Repository URL to install this package:
Version:
7.26.0-0.2 ▾
|
/* $NoKeywords: $ */
/*
//
// Copyright (c) 1993-2012 Robert McNeel & Associates. All rights reserved.
// OpenNURBS, Rhinoceros, and Rhino3D are registered trademarks of Robert
// McNeel & Associates.
//
// THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY.
// ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE AND OF
// MERCHANTABILITY ARE HEREBY DISCLAIMED.
//
// For complete openNURBS copyright information see <http://www.opennurbs.org>.
//
////////////////////////////////////////////////////////////////
*/
////////////////////////////////////////////////////////////////
//
// Definition of virtual parametric curve
//
////////////////////////////////////////////////////////////////
#if !defined(OPENNURBS_CURVE_INC_)
#define OPENNURBS_CURVE_INC_
class ON_Curve;
class ON_Plane;
class ON_Arc;
class ON_NurbsCurve;
class ON_CurveTree;
////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////
class ON_CLASS ON_MeshCurveParameters
{
public:
ON_MeshCurveParameters();
// If main_seg_count <= 0, then both these parameters are ignored.
// If main_seg_count > 0, then sub_seg_count must be >= 1. In this
// case the curve will be broken into main_seg_count equally spaced
// chords. If needed, each of these chords can be split into as many
// sub_seg_count sub-parts if the subdivision is necessary for the
// mesh to meet the other meshing constraints. In particular, if
// sub_seg_count = 0, then the curve is broken into main_seg_count
// pieces and no further testing is performed.
int m_main_seg_count;
int m_sub_seg_count;
int m_reserved1;
int m_reserved2;
// Maximum angle (in radians) between unit tangents at adjacent
// vertices.
double m_max_ang_radians;
// Maximum permitted value of
// distance chord midpoint to curve) / (length of chord)
double m_max_chr;
// If max_aspect < 1.0, the parameter is ignored.
// If 1 <= max_aspect < sqrt(2), it is treated as if
// max_aspect = sqrt(2).
// This parameter controls the maximum permitted value of
// (length of longest chord) / (length of shortest chord)
double m_max_aspect;
// If tolerance = 0, the parameter is ignored.
// This parameter controls the maximum permitted value of the
// distance from the curve to the mesh.
double m_tolerance;
// If m_min_edge_length = 0, the parameter is ignored.
// This parameter controls the minimum permitted edge length.
double m_min_edge_length;
// If max_edge_length = 0, the parameter is ignored.
// This parameter controls the maximum permitted edge length.
double m_max_edge_length;
double m_reserved3;
double m_reserved4;
};
class ON_CLASS ON_Curve : public ON_Geometry
{
// pure virtual class for curve objects
// Any object derived from ON_Curve should have a
// ON_OBJECT_DECLARE(ON_...);
// as the last line of its class definition and a
// ON_OBJECT_IMPLEMENT( ON_..., ON_baseclass );
// in a .cpp file.
//
// See the definition of ON_Object for details.
ON_OBJECT_DECLARE(ON_Curve);
public:
// virtual ON_Object::DestroyRuntimeCache override
void DestroyRuntimeCache( bool bDelete = true );
public:
ON_Curve();
ON_Curve(const ON_Curve&);
ON_Curve& operator=(const ON_Curve&);
virtual ~ON_Curve();
// virtual ON_Object::SizeOf override
unsigned int SizeOf() const;
// virtual ON_Geometry override
bool EvaluatePoint( const class ON_ObjRef& objref, ON_3dPoint& P ) const;
/*
Description:
Get a duplicate of the curve.
Returns:
A duplicate of the curve.
Remarks:
The caller must delete the returned curve.
For non-ON_CurveProxy objects, this simply duplicates the curve using
ON_Object::Duplicate.
For ON_CurveProxy objects, this duplicates the actual proxy curve
geometry and, if necessary, trims and reverse the result to that
the returned curve's parameterization and locus match the proxy curve's.
*/
virtual
ON_Curve* DuplicateCurve() const;
// Description:
// overrides virtual ON_Object::ObjectType.
// Returns:
// ON::curve_object
ON::object_type ObjectType() const;
/*
Description:
Get tight bounding box of the curve.
Parameters:
tight_bbox - [in/out] tight bounding box
bGrowBox -[in] (default=false)
If true and the input tight_bbox is valid, then returned
tight_bbox is the union of the input tight_bbox and the
curve's tight bounding box.
xform -[in] (default=NULL)
If not NULL, the tight bounding box of the transformed
curve is calculated. The curve is not modified.
Returns:
True if the returned tight_bbox is set to a valid
bounding box.
*/
bool GetTightBoundingBox(
ON_BoundingBox& tight_bbox,
int bGrowBox = false,
const ON_Xform* xform = 0
) const;
////////////////////////////////////////////////////////////////////
// curve interface
// Description:
// Gets domain of the curve
// Parameters:
// t0 - [out]
// t1 - [out] domain is [*t0, *t1]
// Returns:
// true if successful.
ON_BOOL32 GetDomain( double* t0, double* t1 ) const;
// Returns:
// domain of the curve.
virtual
ON_Interval Domain() const = 0;
/*
Description:
Set the domain of the curve.
Parameters:
domain - [in] increasing interval
Returns:
true if successful.
*/
bool SetDomain( ON_Interval domain );
// Description:
// Set the domain of the curve
// Parameters:
// t0 - [in]
// t1 - [in] new domain will be [t0,t1]
// Returns:
// true if successful.
virtual
ON_BOOL32 SetDomain(
double t0,
double t1
);
/*
Description:
If this curve is closed, then modify it so that
the start/end point is at curve parameter t.
Parameters:
t - [in] curve parameter of new start/end point. The
returned curves domain will start at t.
Returns:
true if successful.
*/
virtual
ON_BOOL32 ChangeClosedCurveSeam(
double t
);
/*
Description:
Change the dimension of a curve.
Parameters:
desired_dimension - [in]
Returns:
true if the curve's dimension was already desired_dimension
or if the curve's dimension was successfully changed to
desired_dimension.
*/
virtual
bool ChangeDimension(
int desired_dimension
);
// Description:
// Get number of nonempty smooth (c-infinity) spans in curve
// Returns:
// Number of nonempty smooth (c-infinity) spans.
virtual
int SpanCount() const = 0;
// Description:
// Get number of parameters of "knots".
// Parameters:
// knots - [out] an array of length SpanCount()+1 is filled in
// with the parameters where the curve is not smooth (C-infinity).
// Returns:
// true if successful
virtual
ON_BOOL32 GetSpanVector(
double* knots
) const = 0; //
//////////
// If t is in the domain of the curve, GetSpanVectorIndex() returns the
// span vector index "i" such that span_vector[i] <= t <= span_vector[i+1].
// The "side" parameter determines which span is selected when t is at the
// end of a span.
virtual
ON_BOOL32 GetSpanVectorIndex(
double t , // [IN] t = evaluation parameter
int side, // [IN] side 0 = default, -1 = from below, +1 = from above
int* span_vector_index, // [OUT] span vector index
ON_Interval* span_domain // [OUT] domain of the span containing "t"
) const;
// Description:
// Returns maximum algebraic degree of any span
// or a good estimate if curve spans are not algebraic.
// Returns:
// degree
virtual
int Degree() const = 0;
// Description:
// Returns maximum algebraic degree of any span
// or a good estimate if curve spans are not algebraic.
// Returns:
// degree
virtual
ON_BOOL32 GetParameterTolerance( // returns tminus < tplus: parameters tminus <= s <= tplus
double t, // [IN] t = parameter in domain
double* tminus, // [OUT] tminus
double* tplus // [OUT] tplus
) const;
// Description:
// Test a curve to see if the locus if its points is a line segment.
// Parameters:
// tolerance - [in] // tolerance to use when checking linearity
// Returns:
// true if the ends of the curve are farther than tolerance apart
// and the maximum distance from any point on the curve to
// the line segment connecting the curve's ends is <= tolerance.
virtual
ON_BOOL32 IsLinear(
double tolerance = ON_ZERO_TOLERANCE
) const;
/*
Description:
Several types of ON_Curve can have the form of a polyline including
a degree 1 ON_NurbsCurve, an ON_PolylineCurve, and an ON_PolyCurve
all of whose segments are some form of polyline. IsPolyline tests
a curve to see if it can be represented as a polyline.
Parameters:
pline_points - [out] if not NULL and true is returned, then the
points of the polyline form are returned here.
t - [out] if not NULL and true is returned, then the parameters of
the polyline points are returned here.
Returns:
@untitled table
0 curve is not some form of a polyline
>=2 number of points in polyline form
*/
virtual
int IsPolyline(
ON_SimpleArray<ON_3dPoint>* pline_points = NULL,
ON_SimpleArray<double>* pline_t = NULL
) const;
// Description:
// Test a curve to see if the locus if its points is an arc or circle.
// Parameters:
// plane - [in] if not NULL, test is performed in this plane
// arc - [out] if not NULL and true is returned, then arc parameters
// are filled in
// tolerance - [in] tolerance to use when checking
// Returns:
// ON_Arc.m_angle > 0 if curve locus is an arc between
// specified points. If ON_Arc.m_angle is 2.0*ON_PI, then the curve
// is a circle.
virtual
ON_BOOL32 IsArc(
const ON_Plane* plane = NULL,
ON_Arc* arc = NULL,
double tolerance = ON_ZERO_TOLERANCE
) const;
/*
Description:
Parameters:
t - [in] curve parameter
plane - [in]
if not NULL, test is performed in this plane
arc - [out]
if not NULL and true is returned, then arc parameters
are filled in
tolerance - [in]
tolerance to use when checking
t0 - [out]
if not NULL, and then *t0 is set to the parameter
at the start of the G2 curve segment that was
tested.
t1 - [out]
if not NULL, and then *t0 is set to the parameter
at the start of the G2 curve segment that was
tested.
Returns:
True if the paramter t is on a arc segment of the curve.
*/
bool IsArcAt(
double t,
const ON_Plane* plane = 0,
ON_Arc* arc = 0,
double tolerance = ON_ZERO_TOLERANCE,
double* t0 = 0,
double* t1 = 0
) const;
virtual
bool IsEllipse(
const ON_Plane* plane = NULL,
ON_Ellipse* ellipse = NULL,
double tolerance = ON_ZERO_TOLERANCE
) const;
// Description:
// Test a curve to see if it is planar.
// Parameters:
// plane - [out] if not NULL and true is returned,
// the plane parameters are filled in.
// tolerance - [in] tolerance to use when checking
// Returns:
// true if there is a plane such that the maximum distance from
// the curve to the plane is <= tolerance.
virtual
ON_BOOL32 IsPlanar(
ON_Plane* plane = NULL,
double tolerance = ON_ZERO_TOLERANCE
) const;
// Description:
// Test a curve to see if it lies in a specific plane.
// Parameters:
// test_plane - [in]
// tolerance - [in] tolerance to use when checking
// Returns:
// true if the maximum distance from the curve to the
// test_plane is <= tolerance.
virtual
ON_BOOL32 IsInPlane(
const ON_Plane& test_plane,
double tolerance = ON_ZERO_TOLERANCE
) const = 0;
/*
Description:
Decide if it makes sense to close off this curve by moving
the endpoint to the start based on start-end gap size and length
of curve as approximated by chord defined by 6 points.
Parameters:
tolerance - [in] maximum allowable distance between start and end.
if start - end gap is greater than tolerance, returns false
min_abs_size - [in] if greater than 0.0 and none of the interior sampled
points are at least min_abs_size from start, returns false.
min_rel_size - [in] if greater than 1.0 and chord length is less than
min_rel_size*gap, returns false.
Returns:
true if start and end points are close enough based on above conditions.
*/
bool IsClosable(
double tolerance,
double min_abs_size = 0.0,
double min_rel_size = 10.0
) const;
// Description:
// Test a curve to see if it is closed.
// Returns:
// true if the curve is closed.
virtual
ON_BOOL32 IsClosed() const;
// Description:
// Test a curve to see if it is periodic.
// Returns:
// true if the curve is closed and at least C2 at the start/end.
virtual
ON_BOOL32 IsPeriodic() const;
/*
Description:
Search for a derivatitive, tangent, or curvature
discontinuity.
Parameters:
c - [in] type of continity to test for.
t0 - [in] Search begins at t0. If there is a discontinuity
at t0, it will be ignored. This makes it
possible to repeatedly call GetNextDiscontinuity
and step through the discontinuities.
t1 - [in] (t0 != t1) If there is a discontinuity at t1 is
will be ingored unless c is a locus discontinuity
type and t1 is at the start or end of the curve.
t - [out] if a discontinuity is found, then *t reports the
parameter at the discontinuity.
hint - [in/out] if GetNextDiscontinuity will be called
repeatedly, passing a "hint" with initial value *hint=0
will increase the speed of the search.
dtype - [out] if not NULL, *dtype reports the kind of
discontinuity found at *t. A value of 1 means the first
derivative or unit tangent was discontinuous. A value
of 2 means the second derivative or curvature was
discontinuous. A value of 0 means teh curve is not
closed, a locus discontinuity test was applied, and
t1 is at the start of end of the curve.
If 'c', the type of continuity to test for
is ON::Gsmooth_continuous and the curvature changes
from curved to 0 or 0 to curved and there is no
tangency kink dtype is returns 3
cos_angle_tolerance - [in] default = cos(1 degree) Used only
when c is ON::G1_continuous or ON::G2_continuous. If the
cosine of the angle between two tangent vectors is
<= cos_angle_tolerance, then a G1 discontinuity is reported.
curvature_tolerance - [in] (default = ON_SQRT_EPSILON) Used
only when c is ON::G2_continuous. If K0 and K1 are
curvatures evaluated from above and below and
|K0 - K1| > curvature_tolerance, then a curvature
discontinuity is reported.
Returns:
Parametric continuity tests c = (C0_continuous, ..., G2_continuous):
true if a parametric discontinuity was found strictly
between t0 and t1. Note well that all curves are
parametrically continuous at the ends of their domains.
Locus continuity tests c = (C0_locus_continuous, ...,G2_locus_continuous):
true if a locus discontinuity was found strictly between
t0 and t1 or at t1 is the at the end of a curve.
Note well that all open curves (IsClosed()=false) are locus
discontinuous at the ends of their domains. All closed
curves (IsClosed()=true) are at least C0_locus_continuous at
the ends of their domains.
*/
virtual
bool GetNextDiscontinuity(
ON::continuity c,
double t0,
double t1,
double* t,
int* hint=NULL,
int* dtype=NULL,
double cos_angle_tolerance=ON_DEFAULT_ANGLE_TOLERANCE_COSINE,
double curvature_tolerance=ON_SQRT_EPSILON
) const;
/*
Description:
Test continuity at a curve parameter value.
Parameters:
c - [in] type of continuity to test for. Read ON::continuity
comments for details.
t - [in] parameter to test
hint - [in] evaluation hint
point_tolerance - [in] if the distance between two points is
greater than point_tolerance, then the curve is not C0.
d1_tolerance - [in] if the difference between two first derivatives is
greater than d1_tolerance, then the curve is not C1.
d2_tolerance - [in] if the difference between two second derivatives is
greater than d2_tolerance, then the curve is not C2.
cos_angle_tolerance - [in] default = cos(1 degree) Used only when
c is ON::G1_continuous or ON::G2_continuous. If the cosine
of the angle between two tangent vectors
is <= cos_angle_tolerance, then a G1 discontinuity is reported.
curvature_tolerance - [in] (default = ON_SQRT_EPSILON) Used only when
c is ON::G2_continuous or ON::Gsmooth_continuous.
ON::G2_continuous:
If K0 and K1 are curvatures evaluated
from above and below and |K0 - K1| > curvature_tolerance,
then a curvature discontinuity is reported.
ON::Gsmooth_continuous:
If K0 and K1 are curvatures evaluated from above and below
and the angle between K0 and K1 is at least twice angle tolerance
or ||K0| - |K1|| > (max(|K0|,|K1|) > curvature_tolerance,
then a curvature discontinuity is reported.
Returns:
true if the curve has at least the c type continuity at
the parameter t.
*/
virtual
bool IsContinuous(
ON::continuity c,
double t,
int* hint = NULL,
double point_tolerance=ON_ZERO_TOLERANCE,
double d1_tolerance=ON_ZERO_TOLERANCE,
double d2_tolerance=ON_ZERO_TOLERANCE,
double cos_angle_tolerance=ON_DEFAULT_ANGLE_TOLERANCE_COSINE,
double curvature_tolerance=ON_SQRT_EPSILON
) const;
// Description:
// Reverse the direction of the curve.
// Returns:
// true if curve was reversed.
// Remarks:
// If reveresed, the domain changes from [a,b] to [-b,-a]
virtual
ON_BOOL32 Reverse()=0;
/*
Description:
Force the curve to start at a specified point.
Parameters:
start_point - [in]
Returns:
true if successful.
Remarks:
Some end points cannot be moved. Be sure to check return
code.
See Also:
ON_Curve::SetEndPoint
ON_Curve::PointAtStart
ON_Curve::PointAtEnd
*/
virtual
ON_BOOL32 SetStartPoint(
ON_3dPoint start_point
);
/*
Description:
Force the curve to end at a specified point.
Parameters:
end_point - [in]
Returns:
true if successful.
Remarks:
Some end points cannot be moved. Be sure to check return
code.
See Also:
ON_Curve::SetStartPoint
ON_Curve::PointAtStart
ON_Curve::PointAtEnd
*/
virtual
ON_BOOL32 SetEndPoint(
ON_3dPoint end_point
);
// Description:
// Evaluate point at a parameter.
// Parameters:
// t - [in] evaluation parameter
// Returns:
// Point (location of curve at the parameter t).
// Remarks:
// No error handling.
// See Also:
// ON_Curve::EvPoint
// ON_Curve::PointAtStart
// ON_Curve::PointAtEnd
ON_3dPoint PointAt(
double t
) const;
// Description:
// Evaluate point at the start of the curve.
// Parameters:
// t - [in] evaluation parameter
// Returns:
// Point (location of the start of the curve.)
// Remarks:
// No error handling.
// See Also:
// ON_Curve::PointAt
ON_3dPoint PointAtStart() const;
// Description:
// Evaluate point at the end of the curve.
// Parameters:
// t - [in] evaluation parameter
// Returns:
// Point (location of the end of the curve.)
// Remarks:
// No error handling.
// See Also:
// ON_Curve::PointAt
ON_3dPoint PointAtEnd() const;
// Description:
// Evaluate first derivative at a parameter.
// Parameters:
// t - [in] evaluation parameter
// Returns:
// First derivative of the curve at the parameter t.
// Remarks:
// No error handling.
// See Also:
// ON_Curve::Ev1Der
ON_3dVector DerivativeAt(
double t
) const;
// Description:
// Evaluate unit tangent vector at a parameter.
// Parameters:
// t - [in] evaluation parameter
// Returns:
// Unit tangent vector of the curve at the parameter t.
// Remarks:
// No error handling.
// See Also:
// ON_Curve::EvTangent
ON_3dVector TangentAt(
double t
) const;
// Description:
// Evaluate the curvature vector at a parameter.
// Parameters:
// t - [in] evaluation parameter
// Returns:
// curvature vector of the curve at the parameter t.
// Remarks:
// No error handling.
// See Also:
// ON_Curve::EvCurvature
ON_3dVector CurvatureAt(
double t
) const;
// Description:
// Return a 3d frame at a parameter.
// Parameters:
// t - [in] evaluation parameter
// plane - [out] the frame is returned here
// Returns:
// true if successful
// See Also:
// ON_Curve::PointAt, ON_Curve::TangentAt,
// ON_Curve::Ev1Der, Ev2Der
ON_BOOL32 FrameAt( double t, ON_Plane& plane) const;
// Description:
// Evaluate point at a parameter with error checking.
// Parameters:
// t - [in] evaluation parameter
// point - [out] value of curve at t
// side - [in] optional - determines which side to evaluate from
// =0 default
// <0 to evaluate from below,
// >0 to evaluate from above
// hint - [in/out] optional evaluation hint used to speed repeated evaluations
// Returns:
// false if unable to evaluate.
// See Also:
// ON_Curve::PointAt
// ON_Curve::EvTangent
// ON_Curve::Evaluate
ON_BOOL32 EvPoint(
double t,
ON_3dPoint& point,
int side = 0,
int* hint = 0
) const;
// Description:
// Evaluate first derivative at a parameter with error checking.
// Parameters:
// t - [in] evaluation parameter
// point - [out] value of curve at t
// first_derivative - [out] value of first derivative at t
// side - [in] optional - determines which side to evaluate from
// =0 default
// <0 to evaluate from below,
// >0 to evaluate from above
// hint - [in/out] optional evaluation hint used to speed repeated evaluations
// Returns:
// false if unable to evaluate.
// See Also:
// ON_Curve::EvPoint
// ON_Curve::Ev2Der
// ON_Curve::EvTangent
// ON_Curve::Evaluate
ON_BOOL32 Ev1Der(
double t,
ON_3dPoint& point,
ON_3dVector& first_derivative,
int side = 0,
int* hint = 0
) const;
// Description:
// Evaluate second derivative at a parameter with error checking.
// Parameters:
// t - [in] evaluation parameter
// point - [out] value of curve at t
// first_derivative - [out] value of first derivative at t
// second_derivative - [out] value of second derivative at t
// side - [in] optional - determines which side to evaluate from
// =0 default
// <0 to evaluate from below,
// >0 to evaluate from above
// hint - [in/out] optional evaluation hint used to speed repeated evaluations
// Returns:
// false if unable to evaluate.
// See Also:
// ON_Curve::Ev1Der
// ON_Curve::EvCurvature
// ON_Curve::Evaluate
ON_BOOL32 Ev2Der(
double t,
ON_3dPoint& point,
ON_3dVector& first_derivative,
ON_3dVector& second_derivative,
int side = 0,
int* hint = 0
) const;
/*
Description:
Evaluate unit tangent at a parameter with error checking.
Parameters:
t - [in] evaluation parameter
point - [out] value of curve at t
tangent - [out] value of unit tangent
side - [in] optional - determines which side to evaluate from
=0 default
<0 to evaluate from below,
>0 to evaluate from above
hint - [in/out] optional evaluation hint used to speed repeated evaluations
Returns:
false if unable to evaluate.
See Also:
ON_Curve::TangentAt
ON_Curve::Ev1Der
*/
ON_BOOL32 EvTangent(
double t,
ON_3dPoint& point,
ON_3dVector& tangent,
int side = 0,
int* hint = 0
) const;
/*
Description:
Evaluate unit tangent and curvature at a parameter with error checking.
Parameters:
t - [in] evaluation parameter
point - [out] value of curve at t
tangent - [out] value of unit tangent
kappa - [out] value of curvature vector
side - [in] optional - determines which side to evaluate from
=0 default
<0 to evaluate from below,
>0 to evaluate from above
hint - [in/out] optional evaluation hint used to speed repeated evaluations
Returns:
false if unable to evaluate.
See Also:
ON_Curve::CurvatureAt
ON_Curve::Ev2Der
ON_EvCurvature
*/
ON_BOOL32 EvCurvature(
double t,
ON_3dPoint& point,
ON_3dVector& tangent,
ON_3dVector& kappa,
int side = 0,
int* hint = 0
) const;
/*
Description:
This evaluator actually does all the work. The other ON_Curve
evaluation tools call this virtual function.
Parameters:
t - [in] evaluation parameter ( usually in Domain() ).
der_count - [in] (>=0) number of derivatives to evaluate
v_stride - [in] (>=Dimension()) stride to use for the v[] array
v - [out] array of length (der_count+1)*v_stride
curve(t) is returned in (v[0],...,v[m_dim-1]),
curve'(t) is retuned in (v[v_stride],...,v[v_stride+m_dim-1]),
curve"(t) is retuned in (v[2*v_stride],...,v[2*v_stride+m_dim-1]),
etc.
side - [in] optional - determines which side to evaluate from
=0 default
<0 to evaluate from below,
>0 to evaluate from above
hint - [in/out] optional evaluation hint used to speed repeated evaluations
Returns:
false if unable to evaluate.
See Also:
ON_Curve::EvPoint
ON_Curve::Ev1Der
ON_Curve::Ev2Der
*/
virtual
ON_BOOL32 Evaluate(
double t,
int der_count,
int v_stride,
double* v,
int side = 0,
int* hint = 0
) const = 0;
//////////
// Find parameter of the point on a curve that is closest to test_point.
// If the maximum_distance parameter is > 0, then only points whose distance
// to the given point is <= maximum_distance will be returned. Using a
// positive value of maximum_distance can substantially speed up the search.
// If the sub_domain parameter is not NULL, then the search is restricted
// to the specified portion of the curve.
//
// true if returned if the search is successful. false is returned if
// the search fails.
virtual
bool GetClosestPoint(
const ON_3dPoint&, // test_point
double* t, // parameter of local closest point returned here
double maximum_distance = 0.0, // maximum_distance
const ON_Interval* sub_domain = NULL // sub_domain
) const;
/*
Description:
Find curve's self intersection points.
Parameters:
x - [out]
Intersection events are appended to this array.
intersection_tolerance - [in]
curve_domain - [in] optional restriction
Returns:
Number of intersection events appended to x.
*/
virtual
int IntersectSelf(
ON_SimpleArray<ON_X_EVENT>& x,
double intersection_tolerance = 0.0,
const ON_Interval* curve_domain = 0
) const;
/*
Description:
Intersect this curve with curveB.
Parameters:
curveB - [in]
x - [out] Intersection events are appended to this array.
intersection_tolerance - [in] If the distance from a point
on this curve to curveB is <= intersection tolerance,
then the point will be part of an intersection event.
If the input intersection_tolerance <= 0.0, then 0.001 is used.
overlap_tolerance - [in] If t1 and t2 are parameters of this
curve's intersection events and the distance from curve(t) to
curveB is <= overlap_tolerance for every t1 <= t <= t2,
then the event will be returened as an overlap event.
If the input overlap_tolerance <= 0.0, then
intersection_tolerance*2.0 is used.
curveA_domain - [in] optional restriction on this curve's domain
curveB_domain - [in] optional restriction on curveB domain
Returns:
Number of intersection events appended to x.
*/
int IntersectCurve(
const ON_Curve* curveB,
ON_SimpleArray<ON_X_EVENT>& x,
double intersection_tolerance = 0.0,
double overlap_tolerance = 0.0,
const ON_Interval* curveA_domain = 0,
const ON_Interval* curveB_domain = 0
) const;
/*
Description:
Intersect this curve with surfaceB.
Parameters:
surfaceB - [in]
x - [out]
Intersection events are appended to this array.
intersection_tolerance - [in]
If the distance from a point on this curve to the surface
is <= intersection tolerance, then the point will be part
of an intersection event, or there is an intersection event
the point leads to. If the input intersection_tolerance <= 0.0,
then 0.001 is used.
overlap_tolerance - [in]
If the input overlap_tolerance <= 0.0, then
2.0*intersection_tolerance is used. Otherwise, overlap
tolerance must be >= intersection_tolerance.
In all cases, the intersection calculation is performed
with an overlap_tolerance that is >= intersection_tolerance.
If t1 and t2 are curve parameters of intersection events
and the distance from curve(t) to the surface
is <= overlap_tolerance for every t1 <= t <= t2, then the
event will be returned as an overlap event.
curveA_domain - [in]
optional restriction on this curve's domain
surfaceB_udomain - [in]
optional restriction on surfaceB u domain
surfaceB_vdomain - [in]
optional restriction on surfaceB v domain
Returns:
Number of intersection events appended to x.
*/
int IntersectSurface(
const ON_Surface* surfaceB,
ON_SimpleArray<ON_X_EVENT>& x,
double intersection_tolerance = 0.0,
double overlap_tolerance = 0.0,
const ON_Interval* curveA_domain = 0,
const ON_Interval* surfaceB_udomain = 0,
const ON_Interval* surfaceB_vdomain = 0
) const;
/*
Description:
Get the length of the curve.
Parameters:
length - [out] length returned here.
fractional_tolerance - [in] desired fractional precision.
fabs(("exact" length from start to t) - arc_length)/arc_length <= fractional_tolerance
sub_domain - [in] If not NULL, the calculation is performed on
the specified sub-domain of the curve (must be non-decreasing)
Returns:
true if returned if the length calculation is successful.
false is returned if the length is not calculated.
Remarks:
The arc length will be computed so that
(returned length - real length)/(real length) <= fractional_tolerance
More simply, if you want N significant figures in the answer, set the
fractional_tolerance to 1.0e-N. For "nice" curves, 1.0e-8 works
fine. For very high degree NURBS and NURBS with bad parameterizations,
use larger values of fractional_tolerance.
*/
virtual
ON_BOOL32 GetLength(
double* length,
double fractional_tolerance = 1.0e-8,
const ON_Interval* sub_domain = NULL
) const;
/*
Parameters:
min_length -[in]
minimum length of a linear span
tolerance -[in]
distance tolerance to use when checking linearity.
Returns
true if the span is a non-degenrate line. This means:
- dimension = 2 or 3
- The length of the the line segment from the span's initial
point to the span's control point is >= min_length.
- The maximum distance from the line segment to the span
is <= tolerance and the span increases monotonically
in the direction of the line segment.
*/
bool FirstSpanIsLinear(
double min_length,
double tolerance
) const;
bool LastSpanIsLinear(
double min_length,
double tolerance
) const;
bool FirstSpanIsLinear(
double min_length,
double tolerance,
ON_Line* span_line
) const;
bool LastSpanIsLinear(
double min_length,
double tolerance,
ON_Line* span_line
) const;
// Description:
// Removes portions of the curve outside the specified interval.
// Parameters:
// domain - [in] interval of the curve to keep. Portions of the
// curve before curve(domain[0]) and after curve(domain[1]) are
// removed.
// Returns:
// true if successful.
virtual
ON_BOOL32 Trim(
const ON_Interval& domain
);
// Description:
// Pure virtual function. Default returns false.
// Where possible, analytically extends curve to include domain.
// Parameters:
// domain - [in] if domain is not included in curve domain,
// curve will be extended so that its domain includes domain.
// Will not work if curve is closed. Original curve is identical
// to the restriction of the resulting curve to the original curve domain,
// Returns:
// true if successful.
virtual
bool Extend(
const ON_Interval& domain
);
/*
Description:
Splits (divides) the curve at the specified parameter.
The parameter must be in the interior of the curve's domain.
The pointers passed to Split must either be NULL or point to
an ON_Curve object of the same type. If the pointer is NULL,
then a curve will be created in Split(). You may pass "this"
as left_side or right_side.
Parameters:
t - [in] parameter to split the curve at in the
interval returned by Domain().
left_side - [out] left portion of curve returned here
right_side - [out] right portion of curve returned here
Returns:
true - The curve was split into two pieces.
false - The curve could not be split. For example if the parameter is
too close to an endpoint.
Example:
For example, if crv were an ON_NurbsCurve, then
ON_NurbsCurve right_side;
crv.Split( crv.Domain().Mid() &crv, &right_side );
would split crv at the parametric midpoint, put the left side
in crv, and return the right side in right_side.
*/
virtual
ON_BOOL32 Split(
double t,
ON_Curve*& left_side,
ON_Curve*& right_side
) const;
/*
Description:
Get a NURBS curve representation of this curve.
Parameters:
nurbs_curve - [out] NURBS representation returned here
tolerance - [in] tolerance to use when creating NURBS
representation.
subdomain - [in] if not NULL, then the NURBS representation
for this portion of the curve is returned.
Returns:
0 unable to create NURBS representation
with desired accuracy.
1 success - returned NURBS parameterization
matches the curve's to wthe desired accuracy
2 success - returned NURBS point locus matches
the curve's to the desired accuracy and the
domain of the NURBS curve is correct. On
However, This curve's parameterization and
the NURBS curve parameterization may not
match to the desired accuracy. This situation
happens when getting NURBS representations of
curves that have a transendental parameterization
like circles
Remarks:
This is a low-level virtual function. If you do not need
the parameterization information provided by the return code,
then ON_Curve::NurbsCurve may be easier to use.
See Also:
ON_Curve::NurbsCurve
*/
virtual
int GetNurbForm(
ON_NurbsCurve& nurbs_curve,
double tolerance = 0.0,
const ON_Interval* subdomain = NULL
) const;
/*
Description:
Does a NURBS curve representation of this curve.
Parameters:
Returns:
0 unable to create NURBS representation
with desired accuracy.
1 success - NURBS parameterization
matches the curve's to wthe desired accuracy
2 success - NURBS point locus matches
the curve's and the
domain of the NURBS curve is correct.
However, This curve's parameterization and
the NURBS curve parameterization may not
match. This situation
happens when getting NURBS representations of
curves that have a transendental parameterization
like circles
Remarks:
This is a low-level virtual function.
See Also:
ON_Curve::GetNurbForm
ON_Curve::NurbsCurve
*/
virtual
int HasNurbForm() const;
/*
Description:
Get a NURBS curve representation of this curve.
Parameters:
pNurbsCurve - [in/out] if not NULL, this ON_NurbsCurve
will be used to store the NURBS representation
of the curve will be returned.
tolerance - [in] tolerance to use when creating NURBS
representation.
subdomain - [in] if not NULL, then the NURBS representation
for this portion of the curve is returned.
Returns:
NULL or a NURBS representation of the curve.
Remarks:
See ON_Surface::GetNurbForm for important details about
the NURBS surface parameterization.
See Also:
ON_Curve::GetNurbForm
*/
ON_NurbsCurve* NurbsCurve(
ON_NurbsCurve* pNurbsCurve = NULL,
double tolerance = 0.0,
const ON_Interval* subdomain = NULL
) const;
// Description:
// Convert a NURBS curve parameter to a curve parameter
//
// Parameters:
// nurbs_t - [in] nurbs form parameter
// curve_t - [out] curve parameter
//
// Remarks:
// If GetNurbForm returns 2, this function converts the curve
// parameter to the NURBS curve parameter.
//
// See Also:
// ON_Curve::GetNurbForm, ON_Curve::GetNurbFormParameterFromCurveParameter
virtual
ON_BOOL32 GetCurveParameterFromNurbFormParameter(
double nurbs_t,
double* curve_t
) const;
// Description:
// Convert a curve parameter to a NURBS curve parameter.
//
// Parameters:
// curve_t - [in] curve parameter
// nurbs_t - [out] nurbs form parameter
//
// Remarks:
// If GetNurbForm returns 2, this function converts the curve
// parameter to the NURBS curve parameter.
//
// See Also:
// ON_Curve::GetNurbForm, ON_Curve::GetCurveParameterFromNurbFormParameter
virtual
ON_BOOL32 GetNurbFormParameterFromCurveParameter(
double curve_t,
double* nurbs_t
) const;
// Description:
// Destroys the runtime curve tree used to speed closest
// point and intersection calcuations.
// Remarks:
// If the geometry of the curve is modified in any way,
// then call DestroyCurveTree(); The curve tree is
// created as needed.
void DestroyCurveTree();
virtual
ON_CurveTree* CreateCurveTree() const;
/*
Description:
Calculate length mass properties of the curve.
Parameters:
mp - [out]
bLength - [in] true to calculate length
bFirstMoments - [in] true to calculate volume first moments,
length, and length centroid.
bSecondMoments - [in] true to calculate length second moments.
bProductMoments - [in] true to calculate length product moments.
Returns:
True if successful.
*/
bool LengthMassProperties(
ON_MassProperties& mp,
bool bLength = true,
bool bFirstMoments = true,
bool bSecondMoments = true,
bool bProductMoments = true,
double rel_tol = 1.0e-6,
double abs_tol = 1.0e-6
) const;
/*
Description:
Calculate area mass properties of a curve. The curve should
be planar.
Parameters:
base_point - [in]
A point on the plane that contians the curve. To get
the best results, the point should be in the near the
curve's centroid.
When computing the area, area centroid, or area first
moments of a planar area whose boundary is defined by
several curves, pass the same base_point and plane_normal
to each call to AreaMassProperties. The base_point must
be in the plane of the curves.
When computing the area second moments or area product
moments of a planar area whose boundary is defined by several
curves, you MUST pass the entire area's centroid as the
base_point and the input mp parameter must contain the
results of a previous call to
AreaMassProperties(mp,true,true,false,false,base_point).
In particular, in this case, you need to make two sets of
calls; use first set to calculate the area centroid and
the second set calculate the second moments and product
moments.
plane_normal - [in]
nonzero unit normal to the plane of integration. If a closed
curve has counter clock-wise orientation with respect to
this normal, the area will be positive. If the a closed curve
has clock-wise orientation with respect to this normal, the
area will be negative.
mp - [out]
bArea - [in] true to calculate volume
bFirstMoments - [in] true to calculate area first moments,
area, and area centroid.
bSecondMoments - [in] true to calculate area second moments.
bProductMoments - [in] true to calculate area product moments.
Returns:
True if successful.
*/
bool AreaMassProperties(
ON_3dPoint base_point,
ON_3dVector plane_normal,
ON_MassProperties& mp,
bool bArea = true,
bool bFirstMoments = true,
bool bSecondMoments = true,
bool bProductMoments = true,
double rel_tol = 1.0e-6,
double abs_tol = 1.0e-6
) const;
/*
Description:
Mesh a curve into line segments.
Parameters:
mp - [in]
Parameters that determine how the curve will be
approximated by a polyline.
polyline - [in]
If not NULL, the polyline approximation will be appended
to this polyline.
bSkipFirstPoint - [in]
If true, the starting point of the approximation
will not be added to the returned polyline. This
parameter is useful when getting a polyline approximation
of a sequence of contiguous curves.
domain - [in]
If not NULL, the polyline approximation will be restricted
to this domain.
Returns:
A pointer to the polyline approximation.
*/
class ON_PolylineCurve* MeshCurve(
ON_MeshCurveParameters& mp,
ON_PolylineCurve* polyline,
bool bSkipFirstPoint,
const ON_Interval* domain
) const;
// The non-const version of MeshCurve() exists because a version of the
// SDK was shipped with the "const" tag missing. The non-const
// version does not modify this.
class ON_PolylineCurve* MeshCurve(
ON_MeshCurveParameters& mp,
ON_PolylineCurve* polyline,
bool bSkipFirstPoint,
const ON_Interval* domain
);
/*
Description:
Lookup a parameter in the m_t array, optionally using a built in snap tolerance to
snap a parameter value to an element of m_t.
This function is used by some types derived from ON_Curve to snap parameter values
Parameters:
t-[in] parameter
index-[out] index into m_t such that if function returns false then @table
(value) (condition)
-1 t < m_t[0] or m_t is empty
0 <= i <= m_t.Count()-2 m_t[i] < t < m_t[i+1]
m_t.Count()-1 t > m_t[m_t.Count()-1]
if the function returns true then t is equal to, or is closest to and
within tolerance of m_t[index].
bEnableSnap-[in] enable snapping
m_t-[in] Array of parameter values to snap to
RelTol-[in] tolerance used in snapping
Returns:
true if the t is exactly equal to (bEnableSnap==false), or within tolerance of
(bEnableSnap==true) m_t[index].
*/
protected:
bool ParameterSearch( double t, int& index, bool bEnableSnap, const ON_SimpleArray<double>& m_t,
double RelTol=ON_SQRT_EPSILON) const;
private:
};
#if defined(ON_DLL_TEMPLATE)
// This stuff is here because of a limitation in the way Microsoft
// handles templates and DLLs. See Microsoft's knowledge base
// article ID Q168958 for details.
#pragma warning( push )
#pragma warning( disable : 4231 )
ON_DLL_TEMPLATE template class ON_CLASS ON_SimpleArray<ON_Curve*>;
#pragma warning( pop )
#endif
class ON_CLASS ON_CurveArray : public ON_SimpleArray<ON_Curve*>
{
public:
ON_CurveArray( int = 0 );
~ON_CurveArray(); // deletes any non-NULL curves
bool Write( ON_BinaryArchive& ) const;
bool Read( ON_BinaryArchive& );
void Destroy(); // deletes curves, sets pointers to NULL, sets count to zero
bool Duplicate( ON_CurveArray& ) const; // operator= copies the pointer values
// duplicate copies the curves themselves
/*
Description:
Get tight bounding box of the bezier.
Parameters:
tight_bbox - [in/out] tight bounding box
bGrowBox -[in] (default=false)
If true and the input tight_bbox is valid, then returned
tight_bbox is the union of the input tight_bbox and the
tight bounding box of the bezier curve.
xform -[in] (default=NULL)
If not NULL, the tight bounding box of the transformed
bezier is calculated. The bezier curve is not modified.
Returns:
True if the returned tight_bbox is set to a valid
bounding box.
*/
bool GetTightBoundingBox(
ON_BoundingBox& tight_bbox,
int bGrowBox = false,
const ON_Xform* xform = 0
) const;
};
/*
Description:
Trim a curve.
Parameters:
curve - [in] curve to trim (not modified)
trim_parameters - [in] trimming parameters
If curve is open, then trim_parameters must be an increasing
interval.If curve is closed, and trim_parameters ins a
decreasing interval, then the portion of the curve across the
start/end is returned.
Returns:
trimmed curve or NULL if input is invalid.
*/
ON_DECL
ON_Curve* ON_TrimCurve(
const ON_Curve& curve,
ON_Interval trim_parameters
);
/*
Description:
Move ends of curves to a common point. Neither curve can be closed or an ON_CurveProxy.
If one is an arc or polycurve with arc at end to change, and the other is not,
then the arc is left unchanged and the other curve is moved to the arc endpoint.
Otherwise, both are moved to the midpoint of the segment between the ends.
Parameters:
Crv0 - [in] first curve to modify.
[out] with one endpoint possibly changed.
end0 - [in] if 0, change start of Crv0. Otherwise change end.
Crv1 - [in] second curve to modify.
[out] with one endpoint possibly changed.
end1 - [in] if 0, change start of Crv1. Otherwise change end.
Returns:
true if the endpoints match. Falsse otherwise,
*/
ON_DECL
bool ON_ForceMatchCurveEnds(
ON_Curve& Crv0,
int end0,
ON_Curve& Crv1,
int end1
);
/*
Description:
Join all contiguous curves of an array of ON_Curves.
Parameters:
InCurves - [in] Array of curves to be joined (not modified)
OutCurves - [out] Resulting joined curves and copies of curves that were not joined to anything
are appended.
join_tol - [in] Distance tolerance used to decide if endpoints are close enough
bPreserveDirection - [in] If true, curve endpoints will be compared to curve startpoints.
If false, all start and endpoints will be compared, and copies of input
curves may be reversed in output.
key - [out] if key is not null, InCurves[i] was joined into OutCurves[key[i]].
Returns:
Number of curves added to Outcurves
Remarks:
Closed curves are copied to OutCurves.
Curves that cannot be joined to others are copied to OutCurves. When curves are joined, the results
are ON_PolyCurves. All members of InCurves must have same dimension, at most 3.
*/
ON_DECL
int ON_JoinCurves(const ON_SimpleArray<const ON_Curve*>& InCurves,
ON_SimpleArray<ON_Curve*>& OutCurves,
double join_tol,
bool bPreserveDirection = false,
ON_SimpleArray<int>* key = 0
);
/*
Description:
Sort a list of lines so they are geometrically continuous.
Parameters:
line_count - [in] number of lines
line_list - [in] array of lines
index - [out] The input index[] is an array of line_count unused integers.
The returned index[] is a permutation of {0,1,...,line_count-1}
so that the list of lines is in end-to-end order.
bReverse - [out] The input bReverse[] is an array of line_count unused bools.
If the returned value of bReverse[j] is true, then
line_list[index[j]] needs to be reversed.
Returns:
True if successful, false if not.
*/
ON_DECL
bool ON_SortLines(
int line_count,
const ON_Line* line_list,
int* index,
bool* bReverse
);
/*
Description:
Sort a list of lines so they are geometrically continuous.
Parameters:
line_list - [in] array of lines
index - [out] The input index[] is an array of line_count unused integers.
The returned index[] is a permutation of {0,1,...,line_count-1}
so that the list of lines is in end-to-end order.
bReverse - [out] The input bReverse[] is an array of line_count unused bools.
If the returned value of bReverse[j] is true, then
line_list[index[j]] needs to be reversed.
Returns:
True if successful, false if not.
*/
ON_DECL
bool ON_SortLines(
const ON_SimpleArray<ON_Line>& line_list,
int* index,
bool* bReverse
);
/*
Description:
Sort a list of open curves so end of a curve matches the start of the next curve.
Parameters:
curve_count - [in] number of curves
curve_list - [in] array of curve pointers
index - [out] The input index[] is an array of curve_count unused integers.
The returned index[] is a permutation of {0,1,...,curve_count-1}
so that the list of curves is in end-to-end order.
bReverse - [out] The input bReverse[] is an array of curve_count unused bools.
If the returned value of bReverse[j] is true, then
curve_list[index[j]] needs to be reversed.
Returns:
True if successful, false if not.
*/
ON_DECL
bool ON_SortCurves(
int curve_count,
const ON_Curve* const* curve_list,
int* index,
bool* bReverse
);
/*
Description:
Sort a list of curves so end of a curve matches the start of the next curve.
Parameters:
curve - [in] array of curves to sort. The curves themselves are not modified.
index - [out] The input index[] is an array of curve_count unused integers.
The returned index[] is a permutation of {0,1,...,curve_count-1}
so that the list of curves is in end-to-end order.
bReverse - [out] The input bReverse[] is an array of curve_count unused bools.
If the returned value of bReverse[j] is true, then
curve[index[j]] needs to be reversed.
Returns:
True if successful, false if not.
*/
ON_DECL
bool ON_SortCurves(
const ON_SimpleArray<const ON_Curve*>& curves,
ON_SimpleArray<int>& index,
ON_SimpleArray<bool>& bReverse
);
/*
Description:
Sort a list of curves so end of a curve matches the start of the next curve.
Parameters:
curve_count - [in] number of curves
curve - [in] array of curve pointers
index - [out] The input index[] is an array of curve_count unused integers.
The returned index[] is a permutation of {0,1,...,curve_count-1}
so that the list of curves is in end-to-end order.
bReverse - [out] The input bReverse[] is an array of curve_count unused bools.
If the returned value of bReverse[j] is true, then
curve[index[j]] needs to be reversed.
Returns:
True if successful, false if not.
*/
ON_DECL
bool ON_SortCurves(
const ON_SimpleArray<ON_Curve*>& curves,
ON_SimpleArray<int>& index,
ON_SimpleArray<bool>& bReverse
);
/*
Description:
Determine the orientaion (counterclockwise or clockwise) of a closed
planar curve.
Paramters:
curve - [in] simple (no self intersections) closed planar curve
xform - [in] Transformation to map the curve to the xy plane. If the
curve is parallel to the xy plane, you may pass NULL.
Returns:
+1: The curve's orientation is counter clockwise in the xy plane.
-1: The curve's orientation is clockwise in the xy plane.
0: Unable to compute the curve's orientation.
*/
ON_DECL
int ON_ClosedCurveOrientation( const ON_Curve& curve, const ON_Xform* xform );
#endif