Repository URL to install this package:
Version:
3.2.1 ▾
|
import bz2
import importlib.resources
import os
import pickle
import pytest
import networkx as nx
class TestMinCostFlow:
def test_simple_digraph(self):
G = nx.DiGraph()
G.add_node("a", demand=-5)
G.add_node("d", demand=5)
G.add_edge("a", "b", weight=3, capacity=4)
G.add_edge("a", "c", weight=6, capacity=10)
G.add_edge("b", "d", weight=1, capacity=9)
G.add_edge("c", "d", weight=2, capacity=5)
flowCost, H = nx.network_simplex(G)
soln = {"a": {"b": 4, "c": 1}, "b": {"d": 4}, "c": {"d": 1}, "d": {}}
assert flowCost == 24
assert nx.min_cost_flow_cost(G) == 24
assert H == soln
assert nx.min_cost_flow(G) == soln
assert nx.cost_of_flow(G, H) == 24
flowCost, H = nx.capacity_scaling(G)
assert flowCost == 24
assert nx.cost_of_flow(G, H) == 24
assert H == soln
def test_negcycle_infcap(self):
G = nx.DiGraph()
G.add_node("s", demand=-5)
G.add_node("t", demand=5)
G.add_edge("s", "a", weight=1, capacity=3)
G.add_edge("a", "b", weight=3)
G.add_edge("c", "a", weight=-6)
G.add_edge("b", "d", weight=1)
G.add_edge("d", "c", weight=-2)
G.add_edge("d", "t", weight=1, capacity=3)
pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G)
pytest.raises(nx.NetworkXUnbounded, nx.capacity_scaling, G)
def test_sum_demands_not_zero(self):
G = nx.DiGraph()
G.add_node("s", demand=-5)
G.add_node("t", demand=4)
G.add_edge("s", "a", weight=1, capacity=3)
G.add_edge("a", "b", weight=3)
G.add_edge("a", "c", weight=-6)
G.add_edge("b", "d", weight=1)
G.add_edge("c", "d", weight=-2)
G.add_edge("d", "t", weight=1, capacity=3)
pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G)
pytest.raises(nx.NetworkXUnfeasible, nx.capacity_scaling, G)
def test_no_flow_satisfying_demands(self):
G = nx.DiGraph()
G.add_node("s", demand=-5)
G.add_node("t", demand=5)
G.add_edge("s", "a", weight=1, capacity=3)
G.add_edge("a", "b", weight=3)
G.add_edge("a", "c", weight=-6)
G.add_edge("b", "d", weight=1)
G.add_edge("c", "d", weight=-2)
G.add_edge("d", "t", weight=1, capacity=3)
pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G)
pytest.raises(nx.NetworkXUnfeasible, nx.capacity_scaling, G)
def test_transshipment(self):
G = nx.DiGraph()
G.add_node("a", demand=1)
G.add_node("b", demand=-2)
G.add_node("c", demand=-2)
G.add_node("d", demand=3)
G.add_node("e", demand=-4)
G.add_node("f", demand=-4)
G.add_node("g", demand=3)
G.add_node("h", demand=2)
G.add_node("r", demand=3)
G.add_edge("a", "c", weight=3)
G.add_edge("r", "a", weight=2)
G.add_edge("b", "a", weight=9)
G.add_edge("r", "c", weight=0)
G.add_edge("b", "r", weight=-6)
G.add_edge("c", "d", weight=5)
G.add_edge("e", "r", weight=4)
G.add_edge("e", "f", weight=3)
G.add_edge("h", "b", weight=4)
G.add_edge("f", "d", weight=7)
G.add_edge("f", "h", weight=12)
G.add_edge("g", "d", weight=12)
G.add_edge("f", "g", weight=-1)
G.add_edge("h", "g", weight=-10)
flowCost, H = nx.network_simplex(G)
soln = {
"a": {"c": 0},
"b": {"a": 0, "r": 2},
"c": {"d": 3},
"d": {},
"e": {"r": 3, "f": 1},
"f": {"d": 0, "g": 3, "h": 2},
"g": {"d": 0},
"h": {"b": 0, "g": 0},
"r": {"a": 1, "c": 1},
}
assert flowCost == 41
assert nx.min_cost_flow_cost(G) == 41
assert H == soln
assert nx.min_cost_flow(G) == soln
assert nx.cost_of_flow(G, H) == 41
flowCost, H = nx.capacity_scaling(G)
assert flowCost == 41
assert nx.cost_of_flow(G, H) == 41
assert H == soln
def test_max_flow_min_cost(self):
G = nx.DiGraph()
G.add_edge("s", "a", bandwidth=6)
G.add_edge("s", "c", bandwidth=10, cost=10)
G.add_edge("a", "b", cost=6)
G.add_edge("b", "d", bandwidth=8, cost=7)
G.add_edge("c", "d", cost=10)
G.add_edge("d", "t", bandwidth=5, cost=5)
soln = {
"s": {"a": 5, "c": 0},
"a": {"b": 5},
"b": {"d": 5},
"c": {"d": 0},
"d": {"t": 5},
"t": {},
}
flow = nx.max_flow_min_cost(G, "s", "t", capacity="bandwidth", weight="cost")
assert flow == soln
assert nx.cost_of_flow(G, flow, weight="cost") == 90
G.add_edge("t", "s", cost=-100)
flowCost, flow = nx.capacity_scaling(G, capacity="bandwidth", weight="cost")
G.remove_edge("t", "s")
assert flowCost == -410
assert flow["t"]["s"] == 5
del flow["t"]["s"]
assert flow == soln
assert nx.cost_of_flow(G, flow, weight="cost") == 90
def test_digraph1(self):
# From Bradley, S. P., Hax, A. C. and Magnanti, T. L. Applied
# Mathematical Programming. Addison-Wesley, 1977.
G = nx.DiGraph()
G.add_node(1, demand=-20)
G.add_node(4, demand=5)
G.add_node(5, demand=15)
G.add_edges_from(
[
(1, 2, {"capacity": 15, "weight": 4}),
(1, 3, {"capacity": 8, "weight": 4}),
(2, 3, {"weight": 2}),
(2, 4, {"capacity": 4, "weight": 2}),
(2, 5, {"capacity": 10, "weight": 6}),
(3, 4, {"capacity": 15, "weight": 1}),
(3, 5, {"capacity": 5, "weight": 3}),
(4, 5, {"weight": 2}),
(5, 3, {"capacity": 4, "weight": 1}),
]
)
flowCost, H = nx.network_simplex(G)
soln = {
1: {2: 12, 3: 8},
2: {3: 8, 4: 4, 5: 0},
3: {4: 11, 5: 5},
4: {5: 10},
5: {3: 0},
}
assert flowCost == 150
assert nx.min_cost_flow_cost(G) == 150
assert H == soln
assert nx.min_cost_flow(G) == soln
assert nx.cost_of_flow(G, H) == 150
flowCost, H = nx.capacity_scaling(G)
assert flowCost == 150
assert H == soln
assert nx.cost_of_flow(G, H) == 150
def test_digraph2(self):
# Example from ticket #430 from mfrasca. Original source:
# http://www.cs.princeton.edu/courses/archive/spr03/cs226/lectures/mincost.4up.pdf, slide 11.
G = nx.DiGraph()
G.add_edge("s", 1, capacity=12)
G.add_edge("s", 2, capacity=6)
G.add_edge("s", 3, capacity=14)
G.add_edge(1, 2, capacity=11, weight=4)
G.add_edge(2, 3, capacity=9, weight=6)
G.add_edge(1, 4, capacity=5, weight=5)
G.add_edge(1, 5, capacity=2, weight=12)
G.add_edge(2, 5, capacity=4, weight=4)
G.add_edge(2, 6, capacity=2, weight=6)
G.add_edge(3, 6, capacity=31, weight=3)
G.add_edge(4, 5, capacity=18, weight=4)
G.add_edge(5, 6, capacity=9, weight=5)
G.add_edge(4, "t", capacity=3)
G.add_edge(5, "t", capacity=7)
G.add_edge(6, "t", capacity=22)
flow = nx.max_flow_min_cost(G, "s", "t")
soln = {
1: {2: 6, 4: 5, 5: 1},
2: {3: 6, 5: 4, 6: 2},
3: {6: 20},
4: {5: 2, "t": 3},
5: {6: 0, "t": 7},
6: {"t": 22},
"s": {1: 12, 2: 6, 3: 14},
"t": {},
}
assert flow == soln
G.add_edge("t", "s", weight=-100)
flowCost, flow = nx.capacity_scaling(G)
G.remove_edge("t", "s")
assert flow["t"]["s"] == 32
assert flowCost == -3007
del flow["t"]["s"]
assert flow == soln
assert nx.cost_of_flow(G, flow) == 193
def test_digraph3(self):
"""Combinatorial Optimization: Algorithms and Complexity,
Papadimitriou Steiglitz at page 140 has an example, 7.1, but that
admits multiple solutions, so I alter it a bit. From ticket #430
by mfrasca."""
G = nx.DiGraph()
G.add_edge("s", "a")
G["s"]["a"].update({0: 2, 1: 4})
G.add_edge("s", "b")
G["s"]["b"].update({0: 2, 1: 1})
G.add_edge("a", "b")
G["a"]["b"].update({0: 5, 1: 2})
G.add_edge("a", "t")
G["a"]["t"].update({0: 1, 1: 5})
G.add_edge("b", "a")
G["b"]["a"].update({0: 1, 1: 3})
G.add_edge("b", "t")
G["b"]["t"].update({0: 3, 1: 2})
"PS.ex.7.1: testing main function"
sol = nx.max_flow_min_cost(G, "s", "t", capacity=0, weight=1)
flow = sum(v for v in sol["s"].values())
assert 4 == flow
assert 23 == nx.cost_of_flow(G, sol, weight=1)
assert sol["s"] == {"a": 2, "b": 2}
assert sol["a"] == {"b": 1, "t": 1}
assert sol["b"] == {"a": 0, "t": 3}
assert sol["t"] == {}
G.add_edge("t", "s")
G["t"]["s"].update({1: -100})
flowCost, sol = nx.capacity_scaling(G, capacity=0, weight=1)
G.remove_edge("t", "s")
flow = sum(v for v in sol["s"].values())
assert 4 == flow
assert sol["t"]["s"] == 4
assert flowCost == -377
del sol["t"]["s"]
assert sol["s"] == {"a": 2, "b": 2}
assert sol["a"] == {"b": 1, "t": 1}
assert sol["b"] == {"a": 0, "t": 3}
assert sol["t"] == {}
assert nx.cost_of_flow(G, sol, weight=1) == 23
def test_zero_capacity_edges(self):
"""Address issue raised in ticket #617 by arv."""
G = nx.DiGraph()
G.add_edges_from(
[
(1, 2, {"capacity": 1, "weight": 1}),
(1, 5, {"capacity": 1, "weight": 1}),
(2, 3, {"capacity": 0, "weight": 1}),
(2, 5, {"capacity": 1, "weight": 1}),
(5, 3, {"capacity": 2, "weight": 1}),
(5, 4, {"capacity": 0, "weight": 1}),
(3, 4, {"capacity": 2, "weight": 1}),
]
)
G.nodes[1]["demand"] = -1
G.nodes[2]["demand"] = -1
G.nodes[4]["demand"] = 2
flowCost, H = nx.network_simplex(G)
soln = {1: {2: 0, 5: 1}, 2: {3: 0, 5: 1}, 3: {4: 2}, 4: {}, 5: {3: 2, 4: 0}}
assert flowCost == 6
assert nx.min_cost_flow_cost(G) == 6
assert H == soln
assert nx.min_cost_flow(G) == soln
assert nx.cost_of_flow(G, H) == 6
flowCost, H = nx.capacity_scaling(G)
assert flowCost == 6
assert H == soln
assert nx.cost_of_flow(G, H) == 6
def test_digon(self):
"""Check if digons are handled properly. Taken from ticket
#618 by arv."""
nodes = [(1, {}), (2, {"demand": -4}), (3, {"demand": 4})]
edges = [
(1, 2, {"capacity": 3, "weight": 600000}),
(2, 1, {"capacity": 2, "weight": 0}),
(2, 3, {"capacity": 5, "weight": 714285}),
(3, 2, {"capacity": 2, "weight": 0}),
]
G = nx.DiGraph(edges)
G.add_nodes_from(nodes)
flowCost, H = nx.network_simplex(G)
soln = {1: {2: 0}, 2: {1: 0, 3: 4}, 3: {2: 0}}
assert flowCost == 2857140
assert nx.min_cost_flow_cost(G) == 2857140
assert H == soln
assert nx.min_cost_flow(G) == soln
assert nx.cost_of_flow(G, H) == 2857140
flowCost, H = nx.capacity_scaling(G)
assert flowCost == 2857140
assert H == soln
assert nx.cost_of_flow(G, H) == 2857140
def test_deadend(self):
"""Check if one-node cycles are handled properly. Taken from ticket
#2906 from @sshraven."""
G = nx.DiGraph()
G.add_nodes_from(range(5), demand=0)
G.nodes[4]["demand"] = -13
G.nodes[3]["demand"] = 13
G.add_edges_from([(0, 2), (0, 3), (2, 1)], capacity=20, weight=0.1)
pytest.raises(nx.NetworkXUnfeasible, nx.min_cost_flow, G)
def test_infinite_capacity_neg_digon(self):
"""An infinite capacity negative cost digon results in an unbounded
instance."""
nodes = [(1, {}), (2, {"demand": -4}), (3, {"demand": 4})]
edges = [
(1, 2, {"weight": -600}),
(2, 1, {"weight": 0}),
(2, 3, {"capacity": 5, "weight": 714285}),
(3, 2, {"capacity": 2, "weight": 0}),
]
G = nx.DiGraph(edges)
G.add_nodes_from(nodes)
pytest.raises(nx.NetworkXUnbounded, nx.network_simplex, G)
pytest.raises(nx.NetworkXUnbounded, nx.capacity_scaling, G)
def test_finite_capacity_neg_digon(self):
"""The digon should receive the maximum amount of flow it can handle.
Taken from ticket #749 by @chuongdo."""
G = nx.DiGraph()
G.add_edge("a", "b", capacity=1, weight=-1)
G.add_edge("b", "a", capacity=1, weight=-1)
min_cost = -2
assert nx.min_cost_flow_cost(G) == min_cost
flowCost, H = nx.capacity_scaling(G)
assert flowCost == -2
assert H == {"a": {"b": 1}, "b": {"a": 1}}
assert nx.cost_of_flow(G, H) == -2
def test_multidigraph(self):
"""Multidigraphs are acceptable."""
G = nx.MultiDiGraph()
G.add_weighted_edges_from([(1, 2, 1), (2, 3, 2)], weight="capacity")
flowCost, H = nx.network_simplex(G)
assert flowCost == 0
assert H == {1: {2: {0: 0}}, 2: {3: {0: 0}}, 3: {}}
flowCost, H = nx.capacity_scaling(G)
assert flowCost == 0
assert H == {1: {2: {0: 0}}, 2: {3: {0: 0}}, 3: {}}
def test_negative_selfloops(self):
"""Negative selfloops should cause an exception if uncapacitated and
always be saturated otherwise.
"""
G = nx.DiGraph()
G.add_edge(1, 1, weight=-1)
pytest.raises(nx.NetworkXUnbounded, nx.network_simplex, G)
pytest.raises(nx.NetworkXUnbounded, nx.capacity_scaling, G)
G[1][1]["capacity"] = 2
flowCost, H = nx.network_simplex(G)
assert flowCost == -2
assert H == {1: {1: 2}}
flowCost, H = nx.capacity_scaling(G)
assert flowCost == -2
assert H == {1: {1: 2}}
G = nx.MultiDiGraph()
G.add_edge(1, 1, "x", weight=-1)
G.add_edge(1, 1, "y", weight=1)
pytest.raises(nx.NetworkXUnbounded, nx.network_simplex, G)
pytest.raises(nx.NetworkXUnbounded, nx.capacity_scaling, G)
G[1][1]["x"]["capacity"] = 2
flowCost, H = nx.network_simplex(G)
assert flowCost == -2
assert H == {1: {1: {"x": 2, "y": 0}}}
flowCost, H = nx.capacity_scaling(G)
assert flowCost == -2
assert H == {1: {1: {"x": 2, "y": 0}}}
def test_bone_shaped(self):
# From #1283
G = nx.DiGraph()
G.add_node(0, demand=-4)
G.add_node(1, demand=2)
G.add_node(2, demand=2)
G.add_node(3, demand=4)
G.add_node(4, demand=-2)
G.add_node(5, demand=-2)
G.add_edge(0, 1, capacity=4)
G.add_edge(0, 2, capacity=4)
G.add_edge(4, 3, capacity=4)
G.add_edge(5, 3, capacity=4)
G.add_edge(0, 3, capacity=0)
flowCost, H = nx.network_simplex(G)
assert flowCost == 0
assert H == {0: {1: 2, 2: 2, 3: 0}, 1: {}, 2: {}, 3: {}, 4: {3: 2}, 5: {3: 2}}
flowCost, H = nx.capacity_scaling(G)
assert flowCost == 0
assert H == {0: {1: 2, 2: 2, 3: 0}, 1: {}, 2: {}, 3: {}, 4: {3: 2}, 5: {3: 2}}
def test_exceptions(self):
G = nx.Graph()
pytest.raises(nx.NetworkXNotImplemented, nx.network_simplex, G)
pytest.raises(nx.NetworkXNotImplemented, nx.capacity_scaling, G)
G = nx.MultiGraph()
pytest.raises(nx.NetworkXNotImplemented, nx.network_simplex, G)
pytest.raises(nx.NetworkXNotImplemented, nx.capacity_scaling, G)
G = nx.DiGraph()
pytest.raises(nx.NetworkXError, nx.network_simplex, G)
# pytest.raises(nx.NetworkXError, nx.capacity_scaling, G)
G.add_node(0, demand=float("inf"))
pytest.raises(nx.NetworkXError, nx.network_simplex, G)
pytest.raises(nx.NetworkXUnfeasible, nx.capacity_scaling, G)
G.nodes[0]["demand"] = 0
G.add_node(1, demand=0)
G.add_edge(0, 1, weight=-float("inf"))
pytest.raises(nx.NetworkXError, nx.network_simplex, G)
pytest.raises(nx.NetworkXUnfeasible, nx.capacity_scaling, G)
G[0][1]["weight"] = 0
G.add_edge(0, 0, weight=float("inf"))
pytest.raises(nx.NetworkXError, nx.network_simplex, G)
# pytest.raises(nx.NetworkXError, nx.capacity_scaling, G)
G[0][0]["weight"] = 0
G[0][1]["capacity"] = -1
pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G)
# pytest.raises(nx.NetworkXUnfeasible, nx.capacity_scaling, G)
G[0][1]["capacity"] = 0
G[0][0]["capacity"] = -1
pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G)
# pytest.raises(nx.NetworkXUnfeasible, nx.capacity_scaling, G)
def test_large(self):
fname = (
importlib.resources.files("networkx.algorithms.flow.tests")
/ "netgen-2.gpickle.bz2"
)
with bz2.BZ2File(fname, "rb") as f:
G = pickle.load(f)
flowCost, flowDict = nx.network_simplex(G)
assert 6749969302 == flowCost
assert 6749969302 == nx.cost_of_flow(G, flowDict)
flowCost, flowDict = nx.capacity_scaling(G)
assert 6749969302 == flowCost
assert 6749969302 == nx.cost_of_flow(G, flowDict)