Repository URL to install this package:
Version:
3.2.1 ▾
|
import math
from functools import partial
import pytest
import networkx as nx
def _test_func(G, ebunch, expected, predict_func, **kwargs):
result = predict_func(G, ebunch, **kwargs)
exp_dict = {tuple(sorted([u, v])): score for u, v, score in expected}
res_dict = {tuple(sorted([u, v])): score for u, v, score in result}
assert len(exp_dict) == len(res_dict)
for p in exp_dict:
assert exp_dict[p] == pytest.approx(res_dict[p], abs=1e-7)
class TestResourceAllocationIndex:
@classmethod
def setup_class(cls):
cls.func = staticmethod(nx.resource_allocation_index)
cls.test = partial(_test_func, predict_func=cls.func)
def test_K5(self):
G = nx.complete_graph(5)
self.test(G, [(0, 1)], [(0, 1, 0.75)])
def test_P3(self):
G = nx.path_graph(3)
self.test(G, [(0, 2)], [(0, 2, 0.5)])
def test_S4(self):
G = nx.star_graph(4)
self.test(G, [(1, 2)], [(1, 2, 0.25)])
def test_notimplemented(self):
assert pytest.raises(
nx.NetworkXNotImplemented, self.func, nx.DiGraph([(0, 1), (1, 2)]), [(0, 2)]
)
assert pytest.raises(
nx.NetworkXNotImplemented,
self.func,
nx.MultiGraph([(0, 1), (1, 2)]),
[(0, 2)],
)
assert pytest.raises(
nx.NetworkXNotImplemented,
self.func,
nx.MultiDiGraph([(0, 1), (1, 2)]),
[(0, 2)],
)
def test_no_common_neighbor(self):
G = nx.Graph()
G.add_nodes_from([0, 1])
self.test(G, [(0, 1)], [(0, 1, 0)])
def test_equal_nodes(self):
G = nx.complete_graph(4)
self.test(G, [(0, 0)], [(0, 0, 1)])
def test_all_nonexistent_edges(self):
G = nx.Graph()
G.add_edges_from([(0, 1), (0, 2), (2, 3)])
self.test(G, None, [(0, 3, 0.5), (1, 2, 0.5), (1, 3, 0)])
class TestJaccardCoefficient:
@classmethod
def setup_class(cls):
cls.func = staticmethod(nx.jaccard_coefficient)
cls.test = partial(_test_func, predict_func=cls.func)
def test_K5(self):
G = nx.complete_graph(5)
self.test(G, [(0, 1)], [(0, 1, 0.6)])
def test_P4(self):
G = nx.path_graph(4)
self.test(G, [(0, 2)], [(0, 2, 0.5)])
def test_notimplemented(self):
assert pytest.raises(
nx.NetworkXNotImplemented, self.func, nx.DiGraph([(0, 1), (1, 2)]), [(0, 2)]
)
assert pytest.raises(
nx.NetworkXNotImplemented,
self.func,
nx.MultiGraph([(0, 1), (1, 2)]),
[(0, 2)],
)
assert pytest.raises(
nx.NetworkXNotImplemented,
self.func,
nx.MultiDiGraph([(0, 1), (1, 2)]),
[(0, 2)],
)
def test_no_common_neighbor(self):
G = nx.Graph()
G.add_edges_from([(0, 1), (2, 3)])
self.test(G, [(0, 2)], [(0, 2, 0)])
def test_isolated_nodes(self):
G = nx.Graph()
G.add_nodes_from([0, 1])
self.test(G, [(0, 1)], [(0, 1, 0)])
def test_all_nonexistent_edges(self):
G = nx.Graph()
G.add_edges_from([(0, 1), (0, 2), (2, 3)])
self.test(G, None, [(0, 3, 0.5), (1, 2, 0.5), (1, 3, 0)])
class TestAdamicAdarIndex:
@classmethod
def setup_class(cls):
cls.func = staticmethod(nx.adamic_adar_index)
cls.test = partial(_test_func, predict_func=cls.func)
def test_K5(self):
G = nx.complete_graph(5)
self.test(G, [(0, 1)], [(0, 1, 3 / math.log(4))])
def test_P3(self):
G = nx.path_graph(3)
self.test(G, [(0, 2)], [(0, 2, 1 / math.log(2))])
def test_S4(self):
G = nx.star_graph(4)
self.test(G, [(1, 2)], [(1, 2, 1 / math.log(4))])
def test_notimplemented(self):
assert pytest.raises(
nx.NetworkXNotImplemented, self.func, nx.DiGraph([(0, 1), (1, 2)]), [(0, 2)]
)
assert pytest.raises(
nx.NetworkXNotImplemented,
self.func,
nx.MultiGraph([(0, 1), (1, 2)]),
[(0, 2)],
)
assert pytest.raises(
nx.NetworkXNotImplemented,
self.func,
nx.MultiDiGraph([(0, 1), (1, 2)]),
[(0, 2)],
)
def test_no_common_neighbor(self):
G = nx.Graph()
G.add_nodes_from([0, 1])
self.test(G, [(0, 1)], [(0, 1, 0)])
def test_equal_nodes(self):
G = nx.complete_graph(4)
self.test(G, [(0, 0)], [(0, 0, 3 / math.log(3))])
def test_all_nonexistent_edges(self):
G = nx.Graph()
G.add_edges_from([(0, 1), (0, 2), (2, 3)])
self.test(
G, None, [(0, 3, 1 / math.log(2)), (1, 2, 1 / math.log(2)), (1, 3, 0)]
)
class TestCommonNeighborCentrality:
@classmethod
def setup_class(cls):
cls.func = staticmethod(nx.common_neighbor_centrality)
cls.test = partial(_test_func, predict_func=cls.func)
def test_K5(self):
G = nx.complete_graph(5)
self.test(G, [(0, 1)], [(0, 1, 3.0)], alpha=1)
self.test(G, [(0, 1)], [(0, 1, 5.0)], alpha=0)
def test_P3(self):
G = nx.path_graph(3)
self.test(G, [(0, 2)], [(0, 2, 1.25)], alpha=0.5)
def test_S4(self):
G = nx.star_graph(4)
self.test(G, [(1, 2)], [(1, 2, 1.75)], alpha=0.5)
@pytest.mark.parametrize("graph_type", (nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph))
def test_notimplemented(self, graph_type):
assert pytest.raises(
nx.NetworkXNotImplemented, self.func, graph_type([(0, 1), (1, 2)]), [(0, 2)]
)
def test_no_common_neighbor(self):
G = nx.Graph()
G.add_nodes_from([0, 1])
self.test(G, [(0, 1)], [(0, 1, 0)])
def test_equal_nodes(self):
G = nx.complete_graph(4)
assert pytest.raises(nx.NetworkXAlgorithmError, self.test, G, [(0, 0)], [])
def test_all_nonexistent_edges(self):
G = nx.Graph()
G.add_edges_from([(0, 1), (0, 2), (2, 3)])
self.test(G, None, [(0, 3, 1.5), (1, 2, 1.5), (1, 3, 2 / 3)], alpha=0.5)
class TestPreferentialAttachment:
@classmethod
def setup_class(cls):
cls.func = staticmethod(nx.preferential_attachment)
cls.test = partial(_test_func, predict_func=cls.func)
def test_K5(self):
G = nx.complete_graph(5)
self.test(G, [(0, 1)], [(0, 1, 16)])
def test_P3(self):
G = nx.path_graph(3)
self.test(G, [(0, 1)], [(0, 1, 2)])
def test_S4(self):
G = nx.star_graph(4)
self.test(G, [(0, 2)], [(0, 2, 4)])
def test_notimplemented(self):
assert pytest.raises(
nx.NetworkXNotImplemented, self.func, nx.DiGraph([(0, 1), (1, 2)]), [(0, 2)]
)
assert pytest.raises(
nx.NetworkXNotImplemented,
self.func,
nx.MultiGraph([(0, 1), (1, 2)]),
[(0, 2)],
)
assert pytest.raises(
nx.NetworkXNotImplemented,
self.func,
nx.MultiDiGraph([(0, 1), (1, 2)]),
[(0, 2)],
)
def test_zero_degrees(self):
G = nx.Graph()
G.add_nodes_from([0, 1])
self.test(G, [(0, 1)], [(0, 1, 0)])
def test_all_nonexistent_edges(self):
G = nx.Graph()
G.add_edges_from([(0, 1), (0, 2), (2, 3)])
self.test(G, None, [(0, 3, 2), (1, 2, 2), (1, 3, 1)])
class TestCNSoundarajanHopcroft:
@classmethod
def setup_class(cls):
cls.func = staticmethod(nx.cn_soundarajan_hopcroft)
cls.test = partial(_test_func, predict_func=cls.func, community="community")
def test_K5(self):
G = nx.complete_graph(5)
G.nodes[0]["community"] = 0
G.nodes[1]["community"] = 0
G.nodes[2]["community"] = 0
G.nodes[3]["community"] = 0
G.nodes[4]["community"] = 1
self.test(G, [(0, 1)], [(0, 1, 5)])
def test_P3(self):
G = nx.path_graph(3)
G.nodes[0]["community"] = 0
G.nodes[1]["community"] = 1
G.nodes[2]["community"] = 0
self.test(G, [(0, 2)], [(0, 2, 1)])
def test_S4(self):
G = nx.star_graph(4)
G.nodes[0]["community"] = 1
G.nodes[1]["community"] = 1
G.nodes[2]["community"] = 1
G.nodes[3]["community"] = 0
G.nodes[4]["community"] = 0
self.test(G, [(1, 2)], [(1, 2, 2)])
def test_notimplemented(self):
G = nx.DiGraph([(0, 1), (1, 2)])
G.add_nodes_from([0, 1, 2], community=0)
assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)])
G = nx.MultiGraph([(0, 1), (1, 2)])
G.add_nodes_from([0, 1, 2], community=0)
assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)])
G = nx.MultiDiGraph([(0, 1), (1, 2)])
G.add_nodes_from([0, 1, 2], community=0)
assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)])
def test_no_common_neighbor(self):
G = nx.Graph()
G.add_nodes_from([0, 1])
G.nodes[0]["community"] = 0
G.nodes[1]["community"] = 0
self.test(G, [(0, 1)], [(0, 1, 0)])
def test_equal_nodes(self):
G = nx.complete_graph(3)
G.nodes[0]["community"] = 0
G.nodes[1]["community"] = 0
G.nodes[2]["community"] = 0
self.test(G, [(0, 0)], [(0, 0, 4)])
def test_different_community(self):
G = nx.Graph()
G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
G.nodes[0]["community"] = 0
G.nodes[1]["community"] = 0
G.nodes[2]["community"] = 0
G.nodes[3]["community"] = 1
self.test(G, [(0, 3)], [(0, 3, 2)])
def test_no_community_information(self):
G = nx.complete_graph(5)
assert pytest.raises(nx.NetworkXAlgorithmError, list, self.func(G, [(0, 1)]))
def test_insufficient_community_information(self):
G = nx.Graph()
G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
G.nodes[0]["community"] = 0
G.nodes[1]["community"] = 0
G.nodes[3]["community"] = 0
assert pytest.raises(nx.NetworkXAlgorithmError, list, self.func(G, [(0, 3)]))
def test_sufficient_community_information(self):
G = nx.Graph()
G.add_edges_from([(0, 1), (1, 2), (1, 3), (2, 4), (3, 4), (4, 5)])
G.nodes[1]["community"] = 0
G.nodes[2]["community"] = 0
G.nodes[3]["community"] = 0
G.nodes[4]["community"] = 0
self.test(G, [(1, 4)], [(1, 4, 4)])
def test_custom_community_attribute_name(self):
G = nx.Graph()
G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
G.nodes[0]["cmty"] = 0
G.nodes[1]["cmty"] = 0
G.nodes[2]["cmty"] = 0
G.nodes[3]["cmty"] = 1
self.test(G, [(0, 3)], [(0, 3, 2)], community="cmty")
def test_all_nonexistent_edges(self):
G = nx.Graph()
G.add_edges_from([(0, 1), (0, 2), (2, 3)])
G.nodes[0]["community"] = 0
G.nodes[1]["community"] = 1
G.nodes[2]["community"] = 0
G.nodes[3]["community"] = 0
self.test(G, None, [(0, 3, 2), (1, 2, 1), (1, 3, 0)])
class TestRAIndexSoundarajanHopcroft:
@classmethod
def setup_class(cls):
cls.func = staticmethod(nx.ra_index_soundarajan_hopcroft)
cls.test = partial(_test_func, predict_func=cls.func, community="community")
def test_K5(self):
G = nx.complete_graph(5)
G.nodes[0]["community"] = 0
G.nodes[1]["community"] = 0
G.nodes[2]["community"] = 0
G.nodes[3]["community"] = 0
G.nodes[4]["community"] = 1
self.test(G, [(0, 1)], [(0, 1, 0.5)])
def test_P3(self):
G = nx.path_graph(3)
G.nodes[0]["community"] = 0
G.nodes[1]["community"] = 1
G.nodes[2]["community"] = 0
self.test(G, [(0, 2)], [(0, 2, 0)])
def test_S4(self):
G = nx.star_graph(4)
G.nodes[0]["community"] = 1
G.nodes[1]["community"] = 1
G.nodes[2]["community"] = 1
G.nodes[3]["community"] = 0
G.nodes[4]["community"] = 0
self.test(G, [(1, 2)], [(1, 2, 0.25)])
def test_notimplemented(self):
G = nx.DiGraph([(0, 1), (1, 2)])
G.add_nodes_from([0, 1, 2], community=0)
assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)])
G = nx.MultiGraph([(0, 1), (1, 2)])
G.add_nodes_from([0, 1, 2], community=0)
assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)])
G = nx.MultiDiGraph([(0, 1), (1, 2)])
G.add_nodes_from([0, 1, 2], community=0)
assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)])
def test_no_common_neighbor(self):
G = nx.Graph()
G.add_nodes_from([0, 1])
G.nodes[0]["community"] = 0
G.nodes[1]["community"] = 0
self.test(G, [(0, 1)], [(0, 1, 0)])
def test_equal_nodes(self):
G = nx.complete_graph(3)
G.nodes[0]["community"] = 0
G.nodes[1]["community"] = 0
G.nodes[2]["community"] = 0
self.test(G, [(0, 0)], [(0, 0, 1)])
def test_different_community(self):
G = nx.Graph()
G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
G.nodes[0]["community"] = 0
G.nodes[1]["community"] = 0
G.nodes[2]["community"] = 0
G.nodes[3]["community"] = 1
self.test(G, [(0, 3)], [(0, 3, 0)])
def test_no_community_information(self):
G = nx.complete_graph(5)
assert pytest.raises(nx.NetworkXAlgorithmError, list, self.func(G, [(0, 1)]))
def test_insufficient_community_information(self):
G = nx.Graph()
G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
G.nodes[0]["community"] = 0
G.nodes[1]["community"] = 0
G.nodes[3]["community"] = 0
assert pytest.raises(nx.NetworkXAlgorithmError, list, self.func(G, [(0, 3)]))
def test_sufficient_community_information(self):
G = nx.Graph()
G.add_edges_from([(0, 1), (1, 2), (1, 3), (2, 4), (3, 4), (4, 5)])
G.nodes[1]["community"] = 0
G.nodes[2]["community"] = 0
G.nodes[3]["community"] = 0
G.nodes[4]["community"] = 0
self.test(G, [(1, 4)], [(1, 4, 1)])
def test_custom_community_attribute_name(self):
G = nx.Graph()
G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
G.nodes[0]["cmty"] = 0
G.nodes[1]["cmty"] = 0
G.nodes[2]["cmty"] = 0
G.nodes[3]["cmty"] = 1
self.test(G, [(0, 3)], [(0, 3, 0)], community="cmty")
def test_all_nonexistent_edges(self):
G = nx.Graph()
G.add_edges_from([(0, 1), (0, 2), (2, 3)])
G.nodes[0]["community"] = 0
G.nodes[1]["community"] = 1
G.nodes[2]["community"] = 0
G.nodes[3]["community"] = 0
self.test(G, None, [(0, 3, 0.5), (1, 2, 0), (1, 3, 0)])
class TestWithinInterCluster:
@classmethod
def setup_class(cls):
cls.delta = 0.001
cls.func = staticmethod(nx.within_inter_cluster)
cls.test = partial(
_test_func, predict_func=cls.func, delta=cls.delta, community="community"
)
def test_K5(self):
G = nx.complete_graph(5)
G.nodes[0]["community"] = 0
G.nodes[1]["community"] = 0
G.nodes[2]["community"] = 0
G.nodes[3]["community"] = 0
G.nodes[4]["community"] = 1
self.test(G, [(0, 1)], [(0, 1, 2 / (1 + self.delta))])
def test_P3(self):
G = nx.path_graph(3)
G.nodes[0]["community"] = 0
G.nodes[1]["community"] = 1
G.nodes[2]["community"] = 0
self.test(G, [(0, 2)], [(0, 2, 0)])
def test_S4(self):
G = nx.star_graph(4)
G.nodes[0]["community"] = 1
G.nodes[1]["community"] = 1
G.nodes[2]["community"] = 1
G.nodes[3]["community"] = 0
G.nodes[4]["community"] = 0
self.test(G, [(1, 2)], [(1, 2, 1 / self.delta)])
def test_notimplemented(self):
G = nx.DiGraph([(0, 1), (1, 2)])
G.add_nodes_from([0, 1, 2], community=0)
assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)])
G = nx.MultiGraph([(0, 1), (1, 2)])
G.add_nodes_from([0, 1, 2], community=0)
assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)])
G = nx.MultiDiGraph([(0, 1), (1, 2)])
G.add_nodes_from([0, 1, 2], community=0)
assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)])
def test_no_common_neighbor(self):
G = nx.Graph()
G.add_nodes_from([0, 1])
G.nodes[0]["community"] = 0
G.nodes[1]["community"] = 0
self.test(G, [(0, 1)], [(0, 1, 0)])
def test_equal_nodes(self):
G = nx.complete_graph(3)
G.nodes[0]["community"] = 0
G.nodes[1]["community"] = 0
G.nodes[2]["community"] = 0
self.test(G, [(0, 0)], [(0, 0, 2 / self.delta)])
def test_different_community(self):
G = nx.Graph()
G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
G.nodes[0]["community"] = 0
G.nodes[1]["community"] = 0
G.nodes[2]["community"] = 0
G.nodes[3]["community"] = 1
self.test(G, [(0, 3)], [(0, 3, 0)])
def test_no_inter_cluster_common_neighbor(self):
G = nx.complete_graph(4)
G.nodes[0]["community"] = 0
G.nodes[1]["community"] = 0
G.nodes[2]["community"] = 0
G.nodes[3]["community"] = 0
self.test(G, [(0, 3)], [(0, 3, 2 / self.delta)])
def test_no_community_information(self):
G = nx.complete_graph(5)
assert pytest.raises(nx.NetworkXAlgorithmError, list, self.func(G, [(0, 1)]))
def test_insufficient_community_information(self):
G = nx.Graph()
G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
G.nodes[0]["community"] = 0
G.nodes[1]["community"] = 0
G.nodes[3]["community"] = 0
assert pytest.raises(nx.NetworkXAlgorithmError, list, self.func(G, [(0, 3)]))
def test_sufficient_community_information(self):
G = nx.Graph()
G.add_edges_from([(0, 1), (1, 2), (1, 3), (2, 4), (3, 4), (4, 5)])
G.nodes[1]["community"] = 0
G.nodes[2]["community"] = 0
G.nodes[3]["community"] = 0
G.nodes[4]["community"] = 0
self.test(G, [(1, 4)], [(1, 4, 2 / self.delta)])
def test_invalid_delta(self):
G = nx.complete_graph(3)
G.add_nodes_from([0, 1, 2], community=0)
assert pytest.raises(nx.NetworkXAlgorithmError, self.func, G, [(0, 1)], 0)
assert pytest.raises(nx.NetworkXAlgorithmError, self.func, G, [(0, 1)], -0.5)
def test_custom_community_attribute_name(self):
G = nx.complete_graph(4)
G.nodes[0]["cmty"] = 0
G.nodes[1]["cmty"] = 0
G.nodes[2]["cmty"] = 0
G.nodes[3]["cmty"] = 0
self.test(G, [(0, 3)], [(0, 3, 2 / self.delta)], community="cmty")
def test_all_nonexistent_edges(self):
G = nx.Graph()
G.add_edges_from([(0, 1), (0, 2), (2, 3)])
G.nodes[0]["community"] = 0
G.nodes[1]["community"] = 1
G.nodes[2]["community"] = 0
G.nodes[3]["community"] = 0
self.test(G, None, [(0, 3, 1 / self.delta), (1, 2, 0), (1, 3, 0)])