Repository URL to install this package:
|
Version:
1.4.3 ▾
|
import numpy as np
import pytest
from pandas.core.dtypes.common import pandas_dtype
from pandas import (
NA,
DataFrame,
Series,
)
import pandas._testing as tm
from pandas.core.base import DataError
# gh-12373 : rolling functions error on float32 data
# make sure rolling functions works for different dtypes
#
# further note that we are only checking rolling for fully dtype
# compliance (though both expanding and ewm inherit)
def get_dtype(dtype, coerce_int=None):
if coerce_int is False and "int" in dtype:
return None
return pandas_dtype(dtype)
@pytest.mark.parametrize(
"method, data, expected_data, coerce_int, min_periods",
[
("count", np.arange(5), [1, 2, 2, 2, 2], True, 0),
("count", np.arange(10, 0, -2), [1, 2, 2, 2, 2], True, 0),
("count", [0, 1, 2, np.nan, 4], [1, 2, 2, 1, 1], False, 0),
("max", np.arange(5), [np.nan, 1, 2, 3, 4], True, None),
("max", np.arange(10, 0, -2), [np.nan, 10, 8, 6, 4], True, None),
("max", [0, 1, 2, np.nan, 4], [np.nan, 1, 2, np.nan, np.nan], False, None),
("min", np.arange(5), [np.nan, 0, 1, 2, 3], True, None),
("min", np.arange(10, 0, -2), [np.nan, 8, 6, 4, 2], True, None),
("min", [0, 1, 2, np.nan, 4], [np.nan, 0, 1, np.nan, np.nan], False, None),
("sum", np.arange(5), [np.nan, 1, 3, 5, 7], True, None),
("sum", np.arange(10, 0, -2), [np.nan, 18, 14, 10, 6], True, None),
("sum", [0, 1, 2, np.nan, 4], [np.nan, 1, 3, np.nan, np.nan], False, None),
("mean", np.arange(5), [np.nan, 0.5, 1.5, 2.5, 3.5], True, None),
("mean", np.arange(10, 0, -2), [np.nan, 9, 7, 5, 3], True, None),
("mean", [0, 1, 2, np.nan, 4], [np.nan, 0.5, 1.5, np.nan, np.nan], False, None),
("std", np.arange(5), [np.nan] + [np.sqrt(0.5)] * 4, True, None),
("std", np.arange(10, 0, -2), [np.nan] + [np.sqrt(2)] * 4, True, None),
(
"std",
[0, 1, 2, np.nan, 4],
[np.nan] + [np.sqrt(0.5)] * 2 + [np.nan] * 2,
False,
None,
),
("var", np.arange(5), [np.nan, 0.5, 0.5, 0.5, 0.5], True, None),
("var", np.arange(10, 0, -2), [np.nan, 2, 2, 2, 2], True, None),
("var", [0, 1, 2, np.nan, 4], [np.nan, 0.5, 0.5, np.nan, np.nan], False, None),
("median", np.arange(5), [np.nan, 0.5, 1.5, 2.5, 3.5], True, None),
("median", np.arange(10, 0, -2), [np.nan, 9, 7, 5, 3], True, None),
(
"median",
[0, 1, 2, np.nan, 4],
[np.nan, 0.5, 1.5, np.nan, np.nan],
False,
None,
),
],
)
def test_series_dtypes(method, data, expected_data, coerce_int, dtypes, min_periods):
ser = Series(data, dtype=get_dtype(dtypes, coerce_int=coerce_int))
rolled = ser.rolling(2, min_periods=min_periods)
if dtypes in ("m8[ns]", "M8[ns]", "datetime64[ns, UTC]") and method != "count":
msg = "No numeric types to aggregate"
with pytest.raises(DataError, match=msg):
getattr(rolled, method)()
else:
result = getattr(rolled, method)()
expected = Series(expected_data, dtype="float64")
tm.assert_almost_equal(result, expected)
def test_series_nullable_int(any_signed_int_ea_dtype):
# GH 43016
ser = Series([0, 1, NA], dtype=any_signed_int_ea_dtype)
result = ser.rolling(2).mean()
expected = Series([np.nan, 0.5, np.nan])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"method, expected_data, min_periods",
[
("count", {0: Series([1, 2, 2, 2, 2]), 1: Series([1, 2, 2, 2, 2])}, 0),
(
"max",
{0: Series([np.nan, 2, 4, 6, 8]), 1: Series([np.nan, 3, 5, 7, 9])},
None,
),
(
"min",
{0: Series([np.nan, 0, 2, 4, 6]), 1: Series([np.nan, 1, 3, 5, 7])},
None,
),
(
"sum",
{0: Series([np.nan, 2, 6, 10, 14]), 1: Series([np.nan, 4, 8, 12, 16])},
None,
),
(
"mean",
{0: Series([np.nan, 1, 3, 5, 7]), 1: Series([np.nan, 2, 4, 6, 8])},
None,
),
(
"std",
{
0: Series([np.nan] + [np.sqrt(2)] * 4),
1: Series([np.nan] + [np.sqrt(2)] * 4),
},
None,
),
(
"var",
{0: Series([np.nan, 2, 2, 2, 2]), 1: Series([np.nan, 2, 2, 2, 2])},
None,
),
(
"median",
{0: Series([np.nan, 1, 3, 5, 7]), 1: Series([np.nan, 2, 4, 6, 8])},
None,
),
],
)
def test_dataframe_dtypes(method, expected_data, dtypes, min_periods):
df = DataFrame(np.arange(10).reshape((5, 2)), dtype=get_dtype(dtypes))
rolled = df.rolling(2, min_periods=min_periods)
if dtypes in ("m8[ns]", "M8[ns]", "datetime64[ns, UTC]") and method != "count":
msg = "No numeric types to aggregate"
with pytest.raises(DataError, match=msg):
getattr(rolled, method)()
else:
result = getattr(rolled, method)()
expected = DataFrame(expected_data, dtype="float64")
tm.assert_frame_equal(result, expected)