Repository URL to install this package:
|
Version:
1.4.3 ▾
|
import numpy as np
import pandas.util._test_decorators as td
from pandas import (
DataFrame,
MultiIndex,
)
import pandas._testing as tm
from pandas.core.arrays import PandasArray
pytestmark = td.skip_array_manager_invalid_test
class TestToDictOfBlocks:
def test_copy_blocks(self, float_frame):
# GH#9607
df = DataFrame(float_frame, copy=True)
column = df.columns[0]
# use the default copy=True, change a column
blocks = df._to_dict_of_blocks(copy=True)
for _df in blocks.values():
if column in _df:
_df.loc[:, column] = _df[column] + 1
# make sure we did not change the original DataFrame
assert not _df[column].equals(df[column])
def test_no_copy_blocks(self, float_frame):
# GH#9607
df = DataFrame(float_frame, copy=True)
column = df.columns[0]
# use the copy=False, change a column
blocks = df._to_dict_of_blocks(copy=False)
for _df in blocks.values():
if column in _df:
_df.loc[:, column] = _df[column] + 1
# make sure we did change the original DataFrame
assert _df[column].equals(df[column])
def test_to_dict_of_blocks_item_cache():
# Calling to_dict_of_blocks should not poison item_cache
df = DataFrame({"a": [1, 2, 3, 4], "b": ["a", "b", "c", "d"]})
df["c"] = PandasArray(np.array([1, 2, None, 3], dtype=object))
mgr = df._mgr
assert len(mgr.blocks) == 3 # i.e. not consolidated
ser = df["b"] # populations item_cache["b"]
df._to_dict_of_blocks()
# Check that the to_dict_of_blocks didn't break link between ser and df
ser.values[0] = "foo"
assert df.loc[0, "b"] == "foo"
assert df["b"] is ser
def test_set_change_dtype_slice():
# GH#8850
cols = MultiIndex.from_tuples([("1st", "a"), ("2nd", "b"), ("3rd", "c")])
df = DataFrame([[1.0, 2, 3], [4.0, 5, 6]], columns=cols)
df["2nd"] = df["2nd"] * 2.0
blocks = df._to_dict_of_blocks()
assert sorted(blocks.keys()) == ["float64", "int64"]
tm.assert_frame_equal(
blocks["float64"], DataFrame([[1.0, 4.0], [4.0, 10.0]], columns=cols[:2])
)
tm.assert_frame_equal(blocks["int64"], DataFrame([[3], [6]], columns=cols[2:]))