Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
brlcad / usr / brlcad / share / opencl / tgc_shot.cl
Size: Mime:
#include "common.cl"


/* hit_surfno is set to one of these */
#define TGC_NORM_BODY	(1)	/* compute normal */
#define TGC_NORM_TOP	(2)	/* copy tgc_N */
#define TGC_NORM_BOT	(3)	/* copy reverse tgc_N */


struct tgc_specific {
    double tgc_V[3];             /* Vector to center of base of TGC */
    double tgc_CdAm1;            /* (C/A - 1) */
    double tgc_DdBm1;            /* (D/B - 1) */
    double tgc_AAdCC;            /* (|A|**2)/(|C|**2) */
    double tgc_BBdDD;            /* (|B|**2)/(|D|**2) */
    double tgc_N[3];             /* normal at 'top' of cone */
    double tgc_ScShR[16];        /* Scale(Shear(Rot(vect))) */
    double tgc_invRtShSc[16];    /* invRot(trnShear(Scale(vect))) */
    char tgc_AD_CB;              /* boolean:  A*D == C*B */
};

int tgc_shot(RESULT_TYPE *res, const double3 r_pt, const double3 r_dir, const uint idx, global const struct tgc_specific *tgc)
{
    double3 pprime;
    double3 dprime;
    double3 work;
    double k[6];
    int hit_type[6];
    double t, b, zval, dir;
    double t_scale;
    double alf1, alf2;
    int npts;
    double3 cor_pprime;		/* corrected P prime */
    double cor_proj = 0.0;	/* corrected projected dist */
    int i;
    double C0;
    double Xsqr[3], Ysqr[3];
    double R[2], Rsqr[3];

#define ALPHA(x, y, c, d)	((x)*(x)*(c) + (y)*(y)*(d))

    /* find rotated point and direction */
    dprime = MAT4X3VEC(tgc->tgc_ScShR, r_dir);

    /* A vector of unit length in model space (r_dir) changes length
     * in the special unit-tgc space.  This scale factor will restore
     * proper length after hit points are found.
     */
    t_scale = length(dprime);
    if (ZERO(t_scale)) {
	return 0;
    }
    t_scale = 1.0/t_scale;
    dprime *= t_scale;

    if (NEAR_ZERO(dprime.z, RT_PCOEF_TOL)) {
	dprime.z = 0.0;	/* prevent rootfinder heartburn */
    }

    work = r_pt - vload3(0, tgc->tgc_V);
    pprime = MAT4X3VEC(tgc->tgc_ScShR, work);

    /* Translating ray origin along direction of ray to closest pt. to
     * origin of solids coordinate system, new ray origin is
     * 'cor_pprime'.
     */
    cor_proj = -dot(pprime, dprime);
    cor_pprime = pprime + cor_proj * dprime;

    /* The TGC is defined in "unit" space, so the parametric distance
     * from one side of the TGC to the other is on the order of 2.
     * Therefore, any vector/point coordinates that are very small
     * here may be considered to be zero, since double precision only
     * has 18 digits of significance.  If these tiny values were left
     * in, then as they get squared (below) they will cause
     * difficulties.
     */
    /* Direction cosines */
    dprime = select(dprime, 0, NEAR_ZERO(dprime, DOUBLE_C(1e-10)));
    /* Position in -1..+1 coordinates */
    cor_pprime = select(cor_pprime, 0, NEAR_ZERO(cor_pprime, DOUBLE_C(1e-20)));

    /* Given a line and the parameters for a standard cone, finds the
     * roots of the equation for that cone and line.  Returns the
     * number of real roots found.
     *
     * Given a line and the cone parameters, finds the equation of the
     * cone in terms of the variable 't'.
     *
     * The equation for the cone is:
     *
     * X**2 * Q**2 + Y**2 * R**2 - R**2 * Q**2 = 0
     *
     * where R = a + ((c - a)/|H'|)*Z
     * Q = b + ((d - b)/|H'|)*Z
     *
     * First, find X, Y, and Z in terms of 't' for this line, then
     * substitute them into the equation above.
     *
     * Express each variable (X, Y, and Z) as a linear equation in
     * 'k', e.g., (dprime.x * k) + cor_pprime.x, and substitute into
     * the cone equation.
     */
    Xsqr[0] = dprime.x * dprime.x;
    Xsqr[1] = 2.0 * dprime.x * cor_pprime.x;
    Xsqr[2] = cor_pprime.x * cor_pprime.x;

    Ysqr[0] = dprime.y * dprime.y;
    Ysqr[1] = 2.0 * dprime.y * cor_pprime.y;
    Ysqr[2] = cor_pprime.y * cor_pprime.y;

    R[0] = dprime.z * tgc->tgc_CdAm1;
    /* A vector is unitized (tgc->tgc_A == 1.0) */
    R[1] = (cor_pprime.z * tgc->tgc_CdAm1) + 1.0;

    /* (void) rt_poly_mul(&Rsqr, &R, &R); */
    Rsqr[0] = R[0] * R[0];
    Rsqr[1] = R[0] * R[1] * 2;
    Rsqr[2] = R[1] * R[1];

    /* If the eccentricities of the two ellipses are the same, then
     * the cone equation reduces to a much simpler quadratic form.
     * Otherwise it is a (gah!) quartic equation.
     *
     * this can only be done when C0 is not too small! (JRA)
     */
    C0 = Xsqr[0] + Ysqr[0] - Rsqr[0];
    if (tgc->tgc_AD_CB && !NEAR_ZERO(C0, DOUBLE_C(1.0e-10))) {
	double C[3];	/* final equation */
	double roots;

	/*
	 * (void) bn_poly_add(&sum, &Xsqr, &Ysqr);
	 * (void) bn_poly_sub(&C, &sum, &Rsqr);
	 */
	C[0] = C0;
	C[1] = Xsqr[1] + Ysqr[1] - Rsqr[1];
	C[2] = Xsqr[2] + Ysqr[2] - Rsqr[2];

	/* Find the real roots the easy way.  C.dgr==2 */
	if ((roots = C[1]*C[1] - 4 * C[0] * C[2]) < 0) {
	    npts = 0;	/* no real roots */
	} else {
	    double f;
	    roots = sqrt(roots);
	    k[0] = (roots - C[1]) * (f = 0.5 / C[0]);
	    hit_type[0] = TGC_NORM_BODY;
	    k[1] = (roots + C[1]) * -f;
	    hit_type[1] = TGC_NORM_BODY;
	    npts = 2;
	}
    } else {
	double C[5];		/* final equation */
	double Q[2], Qsqr[3];
	bn_complex_t val[4];	/* roots of final equation */
	int l;
	int nroots;

	Q[0] = dprime.z * tgc->tgc_DdBm1;
	/* B vector is unitized (tgc_B == 1.0) */
	Q[1] = (cor_pprime.z * tgc->tgc_DdBm1) + 1.0;

	/* (void) bn_poly_mul(&Qsqr, &Q, &Q); */
	Qsqr[0] = Q[0] * Q[0];
	Qsqr[1] = Q[0] * Q[1] * 2;
	Qsqr[2] = Q[1] * Q[1];

	/*
	 * (void) bn_poly_mul(&T1, &Qsqr, &Xsqr);
	 * (void) bn_poly_mul(&T2 &Rsqr, &Ysqr);
	 * (void) bn_poly_mul(&T1, &Rsqr, &Qsqr);
	 * (void) bn_poly_add(&sum, &T1, &T2);
	 * (void) bn_poly_sub(&C, &sum, &T3);
	 */
	C[0] = Qsqr[0] * Xsqr[0] +
	    Rsqr[0] * Ysqr[0] -
	    (Rsqr[0] * Qsqr[0]);
	C[1] = Qsqr[0] * Xsqr[1] + Qsqr[1] * Xsqr[0] +
	    Rsqr[0] * Ysqr[1] + Rsqr[1] * Ysqr[0] -
	    (Rsqr[0] * Qsqr[1] + Rsqr[1] * Qsqr[0]);
	C[2] = Qsqr[0] * Xsqr[2] + Qsqr[1] * Xsqr[1] +
	    Qsqr[2] * Xsqr[0] +
	    Rsqr[0] * Ysqr[2] + Rsqr[1] * Ysqr[1] +
	    Rsqr[2] * Ysqr[0] -
	    (Rsqr[0] * Qsqr[2] + Rsqr[1] * Qsqr[1] +
	     Rsqr[2] * Qsqr[0]);
	C[3] = Qsqr[1] * Xsqr[2] + Qsqr[2] * Xsqr[1] +
	    Rsqr[1] * Ysqr[2] + Rsqr[2] * Ysqr[1] -
	    (Rsqr[1] * Qsqr[2] + Rsqr[2] * Qsqr[1]);
	C[4] = Qsqr[2] * Xsqr[2] +
	    Rsqr[2] * Ysqr[2] -
	    (Rsqr[2] * Qsqr[2]);

	/* The equation is 4th order, so we expect 0 to 4 roots */
	nroots = rt_poly_roots(C, 4, val);

	/* bn_pr_roots("roots", val, nroots); */

	/* Only real roots indicate an intersection in real space.
	 *
	 * Look at each root returned; if the imaginary part is zero
	 * or sufficiently close, then use the real part as one value
	 * of 't' for the intersections
	 */
	for (l=0, npts=0; l < nroots; l++) {
	    if (NEAR_ZERO(val[l].im, 1e-2)) {
		hit_type[npts] = TGC_NORM_BODY;
		k[npts++] = val[l].re;
	    }
	}
	/* bu_log("npts rooted is %d; ", npts); */

#ifdef DEBUG
	/* Here, 'npts' is number of points being returned */
	if (npts != 0 && npts != 2 && npts != 4 && npts > 0) {
	    /* LOG */
	} else if (nroots < 0) {
	    /* LOG */
	}
#endif
    }

    /*
     * Reverse above translation by adding distance to all 'k' values.
     */
    for (i = 0; i < npts; ++i) {
	k[i] += cor_proj;
    }

    /* bu_log("npts before elimination is %d; ", npts); */
    /*
     * Eliminate hits beyond the end planes
     */
    i = 0;
    while (i < npts) {
	zval = k[i]*dprime.z + pprime.z;
	/* Height vector is unitized (tgc_sH == 1.0) */
	if (zval >= 1.0 || zval <= 0.0) {
	    int j;
	    /* drop this hit */
	    npts--;
	    for (j=i; j<npts; j++) {
		hit_type[j] = hit_type[j+1];
		k[j] = k[j+1];
	    }
	} else {
	    i++;
	}
    }

    /*
     * Consider intersections with the end ellipses
     */
    /* bu_log("npts before base is %d; ", npts); */
    dir = dot(vload3(0, tgc->tgc_N), r_dir);
    if (!ZERO(dprime.z) && !NEAR_ZERO(dir, RT_DOT_TOL)) {
	b = (-pprime.z)/dprime.z;
	/* Height vector is unitized (tgc_sH == 1.0) */
	t = (1.0 - pprime.z)/dprime.z;

	/* the top end */
	work = pprime + b * dprime;
	/* A and B vectors are unitized (tgc_A == _B == 1.0) */
	/* alf1 = ALPHA(work.x, work.y, 1.0, 1.0) */
	alf1 = work.x*work.x + work.y*work.y;

	/* the bottom end */
	work = pprime + t * dprime;
	/* Must scale C and D vectors */
	alf2 = ALPHA(work.x, work.y, tgc->tgc_AAdCC, tgc->tgc_BBdDD);

	if (alf1 <= 1.0) {
	    hit_type[npts] = TGC_NORM_BOT;
	    k[npts++] = b;
	}
	if (alf2 <= 1.0) {
	    hit_type[npts] = TGC_NORM_TOP;
	    k[npts++] = t;
	}
    }

    /* Sort Most distant to least distant: rt_pt_sort(k, npts) */
    {
	double u;
	short lim, n;
	int type;

	for (lim = npts-1; lim > 0; lim--) {
	    for (n = 0; n < lim; n++) {
		if ((u=k[n]) < k[n+1]) {
		    /* bubble larger towards [0] */
		    type = hit_type[n];
		    hit_type[n] = hit_type[n+1];
		    hit_type[n+1] = type;
		    k[n] = k[n+1];
		    k[n+1] = u;
		}
	    }
	}
    }
    /* Now, k[0] > k[npts-1] */

    if (npts%2) {
	/* odd number of hits!!!
	 * perhaps we got two hits on an edge
	 * check for duplicate hit distances
	 */

	for (i=npts-1; i>0; i--) {
	    double diff;

	    diff = k[i-1] - k[i];	/* non-negative due to sorting */
	    if (diff < rti_tol_dist) {
		/* remove this duplicate hit */
		int j;

		npts--;
		for (j=i; j<npts; j++) {
		    hit_type[j] = hit_type[j+1];
		    k[j] = k[j+1];
		}

		/* now have even number of hits */
		break;
	    }
	}
    }

    if (npts != 0 && npts != 2 && npts != 4) {
	return 0;		/* No hit */
    }

    for (i=npts-1; i>0; i -= 2) {
        struct hit hits[2];

	hits[0].hit_dist = k[i] * t_scale;
	hits[0].hit_surfno = hit_type[i];
	if (hits[0].hit_surfno == TGC_NORM_BODY) {
	    hits[0].hit_vpriv = pprime + k[i] * dprime;
	} else {
	    if (dir > 0.0) {
		hits[0].hit_surfno = TGC_NORM_BOT;
	    } else {
		hits[0].hit_surfno = TGC_NORM_TOP;
	    }
	}

	hits[1].hit_dist = k[i-1] * t_scale;
	hits[1].hit_surfno = hit_type[i-1];
	if (hits[1].hit_surfno == TGC_NORM_BODY) {
	    hits[1].hit_vpriv = pprime + k[i-1] * dprime;
	} else {
	    if (dir > 0.0) {
		hits[1].hit_surfno = TGC_NORM_TOP;
	    } else {
		hits[1].hit_surfno = TGC_NORM_BOT;
	    }
	}

	do_segp(res, idx, &hits[0], &hits[1]);
    }
    return npts;
}


void tgc_norm(struct hit *hitp, const double3 r_pt, const double3 r_dir, global const struct tgc_specific *tgc)
{
    double Q;
    double R;
    double3 stdnorm;

    /* Hit point */
    hitp->hit_point = r_pt + r_dir * hitp->hit_dist;

    /* Hits on the end plates are easy */
    switch (hitp->hit_surfno) {
	case TGC_NORM_TOP:
	    hitp->hit_normal = vload3(0, tgc->tgc_N);
	    break;
	case TGC_NORM_BOT:
	    hitp->hit_normal = -vload3(0, tgc->tgc_N);
	    break;
	case TGC_NORM_BODY:
	    /* Compute normal, given hit point on standard (unit) cone */
	    R = 1 + tgc->tgc_CdAm1 * hitp->hit_vpriv.z;
	    Q = 1 + tgc->tgc_DdBm1 * hitp->hit_vpriv.z;
	    stdnorm.x = hitp->hit_vpriv.x * Q * Q;
	    stdnorm.y = hitp->hit_vpriv.y * R * R;
	    stdnorm.z = (hitp->hit_vpriv.x*hitp->hit_vpriv.x - R*R)
		* Q * tgc->tgc_DdBm1
		+ (hitp->hit_vpriv.y*hitp->hit_vpriv.y - Q*Q)
		* R * tgc->tgc_CdAm1;
	    hitp->hit_normal = MAT4X3VEC(tgc->tgc_invRtShSc, stdnorm);
	    /*XXX - save scale */
	    hitp->hit_normal = normalize(hitp->hit_normal);
	    break;
	default:
	    break;
    }
}


/*
 * Local Variables:
 * mode: C
 * tab-width: 8
 * indent-tabs-mode: t
 * c-file-style: "stroustrup"
 * End:
 * ex: shiftwidth=4 tabstop=8
 */