Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
pandas / _libs / parsers.pyx
Size: Mime:
# Copyright (c) 2012, Lambda Foundry, Inc.
# See LICENSE for the license
from csv import (
    QUOTE_MINIMAL,
    QUOTE_NONE,
    QUOTE_NONNUMERIC,
)
from errno import ENOENT
import sys
import time
import warnings

from libc.stdlib cimport free
from libc.string cimport (
    strcasecmp,
    strlen,
    strncpy,
)

import cython
from cython import Py_ssize_t

from cpython.bytes cimport (
    PyBytes_AsString,
    PyBytes_FromString,
)
from cpython.exc cimport (
    PyErr_Fetch,
    PyErr_Occurred,
)
from cpython.object cimport PyObject
from cpython.ref cimport (
    Py_INCREF,
    Py_XDECREF,
)
from cpython.unicode cimport (
    PyUnicode_AsUTF8String,
    PyUnicode_Decode,
    PyUnicode_DecodeUTF8,
)


cdef extern from "Python.h":
    object PyUnicode_FromString(char *v)


import numpy as np

cimport numpy as cnp
from numpy cimport (
    float64_t,
    int64_t,
    ndarray,
    uint8_t,
    uint64_t,
)

cnp.import_array()

from pandas._libs cimport util
from pandas._libs.util cimport (
    INT64_MAX,
    INT64_MIN,
    UINT64_MAX,
)

import pandas._libs.lib as lib

from pandas._libs.khash cimport (
    kh_destroy_float64,
    kh_destroy_str,
    kh_destroy_str_starts,
    kh_destroy_strbox,
    kh_exist_str,
    kh_float64_t,
    kh_get_float64,
    kh_get_str,
    kh_get_str_starts_item,
    kh_get_strbox,
    kh_init_float64,
    kh_init_str,
    kh_init_str_starts,
    kh_init_strbox,
    kh_put_float64,
    kh_put_str,
    kh_put_str_starts_item,
    kh_put_strbox,
    kh_resize_float64,
    kh_resize_str_starts,
    kh_str_starts_t,
    kh_str_t,
    kh_strbox_t,
    khiter_t,
)

from pandas.errors import (
    EmptyDataError,
    ParserError,
    ParserWarning,
)

from pandas.core.dtypes.common import (
    is_bool_dtype,
    is_datetime64_dtype,
    is_extension_array_dtype,
    is_float_dtype,
    is_integer_dtype,
    is_object_dtype,
)
from pandas.core.dtypes.dtypes import CategoricalDtype
from pandas.core.dtypes.inference import is_dict_like

cdef:
    float64_t INF = <float64_t>np.inf
    float64_t NEGINF = -INF
    int64_t DEFAULT_CHUNKSIZE = 256 * 1024


cdef extern from "headers/portable.h":
    # I *think* this is here so that strcasecmp is defined on Windows
    # so we don't get
    # `parsers.obj : error LNK2001: unresolved external symbol strcasecmp`
    # in Appveyor.
    # In a sane world, the `from libc.string cimport` above would fail
    # loudly.
    pass


cdef extern from "parser/tokenizer.h":

    ctypedef enum ParserState:
        START_RECORD
        START_FIELD
        ESCAPED_CHAR
        IN_FIELD
        IN_QUOTED_FIELD
        ESCAPE_IN_QUOTED_FIELD
        QUOTE_IN_QUOTED_FIELD
        EAT_CRNL
        EAT_CRNL_NOP
        EAT_WHITESPACE
        EAT_COMMENT
        EAT_LINE_COMMENT
        WHITESPACE_LINE
        SKIP_LINE
        FINISHED

    enum: ERROR_OVERFLOW

    ctypedef enum BadLineHandleMethod:
        ERROR,
        WARN,
        SKIP

    ctypedef void* (*io_callback)(void *src, size_t nbytes, size_t *bytes_read,
                                  int *status, const char *encoding_errors)
    ctypedef int (*io_cleanup)(void *src)

    ctypedef struct parser_t:
        void *source
        io_callback cb_io
        io_cleanup cb_cleanup

        int64_t chunksize  # Number of bytes to prepare for each chunk
        char *data         # pointer to data to be processed
        int64_t datalen    # amount of data available
        int64_t datapos

        # where to write out tokenized data
        char *stream
        uint64_t stream_len
        uint64_t stream_cap

        # Store words in (potentially ragged) matrix for now, hmm
        char **words
        int64_t *word_starts  # where we are in the stream
        uint64_t words_len
        uint64_t words_cap
        uint64_t max_words_cap   # maximum word cap encountered

        char *pword_start        # pointer to stream start of current field
        int64_t word_start       # position start of current field

        int64_t *line_start      # position in words for start of line
        int64_t *line_fields     # Number of fields in each line
        uint64_t lines           # Number of lines observed
        uint64_t file_lines      # Number of lines observed (with bad/skipped)
        uint64_t lines_cap       # Vector capacity

        # Tokenizing stuff
        ParserState state
        int doublequote            # is " represented by ""? */
        char delimiter             # field separator */
        int delim_whitespace       # consume tabs / spaces instead
        char quotechar             # quote character */
        char escapechar            # escape character */
        char lineterminator
        int skipinitialspace       # ignore spaces following delimiter? */
        int quoting                # style of quoting to write */

        char commentchar
        int allow_embedded_newline

        int usecols

        Py_ssize_t expected_fields
        BadLineHandleMethod on_bad_lines

        # floating point options
        char decimal
        char sci

        # thousands separator (comma, period)
        char thousands

        int header                  # Boolean: 1: has header, 0: no header
        int64_t header_start        # header row start
        uint64_t header_end         # header row end

        void *skipset
        PyObject *skipfunc
        int64_t skip_first_N_rows
        int64_t skipfooter
        # pick one, depending on whether the converter requires GIL
        float64_t (*double_converter)(const char *, char **,
                                      char, char, char,
                                      int, int *, int *) nogil

        #  error handling
        char *warn_msg
        char *error_msg

        int64_t skip_empty_lines

    ctypedef struct coliter_t:
        char **words
        int64_t *line_start
        int64_t col

    ctypedef struct uint_state:
        int seen_sint
        int seen_uint
        int seen_null

    void uint_state_init(uint_state *self)
    int uint64_conflict(uint_state *self)

    void coliter_setup(coliter_t *it, parser_t *parser,
                       int64_t i, int64_t start) nogil
    void COLITER_NEXT(coliter_t, const char *) nogil

    parser_t* parser_new()

    int parser_init(parser_t *self) nogil
    void parser_free(parser_t *self) nogil
    void parser_del(parser_t *self) nogil
    int parser_add_skiprow(parser_t *self, int64_t row)

    int parser_set_skipfirstnrows(parser_t *self, int64_t nrows)

    void parser_set_default_options(parser_t *self)

    int parser_consume_rows(parser_t *self, size_t nrows)

    int parser_trim_buffers(parser_t *self)

    int tokenize_all_rows(parser_t *self, const char *encoding_errors) nogil
    int tokenize_nrows(parser_t *self, size_t nrows, const char *encoding_errors) nogil

    int64_t str_to_int64(char *p_item, int64_t int_min,
                         int64_t int_max, int *error, char tsep) nogil
    uint64_t str_to_uint64(uint_state *state, char *p_item, int64_t int_max,
                           uint64_t uint_max, int *error, char tsep) nogil

    float64_t xstrtod(const char *p, char **q, char decimal,
                      char sci, char tsep, int skip_trailing,
                      int *error, int *maybe_int) nogil
    float64_t precise_xstrtod(const char *p, char **q, char decimal,
                              char sci, char tsep, int skip_trailing,
                              int *error, int *maybe_int) nogil
    float64_t round_trip(const char *p, char **q, char decimal,
                         char sci, char tsep, int skip_trailing,
                         int *error, int *maybe_int) nogil

    int to_boolean(const char *item, uint8_t *val) nogil


cdef extern from "parser/io.h":
    void *new_rd_source(object obj) except NULL

    int del_rd_source(void *src)

    void* buffer_rd_bytes(void *source, size_t nbytes,
                          size_t *bytes_read, int *status, const char *encoding_errors)


cdef class TextReader:
    """

    # source: StringIO or file object

    ..versionchange:: 1.2.0
        removed 'compression', 'memory_map', and 'encoding' argument.
        These arguments are outsourced to CParserWrapper.
        'source' has to be a file handle.
    """

    cdef:
        parser_t *parser
        object na_fvalues
        object true_values, false_values
        object handle
        object orig_header
        bint na_filter, keep_default_na, verbose, has_usecols, has_mi_columns
        bint mangle_dupe_cols, allow_leading_cols
        uint64_t parser_start  # this is modified after __init__
        list clocks
        const char *encoding_errors
        kh_str_starts_t *false_set
        kh_str_starts_t *true_set
        int64_t buffer_lines, skipfooter
        list dtype_cast_order  # list[np.dtype]
        list names   # can be None
        set noconvert  # set[int]

    cdef public:
        int64_t leading_cols, table_width
        object delimiter  # bytes or str
        object converters
        object na_values
        list header  # list[list[non-negative integers]]
        object index_col
        object skiprows
        object dtype
        object usecols
        set unnamed_cols  # set[str]

    def __cinit__(self, source,
                  delimiter=b',',  # bytes | str
                  header=0,
                  int64_t header_start=0,
                  uint64_t header_end=0,
                  index_col=None,
                  names=None,
                  tokenize_chunksize=DEFAULT_CHUNKSIZE,
                  bint delim_whitespace=False,
                  converters=None,
                  bint skipinitialspace=False,
                  escapechar=None,      # bytes | str
                  bint doublequote=True,
                  quotechar=b'"',
                  quoting=0,            # int
                  lineterminator=None,  # bytes | str
                  comment=None,
                  decimal=b'.',         # bytes | str
                  thousands=None,       # bytes | str
                  dtype=None,
                  usecols=None,
                  on_bad_lines=ERROR,
                  bint na_filter=True,
                  na_values=None,
                  na_fvalues=None,
                  bint keep_default_na=True,
                  true_values=None,
                  false_values=None,
                  bint allow_leading_cols=True,
                  skiprows=None,
                  skipfooter=0,         # int64_t
                  bint verbose=False,
                  bint mangle_dupe_cols=True,
                  float_precision=None,
                  bint skip_blank_lines=True,
                  encoding_errors=b"strict"):

        # set encoding for native Python and C library
        if isinstance(encoding_errors, str):
            encoding_errors = encoding_errors.encode("utf-8")
        elif encoding_errors is None:
            encoding_errors = b"strict"
        Py_INCREF(encoding_errors)
        self.encoding_errors = PyBytes_AsString(encoding_errors)

        self.parser = parser_new()
        self.parser.chunksize = tokenize_chunksize

        self.mangle_dupe_cols = mangle_dupe_cols

        # For timekeeping
        self.clocks = []

        self.parser.usecols = (usecols is not None)

        self._setup_parser_source(source)
        parser_set_default_options(self.parser)

        parser_init(self.parser)

        if delim_whitespace:
            self.parser.delim_whitespace = delim_whitespace
        else:
            if len(delimiter) > 1:
                raise ValueError('only length-1 separators excluded right now')
            self.parser.delimiter = <char>ord(delimiter)

        # ----------------------------------------
        # parser options

        self.parser.doublequote = doublequote
        self.parser.skipinitialspace = skipinitialspace
        self.parser.skip_empty_lines = skip_blank_lines

        if lineterminator is not None:
            if len(lineterminator) != 1:
                raise ValueError('Only length-1 line terminators supported')
            self.parser.lineterminator = <char>ord(lineterminator)

        if len(decimal) != 1:
            raise ValueError('Only length-1 decimal markers supported')
        self.parser.decimal = <char>ord(decimal)

        if thousands is not None:
            if len(thousands) != 1:
                raise ValueError('Only length-1 thousands markers supported')
            self.parser.thousands = <char>ord(thousands)

        if escapechar is not None:
            if len(escapechar) != 1:
                raise ValueError('Only length-1 escapes supported')
            self.parser.escapechar = <char>ord(escapechar)

        self._set_quoting(quotechar, quoting)

        dtype_order = ['int64', 'float64', 'bool', 'object']
        if quoting == QUOTE_NONNUMERIC:
            # consistent with csv module semantics, cast all to float
            dtype_order = dtype_order[1:]
        self.dtype_cast_order = [np.dtype(x) for x in dtype_order]

        if comment is not None:
            if len(comment) > 1:
                raise ValueError('Only length-1 comment characters supported')
            self.parser.commentchar = <char>ord(comment)

        self.parser.on_bad_lines = on_bad_lines

        self.skiprows = skiprows
        if skiprows is not None:
            self._make_skiprow_set()

        self.skipfooter = skipfooter

        # suboptimal
        if usecols is not None:
            self.has_usecols = 1
            # GH-20558, validate usecols at higher level and only pass clean
            # usecols into TextReader.
            self.usecols = usecols

        # TODO: XXX?
        if skipfooter > 0:
            self.parser.on_bad_lines = SKIP

        self.delimiter = delimiter

        self.na_values = na_values
        if na_fvalues is None:
            na_fvalues = set()
        self.na_fvalues = na_fvalues

        self.true_values = _maybe_encode(true_values) + _true_values
        self.false_values = _maybe_encode(false_values) + _false_values

        self.true_set = kset_from_list(self.true_values)
        self.false_set = kset_from_list(self.false_values)

        self.keep_default_na = keep_default_na
        self.converters = converters
        self.na_filter = na_filter

        self.verbose = verbose

        if float_precision == "round_trip":
            # see gh-15140
            self.parser.double_converter = round_trip
        elif float_precision == "legacy":
            self.parser.double_converter = xstrtod
        elif float_precision == "high" or float_precision is None:
            self.parser.double_converter = precise_xstrtod
        else:
            raise ValueError(f'Unrecognized float_precision option: '
                             f'{float_precision}')

        # Caller is responsible for ensuring we have one of
        # - None
        # - DtypeObj
        # - dict[Any, DtypeObj]
        self.dtype = dtype

        # XXX
        self.noconvert = set()

        self.index_col = index_col

        # ----------------------------------------
        # header stuff

        self.allow_leading_cols = allow_leading_cols
        self.leading_cols = 0  # updated in _get_header

        # TODO: no header vs. header is not the first row
        self.has_mi_columns = 0
        self.orig_header = header
        if header is None:
            # sentinel value
            self.parser.header_start = -1
            self.parser.header_end = -1
            self.parser.header = -1
            self.parser_start = 0
            prelim_header = []
        else:
            if isinstance(header, list):
                if len(header) > 1:
                    # need to artificially skip the final line
                    # which is still a header line
                    header = list(header)
                    header.append(header[-1] + 1)
                    self.parser.header_end = header[-1]
                    self.has_mi_columns = 1
                else:
                    self.parser.header_end = header[0]

                self.parser_start = header[-1] + 1
                self.parser.header_start = header[0]
                self.parser.header = header[0]
                prelim_header = header
            else:
                self.parser.header_start = header
                self.parser.header_end = header
                self.parser_start = header + 1
                self.parser.header = header
                prelim_header = [header]

        self.names = names
        header, table_width, unnamed_cols = self._get_header(prelim_header)
        # header, table_width, and unnamed_cols are set here, never changed
        self.header = header
        self.table_width = table_width
        self.unnamed_cols = unnamed_cols

        if not self.table_width:
            raise EmptyDataError("No columns to parse from file")

        # Compute buffer_lines as function of table width.
        heuristic = 2**20 // self.table_width
        self.buffer_lines = 1
        while self.buffer_lines * 2 < heuristic:
            self.buffer_lines *= 2

    def __init__(self, *args, **kwargs):
        pass

    def __dealloc__(self):
        _close(self)
        parser_del(self.parser)

    def close(self):
        _close(self)

    def _set_quoting(self, quote_char: str | bytes | None, quoting: int):
        if not isinstance(quoting, int):
            raise TypeError('"quoting" must be an integer')

        if not QUOTE_MINIMAL <= quoting <= QUOTE_NONE:
            raise TypeError('bad "quoting" value')

        if not isinstance(quote_char, (str, bytes)) and quote_char is not None:
            dtype = type(quote_char).__name__
            raise TypeError(f'"quotechar" must be string, not {dtype}')

        if quote_char is None or quote_char == '':
            if quoting != QUOTE_NONE:
                raise TypeError("quotechar must be set if quoting enabled")
            self.parser.quoting = quoting
            self.parser.quotechar = -1
        elif len(quote_char) > 1:  # 0-len case handled earlier
            raise TypeError('"quotechar" must be a 1-character string')
        else:
            self.parser.quoting = quoting
            self.parser.quotechar = <char>ord(quote_char)

    cdef _make_skiprow_set(self):
        if util.is_integer_object(self.skiprows):
            parser_set_skipfirstnrows(self.parser, self.skiprows)
        elif not callable(self.skiprows):
            for i in self.skiprows:
                parser_add_skiprow(self.parser, i)
        else:
            self.parser.skipfunc = <PyObject *>self.skiprows

    cdef _setup_parser_source(self, source):
        cdef:
            void *ptr

        ptr = new_rd_source(source)
        self.parser.source = ptr
        self.parser.cb_io = &buffer_rd_bytes
        self.parser.cb_cleanup = &del_rd_source

    cdef _get_header(self, list prelim_header):
        # header is now a list of lists, so field_count should use header[0]
        #
        # modifies:
        #   self.parser attributes
        #   self.parser_start
        #   self.leading_cols

        cdef:
            Py_ssize_t i, start, field_count, passed_count, unnamed_count, level
            char *word
            str name, old_name
            uint64_t hr, data_line = 0
            list header = []
            set unnamed_cols = set()

        if self.parser.header_start >= 0:

            # Header is in the file
            for level, hr in enumerate(prelim_header):

                this_header = []

                if self.parser.lines < hr + 1:
                    self._tokenize_rows(hr + 2)

                if self.parser.lines == 0:
                    field_count = 0
                    start = self.parser.line_start[0]

                # e.g., if header=3 and file only has 2 lines
                elif (self.parser.lines < hr + 1
                      and not isinstance(self.orig_header, list)) or (
                          self.parser.lines < hr):
                    msg = self.orig_header
                    if isinstance(msg, list):
                        joined = ','.join(str(m) for m in msg)
                        msg = f"[{joined}], len of {len(msg)},"
                    raise ParserError(
                        f'Passed header={msg} but only '
                        f'{self.parser.lines} lines in file')

                else:
                    field_count = self.parser.line_fields[hr]
                    start = self.parser.line_start[hr]

                unnamed_count = 0
                unnamed_col_indices = []

                for i in range(field_count):
                    word = self.parser.words[start + i]

                    name = PyUnicode_DecodeUTF8(word, strlen(word),
                                                self.encoding_errors)

                    if name == '':
                        if self.has_mi_columns:
                            name = f'Unnamed: {i}_level_{level}'
                        else:
                            name = f'Unnamed: {i}'

                        unnamed_count += 1
                        unnamed_col_indices.append(i)

                    this_header.append(name)

                if not self.has_mi_columns and self.mangle_dupe_cols:
                    # Ensure that regular columns are used before unnamed ones
                    # to keep given names and mangle unnamed columns
                    col_loop_order = [i for i in range(len(this_header))
                                      if i not in unnamed_col_indices
                                      ] + unnamed_col_indices
                    counts = {}

                    for i in col_loop_order:
                        col = this_header[i]
                        old_col = col
                        cur_count = counts.get(col, 0)

                        if cur_count > 0:
                            while cur_count > 0:
                                counts[old_col] = cur_count + 1
                                col = f'{old_col}.{cur_count}'
                                if col in this_header:
                                    cur_count += 1
                                else:
                                    cur_count = counts.get(col, 0)

                            if (
                                self.dtype is not None
                                and is_dict_like(self.dtype)
                                and self.dtype.get(old_col) is not None
                                and self.dtype.get(col) is None
                            ):
                                self.dtype.update({col: self.dtype.get(old_col)})

                        this_header[i] = col
                        counts[col] = cur_count + 1

                if self.has_mi_columns:

                    # If we have grabbed an extra line, but it's not in our
                    # format, save in the buffer, and create an blank extra
                    # line for the rest of the parsing code.
                    if hr == prelim_header[-1]:
                        lc = len(this_header)
                        ic = (len(self.index_col) if self.index_col
                              is not None else 0)

                        # if wrong number of blanks or no index, not our format
                        if (lc != unnamed_count and lc - ic > unnamed_count) or ic == 0:
                            hr -= 1
                            self.parser_start -= 1
                            this_header = [None] * lc

                data_line = hr + 1
                header.append(this_header)
                unnamed_cols.update({this_header[i] for i in unnamed_col_indices})

            if self.names is not None:
                header = [self.names]

        elif self.names is not None:
            # Names passed
            if self.parser.lines < 1:
                self._tokenize_rows(1)

            header = [self.names]

            if self.parser.lines < 1:
                field_count = len(header[0])
            else:
                field_count = self.parser.line_fields[data_line]

            # Enforce this unless usecols
            if not self.has_usecols:
                self.parser.expected_fields = max(field_count, len(self.names))
        else:
            # No header passed nor to be found in the file
            if self.parser.lines < 1:
                self._tokenize_rows(1)

            return None, self.parser.line_fields[0], unnamed_cols

        # Corner case, not enough lines in the file
        if self.parser.lines < data_line + 1:
            field_count = len(header[0])
        else:  # not self.has_usecols:

            field_count = self.parser.line_fields[data_line]

            # #2981
            if self.names is not None:
                field_count = max(field_count, len(self.names))

            passed_count = len(header[0])

            if (self.has_usecols and self.allow_leading_cols and
                    not callable(self.usecols)):
                nuse = len(self.usecols)
                if nuse == passed_count:
                    self.leading_cols = 0
                elif self.names is None and nuse < passed_count:
                    self.leading_cols = field_count - passed_count
                elif passed_count != field_count:
                    raise ValueError('Number of passed names did not match number of '
                                     'header fields in the file')
            # oh boy, #2442, #2981
            elif self.allow_leading_cols and passed_count < field_count:
                self.leading_cols = field_count - passed_count

        return header, field_count, unnamed_cols

    def read(self, rows: int | None = None) -> dict[int, "ArrayLike"]:
        """
        rows=None --> read all rows
        """
        # Don't care about memory usage
        columns = self._read_rows(rows, 1)

        return columns

    def read_low_memory(self, rows: int | None)-> list[dict[int, "ArrayLike"]]:
        """
        rows=None --> read all rows
        """
        # Conserve intermediate space
        # Caller is responsible for concatenating chunks,
        #  see c_parser_wrapper._concatenate_chunks
        cdef:
            size_t rows_read = 0
            list chunks = []

        if rows is None:
            while True:
                try:
                    chunk = self._read_rows(self.buffer_lines, 0)
                    if len(chunk) == 0:
                        break
                except StopIteration:
                    break
                else:
                    chunks.append(chunk)
        else:
            while rows_read < rows:
                try:
                    crows = min(self.buffer_lines, rows - rows_read)

                    chunk = self._read_rows(crows, 0)
                    if len(chunk) == 0:
                        break

                    rows_read += len(list(chunk.values())[0])
                except StopIteration:
                    break
                else:
                    chunks.append(chunk)

        parser_trim_buffers(self.parser)

        if len(chunks) == 0:
            raise StopIteration

        return chunks

    cdef _tokenize_rows(self, size_t nrows):
        cdef:
            int status

        with nogil:
            status = tokenize_nrows(self.parser, nrows, self.encoding_errors)

        if self.parser.warn_msg != NULL:
            print(self.parser.warn_msg, file=sys.stderr)
            free(self.parser.warn_msg)
            self.parser.warn_msg = NULL

        if status < 0:
            raise_parser_error('Error tokenizing data', self.parser)

    #  -> dict[int, "ArrayLike"]
    cdef _read_rows(self, rows, bint trim):
        cdef:
            int64_t buffered_lines
            int64_t irows

        self._start_clock()

        if rows is not None:
            irows = rows
            buffered_lines = self.parser.lines - self.parser_start
            if buffered_lines < irows:
                self._tokenize_rows(irows - buffered_lines)

            if self.skipfooter > 0:
                raise ValueError('skipfooter can only be used to read '
                                 'the whole file')
        else:
            with nogil:
                status = tokenize_all_rows(self.parser, self.encoding_errors)

            if self.parser.warn_msg != NULL:
                print(self.parser.warn_msg, file=sys.stderr)
                free(self.parser.warn_msg)
                self.parser.warn_msg = NULL

            if status < 0:
                raise_parser_error('Error tokenizing data', self.parser)

        if self.parser_start >= self.parser.lines:
            raise StopIteration
        self._end_clock('Tokenization')

        self._start_clock()
        columns = self._convert_column_data(rows)
        self._end_clock('Type conversion')
        self._start_clock()
        if len(columns) > 0:
            rows_read = len(list(columns.values())[0])
            # trim
            parser_consume_rows(self.parser, rows_read)
            if trim:
                parser_trim_buffers(self.parser)
            self.parser_start -= rows_read

        self._end_clock('Parser memory cleanup')

        return columns

    cdef _start_clock(self):
        self.clocks.append(time.time())

    cdef _end_clock(self, str what):
        if self.verbose:
            elapsed = time.time() - self.clocks.pop(-1)
            print(f'{what} took: {elapsed * 1000:.2f} ms')

    def set_noconvert(self, i: int) -> None:
        self.noconvert.add(i)

    def remove_noconvert(self, i: int) -> None:
        self.noconvert.remove(i)

    def _convert_column_data(self, rows: int | None) -> dict[int, "ArrayLike"]:
        cdef:
            int64_t i
            int nused
            kh_str_starts_t *na_hashset = NULL
            int64_t start, end
            object name, na_flist, col_dtype = None
            bint na_filter = 0
            int64_t num_cols
            dict result

        start = self.parser_start

        if rows is None:
            end = self.parser.lines
        else:
            end = min(start + rows, self.parser.lines)

        num_cols = -1
        # Py_ssize_t cast prevents build warning
        for i in range(<Py_ssize_t>self.parser.lines):
            num_cols = (num_cols < self.parser.line_fields[i]) * \
                self.parser.line_fields[i] + \
                (num_cols >= self.parser.line_fields[i]) * num_cols

        usecols_not_callable_and_exists = not callable(self.usecols) and self.usecols
        names_larger_num_cols = (self.names and
                                 len(self.names) - self.leading_cols > num_cols)

        if self.table_width - self.leading_cols > num_cols:
            if (usecols_not_callable_and_exists
                    and self.table_width - self.leading_cols < len(self.usecols)
                    or names_larger_num_cols):
                raise ParserError(f"Too many columns specified: expected "
                                  f"{self.table_width - self.leading_cols} "
                                  f"and found {num_cols}")

        if (usecols_not_callable_and_exists and
                all(isinstance(u, int) for u in self.usecols)):
            missing_usecols = [col for col in self.usecols if col >= num_cols]
            if missing_usecols:
                warnings.warn(
                    "Defining usecols with out of bounds indices is deprecated "
                    "and will raise a ParserError in a future version.",
                    FutureWarning,
                    stacklevel=6,
                )

        results = {}
        nused = 0
        for i in range(self.table_width):
            if i < self.leading_cols:
                # Pass through leading columns always
                name = i
            elif (self.usecols and not callable(self.usecols) and
                    nused == len(self.usecols)):
                # Once we've gathered all requested columns, stop. GH5766
                break
            else:
                name = self._get_column_name(i, nused)
                usecols = set()
                if callable(self.usecols):
                    if self.usecols(name):
                        usecols = {i}
                else:
                    usecols = self.usecols
                if self.has_usecols and not (i in usecols or
                                             name in usecols):
                    continue
                nused += 1

            conv = self._get_converter(i, name)

            col_dtype = None
            if self.dtype is not None:
                if isinstance(self.dtype, dict):
                    if name in self.dtype:
                        col_dtype = self.dtype[name]
                    elif i in self.dtype:
                        col_dtype = self.dtype[i]
                else:
                    if self.dtype.names:
                        # structured array
                        col_dtype = np.dtype(self.dtype.descr[i][1])
                    else:
                        col_dtype = self.dtype

            if conv:
                if col_dtype is not None:
                    warnings.warn((f"Both a converter and dtype were specified "
                                   f"for column {name} - only the converter will "
                                   f"be used."), ParserWarning,
                                  stacklevel=5)
                results[i] = _apply_converter(conv, self.parser, i, start, end)
                continue

            # Collect the list of NaN values associated with the column.
            # If we aren't supposed to do that, or none are collected,
            # we set `na_filter` to `0` (`1` otherwise).
            na_flist = set()

            if self.na_filter:
                na_list, na_flist = self._get_na_list(i, name)
                if na_list is None:
                    na_filter = 0
                else:
                    na_filter = 1
                    na_hashset = kset_from_list(na_list)
            else:
                na_filter = 0

            # Attempt to parse tokens and infer dtype of the column.
            # Should return as the desired dtype (inferred or specified).
            try:
                col_res, na_count = self._convert_tokens(
                    i, start, end, name, na_filter, na_hashset,
                    na_flist, col_dtype)
            finally:
                # gh-21353
                #
                # Cleanup the NaN hash that we generated
                # to avoid memory leaks.
                if na_filter:
                    self._free_na_set(na_hashset)

            # don't try to upcast EAs
            if na_count > 0 and not is_extension_array_dtype(col_dtype):
                col_res = _maybe_upcast(col_res)

            if col_res is None:
                raise ParserError(f'Unable to parse column {i}')

            results[i] = col_res

        self.parser_start += end - start

        return results

    # -> tuple["ArrayLike", int]:
    cdef inline _convert_tokens(self, Py_ssize_t i, int64_t start,
                                int64_t end, object name, bint na_filter,
                                kh_str_starts_t *na_hashset,
                                object na_flist, object col_dtype):

        if col_dtype is not None:
            col_res, na_count = self._convert_with_dtype(
                col_dtype, i, start, end, na_filter,
                1, na_hashset, na_flist)

            # Fallback on the parse (e.g. we requested int dtype,
            # but its actually a float).
            if col_res is not None:
                return col_res, na_count

        if i in self.noconvert:
            return self._string_convert(i, start, end, na_filter, na_hashset)
        else:
            col_res = None
            for dt in self.dtype_cast_order:
                try:
                    col_res, na_count = self._convert_with_dtype(
                        dt, i, start, end, na_filter, 0, na_hashset, na_flist)
                except ValueError:
                    # This error is raised from trying to convert to uint64,
                    # and we discover that we cannot convert to any numerical
                    # dtype successfully. As a result, we leave the data
                    # column AS IS with object dtype.
                    col_res, na_count = self._convert_with_dtype(
                        np.dtype('object'), i, start, end, 0,
                        0, na_hashset, na_flist)
                except OverflowError:
                    col_res, na_count = self._convert_with_dtype(
                        np.dtype('object'), i, start, end, na_filter,
                        0, na_hashset, na_flist)

                if col_res is not None:
                    break

        # we had a fallback parse on the dtype, so now try to cast
        if col_res is not None and col_dtype is not None:
            # If col_res is bool, it might actually be a bool array mixed with NaNs
            # (see _try_bool_flex()). Usually this would be taken care of using
            # _maybe_upcast(), but if col_dtype is a floating type we should just
            # take care of that cast here.
            if col_res.dtype == np.bool_ and is_float_dtype(col_dtype):
                mask = col_res.view(np.uint8) == na_values[np.uint8]
                col_res = col_res.astype(col_dtype)
                np.putmask(col_res, mask, np.nan)
                return col_res, na_count

            # NaNs are already cast to True here, so can not use astype
            if col_res.dtype == np.bool_ and is_integer_dtype(col_dtype):
                if na_count > 0:
                    raise ValueError(
                        f"cannot safely convert passed user dtype of "
                        f"{col_dtype} for {np.bool_} dtyped data in "
                        f"column {i} due to NA values"
                    )

            # only allow safe casts, eg. with a nan you cannot safely cast to int
            try:
                col_res = col_res.astype(col_dtype, casting='safe')
            except TypeError:

                # float -> int conversions can fail the above
                # even with no nans
                col_res_orig = col_res
                col_res = col_res.astype(col_dtype)
                if (col_res != col_res_orig).any():
                    raise ValueError(
                        f"cannot safely convert passed user dtype of "
                        f"{col_dtype} for {col_res_orig.dtype.name} dtyped data in "
                        f"column {i}")

        return col_res, na_count

    cdef _convert_with_dtype(self, object dtype, Py_ssize_t i,
                             int64_t start, int64_t end,
                             bint na_filter,
                             bint user_dtype,
                             kh_str_starts_t *na_hashset,
                             object na_flist):
        if isinstance(dtype, CategoricalDtype):
            # TODO: I suspect that _categorical_convert could be
            # optimized when dtype is an instance of CategoricalDtype
            codes, cats, na_count = _categorical_convert(
                self.parser, i, start, end, na_filter, na_hashset)

            # Method accepts list of strings, not encoded ones.
            true_values = [x.decode() for x in self.true_values]
            array_type = dtype.construct_array_type()
            cat = array_type._from_inferred_categories(
                cats, codes, dtype, true_values=true_values)
            return cat, na_count

        elif is_extension_array_dtype(dtype):
            result, na_count = self._string_convert(i, start, end, na_filter,
                                                    na_hashset)

            array_type = dtype.construct_array_type()
            try:
                # use _from_sequence_of_strings if the class defines it
                if is_bool_dtype(dtype):
                    true_values = [x.decode() for x in self.true_values]
                    false_values = [x.decode() for x in self.false_values]
                    result = array_type._from_sequence_of_strings(
                        result, dtype=dtype, true_values=true_values,
                        false_values=false_values)
                else:
                    result = array_type._from_sequence_of_strings(result, dtype=dtype)
            except NotImplementedError:
                raise NotImplementedError(
                    f"Extension Array: {array_type} must implement "
                    f"_from_sequence_of_strings in order "
                    f"to be used in parser methods")

            return result, na_count

        elif is_integer_dtype(dtype):
            try:
                result, na_count = _try_int64(self.parser, i, start,
                                              end, na_filter, na_hashset)
                if user_dtype and na_count is not None:
                    if na_count > 0:
                        raise ValueError(f"Integer column has NA values in column {i}")
            except OverflowError:
                result = _try_uint64(self.parser, i, start, end,
                                     na_filter, na_hashset)
                na_count = 0

            if result is not None and dtype != 'int64':
                result = result.astype(dtype)

            return result, na_count

        elif is_float_dtype(dtype):
            result, na_count = _try_double(self.parser, i, start, end,
                                           na_filter, na_hashset, na_flist)

            if result is not None and dtype != 'float64':
                result = result.astype(dtype)
            return result, na_count
        elif is_bool_dtype(dtype):
            result, na_count = _try_bool_flex(self.parser, i, start, end,
                                              na_filter, na_hashset,
                                              self.true_set, self.false_set)
            if user_dtype and na_count is not None:
                if na_count > 0:
                    raise ValueError(f"Bool column has NA values in column {i}")
            return result, na_count

        elif dtype.kind == 'S':
            # TODO: na handling
            width = dtype.itemsize
            if width > 0:
                result = _to_fw_string(self.parser, i, start, end, width)
                return result, 0

            # treat as a regular string parsing
            return self._string_convert(i, start, end, na_filter,
                                        na_hashset)
        elif dtype.kind == 'U':
            width = dtype.itemsize
            if width > 0:
                raise TypeError(f"the dtype {dtype} is not supported for parsing")

            # unicode variable width
            return self._string_convert(i, start, end, na_filter,
                                        na_hashset)
        elif is_object_dtype(dtype):
            return self._string_convert(i, start, end, na_filter,
                                        na_hashset)
        elif is_datetime64_dtype(dtype):
            raise TypeError(f"the dtype {dtype} is not supported "
                            f"for parsing, pass this column "
                            f"using parse_dates instead")
        else:
            raise TypeError(f"the dtype {dtype} is not supported for parsing")

    # -> tuple[ndarray[object], int]
    cdef _string_convert(self, Py_ssize_t i, int64_t start, int64_t end,
                         bint na_filter, kh_str_starts_t *na_hashset):

        return _string_box_utf8(self.parser, i, start, end, na_filter,
                                na_hashset, self.encoding_errors)

    def _get_converter(self, i: int, name):
        if self.converters is None:
            return None

        if name is not None and name in self.converters:
            return self.converters[name]

        # Converter for position, if any
        return self.converters.get(i)

    cdef _get_na_list(self, Py_ssize_t i, name):
        # Note: updates self.na_values, self.na_fvalues
        if self.na_values is None:
            return None, set()

        if isinstance(self.na_values, dict):
            key = None
            values = None

            if name is not None and name in self.na_values:
                key = name
            elif i in self.na_values:
                key = i
            else:  # No na_values provided for this column.
                if self.keep_default_na:
                    return _NA_VALUES, set()

                return list(), set()

            values = self.na_values[key]
            if values is not None and not isinstance(values, list):
                values = list(values)

            fvalues = self.na_fvalues[key]
            if fvalues is not None and not isinstance(fvalues, set):
                fvalues = set(fvalues)

            return _ensure_encoded(values), fvalues
        else:
            if not isinstance(self.na_values, list):
                self.na_values = list(self.na_values)
            if not isinstance(self.na_fvalues, set):
                self.na_fvalues = set(self.na_fvalues)

            return _ensure_encoded(self.na_values), self.na_fvalues

    cdef _free_na_set(self, kh_str_starts_t *table):
        kh_destroy_str_starts(table)

    cdef _get_column_name(self, Py_ssize_t i, Py_ssize_t nused):
        cdef int64_t j
        if self.has_usecols and self.names is not None:
            if (not callable(self.usecols) and
                    len(self.names) == len(self.usecols)):
                return self.names[nused]
            else:
                return self.names[i - self.leading_cols]
        else:
            if self.header is not None:
                j = i - self.leading_cols
                # generate extra (bogus) headers if there are more columns than headers
                if j >= len(self.header[0]):
                    return j
                elif self.has_mi_columns:
                    return tuple(header_row[j] for header_row in self.header)
                else:
                    return self.header[0][j]
            else:
                return None


# Factor out code common to TextReader.__dealloc__ and TextReader.close
# It cannot be a class method, since calling self.close() in __dealloc__
# which causes a class attribute lookup and violates best parctices
# https://cython.readthedocs.io/en/latest/src/userguide/special_methods.html#finalization-method-dealloc
cdef _close(TextReader reader):
    # also preemptively free all allocated memory
    parser_free(reader.parser)
    if reader.true_set:
        kh_destroy_str_starts(reader.true_set)
        reader.true_set = NULL
    if reader.false_set:
        kh_destroy_str_starts(reader.false_set)
        reader.false_set = NULL


cdef:
    object _true_values = [b'True', b'TRUE', b'true']
    object _false_values = [b'False', b'FALSE', b'false']


def _ensure_encoded(list lst):
    cdef:
        list result = []
    for x in lst:
        if isinstance(x, str):
            x = PyUnicode_AsUTF8String(x)
        elif not isinstance(x, bytes):
            x = str(x).encode('utf-8')

        result.append(x)
    return result


# common NA values
# no longer excluding inf representations
# '1.#INF','-1.#INF', '1.#INF000000',
STR_NA_VALUES = {
    "-1.#IND",
    "1.#QNAN",
    "1.#IND",
    "-1.#QNAN",
    "#N/A N/A",
    "#N/A",
    "N/A",
    "n/a",
    "NA",
    "<NA>",
    "#NA",
    "NULL",
    "null",
    "NaN",
    "-NaN",
    "nan",
    "-nan",
    "",
}
_NA_VALUES = _ensure_encoded(list(STR_NA_VALUES))


def _maybe_upcast(arr):
    """

    """
    if issubclass(arr.dtype.type, np.integer):
        na_value = na_values[arr.dtype]
        arr = arr.astype(float)
        np.putmask(arr, arr == na_value, np.nan)
    elif arr.dtype == np.bool_:
        mask = arr.view(np.uint8) == na_values[np.uint8]
        arr = arr.astype(object)
        np.putmask(arr, mask, np.nan)

    return arr


# ----------------------------------------------------------------------
# Type conversions / inference support code


# -> tuple[ndarray[object], int]
cdef _string_box_utf8(parser_t *parser, int64_t col,
                      int64_t line_start, int64_t line_end,
                      bint na_filter, kh_str_starts_t *na_hashset,
                      const char *encoding_errors):
    cdef:
        int error, na_count = 0
        Py_ssize_t i, lines
        coliter_t it
        const char *word = NULL
        ndarray[object] result

        int ret = 0
        kh_strbox_t *table

        object pyval

        object NA = na_values[np.object_]
        khiter_t k

    table = kh_init_strbox()
    lines = line_end - line_start
    result = np.empty(lines, dtype=np.object_)
    coliter_setup(&it, parser, col, line_start)

    for i in range(lines):
        COLITER_NEXT(it, word)

        if na_filter:
            if kh_get_str_starts_item(na_hashset, word):
                # in the hash table
                na_count += 1
                result[i] = NA
                continue

        k = kh_get_strbox(table, word)

        # in the hash table
        if k != table.n_buckets:
            # this increments the refcount, but need to test
            pyval = <object>table.vals[k]
        else:
            # box it. new ref?
            pyval = PyUnicode_Decode(word, strlen(word), "utf-8", encoding_errors)

            k = kh_put_strbox(table, word, &ret)
            table.vals[k] = <PyObject *>pyval

        result[i] = pyval

    kh_destroy_strbox(table)

    return result, na_count


@cython.boundscheck(False)
cdef _categorical_convert(parser_t *parser, int64_t col,
                          int64_t line_start, int64_t line_end,
                          bint na_filter, kh_str_starts_t *na_hashset):
    "Convert column data into codes, categories"
    cdef:
        int na_count = 0
        Py_ssize_t i, size, lines
        coliter_t it
        const char *word = NULL

        int64_t NA = -1
        int64_t[:] codes
        int64_t current_category = 0

        char *errors = "strict"

        int ret = 0
        kh_str_t *table
        khiter_t k

    lines = line_end - line_start
    codes = np.empty(lines, dtype=np.int64)

    # factorize parsed values, creating a hash table
    # bytes -> category code
    with nogil:
        table = kh_init_str()
        coliter_setup(&it, parser, col, line_start)

        for i in range(lines):
            COLITER_NEXT(it, word)

            if na_filter:
                if kh_get_str_starts_item(na_hashset, word):
                    # is in NA values
                    na_count += 1
                    codes[i] = NA
                    continue

            k = kh_get_str(table, word)
            # not in the hash table
            if k == table.n_buckets:
                k = kh_put_str(table, word, &ret)
                table.vals[k] = current_category
                current_category += 1

            codes[i] = table.vals[k]

    # parse and box categories to python strings
    result = np.empty(table.n_occupied, dtype=np.object_)
    for k in range(table.n_buckets):
        if kh_exist_str(table, k):
            result[table.vals[k]] = PyUnicode_FromString(table.keys[k])

    kh_destroy_str(table)
    return np.asarray(codes), result, na_count


# -> ndarray[f'|S{width}']
cdef _to_fw_string(parser_t *parser, int64_t col, int64_t line_start,
                   int64_t line_end, int64_t width):
    cdef:
        char *data
        ndarray result

    result = np.empty(line_end - line_start, dtype=f'|S{width}')
    data = <char*>result.data

    with nogil:
        _to_fw_string_nogil(parser, col, line_start, line_end, width, data)

    return result


cdef inline void _to_fw_string_nogil(parser_t *parser, int64_t col,
                                     int64_t line_start, int64_t line_end,
                                     size_t width, char *data) nogil:
    cdef:
        int64_t i
        coliter_t it
        const char *word = NULL

    coliter_setup(&it, parser, col, line_start)

    for i in range(line_end - line_start):
        COLITER_NEXT(it, word)
        strncpy(data, word, width)
        data += width


cdef:
    char* cinf = b'inf'
    char* cposinf = b'+inf'
    char* cneginf = b'-inf'

    char* cinfty = b'Infinity'
    char* cposinfty = b'+Infinity'
    char* cneginfty = b'-Infinity'


# -> tuple[ndarray[float64_t], int]  | tuple[None, None]
cdef _try_double(parser_t *parser, int64_t col,
                 int64_t line_start, int64_t line_end,
                 bint na_filter, kh_str_starts_t *na_hashset, object na_flist):
    cdef:
        int error, na_count = 0
        Py_ssize_t lines
        float64_t *data
        float64_t NA = na_values[np.float64]
        kh_float64_t *na_fset
        ndarray[float64_t] result
        bint use_na_flist = len(na_flist) > 0

    lines = line_end - line_start
    result = np.empty(lines, dtype=np.float64)
    data = <float64_t *>result.data
    na_fset = kset_float64_from_list(na_flist)
    with nogil:
        error = _try_double_nogil(parser, parser.double_converter,
                                  col, line_start, line_end,
                                  na_filter, na_hashset, use_na_flist,
                                  na_fset, NA, data, &na_count)

    kh_destroy_float64(na_fset)
    if error != 0:
        return None, None
    return result, na_count


cdef inline int _try_double_nogil(parser_t *parser,
                                  float64_t (*double_converter)(
                                      const char *, char **, char,
                                      char, char, int, int *, int *) nogil,
                                  int64_t col, int64_t line_start, int64_t line_end,
                                  bint na_filter, kh_str_starts_t *na_hashset,
                                  bint use_na_flist,
                                  const kh_float64_t *na_flist,
                                  float64_t NA, float64_t *data,
                                  int *na_count) nogil:
    cdef:
        int error = 0,
        Py_ssize_t i, lines = line_end - line_start
        coliter_t it
        const char *word = NULL
        char *p_end
        khiter_t k64

    na_count[0] = 0
    coliter_setup(&it, parser, col, line_start)

    if na_filter:
        for i in range(lines):
            COLITER_NEXT(it, word)

            if kh_get_str_starts_item(na_hashset, word):
                # in the hash table
                na_count[0] += 1
                data[0] = NA
            else:
                data[0] = double_converter(word, &p_end, parser.decimal,
                                           parser.sci, parser.thousands,
                                           1, &error, NULL)
                if error != 0 or p_end == word or p_end[0]:
                    error = 0
                    if (strcasecmp(word, cinf) == 0 or
                            strcasecmp(word, cposinf) == 0 or
                            strcasecmp(word, cinfty) == 0 or
                            strcasecmp(word, cposinfty) == 0):
                        data[0] = INF
                    elif (strcasecmp(word, cneginf) == 0 or
                            strcasecmp(word, cneginfty) == 0):
                        data[0] = NEGINF
                    else:
                        return 1
                if use_na_flist:
                    k64 = kh_get_float64(na_flist, data[0])
                    if k64 != na_flist.n_buckets:
                        na_count[0] += 1
                        data[0] = NA
            data += 1
    else:
        for i in range(lines):
            COLITER_NEXT(it, word)
            data[0] = double_converter(word, &p_end, parser.decimal,
                                       parser.sci, parser.thousands,
                                       1, &error, NULL)
            if error != 0 or p_end == word or p_end[0]:
                error = 0
                if (strcasecmp(word, cinf) == 0 or
                        strcasecmp(word, cposinf) == 0 or
                        strcasecmp(word, cinfty) == 0 or
                        strcasecmp(word, cposinfty) == 0):
                    data[0] = INF
                elif (strcasecmp(word, cneginf) == 0 or
                        strcasecmp(word, cneginfty) == 0):
                    data[0] = NEGINF
                else:
                    return 1
            data += 1

    return 0


cdef _try_uint64(parser_t *parser, int64_t col,
                 int64_t line_start, int64_t line_end,
                 bint na_filter, kh_str_starts_t *na_hashset):
    cdef:
        int error
        Py_ssize_t lines
        coliter_t it
        uint64_t *data
        ndarray result
        uint_state state

    lines = line_end - line_start
    result = np.empty(lines, dtype=np.uint64)
    data = <uint64_t *>result.data

    uint_state_init(&state)
    coliter_setup(&it, parser, col, line_start)
    with nogil:
        error = _try_uint64_nogil(parser, col, line_start, line_end,
                                  na_filter, na_hashset, data, &state)
    if error != 0:
        if error == ERROR_OVERFLOW:
            # Can't get the word variable
            raise OverflowError('Overflow')
        return None

    if uint64_conflict(&state):
        raise ValueError('Cannot convert to numerical dtype')

    if state.seen_sint:
        raise OverflowError('Overflow')

    return result


cdef inline int _try_uint64_nogil(parser_t *parser, int64_t col,
                                  int64_t line_start,
                                  int64_t line_end, bint na_filter,
                                  const kh_str_starts_t *na_hashset,
                                  uint64_t *data, uint_state *state) nogil:
    cdef:
        int error
        Py_ssize_t i, lines = line_end - line_start
        coliter_t it
        const char *word = NULL

    coliter_setup(&it, parser, col, line_start)

    if na_filter:
        for i in range(lines):
            COLITER_NEXT(it, word)
            if kh_get_str_starts_item(na_hashset, word):
                # in the hash table
                state.seen_null = 1
                data[i] = 0
                continue

            data[i] = str_to_uint64(state, word, INT64_MAX, UINT64_MAX,
                                    &error, parser.thousands)
            if error != 0:
                return error
    else:
        for i in range(lines):
            COLITER_NEXT(it, word)
            data[i] = str_to_uint64(state, word, INT64_MAX, UINT64_MAX,
                                    &error, parser.thousands)
            if error != 0:
                return error

    return 0


cdef _try_int64(parser_t *parser, int64_t col,
                int64_t line_start, int64_t line_end,
                bint na_filter, kh_str_starts_t *na_hashset):
    cdef:
        int error, na_count = 0
        Py_ssize_t lines
        coliter_t it
        int64_t *data
        ndarray result
        int64_t NA = na_values[np.int64]

    lines = line_end - line_start
    result = np.empty(lines, dtype=np.int64)
    data = <int64_t *>result.data
    coliter_setup(&it, parser, col, line_start)
    with nogil:
        error = _try_int64_nogil(parser, col, line_start, line_end,
                                 na_filter, na_hashset, NA, data, &na_count)
    if error != 0:
        if error == ERROR_OVERFLOW:
            # Can't get the word variable
            raise OverflowError('Overflow')
        return None, None

    return result, na_count


cdef inline int _try_int64_nogil(parser_t *parser, int64_t col,
                                 int64_t line_start,
                                 int64_t line_end, bint na_filter,
                                 const kh_str_starts_t *na_hashset, int64_t NA,
                                 int64_t *data, int *na_count) nogil:
    cdef:
        int error
        Py_ssize_t i, lines = line_end - line_start
        coliter_t it
        const char *word = NULL

    na_count[0] = 0
    coliter_setup(&it, parser, col, line_start)

    if na_filter:
        for i in range(lines):
            COLITER_NEXT(it, word)
            if kh_get_str_starts_item(na_hashset, word):
                # in the hash table
                na_count[0] += 1
                data[i] = NA
                continue

            data[i] = str_to_int64(word, INT64_MIN, INT64_MAX,
                                   &error, parser.thousands)
            if error != 0:
                return error
    else:
        for i in range(lines):
            COLITER_NEXT(it, word)
            data[i] = str_to_int64(word, INT64_MIN, INT64_MAX,
                                   &error, parser.thousands)
            if error != 0:
                return error

    return 0


# -> tuple[ndarray[bool], int]
cdef _try_bool_flex(parser_t *parser, int64_t col,
                    int64_t line_start, int64_t line_end,
                    bint na_filter, const kh_str_starts_t *na_hashset,
                    const kh_str_starts_t *true_hashset,
                    const kh_str_starts_t *false_hashset):
    cdef:
        int error, na_count = 0
        Py_ssize_t lines
        uint8_t *data
        ndarray result
        uint8_t NA = na_values[np.bool_]

    lines = line_end - line_start
    result = np.empty(lines, dtype=np.uint8)
    data = <uint8_t *>result.data
    with nogil:
        error = _try_bool_flex_nogil(parser, col, line_start, line_end,
                                     na_filter, na_hashset, true_hashset,
                                     false_hashset, NA, data, &na_count)
    if error != 0:
        return None, None
    return result.view(np.bool_), na_count


cdef inline int _try_bool_flex_nogil(parser_t *parser, int64_t col,
                                     int64_t line_start,
                                     int64_t line_end, bint na_filter,
                                     const kh_str_starts_t *na_hashset,
                                     const kh_str_starts_t *true_hashset,
                                     const kh_str_starts_t *false_hashset,
                                     uint8_t NA, uint8_t *data,
                                     int *na_count) nogil:
    cdef:
        int error = 0
        Py_ssize_t i, lines = line_end - line_start
        coliter_t it
        const char *word = NULL

    na_count[0] = 0
    coliter_setup(&it, parser, col, line_start)

    if na_filter:
        for i in range(lines):
            COLITER_NEXT(it, word)

            if kh_get_str_starts_item(na_hashset, word):
                # in the hash table
                na_count[0] += 1
                data[0] = NA
                data += 1
                continue

            if kh_get_str_starts_item(true_hashset, word):
                data[0] = 1
                data += 1
                continue
            if kh_get_str_starts_item(false_hashset, word):
                data[0] = 0
                data += 1
                continue

            error = to_boolean(word, data)
            if error != 0:
                return error
            data += 1
    else:
        for i in range(lines):
            COLITER_NEXT(it, word)

            if kh_get_str_starts_item(true_hashset, word):
                data[0] = 1
                data += 1
                continue

            if kh_get_str_starts_item(false_hashset, word):
                data[0] = 0
                data += 1
                continue

            error = to_boolean(word, data)
            if error != 0:
                return error
            data += 1

    return 0


cdef kh_str_starts_t* kset_from_list(list values) except NULL:
    # caller takes responsibility for freeing the hash table
    cdef:
        Py_ssize_t i
        kh_str_starts_t *table
        int ret = 0
        object val

    table = kh_init_str_starts()

    for i in range(len(values)):
        val = values[i]

        # None creeps in sometimes, which isn't possible here
        if not isinstance(val, bytes):
            kh_destroy_str_starts(table)
            raise ValueError('Must be all encoded bytes')

        kh_put_str_starts_item(table, PyBytes_AsString(val), &ret)

    if table.table.n_buckets <= 128:
        # Resize the hash table to make it almost empty, this
        # reduces amount of hash collisions on lookup thus
        # "key not in table" case is faster.
        # Note that this trades table memory footprint for lookup speed.
        kh_resize_str_starts(table, table.table.n_buckets * 8)

    return table


cdef kh_float64_t* kset_float64_from_list(values) except NULL:
    # caller takes responsibility for freeing the hash table
    cdef:
        khiter_t k
        kh_float64_t *table
        int ret = 0
        float64_t val
        object value

    table = kh_init_float64()

    for value in values:
        val = float(value)

        k = kh_put_float64(table, val, &ret)

    if table.n_buckets <= 128:
        # See reasoning in kset_from_list
        kh_resize_float64(table, table.n_buckets * 8)
    return table


cdef raise_parser_error(object base, parser_t *parser):
    cdef:
        object old_exc
        object exc_type
        PyObject *type
        PyObject *value
        PyObject *traceback

    if PyErr_Occurred():
        PyErr_Fetch(&type, &value, &traceback)
        Py_XDECREF(traceback)

        if value != NULL:
            old_exc = <object>value
            Py_XDECREF(value)

            # PyErr_Fetch only returned the error message in *value,
            # so the Exception class must be extracted from *type.
            if isinstance(old_exc, str):
                if type != NULL:
                    exc_type = <object>type
                else:
                    exc_type = ParserError

                Py_XDECREF(type)
                raise exc_type(old_exc)
            else:
                Py_XDECREF(type)
                raise old_exc

    message = f'{base}. C error: '
    if parser.error_msg != NULL:
        message += parser.error_msg.decode('utf-8')
    else:
        message += 'no error message set'

    raise ParserError(message)


# ----------------------------------------------------------------------
# NA values
def _compute_na_values():
    int64info = np.iinfo(np.int64)
    int32info = np.iinfo(np.int32)
    int16info = np.iinfo(np.int16)
    int8info = np.iinfo(np.int8)
    uint64info = np.iinfo(np.uint64)
    uint32info = np.iinfo(np.uint32)
    uint16info = np.iinfo(np.uint16)
    uint8info = np.iinfo(np.uint8)
    na_values = {
        np.float64: np.nan,
        np.int64: int64info.min,
        np.int32: int32info.min,
        np.int16: int16info.min,
        np.int8: int8info.min,
        np.uint64: uint64info.max,
        np.uint32: uint32info.max,
        np.uint16: uint16info.max,
        np.uint8: uint8info.max,
        np.bool_: uint8info.max,
        np.object_: np.nan   # oof
    }
    return na_values


na_values = _compute_na_values()

for k in list(na_values):
    na_values[np.dtype(k)] = na_values[k]


# -> ArrayLike
cdef _apply_converter(object f, parser_t *parser, int64_t col,
                      int64_t line_start, int64_t line_end):
    cdef:
        Py_ssize_t i, lines
        coliter_t it
        const char *word = NULL
        ndarray[object] result
        object val

    lines = line_end - line_start
    result = np.empty(lines, dtype=np.object_)

    coliter_setup(&it, parser, col, line_start)

    for i in range(lines):
        COLITER_NEXT(it, word)
        val = PyUnicode_FromString(word)
        result[i] = f(val)

    return lib.maybe_convert_objects(result)


cdef list _maybe_encode(list values):
    if values is None:
        return []
    return [x.encode('utf-8') if isinstance(x, str) else x for x in values]


def sanitize_objects(ndarray[object] values, set na_values) -> int:
    """
    Convert specified values, including the given set na_values to np.nan.

    Parameters
    ----------
    values : ndarray[object]
    na_values : set

    Returns
    -------
    na_count : int
    """
    cdef:
        Py_ssize_t i, n
        object val, onan
        Py_ssize_t na_count = 0
        dict memo = {}

    n = len(values)
    onan = np.nan

    for i in range(n):
        val = values[i]
        if val in na_values:
            values[i] = onan
            na_count += 1
        elif val in memo:
            values[i] = memo[val]
        else:
            memo[val] = val

    return na_count