Repository URL to install this package:
Version:
7.26.0-0.2 ▾
|
/* $NoKeywords: $ */
/*
//
// Copyright (c) 1993-2012 Robert McNeel & Associates. All rights reserved.
// OpenNURBS, Rhinoceros, and Rhino3D are registered trademarks of Robert
// McNeel & Associates.
//
// THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY.
// ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE AND OF
// MERCHANTABILITY ARE HEREBY DISCLAIMED.
//
// For complete openNURBS copyright information see <http://www.opennurbs.org>.
//
////////////////////////////////////////////////////////////////
*/
#if !defined(ON_POLYLINE_INC_)
#define ON_POLYLINE_INC_
class ON_CLASS ON_Polyline : public ON_3dPointArray
{
public:
ON_Polyline();
ON_Polyline(const ON_3dPointArray&);
ON_Polyline& operator=(const ON_3dPointArray&);
~ON_Polyline();
// Description:
// Create a regular polygon inscribed in a circle.
// The vertices of the polygon will be on the circle.
// Parameters:
// circle - [in]
// side_count - [in] (>=3) number of sides
// Returns:
// true if successful. false if circle is invalid or
// side_count < 3.
bool CreateInscribedPolygon(
const ON_Circle& circle,
int side_count
);
// Description:
// Create a regular polygon circumscribe about a circle.
// The midpoints of the polygon's edges will be tanget to the
// circle.
// Parameters:
// circle - [in]
// side_count - [in] (>=3) number of sides
// Returns:
// true if successful. false if circle is invalid or
// side_count < 3.
bool CreateCircumscribedPolygon(
const ON_Circle& circle,
int side_count
);
// Description:
// Create a regular star polygon.
// The star begins at circle.PointAt(0) and the vertices alternate
// between being on circle and begin on a concentric circle of
// other_radius.
// Parameters:
// circle - [in] circle star polygon starts on
// other_radius - [in] radius of other circle
// corner_count - [in] (>=3) number of corners on circle
// There will be 2*corner_count sides and 2*corner_count
// vertices.
// Returns:
// true if successful. false if circle is invalid, other_radius < 0.0,
// or side_count < 3.
bool CreateStarPolygon(
const ON_Circle& circle,
double other_radius,
int side_count
);
// Description:
// Checks that polyline has at least two points
// and that sequential points are distinct. If the
// polyline has 2 or 3 points, then the start and end
// point must be distinct.
// Parameters:
// tolerance - [in] tolerance used to check for duplicate points.
// Returns:
// true if polyline is valid.
// See Also:
// ON_Polyline::Clean.
bool IsValid(
double tolerance = 0.0
) const;
// Description:
// Removes duplicate points that result in zero length segments.
// Parameters:
// tolerance - [in] tolerance used to check for duplicate points.
// Returns:
// Number of points removed.
// Remarks:
// If the distance between points polyline[i] and polyline[i+1]
// is <= tolerance, then the point with index (i+1) is removed.
int Clean(
double tolerance = 0.0
);
// Returns:
// Number of points in the polyline.
int PointCount() const;
// Returns:
// Number of segments in the polyline.
int SegmentCount() const;
// Description:
// Test a polyline to see if it is closed.
// Returns:
// true if polyline has 4 or more points, the distance between the
// start and end points is <= tolerance, and there is a
// point in the polyline whose distance from the start and end
// points is > tolerance.
bool IsClosed(
double tolerance = 0.0
) const;
// Returns:
// Length of the polyline.
double Length() const;
// Parameters:
// segment_index - [in] zero based segment index
// Returns:
// vector = point[segment_index+1] - point[segment_index].
ON_3dVector SegmentDirection (
int segment_index
) const;
// Parameters:
// segment_index - [in] zero based segment index
// Returns:
// Unit vector in the direction of the segment
ON_3dVector SegmentTangent (
int segment_index
) const;
// Description:
// Evaluate the polyline location at a parameter.
// Parameters:
// t - [in] the i-th segment goes from i <= t < i+1
ON_3dPoint PointAt( double t ) const;
// Description:
// Evaluate the polyline first derivative at a parameter.
// Parameters:
// t - [in] the i-th segment goes from i <= t < i+1
ON_3dVector DerivativeAt( double t ) const;
// Description:
// Evaluate the polyline unit tangent at a parameter.
// Parameters:
// t - [in] the i-th segment goes from i <= t < i+1
ON_3dVector TangentAt( double t ) const;
// Description:
// Find a point on the polyline that is closest
// to test_point.
// Parameters:
// test_point - [in]
// t - [out] parameter for a point on the polyline that
// is closest to test_point. If mulitple solutions
// exist, then the smallest solution is returned.
// Returns:
// true if successful.
bool ClosestPointTo(
const ON_3dPoint& test_point,
double* t
) const;
// Description:
// Find a point on the polyline that is closest
// to test_point.
// Parameters:
// test_point - [in]
// t - [out] parameter for a point on the polyline that
// is closest to test_point. If mulitple solutions
// exist, then the smallest solution is returned.
// segment_index0 - [in] index of segment where search begins
// segment_index1 - [in] index of segment where search ends
// This segment is NOT searched.
// Example:
// Search segments 3,4, and 5 for the point closest to (0,0,0).
// double t;
// ClosestPointTo( ON_3dPoint(0,0,0), &t, 3, 6 );
// Returns:
// true if successful.
bool ClosestPointTo(
const ON_3dPoint& test_point,
double* t,
int segment_index0, // index of segment where search begins
int segment_index1 // index + 1 of segment where search stops
) const;
// Description:
// Find a point on the polyline that is closest
// to test_point.
// Parameters:
// test_point - [in]
// Returns:
// point on polyline.
ON_3dPoint ClosestPointTo(
const ON_3dPoint& test_point
) const;
};
#endif