Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
cura / opt / cura / lib / python3 / dist-packages / UM / Math / Matrix.py
Size: Mime:
# Copyright (c) 2015 Ultimaker B.V.
# Uranium is released under the terms of the AGPLv3 or higher.

import numpy
import math

from UM.Math.Vector import Vector

from copy import deepcopy

numpy.seterr(divide="ignore")

## This class is a 4x4 homogenous matrix wrapper arround numpy.
#
# Heavily based (in most cases a straight copy with some refactoring) on the excellent
# 'library' Transformations.py created by Christoph Gohlke.
class Matrix(object):
    # epsilon for testing whether a number is close to zero
    _EPS = numpy.finfo(float).eps * 4.0

    # map axes strings to/from tuples of inner axis, parity, repetition, frame
    # A triple of Euler angles can be applied/interpreted in 24 ways, which can
    # be specified using a 4 character string or encoded 4-tuple:
    # *Axes 4-string*: e.g. 'sxyz' or 'ryxy'
    # - first character : rotations are applied to 's'tatic or 'r'otating frame
    # - remaining characters : successive rotation axis 'x', 'y', or 'z'
    # *Axes 4-tuple*: e.g. (0, 0, 0, 0) or (1, 1, 1, 1)
    # - inner axis: code of axis ('x':0, 'y':1, 'z':2) of rightmost matrix.
    # - parity : even (0) if inner axis 'x' is followed by 'y', 'y' is followed
    # by 'z', or 'z' is followed by 'x'. Otherwise odd (1).
    # - repetition : first and last axis are same (1) or different (0).
    # - frame : rotations are applied to static (0) or rotating (1) frame.
    _AXES2TUPLE = {
    "sxyz": (0, 0, 0, 0), "sxyx": (0, 0, 1, 0), "sxzy": (0, 1, 0, 0),
    "sxzx": (0, 1, 1, 0), "syzx": (1, 0, 0, 0), "syzy": (1, 0, 1, 0),
    "syxz": (1, 1, 0, 0), "syxy": (1, 1, 1, 0), "szxy": (2, 0, 0, 0),
    "szxz": (2, 0, 1, 0), "szyx": (2, 1, 0, 0), "szyz": (2, 1, 1, 0),
    "rzyx": (0, 0, 0, 1), "rxyx": (0, 0, 1, 1), "ryzx": (0, 1, 0, 1),
    "rxzx": (0, 1, 1, 1), "rxzy": (1, 0, 0, 1), "ryzy": (1, 0, 1, 1),
    "rzxy": (1, 1, 0, 1), "ryxy": (1, 1, 1, 1), "ryxz": (2, 0, 0, 1),
    "rzxz": (2, 0, 1, 1), "rxyz": (2, 1, 0, 1), "rzyz": (2, 1, 1, 1)}

    # axis sequences for Euler angles
    _NEXT_AXIS = [1, 2, 0, 1]

    def __init__(self, data = None):
        if data is None:
            self._data = numpy.identity(4,dtype=numpy.float32)
        else:
            self._data = numpy.array(data, copy=True, dtype=numpy.float32)

    def at(self, x, y):
        if(x >= 4 or y >= 4 or x < 0 or y < 0):
            raise IndexError
        return self._data[x,y]

    def setRow(self, index, value):
        if index < 0 or index > 3:
            raise IndexError()

        self._data[0, index] = value[0]
        self._data[1, index] = value[1]
        self._data[2, index] = value[2]

        if len(value) > 3:
            self._data[3, index] = value[3]
        else:
            self._data[3, index] = 0

    def setColumn(self, index, value):
        if index < 0 or index > 3:
            raise IndexError()

        self._data[index, 0] = value[0]
        self._data[index, 1] = value[1]
        self._data[index, 2] = value[2]

        if len(value) > 3:
            self._data[index, 3] = value[3]
        else:
            self._data[index, 3] = 0

    def multiply(self, matrix, copy = False):
        if not copy:
            self._data = numpy.dot(self._data, matrix.getData())
            return self
        else:
            new_matrix = Matrix(data = self._data)
            new_matrix.multiply(matrix)
            return new_matrix

    def preMultiply(self, matrix, copy = False):
        if not copy:
            self._data = numpy.dot(matrix.getData(), self._data)
            return self
        else:
            new_matrix = Matrix(data = self._data)
            new_matrix.preMultiply(matrix)
            return new_matrix


    ##  Get raw data.
    #   \returns 4x4 numpy array
    def getData(self):
        return self._data.astype(numpy.float32)

    ##  Create a 4x4 identity matrix. This overwrites any existing data.
    def setToIdentity(self):
        self._data = numpy.identity(4,dtype=numpy.float32)

    ##  Invert the matrix
    def invert(self):
        self._data = numpy.linalg.inv(self._data)

    ##  Return a inverted copy of the matrix.
    #   \returns The invertex matrix.
    def getInverse(self):
        try:
            return Matrix(numpy.linalg.inv(self._data))
        except:
            return deepcopy(self)

    ##  Return the transpose of the matrix.
    def getTransposed(self):
        try:
            return Matrix(numpy.transpose(self._data))
        except:
            return deepcopy(self)

    ##  Translate the matrix based on Vector.
    #   \param direction The vector by which the matrix needs to be translated.
    def translate(self, direction):
        translation_matrix = Matrix()
        translation_matrix.setByTranslation(direction)
        self.multiply(translation_matrix)

    ##  Set the matrix by translation vector. This overwrites any existing data.
    #   \param direction The vector by which the (unit) matrix needs to be translated.
    def setByTranslation(self, direction):
        M = numpy.identity(4,dtype=numpy.float32)
        M[:3, 3] = direction.getData()[:3]
        self._data = M

    def setTranslation(self, translation):
        self._data[:3, 3] = translation.getData()

    def getTranslation(self):
        return Vector(data = self._data[:3, 3])

    ##  Rotate the matrix based on rotation axis
    #   \param angle The angle by which matrix needs to be rotated.
    #   \param direction Axis by which the matrix needs to be rotated about.
    #   \param point Point where from where the rotation happens. If None, origin is used.
    def rotateByAxis(self, angle, direction, point = None):
        rotation_matrix = Matrix()
        rotation_matrix.setByRotationAxis(angle, direction, point)
        self.multiply(rotation_matrix)

    ##  Set the matrix based on rotation axis. This overwrites any existing data.
    #   \param angle The angle by which matrix needs to be rotated in radians.
    #   \param direction Axis by which the matrix needs to be rotated about.
    #   \param point Point where from where the rotation happens. If None, origin is used.
    def setByRotationAxis(self, angle, direction, point = None):
        sina = math.sin(angle)
        cosa = math.cos(angle)
        direction_data = self._unitVector(direction.getData())
        # rotation matrix around unit vector
        R = numpy.diag([cosa, cosa, cosa])
        R += numpy.outer(direction_data, direction_data) * (1.0 - cosa)
        direction_data *= sina
        R += numpy.array([[ 0.0, -direction_data[2], direction_data[1]],
                        [ direction_data[2], 0.0, -direction_data[0]],
                        [-direction_data[1], direction_data[0], 0.0]],dtype=numpy.float32)
        M = numpy.identity(4)
        M[:3, :3] = R
        if point is not None:
            # rotation not around origin
            point = numpy.array(point[:3], dtype=numpy.float32, copy=False)
            M[:3, 3] = point - numpy.dot(R, point)
        self._data = M

    ##  Return transformation matrix from sequence of transformations.
    #   This is the inverse of the decompose_matrix function.
    #   @param scale : vector of 3 scaling factors
    #   @param shear : list of shear factors for x-y, x-z, y-z axes
    #   @param angles : list of Euler angles about static x, y, z axes
    #   @param translate : translation vector along x, y, z axes
    #   @param perspective : perspective partition of matrix
    def compose(self, scale = None, shear = None, angles = None, translate = None, perspective = None):
        M = numpy.identity(4)
        if perspective is not None:
            P = numpy.identity(4)
            P[3, :] = perspective.getData()[:4]
            M = numpy.dot(M, P)
        if translate is not None:
            T = numpy.identity(4)
            T[:3, 3] = translate.getData()[:3]
            M = numpy.dot(M, T)
        if angles is not None:
            R = Matrix()
            R.setByEuler(angles.x, angles.y, angles.z, "sxyz")
            M = numpy.dot(M, R.getData())
        if shear is not None:
            Z = numpy.identity(4)
            Z[1, 2] = shear.x
            Z[0, 2] = shear.y
            Z[0, 1] = shear.z
            M = numpy.dot(M, Z)
        if scale is not None:
            S = numpy.identity(4)
            S[0, 0] = scale.x
            S[1, 1] = scale.y
            S[2, 2] = scale.z
            M = numpy.dot(M, S)
        M /= M[3, 3]
        self._data = M

    ## Return Euler angles from rotation matrix for specified axis sequence.
    #  axes : One of 24 axis sequences as string or encoded tuple
    #  Note that many Euler angle triplets can describe one matrix.
    def getEuler(self, axes = "sxyz"):
        try:
            firstaxis, parity, repetition, frame = self._AXES2TUPLE[axes.lower()]
        except (AttributeError, KeyError):
            self._TUPLE2AXES[axes]  # validation
            firstaxis, parity, repetition, frame = axes

        i = firstaxis
        j = self._NEXT_AXIS[i + parity]
        k = self._NEXT_AXIS[i - parity + 1]

        M = numpy.array(self._data, dtype = numpy.float32, copy = False)[:3, :3]
        if repetition:
            sy = math.sqrt(M[i, j] * M[i, j] + M[i, k] * M[i, k])
            if sy > self._EPS:
                ax = math.atan2( M[i, j],  M[i, k])
                ay = math.atan2( sy,       M[i, i])
                az = math.atan2( M[j, i], -M[k, i])
            else:
                ax = math.atan2(-M[j, k],  M[j, j])
                ay = math.atan2( sy,       M[i, i])
                az = 0.0
        else:
            cy = math.sqrt(M[i, i] * M[i, i] + M[j, i] * M[j, i])
            if cy > self._EPS:
                ax = math.atan2( M[k, j],  M[k, k])
                ay = math.atan2(-M[k, i],  cy)
                az = math.atan2( M[j, i],  M[i, i])
            else:
                ax = math.atan2(-M[j, k],  M[j, j])
                ay = math.atan2(-M[k, i],  cy)
                az = 0.0

        if parity:
            ax, ay, az = -ax, -ay, -az
        if frame:
            ax, az = az, ax
        return Vector(ax, ay, az)

    ## Return homogeneous rotation matrix from Euler angles and axis sequence.
    #  @param ai Eulers roll
    #  @param aj Eulers pitch
    #  @param ak Eulers yaw
    #  @param axes One of 24 axis sequences as string or encoded tuple
    def setByEuler(self, ai, aj, ak, axes = "sxyz"):
        try:
            firstaxis, parity, repetition, frame = self._AXES2TUPLE[axes]
        except (AttributeError, KeyError):
            self._TUPLE2AXES[axes]  # validation
            firstaxis, parity, repetition, frame = axes
        i = firstaxis
        j = self._NEXT_AXIS[i + parity]
        k = self._NEXT_AXIS[i - parity + 1]

        if frame:
            ai, ak = ak, ai
        if parity:
            ai, aj, ak = -ai, -aj, -ak

        si, sj, sk = math.sin(ai), math.sin(aj), math.sin(ak)
        ci, cj, ck = math.cos(ai), math.cos(aj), math.cos(ak)
        cc, cs = ci * ck, ci * sk
        sc, ss = si * ck, si * sk

        M = numpy.identity(4)
        if repetition:
            M[i, i] = cj
            M[i, j] = sj * si
            M[i, k] = sj * ci
            M[j, i] = sj * sk
            M[j, j] = -cj * ss + cc
            M[j, k] = -cj * cs - sc
            M[k, i] = -sj * ck
            M[k, j] = cj * sc + cs
            M[k, k] = cj * cc - ss
        else:
            M[i, i] = cj * ck
            M[i, j] = sj * sc - cs
            M[i, k] = sj * cc + ss
            M[j, i] = cj * sk
            M[j, j] = sj * ss + cc
            M[j, k] = sj * cs - sc
            M[k, i] = -sj
            M[k, j] = cj * si
            M[k, k] = cj * ci
        self._data = M

    ##  Scale the matrix by factor wrt origin & direction.
    #   \param factor The factor by which to scale
    #   \param origin From where does the scaling need to be done
    #   \param direction In what direction is the scaling (if None, it's uniform)
    def scaleByFactor(self, factor, origin = None, direction = None):
        scale_matrix = Matrix()
        scale_matrix.setByScaleFactor(factor, origin, direction)
        self.multiply(scale_matrix)

    ##  Set the matrix by scale by factor wrt origin & direction. This overwrites any existing data
    #   \param factor The factor by which to scale
    #   \param origin From where does the scaling need to be done
    #   \param direction In what direction is the scaling (if None, it's uniform)
    def setByScaleFactor(self, factor, origin = None, direction = None):
        if direction is None:
            # uniform scaling
            M = numpy.diag([factor, factor, factor, 1.0])
            if origin is not None:
                M[:3, 3] = origin[:3]
                M[:3, 3] *= 1.0 - factor
        else:
            # nonuniform scaling
            direction_data = direction.getData()
            factor = 1.0 - factor
            M = numpy.identity(4,dtype=numpy.float32)
            M[:3, :3] -= factor * numpy.outer(direction_data, direction_data)
            if origin is not None:
                M[:3, 3] = (factor * numpy.dot(origin[:3], direction_data)) * direction_data
        self._data = M

    def setByScaleVector(self, scale):
        self._data = numpy.diag([scale.x, scale.y, scale.z, 1.0])

    def getScale(self):
        x = numpy.linalg.norm(self._data[0,0:3])
        y = numpy.linalg.norm(self._data[1,0:3])
        z = numpy.linalg.norm(self._data[2,0:3])

        return Vector(x, y, z)

    ##  Set the matrix to an orthographic projection. This overwrites any existing data.
    #   \param left The left edge of the projection
    #   \param right The right edge of the projection
    #   \param top The top edge of the projection
    #   \param bottom The bottom edge of the projection
    #   \param near The near plane of the projection
    #   \param far The far plane of the projection
    def setOrtho(self, left, right, bottom, top, near, far):
        self.setToIdentity()
        self._data[0, 0] = 2 / (right - left)
        self._data[1, 1] = 2 / (top - bottom)
        self._data[2, 2] = -2 / (far - near)
        self._data[3, 0] = -((right + left) / (right - left))
        self._data[3, 1] = -((top + bottom) / (top - bottom))
        self._data[3, 2] = -((far + near) / (far - near))

    ##  Set the matrix to a perspective projection. This overwrites any existing data.
    #   \param fovy Field of view in the Y direction
    #   \param aspect The aspect ratio
    #   \param near Distance to the near plane
    #   \param far Distance to the far plane
    def setPerspective(self, fovy, aspect, near, far):
        self.setToIdentity()

        f = 2. / math.tan(math.radians(fovy) / 2.)

        self._data[0, 0] = f / aspect
        self._data[1, 1] = f
        self._data[2, 2] = (far + near) / (near - far)
        self._data[2, 3] = -1.
        self._data[3, 2] = (2. * far * near) / (near - far)

    ##  Return sequence of transformations from transformation matrix.
    #   @return Tuple containing scale (vector), shear (vector), angles (vector) and translation (vector)
    #   It will raise a ValueError if matrix is of wrong type or degenerative.
    def decompose(self):
        M = numpy.array(self._data, dtype = numpy.float32, copy = True).T
        if abs(M[3, 3]) < self._EPS:
            raise ValueError("M[3, 3] is zero")
        M /= M[3, 3]
        P = M.copy()
        P[:, 3] = 0.0, 0.0, 0.0, 1.0
        if not numpy.linalg.det(P):
            raise ValueError("matrix is singular")

        scale = numpy.zeros((3, ))
        shear = [0.0, 0.0, 0.0]
        angles = [0.0, 0.0, 0.0]

        translate = M[3, :3].copy()
        M[3, :3] = 0.0

        row = M[:3, :3].copy()
        scale[0] = math.sqrt(numpy.dot(row[0], row[0]))
        row[0] /= scale[0]
        shear[0] = numpy.dot(row[0], row[1])
        row[1] -= row[0] * shear[0]
        scale[1] = math.sqrt(numpy.dot(row[1], row[1]))
        row[1] /= scale[1]
        shear[0] /= scale[1]
        shear[1] = numpy.dot(row[0], row[2])
        row[2] -= row[0] * shear[1]
        shear[2] = numpy.dot(row[1], row[2])
        row[2] -= row[1] * shear[2]
        scale[2] = math.sqrt(numpy.dot(row[2], row[2]))
        row[2] /= scale[2]
        shear[1:] /= scale[2]

        if numpy.dot(row[0], numpy.cross(row[1], row[2])) < 0:
            numpy.negative(scale, scale)
            numpy.negative(row, row)

        angles[1] = math.asin(-row[0, 2])
        if math.cos(angles[1]):
            angles[0] = math.atan2(row[1, 2], row[2, 2])
            angles[2] = math.atan2(row[0, 1], row[0, 0])
        else:
            angles[0] = math.atan2(-row[2, 1], row[1, 1])
            angles[2] = 0.0

        return Vector(data = scale), Vector(data = shear), Vector(data = angles), Vector(data = translate)

    def _unitVector(self, data, axis=None, out=None):
        """Return ndarray normalized by length, i.e. Euclidean norm, along axis.

        >>> v0 = numpy.random.random(3)
        >>> v1 = unit_vector(v0)
        >>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0))
        True
        >>> v0 = numpy.random.rand(5, 4, 3)
        >>> v1 = unit_vector(v0, axis=-1)
        >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=2)), 2)
        >>> numpy.allclose(v1, v2)
        True
        >>> v1 = unit_vector(v0, axis=1)
        >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=1)), 1)
        >>> numpy.allclose(v1, v2)
        True
        >>> v1 = numpy.empty((5, 4, 3))
        >>> unit_vector(v0, axis=1, out=v1)
        >>> numpy.allclose(v1, v2)
        True
        >>> list(unit_vector([]))
        []
        >>> list(unit_vector([1]))
        [1.0]

        """
        if out is None:
            data = numpy.array(data, dtype=numpy.float32, copy=True)
            if data.ndim == 1:
                data /= math.sqrt(numpy.dot(data, data))
                return data
        else:
            if out is not data:
                out[:] = numpy.array(data, copy=False)
            data = out
        length = numpy.atleast_1d(numpy.sum(data*data, axis))
        numpy.sqrt(length, length)
        if axis is not None:
            length = numpy.expand_dims(length, axis)
        data /= length
        if out is None:
            return data

    def __repr__(self):
        return "Matrix( {0} )".format(self._data)

    @staticmethod
    def fromPositionOrientationScale(position, orientation, scale):
        s = numpy.identity(4, dtype=numpy.float32)
        s[0, 0] = scale.x
        s[1, 1] = scale.y
        s[2, 2] = scale.z

        r = orientation.toMatrix().getData()

        t = numpy.identity(4, dtype=numpy.float32)
        t[0, 3] = position.x
        t[1, 3] = position.y
        t[2, 3] = position.z

        return Matrix(data = numpy.dot(numpy.dot(t, r), s))