Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
pandas / _libs / hashtable_func_helper.pxi.in
Size: Mime:
"""
Template for each `dtype` helper function for hashtable

WARNING: DO NOT edit .pxi FILE directly, .pxi is generated from .pxi.in
"""

{{py:

# name, dtype, ttype, c_type, to_c_type
dtypes = [('Complex128', 'complex128', 'complex128',
                         'khcomplex128_t', 'to_khcomplex128_t'),
          ('Complex64', 'complex64', 'complex64',
                        'khcomplex64_t', 'to_khcomplex64_t'),
          ('Float64', 'float64', 'float64', 'float64_t', ''),
          ('Float32', 'float32', 'float32', 'float32_t', ''),
          ('UInt64', 'uint64', 'uint64', 'uint64_t', ''),
          ('UInt32', 'uint32', 'uint32', 'uint32_t', ''),
          ('UInt16', 'uint16', 'uint16', 'uint16_t', ''),
          ('UInt8', 'uint8', 'uint8', 'uint8_t', ''),
          ('Object', 'object', 'pymap', 'object', ''),
          ('Int64', 'int64', 'int64', 'int64_t', ''),
          ('Int32', 'int32', 'int32', 'int32_t', ''),
          ('Int16', 'int16', 'int16', 'int16_t', ''),
          ('Int8', 'int8', 'int8', 'int8_t', '')]

}}

{{for name, dtype, ttype, c_type, to_c_type in dtypes}}


@cython.wraparound(False)
@cython.boundscheck(False)
{{if dtype == 'object'}}
cdef value_count_{{dtype}}(ndarray[{{dtype}}] values, bint dropna):
{{else}}
cdef value_count_{{dtype}}(const {{dtype}}_t[:] values, bint dropna):
{{endif}}
    cdef:
        Py_ssize_t i = 0
        Py_ssize_t n = len(values)
        kh_{{ttype}}_t *table

        # Don't use Py_ssize_t, since table.n_buckets is unsigned
        khiter_t k

        {{c_type}} val

        int ret = 0

    # we track the order in which keys are first seen (GH39009),
    # khash-map isn't insertion-ordered, thus:
    #    table maps keys to counts
    #    result_keys remembers the original order of keys

    result_keys = {{name}}Vector()
    table = kh_init_{{ttype}}()

    {{if dtype == 'object'}}
    kh_resize_{{ttype}}(table, n // 10)

    for i in range(n):
        val = values[i]
        if not dropna or not checknull(val):
            k = kh_get_{{ttype}}(table, <PyObject*>val)
            if k != table.n_buckets:
                table.vals[k] += 1
            else:
                k = kh_put_{{ttype}}(table, <PyObject*>val, &ret)
                table.vals[k] = 1
                result_keys.append(val)
    {{else}}
    kh_resize_{{ttype}}(table, n)

    for i in range(n):
        val = {{to_c_type}}(values[i])

        if not is_nan_{{c_type}}(val) or not dropna:
            k = kh_get_{{ttype}}(table, val)
            if k != table.n_buckets:
                table.vals[k] += 1
            else:
                k = kh_put_{{ttype}}(table, val, &ret)
                table.vals[k] = 1
                result_keys.append(val)
    {{endif}}

    # collect counts in the order corresponding to result_keys:
    cdef int64_t[:] result_counts = np.empty(table.size, dtype=np.int64)
    for i in range(table.size):
        {{if dtype == 'object'}}
        k = kh_get_{{ttype}}(table, result_keys.data[i])
        {{else}}
        k = kh_get_{{ttype}}(table, result_keys.data.data[i])
        {{endif}}
        result_counts[i] = table.vals[k]

    kh_destroy_{{ttype}}(table)

    return result_keys.to_array(), result_counts.base


@cython.wraparound(False)
@cython.boundscheck(False)
{{if dtype == 'object'}}
cdef duplicated_{{dtype}}(ndarray[{{dtype}}] values, object keep='first'):
{{else}}
cdef duplicated_{{dtype}}(const {{dtype}}_t[:] values, object keep='first'):
{{endif}}
    cdef:
        int ret = 0
        {{if dtype != 'object'}}
        {{c_type}} value
        {{endif}}
        Py_ssize_t i, n = len(values)
        khiter_t k
        kh_{{ttype}}_t *table = kh_init_{{ttype}}()
        ndarray[uint8_t, ndim=1, cast=True] out = np.empty(n, dtype='bool')

    kh_resize_{{ttype}}(table, min(kh_needed_n_buckets(n), SIZE_HINT_LIMIT))

    if keep not in ('last', 'first', False):
        raise ValueError('keep must be either "first", "last" or False')

    if keep == 'last':
        {{if dtype == 'object'}}
        for i in range(n - 1, -1, -1):
            # equivalent: range(n)[::-1], which cython doesn't like in nogil
            kh_put_{{ttype}}(table, <PyObject*>values[i], &ret)
            out[i] = ret == 0
        {{else}}
        with nogil:
            for i in range(n - 1, -1, -1):
                # equivalent: range(n)[::-1], which cython doesn't like in nogil
                value = {{to_c_type}}(values[i])
                kh_put_{{ttype}}(table, value, &ret)
                out[i] = ret == 0
        {{endif}}
    elif keep == 'first':
        {{if dtype == 'object'}}
        for i in range(n):
            kh_put_{{ttype}}(table, <PyObject*>values[i], &ret)
            out[i] = ret == 0
        {{else}}
        with nogil:
            for i in range(n):
                value = {{to_c_type}}(values[i])
                kh_put_{{ttype}}(table, value, &ret)
                out[i] = ret == 0
        {{endif}}
    else:
        {{if dtype == 'object'}}
        for i in range(n):
            value = values[i]
            k = kh_get_{{ttype}}(table, <PyObject*>value)
            if k != table.n_buckets:
                out[table.vals[k]] = 1
                out[i] = 1
            else:
                k = kh_put_{{ttype}}(table, <PyObject*>value, &ret)
                table.vals[k] = i
                out[i] = 0
        {{else}}
        with nogil:
            for i in range(n):
                value = {{to_c_type}}(values[i])
                k = kh_get_{{ttype}}(table, value)
                if k != table.n_buckets:
                    out[table.vals[k]] = 1
                    out[i] = 1
                else:
                    k = kh_put_{{ttype}}(table, value, &ret)
                    table.vals[k] = i
                    out[i] = 0
        {{endif}}
    kh_destroy_{{ttype}}(table)
    return out


# ----------------------------------------------------------------------
# Membership
# ----------------------------------------------------------------------


@cython.wraparound(False)
@cython.boundscheck(False)
{{if dtype == 'object'}}
cdef ismember_{{dtype}}(ndarray[{{c_type}}] arr, ndarray[{{c_type}}] values):
{{else}}
cdef ismember_{{dtype}}(const {{dtype}}_t[:] arr, const {{dtype}}_t[:] values):
{{endif}}
    """
    Return boolean of values in arr on an
    element by-element basis

    Parameters
    ----------
    arr : {{dtype}} ndarray
    values : {{dtype}} ndarray

    Returns
    -------
    boolean ndarry len of (arr)
    """
    cdef:
        Py_ssize_t i, n
        khiter_t k
        int ret = 0
        ndarray[uint8_t] result
        {{c_type}} val
        kh_{{ttype}}_t *table = kh_init_{{ttype}}()

    # construct the table
    n = len(values)
    kh_resize_{{ttype}}(table, n)

    {{if dtype == 'object'}}
    for i in range(n):
        kh_put_{{ttype}}(table, <PyObject*>values[i], &ret)
    {{else}}
    with nogil:
        for i in range(n):
            val = {{to_c_type}}(values[i])
            kh_put_{{ttype}}(table, val, &ret)
    {{endif}}

    # test membership
    n = len(arr)
    result = np.empty(n, dtype=np.uint8)

    {{if dtype == 'object'}}
    for i in range(n):
        val = arr[i]
        k = kh_get_{{ttype}}(table, <PyObject*>val)
        result[i] = (k != table.n_buckets)
    {{else}}
    with nogil:
        for i in range(n):
            val = {{to_c_type}}(arr[i])
            k = kh_get_{{ttype}}(table, val)
            result[i] = (k != table.n_buckets)
    {{endif}}

    kh_destroy_{{ttype}}(table)
    return result.view(np.bool_)

# ----------------------------------------------------------------------
# Mode Computations
# ----------------------------------------------------------------------


@cython.wraparound(False)
@cython.boundscheck(False)
{{if dtype == 'object'}}
cdef mode_{{dtype}}(ndarray[{{dtype}}] values, bint dropna):
{{else}}
cdef mode_{{dtype}}(const {{dtype}}_t[:] values, bint dropna):
{{endif}}
    cdef:
        {{if dtype == 'object'}}
        ndarray[{{dtype}}] keys
        ndarray[{{dtype}}] modes
        {{else}}
        {{dtype}}_t[:] keys
        ndarray[{{dtype}}_t] modes
        {{endif}}
        int64_t[:] counts
        int64_t count, max_count = -1
        Py_ssize_t k, j = 0

    keys, counts = value_count_{{dtype}}(values, dropna)

    {{if dtype == 'object'}}
    modes = np.empty(len(keys), dtype=np.object_)
    {{else}}
    modes = np.empty(len(keys), dtype=np.{{dtype}})
    {{endif}}

    {{if dtype != 'object'}}
    with nogil:
        for k in range(len(keys)):
            count = counts[k]
            if count == max_count:
                j += 1
            elif count > max_count:
                max_count = count
                j = 0
            else:
                continue

            modes[j] = keys[k]
    {{else}}
    for k in range(len(keys)):
        count = counts[k]
        if count == max_count:
            j += 1
        elif count > max_count:
            max_count = count
            j = 0
        else:
            continue

        modes[j] = keys[k]
    {{endif}}

    return modes[:j + 1]

{{endfor}}


ctypedef fused htfunc_t:
    complex128_t
    complex64_t
    float64_t
    float32_t
    uint64_t
    uint32_t
    uint16_t
    uint8_t
    int64_t
    int32_t
    int16_t
    int8_t
    object


cpdef value_count(ndarray[htfunc_t] values, bint dropna):
    if htfunc_t is object:
        return value_count_object(values, dropna)

    elif htfunc_t is int8_t:
        return value_count_int8(values, dropna)
    elif htfunc_t is int16_t:
        return value_count_int16(values, dropna)
    elif htfunc_t is int32_t:
        return value_count_int32(values, dropna)
    elif htfunc_t is int64_t:
        return value_count_int64(values, dropna)

    elif htfunc_t is uint8_t:
        return value_count_uint8(values, dropna)
    elif htfunc_t is uint16_t:
        return value_count_uint16(values, dropna)
    elif htfunc_t is uint32_t:
        return value_count_uint32(values, dropna)
    elif htfunc_t is uint64_t:
        return value_count_uint64(values, dropna)

    elif htfunc_t is float64_t:
        return value_count_float64(values, dropna)
    elif htfunc_t is float32_t:
        return value_count_float32(values, dropna)

    elif htfunc_t is complex128_t:
        return value_count_complex128(values, dropna)
    elif htfunc_t is complex64_t:
        return value_count_complex64(values, dropna)

    else:
        raise TypeError(values.dtype)


cpdef duplicated(ndarray[htfunc_t] values, object keep="first"):
    if htfunc_t is object:
        return duplicated_object(values, keep)

    elif htfunc_t is int8_t:
        return duplicated_int8(values, keep)
    elif htfunc_t is int16_t:
        return duplicated_int16(values, keep)
    elif htfunc_t is int32_t:
        return duplicated_int32(values, keep)
    elif htfunc_t is int64_t:
        return duplicated_int64(values, keep)

    elif htfunc_t is uint8_t:
        return duplicated_uint8(values, keep)
    elif htfunc_t is uint16_t:
        return duplicated_uint16(values, keep)
    elif htfunc_t is uint32_t:
        return duplicated_uint32(values, keep)
    elif htfunc_t is uint64_t:
        return duplicated_uint64(values, keep)

    elif htfunc_t is float64_t:
        return duplicated_float64(values, keep)
    elif htfunc_t is float32_t:
        return duplicated_float32(values, keep)

    elif htfunc_t is complex128_t:
        return duplicated_complex128(values, keep)
    elif htfunc_t is complex64_t:
        return duplicated_complex64(values, keep)

    else:
        raise TypeError(values.dtype)


cpdef ismember(ndarray[htfunc_t] arr, ndarray[htfunc_t] values):
    if htfunc_t is object:
        return ismember_object(arr, values)

    elif htfunc_t is int8_t:
        return ismember_int8(arr, values)
    elif htfunc_t is int16_t:
        return ismember_int16(arr, values)
    elif htfunc_t is int32_t:
        return ismember_int32(arr, values)
    elif htfunc_t is int64_t:
        return ismember_int64(arr, values)

    elif htfunc_t is uint8_t:
        return ismember_uint8(arr, values)
    elif htfunc_t is uint16_t:
        return ismember_uint16(arr, values)
    elif htfunc_t is uint32_t:
        return ismember_uint32(arr, values)
    elif htfunc_t is uint64_t:
        return ismember_uint64(arr, values)

    elif htfunc_t is float64_t:
        return ismember_float64(arr, values)
    elif htfunc_t is float32_t:
        return ismember_float32(arr, values)

    elif htfunc_t is complex128_t:
        return ismember_complex128(arr, values)
    elif htfunc_t is complex64_t:
        return ismember_complex64(arr, values)

    else:
        raise TypeError(values.dtype)


cpdef mode(ndarray[htfunc_t] values, bint dropna):
    if htfunc_t is object:
        return mode_object(values, dropna)

    elif htfunc_t is int8_t:
        return mode_int8(values, dropna)
    elif htfunc_t is int16_t:
        return mode_int16(values, dropna)
    elif htfunc_t is int32_t:
        return mode_int32(values, dropna)
    elif htfunc_t is int64_t:
        return mode_int64(values, dropna)

    elif htfunc_t is uint8_t:
        return mode_uint8(values, dropna)
    elif htfunc_t is uint16_t:
        return mode_uint16(values, dropna)
    elif htfunc_t is uint32_t:
        return mode_uint32(values, dropna)
    elif htfunc_t is uint64_t:
        return mode_uint64(values, dropna)

    elif htfunc_t is float64_t:
        return mode_float64(values, dropna)
    elif htfunc_t is float32_t:
        return mode_float32(values, dropna)

    elif htfunc_t is complex128_t:
        return mode_complex128(values, dropna)
    elif htfunc_t is complex64_t:
        return mode_complex64(values, dropna)

    else:
        raise TypeError(values.dtype)


{{py:

# name, dtype, ttype, c_type
dtypes = [('Int64', 'int64', 'int64', 'int64_t'),
          ('Int32', 'int32', 'int32', 'int32_t'), ]

}}

{{for name, dtype, ttype, c_type in dtypes}}


@cython.wraparound(False)
@cython.boundscheck(False)
def _unique_label_indices_{{dtype}}(const {{c_type}}[:] labels) -> ndarray:
    """
    Indices of the first occurrences of the unique labels
    *excluding* -1. equivalent to:
        np.unique(labels, return_index=True)[1]
    """
    cdef:
        int ret = 0
        Py_ssize_t i, n = len(labels)
        kh_{{ttype}}_t *table = kh_init_{{ttype}}()
        {{name}}Vector idx = {{name}}Vector()
        ndarray[{{c_type}}, ndim=1] arr
        {{name}}VectorData *ud = idx.data

    kh_resize_{{ttype}}(table, min(kh_needed_n_buckets(n), SIZE_HINT_LIMIT))

    with nogil:
        for i in range(n):
            kh_put_{{ttype}}(table, labels[i], &ret)
            if ret != 0:
                if needs_resize(ud):
                    with gil:
                        idx.resize()
                append_data_{{ttype}}(ud, i)

    kh_destroy_{{ttype}}(table)

    arr = idx.to_array()
    arr = arr[np.asarray(labels)[arr].argsort()]

    return arr[1:] if arr.size != 0 and labels[arr[0]] == -1 else arr

{{endfor}}