Repository URL to install this package:
|
Version:
1.4.3 ▾
|
from warnings import catch_warnings
import numpy as np
import pytest
from pandas.core.dtypes import generic as gt
import pandas as pd
import pandas._testing as tm
from pandas.core.api import (
Float64Index,
Int64Index,
UInt64Index,
)
class TestABCClasses:
tuples = [[1, 2, 2], ["red", "blue", "red"]]
multi_index = pd.MultiIndex.from_arrays(tuples, names=("number", "color"))
datetime_index = pd.to_datetime(["2000/1/1", "2010/1/1"])
timedelta_index = pd.to_timedelta(np.arange(5), unit="s")
period_index = pd.period_range("2000/1/1", "2010/1/1/", freq="M")
categorical = pd.Categorical([1, 2, 3], categories=[2, 3, 1])
categorical_df = pd.DataFrame({"values": [1, 2, 3]}, index=categorical)
df = pd.DataFrame({"names": ["a", "b", "c"]}, index=multi_index)
sparse_array = pd.arrays.SparseArray(np.random.randn(10))
datetime_array = pd.core.arrays.DatetimeArray(datetime_index)
timedelta_array = pd.core.arrays.TimedeltaArray(timedelta_index)
abc_pairs = [
("ABCInt64Index", Int64Index([1, 2, 3])),
("ABCUInt64Index", UInt64Index([1, 2, 3])),
("ABCFloat64Index", Float64Index([1, 2, 3])),
("ABCMultiIndex", multi_index),
("ABCDatetimeIndex", datetime_index),
("ABCRangeIndex", pd.RangeIndex(3)),
("ABCTimedeltaIndex", timedelta_index),
("ABCIntervalIndex", pd.interval_range(start=0, end=3)),
("ABCPeriodArray", pd.arrays.PeriodArray([2000, 2001, 2002], freq="D")),
("ABCPandasArray", pd.arrays.PandasArray(np.array([0, 1, 2]))),
("ABCPeriodIndex", period_index),
("ABCCategoricalIndex", categorical_df.index),
("ABCSeries", pd.Series([1, 2, 3])),
("ABCDataFrame", df),
("ABCCategorical", categorical),
("ABCDatetimeArray", datetime_array),
("ABCTimedeltaArray", timedelta_array),
]
@pytest.mark.parametrize("abctype1, inst", abc_pairs)
@pytest.mark.parametrize("abctype2, _", abc_pairs)
def test_abc_pairs(self, abctype1, abctype2, inst, _):
# GH 38588
if abctype1 == abctype2:
assert isinstance(inst, getattr(gt, abctype2))
else:
assert not isinstance(inst, getattr(gt, abctype2))
abc_subclasses = {
"ABCIndex": [
abctype
for abctype, _ in abc_pairs
if "Index" in abctype and abctype != "ABCIndex"
],
"ABCNDFrame": ["ABCSeries", "ABCDataFrame"],
"ABCExtensionArray": [
"ABCCategorical",
"ABCDatetimeArray",
"ABCPeriodArray",
"ABCTimedeltaArray",
],
}
@pytest.mark.parametrize("parent, subs", abc_subclasses.items())
@pytest.mark.parametrize("abctype, inst", abc_pairs)
def test_abc_hierarchy(self, parent, subs, abctype, inst):
# GH 38588
if abctype in subs:
assert isinstance(inst, getattr(gt, parent))
else:
assert not isinstance(inst, getattr(gt, parent))
@pytest.mark.parametrize("abctype", [e for e in gt.__dict__ if e.startswith("ABC")])
def test_abc_coverage(self, abctype):
# GH 38588
assert (
abctype in (e for e, _ in self.abc_pairs) or abctype in self.abc_subclasses
)
def test_setattr_warnings():
# GH7175 - GOTCHA: You can't use dot notation to add a column...
d = {
"one": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]),
"two": pd.Series([1.0, 2.0, 3.0, 4.0], index=["a", "b", "c", "d"]),
}
df = pd.DataFrame(d)
with catch_warnings(record=True) as w:
# successfully add new column
# this should not raise a warning
df["three"] = df.two + 1
assert len(w) == 0
assert df.three.sum() > df.two.sum()
with catch_warnings(record=True) as w:
# successfully modify column in place
# this should not raise a warning
df.one += 1
assert len(w) == 0
assert df.one.iloc[0] == 2
with catch_warnings(record=True) as w:
# successfully add an attribute to a series
# this should not raise a warning
df.two.not_an_index = [1, 2]
assert len(w) == 0
with tm.assert_produces_warning(UserWarning):
# warn when setting column to nonexistent name
df.four = df.two + 2
assert df.four.sum() > df.two.sum()