Repository URL to install this package:
|
Version:
1.4.3 ▾
|
from __future__ import annotations
from typing import overload
import numpy as np
from pandas._libs import (
lib,
missing as libmissing,
)
from pandas._typing import (
ArrayLike,
AstypeArg,
DtypeObj,
npt,
)
from pandas.util._decorators import cache_readonly
from pandas.core.dtypes.cast import astype_nansafe
from pandas.core.dtypes.common import (
is_bool_dtype,
is_datetime64_dtype,
is_float_dtype,
is_integer_dtype,
is_object_dtype,
pandas_dtype,
)
from pandas.core.dtypes.dtypes import (
ExtensionDtype,
register_extension_dtype,
)
from pandas.core.arrays import ExtensionArray
from pandas.core.arrays.numeric import (
NumericArray,
NumericDtype,
)
from pandas.core.tools.numeric import to_numeric
class FloatingDtype(NumericDtype):
"""
An ExtensionDtype to hold a single size of floating dtype.
These specific implementations are subclasses of the non-public
FloatingDtype. For example we have Float32Dtype to represent float32.
The attributes name & type are set when these subclasses are created.
"""
def __repr__(self) -> str:
return f"{self.name}Dtype()"
@property
def _is_numeric(self) -> bool:
return True
@classmethod
def construct_array_type(cls) -> type[FloatingArray]:
"""
Return the array type associated with this dtype.
Returns
-------
type
"""
return FloatingArray
def _get_common_dtype(self, dtypes: list[DtypeObj]) -> DtypeObj | None:
# for now only handle other floating types
if not all(isinstance(t, FloatingDtype) for t in dtypes):
return None
np_dtype = np.find_common_type(
# error: Item "ExtensionDtype" of "Union[Any, ExtensionDtype]" has no
# attribute "numpy_dtype"
[t.numpy_dtype for t in dtypes], # type: ignore[union-attr]
[],
)
if np.issubdtype(np_dtype, np.floating):
return FLOAT_STR_TO_DTYPE[str(np_dtype)]
return None
def coerce_to_array(
values, dtype=None, mask=None, copy: bool = False
) -> tuple[np.ndarray, np.ndarray]:
"""
Coerce the input values array to numpy arrays with a mask.
Parameters
----------
values : 1D list-like
dtype : float dtype
mask : bool 1D array, optional
copy : bool, default False
if True, copy the input
Returns
-------
tuple of (values, mask)
"""
# if values is floating numpy array, preserve its dtype
if dtype is None and hasattr(values, "dtype"):
if is_float_dtype(values.dtype):
dtype = values.dtype
if dtype is not None:
if isinstance(dtype, str) and dtype.startswith("Float"):
# Avoid DeprecationWarning from NumPy about np.dtype("Float64")
# https://github.com/numpy/numpy/pull/7476
dtype = dtype.lower()
if not issubclass(type(dtype), FloatingDtype):
try:
dtype = FLOAT_STR_TO_DTYPE[str(np.dtype(dtype))]
except KeyError as err:
raise ValueError(f"invalid dtype specified {dtype}") from err
if isinstance(values, FloatingArray):
values, mask = values._data, values._mask
if dtype is not None:
values = values.astype(dtype.numpy_dtype, copy=False)
if copy:
values = values.copy()
mask = mask.copy()
return values, mask
values = np.array(values, copy=copy)
if is_object_dtype(values.dtype):
inferred_type = lib.infer_dtype(values, skipna=True)
if inferred_type == "empty":
pass
elif inferred_type not in [
"floating",
"integer",
"mixed-integer",
"integer-na",
"mixed-integer-float",
]:
raise TypeError(f"{values.dtype} cannot be converted to a FloatingDtype")
elif is_bool_dtype(values) and is_float_dtype(dtype):
values = np.array(values, dtype=float, copy=copy)
elif not (is_integer_dtype(values) or is_float_dtype(values)):
raise TypeError(f"{values.dtype} cannot be converted to a FloatingDtype")
if values.ndim != 1:
raise TypeError("values must be a 1D list-like")
if mask is None:
mask = libmissing.is_numeric_na(values)
else:
assert len(mask) == len(values)
if not mask.ndim == 1:
raise TypeError("mask must be a 1D list-like")
# infer dtype if needed
if dtype is None:
dtype = np.dtype("float64")
else:
dtype = dtype.type
# if we are float, let's make sure that we can
# safely cast
# we copy as need to coerce here
# TODO should this be a safe cast?
if mask.any():
values = values.copy()
values[mask] = np.nan
values = values.astype(dtype, copy=False) # , casting="safe")
return values, mask
class FloatingArray(NumericArray):
"""
Array of floating (optional missing) values.
.. versionadded:: 1.2.0
.. warning::
FloatingArray is currently experimental, and its API or internal
implementation may change without warning. Especially the behaviour
regarding NaN (distinct from NA missing values) is subject to change.
We represent a FloatingArray with 2 numpy arrays:
- data: contains a numpy float array of the appropriate dtype
- mask: a boolean array holding a mask on the data, True is missing
To construct an FloatingArray from generic array-like input, use
:func:`pandas.array` with one of the float dtypes (see examples).
See :ref:`integer_na` for more.
Parameters
----------
values : numpy.ndarray
A 1-d float-dtype array.
mask : numpy.ndarray
A 1-d boolean-dtype array indicating missing values.
copy : bool, default False
Whether to copy the `values` and `mask`.
Attributes
----------
None
Methods
-------
None
Returns
-------
FloatingArray
Examples
--------
Create an FloatingArray with :func:`pandas.array`:
>>> pd.array([0.1, None, 0.3], dtype=pd.Float32Dtype())
<FloatingArray>
[0.1, <NA>, 0.3]
Length: 3, dtype: Float32
String aliases for the dtypes are also available. They are capitalized.
>>> pd.array([0.1, None, 0.3], dtype="Float32")
<FloatingArray>
[0.1, <NA>, 0.3]
Length: 3, dtype: Float32
"""
# The value used to fill '_data' to avoid upcasting
_internal_fill_value = 0.0
# Fill values used for any/all
_truthy_value = 1.0
_falsey_value = 0.0
@cache_readonly
def dtype(self) -> FloatingDtype:
return FLOAT_STR_TO_DTYPE[str(self._data.dtype)]
def __init__(self, values: np.ndarray, mask: np.ndarray, copy: bool = False):
if not (isinstance(values, np.ndarray) and values.dtype.kind == "f"):
raise TypeError(
"values should be floating numpy array. Use "
"the 'pd.array' function instead"
)
if values.dtype == np.float16:
# If we don't raise here, then accessing self.dtype would raise
raise TypeError("FloatingArray does not support np.float16 dtype.")
super().__init__(values, mask, copy=copy)
@classmethod
def _from_sequence(
cls, scalars, *, dtype=None, copy: bool = False
) -> FloatingArray:
values, mask = coerce_to_array(scalars, dtype=dtype, copy=copy)
return FloatingArray(values, mask)
@classmethod
def _from_sequence_of_strings(
cls, strings, *, dtype=None, copy: bool = False
) -> FloatingArray:
scalars = to_numeric(strings, errors="raise")
return cls._from_sequence(scalars, dtype=dtype, copy=copy)
def _coerce_to_array(self, value) -> tuple[np.ndarray, np.ndarray]:
return coerce_to_array(value, dtype=self.dtype)
@overload
def astype(self, dtype: npt.DTypeLike, copy: bool = ...) -> np.ndarray:
...
@overload
def astype(self, dtype: ExtensionDtype, copy: bool = ...) -> ExtensionArray:
...
@overload
def astype(self, dtype: AstypeArg, copy: bool = ...) -> ArrayLike:
...
def astype(self, dtype: AstypeArg, copy: bool = True) -> ArrayLike:
"""
Cast to a NumPy array or ExtensionArray with 'dtype'.
Parameters
----------
dtype : str or dtype
Typecode or data-type to which the array is cast.
copy : bool, default True
Whether to copy the data, even if not necessary. If False,
a copy is made only if the old dtype does not match the
new dtype.
Returns
-------
ndarray or ExtensionArray
NumPy ndarray, or BooleanArray, IntegerArray or FloatingArray with
'dtype' for its dtype.
Raises
------
TypeError
if incompatible type with an FloatingDtype, equivalent of same_kind
casting
"""
dtype = pandas_dtype(dtype)
if isinstance(dtype, ExtensionDtype):
return super().astype(dtype, copy=copy)
# coerce
if is_float_dtype(dtype):
# In astype, we consider dtype=float to also mean na_value=np.nan
kwargs = {"na_value": np.nan}
elif is_datetime64_dtype(dtype):
# error: Dict entry 0 has incompatible type "str": "datetime64"; expected
# "str": "float"
kwargs = {"na_value": np.datetime64("NaT")} # type: ignore[dict-item]
else:
kwargs = {}
# error: Argument 2 to "to_numpy" of "BaseMaskedArray" has incompatible
# type "**Dict[str, float]"; expected "bool"
data = self.to_numpy(dtype=dtype, **kwargs) # type: ignore[arg-type]
return astype_nansafe(data, dtype, copy=False)
def _values_for_argsort(self) -> np.ndarray:
return self._data
_dtype_docstring = """
An ExtensionDtype for {dtype} data.
This dtype uses ``pd.NA`` as missing value indicator.
Attributes
----------
None
Methods
-------
None
"""
# create the Dtype
@register_extension_dtype
class Float32Dtype(FloatingDtype):
type = np.float32
name = "Float32"
__doc__ = _dtype_docstring.format(dtype="float32")
@register_extension_dtype
class Float64Dtype(FloatingDtype):
type = np.float64
name = "Float64"
__doc__ = _dtype_docstring.format(dtype="float64")
FLOAT_STR_TO_DTYPE = {
"float32": Float32Dtype(),
"float64": Float64Dtype(),
}