Repository URL to install this package:
Version:
3.2.1 ▾
|
import bz2
import importlib.resources
import os
import pickle
import pytest
import networkx as nx
@pytest.fixture
def simple_flow_graph():
G = nx.DiGraph()
G.add_node("a", demand=0)
G.add_node("b", demand=-5)
G.add_node("c", demand=50000000)
G.add_node("d", demand=-49999995)
G.add_edge("a", "b", weight=3, capacity=4)
G.add_edge("a", "c", weight=6, capacity=10)
G.add_edge("b", "d", weight=1, capacity=9)
G.add_edge("c", "d", weight=2, capacity=5)
return G
@pytest.fixture
def simple_no_flow_graph():
G = nx.DiGraph()
G.add_node("s", demand=-5)
G.add_node("t", demand=5)
G.add_edge("s", "a", weight=1, capacity=3)
G.add_edge("a", "b", weight=3)
G.add_edge("a", "c", weight=-6)
G.add_edge("b", "d", weight=1)
G.add_edge("c", "d", weight=-2)
G.add_edge("d", "t", weight=1, capacity=3)
return G
def get_flowcost_from_flowdict(G, flowDict):
"""Returns flow cost calculated from flow dictionary"""
flowCost = 0
for u in flowDict:
for v in flowDict[u]:
flowCost += flowDict[u][v] * G[u][v]["weight"]
return flowCost
def test_infinite_demand_raise(simple_flow_graph):
G = simple_flow_graph
inf = float("inf")
nx.set_node_attributes(G, {"a": {"demand": inf}})
pytest.raises(nx.NetworkXError, nx.network_simplex, G)
def test_neg_infinite_demand_raise(simple_flow_graph):
G = simple_flow_graph
inf = float("inf")
nx.set_node_attributes(G, {"a": {"demand": -inf}})
pytest.raises(nx.NetworkXError, nx.network_simplex, G)
def test_infinite_weight_raise(simple_flow_graph):
G = simple_flow_graph
inf = float("inf")
nx.set_edge_attributes(
G, {("a", "b"): {"weight": inf}, ("b", "d"): {"weight": inf}}
)
pytest.raises(nx.NetworkXError, nx.network_simplex, G)
def test_nonzero_net_demand_raise(simple_flow_graph):
G = simple_flow_graph
nx.set_node_attributes(G, {"b": {"demand": -4}})
pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G)
def test_negative_capacity_raise(simple_flow_graph):
G = simple_flow_graph
nx.set_edge_attributes(G, {("a", "b"): {"weight": 1}, ("b", "d"): {"capacity": -9}})
pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G)
def test_no_flow_satisfying_demands(simple_no_flow_graph):
G = simple_no_flow_graph
pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G)
def test_sum_demands_not_zero(simple_no_flow_graph):
G = simple_no_flow_graph
nx.set_node_attributes(G, {"t": {"demand": 4}})
pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G)
def test_google_or_tools_example():
"""
https://developers.google.com/optimization/flow/mincostflow
"""
G = nx.DiGraph()
start_nodes = [0, 0, 1, 1, 1, 2, 2, 3, 4]
end_nodes = [1, 2, 2, 3, 4, 3, 4, 4, 2]
capacities = [15, 8, 20, 4, 10, 15, 4, 20, 5]
unit_costs = [4, 4, 2, 2, 6, 1, 3, 2, 3]
supplies = [20, 0, 0, -5, -15]
answer = 150
for i in range(len(supplies)):
G.add_node(i, demand=(-1) * supplies[i]) # supplies are negative of demand
for i in range(len(start_nodes)):
G.add_edge(
start_nodes[i], end_nodes[i], weight=unit_costs[i], capacity=capacities[i]
)
flowCost, flowDict = nx.network_simplex(G)
assert flowCost == answer
assert flowCost == get_flowcost_from_flowdict(G, flowDict)
def test_google_or_tools_example2():
"""
https://developers.google.com/optimization/flow/mincostflow
"""
G = nx.DiGraph()
start_nodes = [0, 0, 1, 1, 1, 2, 2, 3, 4, 3]
end_nodes = [1, 2, 2, 3, 4, 3, 4, 4, 2, 5]
capacities = [15, 8, 20, 4, 10, 15, 4, 20, 5, 10]
unit_costs = [4, 4, 2, 2, 6, 1, 3, 2, 3, 4]
supplies = [23, 0, 0, -5, -15, -3]
answer = 183
for i in range(len(supplies)):
G.add_node(i, demand=(-1) * supplies[i]) # supplies are negative of demand
for i in range(len(start_nodes)):
G.add_edge(
start_nodes[i], end_nodes[i], weight=unit_costs[i], capacity=capacities[i]
)
flowCost, flowDict = nx.network_simplex(G)
assert flowCost == answer
assert flowCost == get_flowcost_from_flowdict(G, flowDict)
def test_large():
fname = (
importlib.resources.files("networkx.algorithms.flow.tests")
/ "netgen-2.gpickle.bz2"
)
with bz2.BZ2File(fname, "rb") as f:
G = pickle.load(f)
flowCost, flowDict = nx.network_simplex(G)
assert 6749969302 == flowCost
assert 6749969302 == nx.cost_of_flow(G, flowDict)
def test_simple_digraph():
G = nx.DiGraph()
G.add_node("a", demand=-5)
G.add_node("d", demand=5)
G.add_edge("a", "b", weight=3, capacity=4)
G.add_edge("a", "c", weight=6, capacity=10)
G.add_edge("b", "d", weight=1, capacity=9)
G.add_edge("c", "d", weight=2, capacity=5)
flowCost, H = nx.network_simplex(G)
soln = {"a": {"b": 4, "c": 1}, "b": {"d": 4}, "c": {"d": 1}, "d": {}}
assert flowCost == 24
assert nx.min_cost_flow_cost(G) == 24
assert H == soln
def test_negcycle_infcap():
G = nx.DiGraph()
G.add_node("s", demand=-5)
G.add_node("t", demand=5)
G.add_edge("s", "a", weight=1, capacity=3)
G.add_edge("a", "b", weight=3)
G.add_edge("c", "a", weight=-6)
G.add_edge("b", "d", weight=1)
G.add_edge("d", "c", weight=-2)
G.add_edge("d", "t", weight=1, capacity=3)
pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G)
def test_transshipment():
G = nx.DiGraph()
G.add_node("a", demand=1)
G.add_node("b", demand=-2)
G.add_node("c", demand=-2)
G.add_node("d", demand=3)
G.add_node("e", demand=-4)
G.add_node("f", demand=-4)
G.add_node("g", demand=3)
G.add_node("h", demand=2)
G.add_node("r", demand=3)
G.add_edge("a", "c", weight=3)
G.add_edge("r", "a", weight=2)
G.add_edge("b", "a", weight=9)
G.add_edge("r", "c", weight=0)
G.add_edge("b", "r", weight=-6)
G.add_edge("c", "d", weight=5)
G.add_edge("e", "r", weight=4)
G.add_edge("e", "f", weight=3)
G.add_edge("h", "b", weight=4)
G.add_edge("f", "d", weight=7)
G.add_edge("f", "h", weight=12)
G.add_edge("g", "d", weight=12)
G.add_edge("f", "g", weight=-1)
G.add_edge("h", "g", weight=-10)
flowCost, H = nx.network_simplex(G)
soln = {
"a": {"c": 0},
"b": {"a": 0, "r": 2},
"c": {"d": 3},
"d": {},
"e": {"r": 3, "f": 1},
"f": {"d": 0, "g": 3, "h": 2},
"g": {"d": 0},
"h": {"b": 0, "g": 0},
"r": {"a": 1, "c": 1},
}
assert flowCost == 41
assert H == soln
def test_digraph1():
# From Bradley, S. P., Hax, A. C. and Magnanti, T. L. Applied
# Mathematical Programming. Addison-Wesley, 1977.
G = nx.DiGraph()
G.add_node(1, demand=-20)
G.add_node(4, demand=5)
G.add_node(5, demand=15)
G.add_edges_from(
[
(1, 2, {"capacity": 15, "weight": 4}),
(1, 3, {"capacity": 8, "weight": 4}),
(2, 3, {"weight": 2}),
(2, 4, {"capacity": 4, "weight": 2}),
(2, 5, {"capacity": 10, "weight": 6}),
(3, 4, {"capacity": 15, "weight": 1}),
(3, 5, {"capacity": 5, "weight": 3}),
(4, 5, {"weight": 2}),
(5, 3, {"capacity": 4, "weight": 1}),
]
)
flowCost, H = nx.network_simplex(G)
soln = {
1: {2: 12, 3: 8},
2: {3: 8, 4: 4, 5: 0},
3: {4: 11, 5: 5},
4: {5: 10},
5: {3: 0},
}
assert flowCost == 150
assert nx.min_cost_flow_cost(G) == 150
assert H == soln
def test_zero_capacity_edges():
"""Address issue raised in ticket #617 by arv."""
G = nx.DiGraph()
G.add_edges_from(
[
(1, 2, {"capacity": 1, "weight": 1}),
(1, 5, {"capacity": 1, "weight": 1}),
(2, 3, {"capacity": 0, "weight": 1}),
(2, 5, {"capacity": 1, "weight": 1}),
(5, 3, {"capacity": 2, "weight": 1}),
(5, 4, {"capacity": 0, "weight": 1}),
(3, 4, {"capacity": 2, "weight": 1}),
]
)
G.nodes[1]["demand"] = -1
G.nodes[2]["demand"] = -1
G.nodes[4]["demand"] = 2
flowCost, H = nx.network_simplex(G)
soln = {1: {2: 0, 5: 1}, 2: {3: 0, 5: 1}, 3: {4: 2}, 4: {}, 5: {3: 2, 4: 0}}
assert flowCost == 6
assert nx.min_cost_flow_cost(G) == 6
assert H == soln
def test_digon():
"""Check if digons are handled properly. Taken from ticket
#618 by arv."""
nodes = [(1, {}), (2, {"demand": -4}), (3, {"demand": 4})]
edges = [
(1, 2, {"capacity": 3, "weight": 600000}),
(2, 1, {"capacity": 2, "weight": 0}),
(2, 3, {"capacity": 5, "weight": 714285}),
(3, 2, {"capacity": 2, "weight": 0}),
]
G = nx.DiGraph(edges)
G.add_nodes_from(nodes)
flowCost, H = nx.network_simplex(G)
soln = {1: {2: 0}, 2: {1: 0, 3: 4}, 3: {2: 0}}
assert flowCost == 2857140
def test_deadend():
"""Check if one-node cycles are handled properly. Taken from ticket
#2906 from @sshraven."""
G = nx.DiGraph()
G.add_nodes_from(range(5), demand=0)
G.nodes[4]["demand"] = -13
G.nodes[3]["demand"] = 13
G.add_edges_from([(0, 2), (0, 3), (2, 1)], capacity=20, weight=0.1)
pytest.raises(nx.NetworkXUnfeasible, nx.network_simplex, G)
def test_infinite_capacity_neg_digon():
"""An infinite capacity negative cost digon results in an unbounded
instance."""
nodes = [(1, {}), (2, {"demand": -4}), (3, {"demand": 4})]
edges = [
(1, 2, {"weight": -600}),
(2, 1, {"weight": 0}),
(2, 3, {"capacity": 5, "weight": 714285}),
(3, 2, {"capacity": 2, "weight": 0}),
]
G = nx.DiGraph(edges)
G.add_nodes_from(nodes)
pytest.raises(nx.NetworkXUnbounded, nx.network_simplex, G)
def test_multidigraph():
"""Multidigraphs are acceptable."""
G = nx.MultiDiGraph()
G.add_weighted_edges_from([(1, 2, 1), (2, 3, 2)], weight="capacity")
flowCost, H = nx.network_simplex(G)
assert flowCost == 0
assert H == {1: {2: {0: 0}}, 2: {3: {0: 0}}, 3: {}}
def test_negative_selfloops():
"""Negative selfloops should cause an exception if uncapacitated and
always be saturated otherwise.
"""
G = nx.DiGraph()
G.add_edge(1, 1, weight=-1)
pytest.raises(nx.NetworkXUnbounded, nx.network_simplex, G)
G[1][1]["capacity"] = 2
flowCost, H = nx.network_simplex(G)
assert flowCost == -2
assert H == {1: {1: 2}}
G = nx.MultiDiGraph()
G.add_edge(1, 1, "x", weight=-1)
G.add_edge(1, 1, "y", weight=1)
pytest.raises(nx.NetworkXUnbounded, nx.network_simplex, G)
G[1][1]["x"]["capacity"] = 2
flowCost, H = nx.network_simplex(G)
assert flowCost == -2
assert H == {1: {1: {"x": 2, "y": 0}}}
def test_bone_shaped():
# From #1283
G = nx.DiGraph()
G.add_node(0, demand=-4)
G.add_node(1, demand=2)
G.add_node(2, demand=2)
G.add_node(3, demand=4)
G.add_node(4, demand=-2)
G.add_node(5, demand=-2)
G.add_edge(0, 1, capacity=4)
G.add_edge(0, 2, capacity=4)
G.add_edge(4, 3, capacity=4)
G.add_edge(5, 3, capacity=4)
G.add_edge(0, 3, capacity=0)
flowCost, H = nx.network_simplex(G)
assert flowCost == 0
assert H == {0: {1: 2, 2: 2, 3: 0}, 1: {}, 2: {}, 3: {}, 4: {3: 2}, 5: {3: 2}}
def test_graphs_type_exceptions():
G = nx.Graph()
pytest.raises(nx.NetworkXNotImplemented, nx.network_simplex, G)
G = nx.MultiGraph()
pytest.raises(nx.NetworkXNotImplemented, nx.network_simplex, G)
G = nx.DiGraph()
pytest.raises(nx.NetworkXError, nx.network_simplex, G)