS X 10.10 and iOS 8.0
type
// forward dec, see definition below
ScheduledAudioSlicePtr = ^ScheduledAudioSlice;
{!
@typedef ScheduledAudioSliceCompletionProc
}
ScheduledAudioSliceCompletionProc = procedure(userData : UnivPtr; bufferList : ScheduledAudioSlicePtr);
{
@struct ScheduledAudioSlice
@field mTimeStamp
@field mCompletionProc
May be null
@field mCompletionProcUserData
@field mFlags
@field mReserved
Must be 0
@field mReserved2
For internal use
@field mNumberFrames
Must be consistent with byte count of mBufferList
@field mBufferList
Must contain deinterleaved Float32
}
ScheduledAudioSlice = record
mTimeStamp: AudioTimeStamp;
mCompletionProc: ScheduledAudioSliceCompletionProc; // may be null
mCompletionProcUserData: UnivPtr;
mFlags: AUScheduledAudioSliceFlags;
mReserved: UInt32; // must be 0
mReserved2: UnivPtr; // for internal use
mNumberFrames: UInt32; // must be consistent with byte count of mBufferList
mBufferList: AudioBufferListPtr; // must contain deinterleaved Float32
end;
//=====================================================================================================================
//#pragma mark - AUAudioFilePlayer
{!
@enum Apple AUAudioFilePlayer Property IDs
@abstract The collection of property IDs for Apple AUAudioFilePlayer
@discussion This audio unit lets you schedule regions of audio files for future playback,
with sample-accurate timing.
The unit is a subclass of AUScheduledSoundPlayer and inherits all of its
behavior. In particular, this unit implements the kAudioUnitProperty_ScheduleStartTimeStamp
and kAudioUnitProperty_CurrentPlayTime properties. Instead of scheduling
slices (buffers) of audio to be played (via kAudioUnitProperty_ScheduleAudioSlice),
however, you schedule regions of audio files to be played. The unit reads and
converts audio file data into its own internal buffers. It performs disk I/O
on a high-priority thread shared among all instances of this unit within a
process. Upon completion of a disk read, the unit internally schedules
buffers for playback.
Elements and Formats
This unit has one output element and no input elements. The output's format
should be a canonical audio unit stream format (native Float32,
deinterleaved). This format should have at least as many channels are in the
audio file(s) to be played (otherwise channels will be dropped). During
playback, all audio file data is converted to the unit's output format.
Audio Files
Before starting playback, you must first open all audio files to be played
using the AudioFile API's (see AudioToolbox/AudioFile.h), and pass their
AudioFileIDs to the unit by setting the kAudioUnitProperty_ScheduledFileIDs
property. This property must not be set during playback. The audio files must
be kept open for the duration of playback.
Scheduling Regions
To schedule the playback of a region of an audio file, set the
kAudioUnitProperty_ScheduledFileRegion property. This is a
ScheduledAudioFileRegion structure. mTimeStamp.mSampleTime must be valid and
is interpreted relative to the unit's start time -- the start time semantics
(using kAudioUnitProperty_ScheduleStartTimeStamp) are identical to those of
AUScheduledSoundPlayer. Unlike the ScheduledAudioSlice structures, the unit
makes copies of ScheduledAudioFileRegions, so you may create them on the
stack or otherwise reuse/dispose of them immediately after scheduling them.
Priming
You should set kAudioUnitProperty_ScheduledFilePrime after scheduling
initial file regions to be played and before starting playback. This SetProperty call
will begin reading the audio files and not return until the number of frames
specified by the property value have been read.
Completion Callbacks
A region's completion callback (mCompletionProc) is called when it has been
completely scheduled for reading from disk. This callback is issued on the disk
read thread. If the region is not read from disk in time to play at its
scheduled time, mCompletionProc is called a second time with an error code,
also from the read thread. Note that the region passed to the callback will not
be the same memory object as was passed by the client (since the unit copies the region).
Start Time and Current Time
These properties work identically as in AUScheduledSoundPlayer.
Unscheduling regions
To clear the unit's play schedule, call the AudioUnitReset function. The completion proc
(if any) for each file region in the schedule will be called. Playback will
not resume until a new start time has been set. This also happens when the
unit is uninitialized.
Customization
The size and number of the player's disk read buffers default to "sensible"
values, but may be configured with the properties:
kAudioUnitProperty_ScheduledFileBufferSizeFrames
kAudioUnitProperty_ScheduledFileNumberBuffers
Bugs
kAudioUnitProperty_ScheduledFileBufferSizeFrames
kAudioUnitProperty_ScheduledFileNumberBuffers
are currently unimplemented
An option to make the unit not perform conversion from the audio file sample
rate to the unit's output rate may be desirable.
@constant kAudioUnitProperty_ScheduledFileIDs
@discussion Scope:
Value Type: Array of AudioFileIDs
Access:
Must set this property on scheduled file player for all files to be played
@constant kAudioUnitProperty_ScheduledFileRegion
@discussion Scope:
Value Type: ScheduledAudioFileRegion
Access:
@constant kAudioUnitProperty_ScheduledFilePrime
@discussion Scope:
Value Type: UInt32
Access:
The number of frames to read from disk before returning, or 0 to specify use
of a default value
@constant kAudioUnitProperty_ScheduledFileBufferSizeFrames
@discussion Scope:
Value Type: UInt32
Access:
@constant kAudioUnitProperty_ScheduledFileNumberBuffers
@discussion Scope:
Value Type: UInt32
Access:
}
const
kAudioUnitProperty_ScheduledFileIDs = 3310;
kAudioUnitProperty_ScheduledFileRegion = 3311;
kAudioUnitProperty_ScheduledFilePrime = 3312;
kAudioUnitProperty_ScheduledFileBufferSizeFrames = 3313;
kAudioUnitProperty_ScheduledFileNumberBuffers = 3314;
type
ScheduledAudioFileRegionPtr = ^ScheduledAudioFileRegion; //forward declaraion, see definition below
{!
@typedef ScheduledAudioFileRegionCompletionProc
}
ScheduledAudioFileRegionCompletionProc = procedure(userData : UnivPtr; fileRegion : ScheduledAudioFileRegionPtr; aResult : OSStatus);
{!
@struct ScheduledAudioFileRegion
@field mTimeStamp
@field mCompletionProc
may be NULL
@field mCompletionProcUserData
@field mAudioFile
must be a valid and open AudioFileID
defined in AudioToolbox/AudioFile.h: typedef struct OpaqueAudioFileID *AudioFileID;
@field mLoopCount
0 = don't loop
@field mStartFrame
offset into file
@field mFramesToPlay
number of frames to play
}
ScheduledAudioFileRegion = record
mTimeStamp: AudioTimeStamp;
mCompletionProc: ScheduledAudioFileRegionCompletionProc {__nullable};
mCompletionProcUserData: UnivPtr {__nullable};
mAudioFile: AudioFileID;
mLoopCount: UInt32;
mStartFrame: SInt64;
mFramesToPlay: UInt32;
end;
//=====================================================================================================================
//#pragma mark - OS X-specific Music Device Properties used by DLSMusicDevice
{$ifc TARGET_OS_MAC}
{!
@enum Property IDs
@abstract OS X-only audio unit property IDs used by the DLSMusicDevice
@constant kMusicDeviceProperty_SoundBankData
@discussion Scope:
Value Type:
Access:
@constant kMusicDeviceProperty_StreamFromDisk
@discussion Scope:
Value Type:
Access:
@constant kMusicDeviceProperty_SoundBankFSRef
@discussion Scope:
Value Type:
Access:
}
const
kMusicDeviceProperty_UsesInternalReverb = kAudioUnitProperty_UsesInternalReverb;
kMusicDeviceProperty_SoundBankData = 1008;
kMusicDeviceProperty_StreamFromDisk = 1011;
kMusicDeviceProperty_SoundBankFSRef = 1012;
//=====================================================================================================================
//#pragma mark - Music Device Properties used by DLSMusicDevice
{!
@enum Generic Property IDs
@abstract Audio unit property IDs used by DLSMusicDevice (OSX)
@constant kMusicDeviceProperty_InstrumentName
@discussion Scope: Global
Value Type: CFURLRef
Access: Read
@constant kMusicDeviceProperty_InstrumentNumber
@discussion Scope: Global
Value Type: UInt32
Access: Read
}
const
kMusicDeviceProperty_InstrumentName = 1001;
kMusicDeviceProperty_InstrumentNumber = 1004;
//=====================================================================================================================
//#pragma mark - Music Device Properties used by DLSMusicDevice and AUMIDISynth
{!
@enum Generic Property IDs
@abstract Audio unit property IDs used by AUMIDISynth (iOS) and DLSMusicDevice (OSX)
@constant kMusicDeviceProperty_InstrumentCount
@discussion Scope: Global
Value Type: UInt32
Access: Read
For a mono-timbral music instrument, this property should return 0 (it should be implemented).
For a multi-timbral music instrument, this property can return the number of independent patches that
are available to be chosen as an active patch for the instrument. For instance, for Apple's DLS Music Device
and AUMIDISynth, this value returns the number of patches that are found in a given DLS or SoundFont file when loaded.
@constant kMusicDeviceProperty_BankName
@discussion Scope: Global
Value Type: CFStringRef
Access: Read
@constant kMusicDeviceProperty_SoundBankURL
@discussion Scope: Global
Value Type: CFURLRef
Access: Read (Read/Write for AUMIDISynth)
For DLSMusicDevice, this is a read-only property to return the URL for the currently-loaded bank file.
For AUMIDISynth it is also writeable, and is used to specify the URL for the sound bank to load and use
for playback.
}
const
kMusicDeviceProperty_InstrumentCount = 1000;
kMusicDeviceProperty_BankName = 1007;
kMusicDeviceProperty_SoundBankURL = 1100;
//=====================================================================================================================
//#pragma mark - AUMIDISynth
{!
@enum Apple AUMIDISynth Property IDs
@abstract The collection of property IDs for the Apple Midi Synth audio unit.
@discussion The AUMIDISynth audio unit lets a client create fully GM-compatible Midi Synth.
@constant kAUMIDISynthProperty_EnablePreload
@discussion Scope: Global
Value Type: UInt32
Access: Write
Setting this property to 1 puts the MIDISynth in a mode where it will attempt to load
instruments from the bank or file when it receives a program change message. This
is used internally by the MusicSequence. It should only be used prior to MIDI playback,
and must be set back to 0 before attempting to start playback.
}
const
kAUMIDISynthProperty_EnablePreload = 4119;
//=====================================================================================================================
//#pragma mark - AUSampler
{!
@enum Apple AUSampler Property IDs
@abstract The collection of property IDs for the Apple Sampler audio unit.
@discussion The AUSampler audio unit lets a client create an editable, interactive
sampler synthesizer instrument.
@constant kAUSamplerProperty_LoadInstrument
@discussion Scope: Global
Value Type: AUSamplerInstrumentData
Access: Write
Load an instrument from an external DLS or Soundfont2 bank file, or from other file formats.
@constant kAUSamplerProperty_LoadAudioFiles
@discussion Scope: Global
Value Type: CFArrayRef
Access: Write
Create a new preset from a list of audio file paths. The CFArray should contain a set
of CFURLRefs, one per file. The previous preset will be completely cleared.
}
const
// range (4100->4999)
kAUSamplerProperty_LoadInstrument = 4102;
kAUSamplerProperty_LoadAudioFiles = 4101;
{
@struct AUSamplerInstrumentData
@abstract Used for loading an instrument from either an external bank file (i.e. DLS or SoundFont), an Apple
.aupreset, a Logic or GarageBand EXS24 sampler instrument, or creating a new default instrument from
a single audio file. The path to the bank or instrument file is specified in the fileURL field.
The instrumentType field distinguishes between the instrument types. The remaining fields of this
struct are used only for the kInstrumentType_DLSPreset and kInstrumentType_SF2Preset types to
identify the particular bank and preset IDs for the instrument you wish to load from the bank.
They represent values for MIDI controllers 0 and 32 and the MIDI present change message that would be
sent to a GM2-compatible synth for program changes. Use the provided constants
(kAUSampler_DefaultMelodicBankMSB, kAUSampler_DefaultPercussionBankMSB) to designate melodic or
percussion banks per the GM2 specification (GM-compatible DLS or Soundfont banks). For custom
non-GM-compatible DLS and Soundfont banks, use the actual MSB/LSB values associated with the desired preset.
@field fileURL
The URL of the path to the bank or instrument file. Caller is responsible for releasing the
provided CFURLRef.
@field instrumentType
The type of instrument being loaded or created. For example, use kInstrumentType_DLSPreset to load an
instrument from a DLS bank file.
@field bankMSB
For the preset instruments, the most significant byte value for a particular bank variation within that
file. Range is 0 to 127. Use kAUSampler_DefaultMelodicBankMSB by default.
@field bankLSB
For the preset instruments, the least significant byte value for a particular bank variation within that
file. Range is 0 to 127. Use kAUSampler_DefaultBankLSB by default.
@field presetID
For the preset instruments, the numeric ID of a particular preset within that bank to load.
Range is 0 to 127.
}
type
AUSamplerInstrumentData = record
fileURL: CFURLRef;
instrumentType: UInt8;
bankMSB: UInt8;
bankLSB: UInt8;
presetID: UInt8;
end;
AUSamplerInstrumentDataPtr = ^AUSamplerInstrumentData;
{
@enum InstrumentTypes
@abstract Values to specify the type of instrument being loaded.
@constant kInstrumentType_DLSPreset
@discussion A preset from a DLS bank file. Bank MSB, LSB and preset ID must be specified.
@constant kInstrumentType_SF2Preset
@discussion A preset from a SoundFont2 bank file. Bank MSB, LSB and preset ID must be specified.
@constant kInstrumentType_AUPreset
@discussion A native Apple .aupreset file created using the AUSampler's custom view.
@constant kInstrumentType_Audiofile
@discussion An audio file which will be used to create a default instrument with that file as its sole sample.
@constant kInstrumentType_EXS24
@discussion A Logic or GarageBand sampler instrument.
}
const
kInstrumentType_DLSPreset = 1;
kInstrumentType_SF2Preset = kInstrumentType_DLSPreset;
kInstrumentType_AUPreset = 2;
kInstrumentType_Audiofile = 3;
kInstrumentType_EXS24 = 4;
const
kAUSampler_DefaultPercussionBankMSB = $78;
kAUSampler_DefaultMelodicBankMSB = $79;
kAUSampler_DefaultBankLSB = $00;
//=====================================================================================================================
//#pragma mark - AUDeferredRenderer
{!
@enum AUDeferredRenderer
@discussion This audio unit has one input element and one output element. They must both have
the same format, which must be canonical (Float32 deinterleaved) and must have
the same number of channels.
The AUDeferredRenderer unit creates a high-priority producer thread, on which
calls by this AU for input are performed at a constant buffer size. This buffer size may be
set with the kAudioUnitProperty_DeferredRendererPullSize property. The deferred
renderer may be asked to render at different buffer sizes by a downstream unit or
host application, but it always pulls upstream at its constant buffer size.
The upstream pull size MUST be greater than or equal to the downstream pull
size.
The upstream producer thread runs in advance of calls to its Render
function, with respect to the timestamps being passed to Render and
PullInput. The difference between these timestamps is the unit's "latency",
which is always at least one upstream pull buffer. The client may specify
additional latency with the property
kAudioUnitProperty_DeferredRendererExtraLatency, which is a number of sample
frames.
It is possible, at Render time, for the producer thread to have not yet
finished rendering the necessary data. This generates an error. In order to
give the producer a small amount of extra time to finish rendering, the
client may set the unit's property
kAudioUnitProperty_DeferredRendererWaitFrames. If this property is non-zero,
then when Render finds that insufficient data has been produced, it will
sleep for the amount of realtime corresponding to the number of wait frames.
It will then check again to see if the required amount of data has been
produced, and fail if it hasn't.
@constant kAudioUnitProperty_DeferredRendererPullSize
@discussion Scope:
Value Type: UInt32
Access:
@constant kAudioUnitProperty_DeferredRendererExtraLatency
@discussion Scope:
Value Type: UInt32
Access:
@constant kAudioUnitProperty_DeferredRendererWaitFrames
@discussion Scope:
Value Type: UInt32
Access:
}
const
kAudioUnitProperty_DeferredRendererPullSize = 3320;
kAudioUnitProperty_DeferredRendererExtraLatency = 3321;
kAudioUnitProperty_DeferredRendererWaitFrames = 3322;
//=====================================================================================================================
//#pragma mark - AUNetReceive
{!
@enum AUNetReceive
@constant kAUNetReceiveProperty_Hostname
@discussion Scope: Global
Value Type: CFStringRef
Access:
The hostname from which you wish to receive audio.
For GetProperty, the returned CFStringRef is a copy and therefore must be released by the caller.
The UI view for AUNetReceive does the resolution of Bonjour service names to hostnames.
Clients who are using this AU programmatically using Bonjour will have to do this resolution themselves.
It is not done by the AU.
@constant kAUNetReceiveProperty_Password
@discussion Scope: Global
Value Type: CFStringRef
Access: Read / Write
The password to send to the sender. Leave unset or set to the empty string for no password.
For GetProperty, the returned CFStringRef is a copy and therefore must be released by the caller.
}
const
kAUNetReceiveProperty_Hostname = 3511;
kAUNetReceiveProperty_Password = 3512;
//=====================================================================================================================
//#pragma mark - AUNetSend
{!
@enum AUNetSend
@constant kAUNetSendProperty_PortNum
@discussion Scope: Global
Value Type: UInt32
Access: Read / Write
The network port number on which to send.
@constant kAUNetSendProperty_TransmissionFormat
@discussion Scope: Global
Value Type: AudioStreamBasicDescription
Access: Read / Write
Get or set an arbitrary format that will be used to transmit the audio.
For compressed formats, it is recommended to use kAUNetSendProperty_TransmissionFormatIndex instead of this property,
since there is no way to specify a bit rate with this property.
@constant kAUNetSendProperty_TransmissionFormatIndex
@discussion Scope: Global
Value Type: UInt32
Access: Read / Write
Get or set the index of the preset format that will be used to transmit the audio.
The format indices can be found in the NetSendPresetFormat enum.
@constant kAUNetSendProperty_ServiceName
@discussion Scope: Global
Value Type: CFStringRef
Access: Read / Write
The name you want to publish for this network service.
For GetProperty, the returned CFStringRef is a copy and therefore must be released by the caller.
@constant kAUNetSendProperty_Disconnect
@discussion Scope: Global
Value Type: UInt32
Access: Read / Write
In order to disconnect, call this with a non-zero value.
In order to connect, call this with a zero value.
For GetProperty, the returned value the last value set by the caller.
To get the current connection status, get the value of the parameter kAUNetReceiveParam_Status.
@constant kAUNetSendProperty_Password
@discussion Scope: Global
Value Type: CFStringRef
Access: Read / Write
The password that must be used by the receiver. Leave unset or set to the empty string for no password.
For GetProperty, the returned CFStringRef is a copy and therefore must be released by the caller.
}
const
kAUNetSendProperty_PortNum = 3513;
kAUNetSendProperty_TransmissionFormat = 3514;
kAUNetSendProperty_TransmissionFormatIndex = 3515;
kAUNetSendProperty_ServiceName = 3516;
kAUNetSendProperty_Disconnect = 3517;
kAUNetSendProperty_Password = 3518;
{!
@enum NetSendPresetFormat
@constant kAUNetSendPresetFormat_PCMFloat32
@discussion 1411 kilobits per second per channel @ 44100KHz (kilo == 1000 not 1024)
@constant kAUNetSendPresetFormat_PCMInt24
@discussion 1058 kilobits per second per channel @ 44100KHz
@constant kAUNetSendPresetFormat_PCMInt16
@discussion 706 kilobits per second per channel @ 44100KHz
@constant kAUNetSendPresetFormat_Lossless24
@discussion 650 kilobits per second per channel @ 44100KHz
@constant kAUNetSendPresetFormat_Lossless16
@discussion 350 kilobits per second per channel @ 44100KHz
@constant kAUNetSendPresetFormat_ULaw
@discussion 353 kilobits per second per channel @ 44100KHz
@constant kAUNetSendPresetFormat_IMA4
@discussion 176 kilobits per second per channel @ 44100KHz
@constant kAUNetSendPresetFormat_AAC_128kbpspc
@discussion 128 kilobits per second per channel
@constant kAUNetSendPresetFormat_AAC_96kbpspc
@discussion 96 kilobits per second per channel
@constant kAUNetSendPresetFormat_AAC_80kbpspc
@discussion 80 kilobits per second per channel
@constant kAUNetSendPresetFormat_AAC_64kbpspc
@discussion 64 kilobits per second per channel
@constant kAUNetSendPresetFormat_AAC_48kbpspc
@discussion 48 kilobits per second per channel
@constant kAUNetSendPresetFormat_AAC_40kbpspc
@discussion 40 kilobits per second per channel
@constant kAUNetSendPresetFormat_AAC_32kbpspc
@discussion 32 kilobits per second per channel
@constant kAUNetSendNumPresetFormats = 14
}
const
kAUNetSendPresetFormat_PCMFloat32 = 0;
kAUNetSendPresetFormat_PCMInt24 = 1;
kAUNetSendPresetFormat_PCMInt16 = 2;
kAUNetSendPresetFormat_Lossless24 = 3;
kAUNetSendPresetFormat_Lossless16 = 4;
kAUNetSendPresetFormat_ULaw = 5;
kAUNetSendPresetFormat_IMA4 = 6;
kAUNetSendPresetFormat_AAC_128kbpspc = 7;
kAUNetSendPresetFormat_AAC_96kbpspc = 8;
kAUNetSendPresetFormat_AAC_80kbpspc = 9;
kAUNetSendPresetFormat_AAC_64kbpspc = 10;
kAUNetSendPresetFormat_AAC_48kbpspc = 11;
kAUNetSendPresetFormat_AAC_40kbpspc = 12;
kAUNetSendPresetFormat_AAC_32kbpspc = 13;
kAUNetSendPresetFormat_AAC_LD_64kbpspc = 14;
kAUNetSendPresetFormat_AAC_LD_48kbpspc = 15;
kAUNetSendPresetFormat_AAC_LD_40kbpspc = 16;
kAUNetSendPresetFormat_AAC_LD_32kbpspc = 17;
kAUNetSendNumPresetFormats = 18;
{$endc} { TARGET_OS_MAC }
//=====================================================================================================================
//#pragma mark -
//#pragma mark Deprecated Properties
{$ifc TARGET_OS_MAC}
// NumVersion is no longer used (originally from MacTypes.h)
type
//#if TARGET_RT_BIG_ENDIAN
{$ifc TARGET_RT_BIG_ENDIAN}
AUNumVersion = record
{ Numeric version part of 'vers' resource }
majorRev: UInt8; {1st part of version number in BCD}
minorAndBugRev: UInt8; {2nd & 3rd part of version number share a byte}
stage: UInt8; {stage code: dev, alpha, beta, final}
nonRelRev: UInt8; {revision level of non-released version}
end;
{$elsec} { TARGET_RT_BIG_ENDIAN }
AUNumVersion = record
{ Numeric version part of 'vers' resource accessible in little endian format }
nonRelRev: UInt8; {revision level of non-released version}
stage: UInt8; {stage code: dev, alpha, beta, final}
minorAndBugRev: UInt8; {2nd & 3rd part of version number share a byte}
majorRev: UInt8; {1st part of version number in BCD}
end;
{$endc} { TARGET_RT_BIG_ENDIAN }
AUNumVersionPtr = ^AUNumVersion;
AUNumVersionHandle = ^AUNumVersionPtr;
{!
@struct AUHostIdentifier
@abstract Used to describe the name and version of the audio unit's host
}
type
AUHostIdentifier = record
hostName: CFStringRef;
hostVersion: AUNumVersion;
end;
//=====================================================================================================================
// GENERIC
const
kAudioUnitParameterFlag_Global = 1 shl 0; // parameter scope is global
kAudioUnitParameterFlag_Input = 1 shl 1; // parameter scope is input
kAudioUnitParameterFlag_Output = 1 shl 2; // parameter scope is output
kAudioUnitParameterFlag_Group = 1 shl 3; // parameter scope is group
const
kAudioUnitParameterFlag_HasName = kAudioUnitParameterFlag_ValuesHaveStrings;
const
//kAudioUnitProperty_SetInputCallback = 7 -> deprecated
kAudioUnitProperty_SRCAlgorithm = 9; // see kAudioUnitProperty_SampleRateConverterComplexity
kAudioUnitProperty_MIDIControlMapping = 17; // see ParameterMIDIMapping Properties
kAudioUnitProperty_CurrentPreset = 28; // see PresentPreset
kAudioUnitProperty_ParameterValueName = kAudioUnitProperty_ParameterStringFromValue;
kAudioUnitProperty_BusCount = kAudioUnitProperty_ElementCount;
kAudioOfflineUnitProperty_InputSize = kAudioUnitOfflineProperty_InputSize;
kAudioOfflineUnitProperty_OutputSize = kAudioUnitOfflineProperty_OutputSize;
const
kAudioUnitSRCAlgorithm_Polyphase = FourCharCode('poly'); // same as kAudioUnitSampleRateConverterComplexity_Normal
kAudioUnitSRCAlgorithm_MediumQuality = FourCharCode('csrc'); // same as kAudioUnitSampleRateConverterComplexity_Normal
// Deprecated in Mac OS X v10.2. See AUParameterMIDIMapping.
type
AudioUnitMIDIControlMapping = record
midiNRPN: UInt16;
midiControl: UInt8;
scope: UInt8;
element: AudioUnitElement;
parameter: AudioUnitParameterID;
end;
// Deprecated. See AudioUnitParameterStringFromValue for equivalent structure, but with clearer field names
type
AudioUnitParameterValueName = record
inParamID: AudioUnitParameterID;
inValue: {const} Float32Ptr; // may be NULL if should translate current parameter value
outName: CFStringRef; // see comments for kAudioUnitProperty_ParameterStringFromValue
end;
//=====================================================================================================================
// Deprecated. These properties are Apple specific.
const
kMusicDeviceProperty_GroupOutputBus = 1002;
kMusicDeviceProperty_SoundBankFSSpec = 1003;
kAudioUnitProperty_PannerMode = 3008;
const
kAudioUnitProperty_SpeakerConfiguration = 3001;
// Deprecated in favor of the newer AudioChannelLayout
// structure and its supporting property.
const
kSpeakerConfiguration_HeadPhones = 0;
kSpeakerConfiguration_Stereo = 1;
kSpeakerConfiguration_Quad = 2;
kSpeakerConfiguration_5_0 = 3;
kSpeakerConfiguration_5_1 = kSpeakerConfiguration_5_0;
// Deprecated in favor of the newer AUSamplerInstrumentData
// structure and its supporting property.
type
AUSamplerBankPresetData = record
bankURL: CFURLRef;
bankMSB: UInt8;
bankLSB: UInt8;
presetID: UInt8;
reserved: UInt8;
end;
AUSamplerBankPresetDataPtr = ^AUSamplerBankPresetData;
const
kAUSamplerProperty_LoadPresetFromBank = 4100;
kAUSamplerProperty_BankAndPreset = kAUSamplerProperty_LoadPresetFromBank;
{$endc} { TARGET_OS_MAC }
{$ifc not defined MACOSALLINCLUDE or not MACOSALLINCLUDE}
implementation
function GetAudioUnitParameterDisplayType(flags : UInt32) : UInt32; inline;
begin
GetAudioUnitParameterDisplayType := flags and kAudioUnitParameterFlag_DisplayMask
end;
function AudioUnitDisplayTypeIsLogarithmic(flags : UInt32) : Boolean; inline;
begin
AudioUnitDisplayTypeIsLogarithmic := GetAudioUnitParameterDisplayType(flags) = kAudioUnitParameterFlag_DisplayLogarithmic
end;
function AudioUnitDisplayTypeIsSquareRoot(flags : UInt32) : Boolean; inline;
begin
AudioUnitDisplayTypeIsSquareRoot := GetAudioUnitParameterDisplayType(flags) = kAudioUnitParameterFlag_DisplaySquareRoot
end;
function AudioUnitDisplayTypeIsSquared(flags : UInt32) : Boolean; inline;
begin
AudioUnitDisplayTypeIsSquared := GetAudioUnitParameterDisplayType(flags) = kAudioUnitParameterFlag_DisplaySquared
end;
function AudioUnitDisplayTypeIsCubed(flags : UInt32) : Boolean; inline;
begin
AudioUnitDisplayTypeIsCubed := GetAudioUnitParameterDisplayType(flags) = kAudioUnitParameterFlag_DisplayCubed
end;
function AudioUnitDisplayTypeIsCubeRoot(flags : UInt32) : Boolean; inline;
begin
AudioUnitDisplayTypeIsCubeRoot := GetAudioUnitParameterDisplayType(flags) = kAudioUnitParameterFlag_DisplayCubeRoot
end;
function AudioUnitDisplayTypeIsExponential(flags : UInt32) : Boolean; inline;
begin
AudioUnitDisplayTypeIsExponential := GetAudioUnitParameterDisplayType(flags) = kAudioUnitParameterFlag_DisplayExponential
end;
procedure SetAudioUnitParameterDisplayType(var flags : UInt32; displayType : UInt32); inline;
begin
flags := (flags and (not kAudioUnitParameterFlag_DisplayMask)) or displayType
end;
end.
{$endc} {not MACOSALLINCLUDE}