Repository URL to install this package:
Version:
3.2.1 ▾
|
"""Maximum flow algorithms test suite.
"""
import pytest
import networkx as nx
from networkx.algorithms.flow import (
boykov_kolmogorov,
build_flow_dict,
build_residual_network,
dinitz,
edmonds_karp,
preflow_push,
shortest_augmenting_path,
)
flow_funcs = {
boykov_kolmogorov,
dinitz,
edmonds_karp,
preflow_push,
shortest_augmenting_path,
}
max_min_funcs = {nx.maximum_flow, nx.minimum_cut}
flow_value_funcs = {nx.maximum_flow_value, nx.minimum_cut_value}
interface_funcs = max_min_funcs & flow_value_funcs
all_funcs = flow_funcs & interface_funcs
def compute_cutset(G, partition):
reachable, non_reachable = partition
cutset = set()
for u, nbrs in ((n, G[n]) for n in reachable):
cutset.update((u, v) for v in nbrs if v in non_reachable)
return cutset
def validate_flows(G, s, t, flowDict, solnValue, capacity, flow_func):
errmsg = f"Assertion failed in function: {flow_func.__name__}"
assert set(G) == set(flowDict), errmsg
for u in G:
assert set(G[u]) == set(flowDict[u]), errmsg
excess = {u: 0 for u in flowDict}
for u in flowDict:
for v, flow in flowDict[u].items():
if capacity in G[u][v]:
assert flow <= G[u][v][capacity]
assert flow >= 0, errmsg
excess[u] -= flow
excess[v] += flow
for u, exc in excess.items():
if u == s:
assert exc == -solnValue, errmsg
elif u == t:
assert exc == solnValue, errmsg
else:
assert exc == 0, errmsg
def validate_cuts(G, s, t, solnValue, partition, capacity, flow_func):
errmsg = f"Assertion failed in function: {flow_func.__name__}"
assert all(n in G for n in partition[0]), errmsg
assert all(n in G for n in partition[1]), errmsg
cutset = compute_cutset(G, partition)
assert all(G.has_edge(u, v) for (u, v) in cutset), errmsg
assert solnValue == sum(G[u][v][capacity] for (u, v) in cutset), errmsg
H = G.copy()
H.remove_edges_from(cutset)
if not G.is_directed():
assert not nx.is_connected(H), errmsg
else:
assert not nx.is_strongly_connected(H), errmsg
def compare_flows_and_cuts(G, s, t, solnFlows, solnValue, capacity="capacity"):
for flow_func in flow_funcs:
errmsg = f"Assertion failed in function: {flow_func.__name__}"
R = flow_func(G, s, t, capacity)
# Test both legacy and new implementations.
flow_value = R.graph["flow_value"]
flow_dict = build_flow_dict(G, R)
assert flow_value == solnValue, errmsg
validate_flows(G, s, t, flow_dict, solnValue, capacity, flow_func)
# Minimum cut
cut_value, partition = nx.minimum_cut(
G, s, t, capacity=capacity, flow_func=flow_func
)
validate_cuts(G, s, t, solnValue, partition, capacity, flow_func)
class TestMaxflowMinCutCommon:
def test_graph1(self):
# Trivial undirected graph
G = nx.Graph()
G.add_edge(1, 2, capacity=1.0)
solnFlows = {1: {2: 1.0}, 2: {1: 1.0}}
compare_flows_and_cuts(G, 1, 2, solnFlows, 1.0)
def test_graph2(self):
# A more complex undirected graph
# adapted from https://web.archive.org/web/20220815055650/https://www.topcoder.com/thrive/articles/Maximum%20Flow:%20Part%20One
G = nx.Graph()
G.add_edge("x", "a", capacity=3.0)
G.add_edge("x", "b", capacity=1.0)
G.add_edge("a", "c", capacity=3.0)
G.add_edge("b", "c", capacity=5.0)
G.add_edge("b", "d", capacity=4.0)
G.add_edge("d", "e", capacity=2.0)
G.add_edge("c", "y", capacity=2.0)
G.add_edge("e", "y", capacity=3.0)
H = {
"x": {"a": 3, "b": 1},
"a": {"c": 3, "x": 3},
"b": {"c": 1, "d": 2, "x": 1},
"c": {"a": 3, "b": 1, "y": 2},
"d": {"b": 2, "e": 2},
"e": {"d": 2, "y": 2},
"y": {"c": 2, "e": 2},
}
compare_flows_and_cuts(G, "x", "y", H, 4.0)
def test_digraph1(self):
# The classic directed graph example
G = nx.DiGraph()
G.add_edge("a", "b", capacity=1000.0)
G.add_edge("a", "c", capacity=1000.0)
G.add_edge("b", "c", capacity=1.0)
G.add_edge("b", "d", capacity=1000.0)
G.add_edge("c", "d", capacity=1000.0)
H = {
"a": {"b": 1000.0, "c": 1000.0},
"b": {"c": 0, "d": 1000.0},
"c": {"d": 1000.0},
"d": {},
}
compare_flows_and_cuts(G, "a", "d", H, 2000.0)
def test_digraph2(self):
# An example in which some edges end up with zero flow.
G = nx.DiGraph()
G.add_edge("s", "b", capacity=2)
G.add_edge("s", "c", capacity=1)
G.add_edge("c", "d", capacity=1)
G.add_edge("d", "a", capacity=1)
G.add_edge("b", "a", capacity=2)
G.add_edge("a", "t", capacity=2)
H = {
"s": {"b": 2, "c": 0},
"c": {"d": 0},
"d": {"a": 0},
"b": {"a": 2},
"a": {"t": 2},
"t": {},
}
compare_flows_and_cuts(G, "s", "t", H, 2)
def test_digraph3(self):
# A directed graph example from Cormen et al.
G = nx.DiGraph()
G.add_edge("s", "v1", capacity=16.0)
G.add_edge("s", "v2", capacity=13.0)
G.add_edge("v1", "v2", capacity=10.0)
G.add_edge("v2", "v1", capacity=4.0)
G.add_edge("v1", "v3", capacity=12.0)
G.add_edge("v3", "v2", capacity=9.0)
G.add_edge("v2", "v4", capacity=14.0)
G.add_edge("v4", "v3", capacity=7.0)
G.add_edge("v3", "t", capacity=20.0)
G.add_edge("v4", "t", capacity=4.0)
H = {
"s": {"v1": 12.0, "v2": 11.0},
"v2": {"v1": 0, "v4": 11.0},
"v1": {"v2": 0, "v3": 12.0},
"v3": {"v2": 0, "t": 19.0},
"v4": {"v3": 7.0, "t": 4.0},
"t": {},
}
compare_flows_and_cuts(G, "s", "t", H, 23.0)
def test_digraph4(self):
# A more complex directed graph
# from https://web.archive.org/web/20220815055650/https://www.topcoder.com/thrive/articles/Maximum%20Flow:%20Part%20One
G = nx.DiGraph()
G.add_edge("x", "a", capacity=3.0)
G.add_edge("x", "b", capacity=1.0)
G.add_edge("a", "c", capacity=3.0)
G.add_edge("b", "c", capacity=5.0)
G.add_edge("b", "d", capacity=4.0)
G.add_edge("d", "e", capacity=2.0)
G.add_edge("c", "y", capacity=2.0)
G.add_edge("e", "y", capacity=3.0)
H = {
"x": {"a": 2.0, "b": 1.0},
"a": {"c": 2.0},
"b": {"c": 0, "d": 1.0},
"c": {"y": 2.0},
"d": {"e": 1.0},
"e": {"y": 1.0},
"y": {},
}
compare_flows_and_cuts(G, "x", "y", H, 3.0)
def test_wikipedia_dinitz_example(self):
# Nice example from https://en.wikipedia.org/wiki/Dinic's_algorithm
G = nx.DiGraph()
G.add_edge("s", 1, capacity=10)
G.add_edge("s", 2, capacity=10)
G.add_edge(1, 3, capacity=4)
G.add_edge(1, 4, capacity=8)
G.add_edge(1, 2, capacity=2)
G.add_edge(2, 4, capacity=9)
G.add_edge(3, "t", capacity=10)
G.add_edge(4, 3, capacity=6)
G.add_edge(4, "t", capacity=10)
solnFlows = {
1: {2: 0, 3: 4, 4: 6},
2: {4: 9},
3: {"t": 9},
4: {3: 5, "t": 10},
"s": {1: 10, 2: 9},
"t": {},
}
compare_flows_and_cuts(G, "s", "t", solnFlows, 19)
def test_optional_capacity(self):
# Test optional capacity parameter.
G = nx.DiGraph()
G.add_edge("x", "a", spam=3.0)
G.add_edge("x", "b", spam=1.0)
G.add_edge("a", "c", spam=3.0)
G.add_edge("b", "c", spam=5.0)
G.add_edge("b", "d", spam=4.0)
G.add_edge("d", "e", spam=2.0)
G.add_edge("c", "y", spam=2.0)
G.add_edge("e", "y", spam=3.0)
solnFlows = {
"x": {"a": 2.0, "b": 1.0},
"a": {"c": 2.0},
"b": {"c": 0, "d": 1.0},
"c": {"y": 2.0},
"d": {"e": 1.0},
"e": {"y": 1.0},
"y": {},
}
solnValue = 3.0
s = "x"
t = "y"
compare_flows_and_cuts(G, s, t, solnFlows, solnValue, capacity="spam")
def test_digraph_infcap_edges(self):
# DiGraph with infinite capacity edges
G = nx.DiGraph()
G.add_edge("s", "a")
G.add_edge("s", "b", capacity=30)
G.add_edge("a", "c", capacity=25)
G.add_edge("b", "c", capacity=12)
G.add_edge("a", "t", capacity=60)
G.add_edge("c", "t")
H = {
"s": {"a": 85, "b": 12},
"a": {"c": 25, "t": 60},
"b": {"c": 12},
"c": {"t": 37},
"t": {},
}
compare_flows_and_cuts(G, "s", "t", H, 97)
# DiGraph with infinite capacity digon
G = nx.DiGraph()
G.add_edge("s", "a", capacity=85)
G.add_edge("s", "b", capacity=30)
G.add_edge("a", "c")
G.add_edge("c", "a")
G.add_edge("b", "c", capacity=12)
G.add_edge("a", "t", capacity=60)
G.add_edge("c", "t", capacity=37)
H = {
"s": {"a": 85, "b": 12},
"a": {"c": 25, "t": 60},
"c": {"a": 0, "t": 37},
"b": {"c": 12},
"t": {},
}
compare_flows_and_cuts(G, "s", "t", H, 97)
def test_digraph_infcap_path(self):
# Graph with infinite capacity (s, t)-path
G = nx.DiGraph()
G.add_edge("s", "a")
G.add_edge("s", "b", capacity=30)
G.add_edge("a", "c")
G.add_edge("b", "c", capacity=12)
G.add_edge("a", "t", capacity=60)
G.add_edge("c", "t")
for flow_func in all_funcs:
pytest.raises(nx.NetworkXUnbounded, flow_func, G, "s", "t")
def test_graph_infcap_edges(self):
# Undirected graph with infinite capacity edges
G = nx.Graph()
G.add_edge("s", "a")
G.add_edge("s", "b", capacity=30)
G.add_edge("a", "c", capacity=25)
G.add_edge("b", "c", capacity=12)
G.add_edge("a", "t", capacity=60)
G.add_edge("c", "t")
H = {
"s": {"a": 85, "b": 12},
"a": {"c": 25, "s": 85, "t": 60},
"b": {"c": 12, "s": 12},
"c": {"a": 25, "b": 12, "t": 37},
"t": {"a": 60, "c": 37},
}
compare_flows_and_cuts(G, "s", "t", H, 97)
def test_digraph5(self):
# From ticket #429 by mfrasca.
G = nx.DiGraph()
G.add_edge("s", "a", capacity=2)
G.add_edge("s", "b", capacity=2)
G.add_edge("a", "b", capacity=5)
G.add_edge("a", "t", capacity=1)
G.add_edge("b", "a", capacity=1)
G.add_edge("b", "t", capacity=3)
flowSoln = {
"a": {"b": 1, "t": 1},
"b": {"a": 0, "t": 3},
"s": {"a": 2, "b": 2},
"t": {},
}
compare_flows_and_cuts(G, "s", "t", flowSoln, 4)
def test_disconnected(self):
G = nx.Graph()
G.add_weighted_edges_from([(0, 1, 1), (1, 2, 1), (2, 3, 1)], weight="capacity")
G.remove_node(1)
assert nx.maximum_flow_value(G, 0, 3) == 0
flowSoln = {0: {}, 2: {3: 0}, 3: {2: 0}}
compare_flows_and_cuts(G, 0, 3, flowSoln, 0)
def test_source_target_not_in_graph(self):
G = nx.Graph()
G.add_weighted_edges_from([(0, 1, 1), (1, 2, 1), (2, 3, 1)], weight="capacity")
G.remove_node(0)
for flow_func in all_funcs:
pytest.raises(nx.NetworkXError, flow_func, G, 0, 3)
G.add_weighted_edges_from([(0, 1, 1), (1, 2, 1), (2, 3, 1)], weight="capacity")
G.remove_node(3)
for flow_func in all_funcs:
pytest.raises(nx.NetworkXError, flow_func, G, 0, 3)
def test_source_target_coincide(self):
G = nx.Graph()
G.add_node(0)
for flow_func in all_funcs:
pytest.raises(nx.NetworkXError, flow_func, G, 0, 0)
def test_multigraphs_raise(self):
G = nx.MultiGraph()
M = nx.MultiDiGraph()
G.add_edges_from([(0, 1), (1, 0)], capacity=True)
for flow_func in all_funcs:
pytest.raises(nx.NetworkXError, flow_func, G, 0, 0)
class TestMaxFlowMinCutInterface:
def setup_method(self):
G = nx.DiGraph()
G.add_edge("x", "a", capacity=3.0)
G.add_edge("x", "b", capacity=1.0)
G.add_edge("a", "c", capacity=3.0)
G.add_edge("b", "c", capacity=5.0)
G.add_edge("b", "d", capacity=4.0)
G.add_edge("d", "e", capacity=2.0)
G.add_edge("c", "y", capacity=2.0)
G.add_edge("e", "y", capacity=3.0)
self.G = G
H = nx.DiGraph()
H.add_edge(0, 1, capacity=1.0)
H.add_edge(1, 2, capacity=1.0)
self.H = H
def test_flow_func_not_callable(self):
elements = ["this_should_be_callable", 10, {1, 2, 3}]
G = nx.Graph()
G.add_weighted_edges_from([(0, 1, 1), (1, 2, 1), (2, 3, 1)], weight="capacity")
for flow_func in interface_funcs:
for element in elements:
pytest.raises(nx.NetworkXError, flow_func, G, 0, 1, flow_func=element)
pytest.raises(nx.NetworkXError, flow_func, G, 0, 1, flow_func=element)
def test_flow_func_parameters(self):
G = self.G
fv = 3.0
for interface_func in interface_funcs:
for flow_func in flow_funcs:
errmsg = (
f"Assertion failed in function: {flow_func.__name__} "
f"in interface {interface_func.__name__}"
)
result = interface_func(G, "x", "y", flow_func=flow_func)
if interface_func in max_min_funcs:
result = result[0]
assert fv == result, errmsg
def test_minimum_cut_no_cutoff(self):
G = self.G
pytest.raises(
nx.NetworkXError,
nx.minimum_cut,
G,
"x",
"y",
flow_func=preflow_push,
cutoff=1.0,
)
pytest.raises(
nx.NetworkXError,
nx.minimum_cut_value,
G,
"x",
"y",
flow_func=preflow_push,
cutoff=1.0,
)
def test_kwargs(self):
G = self.H
fv = 1.0
to_test = (
(shortest_augmenting_path, {"two_phase": True}),
(preflow_push, {"global_relabel_freq": 5}),
)
for interface_func in interface_funcs:
for flow_func, kwargs in to_test:
errmsg = (
f"Assertion failed in function: {flow_func.__name__} "
f"in interface {interface_func.__name__}"
)
result = interface_func(G, 0, 2, flow_func=flow_func, **kwargs)
if interface_func in max_min_funcs:
result = result[0]
assert fv == result, errmsg
def test_kwargs_default_flow_func(self):
G = self.H
for interface_func in interface_funcs:
pytest.raises(
nx.NetworkXError, interface_func, G, 0, 1, global_relabel_freq=2
)
def test_reusing_residual(self):
G = self.G
fv = 3.0
s, t = "x", "y"
R = build_residual_network(G, "capacity")
for interface_func in interface_funcs:
for flow_func in flow_funcs:
errmsg = (
f"Assertion failed in function: {flow_func.__name__} "
f"in interface {interface_func.__name__}"
)
for i in range(3):
result = interface_func(
G, "x", "y", flow_func=flow_func, residual=R
)
if interface_func in max_min_funcs:
result = result[0]
assert fv == result, errmsg
# Tests specific to one algorithm
def test_preflow_push_global_relabel_freq():
G = nx.DiGraph()
G.add_edge(1, 2, capacity=1)
R = preflow_push(G, 1, 2, global_relabel_freq=None)
assert R.graph["flow_value"] == 1
pytest.raises(nx.NetworkXError, preflow_push, G, 1, 2, global_relabel_freq=-1)
def test_preflow_push_makes_enough_space():
# From ticket #1542
G = nx.DiGraph()
nx.add_path(G, [0, 1, 3], capacity=1)
nx.add_path(G, [1, 2, 3], capacity=1)
R = preflow_push(G, 0, 3, value_only=False)
assert R.graph["flow_value"] == 1
def test_shortest_augmenting_path_two_phase():
k = 5
p = 1000
G = nx.DiGraph()
for i in range(k):
G.add_edge("s", (i, 0), capacity=1)
nx.add_path(G, ((i, j) for j in range(p)), capacity=1)
G.add_edge((i, p - 1), "t", capacity=1)
R = shortest_augmenting_path(G, "s", "t", two_phase=True)
assert R.graph["flow_value"] == k
R = shortest_augmenting_path(G, "s", "t", two_phase=False)
assert R.graph["flow_value"] == k
class TestCutoff:
def test_cutoff(self):
k = 5
p = 1000
G = nx.DiGraph()
for i in range(k):
G.add_edge("s", (i, 0), capacity=2)
nx.add_path(G, ((i, j) for j in range(p)), capacity=2)
G.add_edge((i, p - 1), "t", capacity=2)
R = shortest_augmenting_path(G, "s", "t", two_phase=True, cutoff=k)
assert k <= R.graph["flow_value"] <= (2 * k)
R = shortest_augmenting_path(G, "s", "t", two_phase=False, cutoff=k)
assert k <= R.graph["flow_value"] <= (2 * k)
R = edmonds_karp(G, "s", "t", cutoff=k)
assert k <= R.graph["flow_value"] <= (2 * k)
R = dinitz(G, "s", "t", cutoff=k)
assert k <= R.graph["flow_value"] <= (2 * k)
R = boykov_kolmogorov(G, "s", "t", cutoff=k)
assert k <= R.graph["flow_value"] <= (2 * k)
def test_complete_graph_cutoff(self):
G = nx.complete_graph(5)
nx.set_edge_attributes(G, {(u, v): 1 for u, v in G.edges()}, "capacity")
for flow_func in [
shortest_augmenting_path,
edmonds_karp,
dinitz,
boykov_kolmogorov,
]:
for cutoff in [3, 2, 1]:
result = nx.maximum_flow_value(
G, 0, 4, flow_func=flow_func, cutoff=cutoff
)
assert cutoff == result, f"cutoff error in {flow_func.__name__}"