Repository URL to install this package:
Version:
7.26.0-0.2 ▾
|
/* $NoKeywords: $ */
/*
//
// Copyright (c) 1993-2012 Robert McNeel & Associates. All rights reserved.
// OpenNURBS, Rhinoceros, and Rhino3D are registered trademarks of Robert
// McNeel & Associates.
//
// THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY.
// ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE AND OF
// MERCHANTABILITY ARE HEREBY DISCLAIMED.
//
// For complete openNURBS copyright information see <http://www.opennurbs.org>.
//
////////////////////////////////////////////////////////////////
*/
#if !defined(ON_MATH_INC_)
#define ON_MATH_INC_
class ON_3dVector;
class ON_Interval;
class ON_Line;
class ON_Arc;
class ON_Plane;
/*
Description:
Class for carefully adding long list of numbers.
*/
class ON_CLASS ON_Sum
{
public:
/*
Description:
Calls ON_Sum::Begin(x)
*/
void operator=(double x);
/*
Description:
Calls ON_Sum::Plus(x);
*/
void operator+=(double x);
/*
Description:
Calls ON_Sum::Plus(-x);
*/
void operator-=(double x);
/*
Description:
Creates a sum that is ready to be used.
*/
ON_Sum();
/*
Description:
If a sum is being used more than once, call Begin()
before starting each sum.
Parameters:
starting_value - [in] Initial value of sum.
*/
void Begin( double starting_value = 0.0 );
/*
Description:
Add x to the current sum.
Parameters:
x - [in] value to add to the current sum.
*/
void Plus( double x );
/*
Description:
Calculates the total sum.
Parameters:
error_estimate - [out] if not NULL, the returned value of
*error_estimate is an estimate of the error in the sum.
Returns:
Total of the sum.
Remarks:
You can get subtotals by mixing calls to Plus() and Total().
In delicate sums, some precision may be lost in the final
total if you call Total() to calculate subtotals.
*/
double Total( double* error_estimate = NULL );
/*
Returns:
Number of summands.
*/
int SummandCount() const;
private:
enum {
sum1_max_count=256,
sum2_max_count=512,
sum3_max_count=1024
};
double m_sum_err;
double m_pos_sum;
double m_neg_sum;
int m_zero_count; // number of zeros added
int m_pos_count; // number of positive numbers added
int m_neg_count; // number of negative numbers added
int m_pos_sum1_count;
int m_pos_sum2_count;
int m_pos_sum3_count;
double m_pos_sum1[sum1_max_count];
double m_pos_sum2[sum2_max_count];
double m_pos_sum3[sum3_max_count];
int m_neg_sum1_count;
int m_neg_sum2_count;
int m_neg_sum3_count;
double m_neg_sum1[sum1_max_count];
double m_neg_sum2[sum2_max_count];
double m_neg_sum3[sum3_max_count];
double SortAndSum( int, double* );
};
/*
Description:
Abstract function with an arbitrary number of parameters
and values. ON_Evaluator is used to pass functions to
local solvers.
*/
class ON_CLASS ON_Evaluator
{
public:
/*
Description:
Construction of the class for a function that takes
parameter_count input functions and returns
value_count values. If the domain is infinite, pass
a NULL for the domain[] and periodic[] arrays. If
the domain is finite, pass a domain[] array with
parameter_count increasing intervals. If one or more of
the parameters is periodic, pass the fundamental domain
in the domain[] array and a true in the periodic[] array.
Parameters:
parameter_count - [in] >= 1. Number of input parameters
value_count - [in] >= 1. Number of output values.
domain - [in] If not NULL, then this is an array
of parameter_count increasing intervals
that defines the domain of the function.
periodic - [in] if not NULL, then this is an array of
parameter_count bools where b[i] is true if
the i-th parameter is periodic. Valid
increasing finite domains must be specificed
when this parameter is not NULL.
*/
ON_Evaluator(
int parameter_count,
int value_count,
const ON_Interval* domain,
const bool* periodic
);
virtual ~ON_Evaluator();
/*
Description:
Evaluate the function that takes m_parameter_count parameters
and returns a m_value_count dimensional point.
Parameters:
parameters - [in] array of m_parameter_count evaluation parameters
values - [out] array of m_value_count function values
jacobian - [out] If NULL, simply evaluate the value of the function.
If not NULL, this is the jacobian of the function.
jacobian[i][j] = j-th partial of the i-th value
0 <= i < m_value_count,
0 <= j < m_parameter_count
If not NULL, then all the memory for the
jacobian is allocated, you just need to fill
in the answers.
Example:
If f(u,v) = square of the distance from a fixed point P to a
surface evaluated at (u,v), then
values[0] = (S-P)o(S-P)
jacobian[0] = ( 2*(Du o (S-P)), 2*(Dv o (S-P)) )
where S, Du, Dv = surface point and first partials evaluated
at u=parameters[0], v = parameters[1].
If the function takes 3 parameters, say (x,y,z), and returns
two values, say f(x,y,z) and g(z,y,z), then
values[0] = f(x,y,z)
values[1] = g(x,y,z)
jacobian[0] = (DfDx, DfDy, DfDz)
jacobian[1] = (DgDx, DgDy, DgDz)
where dfx denotes the first partial of f with respect to x.
Returns:
0 = unable to evaluate
1 = successful evaluation
2 = found answer, terminate search
*/
virtual int Evaluate(
const double* parameters,
double* values,
double** jacobian
) = 0;
/*
Description:
OPTIONAL ability to evaluate the hessian in the case when
m_value_count is one. If your function has more that
one value or it is not feasable to evaluate the hessian,
then do not override this function. The default implementation
returns -1.
Parameters:
parameters - [in] array of m_parameter_count evaluation parameters
value - [out] value of the function (one double)
gradient - [out] The gradient of the function. This is a vector
of length m_parameter_count; gradient[i] is
the first partial of the function with respect to
the i-th parameter.
hessian - [out] The hessian of the function. This is an
m_parameter_count x m_parameter_count
symmetric matrix: hessian[i][j] is the
second partial of the function with respect
to the i-th and j-th parameters. The evaluator
is responsible for filling in both the upper
and lower triangles. Since the matrix is
symmetrix, you should do something like evaluate
the upper triangle and copy the values to the
lower tiangle.
Returns:
-1 = Hessian evaluation not available.
0 = unable to evaluate
1 = successful evaluation
2 = found answer, terminate search
*/
virtual int EvaluateHessian(
const double* parameters,
double* value,
double* gradient,
double** hessian
);
// Number of the function's input parameters. This number
// is >= 1 and is specified in the constructor.
const int m_parameter_count;
// Number of the function's output values. This number
// is >= 1 and is specified in the constructor.
const int m_value_count;
/*
Description:
Functions can have finite or infinite domains. Finite domains
are specified by passing the domain[] array to the constructor
or filling in the m_domain[] member variable. If
m_domain.Count() == m_parameter_count > 0, then the function
has finite domains.
Returns:
True if the domain of the function is finite.
*/
bool FiniteDomain() const;
/*
Description:
If a function has a periodic parameter, then the m_domain
interval for that parameter is the fundamental domain and
the m_bPeriodicParameter bool for that parameter is true.
A parameter is periodic if, and only if,
m_domain.Count() == m_parameter_count, and
m_bPeriodicParameter.Count() == m_parameter_count, and
m_bPeriodicParameter[parameter_index] is true.
Returns:
True if the function parameter is periodic.
*/
bool Periodic(
int parameter_index
) const;
/*
Description:
If a function has a periodic parameter, then the m_domain
interval for that parameter is the fundamental domain and
the m_bPeriodicParameter bool for that parameter is true.
A parameter is periodic if, and only if,
m_domain.Count() == m_parameter_count, and
m_bPeriodicParameter.Count() == m_parameter_count, and
m_bPeriodicParameter[parameter_index] is true.
Returns:
The domain of the parameter. If the domain is infinite,
the (-1.0e300, +1.0e300) is returned.
*/
ON_Interval Domain(
int parameter_index
) const;
// If the function has a finite domain or periodic
// parameters, then m_domain[] is an array of
// m_parameter_count finite increasing intervals.
ON_SimpleArray<ON_Interval> m_domain;
// If the function has periodic parameters, then
// m_bPeriodicParameter[] is an array of m_parameter_count
// bools. If m_bPeriodicParameter[i] is true, then
// the i-th parameter is periodic and m_domain[i] is
// the fundamental domain for that parameter.
ON_SimpleArray<bool> m_bPeriodicParameter;
private:
ON_Evaluator(); // prohibit default constructor
ON_Evaluator& operator=(const ON_Evaluator&); // prohibit operator= (can't copy const members)
};
/*
Description:
Test a double to make sure it is a valid number.
Returns:
True if x != ON_UNSET_VALUE and _finite(x) is true.
*/
ON_DECL
bool ON_IsValid( double x );
ON_DECL
bool ON_IsValidFloat( float x );
/*
class ON_CLASS ON_TimeLimit
{
ON_TimeLimit();
ON_TimeLimit(ON__UINT64 time_limit_seconds);
void SetTimeLimit(ON__UINT64 time_limit_seconds);
bool Continue() const;
bool IsSet() const;
private:
ON__UINT64 m_time_limit[2];
};
*/
// The ON_IS_FINITE and ON_IS_VALID defines are much faster
// than calling ON_IsValid(), but need to be used when
// the macro expansion works.
#if defined(ON_LITTLE_ENDIAN)
// works on little endian CPUs with IEEE doubles
#define ON_IS_FINITE(x) (0x7FF0 != (*((unsigned short*)(&x) + 3) & 0x7FF0))
#define ON_IS_VALID(x) (x != ON_UNSET_VALUE && 0x7FF0 != (*((unsigned short*)(&x) + 3) & 0x7FF0))
#define ON_IS_VALID_FLOAT(x) (x != ON_UNSET_FLOAT)
//TODO - ADD FAST ugly bit check#define ON_IS_VALID_FLOAT(x) (x != ON_UNSET_FLOAT && 0x7FF0 != (*((unsigned short*)(&x) + 3) & 0x7FF0))
#elif defined(ON_BIG_ENDIAN)
// works on big endian CPUs with IEEE doubles
#define ON_IS_FINITE(x) (0x7FF0 != (*((unsigned short*)(&x)) & 0x7FF0))
#define ON_IS_VALID(x) (x != ON_UNSET_VALUE && 0x7FF0 != (*((unsigned short*)(&x)) & 0x7FF0))
#define ON_IS_VALID_FLOAT(x) (x != ON_UNSET_FLOAT)
//TODO - ADD FAST ugly bit check#define ON_IS_VALID_FLOAT(x) (x != ON_UNSET_FLOAT && 0x7FF0 != (*((unsigned short*)(&x) + 3) & 0x7FF0))
#else
// Returns true if x is a finite double. Specifically,
// _finite returns a nonzero value (true) if its argument x
// is not infinite, that is, if -INF < x < +INF.
// It returns 0 (false) if the argument is infinite or a NaN.
//
// If you are trying to compile opennurbs on a platform
// that does not support finite(), then see if you can
// use _fpclass(), fpclass(), _isnan(), or isnan(). If
// you can't find anything, then just set this
// function to return true.
#if defined(_GNU_SOURCE)
// if you are using an older version of gcc, use finite()
//#define ON_IS_FINITE(x) (finite(x)?true:false)
#define ON_IS_FINITE(x) (isfinite(x)?true:false)
#else
#define ON_IS_FINITE(x) (_finite(x)?true:false)
#endif
#define ON_IS_VALID(x) (x != ON_UNSET_VALUE && ON_IS_FINITE(x))
#define ON_IS_VALID_FLOAT(x) (x != ON_UNSET_FLOAT && ON_IS_FINITE(x))
#endif
ON_DECL
float ON_ArrayDotProduct( // returns AoB
int, // size of arrays (can be zero)
const float*, // A[]
const float* // B[]
);
ON_DECL
void ON_ArrayScale(
int, // size of arrays (can be zero)
float, // a
const float*, // A[]
float* // returns a*A[]
);
ON_DECL
void ON_Array_aA_plus_B(
int, // size of arrays (can be zero)
float, // a
const float*, // A[]
const float*, // B[]
float* // returns a*A[] + B[]
);
ON_DECL
double ON_ArrayDotProduct( // returns AoB
int, // size of arrays (can be zero)
const double*, // A[]
const double* // B[]
);
ON_DECL
double ON_ArrayDotDifference( // returns A o ( B - C )
int, // size of arrays (can be zero)
const double*, // A[]
const double*, // B[]
const double* // C[]
);
ON_DECL
double ON_ArrayMagnitude( // returns sqrt(AoA)
int, // size of arrays (can be zero)
const double* // A[]
);
ON_DECL
double ON_ArrayMagnitudeSquared( // returns AoA
int, // size of arrays (can be zero)
const double* // A[]
);
ON_DECL
double ON_ArrayDistance( // returns sqrt((A-B)o(A-B))
int, // size of arrays (can be zero)
const double*, // A[]
const double* // B[]
);
ON_DECL
double ON_ArrayDistanceSquared( // returns (A-B)o(A-B)
int, // size of arrays (can be zero)
const double*, // A[]
const double* // B[]
);
ON_DECL
void ON_ArrayScale(
int, // size of arrays (can be zero)
double, // a
const double*, // A[]
double* // returns a*A[]
);
ON_DECL
void ON_Array_aA_plus_B(
int, // size of arrays (can be zero)
double, // a
const double*, // A[]
const double*, // B[]
double* // returns a*A[] + B[]
);
ON_DECL
int ON_SearchMonotoneArray( // find a value in an increasing array
// returns -1: t < array[0]
// i: array[i] <= t < array[i+1] ( 0 <= i < length-1 )
// length-1: t == array[length-1]
// length: t >= array[length-1]
const double*, // array[]
int, // length of array
double // t = value to search for
);
/*
Description:
Compute a binomial coefficient.
Parameters:
i - [in]
j - [in]
Returns:
(i+j)!/(i!j!), if 0 <= i and 0 <= j, and 0 otherwise.
See Also:
ON_TrinomialCoefficient()
Remarks:
If (i+j) <= 52, this function is fast and returns the exact
value of the binomial coefficient.
For (i+j) > 52, the coefficient is computed recursively using
the formula bc(i,j) = bc(i-1,j) + bc(i,j-1).
For (i+j) much larger than 60, this is inefficient.
If you need binomial coefficients for large i and j, then you
should probably be using something like Stirling's Formula.
(Look up "Stirling" or "Gamma function" in a calculus book.)
*/
ON_DECL
double ON_BinomialCoefficient(
int i,
int j
);
/*
Description:
Compute a trinomial coefficient.
Parameters:
i - [in]
j - [in]
k - [in]
Returns:
(i+j+k)!/(i!j!k!), if 0 <= i, 0 <= j and 0<= k, and 0 otherwise.
See Also:
ON_BinomialCoefficient()
Remarks:
The trinomial coefficient is computed using the formula
(i+j+k)! (i+j+k)! (j+k)!
-------- = -------- * -------
i! j! k! i! (j+k)! j! k!
= ON_BinomialCoefficient(i,j+k)*ON_BinomialCoefficient(j,k)
*/
ON_DECL
double ON_TrinomialCoefficient(
int i,
int j,
int k
);
ON_DECL
ON_BOOL32 ON_GetParameterTolerance(
double, double, // domain
double, // parameter in domain
double*, double* // parameter tolerance (tminus, tplus) returned here
);
ON_DECL
ON_BOOL32 ON_IsValidPointList(
int, // dim
ON_BOOL32, // true for homogeneous rational points
int, // count
int, // stride
const float*
);
ON_DECL
ON_BOOL32 ON_IsValidPointList(
int, // dim
ON_BOOL32, // true for homogeneous rational points
int, // count
int, // stride
const double*
);
/*
Description:
Determine if a list of points is planar.
Parameters:
bRational - [in]
false if the points are euclidean (x,y,z)
true if the points are homogeneous rational (x,y,z,w)
point_count - [in]
number of points
point_stride - [in]
number of doubles between point x coordinates
first point's x coordinate = points[0],
second point's x coordinate = points[point_stride],...
points - [in]
point coordinates (3d or 4d homogeneous rational)
boxMin - [in]
boxMax - [in]
optional 3d bounding box - pass nulls if not readily available
tolerance - [in] >= 0.0
plane_equation0 - [in]
If you want to test for planarity in a specific plane,
pass the plane equation in here. If you want to find
a plane containing the points, pass null here.
plane_equation - [out]
If this point is not null, then the equation of the plane
containing the points is retuened here.
Returns:
0 - points are not coplanar to the specified tolerance
1 - points are coplanar to the specified tolerance
2 - points are colinear to the specified tolerance
(in this case, plane_equation is not a unique answer)
3 - points are coincident to the specified tolerance
(in this case, plane_equation is not a unique answer)
*/
ON_DECL
int ON_IsPointListPlanar(
bool bRational,
int count,
int stride,
const double* points,
const double* boxMin,
const double* boxMax,
double tolerance,
ON_PlaneEquation* plane_equation
);
ON_DECL
ON_BOOL32 ON_IsValidPointGrid(
int, // dim
ON_BOOL32, // true for homogeneous rational points
int, int, // point_count0, point_count1,
int, int, // point_stride0, point_stride1,
const double*
);
ON_DECL
bool ON_ReversePointList(
int, // dim
ON_BOOL32, // true for homogeneous rational points
int, // count
int, // stride
double*
);
ON_DECL
ON_BOOL32 ON_ReversePointGrid(
int, // dim
ON_BOOL32, // true for homogeneous rational points
int, int, // point_count0, point_count1,
int, int, // point_stride0, point_stride1,
double*,
int // dir = 0 or 1
);
ON_DECL
bool ON_SwapPointListCoordinates(
int, // count
int, // stride
float*,
int, int // coordinates to swap
);
ON_DECL
bool ON_SwapPointListCoordinates(
int, // count
int, // stride
double*,
int, int // coordinates to swap
);
ON_DECL
ON_BOOL32 ON_SwapPointGridCoordinates(
int, int, // point_count0, point_count1,
int, int, // point_stride0, point_stride1,
double*,
int, int // coordinates to swap
);
ON_DECL
bool ON_TransformPointList(
int, // dim
ON_BOOL32, // true for homogeneous rational points
int, // count
int, // stride
float*,
const ON_Xform&
);
ON_DECL
bool ON_TransformPointList(
int, // dim
ON_BOOL32, // true for homogeneous rational points
int, // count
int, // stride
double*,
const ON_Xform&
);
ON_DECL
ON_BOOL32 ON_TransformPointGrid(
int, // dim
ON_BOOL32, // true for homogeneous rational points
int, int, // point_count0, point_count1,
int, int, // point_stride0, point_stride1,
double*,
const ON_Xform&
);
ON_DECL
ON_BOOL32 ON_TransformVectorList(
int, // dim
int, // count
int, // stride
float*,
const ON_Xform&
);
ON_DECL
ON_BOOL32 ON_TransformVectorList(
int, // dim
int, // count
int, // stride
double*,
const ON_Xform&
);
/*
Parameters:
dim - [in]
>= 1
is_rat - [in]
true if the points are rational and points[dim] is the "weight"
pointA - [in]
pointB - [in]
point coordinates
Returns:
True if the input is valid and for each coordinate pair,
|a-b| <= ON_ZERO_TOLERANCE
or |a-b| <= (fabs(a)+fabs(b))*ON_RELATIVE_TOLERANCE.
False otherwise.
*/
ON_DECL
bool ON_PointsAreCoincident(
int dim,
int is_rat,
const double* pointA,
const double* pointB
);
/*
Description
See ON_PointsAreCoincident() for a description of when opennurbs
considers two points to be conincident.
Parameters:
dim - [in]
>= 1
is_rat - [in]
true if the points are rational and points[dim] is the "weight"
point_count - [in]
number of points >= 2
point_stride - [in]
>= (0 != is_rat) ? (dim+1) : dim
points - [in]
point coordinates
Returns:
True if the first and last points are coincident and all other
points in the list are coincident with the previous point.
False if there are points that are not coincident or
point_count < 2 or other input parameters are invalid.
*/
ON_DECL
bool ON_PointsAreCoincident(
int dim,
int is_rat,
int point_count,
int point_stride,
const double* points
);
ON_DECL
int ON_ComparePoint( // returns
// -1: first < second
// 0: first == second
// +1: first > second
int dim, // dim (>=0)
ON_BOOL32 israt, // true for rational CVs
const double* cv0, // first CV
const double* cv1 // secont CV
);
ON_DECL
int ON_ComparePointList( // returns
// -1: first < second
// 0: first == second
// +1: first > second
int, // dim (>=0)
ON_BOOL32, // true for rational CVs
int, // count
// first point list
int, // stride
const double*, // point
// second point list
int, // stride
const double* // point
);
ON_DECL
ON_BOOL32 ON_IsPointListClosed(
int, // dim
int, // true for homogeneos rational points
int, // count
int, // stride
const double*
);
ON_DECL
ON_BOOL32 ON_IsPointGridClosed(
int, // dim
ON_BOOL32, // true for homogeneous rational points
int, int, // point_count0, point_count1,
int, int, // point_stride0, point_stride1,
const double*,
int // dir = 0 or 1
);
ON_DECL
int ON_SolveQuadraticEquation( // solve a*X^2 + b*X + c = 0
// returns 0: two distinct real roots (r0 < r1)
// 1: one real root (r0 = r1)
// 2: two complex conjugate roots (r0 +/- (r1)*sqrt(-1))
// -1: failure - a = 0, b != 0 (r0 = r1 = -c/b)
// -2: failure - a = 0, b = 0 c != 0 (r0 = r1 = 0.0)
// -3: failure - a = 0, b = 0 c = 0 (r0 = r1 = 0.0)
double, double, double, // a, b, c
double*, double* // roots r0 and r1 returned here
);
ON_DECL
ON_BOOL32 ON_SolveTriDiagonal( // solve TriDiagMatrix( a,b,c )*X = d
int, // dimension of d and X (>=1)
int, // number of equations (>=2)
double*, // a[n-1] = sub-diagonal (a is modified)
const double*, // b[n] = diagonal
double*, // c[n-1] = supra-diagonal
const double*, // d[n*dim]
double* // X[n*dim] = unknowns
);
// returns rank - if rank != 2, system is under determined
// If rank = 2, then solution to
//
// a00*x0 + a01*x1 = b0,
// a10*x0 + a11*x1 = b1
//
// is returned
ON_DECL
int ON_Solve2x2(
double, double, // a00 a01 = first row of 2x2 matrix
double, double, // a10 a11 = second row of 2x2 matrix
double, double, // b0 b1
double*, double*, // x0, x1 if not NULL, then solution is returned here
double* // if not NULL, then pivot_ratio returned here
);
// Description:
// Solves a system of 3 linear equations and 2 unknowns.
//
// x*col0[0] + y*col1[0] = d0
// x*col0[1] + y*col1[1] = d0
// x*col0[2] + y*col1[2] = d0
//
// Parameters:
// col0 - [in] coefficents for "x" unknown
// col1 - [in] coefficents for "y" unknown
// d0 - [in] constants
// d1 - [in]
// d2 - [in]
// x - [out]
// y - [out]
// error - [out]
// pivot_ratio - [out]
//
// Returns:
// rank of the system.
// If rank != 2, system is under determined
// If rank = 2, then the solution is
//
// (*x)*[col0] + (*y)*[col1]
// + (*error)*((col0 X col1)/|col0 X col1|)
// = (d0,d1,d2).
ON_DECL
int ON_Solve3x2(
const double[3], // col0
const double[3], // col1
double, // d0
double, // d1
double, // d2
double*, // x
double*, // y
double*, // error
double* // pivot_ratio
);
/*
Description:
Use Gauss-Jordan elimination with full pivoting to solve
a system of 3 linear equations and 3 unknowns(x,y,z)
x*row0[0] + y*row0[1] + z*row0[2] = d0
x*row1[0] + y*row1[1] + z*row1[2] = d1
x*row2[0] + y*row2[1] + z*row2[2] = d2
Parameters:
row0 - [in] first row of 3x3 matrix
row1 - [in] second row of 3x3 matrix
row2 - [in] third row of 3x3 matrix
d0 - [in]
d1 - [in]
d2 - [in] (d0,d1,d2) right hand column of system
x_addr - [in] first unknown
y_addr - [in] second unknown
z_addr - [in] third unknown
pivot_ratio - [out] if not NULL, the pivot ration is
returned here. If the pivot ratio is "small",
then the matrix may be singular or ill
conditioned. You should test the results
before you use them. "Small" depends on the
precision of the input coefficients and the
use of the solution. If you can't figure out
what "small" means in your case, then you
must check the solution before you use it.
Returns:
The rank of the 3x3 matrix (0,1,2, or 3)
If ON_Solve3x3() is successful (returns 3), then
the solution is returned in
(*x_addr, *y_addr, *z_addr)
and *pivot_ratio = min(|pivots|)/max(|pivots|).
If the return code is < 3, then (0,0,0) is returned
as the "solution".
See Also:
ON_Solve2x2
ON_Solve3x2
ON_Solve4x4
*/
ON_DECL
int ON_Solve3x3(
const double row0[3],
const double row1[3],
const double row2[3],
double d0,
double d1,
double d2,
double* x_addr,
double* y_addr,
double* z_addr,
double* pivot_ratio
);
/*
Description:
Use Gauss-Jordan elimination with full pivoting to solve
a system of 4 linear equations and 4 unknowns(x,y,z,w)
x*row0[0] + y*row0[1] + z*row0[2] + w*row0[3] = d0
x*row1[0] + y*row1[1] + z*row1[2] + w*row1[3] = d1
x*row2[0] + y*row2[1] + z*row2[2] + w*row2[3] = d2
x*row3[0] + y*row3[1] + z*row3[2] + w*row3[2] = d3
Parameters:
row0 - [in] first row of 4x4 matrix
row1 - [in] second row of 4x4 matrix
row2 - [in] third row of 4x4 matrix
row3 - [in] forth row of 4x4 matrix
d0 - [in]
d1 - [in]
d2 - [in]
d3 - [in] (d0,d1,d2,d3) right hand column of system
x_addr - [in] first unknown
y_addr - [in] second unknown
z_addr - [in] third unknown
w_addr - [in] forth unknown
pivot_ratio - [out] if not NULL, the pivot ration is
returned here. If the pivot ratio is "small",
then the matrix may be singular or ill
conditioned. You should test the results
before you use them. "Small" depends on the
precision of the input coefficients and the
use of the solution. If you can't figure out
what "small" means in your case, then you
must check the solution before you use it.
Returns:
The rank of the 4x4 matrix (0,1,2,3, or 4)
If ON_Solve4x4() is successful (returns 4), then
the solution is returned in
(*x_addr, *y_addr, *z_addr, *w_addr)
and *pivot_ratio = min(|pivots|)/max(|pivots|).
If the return code is < 4, then, it a solution exists,
on is returned. However YOU MUST CHECK THE SOLUTION
IF THE RETURN CODE IS < 4.
See Also:
ON_Solve2x2
ON_Solve3x2
ON_Solve3x3
*/
ON_DECL
int
ON_Solve4x4(
const double row0[4],
const double row1[4],
const double row2[4],
const double row3[4],
double d0,
double d1,
double d2,
double d3,
double* x_addr,
double* y_addr,
double* z_addr,
double* w_addr,
double* pivot_ratio
);
/*
Description:
Use Gauss-Jordan elimination to find a numerical
solution to M*X = B where M is a n x n matrix,
B is a known n-dimensional vector and X is
an unknown.
Paramters:
bFullPivot - [in] if true, full pivoting is used,
otherwise partial pivoting is used. In rare
cases full pivoting can produce a more accurate
answer and never produces a less accurate answer.
However full pivoting is slower. If speed is an
issue, then experiement with bFullPivot=false
and see if it makes a difference. Otherwise,
set it to true.
bNormalize - [in]
If bNormalize is true, then the rows of the
matrix are scaled so the sum of their squares
is one. This doesn't make the solution more
accurate but in some cases it makes the pivot
ratio more meaningful. Set bNormalize to
false unless you have a reason for setting it
to true.
n - [in] size of the matrix and vectors.
M - [in] n x n matrix. The values in M are
changed as the solution is calculated.
If you need to preserve M for future use,
pass in a copy.
B - [in] n-dimensional vector. The values in
B are changed as the solution is calculated.
If you need to preserve B for future use,
pass in a copy.
X - [out] solution to M*X = B.
Returns:
If the returned value is <= 0.0, the input matrix
has rank < n and no solution is returned in X.
If the returned value is > 0.0, then a solution is
returned in X and the returned value is the ratio
(minimum pivot)/(maximum pivot). This value is
called the pivot ratio and will be denoted "pr"
the discussion below. If pr <= 1e-15, then
M was nearly degenerate and the solution should be
used with caution. If an accurate solution is
critcial, then check the solution anytime pr <= 1e-10
In general, the difference between M*X and B will be
reasonably small. However, when the pr is small
there tend to be vector E, substantually different
from zero, such that M*(X+E) - B is also reasonably
small.
See Also:
ON_Solve2x2
ON_Solve3x3
ON_Solve4x4
ON_Solve3x2
*/
ON_DECL
double ON_SolveNxN(bool bFullPivot, bool bNormalize, int n, double* M[], double B[], double X[]);
// return false if determinant is (nearly) singular
ON_DECL
ON_BOOL32 ON_EvJacobian(
double, // ds o ds
double, // ds o dt
double, // dt o dt
double* // jacobian = determinant ( ds_o_ds dt_o_dt / ds_o_dt ds_o_dt )
);
/*
Description:
Finds scalars x and y so that the component of V in the plane
of A and B is x*A + y*B.
Parameters:
V - [in]
A - [in] nonzero and not parallel to B
B - [in] nonzero and not parallel to A
x - [out]
y - [out]
Returns:
1 - The rank of the problem is 2. The decomposition is unique.
0 - The rank less than 2. Either there is no solution or there
are infinitely many solutions.
See Also:
ON_Solve2x2
*/
ON_DECL
int ON_DecomposeVector(
const ON_3dVector& V,
const ON_3dVector& A,
const ON_3dVector& B,
double* x, double* y
);
/*
Description:
Evaluate partial derivatives of surface unit normal
Parameters:
ds - [in]
dt - [in] surface first partial derivatives
dss - [in]
dst - [in]
dtt - [in] surface second partial derivatives
ns - [out]
nt - [out] First partial derivatives of surface unit normal
(If the Jacobian is degenerate, ns and nt are set to zero.)
Returns:
true if Jacobian is nondegenerate
false if Jacobian is degenerate
*/
ON_DECL
ON_BOOL32 ON_EvNormalPartials(
const ON_3dVector& ds,
const ON_3dVector& dt,
const ON_3dVector& dss,
const ON_3dVector& dst,
const ON_3dVector& dtt,
ON_3dVector& ns,
ON_3dVector& nt
);
ON_DECL
ON_BOOL32
ON_Pullback3dVector( // use to pull 3d vector back to surface parameter space
const ON_3dVector&, // 3d vector
double, // signed distance from vector location to closet point on surface
// < 0 if point is below with respect to Du x Dv
const ON_3dVector&, // ds surface first partials
const ON_3dVector&, // dt
const ON_3dVector&, // dss surface 2nd partials
const ON_3dVector&, // dst (used only when dist != 0)
const ON_3dVector&, // dtt
ON_2dVector& // pullback
);
ON_DECL
ON_BOOL32
ON_GetParameterTolerance(
double, // t0 domain
double, // t1
double, // t parameter in domain
double*, // tminus parameter tolerance (tminus, tplus) returned here
double* // tplus
);
ON_DECL
ON_BOOL32 ON_EvNormal(
int, // limit_dir 0=default,1=from quadrant I, 2 = from quadrant II, ...
const ON_3dVector&, const ON_3dVector&, // first partials (Du,Dv)
const ON_3dVector&, const ON_3dVector&, const ON_3dVector&, // optional second partials (Duu, Duv, Dvv)
ON_3dVector& // unit normal returned here
);
// returns false if first returned tangent is zero
ON_DECL
bool ON_EvTangent(
const ON_3dVector&, // first derivative
const ON_3dVector&, // second derivative
ON_3dVector& // Unit tangent returned here
);
// returns false if first derivtive is zero
ON_DECL
ON_BOOL32 ON_EvCurvature(
const ON_3dVector&, // first derivative
const ON_3dVector&, // second derivative
ON_3dVector&, // Unit tangent returned here
ON_3dVector& // Curvature returned here
);
ON_DECL
ON_BOOL32 ON_EvPrincipalCurvatures(
const ON_3dVector&, // Ds,
const ON_3dVector&, // Dt,
const ON_3dVector&, // Dss,
const ON_3dVector&, // Dst,
const ON_3dVector&, // Dtt,
const ON_3dVector&, // N, // unit normal to surface (use ON_EvNormal())
double*, // gauss, // = Gaussian curvature = kappa1*kappa2
double*, // mean, // = mean curvature = (kappa1+kappa2)/2
double*, // kappa1, // = largest principal curvature value (may be negative)
double*, // kappa2, // = smallest principal curvature value (may be negative)
ON_3dVector&, // K1, // kappa1 unit principal curvature direction
ON_3dVector& // K2 // kappa2 unit principal curvature direction
// output K1,K2,N is right handed frame
);
ON_DECL
ON_BOOL32 ON_EvPrincipalCurvatures(
const ON_3dVector&, // Ds,
const ON_3dVector&, // Dt,
double l, // Dss*N Second fundamental form coefficients
double m, // Dst*N,
double n, // Dtt*N,
const ON_3dVector&, // N, // unit normal to surface (use ON_EvNormal())
double*, // gauss, // = Gaussian curvature = kappa1*kappa2
double*, // mean, // = mean curvature = (kappa1+kappa2)/2
double*, // kappa1, // = largest principal curvature value (may be negative)
double*, // kappa2, // = smallest principal curvature value (may be negative)
ON_3dVector&, // K1, // kappa1 unit principal curvature direction
ON_3dVector& // K2 // kappa2 unit principal curvature direction
// output K1,K2,N is right handed frame
);
/*
Description:
Evaluate sectional curvature from surface derivatives and
section plane normal.
Parameters:
S10, S01 - [in]
surface 1st partial derivatives
S20, S11, S02 - [in]
surface 2nd partial derivatives
planeNormal - [in]
unit normal to section plane
K - [out] Sectional curvature
Curvature of the intersection curve of the surface
and plane through the surface point where the partial
derivatives were evaluationed.
Returns:
True if successful.
False if first partials are not linearly independent, in
which case the K is set to zero.
*/
ON_DECL
bool ON_EvSectionalCurvature(
const ON_3dVector& S10,
const ON_3dVector& S01,
const ON_3dVector& S20,
const ON_3dVector& S11,
const ON_3dVector& S02,
const ON_3dVector& planeNormal,
ON_3dVector& K
);
ON_DECL
ON_3dVector ON_NormalCurvature(
const ON_3dVector&, // surface 1rst partial (Ds)
const ON_3dVector&, // surface 1rst partial (Dt)
const ON_3dVector&, // surface 1rst partial (Dss)
const ON_3dVector&, // surface 1rst partial (Dst)
const ON_3dVector&, // surface 1rst partial (Dtt)
const ON_3dVector&, // surface unit normal
const ON_3dVector& // unit tangent direction
);
/*
Description:
Determing if two curvatrues are different enough
to qualify as a curvature discontinuity.
Parameters:
Km - [in]
Kp - [in]
Km and Kp should be curvatures evaluated at the same
parameters using limits from below (minus) and above (plus).
The assumption is that you have already compared the
points and tangents and consider to curve to be G1 at the
point in question.
cos_angle_tolerance - [in]
If the inut value of cos_angle_tolerance >= -1.0
and cos_angle_tolerance <= 1.0 and
Km o Kp < cos_angle_tolerance*|Km|*|Kp|, then
true is returned. Otherwise it is assumed Km and Kp
are parallel. If the curve being tested is nonplanar,
then use something like cos(2*tangent angle tolerance)
for this parameter. If the curve being tested is planar,
then 0.0 will work fine.
curvature_tolerance - [in]
If |Kp-Km| <= curvature_tolerance,
then false is returned, otherwise other tests are used
to determing continuity.
zero_curvature - [in] (ignored if < 2^-110 = 7.7037197787136e-34)
If |K| <= zero_curvature, then K is treated as zero.
When in doubt, use ON_ZERO_CURVATURE_TOLERANCE.
radius_tolerance - [in]
If radius_tolerance >= 0.0 and the difference between the
radii of curvature is >= radius_tolerance, then true
is returned.
relative_tolerance - [in]
If relative_tolerance > 0 and
|(|Km| - |Kp|)|/max(|Km|,|Kp|) > relative_tolerance,
then true is returned. Note that if the curvatures are
nonzero and rm and rp are the radii of curvature, then
|(|Km| - |Kp|)|/max(|Km|,|Kp|) = |rm-rp|/max(rm,rp).
This means the relative_tolerance insures both the scalar
curvature and the radii of curvature agree to the specified
number of decimal places.
When in double use ON_RELATIVE_CURVATURE_TOLERANCE, which
is currently 0.05.
Returns:
False if the curvatures should be considered G2.
True if the curvatures are different enough that the curve should be
considered not G2.
In addition to the tests described under the curvature_tolerance and
radius_tolerance checks, other hurestic tests are used.
*/
ON_DECL
bool ON_IsCurvatureDiscontinuity(
const ON_3dVector Km,
const ON_3dVector Kp,
double cos_angle_tolerance,
double curvature_tolerance,
double zero_curvature,
double radius_tolerance,
double relative_tolerance
);
ON_DECL
bool ON_IsCurvatureDiscontinuity(
const ON_3dVector Km,
const ON_3dVector Kp,
double cos_angle_tolerance,
double curvature_tolerance,
double zero_curvature,
double radius_tolerance
);
/*
Description:
This function is used to test curvature continuity
in IsContinuous and GetNextDiscontinuity functions
when the continuity parameter is ON::G2_continuous.
Parameters:
Km - [in]
Curve's vector curvature evaluated from below
Kp - [in]
Curve's vector curvature evaluated from below
Returns:
True if the change from Km to Kp should be considered
G2 continuous.
*/
ON_DECL
bool ON_IsG2CurvatureContinuous(
const ON_3dVector Km,
const ON_3dVector Kp,
double cos_angle_tolerance,
double curvature_tolerance
);
/*
Description:
This function is used to test curvature continuity
in IsContinuous and GetNextDiscontinuity functions
when the continuity parameter is ON::Gsmooth_continuous.
Parameters:
Km - [in]
Curve's vector curvature evaluated from below
Kp - [in]
Curve's vector curvature evaluated from below
Returns:
True if the change from Km to Kp should be considered
Gsmooth continuous.
*/
ON_DECL
bool ON_IsGsmoothCurvatureContinuous(
const ON_3dVector Km,
const ON_3dVector Kp,
double cos_angle_tolerance,
double curvature_tolerance
);
/*
Description:
Test curve continuity from derivative values.
Parameters:
c - [in] type of continuity to test for. Read ON::continuity
comments for details.
Pa - [in] point on curve A.
D1a - [in] first derviative of curve A.
D2a - [in] second derviative of curve A.
Pb - [in] point on curve B.
D1b - [in] first derviative of curve B.
D3b - [in] second derviative of curve B.
point_tolerance - [in] if the distance between two points is
greater than point_tolerance, then the curve is not C0.
d1_tolerance - [in] if the difference between two first derivatives is
greater than d1_tolerance, then the curve is not C1.
d2_tolerance - [in] if the difference between two second derivatives is
greater than d2_tolerance, then the curve is not C2.
cos_angle_tolerance - [in] default = cos(1 degree) Used only when
c is ON::G1_continuous or ON::G2_continuous. If the cosine
of the angle between two tangent vectors
is <= cos_angle_tolerance, then a G1 discontinuity is reported.
curvature_tolerance - [in] (default = ON_SQRT_EPSILON) Used only when
c is ON::G2_continuous. If K0 and K1 are curvatures evaluated
from above and below and |K0 - K1| > curvature_tolerance,
then a curvature discontinuity is reported.
Returns:
true if the curve has at least the c type continuity at
the parameter t.
*/
ON_DECL
ON_BOOL32 ON_IsContinuous(
ON::continuity c,
ON_3dPoint Pa,
ON_3dVector D1a,
ON_3dVector D2a,
ON_3dPoint Pb,
ON_3dVector D1b,
ON_3dVector D2b,
double point_tolerance=ON_ZERO_TOLERANCE,
double d1_tolerance=ON_ZERO_TOLERANCE,
double d2_tolerance=ON_ZERO_TOLERANCE,
double cos_angle_tolerance=ON_DEFAULT_ANGLE_TOLERANCE_COSINE,
double curvature_tolerance=ON_SQRT_EPSILON
);
ON_DECL
bool ON_TuneupEvaluationParameter(
int side,
double s0, double s1, // segment domain
double *s // segment parameter
);
ON_DECL
int ON_Compare2dex( const ON_2dex* a, const ON_2dex* b);
ON_DECL
int ON_Compare3dex( const ON_3dex* a, const ON_3dex* b);
ON_DECL
int ON_Compare4dex( const ON_4dex* a, const ON_4dex* b);
ON_DECL
const ON_2dex* ON_BinarySearch2dexArray(
int key_i,
const ON_2dex* base,
size_t nel
);
// These simple intersectors are fast and detect transverse intersections.
// If the intersection is not a simple transverse case, then they
// return false and you will have to use one of the slower but fancier
// models.
// returns closest points between the two infinite lines
ON_DECL
bool ON_Intersect(
const ON_Line&,
const ON_Line&,
double*, // parameter on first line
double* // parameter on second line
);
// Returns false unless intersection is a single point
// If returned parameter is < 0 or > 1, then the line
// segment between line.m_point[0] and line.m_point[1]
// does not intersect the plane
ON_DECL
bool ON_Intersect(
const ON_Line&,
const ON_Plane&,
double* // parameter on line
);
ON_DECL
bool ON_Intersect(
const ON_Plane&,
const ON_Plane&,
ON_Line& // intersection line is returned here
);
ON_DECL
bool ON_Intersect(
const ON_Plane&,
const ON_Plane&,
const ON_Plane&,
ON_3dPoint& // intersection point is returned here
);
// returns 0 = no intersections,
// 1 = intersection = single point,
// 2 = intersection = circle
// If 0 is returned, returned circle has radius=0
// and center = point on sphere closest to plane.
// If 1 is returned, intersection is a single
// point and returned circle has radius=0
// and center = intersection point on sphere.
ON_DECL
int ON_Intersect(
const ON_Plane&, const ON_Sphere&, ON_Circle&
);
// Intersects an infinte line and sphere and returns
// 0 = no intersections,
// 1 = one intersection,
// 2 = 2 intersections
// If 0 is returned, first point is point
// on line closest to sphere and 2nd point is the point
// on the sphere closest to the line.
// If 1 is returned, first point is obtained by evaluating
// the line and the second point is obtained by evaluating
// the sphere.
ON_DECL
int ON_Intersect(
const ON_Line&,
const ON_Sphere&,
ON_3dPoint&,
ON_3dPoint& // intersection point(s) returned here
);
// Intersects an infinte line and cylinder and returns
// 0 = no intersections,
// 1 = one intersection,
// 2 = 2 intersections
// 3 = line lies on cylinder
//
// If 0 is returned, first point is point
// on line closest to cylinder and 2nd point is the point
// on the cylinder closest to the line.
// If 1 is returned, first point is obtained by evaluating
// the line and the second point is obtained by evaluating
// the cylinder.
//
// The value of cylinder.IsFinite() determines if the
// intersection is performed on the finite or infinite cylinder.
ON_DECL
int ON_Intersect(
const ON_Line&, // [in]
const ON_Cylinder&, // [in]
ON_3dPoint&, // [out] first intersection point
ON_3dPoint& // [out] second intersection point
);
// Description:
// Intersect an infinte line and circle.
// Parameters:
// line - [in]
// circle - [in]
// line_t0 - [out] line parameter of first intersection point
// circle_point0 - [out] first intersection point on circle
// line_t1 - [out] line parameter of second intersection point
// circle_point1 - [out] second intersection point on circle
// Returns:
// 0 No intersection
// 1 One intersection at line.PointAt(*line_t0)
// 2 Two intersections at line.PointAt(*line_t0)
// and line.PointAt(*line_t1).
ON_DECL
int ON_Intersect(
const ON_Line& line,
const ON_Circle& circle,
double* line_t0,
ON_3dPoint& circle_point0,
double* line_t1,
ON_3dPoint& circle_point1
);
// Description:
// Intersect a infinte line and arc.
// Parameters:
// line - [in]
// arc - [in]
// line_t0 - [out] line parameter of first intersection point
// arc_point0 - [out] first intersection point on arc
// line_t1 - [out] line parameter of second intersection point
// arc_point1 - [out] second intersection point on arc
// Returns:
// 0 No intersection
// 1 One intersection at line.PointAt(*line_t0)
// 2 Two intersections at line.PointAt(*line_t0)
// and line.PointAt(*line_t1).
ON_DECL
int ON_Intersect(
const ON_Line& line,
const ON_Arc& arc,
double* line_t0,
ON_3dPoint& arc_point0,
double* line_t1,
ON_3dPoint& arc_point1
);
// Description:
// Intersect a plane and a circle.
// Parameters:
// plane - [in]
// circle - [in]
// point0 - [out] first intersection point
// point1 - [out] second intersection point
// Returns:
// 0 No intersection
// 1 One intersection at point0
// 2 Two intersections at point0
// and point1.
// 3 Circle lies on plane
ON_DECL
int ON_Intersect(
const ON_Plane& plane,
const ON_Circle& circle,
ON_3dPoint& point0,
ON_3dPoint& point1
);
// Description:
// Intersect a plane and an arc.
// Parameters:
// plane - [in]
// arc - [in]
// point0 - [out] first intersection point
// point1 - [out] second intersection point
// Returns:
// 0 No intersection
// 1 One intersection at point0
// 2 Two intersections at point0
// and point1.
// 3 Arc lies on plane
ON_DECL
int ON_Intersect(
const ON_Plane& plane,
const ON_Arc& arc,
ON_3dPoint& point0,
ON_3dPoint& point1
);
// returns 0 = no, 1 = yes, 2 = points are coincident and on line
ON_DECL
int ON_ArePointsOnLine(
int, // dimension of points
int, // is_rat = true if homogeneous rational
int, // count = number of points
int, // stride ( >= is_rat?(dim+1) :dim)
const double*, // point array
const ON_BoundingBox&, // if needed, use ON_GetBoundingBox(dim,is_rat,count,stride,point)
const ON_Line&,
double // tolerance (if 0.0, a tolerance based on bounding box size is used)
);
// returns 0 = no, 1 = yes, 2 = points are coincident and on line
ON_DECL
int ON_ArePointsOnPlane(
int, // dimension of points
int, // is_rat = true if homogeneous rational
int, // count = number of points
int, // stride ( >= is_rat?(dim+1) :dim)
const double*, // point array
const ON_BoundingBox&, // if needed, use ON_GetBoundingBox(dim,is_rat,count,stride,point)
const ON_Plane&,
double // tolerance (if 0.0, a tolerance based on bounding box size is used)
);
/*
Description:
Use the quotient rule to compute derivatives of a one parameter
rational function F(t) = X(t)/W(t), where W is a scalar
and F and X are vectors of dimension dim.
Parameters:
dim - [in]
der_count - [in] number of derivative (>=0)
v_stride - [in] (>= dim+1)
v - [in/out]
v[] is an array of length (der_count+1)*v_stride.
The input v[] array contains derivatives of the numerator and
denominator functions in the order (X, W), (Xt, Wt), (Xtt, Wtt), ...
In general, the (dim+1) coordinates of the d-th derivative
are in (v[n],...,v[n+dim]) where n = d*v_stride.
In the output v[] array the derivatives of X are replaced with
the derivatives of F and the derivatives of W are divided by
w = v[dim].
Returns:
True if input is valid; i.e., v[dim] != 0.
See Also:
ON_EvaluateQuotientRule2
ON_EvaluateQuotientRule3
*/
ON_DECL
bool ON_EvaluateQuotientRule(
int dim,
int der_count,
int v_stride,
double *v
);
/*
Description:
Use the quotient rule to compute partial derivatives of a two parameter
rational function F(s,t) = X(s,t)/W(s,t), where W is a scalar
and F and X are vectors of dimension dim.
Parameters:
dim - [in]
der_count - [in] number of derivative (>=0)
v_stride - [in] (>= dim+1)
v - [in/out]
v[] is an array of length (der_count+2)*(der_count+1)*v_stride.
The input array contains derivatives of the numerator and denominator
functions in the order X, W, Xs, Ws, Xt, Wt, Xss, Wss, Xst, Wst, Xtt, Wtt, ...
In general, the (i,j)-th derivatives are in the (dim+1) entries of v[]
v[k], ..., answer[k+dim], where k = ((i+j)*(i+j+1)/2 + j)*v_stride.
In the output v[] array the derivatives of X are replaced with
the derivatives of F and the derivatives of W are divided by
w = v[dim].
Returns:
True if input is valid; i.e., v[dim] != 0.
See Also:
ON_EvaluateQuotientRule
ON_EvaluateQuotientRule3
*/
ON_DECL
bool ON_EvaluateQuotientRule2(
int dim,
int der_count,
int v_stride,
double *v
);
/*
Description:
Use the quotient rule to compute partial derivatives of a 3 parameter
rational function F(r,s,t) = X(r,s,t)/W(r,s,t), where W is a scalar
and F and X are vectors of dimension dim.
Parameters:
dim - [in]
der_count - [in] number of derivative (>=0)
v_stride - [in] (>= dim+1)
v - [in/out]
v[] is an array of length
v_stride*(der_count+1)*(der_count+2)*(der_count+3)/6.
The input v[] array contains derivatives of the numerator and
denominator functions in the order (X, W), (Xr, Wr), (Xs, Ws),
(Xt, Wt), (Xrr, Wrr), (Xrs, Wrs), (Xrt, Wrt), (Xss, Wss),
(Xst, Wst), (Xtt, Wtt), ...
In general, the (dim+1) coordinates of the derivative
(Dr^i Ds^j Dt^k, i+j+k=d) are at v[n], ..., v[n+dim] where
n = v_stride*( d*(d+1)*(d+2)/6 + (d-i)*(d-i+1)/2 + k ).
In the output v[] array the derivatives of X are replaced with
the derivatives of F and the derivatives of W are divided by
w = v[dim].
Returns:
True if input is valid; i.e., v[dim] != 0.
See Also:
ON_EvaluateQuotientRule
ON_EvaluateQuotientRule2
*/
ON_DECL
bool ON_EvaluateQuotientRule3(
int dim,
int der_count,
int v_stride,
double *v
);
ON_DECL
bool ON_GetPolylineLength(
int, // dimension of points
ON_BOOL32, // bIsRational true if points are homogeneous rational
int, // number of points
int, // stride between points
const double*, // points
double* // length returned here
);
/*
Description:
Find the index of the point in the point_list that is closest to P.
Parameters:
point_count - [in]
point_list - [in]
P - [in]
closest_point_index - [out]
Returns:
True if successful and *closest_point_index is set.
False if input is not valid, in which case *closest_point_index
is undefined.
*/
ON_DECL
bool ON_GetClosestPointInPointList(
int point_count,
const ON_3dPoint* point_list,
ON_3dPoint P,
int* closest_point_index
);
/*
Description:
Test math library functions.
Parameters:
function_index - [in] Determines which math library function is called.
1: z = x+y
2: z = x-y
3: z = x*y
4: z = x/y
5: z = fabs(x)
6: z = exp(x)
7: z = log(x)
8: z = logb(x)
9: z = log10(x)
10: z = pow(x,y)
11: z = sqrt(x)
12: z = sin(x)
13: z = cos(x)
14: z = tan(x)
15: z = sinh(x)
16: z = cosh(x)
17: z = tanh(x)
18: z = asin(x)
19: z = acos(x)
20: z = atan(x)
21: z = atan2(y,x)
22: z = fmod(x,y)
23: z = modf(x,&y)
24: z = frexp(x,&y)
double x - [in]
double y - [in]
Returns:
Returns the "z" value listed in the function_index parameter
description.
Remarks:
This function is used to test the results of class floating
point functions. It is primarily used to see what happens
when opennurbs is used as a DLL and illegal operations are
performed.
*/
ON_DECL
double ON_TestMathFunction(
int function_index,
double x,
double y
);
// If performance is important, then
// you are better off using ((b<a)?a:b)
ON_DECL double ON_Max(double a, double b);
// If performance is important, then
// you are better off using ((b<a)?a:b)
ON_DECL float ON_Max(float a, float b);
// If performance is important, then
// you are better off using ((b<a)?a:b)
ON_DECL int ON_Max(int a, int b);
// If performance is important, then
// you are better off using ((a<b)?a:b)
ON_DECL double ON_Min(double a, double b);
// If performance is important, then
// you are better off using ((a<b)?a:b)
ON_DECL float ON_Min(float a, float b);
// If performance is important, then
// you are better off using ((a<b)?a:b)
ON_DECL int ON_Min(int a, int b);
// Do not call ON_Round() in any opennurbs code, tl code
// or any other code that does critical calculations or
// when there is any possibility that x is invalid or
// fabs(x)>2147483647. Use floor(x+0.5) instead.
ON_DECL int ON_Round(double x);
/*
Description:
Find the equation of the parabola, ellipse or hyperbola
(non-degenerate conic) that passes through six distinct points.
Parameters:
stride - [in] (>=2)
points array stride
points2d - [in] (>=2)
i-th point is (points[i*stride],points[i*stride+1])
conic - [out]
Coefficients of the conic equation.
The points on the conic satisfy the equation
0 = conic[0]*x^2 + conic[1]*xy + conic[2]*y^2
+ conic[3]*x + conic[4]*y + conic[5]
max_pivot - [out] (can be null)
min_pivot - [out] (can be null)
zero_pivot - [out] (can be null)
If there are some near duplicates in the input point set,
the calculation is not stable. If you want to get an
estimate of the validity of the solution, then inspect
the returned values. max_pivot should around 1,
min_pivot should be > 1e-4 or so, and zero_pivot should
be < 1e-10 or so. If the returned pivots don't satisify
these condtions, then exercise caution when using the
returned solution.
Returns:
True if a there is an ellipse, parabola or hyperbola through the
six points.
False if the input is invalid or the conic degenerate (the
points lie on one or two lines).
If false is returned, then conic[0]=...=conic[5] = 0 and
*min_pivot = *max_pivot = *zero_pivot = 0.
*/
ON_DECL bool ON_GetConicEquationThrough6Points(
int stride,
const double* points2d,
double conic[6],
double* max_pivot,
double* min_pivot,
double* zero_pivot
);
/*
Description:
Test a conic equation to see if it defines and ellipse. If so,
return the center and axes of the ellipse.
Parameters:
conic - [in]
Coefficients of the conic equation.
The points on the conic satisfy the equation
0 = conic[0]*x^2 + conic[1]*xy + conic[2]*y^2
+ conic[3]*x + conic[4]*y + conic[5]
center - [out]
major_axis - [out]
minor_axis - [out]
major_radius - [out]
minor_radius - [out]
Returns:
True if the conic is an ellipse and the center and axes were found.
False if the conic is not an ellipse, in which case the input values
of center, major_axis, minor_axis, major_radius, and minor_radius
are not changed.
*/
ON_DECL bool ON_IsConicEquationAnEllipse(
const double conic[6],
ON_2dPoint& center,
ON_2dVector& major_axis,
ON_2dVector& minor_axis,
double* major_radius,
double* minor_radius
);
/*
Description:
Get the conic equation of an ellipse.
Parameters:
a - [in] (a>0)
b - [in] (b>0)
a and b are the lengths of the axes. Either one
may be largest and they can be equal.
x0 - [in]
y0 - [in]
(x0,y0) is the enter of the ellipse.
alpha - [in] (angle in radians)
When alpha is 0, a corresponds to the x-axis and
b corresponds to the y axis. If alpha is non-zero
it specifies the rotation of these axes.
conic - [out]
Coefficients of the conic equation.
The points on the conic satisfy the equation
0 = conic[0]*x^2 + conic[1]*xy + conic[2]*y^2
+ conic[3]*x + conic[4]*y + conic[5]
center - [out]
major_axis - [out]
minor_axis - [out]
major_radius - [out]
minor_radius - [out]
Remarks:
Here is the way to evaluate a point on the ellipse:
double t = ellipse paramter in radians;
double x = a*cos(t);
double y = b*sin(t);
ON_2dPoint ellipse_point;
ellipse_point.x = x0 + x*cos(alpha) + y*sin(alpha);
ellipse_point.y = y0 - x*sin(alpha) + y*cos(alpha);
Returns:
True if the input is valid and conic[] was filled in.
Falis if the input is not valid. In this case the values in conic[]
are not changed.
*/
ON_DECL bool ON_GetEllipseConicEquation(
double a, double b,
double x0, double y0,
double alpha,
double conic[6]
);
#endif
/*
Descripton:
Return the length of a 2d vector (x,y)
Returns:
sqrt(x^2 + y^2) calculated in as precisely and safely as possible.
*/
ON_DECL double ON_Length2d( double x, double y );
/*
Descripton:
Return the length of a 3d vector (x,y,z)
Returns:
sqrt(x^2 + y^2 + z^2) calculated in as precisely and safely as possible.
*/
ON_DECL double ON_Length3d( double x, double y, double z );
/*
Description:
Convert a double x to the largest float f such that
the mathematical value of f is at most the value of x.
Parameters:
x - [in]
Returns
The largest float f such that the mathematical value
of f is at most the value of x.
*/
ON_DECL float ON_FloatFloor(double x);
/*
Description:
Convert a double x to the smallest float f such that
the mathematical value of f is at least the value of x.
Parameters:
x - [in]
Returns
The smallest float f such that the mathematical value
of f is at least the value of x.
*/
ON_DECL float ON_FloatCeil(double x);