Repository URL to install this package:
|
Version:
0.1.dev51+ga4c683e ▾
|
# -*- coding: utf-8 -*-
from kiara.models.values.value import ValueMap
from kiara.modules import (
KiaraModule,
KiaraModuleConfig,
ModuleCharacteristics,
ValueSetSchema,
)
from pydantic import Field
class ExampleModuleConfig(KiaraModuleConfig):
separator: str = Field(
description="The seperator between the two strings.", default=" - "
)
class ExampleModule(KiaraModule):
"""A very simple example module; concatenate two strings.
The purpose of this modules is to show the main elements of a [`KiaraModule`][kiara.modules.KiaraModule]:
- ***the (optional) configuration class***: must inherit from [`KiaraModuleConfig`][kiara.modules.KiaraModuleConfig], and the config class must be set as the `_config_cls` attribute
on the `KiaraModule` class. Configuration values can be retrieved via the [`self.get_config_value(key)`][kiara.modules.KiaraModule.get_config_value] method
- ***the inputs description***: must return a dictionary, containing the input name(s) as keys, and another dictionary containing type_name information
and documentation about the input data as value
- ***the outputs description***: must return a dictionary, containing the output name(s) as keys, and another dictionary containing type_name information
and documentation about the output data as value
- ***the ``process`` method***: this is where the actual work gets done. Input data can be accessed via ``inputs.get_value_data(key)``, results
can be set with the ``outputs.set_value(key, value)`` method
Example:
This example module can be tested on the commandline with the ``kiara run`` command:
```
kiara run core_types.example text_1="xxx" text_2="yyy"
```
"""
_config_cls = ExampleModuleConfig
_module_type_name = "my_kiara_module.example"
def create_inputs_schema(
self,
) -> ValueSetSchema:
inputs = {
"text_1": {"type": "string", "doc": "The first text."},
"text_2": {"type": "string", "doc": "The second text."},
}
return inputs
def create_outputs_schema(
self,
) -> ValueSetSchema:
outputs = {
"text": {
"type": "string",
"doc": "The concatenated text.",
}
}
return outputs
def process(self, inputs: ValueMap, outputs: ValueMap) -> None:
separator = self.get_config_value("separator")
text_1 = inputs.get_value_data("text_1")
text_2 = inputs.get_value_data("text_2")
result = text_1 + separator + text_2
outputs.set_value("text", result)
class TutorialModule(KiaraModule):
_module_type_name = "kiara_plugin.my_kiara_module.my_kiara_module.tutorial_module"
def create_inputs_schema(self):
return {"table": {"type": "table"}}
def create_outputs_schema(self):
return {"table": {"type": "table"}}
def process(self, inputs, outputs) -> None:
pass
class TutorialModule1(KiaraModule):
"""Filter a table."""
_module_type_name = "filter.table"
def create_inputs_schema(self):
return {"table_input": {"type": "table"}}
def create_outputs_schema(self):
return {"table_output": {"type": "table"}}
def process(self, inputs, outputs) -> None:
pass
class TutorialModule2(KiaraModule):
"""Filter a table."""
_module_type_name = "filter.table_2"
def _retrieve_module_characteristics(self) -> ModuleCharacteristics:
return ModuleCharacteristics(is_internal=True)
def create_inputs_schema(self):
return {"table_input": {"type": "table", "doc": "The table to filter."}}
def create_outputs_schema(self):
return {"table_output": {"type": "table", "doc": "The filtered table."}}
def process(self, inputs, outputs) -> None:
table_obj = inputs.get_value_obj("table_input")
print(f"Filter module, table input value: {table_obj}")
print(f"Table data instance: {table_obj.data}")
outputs.set_value("table_output", table_obj)
class TutorialModule3(KiaraModule):
"""Filter a table."""
_module_type_name = "filter.table_3"
def _retrieve_module_characteristics(self) -> ModuleCharacteristics:
return ModuleCharacteristics(is_internal=True)
def create_inputs_schema(self):
return {"table_input": {"type": "table", "doc": "The table to filter."}}
def create_outputs_schema(self):
return {"table_output": {"type": "table", "doc": "The filtered table."}}
def process(self, inputs, outputs) -> None:
table_obj = inputs.get_value_obj("table_input")
print(f"Filter module, table input value: {table_obj}")
print(f"Table data instance: {table_obj.data}")
pandas_df = table_obj.data.to_pandas()
print(f"Column names: {pandas_df.columns}")
outputs.set_value("table_output", table_obj)
class TutorialModule4(KiaraModule):
"""Filter a table."""
_module_type_name = "filter.table_4"
def _retrieve_module_characteristics(self) -> ModuleCharacteristics:
return ModuleCharacteristics(is_internal=True)
def create_inputs_schema(self):
return {"table_input": {"type": "table", "doc": "The table to filter."}}
def create_outputs_schema(self):
return {"table_output": {"type": "table", "doc": "The filtered table."}}
def process(self, inputs, outputs) -> None:
from kiara.exceptions import KiaraProcessingException
table_obj = inputs.get_value_obj("table_input")
pandas_df = table_obj.data.to_pandas()
column_names = pandas_df.columns
if "City" not in column_names:
raise KiaraProcessingException(
"Invalid table, does not contain a column named 'City'."
)
berlin_df = pandas_df.loc[pandas_df["City"] == "Berlin"]
outputs.set_value("table_output", berlin_df)
class TutorialModule5(KiaraModule):
"""Filter a table."""
_module_type_name = "filter.table_5"
def _retrieve_module_characteristics(self) -> ModuleCharacteristics:
return ModuleCharacteristics(is_internal=True)
def create_inputs_schema(self):
return {
"table_input": {"type": "table", "doc": "The table to filter."},
"column_name": {
"type": "string",
"doc": "The column containing the element to use as filter.",
"default": "City",
},
"filter_string": {"type": "string", "doc": "The string to use as filter."},
}
def create_outputs_schema(self):
return {"table_output": {"type": "table", "doc": "The filtered table."}}
def process(self, inputs, outputs) -> None:
from kiara.exceptions import KiaraProcessingException
table_obj = inputs.get_value_obj("table_input")
column_name = inputs.get_value_data("column_name")
filter_string = inputs.get_value_data("filter_string")
pandas_df = table_obj.data.to_pandas()
column_names = pandas_df.columns
if column_name not in column_names:
raise KiaraProcessingException(
f"Invalid table, does not contain a column named '{column_name}'. Available column names: {', '.join(column_names)}."
)
berlin_df = pandas_df.loc[pandas_df[column_name] == filter_string]
outputs.set_value("table_output", berlin_df)