Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
pandas / tests / arrays / test_datetimes.py
Size: Mime:
"""
Tests for DatetimeArray
"""
import operator

import numpy as np
import pytest

from pandas.core.dtypes.dtypes import DatetimeTZDtype

import pandas as pd
from pandas import NaT
import pandas._testing as tm
from pandas.core.arrays import DatetimeArray
from pandas.core.arrays.datetimes import sequence_to_dt64ns


class TestDatetimeArrayConstructor:
    def test_from_sequence_invalid_type(self):
        mi = pd.MultiIndex.from_product([np.arange(5), np.arange(5)])
        with pytest.raises(TypeError, match="Cannot create a DatetimeArray"):
            DatetimeArray._from_sequence(mi)

    def test_only_1dim_accepted(self):
        arr = np.array([0, 1, 2, 3], dtype="M8[h]").astype("M8[ns]")

        with pytest.raises(ValueError, match="Only 1-dimensional"):
            # 3-dim, we allow 2D to sneak in for ops purposes GH#29853
            DatetimeArray(arr.reshape(2, 2, 1))

        with pytest.raises(ValueError, match="Only 1-dimensional"):
            # 0-dim
            DatetimeArray(arr[[0]].squeeze())

    def test_freq_validation(self):
        # GH#24623 check that invalid instances cannot be created with the
        #  public constructor
        arr = np.arange(5, dtype=np.int64) * 3600 * 10 ** 9

        msg = (
            "Inferred frequency H from passed values does not "
            "conform to passed frequency W-SUN"
        )
        with pytest.raises(ValueError, match=msg):
            DatetimeArray(arr, freq="W")

    @pytest.mark.parametrize(
        "meth",
        [
            DatetimeArray._from_sequence,
            sequence_to_dt64ns,
            pd.to_datetime,
            pd.DatetimeIndex,
        ],
    )
    def test_mixing_naive_tzaware_raises(self, meth):
        # GH#24569
        arr = np.array([pd.Timestamp("2000"), pd.Timestamp("2000", tz="CET")])

        msg = (
            "Cannot mix tz-aware with tz-naive values|"
            "Tz-aware datetime.datetime cannot be converted "
            "to datetime64 unless utc=True"
        )

        for obj in [arr, arr[::-1]]:
            # check that we raise regardless of whether naive is found
            #  before aware or vice-versa
            with pytest.raises(ValueError, match=msg):
                meth(obj)

    def test_from_pandas_array(self):
        arr = pd.array(np.arange(5, dtype=np.int64)) * 3600 * 10 ** 9

        result = DatetimeArray._from_sequence(arr)._with_freq("infer")

        expected = pd.date_range("1970-01-01", periods=5, freq="H")._data
        tm.assert_datetime_array_equal(result, expected)

    def test_mismatched_timezone_raises(self):
        arr = DatetimeArray(
            np.array(["2000-01-01T06:00:00"], dtype="M8[ns]"),
            dtype=DatetimeTZDtype(tz="US/Central"),
        )
        dtype = DatetimeTZDtype(tz="US/Eastern")
        with pytest.raises(TypeError, match="Timezone of the array"):
            DatetimeArray(arr, dtype=dtype)

    def test_non_array_raises(self):
        with pytest.raises(ValueError, match="list"):
            DatetimeArray([1, 2, 3])

    def test_bool_dtype_raises(self):
        arr = np.array([1, 2, 3], dtype="bool")

        with pytest.raises(
            ValueError, match="The dtype of 'values' is incorrect.*bool"
        ):
            DatetimeArray(arr)

        msg = r"dtype bool cannot be converted to datetime64\[ns\]"
        with pytest.raises(TypeError, match=msg):
            DatetimeArray._from_sequence(arr)

        with pytest.raises(TypeError, match=msg):
            sequence_to_dt64ns(arr)

        with pytest.raises(TypeError, match=msg):
            pd.DatetimeIndex(arr)

        with pytest.raises(TypeError, match=msg):
            pd.to_datetime(arr)

    def test_incorrect_dtype_raises(self):
        with pytest.raises(ValueError, match="Unexpected value for 'dtype'."):
            DatetimeArray(np.array([1, 2, 3], dtype="i8"), dtype="category")

    def test_freq_infer_raises(self):
        with pytest.raises(ValueError, match="Frequency inference"):
            DatetimeArray(np.array([1, 2, 3], dtype="i8"), freq="infer")

    def test_copy(self):
        data = np.array([1, 2, 3], dtype="M8[ns]")
        arr = DatetimeArray(data, copy=False)
        assert arr._data is data

        arr = DatetimeArray(data, copy=True)
        assert arr._data is not data


class TestDatetimeArrayComparisons:
    # TODO: merge this into tests/arithmetic/test_datetime64 once it is
    #  sufficiently robust

    def test_cmp_dt64_arraylike_tznaive(self, all_compare_operators):
        # arbitrary tz-naive DatetimeIndex
        opname = all_compare_operators.strip("_")
        op = getattr(operator, opname)

        dti = pd.date_range("2016-01-1", freq="MS", periods=9, tz=None)
        arr = DatetimeArray(dti)
        assert arr.freq == dti.freq
        assert arr.tz == dti.tz

        right = dti

        expected = np.ones(len(arr), dtype=bool)
        if opname in ["ne", "gt", "lt"]:
            # for these the comparisons should be all-False
            expected = ~expected

        result = op(arr, arr)
        tm.assert_numpy_array_equal(result, expected)
        for other in [right, np.array(right)]:
            # TODO: add list and tuple, and object-dtype once those
            #  are fixed in the constructor
            result = op(arr, other)
            tm.assert_numpy_array_equal(result, expected)

            result = op(other, arr)
            tm.assert_numpy_array_equal(result, expected)


class TestDatetimeArray:
    def test_astype_to_same(self):
        arr = DatetimeArray._from_sequence(
            ["2000"], dtype=DatetimeTZDtype(tz="US/Central")
        )
        result = arr.astype(DatetimeTZDtype(tz="US/Central"), copy=False)
        assert result is arr

    @pytest.mark.parametrize("dtype", ["datetime64[ns]", "datetime64[ns, UTC]"])
    @pytest.mark.parametrize(
        "other", ["datetime64[ns]", "datetime64[ns, UTC]", "datetime64[ns, CET]"]
    )
    def test_astype_copies(self, dtype, other):
        # https://github.com/pandas-dev/pandas/pull/32490
        s = pd.Series([1, 2], dtype=dtype)
        orig = s.copy()
        t = s.astype(other)
        t[:] = pd.NaT
        tm.assert_series_equal(s, orig)

    @pytest.mark.parametrize("dtype", [int, np.int32, np.int64, "uint32", "uint64"])
    def test_astype_int(self, dtype):
        arr = DatetimeArray._from_sequence([pd.Timestamp("2000"), pd.Timestamp("2001")])
        result = arr.astype(dtype)

        if np.dtype(dtype).kind == "u":
            expected_dtype = np.dtype("uint64")
        else:
            expected_dtype = np.dtype("int64")
        expected = arr.astype(expected_dtype)

        assert result.dtype == expected_dtype
        tm.assert_numpy_array_equal(result, expected)

    def test_tz_setter_raises(self):
        arr = DatetimeArray._from_sequence(
            ["2000"], dtype=DatetimeTZDtype(tz="US/Central")
        )
        with pytest.raises(AttributeError, match="tz_localize"):
            arr.tz = "UTC"

    def test_setitem_str_impute_tz(self, tz_naive_fixture):
        # Like for getitem, if we are passed a naive-like string, we impute
        #  our own timezone.
        tz = tz_naive_fixture

        data = np.array([1, 2, 3], dtype="M8[ns]")
        dtype = data.dtype if tz is None else DatetimeTZDtype(tz=tz)
        arr = DatetimeArray(data, dtype=dtype)
        expected = arr.copy()

        ts = pd.Timestamp("2020-09-08 16:50").tz_localize(tz)
        setter = str(ts.tz_localize(None))

        # Setting a scalar tznaive string
        expected[0] = ts
        arr[0] = setter
        tm.assert_equal(arr, expected)

        # Setting a listlike of tznaive strings
        expected[1] = ts
        arr[:2] = [setter, setter]
        tm.assert_equal(arr, expected)

    def test_setitem_different_tz_raises(self):
        data = np.array([1, 2, 3], dtype="M8[ns]")
        arr = DatetimeArray(data, copy=False, dtype=DatetimeTZDtype(tz="US/Central"))
        with pytest.raises(TypeError, match="Cannot compare tz-naive and tz-aware"):
            arr[0] = pd.Timestamp("2000")

        with pytest.raises(ValueError, match="US/Central"):
            arr[0] = pd.Timestamp("2000", tz="US/Eastern")

    def test_setitem_clears_freq(self):
        a = DatetimeArray(pd.date_range("2000", periods=2, freq="D", tz="US/Central"))
        a[0] = pd.Timestamp("2000", tz="US/Central")
        assert a.freq is None

    @pytest.mark.parametrize(
        "obj",
        [
            pd.Timestamp.now(),
            pd.Timestamp.now().to_datetime64(),
            pd.Timestamp.now().to_pydatetime(),
        ],
    )
    def test_setitem_objects(self, obj):
        # make sure we accept datetime64 and datetime in addition to Timestamp
        dti = pd.date_range("2000", periods=2, freq="D")
        arr = dti._data

        arr[0] = obj
        assert arr[0] == obj

    def test_repeat_preserves_tz(self):
        dti = pd.date_range("2000", periods=2, freq="D", tz="US/Central")
        arr = DatetimeArray(dti)

        repeated = arr.repeat([1, 1])

        # preserves tz and values, but not freq
        expected = DatetimeArray(arr.asi8, freq=None, dtype=arr.dtype)
        tm.assert_equal(repeated, expected)

    def test_value_counts_preserves_tz(self):
        dti = pd.date_range("2000", periods=2, freq="D", tz="US/Central")
        arr = DatetimeArray(dti).repeat([4, 3])

        result = arr.value_counts()

        # Note: not tm.assert_index_equal, since `freq`s do not match
        assert result.index.equals(dti)

        arr[-2] = pd.NaT
        result = arr.value_counts()
        expected = pd.Series([1, 4, 2], index=[pd.NaT, dti[0], dti[1]])
        tm.assert_series_equal(result, expected)

    @pytest.mark.parametrize("method", ["pad", "backfill"])
    def test_fillna_preserves_tz(self, method):
        dti = pd.date_range("2000-01-01", periods=5, freq="D", tz="US/Central")
        arr = DatetimeArray(dti, copy=True)
        arr[2] = pd.NaT

        fill_val = dti[1] if method == "pad" else dti[3]
        expected = DatetimeArray._from_sequence(
            [dti[0], dti[1], fill_val, dti[3], dti[4]],
            dtype=DatetimeTZDtype(tz="US/Central"),
        )

        result = arr.fillna(method=method)
        tm.assert_extension_array_equal(result, expected)

        # assert that arr and dti were not modified in-place
        assert arr[2] is pd.NaT
        assert dti[2] == pd.Timestamp("2000-01-03", tz="US/Central")

    def test_array_interface_tz(self):
        tz = "US/Central"
        data = DatetimeArray(pd.date_range("2017", periods=2, tz=tz))
        result = np.asarray(data)

        expected = np.array(
            [
                pd.Timestamp("2017-01-01T00:00:00", tz=tz),
                pd.Timestamp("2017-01-02T00:00:00", tz=tz),
            ],
            dtype=object,
        )
        tm.assert_numpy_array_equal(result, expected)

        result = np.asarray(data, dtype=object)
        tm.assert_numpy_array_equal(result, expected)

        result = np.asarray(data, dtype="M8[ns]")

        expected = np.array(
            ["2017-01-01T06:00:00", "2017-01-02T06:00:00"], dtype="M8[ns]"
        )
        tm.assert_numpy_array_equal(result, expected)

    def test_array_interface(self):
        data = DatetimeArray(pd.date_range("2017", periods=2))
        expected = np.array(
            ["2017-01-01T00:00:00", "2017-01-02T00:00:00"], dtype="datetime64[ns]"
        )

        result = np.asarray(data)
        tm.assert_numpy_array_equal(result, expected)

        result = np.asarray(data, dtype=object)
        expected = np.array(
            [pd.Timestamp("2017-01-01T00:00:00"), pd.Timestamp("2017-01-02T00:00:00")],
            dtype=object,
        )
        tm.assert_numpy_array_equal(result, expected)

    @pytest.mark.parametrize("index", [True, False])
    def test_searchsorted_different_tz(self, index):
        data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
        arr = DatetimeArray(data, freq="D").tz_localize("Asia/Tokyo")
        if index:
            arr = pd.Index(arr)

        expected = arr.searchsorted(arr[2])
        result = arr.searchsorted(arr[2].tz_convert("UTC"))
        assert result == expected

        expected = arr.searchsorted(arr[2:6])
        result = arr.searchsorted(arr[2:6].tz_convert("UTC"))
        tm.assert_equal(result, expected)

    @pytest.mark.parametrize("index", [True, False])
    def test_searchsorted_tzawareness_compat(self, index):
        data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
        arr = DatetimeArray(data, freq="D")
        if index:
            arr = pd.Index(arr)

        mismatch = arr.tz_localize("Asia/Tokyo")

        msg = "Cannot compare tz-naive and tz-aware datetime-like objects"
        with pytest.raises(TypeError, match=msg):
            arr.searchsorted(mismatch[0])
        with pytest.raises(TypeError, match=msg):
            arr.searchsorted(mismatch)

        with pytest.raises(TypeError, match=msg):
            mismatch.searchsorted(arr[0])
        with pytest.raises(TypeError, match=msg):
            mismatch.searchsorted(arr)

    @pytest.mark.parametrize(
        "other",
        [
            1,
            np.int64(1),
            1.0,
            np.timedelta64("NaT"),
            pd.Timedelta(days=2),
            "invalid",
            np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9,
            np.arange(10).view("timedelta64[ns]") * 24 * 3600 * 10 ** 9,
            pd.Timestamp.now().to_period("D"),
        ],
    )
    @pytest.mark.parametrize("index", [True, False])
    def test_searchsorted_invalid_types(self, other, index):
        data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
        arr = DatetimeArray(data, freq="D")
        if index:
            arr = pd.Index(arr)

        msg = "|".join(
            [
                "searchsorted requires compatible dtype or scalar",
                "value should be a 'Timestamp', 'NaT', or array of those. Got",
            ]
        )
        with pytest.raises(TypeError, match=msg):
            arr.searchsorted(other)

    def test_shift_fill_value(self):
        dti = pd.date_range("2016-01-01", periods=3)

        dta = dti._data
        expected = DatetimeArray(np.roll(dta._data, 1))

        fv = dta[-1]
        for fill_value in [fv, fv.to_pydatetime(), fv.to_datetime64()]:
            result = dta.shift(1, fill_value=fill_value)
            tm.assert_datetime_array_equal(result, expected)

        dta = dta.tz_localize("UTC")
        expected = expected.tz_localize("UTC")
        fv = dta[-1]
        for fill_value in [fv, fv.to_pydatetime()]:
            result = dta.shift(1, fill_value=fill_value)
            tm.assert_datetime_array_equal(result, expected)

    def test_shift_value_tzawareness_mismatch(self):
        dti = pd.date_range("2016-01-01", periods=3)

        dta = dti._data

        fv = dta[-1].tz_localize("UTC")
        for invalid in [fv, fv.to_pydatetime()]:
            with pytest.raises(TypeError, match="Cannot compare"):
                dta.shift(1, fill_value=invalid)

        dta = dta.tz_localize("UTC")
        fv = dta[-1].tz_localize(None)
        for invalid in [fv, fv.to_pydatetime(), fv.to_datetime64()]:
            with pytest.raises(TypeError, match="Cannot compare"):
                dta.shift(1, fill_value=invalid)

    def test_shift_requires_tzmatch(self):
        # since filling is setitem-like, we require a matching timezone,
        #  not just matching tzawawreness
        dti = pd.date_range("2016-01-01", periods=3, tz="UTC")
        dta = dti._data

        fill_value = pd.Timestamp("2020-10-18 18:44", tz="US/Pacific")

        msg = "Timezones don't match. 'UTC' != 'US/Pacific'"
        with pytest.raises(ValueError, match=msg):
            dta.shift(1, fill_value=fill_value)


class TestSequenceToDT64NS:
    def test_tz_dtype_mismatch_raises(self):
        arr = DatetimeArray._from_sequence(
            ["2000"], dtype=DatetimeTZDtype(tz="US/Central")
        )
        with pytest.raises(TypeError, match="data is already tz-aware"):
            sequence_to_dt64ns(arr, dtype=DatetimeTZDtype(tz="UTC"))

    def test_tz_dtype_matches(self):
        arr = DatetimeArray._from_sequence(
            ["2000"], dtype=DatetimeTZDtype(tz="US/Central")
        )
        result, _, _ = sequence_to_dt64ns(arr, dtype=DatetimeTZDtype(tz="US/Central"))
        tm.assert_numpy_array_equal(arr._data, result)


class TestReductions:
    @pytest.fixture
    def arr1d(self, tz_naive_fixture):
        tz = tz_naive_fixture
        dtype = DatetimeTZDtype(tz=tz) if tz is not None else np.dtype("M8[ns]")
        arr = DatetimeArray._from_sequence(
            [
                "2000-01-03",
                "2000-01-03",
                "NaT",
                "2000-01-02",
                "2000-01-05",
                "2000-01-04",
            ],
            dtype=dtype,
        )
        return arr

    def test_min_max(self, arr1d):
        arr = arr1d
        tz = arr.tz

        result = arr.min()
        expected = pd.Timestamp("2000-01-02", tz=tz)
        assert result == expected

        result = arr.max()
        expected = pd.Timestamp("2000-01-05", tz=tz)
        assert result == expected

        result = arr.min(skipna=False)
        assert result is pd.NaT

        result = arr.max(skipna=False)
        assert result is pd.NaT

    @pytest.mark.parametrize("tz", [None, "US/Central"])
    @pytest.mark.parametrize("skipna", [True, False])
    def test_min_max_empty(self, skipna, tz):
        dtype = DatetimeTZDtype(tz=tz) if tz is not None else np.dtype("M8[ns]")
        arr = DatetimeArray._from_sequence([], dtype=dtype)
        result = arr.min(skipna=skipna)
        assert result is pd.NaT

        result = arr.max(skipna=skipna)
        assert result is pd.NaT

    @pytest.mark.parametrize("tz", [None, "US/Central"])
    @pytest.mark.parametrize("skipna", [True, False])
    def test_median_empty(self, skipna, tz):
        dtype = DatetimeTZDtype(tz=tz) if tz is not None else np.dtype("M8[ns]")
        arr = DatetimeArray._from_sequence([], dtype=dtype)
        result = arr.median(skipna=skipna)
        assert result is pd.NaT

        arr = arr.reshape(0, 3)
        result = arr.median(axis=0, skipna=skipna)
        expected = type(arr)._from_sequence([pd.NaT, pd.NaT, pd.NaT], dtype=arr.dtype)
        tm.assert_equal(result, expected)

        result = arr.median(axis=1, skipna=skipna)
        expected = type(arr)._from_sequence([], dtype=arr.dtype)
        tm.assert_equal(result, expected)

    def test_median(self, arr1d):
        arr = arr1d

        result = arr.median()
        assert result == arr[0]
        result = arr.median(skipna=False)
        assert result is pd.NaT

        result = arr.dropna().median(skipna=False)
        assert result == arr[0]

        result = arr.median(axis=0)
        assert result == arr[0]

    def test_median_axis(self, arr1d):
        arr = arr1d
        assert arr.median(axis=0) == arr.median()
        assert arr.median(axis=0, skipna=False) is pd.NaT

        msg = r"abs\(axis\) must be less than ndim"
        with pytest.raises(ValueError, match=msg):
            arr.median(axis=1)

    @pytest.mark.filterwarnings("ignore:All-NaN slice encountered:RuntimeWarning")
    def test_median_2d(self, arr1d):
        arr = arr1d.reshape(1, -1)

        # axis = None
        assert arr.median() == arr1d.median()
        assert arr.median(skipna=False) is pd.NaT

        # axis = 0
        result = arr.median(axis=0)
        expected = arr1d
        tm.assert_equal(result, expected)

        # Since column 3 is all-NaT, we get NaT there with or without skipna
        result = arr.median(axis=0, skipna=False)
        expected = arr1d
        tm.assert_equal(result, expected)

        # axis = 1
        result = arr.median(axis=1)
        expected = type(arr)._from_sequence([arr1d.median()])
        tm.assert_equal(result, expected)

        result = arr.median(axis=1, skipna=False)
        expected = type(arr)._from_sequence([pd.NaT], dtype=arr.dtype)
        tm.assert_equal(result, expected)

    def test_mean(self, arr1d):
        arr = arr1d

        # manually verified result
        expected = arr[0] + 0.4 * pd.Timedelta(days=1)

        result = arr.mean()
        assert result == expected
        result = arr.mean(skipna=False)
        assert result is pd.NaT

        result = arr.dropna().mean(skipna=False)
        assert result == expected

        result = arr.mean(axis=0)
        assert result == expected

    def test_mean_2d(self):
        dti = pd.date_range("2016-01-01", periods=6, tz="US/Pacific")
        dta = dti._data.reshape(3, 2)

        result = dta.mean(axis=0)
        expected = dta[1]
        tm.assert_datetime_array_equal(result, expected)

        result = dta.mean(axis=1)
        expected = dta[:, 0] + pd.Timedelta(hours=12)
        tm.assert_datetime_array_equal(result, expected)

        result = dta.mean(axis=None)
        expected = dti.mean()
        assert result == expected

    @pytest.mark.parametrize("skipna", [True, False])
    def test_mean_empty(self, arr1d, skipna):
        arr = arr1d[:0]

        assert arr.mean(skipna=skipna) is NaT

        arr2d = arr.reshape(0, 3)
        result = arr2d.mean(axis=0, skipna=skipna)
        expected = DatetimeArray._from_sequence([NaT, NaT, NaT], dtype=arr.dtype)
        tm.assert_datetime_array_equal(result, expected)

        result = arr2d.mean(axis=1, skipna=skipna)
        expected = arr  # i.e. 1D, empty
        tm.assert_datetime_array_equal(result, expected)

        result = arr2d.mean(axis=None, skipna=skipna)
        assert result is NaT