Repository URL to install this package:
|
Version:
2.2.7 ▾
|
cdocutils.nodes
document
q)q}q(U nametypesq}q(X erodesmooth nodeqNX net.sf.cimg.cimgerodesmoothqX descriptionqNX controlsq NX inputsq
NuUsubstitution_defsq}qX
pluginIconq
cdocutils.nodes
substitution_definition
q)q}q(U rawsourceqXH .. |pluginIcon| image:: net.sf.cimg.CImgErodeSmooth.png
:width: 10.0%qUparentqcdocutils.nodes
section
q)q}q(hU hh)q}q(hU hhUsourceqXh /root/natron-support/buildmaster/tmp/Natron/Documentation/source/plugins/net.sf.cimg.CImgErodeSmooth.rstqUexpect_referenced_by_nameq}qhcdocutils.nodes
target
q)q}q(hX .. _net.sf.cimg.CImgErodeSmooth:q hhhhUtagnameq!Utargetq"U
attributesq#}q$(Uidsq%]q&Ubackrefsq']q(Udupnamesq)]q*Uclassesq+]q,Unamesq-]q.Urefidq/Unet-sf-cimg-cimgerodesmoothq0uUlineq1KUdocumentq2hUchildrenq3]q4ubsh!Usectionq5h#}q6(h)]q7h+]q8h']q9h%]q:(Uerodesmooth-nodeq;h0eh-]q<(hheuh1Kh2hUexpect_referenced_by_idq=}q>h0hsh3]q?(cdocutils.nodes
title
q@)qA}qB(hX ErodeSmooth nodeqChhhhh!UtitleqDh#}qE(h)]qFh+]qGh']qHh%]qIh-]qJuh1Kh2hh3]qKcdocutils.nodes
Text
qLX ErodeSmooth nodeqM
qN}qO(hhChhAubaubcdocutils.nodes
paragraph
qP)qQ}qR(hX |pluginIcon|qShhhhh!U paragraphqTh#}qU(h)]qVh+]qWh']qXh%]qYh-]qZuh1Kh2hh3]q[cdocutils.nodes
image
q\)q]}q^(hX8 image:: net.sf.cimg.CImgErodeSmooth.png
:width: 10.0%q_hhQhNh!Uimageq`h#}qa(UwidthqbX 10.0%qcUuriqdX' plugins/net.sf.cimg.CImgErodeSmooth.pngqeh%]qfh']qgh)]qhh+]qiU
candidatesqj}qkU*hesh-]qlUaltqmX
pluginIconqnuh1Nh2hh3]qoubaubhP)qp}qq(hX7 *This documentation is for version 2.0 of ErodeSmooth.*qrhhhhh!hTh#}qs(h)]qth+]quh']qvh%]qwh-]qxuh1Kh2hh3]qycdocutils.nodes
emphasis
qz)q{}q|(hhrh#}q}(h)]q~h+]qh']qh%]qh-]quhhph3]qhLX5 This documentation is for version 2.0 of ErodeSmooth.q
q
}q(hU hh{ubah!Uemphasisqubaubh)q}q(hU hhhhh!h5h#}q(h)]qh+]qh']qh%]qUdescriptionqah-]qhauh1Kh2hh3]q(h@)q}q(hX Descriptionqhhhhh!hDh#}q(h)]qh+]qh']qh%]qh-]quh1Kh2hh3]qhLX Descriptionq
q}q(hhhhubaubhP)q}q (hXF Erode or dilate input stream using a normalized power-weighted filter.q¡hhhhh!hTh#}q¢(h)]q£h+]q¤h']q¥h%]q¦h-]q§uh1K
h2hh3]q¨hLXF Erode or dilate input stream using a normalized power-weighted filter.q©
qª}q«(hh¡hhubaubhP)q¬}q(hX; This gives a smoother result than the Erode or Dilate node.q®hhhhh!hTh#}q¯(h)]q°h+]q±h']q²h%]q³h-]q´uh1Kh2hh3]qµhLX; This gives a smoother result than the Erode or Dilate node.q¶
q·}q¸(hh®hh¬ubaubhP)q¹}qº(hX See "Robust local max-min filters by normalized power-weighted filtering" by L.J. van Vliet, http://dx.doi.org/10.1109/ICPR.2004.1334273q»hhhhh!hTh#}q¼(h)]q½h+]q¾h']q¿h%]qÀh-]qÁuh1Kh2hh3]qÂ(hLX] See "Robust local max-min filters by normalized power-weighted filtering" by L.J. van Vliet, qÅqÄ}qÅ(hX] See "Robust local max-min filters by normalized power-weighted filtering" by L.J. van Vliet, qÆhh¹ubcdocutils.nodes
reference
qÇ)qÈ}qÉ(hX+ http://dx.doi.org/10.1109/ICPR.2004.1334273qÊh#}qË(UrefuriqÌX+ http://dx.doi.org/10.1109/ICPR.2004.1334273qÍh%]qÎh']qÏh)]qÐh+]qÑh-]qÒuhh¹h3]qÓhLX+ http://dx.doi.org/10.1109/ICPR.2004.1334273qԅqÕ}qÖ(hU hhÈubah!U referenceq×ubeubhP)qØ}qÙ(hXB Uses the 'vanvliet' and 'deriche' functions from the CImg library.qÚhhhhh!hTh#}qÛ(h)]qÜh+]qÝh']qÞh%]qßh-]qàuh1Kh2hh3]qáhLXB Uses the 'vanvliet' and 'deriche' functions from the CImg library.q⅁qã}qä(hhÚhhØubaubhP)qå}qæ(hXÌ CImg is a free, open-source library distributed under the CeCILL-C (close to the GNU LGPL) or CeCILL (compatible with the GNU GPL) licenses. It can be used in commercial applications (see http://cimg.eu).qçhhhhh!hTh#}qè(h)]qéh+]qêh']qëh%]qìh-]qíuh1Kh2hh3]qî(hLX¼ CImg is a free, open-source library distributed under the CeCILL-C (close to the GNU LGPL) or CeCILL (compatible with the GNU GPL) licenses. It can be used in commercial applications (see qqð}qñ(hX¼ CImg is a free, open-source library distributed under the CeCILL-C (close to the GNU LGPL) or CeCILL (compatible with the GNU GPL) licenses. It can be used in commercial applications (see qòhhåubhÇ)qó}qô(hX http://cimg.euqõh#}qö(Urefuriq÷X http://cimg.euqøh%]qùh']qúh)]qûh+]qüh-]qýuhhåh3]qþhLX http://cimg.euqÿ
r }r (hU hhóubah!h×ubhLX ).r
r }r (hX ).r hhåubeubeubh)r }r (hU hhhhh!h5h#}r (h)]r h+]r
h']r h%]r Uinputsr
ah-]r h
auh1Kh2hh3]r (h@)r }r (hX Inputsr hj hhh!hDh#}r (h)]r h+]r h']r h%]r h-]r uh1Kh2hh3]r hLX Inputsr
r }r (hj hj ubaubcdocutils.nodes
table
r )r }r (hU hj hhh!Utabler h#}r! (h)]r" h+]r# h']r$ h%]r% h-]r& uh1Nh2hh3]r' cdocutils.nodes
tgroup
r( )r) }r* (hU h#}r+ (h%]r, h']r- h)]r. h+]r/ h-]r0 Ucolsr1 Kuhj h3]r2 (cdocutils.nodes
colspec
r3 )r4 }r5 (hU h#}r6 (h%]r7 h']r8 h)]r9 h+]r: h-]r; Ucolwidthr< K
uhj) h3]r= h!Ucolspecr> ubj3 )r? }r@ (hU h#}rA (h%]rB h']rC h)]rD h+]rE h-]rF UcolwidthrG Kuhj) h3]rH h!j> ubj3 )rI }rJ (hU h#}rK (h%]rL h']rM h)]rN h+]rO h-]rP UcolwidthrQ Kuhj) h3]rR h!j> ubcdocutils.nodes
thead
rS )rT }rU (hU h#}rV (h)]rW h+]rX h']rY h%]rZ h-]r[ uhj) h3]r\ cdocutils.nodes
row
r] )r^ }r_ (hU h#}r` (h)]ra h+]rb h']rc h%]rd h-]re uhjT h3]rf (cdocutils.nodes
entry
rg )rh }ri (hU h#}rj (h)]rk h+]rl h']rm h%]rn h-]ro uhj^ h3]rp hP)rq }rr (hX Inputrs hjh hhh!hTh#}rt (h)]ru h+]rv h']rw h%]rx h-]ry uh1Kh3]rz hLX Inputr{
r| }r} (hjs hjq ubaubah!Uentryr~ ubjg )r }r (hU h#}r (h)]r h+]r h']r h%]r
h-]r uhj^ h3]r hP)r }r (hX Descriptionr hj hhh!hTh#}r (h)]r h+]r h']r h%]r h-]r uh1Kh3]r hLX Descriptionr
r }r (hj hj ubaubah!j~ ubjg )r }r (hU h#}r (h)]r h+]r h']r h%]r h-]r uhj^ h3]r hP)r }r (hX Optionalr hj hhh!hTh#}r¡ (h)]r¢ h+]r£ h']r¤ h%]r¥ h-]r¦ uh1Kh3]r§ hLX Optionalr¨
r© }rª (hj hj ubaubah!j~ ubeh!Urowr« ubah!Utheadr¬ ubcdocutils.nodes
tbody
r )r® }r¯ (hU h#}r° (h)]r± h+]r² h']r³ h%]r´ h-]rµ uhj) h3]r¶ (j] )r· }r¸ (hU h#}r¹ (h)]rº h+]r» h']r¼ h%]r½ h-]r¾ uhj® h3]r¿ (jg )rÀ }rÁ (hU h#}r (h)]rà h+]rÄ h']rÅ h%]rÆ h-]rÇ uhj· h3]rÈ hP)rÉ }rÊ (hX SourcerË hjÀ hhh!hTh#}rÌ (h)]rÍ h+]rÎ h']rÏ h%]rÐ h-]rÑ uh1Kh3]rÒ hLX SourcerÓ
rÔ }rÕ (hjË hjÉ ubaubah!j~ ubjg )rÖ }r× (hU h#}rØ (h)]rÙ h+]rÚ h']rÛ h%]rÜ h-]rÝ uhj· h3]rÞ h!j~ ubjg )rß }rà (hU h#}rá (h)]râ h+]rã h']rä h%]rå h-]ræ uhj· h3]rç hP)rè }ré (hX Norê hjß hhh!hTh#}rë (h)]rì h+]rí h']rî h%]rï h-]rð uh1Kh3]rñ hLX Norò
ró }rô (hjê hjè ubaubah!j~ ubeh!j« ubj] )rõ }rö (hU h#}r÷ (h)]rø h+]rù h']rú h%]rû h-]rü uhj® h3]rý (jg )rþ }rÿ (hU h#}r (h)]r h+]r h']r h%]r h-]r uhjõ h3]r hP)r }r (hX Maskr hjþ hhh!hTh#}r
(h)]r h+]r h']r
h%]r h-]r uh1Kh3]r hLX Maskr
r }r (hj hj ubaubah!j~ ubjg )r }r (hU h#}r (h)]r h+]r h']r h%]r h-]r uhjõ h3]r h!j~ ubjg )r }r (hU h#}r (h)]r h+]r! h']r" h%]r# h-]r$ uhjõ h3]r% hP)r& }r' (hX Yesr( hj hhh!hTh#}r) (h)]r* h+]r+ h']r, h%]r- h-]r. uh1Kh3]r/ hLX Yesr0
r1 }r2 (hj( hj& ubaubah!j~ ubeh!j« ubeh!Utbodyr3 ubeh!Utgroupr4 ubaubeubheubhhh!h5h#}r5 (h)]r6 h+]r7 h']r8 h%]r9 Ucontrolsr: ah-]r; h auh1K#h2hh3]r< (h@)r= }r> (hX Controlsr? hhhhh!hDh#}r@ (h)]rA h+]rB h']rC h%]rD h-]rE uh1K#h2hh3]rF hLX ControlsrG
rH }rI (hj? hj= ubaubcsphinx.addnodes
tabular_col_spec
rJ )rK }rL (hU hhhhh!Utabular_col_specrM h#}rN (h%]rO h']rP h)]rQ h+]rR h-]rS UspecrT X} |>{\raggedright}p{0.2\columnwidth}|>{\raggedright}p{0.06\columnwidth}|>{\raggedright}p{0.07\columnwidth}|p{0.63\columnwidth}|rU uh1K%h2hh3]rV ubj )rW }rX (hU hhhhh!j h#}rY (h)]rZ h+]r[ U longtabler\ ah']r] h%]r^ h-]r_ uh1Nh2hh3]r` j( )ra }rb (hU h#}rc (h%]rd h']re h)]rf h+]rg h-]rh Ucolsri KuhjW h3]rj (j3 )rk }rl (hU h#}rm (h%]rn h']ro h)]rp h+]rq h-]rr Ucolwidthrs K$uhja h3]rt h!j> ubj3 )ru }rv (hU h#}rw (h%]rx h']ry h)]rz h+]r{ h-]r| Ucolwidthr} Kuhja h3]r~ h!j> ubj3 )r }r (hU h#}r (h%]r h']r h)]r h+]r
h-]r Ucolwidthr Kuhja h3]r h!j> ubj3 )r }r (hU h#}r (h%]r h']r h)]r h+]r h-]r Ucolwidthr M9uhja h3]r h!j> ubjS )r }r (hU h#}r (h)]r h+]r h']r h%]r h-]r uhja h3]r j] )r }r (hU h#}r (h)]r h+]r h']r¡ h%]r¢ h-]r£ uhj h3]r¤ (jg )r¥ }r¦ (hU h#}r§ (h)]r¨ h+]r© h']rª h%]r« h-]r¬ uhj h3]r hP)r® }r¯ (hX Parameter / script namer° hj¥ hhh!hTh#}r± (h)]r² h+]r³ h']r´ h%]rµ h-]r¶ uh1K*h3]r· hLX Parameter / script namer¸
r¹ }rº (hj° hj® ubaubah!j~ ubjg )r» }r¼ (hU h#}r½ (h)]r¾ h+]r¿ h']rÀ h%]rÁ h-]r uhj h3]rà hP)rÄ }rÅ (hX TyperÆ hj» hhh!hTh#}rÇ (h)]rÈ h+]rÉ h']rÊ h%]rË h-]rÌ uh1K*h3]rÍ hLX TyperÎ
rÏ }rÐ (hjÆ hjÄ ubaubah!j~ ubjg )rÑ }rÒ (hU h#}rÓ (h)]rÔ h+]rÕ h']rÖ h%]r× h-]rØ uhj h3]rÙ hP)rÚ }rÛ (hX DefaultrÜ hjÑ hhh!hTh#}rÝ (h)]rÞ h+]rß h']rà h%]rá h-]râ uh1K*h3]rã hLX Defaulträ
rå }ræ (hjÜ hjÚ ubaubah!j~ ubjg )rç }rè (hU h#}ré (h)]rê h+]rë h']rì h%]rí h-]rî uhj h3]rï hP)rð }rñ (hX Functionrò hjç hhh!hTh#}ró (h)]rô h+]rõ h']rö h%]r÷ h-]rø uh1K*h3]rù hLX Functionrú
rû }rü (hjò hjð ubaubah!j~ ubeh!j« ubah!j¬ ubj )rý }rþ (hU h#}rÿ (h)]r h+]r h']r h%]r h-]r uhja h3]r (j] )r }r (hU h#}r (h)]r h+]r
h']r h%]r h-]r
uhjý h3]r (jg )r }r (hU h#}r (h)]r h+]r h']r h%]r h-]r uhj h3]r hP)r }r (hX Range / ``range``r hj hhh!hTh#}r (h)]r h+]r h']r h%]r h-]r uh1K,h3]r! (hLX Range / r"
r# }r$ (hX Range / r% hj ubcdocutils.nodes
literal
r& )r' }r( (hX ``range``r) h#}r* (h)]r+ h+]r, h']r- h%]r. h-]r/ uhj h3]r0 hLX ranger1
r2 }r3 (hU hj' ubah!Uliteralr4 ubeubah!j~ ubjg )r5 }r6 (hU h#}r7 (h)]r8 h+]r9 h']r: h%]r; h-]r< uhj h3]r= hP)r> }r? (hX Doubler@ hj5 hhh!hTh#}rA (h)]rB h+]rC h']rD h%]rE h-]rF uh1K,h3]rG hLX DoublerH
rI }rJ (hj@ hj> ubaubah!j~ ubjg )rK }rL (hU h#}rM (h)]rN h+]rO h']rP h%]rQ h-]rR uhj h3]rS hP)rT }rU (hX
min: 0 max: 1rV hjK hhh!hTh#}rW (h)]rX h+]rY h']rZ h%]r[ h-]r\ uh1K,h3]r] hLX
min: 0 max: 1r^
r_ }r` (hjV hjT ubaubah!j~ ubjg )ra }rb (hU h#}rc (h)]rd h+]re h']rf h%]rg h-]rh uhj h3]ri hP)rj }rk (hX Expected range for input values.rl hja hhh!hTh#}rm (h)]rn h+]ro h']rp h%]rq h-]rr uh1K,h3]rs hLX Expected range for input values.rt
ru }rv (hjl hjj ubaubah!j~ ubeh!j« ubj] )rw }rx (hU h#}ry (h)]rz h+]r{ h']r| h%]r} h-]r~ uhjý h3]r (jg )r }r (hU h#}r (h)]r h+]r h']r
h%]r h-]r uhjw h3]r hP)r }r (hX Size / ``size``r hj hhh!hTh#}r (h)]r h+]r h']r h%]r h-]r uh1K.h3]r (hLX Size / r
r }r (hX Size / r hj ubj& )r }r (hX ``size``r h#}r (h)]r h+]r h']r h%]r h-]r uhj h3]r hLX sizer¡
r¢ }r£ (hU hj ubah!j4 ubeubah!j~ ubjg )r¤ }r¥ (hU h#}r¦ (h)]r§ h+]r¨ h']r© h%]rª h-]r« uhjw h3]r¬ hP)r }r® (hX Doubler¯ hj¤ hhh!hTh#}r° (h)]r± h+]r² h']r³ h%]r´ h-]rµ uh1K.h3]r¶ hLX Doubler·
r¸ }r¹ (hj¯ hj ubaubah!j~ ubjg )rº }r» (hU h#}r¼ (h)]r½ h+]r¾ h']r¿ h%]rÀ h-]rÁ uhjw h3]r hP)rà }rÄ (hX x: 0 y: 0rÅ hjº hhh!hTh#}rÆ (h)]rÇ h+]rÈ h']rÉ h%]rÊ h-]rË uh1K.h3]rÌ hLX x: 0 y: 0rÍ
rÎ }rÏ (hjÅ hjà ubaubah!j~ ubjg )rÐ }rÑ (hU h#}rÒ (h)]rÓ h+]rÔ h']rÕ h%]rÖ h-]r× uhjw h3]rØ hP)rÙ }rÚ (hX Size (diameter) of the filter kernel, in pixel units (>=0). The standard deviation of the corresponding Gaussian is size/2.4. No filter is applied if size < 1.2. Negative values correspond to dilation, positive valies to erosion. Both values should have the same sign.rÛ hjÐ hhh!hTh#}rÜ (h)]rÝ h+]rÞ h']rß h%]rà h-]rá uh1K.h3]râ hLX Size (diameter) of the filter kernel, in pixel units (>=0). The standard deviation of the corresponding Gaussian is size/2.4. No filter is applied if size < 1.2. Negative values correspond to dilation, positive valies to erosion. Both values should have the same sign.rã
rä }rå (hjÛ hjÙ ubaubah!j~ ubeh!j« ubj] )ræ }rç (hU h#}rè (h)]ré h+]rê h']rë h%]rì h-]rí uhjý h3]rî (jg )rï }rð (hU h#}rñ (h)]rò h+]ró h']rô h%]rõ h-]rö uhjæ h3]r÷ hP)rø }rù (hX Uniform / ``uniform``rú hjï hhh!hTh#}rû (h)]rü h+]rý h']rþ h%]rÿ h-]r uh1K0h3]r (hLX
Uniform / r
r }r (hX
Uniform / r hjø ubj& )r }r (hX ``uniform``r h#}r (h)]r
h+]r h']r h%]r
h-]r uhjø h3]r hLX uniformr
r }r (hU hj ubah!j4 ubeubah!j~ ubjg )r }r (hU h#}r (h)]r h+]r h']r h%]r h-]r uhjæ h3]r hP)r }r (hX Booleanr hj hhh!hTh#}r (h)]r h+]r! h']r" h%]r# h-]r$ uh1K0h3]r% hLX Booleanr&
r' }r( (hj hj ubaubah!j~ ubjg )r) }r* (hU h#}r+ (h)]r, h+]r- h']r. h%]r/ h-]r0 uhjæ h3]r1 hP)r2 }r3 (hX Offr4 hj) hhh!hTh#}r5 (h)]r6 h+]r7 h']r8 h%]r9 h-]r: uh1K0h3]r; hLX Offr<
r= }r> (hj4 hj2 ubaubah!j~ ubjg )r? }r@ (hU h#}rA (h)]rB h+]rC h']rD h%]rE h-]rF uhjæ h3]rG hP)rH }rI (hX) Apply the same amount of blur on X and Y.rJ hj? hhh!hTh#}rK (h)]rL h+]rM h']rN h%]rO h-]rP uh1K0h3]rQ hLX) Apply the same amount of blur on X and Y.rR
rS }rT (hjJ hjH ubaubah!j~ ubeh!j« ubj] )rU }rV (hU h#}rW (h)]rX h+]rY h']rZ h%]r[ h-]r\ uhjý h3]r] (jg )r^ }r_ (hU h#}r` (h)]ra h+]rb h']rc h%]rd h-]re uhjU h3]rf hP)rg }rh (hX Exponent / ``exponent``ri hj^ hhh!hTh#}rj (h)]rk h+]rl h']rm h%]rn h-]ro uh1K2h3]rp (hLX Exponent / rq
rr }rs (hX Exponent / rt hjg ubj& )ru }rv (hX ``exponent``rw h#}rx (h)]ry h+]rz h']r{ h%]r| h-]r} uhjg h3]r~ hLX exponentr
r }r (hU hju ubah!j4 ubeubah!j~ ubjg )r }r (hU h#}r (h)]r
h+]r h']r h%]r h-]r uhjU h3]r hP)r }r (hX Integerr hj hhh!hTh#}r (h)]r h+]r h']r h%]r h-]r uh1K2h3]r hLX Integerr
r }r (hj hj ubaubah!j~ ubjg )r }r (hU h#}r (h)]r h+]r h']r h%]r h-]r uhjU h3]r hP)r¡ }r¢ (hX 5hj hhh!hTh#}r£ (h)]r¤ h+]r¥ h']r¦ h%]r§ h-]r¨ uh1K2h3]r© hLX 5
rª }r« (hX 5hj¡ ubaubah!j~ ubjg )r¬ }r (hU h#}r® (h)]r¯ h+]r° h']r± h%]r² h-]r³ uhjU h3]r´ hP)rµ }r¶ (hXd Exponent of the normalized power-weighted filter. Lower values give a smoother result. Default is 5.r· hj¬ hhh!hTh#}r¸ (h)]r¹ h+]rº h']r» h%]r¼ h-]r½ uh1K2h3]r¾ hLXd Exponent of the normalized power-weighted filter. Lower values give a smoother result. Default is 5.r¿
rÀ }rÁ (hj· hjµ ubaubah!j~ ubeh!j« ubj] )r }rà (hU h#}rÄ (h)]rÅ h+]rÆ h']rÇ h%]rÈ h-]rÉ uhjý h3]rÊ (jg )rË }rÌ (hU h#}rÍ (h)]rÎ h+]rÏ h']rÐ h%]rÑ h-]rÒ uhj h3]rÓ hP)rÔ }rÕ (hX Border Conditions / ``boundary``rÖ hjË hhh!hTh#}r× (h)]rØ h+]rÙ h']rÚ h%]rÛ h-]rÜ uh1K4h3]rÝ (hLX Border Conditions / rÞ
rß }rà (hX Border Conditions / rá hjÔ ubj& )râ }rã (hX ``boundary``rä h#}rå (h)]ræ h+]rç h']rè h%]ré h-]rê uhjÔ h3]rë hLX boundaryrì
rí }rî (hU hjâ ubah!j4 ubeubah!j~ ubjg )rï }rð (hU h#}rñ (h)]rò h+]ró h']rô h%]rõ h-]rö uhj h3]r÷ hP)rø }rù (hX Choicerú hjï hhh!hTh#}rû (h)]rü h+]rý h']rþ h%]rÿ h-]r uh1K4h3]r hLX Choicer
r }r (hjú hjø ubaubah!j~ ubjg )r }r (hU h#}r (h)]r h+]r h']r
h%]r h-]r uhj h3]r
hP)r }r (hX Nearestr hj hhh!hTh#}r (h)]r h+]r h']r h%]r h-]r uh1K4h3]r hLX Nearestr
r }r (hj hj ubaubah!j~ ubjg )r }r (hU h#}r (h)]r h+]r h']r h%]r! h-]r" uhj h3]r# cdocutils.nodes
line_block
r$ )r% }r& (hU h#}r' (h)]r( h+]r) h']r* h%]r+ h-]r, uhj h3]r- (cdocutils.nodes
line
r. )r/ }r0 (hX3 Specifies how pixel values are computed out of the image domain. This mostly affects values at the boundary of the image. If the image represents intensities, Nearest (Neumann) conditions should be used. If the image represents gradients or derivatives, Black (Dirichlet) boundary conditions should be used.r1 Uindentr2 K hj% hhh!h1h#}r3 (h)]r4 h+]r5 h']r6 h%]r7 h-]r8 uh1K h3]r9 hLX3 Specifies how pixel values are computed out of the image domain. This mostly affects values at the boundary of the image. If the image represents intensities, Nearest (Neumann) conditions should be used. If the image represents gradients or derivatives, Black (Dirichlet) boundary conditions should be used.r:
r; }r< (hj1 hj/ ubaubj. )r= }r> (hXW **Black**: Dirichlet boundary condition: pixel values out of the image domain are zero.r? j2 K hj% hhh!h1h#}r@ (h)]rA h+]rB h']rC h%]rD h-]rE uh1K h3]rF (cdocutils.nodes
strong
rG )rH }rI (hX **Black**rJ h#}rK (h)]rL h+]rM h']rN h%]rO h-]rP uhj= h3]rQ hLX BlackrR
rS }rT (hU hjH ubah!UstrongrU ubhLXN : Dirichlet boundary condition: pixel values out of the image domain are zero.rV
rW }rX (hXN : Dirichlet boundary condition: pixel values out of the image domain are zero.rY hj= ubeubj. )rZ }r[ (hX **Nearest**: Neumann boundary condition: pixel values out of the image domain are those of the closest pixel location in the image domain.r\ j2 K hj% hhh!h1h#}r] (h)]r^ h+]r_ h']r` h%]ra h-]rb uh1K h3]rc (jG )rd }re (hX **Nearest**rf h#}rg (h)]rh h+]ri h']rj h%]rk h-]rl uhjZ h3]rm hLX Nearestrn
ro }rp (hU hjd ubah!jU ubhLX : Neumann boundary condition: pixel values out of the image domain are those of the closest pixel location in the image domain.rq
rr }rs (hX : Neumann boundary condition: pixel values out of the image domain are those of the closest pixel location in the image domain.rt hjZ ubeubeh!U
line_blockru ubah!j~ ubeh!j« ubj] )rv }rw (hU h#}rx (h)]ry h+]rz h']r{ h%]r| h-]r} uhjý h3]r~ (jg )r }r (hU h#}r (h)]r h+]r h']r h%]r
h-]r uhjv h3]r hP)r }r (hX Filter / ``filter``r hj hhh!hTh#}r (h)]r h+]r h']r h%]r h-]r uh1K8h3]r (hLX Filter / r
r }r (hX Filter / r hj ubj& )r }r (hX
``filter``r h#}r (h)]r h+]r h']r h%]r h-]r uhj h3]r hLX filterr
r¡ }r¢ (hU hj ubah!j4 ubeubah!j~ ubjg )r£ }r¤ (hU h#}r¥ (h)]r¦ h+]r§ h']r¨ h%]r© h-]rª uhjv h3]r« hP)r¬ }r (hX Choicer® hj£ hhh!hTh#}r¯ (h)]r° h+]r± h']r² h%]r³ h-]r´ uh1K8h3]rµ hLX Choicer¶
r· }r¸ (hj® hj¬ ubaubah!j~ ubjg )r¹ }rº (hU h#}r» (h)]r¼ h+]r½ h']r¾ h%]r¿ h-]rÀ uhjv h3]rÁ hP)r }rà (hX QuadraticrÄ hj¹ hhh!hTh#}rÅ (h)]rÆ h+]rÇ h']rÈ h%]rÉ h-]rÊ uh1K8h3]rË hLX QuadraticrÌ
rÍ }rÎ (hjÄ hj ubaubah!j~ ubjg )rÏ }rÐ (hU h#}rÑ (h)]rÒ h+]rÓ h']rÔ h%]rÕ h-]rÖ uhjv h3]r× j$ )rØ }rÙ (hU h#}rÚ (h)]rÛ h+]rÜ h']rÝ h%]rÞ h-]rß uhjÏ h3]rà (j. )rá }râ (hX° Bluring filter. The quasi-Gaussian filter should be appropriate in most cases. The Gaussian filter is more isotropic (its impulse response has rotational symmetry), but slower.rã j2 K hjØ hhh!h1h#}rä (h)]rå h+]ræ h']rç h%]rè h-]ré uh1K h3]rê hLX° Bluring filter. The quasi-Gaussian filter should be appropriate in most cases. The Gaussian filter is more isotropic (its impulse response has rotational symmetry), but slower.rë
rì }rí (hjã hjá ubaubj. )rî }rï (hXU **Quasi-Gaussian**: Quasi-Gaussian filter (0-order recursive Deriche filter, faster).rð j2 K hjØ hhh!h1h#}rñ (h)]rò h+]ró h']rô h%]rõ h-]rö uh1K h3]r÷ (jG )rø }rù (hX **Quasi-Gaussian**rú h#}rû (h)]rü h+]rý h']rþ h%]rÿ h-]r uhjî h3]r hLX Quasi-Gaussianr
r }r (hU hjø ubah!jU ubhLXC : Quasi-Gaussian filter (0-order recursive Deriche filter, faster).r
r }r (hXC : Quasi-Gaussian filter (0-order recursive Deriche filter, faster).r hjî ubeubj. )r }r
(hX\ **Gaussian**: Gaussian filter (Van Vliet recursive Gaussian filter, more isotropic, slower).r j2 K hjØ hhh!h1h#}r (h)]r
h+]r h']r h%]r h-]r uh1K h3]r (jG )r }r (hX **Gaussian**r h#}r (h)]r h+]r h']r h%]r h-]r uhj h3]r hLX Gaussianr
r }r (hU hj ubah!jU ubhLXP : Gaussian filter (Van Vliet recursive Gaussian filter, more isotropic, slower).r
r! }r" (hXP : Gaussian filter (Van Vliet recursive Gaussian filter, more isotropic, slower).r# hj ubeubj. )r$ }r% (hXB **Box**: Box filter - FIR (finite support / impulsional response).r& j2 K hjØ hhh!h1h#}r' (h)]r( h+]r) h']r* h%]r+ h-]r, uh1K h3]r- (jG )r. }r/ (hX **Box**r0 h#}r1 (h)]r2 h+]r3 h']r4 h%]r5 h-]r6 uhj$ h3]r7 hLX Boxr8
r9 }r: (hU hj. ubah!jU ubhLX; : Box filter - FIR (finite support / impulsional response).r;
r< }r= (hX; : Box filter - FIR (finite support / impulsional response).r> hj$ ubeubj. )r? }r@ (hXQ **Triangle**: Triangle/tent filter - FIR (finite support / impulsional response).rA j2 K hjØ hhh!h1h#}rB (h)]rC h+]rD h']rE h%]rF h-]rG uh1K h3]rH (jG )rI }rJ (hX **Triangle**rK h#}rL (h)]rM h+]rN h']rO h%]rP h-]rQ uhj? h3]rR hLX TrianglerS
rT }rU (hU hjI ubah!jU ubhLXE : Triangle/tent filter - FIR (finite support / impulsional response).rV
rW }rX (hXE : Triangle/tent filter - FIR (finite support / impulsional response).rY hj? ubeubj. )rZ }r[ (hXN **Quadratic**: Quadratic filter - FIR (finite support / impulsional response).r\ j2 K hjØ hhh!h1h#}r] (h)]r^ h+]r_ h']r` h%]ra h-]rb uh1K h3]rc (jG )rd }re (hX
**Quadratic**rf h#}rg (h)]rh h+]ri h']rj h%]rk h-]rl uhjZ h3]rm hLX Quadraticrn
ro }rp (hU hjd ubah!jU ubhLXA : Quadratic filter - FIR (finite support / impulsional response).rq
rr }rs (hXA : Quadratic filter - FIR (finite support / impulsional response).rt hjZ ubeubeh!ju ubah!j~ ubeh!j« ubj] )ru }rv (hU h#}rw (h)]rx h+]ry h']rz h%]r{ h-]r| uhjý h3]r} (jg )r~ }r (hU h#}r (h)]r h+]r h']r h%]r h-]r
uhju h3]r hP)r }r (hX Expand RoD / ``expandRoD``r hj~ hhh!hTh#}r (h)]r h+]r h']r h%]r h-]r uh1K?h3]r (hLX
Expand RoD / r
r }r (hX
Expand RoD / r hj ubj& )r }r (hX
``expandRoD``r h#}r (h)]r h+]r h']r h%]r h-]r uhj h3]r hLX expandRoDr
r }r¡ (hU hj ubah!j4 ubeubah!j~ ubjg )r¢ }r£ (hU h#}r¤ (h)]r¥ h+]r¦ h']r§ h%]r¨ h-]r© uhju h3]rª hP)r« }r¬ (hX Booleanr hj¢ hhh!hTh#}r® (h)]r¯ h+]r° h']r± h%]r² h-]r³ uh1K?h3]r´ hLX Booleanrµ
r¶ }r· (hj hj« ubaubah!j~ ubjg )r¸ }r¹ (hU h#}rº (h)]r» h+]r¼ h']r½ h%]r¾ h-]r¿ uhju h3]rÀ hP)rÁ }r (hX Onrà hj¸ hhh!hTh#}rÄ (h)]rÅ h+]rÆ h']rÇ h%]rÈ h-]rÉ uh1K?h3]rÊ hLX OnrË
rÌ }rÍ (hjà hjÁ ubaubah!j~ ubjg )rÎ }rÏ (hU h#}rÐ (h)]rÑ h+]rÒ h']rÓ h%]rÔ h-]rÕ uhju h3]rÖ hP)r× }rØ (hXA Expand the source region of definition by 1.5\*size (3.6\*sigma).rÙ hjÎ hhh!hTh#}rÚ (h)]rÛ h+]rÜ h']rÝ h%]rÞ h-]rß uh1K?h3]rà hLX? Expand the source region of definition by 1.5*size (3.6*sigma).rá
râ }rã (hXA Expand the source region of definition by 1.5\*size (3.6\*sigma).rä hj× ubaubah!j~ ubeh!j« ubj] )rå }ræ (hU h#}rç (h)]rè h+]ré h']rê h%]rë h-]rì uhjý h3]rí (jg )rî }rï (hU h#}rð (h)]rñ h+]rò h']ró h%]rô h-]rõ uhjå h3]rö hP)r÷ }rø (hX (Un)premult / ``premult``rù hjî hhh!hTh#}rú (h)]rû h+]rü h']rý h%]rþ h-]rÿ uh1KAh3]r (hLX (Un)premult / r
r }r (hX (Un)premult / r hj÷ ubj& )r }r (hX ``premult``r h#}r (h)]r h+]r
h']r h%]r h-]r
uhj÷ h3]r hLX premultr
r }r (hU hj ubah!j4 ubeubah!j~ ubjg )r }r (hU h#}r (h)]r h+]r h']r h%]r h-]r uhjå h3]r hP)r }r (hX Booleanr hj hhh!hTh#}r (h)]r h+]r h']r! h%]r" h-]r# uh1KAh3]r$ hLX Booleanr%
r& }r' (hj hj ubaubah!j~ ubjg )r( }r) (hU h#}r* (h)]r+ h+]r, h']r- h%]r. h-]r/ uhjå h3]r0 hP)r1 }r2 (hX Offr3 hj( hhh!hTh#}r4 (h)]r5 h+]r6 h']r7 h%]r8 h-]r9 uh1KAh3]r: hLX Offr;
r< }r= (hj3 hj1 ubaubah!j~ ubjg )r> }r? (hU h#}r@ (h)]rA h+]rB h']rC h%]rD h-]rE uhjå h3]rF hP)rG }rH (hX Divide the image by the alpha channel before processing, and re-multiply it afterwards. Use if the input images are premultiplied.rI hj> hhh!hTh#}rJ (h)]rK h+]rL h']rM h%]rN h-]rO uh1KAh3]rP hLX Divide the image by the alpha channel before processing, and re-multiply it afterwards. Use if the input images are premultiplied.rQ
rR }rS (hjI hjG ubaubah!j~ ubeh!j« ubj] )rT }rU (hU h#}rV (h)]rW h+]rX h']rY h%]rZ h-]r[ uhjý h3]r\ (jg )r] }r^ (hU h#}r_ (h)]r` h+]ra h']rb h%]rc h-]rd uhjT h3]re hP)rf }rg (hX Invert Mask / ``maskInvert``rh hj] hhh!hTh#}ri (h)]rj h+]rk h']rl h%]rm h-]rn uh1KCh3]ro (hLX Invert Mask / rp
rq }rr (hX Invert Mask / rs hjf ubj& )rt }ru (hX ``maskInvert``rv h#}rw (h)]rx h+]ry h']rz h%]r{ h-]r| uhjf h3]r} hLX
maskInvertr~
r }r (hU hjt ubah!j4 ubeubah!j~ ubjg )r }r (hU h#}r (h)]r h+]r
h']r h%]r h-]r uhjT h3]r hP)r }r (hX Booleanr hj hhh!hTh#}r (h)]r h+]r h']r h%]r h-]r uh1KCh3]r hLX Booleanr
r }r (hj hj ubaubah!j~ ubjg )r }r (hU h#}r (h)]r h+]r h']r h%]r h-]r uhjT h3]r hP)r }r¡ (hX Offr¢ hj hhh!hTh#}r£ (h)]r¤ h+]r¥ h']r¦ h%]r§ h-]r¨ uh1KCh3]r© hLX Offrª
r« }r¬ (hj¢ hj ubaubah!j~ ubjg )r }r® (hU h#}r¯ (h)]r° h+]r± h']r² h%]r³ h-]r´ uhjT h3]rµ hP)r¶ }r· (hX>